WO2007063978A1 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
WO2007063978A1
WO2007063978A1 PCT/JP2006/324055 JP2006324055W WO2007063978A1 WO 2007063978 A1 WO2007063978 A1 WO 2007063978A1 JP 2006324055 W JP2006324055 W JP 2006324055W WO 2007063978 A1 WO2007063978 A1 WO 2007063978A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat exchange
heat exchanger
flow direction
header
Prior art date
Application number
PCT/JP2006/324055
Other languages
French (fr)
Japanese (ja)
Inventor
Etsuo Shinmura
Koichiro Take
Original Assignee
Showa Denko K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko K.K. filed Critical Showa Denko K.K.
Priority to DE112006003241T priority Critical patent/DE112006003241T5/en
Publication of WO2007063978A1 publication Critical patent/WO2007063978A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/05316Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05341Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/14Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally
    • F28F1/22Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/027Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes
    • F28F9/0275Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes with multiple branch pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/006Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant containing more than one component

Definitions

  • the present invention relates to a heat exchanger using a non-azeotropic mixed refrigerant containing carbon dioxide and carbon dioxide as a refrigerant, and a related technique.
  • FIG. 18 is a view showing a cross-flow type heat exchanger for a car air conditioner in which the refrigerant flow direction is orthogonal to the air flow direction.
  • a pair of headers (1) (1) along the vertical direction, multiple heat exchange tubes (2) with both ends communicating with both headers (1) (1) are arranged in parallel.
  • fins (3) are arranged between the tubes (2).
  • a refrigerant inlet nozzle (4) is provided at the lower end of the right header (1), and a refrigerant outlet nozzle (5) is provided at the upper end.
  • a partition plate (6) is provided in the header (1) (1), and the heat exchange tube (2) is divided into a plurality of paths. Then, the refrigerant force flowing from the refrigerant inlet nozzle (4) flows in each path in order to meander, and the refrigerant outlet nozzle (5) force flows out.
  • Patent Document 1 JP 2001-99522
  • FIG. 17 shows a Mollier diagram of a refrigeration cycle using a non-azeotropic mixed refrigerant in which the ratio of carbon dioxide and dimethyl ether (DME) is 90:10.
  • DME dimethyl ether
  • the non-azeotropic mixed refrigerant having a temperature gradient in the cooling process or the like is applied to the cross-flow type heat exchanger as shown in Fig. 18 as it is, for example, the core portion on the refrigerant inlet side (heat exchange) In the lower area of the vessel, the refrigerant temperature is lower in the core part (upper area of the heat exchanger) on the refrigerant outlet side where the refrigerant temperature is higher. For this reason, although the temperature of the refrigerant is high and a large temperature difference with the air can be secured in the vicinity of the refrigerant inlet, the temperature differential force with the air becomes small near the refrigerant outlet with a low refrigerant temperature. Since the exchange capacity has been significantly reduced, there is a concern that the heat exchange cannot be performed efficiently over the entire heat exchange area.
  • Preferred embodiments of the present invention have been made in view of the foregoing and Z or other issues in the related art. Preferred embodiments of the present invention are those that can significantly improve existing methods and Z or equipment.
  • the present invention has been made in view of the above circumstances, and provides a heat exchange and related technology capable of efficiently performing heat exchange while using a non-azeotropic mixed refrigerant containing carbon dioxide.
  • the purpose is to provide.
  • the heat exchange is characterized in that the flow direction of the refrigerant flowing through the heat exchange path is opposed to the air flow direction.
  • a heat exchanger characterized in that the flow direction of the refrigerant flowing through the heat exchange tube is opposed to the flow direction of air.
  • An inflow side main header is disposed on the leeward side with respect to the air flow direction, and an outflow side main header is disposed on the leeward side.
  • An end portion of the inflow side subheader is connected in communication with the inflow side main header, an end portion of the outflow side subheader is connected in communication with the outflow side main header, and the plurality of heat exchange tube forces have their inflow side ends 3.
  • the apparatus according to item 2 wherein the inflow side subheader is arranged in parallel between the inflow side subheader and the outflow side subheader with the outflow side end connected in communication with the outflow side subheader. Heat exchanger.
  • a pair of inflow side main headers are arranged in parallel on the leeward side with respect to the air flow direction, and a pair of outflow side main headers are arranged in parallel on the upwind side corresponding to the inflow side main header. Arranged,
  • Both end portions of the inflow side subheader are connected to the pair of inflow side main headers, respectively.
  • Both end portions of the outflow side subheader are respectively connected to the pair of outflow side main headers,
  • the plurality of heat exchange tube forces The inflow side and the outflow side in a state where the inflow side end portion is connected to the inflow side subheader and the outflow side end portion is connected to the outflow side subheader.
  • the previous item 2 or 3 placed in parallel between subheaders The described heat exchanger.
  • a plurality of the inflow side subheaders are provided in parallel along the length direction of the inflow side main header,
  • a plurality of the outflow side subheaders are provided in parallel along the length direction of the outflow side main header,
  • Non-azeotropic mixed refrigerant containing carbon dioxide and carbon dioxide is circulated through a plurality of heat exchange tubes and heat exchange is performed between the refrigerant and air.
  • the plurality of heat exchange tubes are arranged in parallel to form a path,
  • a plurality of the paths are arranged in parallel along the air flow direction in a state where the heat exchange tubes are orthogonal to the air flow direction,
  • the downstream path in the refrigerant flow direction is disposed on the windward side in the air flow direction with respect to the upstream path.
  • a path disposed at the downstream end is connected to the inflow side header of the inflow side end of the heat exchange tube in the path disposed at the upstream end.
  • the outflow side end of the heat exchange tube is connected in communication with the outflow side header, and the outflow side end of the heat exchange tube in the nose arranged upstream of the two adjacent paths is arranged downstream. 7.
  • the heat exchanger according to item 6 above wherein the inflow side end portion of the heat exchange tube in the path to be communicated via the coolant turn header.
  • a communication hole that connects adjacent refrigerant passage holes is formed in a partition wall between adjacent refrigerant passage holes, and the refrigerant flowing through the refrigerant passage holes is communicated with the communication tube.
  • a refrigerant cooler comprising the heat exchanger described in any one of items 1 to 10 above.
  • the refrigerant compressed by the compressor is cooled by the cooler, and the cooled refrigerant is decompressed by the decompression means and evaporated by the evaporator, and then returns to the compressor.
  • a refrigeration cycle wherein at least one of the cooler and the evaporator is configured by the heat exchange described in any one of 1 to 10 above.
  • a heat exchange method characterized in that the flow direction of the refrigerant flowing through the heat exchange path is opposed to the air flow direction.
  • the refrigerant when heat is exchanged between the refrigerant and the air in using the diacid-carbon-carbon mixed refrigerant having a temperature gradient in the cooling process and the evaporation process, the refrigerant
  • the counter flow method is adopted in which the flow direction of the air is opposed to the flow direction of the air.Therefore, a constant temperature difference between the refrigerant and the air is maintained until the heat exchange is started and the force is finished. Can be ensured, and heat can be exchanged efficiently.
  • the flow direction of the refrigerant can be reliably opposed to the flow direction of the air, and the above-described effects can be reliably obtained.
  • the refrigerant can be distributed in a well-balanced and evenly distributed manner in the heat exchange, and the heat exchange performance can be further improved. .
  • the flow direction of the refrigerant is changed according to how the air flows.
  • the direction can be made to face the direction in a pseudo manner, and the same effect can be obtained as described above.
  • FIG. 1 is a perspective view showing a heat exchanger according to a first embodiment of the present invention.
  • FIG. 2 is an exploded perspective view showing the heat exchanger according to the first embodiment.
  • FIG. 3 is a plan view showing the heat exchanger of the first embodiment.
  • FIG. 4 is a perspective view showing a refrigerant flow in the heat exchanger of the first embodiment.
  • FIG. 5 is a cross-sectional view showing a heat exchange tube applied to the heat exchanger of the first embodiment.
  • FIG. 6 is an exploded perspective view showing an inter-passage heat exchange tube applicable to the heat exchanger of the present invention.
  • FIG. 7 shows an inter-passage heat exchange tube applicable to the heat exchanger of the present invention.
  • FIG. FIG. 4A is a side sectional view
  • FIG. 4B is a front sectional view.
  • FIG. 8 is a circuit diagram of a refrigeration cycle in which the heat exchanger of the present invention can be employed.
  • FIG. 9 is a perspective view showing a heat exchanger according to a second embodiment of the present invention.
  • FIG. 10 is an exploded perspective view showing the heat exchanger according to the second embodiment.
  • FIG. 11 is a plan view showing a heat exchanger according to the second embodiment.
  • FIG. 12 is a perspective view showing a refrigerant flow in the heat exchanger according to the second embodiment.
  • FIG. 13 is a perspective view showing heat exchange according to a third embodiment of the present invention.
  • FIG. 14 is a plan view showing a heat exchanger according to a third embodiment.
  • FIG. 15 is a perspective view showing heat exchange according to a fourth embodiment of the present invention.
  • FIG. 16 is a plan view showing a heat exchanger according to a fourth embodiment.
  • FIG. 17 is a Mollier diagram of a refrigeration cycle using a mixed refrigerant of carbon dioxide and dimethyl ether.
  • FIG. 18 is a front view showing a conventional heat exchanger.
  • A Air (outside air)
  • CP Compressor
  • FIG. 1 is a perspective view showing a heat exchanger according to a first embodiment of the present invention
  • FIG. 2 is an exploded perspective view showing the heat exchanger
  • FIG. 3 is a plan view showing the heat exchanger.
  • the heat exchanger (10) of the first embodiment includes a pair of inflow side main headers (15a) (15a) and a large number of headers (15a) (15a) arranged between the headers (15a) (15a).
  • the inflow-side and outflow-side main headers (15a) and (15b) are formed of a round pipe member made of aluminum or aluminum alloy, and are configured to allow refrigerant to flow therethrough.
  • the pair of inflow side main headers (15a) (15a) are positioned on both sides of the rear side with respect to the core (11) when the direction of force is on the windward side with respect to the flow direction of the air (A). Further, they are arranged in parallel to each other along the vertical direction.
  • the pair of outflow side main headers (15b) and (15b) correspond to the pair of inflow side main headers (15a) and (15a) in parallel with each other at the front both sides of the core (11). It is arranged along the vertical direction.
  • the inflow side and outflow side subheaders (16a) and (16b) are formed by round pipe members made of aluminum or aluminum alloy having a diameter slightly smaller than that of the main headers (15a) and (15b).
  • the refrigerant is configured to be able to circulate.
  • the inflow side subheader (16a) and the outflow side subheader (16b) are arranged at the same pitch in the vertical direction.
  • the core (11) has a number of heat exchange tubes (12). As shown in FIG. 5, the heat exchange tube (12) has an extruded tube made of aluminum or aluminum alloy, and has a flat cross-sectional shape in which the height (thickness) dimension is smaller than the width dimension. Yes.
  • the heat exchange tube (12) is provided with refrigerant passage holes (12a) extending continuously in the length direction and arranged in parallel in the width direction.
  • the refrigerant passage hole (12a) is configured as a heat exchange passage.
  • This heat exchange tube (12) force In the state where the length direction is directed forward and backward and the width direction is directed to the left and right direction, the adjacent tubes are joined to each other with no gap therebetween, while Direction).
  • a plurality of heat exchange tubes (12) arranged side by side in the lateral direction and corrugated fins (13) made of aluminum or an aluminum alloy are alternately stacked in the up-down direction, and are stacked. ) Is formed.
  • the heat exchange tube (12) is connected to the sub header (16a) (16b). Are arranged at predetermined intervals in the vertical direction.
  • each heat exchange tube (12) of the core (11) is connected to the corresponding upstream subheader (16a) and connected to the front end portion (outflow side). End portions) are connected in communication with the corresponding downstream sub-headers (16b).
  • the heat exchanger (10) of the first embodiment is formed.
  • this heat exchanger (10) for example, as a fin (13) or a header (15a) (15b) (16a) (16b), an aluminum brazing brazed at least on one side of the core material It is made up of things made of a sheet. Then, after the heat exchange tubes (12), fins (13), and headers (15a) (15b) (16a) (16b) are temporarily assembled into a heat exchanger shape, the temporary assembly products are batched in the furnace. By brazing, the whole is joined and integrated, and the heat exchange (10) is manufactured.
  • the heat exchanger (10) of the first embodiment uses carbon dioxide (CO
  • a non-azeotropic mixed refrigerant whose main component is the main component is used.
  • a non-azeotropic mixed refrigerant in which 99 to 60% by weight of carbon dioxide and 1 to 40% by weight of dimethyl ether (DME) are mixed is used.
  • the heat exchanger (10) of the present embodiment is suitably used as a condenser (refrigerant cooler), an evaporator, or the like in a refrigeration cycle for a car air conditioner.
  • the refrigerant circuit constituting the refrigeration cycle includes a compressor other than the refrigerant cooler (RC) having the heat exchange (10) force of the present embodiment.
  • CP compressor other than the refrigerant cooler
  • EX expansion valves
  • EV decompressors and evaporators
  • the refrigerant outlet of the compressor (CP) is connected to the refrigerant inlet (14a) (14a) of the heat exchanger (10) as the refrigerant cooler (RC), and the refrigerant outlet (14b) of the heat exchanger (10) (14b) is connected to the refrigerant inlet of the evaporator (EV) via the expansion valve (EX). Further, the refrigerant outlet of the evaporator (EV) is connected to the refrigerant inlet of the compressor (CP).
  • the outflow side header (15b) (16b) side is arranged on the windward side with respect to the flow direction of the air (A), and the inflow side header (15a) (16a) side is arranged on the leeward side. It is installed as follows.
  • the refrigerant compressed by the compressor (CP) is converted into a pair of inflow side main headers (15a) (15a) in the heat exchanger (10) as a cooler (RC). To that It is introduced from the refrigerant inlet (14a) (14a).
  • the refrigerant (R) introduced into the main header (15a) (15a) is evenly distributed from both sides into each inflow side subheader (16a) and flows into each sub-header (16a). It flows into the refrigerant passage hole (12a) of the exchange tube (12).
  • the refrigerant (R) flowing into the heat exchange tube (12) is cooled by exchanging heat with the outside air (A) while passing through the refrigerant passage hole (12a).
  • the refrigerant (R) employed in the present embodiment is composed of a mixed refrigerant with dimethyl ether containing carbon dioxide as a main component, and this mixed refrigerant (R) is used in the condensation process (cooling process). Has a temperature gradient with a constant pressure and a gradual drop in temperature. On the other hand, the temperature of air (A) gradually increases by exchanging heat with refrigerant (R).
  • the refrigerant (R) that decreases in temperature and the air (A) that increases in temperature are opposed to each other.
  • a certain temperature difference can be ensured between the two, the heat exchange capacity can be improved, and heat can be exchanged efficiently.
  • the refrigerant (R) cooled through the heat exchange tube (12) is introduced into the outflow side subheader (16b), and a pair of outflow side main headers (15b) (15b ). Furthermore, the refrigerant (R) that has flowed into the main header (15b) (15b) flows out from the refrigerant outlet (14b) (14b), is decompressed by the expansion valve (EX), and then flows into the evaporator (EV). Is done. The refrigerant then evaporates through the evaporator (EX) to absorb heat from the outside air and cool the outside air. In addition, the refrigerant flowing out of the evaporator (EV) returns to the compressor (CP).
  • the heat exchanger (10) of the present embodiment is used as an evaporator (EV) in a refrigeration cycle as shown in Fig. 8, heat can be exchanged efficiently. That is, after the refrigerant (R) cooled through the refrigerant cooler (RC) is depressurized by the expansion valve (EX), the inflow header (15a) of the heat exchanger (10) as the evaporator (EV) (15a) ( It is introduced into the heat exchange tube (12) through 16a). Heat is exchanged between the refrigerant (R) passing through the heat exchange tube (12) and the air (A).
  • the refrigerant (R) is While air (A) gradually decreases the temperature while increasing the temperature gradually, in this embodiment, the flow direction of the refrigerant (R) is opposed to the flow direction of the air (A). Therefore, throughout the evaporation process, a certain temperature difference between the refrigerant (R) and the air (A) can be reliably ensured, and the heat exchange capacity and thus the heat exchange efficiency can be improved. That's right.
  • the refrigerant that has evaporated through the heat exchange tube (12) flows out through the outflow side sub-header (16b) and the pair of outflow side main headers (15b) (15b), and is compressed in the compressor. Return to (CP).
  • a mixed refrigerant of carbon dioxide and dimethyl ether that decreases in temperature in the cooling process and increases in temperature in the evaporation process is used. Therefore, when heat exchange is performed between the refrigerant (R) and the air (A), a counter flow method is adopted in which the flow direction of the refrigerant (R) is opposed to the flow direction of the air (A). Therefore, for example, in the cooling process, heat is exchanged between the refrigerant (R) whose temperature drops and the air (A) whose temperature rises, so that the refrigerant (R) and air (A) are exchanged throughout the cooling process. A certain temperature difference can be secured and heat can be exchanged efficiently.
  • the inflow side main header (15a) is provided on both sides.
  • the refrigerant (R) can be introduced into the core (11) through the subheader (16a) in a balanced manner with both side forces. For this reason, it is possible to disperse the entire core (11) without deviation, and the heat exchange efficiency can be further improved.
  • the refrigerant (R) that has passed through the core (11) is used as the subheader. Via (16b), it can be evenly distributed on both sides and led to the outflow main header (15b) (15b). Therefore, the refrigerant (R) can smoothly flow out to the core (11) force outflow side main header (15b) (15b), and the heat exchange efficiency can be further improved.
  • the heat exchange tube (12) is a passage as shown in Figs.
  • An intercommunicating heat exchange tube can also be used. This inter-passage heat exchange tube (
  • FIGS. 9 to 12 are views showing a heat exchanger (20) according to the second embodiment of the present invention.
  • the heat exchanger (20) of the second embodiment only one inflow side main header (15a) is arranged on one side and the outflow side main header (15b) is on one side. Only one is placed in each.
  • one end of each of the inflow side subheaders (16a) is connected to the one inflow side main header (15a) on one side, and the other end side is closed.
  • one end of each of the large number of outflow side subheaders (16b) is connected to the single outflow side main header (15b) on one side, and the other end side is closed.
  • the refrigerant (R) and air (A) are counterflowed. For example, during the cooling process, heat is exchanged between the refrigerant (R) that drops in temperature and the air (A) that rises in temperature during the cooling process! As a result, a certain temperature difference can be secured between the refrigerant (R) and the air (A), and heat can be exchanged efficiently.
  • the inflow side and outflow side main headers (15a) (15b) are added. Since it is configured by only one on one side, the number of components can be reduced, the structure can be simplified, the apparatus can be reduced in size and weight, and the cost can be reduced.
  • FIG. 13 is a perspective view showing a heat exchanger (30) according to a third embodiment of the present invention
  • FIG. 14 is a plan view showing the heat exchanger (30).
  • the heat exchanger (30) of the third embodiment includes an inflow header (35a), an outflow header (35b), a refrigerant turn header (36), and two paths (PI).
  • the inflow side and outflow side headers (35a) and (35b) are arranged on one side with respect to the core (31) when the direction facing the windward is forward based on the flow direction of the air (A) ( They are arranged along the vertical direction in the front-to-back direction (left side of Fig. 13). At this time, the inflow header (35a)
  • Each header (35a) (35b) is constituted by a round pipe member made of aluminum or aluminum alloy.
  • a refrigerant inlet nozzle (34a) is provided at the lower part of the inflow side header (35a), and the refrigerant flows from the nozzle (34a) into the inflow side header (35a).
  • a refrigerant outlet nozzle (34b) is provided at the upper part of the outflow side header (35b) so that the refrigerant in the outflow side header (35b) flows out of the refrigerant outlet nozzle (34b). ing.
  • the refrigerant turn header (36) is disposed along the vertical direction on the other side of the core (31) (the right side in FIG. 13).
  • the refrigerant turn header (36) is formed of an elongated aluminum or aluminum alloy pipe member having a long cross section in the front-rear direction, and the front half corresponds to the outflow header (35b) and the latter half. Are arranged so as to correspond to the inflow side header (35a).
  • the core (31) has a first path (P1) constituting the latter half and a second path (P2) constituting the front half.
  • Each path (PI) (P2) includes a heat exchange tube (12) disposed along the left-right direction, One tophine (13) is alternately stacked in the vertical direction, and each layer is arranged.
  • the heat exchange tube (12) is constituted by the inter-passage heat exchange tube shown in FIGS.
  • the heat exchange tube (12) can also be constituted by an extruded tube shown in FIG.
  • each heat exchange tube (12) is connected to the inflow side header (35a), and the other end side is the second half of the refrigerant turn header (36).
  • the second path (P2) is arranged in parallel on the front side of the first path (P1), and one end of each heat exchange tube (12) is connected to the outflow header (35b). At the same time, the other end is connected to the front half of the refrigerant turn header (35).
  • this heat exchanger (10) for example, fins (13) or headers (35a) (35b) (36) made of an aluminum brazing sheet in which a brazing material is clad on at least one side of a core material, etc. It is constituted by. After the heat exchange tubes (12), fins (13), and headers (35a) (35b) (36) are temporarily assembled into a heat exchanger shape, the temporarily assembled products are collectively brazed in the furnace. As a result, the whole is joined and integrated, and the heat exchanger (30) is manufactured.
  • the heat exchanger (30) of the present embodiment uses a non-azeotropic mixed refrigerant mainly composed of carbon dioxide, for example, a mixed refrigerant of carbon dioxide and dimethyl ether, as described above.
  • the heat exchanger (30) of the present embodiment is used as a refrigerant cooler (condenser) in a refrigeration cycle for a car air conditioner, for example, the refrigerant (R) compressed by the compressor is heated. It is introduced into the inflow side header (35a) in the exchanger (30) and then introduced into each heat exchange tube (12) of the first path (P1). Subsequently, the refrigerant (R) is cooled by exchanging heat with the outside air (A) while passing through each heat exchange tube (12) in the first path (P1), and is then cooled to the refrigerant turn header (36). ) Will be introduced in the second half.
  • the refrigerant (R) introduced into the second half of the refrigerant turn header (36) goes around the first half and is introduced into each heat exchange tube (12) of the second path (P2). Thereafter, the refrigerant (R) is cooled by exchanging heat with the outside air (A) while passing through the heat exchange tubes (12) of the second path (P2). Rejected and introduced into the outflow header (35b).
  • the refrigerant temperature is the first.
  • the air A temperature is lower when passing the first pass than when passing the second pass, whereas the temperature of the air A is higher when passing the first pass than when passing the second pass. That is, in the cooling process, the refrigerant (R) whose temperature decreases and the air (A) whose temperature rises are made to face each other in a pseudo manner, so that the refrigerant (R) and air (A) are in the first and second passes.
  • PI While passing through (P2), the temperature difference between the two can be secured, and heat can be exchanged efficiently.
  • the refrigerant (R) cooled by the heat exchanger (30) flows out of the refrigerant outlet nozzle (34b) of the outflow side header (35b) and is depressurized by the expansion valve. Inflow. Then, the refrigerant passes through the evaporator and evaporates, thereby absorbing heat from the outside air and cooling the outside air. Further, the refrigerant flowing out from the evaporator returns to the compressor.
  • the heat exchanger (30) of the present embodiment is used as an evaporator of a refrigeration cycle
  • the refrigerant (R) passes through the first and second passes (PI) (P2) in this order.
  • air (A) passes through the second and first passes (P2) (P1) in this order to lower the temperature. Accordingly, as described above, a constant temperature difference between the refrigerant (R) and the air (A) can be secured in the entire evaporation process, and the heat exchange efficiency can be improved.
  • the heat exchange (30) of the present embodiment when using a mixed refrigerant of diacid-carbon and dimethyl ether, which decreases in temperature in the cooling process and increases in temperature in the evaporation process,
  • a pseudo counter flow method is adopted in which the flow direction of the refrigerant (R) is substantially opposed to the flow direction of the air (A). Therefore, it is possible to ensure a certain temperature difference between the refrigerant (R) and the air (A) over the entire cooling process or the entire evaporation process, and to exchange heat efficiently.
  • FIG. 15 is a perspective view showing a heat exchanger (40) according to a fourth embodiment of the present invention
  • FIG. 16 is a plan view showing the heat exchanger (40).
  • the heat exchanger (40) of the fourth embodiment includes an inflow header (45a), an outflow header (45b), and first and second refrigerant turn headers (46a) (46b).
  • a core (41) having three paths (PI) to (P3) It is prepared as a typical component.
  • the first path (P1), the second path (P2), and the third path (P3) are arranged in parallel in order of the leeward (rearward) force to form the core (41).
  • the inflow side header (45a) is arranged corresponding to the first path (P1) on one side (right side) of the core (41), and each header of the first path (P1) is placed on the header (45a).
  • One end of the heat exchange tube (12) is connected in communication.
  • the first refrigerant turn header (46a) is arranged corresponding to the first and second paths (PI) (P2) on the other side (left side) of the core (41), and the header (46a)
  • the other end of each heat exchange tube (12) in the first path (P1) is connected to the second half of the first path (P1), and the other end of each heat exchange tube (12) in the second path (P2) is connected to the first half. Connected and connected.
  • the second refrigerant turn header (46b) is arranged corresponding to the second and third paths (P2) (P3) on one side (right side) of the core (41), and the header (46b)
  • P2 second and third paths
  • P3 third path
  • One end of each heat exchange tube (12) in the second path (P2) is connected to the second half of the pipe
  • one end of each heat exchange tube (13) in the third path (P3) is connected to the first half. It has been.
  • the outflow side header (45b) is arranged corresponding to the third path (P3) on the other side (left side) of the core (41), and the header (45b) has the third path (P3).
  • the other end of each heat exchange tube (12) is connected in communication!
  • the refrigerant inlet nozzle (44a) is provided at the lower part of the inflow side header (45a), and the refrigerant outlet nozzle (44b) is provided at the upper part of the outflow side header (45b). .
  • the refrigerant (R) introduced into the inflow side header (45a) passes through the first path (P1), and the first refrigerant turn header (46a ), Passes through the second path (P2), and then passes back through the second refrigerant turn header (46b), passes through the third path (P3), and then passes through the outflow header (45b). Leaked.
  • the refrigerant (R) is passed in the order of the first to third passes (P1) to (P3), while the outside air (A) is passed in the order of the third to first passes (P3) to (P1).
  • the refrigerant (R) is cooled (condensed) or evaporated by heat exchange between (R) and air (A).
  • the flow of the refrigerant (R) is similar to the above when using a non-azeotropic mixed refrigerant containing diacid-carbon that changes in temperature during the cooling or evaporation process. Since the counter counter flow method is adopted in which the direction is substantially opposite to the flow direction of air (A), the refrigerant (R) and air (A) are used throughout the cooling or evaporation process. A certain temperature difference can be reliably ensured between them, and heat can be exchanged efficiently.
  • the heat exchanger and related technology of the present invention can be employed in a refrigeration system for a car air conditioner, for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

The invention relates to a heat exchanger in which a nonazeotropic mixed refrigerant (R) containing carbon dioxide is passed through heat exchanger tubes (12) and heat exchange is conducted between the refrigerant (R) and air (A). The heat exchanger tubes (12) are arranged in parallel with the lengthwise directions of the tubes (12) parallel to the flow direction of air (A). The flow directions of the refrigerant (R) passing through the tubes (12) are made counter to the flow direction of air (A). Thus, the invention provides a heat exchanger which can attain efficient heat exchange in spite of its using a nonazeotropic mixed refrigerant containing carbon dioxide.

Description

明 細 書  Specification
熱交換器  Heat exchanger
技術分野  Technical field
[0001] この発明は、冷媒として二酸ィ匕炭素を含む非共沸性混合冷媒が用いられる熱交換 器およびその関連技術に関する。  TECHNICAL FIELD [0001] The present invention relates to a heat exchanger using a non-azeotropic mixed refrigerant containing carbon dioxide and carbon dioxide as a refrigerant, and a related technique.
背景技術  Background art
[0002] 図 18は空気の流れ方向に対し冷媒の流れ方向を直交させるクロスフロータイプの カーエアコン用熱交換器を示す図である。同図に示すように、上下方向に沿う一対 のヘッダー(1) (1)間に、両端部を両ヘッダー(1) (1)に連通接続した複数の熱交換 チューブ(2)が並列に配置されるとともに、チューブ(2)の各間にフィン(3)がそれぞ れ配置されて 、る。さらに右側ヘッダー(1)の下端部には冷媒入口ノズル (4)が設け られるとともに、上端部には冷媒出口ノズル(5)が設けられている。またヘッダー(1) ( 1)内には、仕切板 (6)が設けられて、熱交換チューブ (2)が複数のパスに区分けさ れている。そして冷媒入口ノズル (4)から流入された冷媒力 蛇行するように各パスを 順に流通して、冷媒出口ノズル (5)力 流出されるようになって 、る。  FIG. 18 is a view showing a cross-flow type heat exchanger for a car air conditioner in which the refrigerant flow direction is orthogonal to the air flow direction. As shown in the figure, between a pair of headers (1) (1) along the vertical direction, multiple heat exchange tubes (2) with both ends communicating with both headers (1) (1) are arranged in parallel. At the same time, fins (3) are arranged between the tubes (2). Further, a refrigerant inlet nozzle (4) is provided at the lower end of the right header (1), and a refrigerant outlet nozzle (5) is provided at the upper end. In addition, a partition plate (6) is provided in the header (1) (1), and the heat exchange tube (2) is divided into a plurality of paths. Then, the refrigerant force flowing from the refrigerant inlet nozzle (4) flows in each path in order to meander, and the refrigerant outlet nozzle (5) force flows out.
[0003] 一方、カーエアコンに使用される熱交換器においては従来より、系内を循環する冷 媒として R134aなどのフロン系冷媒が用いられている力 フロン系冷媒は、オゾン破 壊物質、温暖化物質であることから、脱フロン化の空調技術として特許文献 1に示す ように、自然界に存在する二酸化炭素(CO )を冷媒として用いる冷凍サイクルが注 [0003] On the other hand, in heat exchangers used for car air conditioners, conventional refrigerants such as R134a have been used as refrigerant circulating in the system. Because it is a fluorinated substance, a refrigeration cycle that uses carbon dioxide (CO), which exists in nature, as a refrigerant, as shown in Patent Document 1 as an air-conditioning technology for defluorocarbonization, is used.
2  2
目を集めている。  Collecting eyes.
特許文献 1 :特開 2001— 99522号  Patent Document 1: JP 2001-99522
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] し力しながら、二酸ィ匕炭素の単独成分力もなる冷媒を用いた冷凍サイクルにおいて は、冷媒系内が、フロン系冷媒に比べて非常に高圧になるため、耐圧性を確保する ことが困難となる。そこで本発明者らは、 日々研究を重ねた結果、自然界に存在する 二酸ィ匕炭素を主体とした非共沸性混合冷媒を使用することによって、所望の効果を 期待できることを見出した。 [0004] However, in a refrigeration cycle using a refrigerant that also has a single component power of carbon dioxide and carbon dioxide, the pressure inside the refrigerant system is much higher than that of the chlorofluorocarbon refrigerant, so that pressure resistance is ensured. It becomes difficult. Thus, as a result of daily research, the present inventors have achieved a desired effect by using a non-azeotropic mixed refrigerant mainly composed of carbon dioxide and carbon dioxide existing in nature. I found what I can expect.
[0005] ところが、二酸ィ匕炭素を主体とした非共沸性混合冷媒を採用した冷凍サイクルでは 、その化学的特性から、蒸発過程および凝縮 (冷却)過程において冷媒温度が変化 することとなり、冷却装置や蒸発装置として作用する冷媒入口部と冷媒出口部におい て十数度〜数十度の温度差が生じ、大き 、温度勾配を有することとなる。  [0005] However, in a refrigeration cycle that employs a non-azeotropic mixed refrigerant mainly composed of diacid and carbon dioxide, due to its chemical characteristics, the refrigerant temperature changes during the evaporation process and the condensation (cooling) process, A temperature difference of tens to tens of degrees is generated between the refrigerant inlet portion and the refrigerant outlet portion acting as a cooling device or an evaporator, and has a large temperature gradient.
[0006] たとえば図 17に二酸化炭素とジメチルエーテル(DME)の割合が 90 : 10である非 共沸性混合冷媒を用いた冷凍サイクルのモリエル線図を示す。同図カゝら理解できる ように、 d点力 a点にかけての冷媒の蒸発過程においては、圧力が一定であるのに 対し、蒸発温度が次第に上昇している。さらに b点から c点にかけての冷却 (凝縮)過 程においては、圧力が一定であるのに対し、温度が次第に下降している。  [0006] For example, FIG. 17 shows a Mollier diagram of a refrigeration cycle using a non-azeotropic mixed refrigerant in which the ratio of carbon dioxide and dimethyl ether (DME) is 90:10. As can be understood from the figure, in the process of evaporation of the refrigerant from point d to point a, the evaporation temperature gradually increases while the pressure is constant. Furthermore, in the cooling (condensation) process from point b to point c, the pressure is constant, but the temperature gradually decreases.
[0007] このように冷却過程などにおいて温度勾配を有する非共沸性混合冷媒を、たとえば 上記図 18に示すクロスフロータイプの熱交換器にそのまま適用した場合、冷媒入口 側のコア部分 (熱交換器の下部領域)では冷媒温度が高ぐ冷媒出口側のコア部分( 熱交^^の上部領域)では冷媒温度が低くなつて 、る。このため冷媒温度の高 、冷 媒入口付近では空気との温度差を大きく確保できるものの、冷媒温度の低い冷媒出 口付近では空気との温度差力 、さくなるため、この冷媒出口付近での熱交換能力が 著しく減少してしま 、、ひ 、ては熱交翻全域にぉ 、て効率良く熱交換することがで きな ヽと 、う問題が懸念されるところである。  [0007] When the non-azeotropic mixed refrigerant having a temperature gradient in the cooling process or the like is applied to the cross-flow type heat exchanger as shown in Fig. 18 as it is, for example, the core portion on the refrigerant inlet side (heat exchange) In the lower area of the vessel, the refrigerant temperature is lower in the core part (upper area of the heat exchanger) on the refrigerant outlet side where the refrigerant temperature is higher. For this reason, although the temperature of the refrigerant is high and a large temperature difference with the air can be secured in the vicinity of the refrigerant inlet, the temperature differential force with the air becomes small near the refrigerant outlet with a low refrigerant temperature. Since the exchange capacity has been significantly reduced, there is a concern that the heat exchange cannot be performed efficiently over the entire heat exchange area.
[0008] 本発明の好ましい実施形態は、関連技術における上述したおよび Zまたは他の問 題点に鑑みてなされたものである。本発明の好ましい実施形態は、既存の方法およ び Zまたは装置を著しく向上させることができるものである。  [0008] Preferred embodiments of the present invention have been made in view of the foregoing and Z or other issues in the related art. Preferred embodiments of the present invention are those that can significantly improve existing methods and Z or equipment.
[0009] この発明は、上記の実情に鑑みてなされたもので、二酸化炭素を含む非共沸性混 合冷媒を使用しつつ、熱交換を効率良く行うことができる熱交 およびその関連 技術を提供することを目的とする。  [0009] The present invention has been made in view of the above circumstances, and provides a heat exchange and related technology capable of efficiently performing heat exchange while using a non-azeotropic mixed refrigerant containing carbon dioxide. The purpose is to provide.
[0010] 本発明のその他の目的および利点は、以下の好ましい実施形態から明らかであろ  [0010] Other objects and advantages of the present invention will be apparent from the following preferred embodiments.
課題を解決するための手段 Means for solving the problem
[0011] 上記目的を達成するため、本発明は以下の構成を要旨としている。 [0012] [1] 二酸ィ匕炭素を含む非共沸性混合冷媒を熱交換路に流通させるとともに、その 冷媒と空気との間で熱交換させるようにした熱交^^であって、 In order to achieve the above object, the present invention is summarized as follows. [0012] [1] Non-azeotropic mixed refrigerant containing diacid-carbon is circulated in the heat exchange path, and heat exchange between the refrigerant and air is performed,
前記熱交換路を流通する冷媒の流れ方向を、空気の流れ方向に対し対向させるよ うにしたことを特徴とする熱交^^。  The heat exchange is characterized in that the flow direction of the refrigerant flowing through the heat exchange path is opposed to the air flow direction.
[0013] [2] 二酸化炭素を含む非共沸性混合冷媒を複数の熱交換チューブに流通させる とともに、その冷媒と空気との間で熱交換させるようにした熱交^^であって、 前記複数の熱交換チューブがその長さ方向を空気の流れ方向に対し平行させた 状態で並列に配置される一方、 [0013] [2] A heat exchange in which a non-azeotropic refrigerant mixture containing carbon dioxide is circulated through a plurality of heat exchange tubes and heat is exchanged between the refrigerant and air, While several heat exchange tubes are arranged in parallel with their length direction parallel to the air flow direction,
前記熱交換チューブを流通する冷媒の流れ方向を、空気の流れ方向に対し対向さ せるようにしたことを特徴とする熱交^^。  A heat exchanger characterized in that the flow direction of the refrigerant flowing through the heat exchange tube is opposed to the flow direction of air.
[0014] [3] 空気の流れ方向に対し風下側に流入側メインヘッダーが配置されるとともに、 風上側に流出側メインヘッダーが配置され、 [3] [3] An inflow side main header is disposed on the leeward side with respect to the air flow direction, and an outflow side main header is disposed on the leeward side.
流入側サブヘッダーの端部が前記流入側メインヘッダーに連通接続され、 流出側サブヘッダーの端部が前記流出側メインヘッダーに連通接続され、 前記複数の熱交換チューブ力 その流入側端部が前記流入側サブヘッダーに連 通接続されるとともに、流出側端部が前記流出側サブヘッダーに連通接続された状 態で前記流入側および流出側サブヘッダー間に並列に配置される前項 2に記載の 熱交換器。  An end portion of the inflow side subheader is connected in communication with the inflow side main header, an end portion of the outflow side subheader is connected in communication with the outflow side main header, and the plurality of heat exchange tube forces have their inflow side ends 3. The apparatus according to item 2, wherein the inflow side subheader is arranged in parallel between the inflow side subheader and the outflow side subheader with the outflow side end connected in communication with the outflow side subheader. Heat exchanger.
[0015] [4] 空気の流れ方向に対し風下側に一対の流入側メインヘッダーが並列に配置 されるとともに、前記流入側メインヘッダーに対応して風上側に一対の流出側メイン ヘッダーが並列に配置され、  [4] A pair of inflow side main headers are arranged in parallel on the leeward side with respect to the air flow direction, and a pair of outflow side main headers are arranged in parallel on the upwind side corresponding to the inflow side main header. Arranged,
流入側サブヘッダーの両端部が前記一対の流入側メインヘッダーにそれぞれ連通 接続され、  Both end portions of the inflow side subheader are connected to the pair of inflow side main headers, respectively,
流出側サブヘッダーの両端部が前記一対の流出側メインヘッダーにそれぞれ連通 接続され、  Both end portions of the outflow side subheader are respectively connected to the pair of outflow side main headers,
前記複数の熱交換チューブ力 その流入側端部が前記流入側サブヘッダーに連 通接続されるとともに、流出側端部が前記流出側サブヘッダーに連通接続された状 態で前記流入側および流出側サブヘッダー間に並列に配置される前項 2または 3に 記載の熱交換器。 The plurality of heat exchange tube forces The inflow side and the outflow side in a state where the inflow side end portion is connected to the inflow side subheader and the outflow side end portion is connected to the outflow side subheader. In the previous item 2 or 3 placed in parallel between subheaders The described heat exchanger.
[0016] [5] 前記流入側サブヘッダーが、前記流入側メインヘッダーの長さ方向に沿って 並列に複数設けられるとともに、  [5] A plurality of the inflow side subheaders are provided in parallel along the length direction of the inflow side main header,
前記流出側サブヘッダーが、前記流出側メインヘッダーの長さ方向に沿って並列 に複数設けられ、  A plurality of the outflow side subheaders are provided in parallel along the length direction of the outflow side main header,
対応し合う前記流入側サブヘッダーおよび前記流出側サブヘッダー間に前記熱交 換チューブがそれぞれ併設される前項 3または 4に記載の熱交換器。  5. The heat exchanger according to 3 or 4 above, wherein the heat exchange tube is provided between the corresponding inflow side subheader and the outflow side subheader.
[0017] [6] 二酸ィ匕炭素を含む非共沸性混合冷媒を複数の熱交換チューブに流通させる とともに、その冷媒と空気との間で熱交換させるようにした熱交^^であって、 前記複数の熱交換チューブが並列に配置されてパスが構成され、 [0017] [6] Non-azeotropic mixed refrigerant containing carbon dioxide and carbon dioxide is circulated through a plurality of heat exchange tubes and heat exchange is performed between the refrigerant and air. The plurality of heat exchange tubes are arranged in parallel to form a path,
前記パスがその熱交換チューブを空気の流れ方向に対し直交させた状態で空気 流れ方向に沿って並列に複数配置され、  A plurality of the paths are arranged in parallel along the air flow direction in a state where the heat exchange tubes are orthogonal to the air flow direction,
前記複数のパスに冷媒を順次流通させるに際して、冷媒流れ方向の下流側のパス が上流側のパスに対し空気流れ方向の風上側に配置されたことを特徴とする熱交換  When the refrigerant is circulated sequentially through the plurality of paths, the downstream path in the refrigerant flow direction is disposed on the windward side in the air flow direction with respect to the upstream path.
[0018] [7] 前記複数のパスのうち、上流側端部に配置されるパスにおける熱交換チュー ブの流入側端部が流入側ヘッダーに連通接続され、下流側端部に配置されるパス における熱交換チューブの流出側端部が流出側ヘッダーに連通接続され、 隣合う 2つのパスのうち、上流側に配置されるノ スにおける熱交換チューブの流出 側端部と、下流側に配置されるパスにおける熱交換チューブの流入側端部とが、冷 媒ターン用ヘッダーを介して連通される前項 6に記載の熱交換器。 [7] Of the plurality of paths, a path disposed at the downstream end is connected to the inflow side header of the inflow side end of the heat exchange tube in the path disposed at the upstream end. The outflow side end of the heat exchange tube is connected in communication with the outflow side header, and the outflow side end of the heat exchange tube in the nose arranged upstream of the two adjacent paths is arranged downstream. 7. The heat exchanger according to item 6 above, wherein the inflow side end portion of the heat exchange tube in the path to be communicated via the coolant turn header.
[0019] [8] 冷媒が、二酸化炭素を主成分とするジメチルエーテルとの混合冷媒によって 構成される前項 1〜7のいずれかに記載の熱交^^。  [0019] [8] The heat exchange according to any one of 1 to 7 above, wherein the refrigerant is composed of a mixed refrigerant with dimethyl ether containing carbon dioxide as a main component.
[0020] [9] 前記熱交換チューブは、チューブ長さ方向に連続する複数の冷媒通路孔が チューブ幅方向に並列に設けられる前項 2〜7のいずれかに記載の熱交^^。  [9] The heat exchanger according to any one of items 2 to 7, wherein the heat exchange tube is provided with a plurality of refrigerant passage holes continuous in the tube length direction in parallel in the tube width direction.
[0021] [10] 前記熱交換チューブは、隣合う冷媒通路孔間の仕切壁に、隣合う冷媒通路 孔同士を連通する連通孔が形成されて、冷媒通路孔を流通する冷媒が、前記連通 孔を介して冷媒通路孔間を行き来できるよう構成される前項 9に記載の熱交換器。 [0022] [11] 前項 1〜10のいずれか 1項に記載された熱交^^によって構成されたことを 特徴とする冷媒冷却器。 [0021] [10] In the heat exchange tube, a communication hole that connects adjacent refrigerant passage holes is formed in a partition wall between adjacent refrigerant passage holes, and the refrigerant flowing through the refrigerant passage holes is communicated with the communication tube. 10. The heat exchanger according to 9 above, wherein the heat exchanger is configured to be able to go back and forth between the refrigerant passage holes through the holes. [0022] [11] A refrigerant cooler comprising the heat exchanger described in any one of items 1 to 10 above.
[0023] [12] 前項 1〜10のいずれか 1項に記載された熱交^^によって構成されたことを 特徴とする蒸発器。 [0023] [12] An evaporator comprising the heat exchanger described in any one of items 1 to 10 above.
[0024] [13] 圧縮機によって圧縮された冷媒が冷却器によって冷却されるとともに、その 冷却冷媒が減圧手段によって減圧されて蒸発器で蒸発されてから、前記圧縮機に 戻る冷凍サイクルであって、  [13] In the refrigeration cycle, the refrigerant compressed by the compressor is cooled by the cooler, and the cooled refrigerant is decompressed by the decompression means and evaporated by the evaporator, and then returns to the compressor. ,
前記冷却器がおよび前記蒸発器のうち少なくともいずれか一方が、前項 1〜10の いずれか 1項に記載された熱交^^によって構成されたことを特徴とする冷凍サイク ル。  A refrigeration cycle, wherein at least one of the cooler and the evaporator is configured by the heat exchange described in any one of 1 to 10 above.
[0025] [14] 前項 13に記載の冷凍サイクルを有することを特徴とする自動車用エアコン。  [14] An automotive air conditioner comprising the refrigeration cycle according to item 13 above.
[0026] [15] 二酸化炭素を含む非共沸性混合冷媒を熱交換路に流通させるとともに、そ の冷媒と空気との間で熱交換させるようにした熱交換方法であって、 [0026] [15] A heat exchange method in which a non-azeotropic mixed refrigerant containing carbon dioxide is circulated through a heat exchange path and heat is exchanged between the refrigerant and air,
前記熱交換路を流通する冷媒の流れ方向を、空気の流れ方向に対し対向させるよ うにしたことを特徴とする熱交換方法。  A heat exchange method characterized in that the flow direction of the refrigerant flowing through the heat exchange path is opposed to the air flow direction.
[0027] [16] 冷媒が、二酸化炭素を主成分とするジメチルエーテルとの混合冷媒によつ て構成される前項 15に記載の熱交換方法。 [0027] [16] The heat exchange method according to item 15, wherein the refrigerant is composed of a refrigerant mixture with dimethyl ether containing carbon dioxide as a main component.
発明の効果  The invention's effect
[0028] 上記発明 [1]における熱交換器によれば、冷却過程や蒸発過程で温度勾配を有 する二酸ィ匕炭素混合冷媒を用いる上で、冷媒および空気間で熱交換するに際して、 冷媒の流れ方向を、空気の流れ方向に対し対向させるようにしたカウンターフロー方 式を採用するものであるため、熱交換が開始されて力も終了されるまで、冷媒および 空気間で一定の温度差を確保することができ、効率良く熱交換することができる。  [0028] According to the heat exchanger of the above-mentioned invention [1], when heat is exchanged between the refrigerant and the air in using the diacid-carbon-carbon mixed refrigerant having a temperature gradient in the cooling process and the evaporation process, the refrigerant The counter flow method is adopted in which the flow direction of the air is opposed to the flow direction of the air.Therefore, a constant temperature difference between the refrigerant and the air is maintained until the heat exchange is started and the force is finished. Can be ensured, and heat can be exchanged efficiently.
[0029] 上記発明 [2]における熱交換器によれば、冷媒の流れ方向を、空気の流れ方向に 対し確実に対向させることができ、上記の効果を確実に得ることができる。  [0029] According to the heat exchanger of the above invention [2], the flow direction of the refrigerant can be reliably opposed to the flow direction of the air, and the above-described effects can be reliably obtained.
[0030] 上記発明 [3]〜 [5]における熱交翻によれば、冷媒を熱交翻内にバランス良く 均等に分散させて流通させることができ、熱交換性能をより向上させることができる。  [0030] According to the heat exchange in the above inventions [3] to [5], the refrigerant can be distributed in a well-balanced and evenly distributed manner in the heat exchange, and the heat exchange performance can be further improved. .
[0031] 上記発明 [6] [7]における熱交換器によれば、冷媒の流れ方向を、空気の流れ方 向に対し擬似的に対向させることができ、上記と同様に、同様の効果を得ることがで きる。 [0031] According to the heat exchanger of the above inventions [6] and [7], the flow direction of the refrigerant is changed according to how the air flows. The direction can be made to face the direction in a pseudo manner, and the same effect can be obtained as described above.
[0032] 上記発明 [8]における熱交^^によれば、上記の効果をより確実に得ることができ る。  [0032] According to the heat exchange in the invention [8], the above-mentioned effect can be obtained more reliably.
[0033] 上記発明 [9] [10]における熱交換器によれば、より一層効率良く熱交換することが できる。  [0033] According to the heat exchanger of the above inventions [9] and [10], heat can be exchanged more efficiently.
[0034] 上記発明 [11]によれば、上記と同様の効果を有する冷媒冷却器を提供することが できる。  [0034] According to the invention [11], a refrigerant cooler having the same effect as described above can be provided.
[0035] 上記発明 [12]によれば、上記と同様の効果を有する蒸発器を提供することができ る。  [0035] According to the invention [12], an evaporator having the same effects as described above can be provided.
[0036] 上記発明 [13]によれば、上記と同様の効果を有する冷凍サイクルを提供すること ができる。  [0036] According to the invention [13], it is possible to provide a refrigeration cycle having the same effect as described above.
[0037] 上記発明 [14]によれば、上記と同様の効果を有する自動車用エアコンを提供する ことができる。  [0037] According to the invention [14], an automotive air conditioner having the same effects as described above can be provided.
[0038] 上記発明 [15]における熱交換方法によれば、上記と同様に、効率良く熱交換する ことができる。  [0038] According to the heat exchange method of the above invention [15], heat exchange can be performed efficiently as described above.
[0039] 上記発明 [16]における熱交換方法によれば、上記の効果をより確実に得ることが できる。  [0039] According to the heat exchange method of the above invention [16], the above-mentioned effect can be obtained more reliably.
図面の簡単な説明  Brief Description of Drawings
[0040] [図 1]図 1はこの発明の第 1実施形態である熱交換器を示す斜視図である。 FIG. 1 is a perspective view showing a heat exchanger according to a first embodiment of the present invention.
[図 2]図 2は第 1実施形態の熱交換器を分解して示す斜視図である。  FIG. 2 is an exploded perspective view showing the heat exchanger according to the first embodiment.
[図 3]図 3は第 1実施形態の熱交換器を示す平面図である。  FIG. 3 is a plan view showing the heat exchanger of the first embodiment.
[図 4]図 4は第 1実施形態の熱交換器における冷媒の流れを示す斜視図である。  FIG. 4 is a perspective view showing a refrigerant flow in the heat exchanger of the first embodiment.
[図 5]図 5は第 1実施形態の熱交換器に適用された熱交換チューブを示す断面図で ある。  FIG. 5 is a cross-sectional view showing a heat exchange tube applied to the heat exchanger of the first embodiment.
[図 6]図 6は本発明の熱交換器に適用可能な通路間連通型熱交換チューブを示す 分解して示す斜視図である。  FIG. 6 is an exploded perspective view showing an inter-passage heat exchange tube applicable to the heat exchanger of the present invention.
[図 7]図 7は本発明の熱交換器に適用可能な通路間連通型熱交換チューブを示す 図である。同図(a)は側面断面図、同図(b)は正面断面図である。 [FIG. 7] FIG. 7 shows an inter-passage heat exchange tube applicable to the heat exchanger of the present invention. FIG. FIG. 4A is a side sectional view, and FIG. 4B is a front sectional view.
[図 8]図 8は本発明の熱交換器を採用可能な冷凍サイクルの回路図である。  FIG. 8 is a circuit diagram of a refrigeration cycle in which the heat exchanger of the present invention can be employed.
[図 9]図 9はこの発明の第 2実施形態である熱交換器を示す斜視図である。  FIG. 9 is a perspective view showing a heat exchanger according to a second embodiment of the present invention.
[図 10]図 10は第 2実施形態の熱交換器を分解して示す斜視図である。  FIG. 10 is an exploded perspective view showing the heat exchanger according to the second embodiment.
[図 11]図 11は第 2実施形態の熱交換器を示す平面図である。  FIG. 11 is a plan view showing a heat exchanger according to the second embodiment.
[図 12]図 12は第 2実施形態の熱交^^における冷媒の流れを示す斜視図である。  [FIG. 12] FIG. 12 is a perspective view showing a refrigerant flow in the heat exchanger according to the second embodiment.
[図 13]図 13はこの発明の第 3実施形態である熱交 を示す斜視図である。  FIG. 13 is a perspective view showing heat exchange according to a third embodiment of the present invention.
[図 14]図 14は第 3実施形態の熱交換器を示す平面図である。  FIG. 14 is a plan view showing a heat exchanger according to a third embodiment.
[図 15]図 15はこの発明の第 4実施形態である熱交翻を示す斜視図である。  FIG. 15 is a perspective view showing heat exchange according to a fourth embodiment of the present invention.
[図 16]図 16は第 4実施形態の熱交換器を示す平面図である。  FIG. 16 is a plan view showing a heat exchanger according to a fourth embodiment.
[図 17]図 17は二酸ィ匕炭素およびジメチルエーテルの混合冷媒を用 、た冷凍サイク ルのモリエル線図である。  FIG. 17 is a Mollier diagram of a refrigeration cycle using a mixed refrigerant of carbon dioxide and dimethyl ether.
[図 18]図 18は従来の熱交換器を示す正面図である。  FIG. 18 is a front view showing a conventional heat exchanger.
符号の説明 Explanation of symbols
10, 20, 30, 40· · ·熱交^^ 10, 20, 30, 40
12· · ·熱交換チューブ 12 ··· Heat exchange tube
15a- ··流入側メインヘッダー 15a -... Inlet main header
15b…流出側メインヘッダー 15b ... Outflow side main header
16a- ··流入側サブヘッダー 16a- ··· Inflow side subheader
16b…流出側サブヘッダー 16b ... Outflow side subheader
17· · ·冷媒ターン用連通孔 17 ··· Communication hole for refrigerant turn
35a…流入側ヘッダー 35a… Inlet header
35b…流出側ヘッダー 35b… Outflow header
36…冷媒ターン用ヘッダー 36 ... Header for refrigerant turn
45a- "流入側ヘッダー 45a- "inflow header
45b…流出側ヘッダー 45b… Outflow header
46a, 46b…冷媒ターン用ヘッダー 46a, 46b ... Refrigerant turn header
A…空気 (外気) CP…圧縮機 A ... Air (outside air) CP ... Compressor
EV…蒸発器  EV ... Evaporator
ΕΧ· · ·膨張弁 (減圧手段)  膨 張 ... Expansion valve (pressure reduction means)
Ρ1〜Ρ3· · ·パス  Ρ1 ~ Ρ3 ··· Pass
R…冷媒  R: Refrigerant
RD…冷媒冷却器  RD ... Refrigerant cooler
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0042] <第 1実施形態 >  [0042] <First embodiment>
図 1はこの発明の第 1実施形態である熱交換器を示す斜視図、図 2はその熱交換 器を分解して示す斜視図、図 3はその熱交換器を示す平面図である。これらの図に 示すようにこの第 1実施形態の熱交換器(10)は、一対の流入側メインヘッダー(15a ) (15a)と、そのヘッダー(15a) (15a)間に配置される多数の流入側サブヘッダー(1 6a)と、一対の流出側メインヘッダー(15b) (15b)と、そのヘッダー(15b) (15b)間 に配置される多数の流出側サブヘッダー(16b)と、流入側および流出側サブヘッダ 一(16a) (16b)間に配置されるコア(11)と、を基本的な構成要素として備えている。  FIG. 1 is a perspective view showing a heat exchanger according to a first embodiment of the present invention, FIG. 2 is an exploded perspective view showing the heat exchanger, and FIG. 3 is a plan view showing the heat exchanger. As shown in these drawings, the heat exchanger (10) of the first embodiment includes a pair of inflow side main headers (15a) (15a) and a large number of headers (15a) (15a) arranged between the headers (15a) (15a). Inflow side subheader (16a), a pair of outflow side main headers (15b) (15b), a number of outflow side subheaders (16b) arranged between the headers (15b) (15b), and the inflow side And a core (11) arranged between the outflow side subheaders (16a) and (16b) as basic components.
[0043] 流入側および流出側メインヘッダー(15a) (15b)は、アルミニウム製またはアルミ- ゥム合金製の丸パイプ部材によって形成され、内部を冷媒が流通できるよう構成され ている。  [0043] The inflow-side and outflow-side main headers (15a) and (15b) are formed of a round pipe member made of aluminum or aluminum alloy, and are configured to allow refrigerant to flow therethrough.
[0044] そして一対の流入側メインヘッダー(15a) (15a)は、空気 (A)の流れ方向を基準に 風上に向力 方向を前方としたとき、コア(11)に対して後方両側位置に、互いに平 行にして垂直方向に沿って配置されて 、る。  [0044] Then, the pair of inflow side main headers (15a) (15a) are positioned on both sides of the rear side with respect to the core (11) when the direction of force is on the windward side with respect to the flow direction of the air (A). Further, they are arranged in parallel to each other along the vertical direction.
[0045] さらに一対の流入側メインヘッダー(15a) (15a)の下端は閉塞される一方、上端は 開放されて、冷媒入口(14a) (14a)として構成されている。 [0045] Further, the lower ends of the pair of inflow side main headers (15a) (15a) are closed, while the upper ends are opened to constitute refrigerant inlets (14a) (14a).
[0046] また一対の流出側メインヘッダー(15b) (15b)は、コア(11)に対して前方両側位 置に、互いに平行にかつ一対の流入側メインヘッダー(15a) (15a)に対応して垂直 方向に沿って配置されて 、る。 [0046] The pair of outflow side main headers (15b) and (15b) correspond to the pair of inflow side main headers (15a) and (15a) in parallel with each other at the front both sides of the core (11). It is arranged along the vertical direction.
[0047] さらに一対の流出側メインヘッダー(15b) (15b)の下端は閉塞される一方、上端は 開放されて、冷媒入口(14b) (14b)として構成されている。 [0048] 流入側および流出側サブヘッダー(16a) (16b)は、メインヘッダー(15a) (15b)よ りも径寸法が一回り小さいアルミニウム製またはアルミニウム合金製の丸パイプ部材 によって形成され、内部を冷媒が流通できるよう構成されて 、る。 [0047] Further, the lower ends of the pair of outflow side main headers (15b) (15b) are closed, while the upper ends are opened to constitute refrigerant inlets (14b) (14b). [0048] The inflow side and outflow side subheaders (16a) and (16b) are formed by round pipe members made of aluminum or aluminum alloy having a diameter slightly smaller than that of the main headers (15a) and (15b). The refrigerant is configured to be able to circulate.
[0049] そして一対の流入側メインヘッダー( 15a) ( 15a)間に、多数の流入側サブヘッダー  [0049] Between the pair of inflow side main headers (15a) (15a), a number of inflow side subheaders
(16a)力 その両端部を両メインヘッダー(15a) (15a)にそれぞれ連通接続させた 状態で、上下方向(メインヘッダー長さ方向)に所定の間隔おきに並列に配置される 。これにより流入側メインヘッダー(15a) (15a)にその冷媒入口(14a) (14a)から導 入された冷媒が、各流入側サブヘッダー(16a)に分散して流入されるよう構成されて いる。  (16a) Force With both ends connected to both main headers (15a) and (15a), they are arranged in parallel in the vertical direction (main header length direction) at predetermined intervals. As a result, the refrigerant introduced from the refrigerant inlets (14a) (14a) into the inflow side main headers (15a) (15a) is distributed and flows into the respective inflow side subheaders (16a). .
[0050] また一対の流出側メインヘッダー(15b) (15b)間に、多数の流出側サブヘッダー( 16b)力 その両端部を両メインヘッダー(15b) (15b)にそれぞれ連通接続させた状 態で、上下方向に所定の間隔おきに並列に配置される。これにより各流出側サブへ ッダー(16b)内の冷媒は、一対の流出側メインヘッダー(15b) (15b)に導入されて、 各冷媒出口(14b) (14b)から流出されるよう構成されている。  [0050] Further, between the pair of outflow side main headers (15b) (15b), a large number of outflow side subheaders (16b) forces are connected in communication with both main headers (15b) (15b). Thus, they are arranged in parallel in the vertical direction at predetermined intervals. As a result, the refrigerant in each outflow side subheader (16b) is introduced into the pair of outflow side main headers (15b) (15b) and flows out from the respective refrigerant outlets (14b) (14b). Yes.
[0051] なお流入側サブヘッダー(16a)と流出側サブヘッダー(16b)とは、上下方向に同 じピッチで配置されて 、る。  [0051] The inflow side subheader (16a) and the outflow side subheader (16b) are arranged at the same pitch in the vertical direction.
[0052] コア(11)は、多数の熱交換チューブ(12)を有している。図 5に示すように熱交換チ ユーブ(12)は、アルミニウムまたはアルミニウム合金の押出チューブをもって構成さ れており、高さ(厚み)寸法が幅寸法に比べて小さい偏平な断面形状を有している。  [0052] The core (11) has a number of heat exchange tubes (12). As shown in FIG. 5, the heat exchange tube (12) has an extruded tube made of aluminum or aluminum alloy, and has a flat cross-sectional shape in which the height (thickness) dimension is smaller than the width dimension. Yes.
[0053] この熱交換チューブ(12)には、長さ方向に連続して延び、かつ幅方向に複数並列 に配置された冷媒通路孔(12a)が設けられている。なお本実施形態においては、こ の冷媒通路孔(12a)が、熱交換路として構成されている。  [0053] The heat exchange tube (12) is provided with refrigerant passage holes (12a) extending continuously in the length direction and arranged in parallel in the width direction. In the present embodiment, the refrigerant passage hole (12a) is configured as a heat exchange passage.
[0054] この熱交換チューブ(12)力 その長さ方向を前後に向け、かつ幅方向を左右方向 に向けた状態で、隣合うチューブを間隔をあけずに接合させつつ、左右方向 (横方 向)に並べて配置される。この横方向に連続して併設された複数の熱交換チューブ( 12)と、アルミニウムまたはアルミニウム合金製のコルゲートフィン(13)とを交互に上 下方向に重ね合わせて積層配置されて、コア(11)が形成されて 、る。  [0054] This heat exchange tube (12) force In the state where the length direction is directed forward and backward and the width direction is directed to the left and right direction, the adjacent tubes are joined to each other with no gap therebetween, while Direction). A plurality of heat exchange tubes (12) arranged side by side in the lateral direction and corrugated fins (13) made of aluminum or an aluminum alloy are alternately stacked in the up-down direction, and are stacked. ) Is formed.
[0055] このコア(11)において、熱交換チューブ(12)は、上記サブヘッダー(16a) (16b) に対応するピッチで、上下方向に所定の間隔おきに配置される。 [0055] In the core (11), the heat exchange tube (12) is connected to the sub header (16a) (16b). Are arranged at predetermined intervals in the vertical direction.
[0056] そしてコア(11)の各熱交換チューブ(12)における後端部 (流入側端部)が、対応 する上流側サブヘッダー(16a)にそれぞれ連通接続されるとともに、前端部(流出側 端部)が、対応する下流側サブヘッダー(16b)にそれぞれ連通接続される。これによ り本第 1実施形態の熱交換器(10)が形成される。  [0056] The rear end portion (inflow side end portion) of each heat exchange tube (12) of the core (11) is connected to the corresponding upstream subheader (16a) and connected to the front end portion (outflow side). End portions) are connected in communication with the corresponding downstream sub-headers (16b). As a result, the heat exchanger (10) of the first embodiment is formed.
[0057] この熱交換器(10)においては、たとえばフィン(13)やヘッダー(15a) (15b) (16a ) (16b)として、芯材の少なくとも片面にろう材力^ラッドされたアルミニウムブレージン グシート製のものなどによって構成されている。そして、熱交換チューブ(12)、フィン (13)、ヘッダー(15a) (15b) (16a) (16b)が、熱交換器形状に仮組された後、その 仮組製品が炉中にて一括ろう付けされることにより、全体が接合一体化されて、熱交 翻(10)が製造されるものである。  [0057] In this heat exchanger (10), for example, as a fin (13) or a header (15a) (15b) (16a) (16b), an aluminum brazing brazed at least on one side of the core material It is made up of things made of a sheet. Then, after the heat exchange tubes (12), fins (13), and headers (15a) (15b) (16a) (16b) are temporarily assembled into a heat exchanger shape, the temporary assembly products are batched in the furnace. By brazing, the whole is joined and integrated, and the heat exchange (10) is manufactured.
[0058] 本第 1実施形態の熱交換器(10)は、既述したように冷媒として二酸化炭素 (CO  [0058] As described above, the heat exchanger (10) of the first embodiment uses carbon dioxide (CO
2 ) を主成分 (主体)とする非共沸性混合冷媒が用いられる。たとえば 99〜60重量%の 二酸ィ匕炭素と 1〜40重量%のジメチルエーテル (DME)とが混合された非共沸性混 合冷媒が用いられる。  2) A non-azeotropic mixed refrigerant whose main component is the main component is used. For example, a non-azeotropic mixed refrigerant in which 99 to 60% by weight of carbon dioxide and 1 to 40% by weight of dimethyl ether (DME) are mixed is used.
[0059] また本実施形態の熱交換器(10)は、カーエアコン用の冷凍サイクルにおける凝縮 器 (冷媒冷却器)や蒸発器などとして好適に用いられる。たとえば冷媒冷却器として 用いる場合には図 8に示すように、冷凍サイクルを構成する冷媒回路には、本実施形 態の熱交 (10)力 なる冷媒冷却器 (RC)の他に、圧縮機 (CP)、膨張弁 (EX) などの減圧器、蒸発器 (EV)が設けられる。そして圧縮機 (CP)の冷媒出口が冷媒冷 却器 (RC)としての熱交換器 ( 10)の冷媒入口( 14a) (14a)に接続され、熱交換器 ( 10)の冷媒出口(14b) (14b)が膨張弁 (EX)を介して蒸発器 (EV)の冷媒入口に接 続される。さらに蒸発器 (EV)の冷媒出口が圧縮機 (CP)の冷媒入口に接続される。  [0059] The heat exchanger (10) of the present embodiment is suitably used as a condenser (refrigerant cooler), an evaporator, or the like in a refrigeration cycle for a car air conditioner. For example, when used as a refrigerant cooler, as shown in FIG. 8, the refrigerant circuit constituting the refrigeration cycle includes a compressor other than the refrigerant cooler (RC) having the heat exchange (10) force of the present embodiment. (CP), expansion valves (EX) and other decompressors and evaporators (EV) are provided. The refrigerant outlet of the compressor (CP) is connected to the refrigerant inlet (14a) (14a) of the heat exchanger (10) as the refrigerant cooler (RC), and the refrigerant outlet (14b) of the heat exchanger (10) (14b) is connected to the refrigerant inlet of the evaporator (EV) via the expansion valve (EX). Further, the refrigerant outlet of the evaporator (EV) is connected to the refrigerant inlet of the compressor (CP).
[0060] なお熱交換器(10)は流出側ヘッダー(15b) (16b)側が空気 (A)の流れ方向に対 し風上側、流入側ヘッダー(15a) (16a)側が風下側に配置されるように設置されて いる。  [0060] In the heat exchanger (10), the outflow side header (15b) (16b) side is arranged on the windward side with respect to the flow direction of the air (A), and the inflow side header (15a) (16a) side is arranged on the leeward side. It is installed as follows.
[0061] この冷凍サイクルにお 、て、圧縮機 (CP)によって圧縮された冷媒は、冷却器 (RC )としての熱交^^ (10)における一対の流入側メインヘッダー(15a) (15a)にその 冷媒入口(14a) (14a)から導入される。図 1, 4に示すようにメインヘッダー(15a) (1 5a)に導入された冷媒 (R)は、各流入側サブヘッダー(16a)にその両側から均等に 分散して流入されて、各熱交換チューブ(12)の冷媒通路孔(12a)に流入される。こ うして熱交換チューブ(12)に流入された冷媒 (R)は、冷媒通路孔( 12a)を通過する 間に外気 (A)との間で熱交換して冷却される。 In this refrigeration cycle, the refrigerant compressed by the compressor (CP) is converted into a pair of inflow side main headers (15a) (15a) in the heat exchanger (10) as a cooler (RC). To that It is introduced from the refrigerant inlet (14a) (14a). As shown in Figs. 1 and 4, the refrigerant (R) introduced into the main header (15a) (15a) is evenly distributed from both sides into each inflow side subheader (16a) and flows into each sub-header (16a). It flows into the refrigerant passage hole (12a) of the exchange tube (12). Thus, the refrigerant (R) flowing into the heat exchange tube (12) is cooled by exchanging heat with the outside air (A) while passing through the refrigerant passage hole (12a).
[0062] ここで本実施形態においては、熱交換チューブ(12)を流通する冷媒 (R)の流れ方 向が、空気 (A)の流れ方向に対し対向させているため、効率良く熱交換することがで きる。すなわち本実施形態で採用される冷媒 (R)は、二酸化炭素を主成分とするジメ チルエーテルとの混合冷媒によって構成されるものであり、凝縮過程 (冷却過程)に おいてこの混合冷媒 (R)は、圧力が一定で、温度が次第に降下するような温度勾配 を有している。これに対し、空気 (A)は冷媒 (R)と熱交換することによって次第に温度 が上昇していく。つまり冷却過程において、温度低下する冷媒 (R)と、温度上昇する 空気 (A)とを対向させるものであるため、この冷媒 (R)および空気 (A)がコア(10)を 通過する間終始、両者間で一定の温度差を確保することができ、熱交換能力を向上 できて、効率良く熱交換することができる。 [0062] Here, in the present embodiment, since the flow direction of the refrigerant (R) flowing through the heat exchange tube (12) is opposed to the flow direction of the air (A), heat is exchanged efficiently. be able to. That is, the refrigerant (R) employed in the present embodiment is composed of a mixed refrigerant with dimethyl ether containing carbon dioxide as a main component, and this mixed refrigerant (R) is used in the condensation process (cooling process). Has a temperature gradient with a constant pressure and a gradual drop in temperature. On the other hand, the temperature of air (A) gradually increases by exchanging heat with refrigerant (R). In other words, in the cooling process, the refrigerant (R) that decreases in temperature and the air (A) that increases in temperature are opposed to each other. A certain temperature difference can be ensured between the two, the heat exchange capacity can be improved, and heat can be exchanged efficiently.
[0063] 一方、熱交換チューブ(12)を通過して冷却された冷媒 (R)は、流出側サブヘッダ 一(16b)に導入されて、その両側から一対の流出側メインヘッダー(15b) (15b)に 流入される。さらにメインヘッダー(15b) (15b)に流入された冷媒 (R)は、冷媒出口( 14b) (14b)から流出されて、膨張弁 (EX)により減圧された後、蒸発器 (EV)に流入 される。そして冷媒は蒸発器 (EX)を通って自身は蒸発することにより外気から熱を 吸収して外気を冷却する。さらに蒸発器 (EV)から流出された冷媒は圧縮機 (CP)に 戻るものである。 [0063] On the other hand, the refrigerant (R) cooled through the heat exchange tube (12) is introduced into the outflow side subheader (16b), and a pair of outflow side main headers (15b) (15b ). Furthermore, the refrigerant (R) that has flowed into the main header (15b) (15b) flows out from the refrigerant outlet (14b) (14b), is decompressed by the expansion valve (EX), and then flows into the evaporator (EV). Is done. The refrigerant then evaporates through the evaporator (EX) to absorb heat from the outside air and cool the outside air. In addition, the refrigerant flowing out of the evaporator (EV) returns to the compressor (CP).
[0064] なお本実施形態の熱交換器(10)を、図 8に示すような冷凍サイクルにおいて、蒸 発器 (EV)として使用する場合でも、効率良く熱交換することができる。すなわち冷媒 冷却器 (RC)を通って冷却された冷媒 (R)が膨張弁 (EX)により減圧された後、蒸発 器 (EV)としての熱交換器(10)の流入側ヘッダー(15a) (16a)を通って、熱交換チ ユーブ(12)に導入される。そしてこの熱交換チューブ(12)を通過する冷媒 (R)と、 空気 (A)との間で熱交換するものである。ここでこの蒸発過程にぉ 、て冷媒 (R)は次 第に温度を上昇させるのに対し、空気 (A)は次第に温度を低下させるものであるが、 本実施形態においては、冷媒 (R)の流れ方向を、空気 (A)の流れ方向に対し対向さ せているため、蒸発過程において終始、冷媒 (R)および空気 (A)間の一定の温度差 を確実に確保することができ、熱交換能力の向上、ひいては熱交換効率の向上を図 ることがでさる。 [0064] Even when the heat exchanger (10) of the present embodiment is used as an evaporator (EV) in a refrigeration cycle as shown in Fig. 8, heat can be exchanged efficiently. That is, after the refrigerant (R) cooled through the refrigerant cooler (RC) is depressurized by the expansion valve (EX), the inflow header (15a) of the heat exchanger (10) as the evaporator (EV) (15a) ( It is introduced into the heat exchange tube (12) through 16a). Heat is exchanged between the refrigerant (R) passing through the heat exchange tube (12) and the air (A). During this evaporation process, the refrigerant (R) is While air (A) gradually decreases the temperature while increasing the temperature gradually, in this embodiment, the flow direction of the refrigerant (R) is opposed to the flow direction of the air (A). Therefore, throughout the evaporation process, a certain temperature difference between the refrigerant (R) and the air (A) can be reliably ensured, and the heat exchange capacity and thus the heat exchange efficiency can be improved. That's right.
[0065] 一方、熱交換チューブ(12)を通過して蒸発した冷媒は、流出側サブヘッダー(16 b)および一対の流出側メインヘッダー(15b) (15b)を通って流出されて、圧縮機 (C P)に戻るものである。  [0065] On the other hand, the refrigerant that has evaporated through the heat exchange tube (12) flows out through the outflow side sub-header (16b) and the pair of outflow side main headers (15b) (15b), and is compressed in the compressor. Return to (CP).
[0066] 以上のように本第 1実施形態の熱交換器(10)によれば、冷却過程では温度低下し 、蒸発過程では温度上昇する二酸ィ匕炭素とジメチルエーテルとの混合冷媒を用いる 上で、冷媒 (R)および空気 (A)間で熱交換するに際して、冷媒 (R)の流れ方向を、 空気 (A)の流れ方向に対し対向させるようにしたカウンターフロー方式を採用するも のであるため、たとえば冷却過程においては、温度降下する冷媒 (R)と、温度上昇す る空気 (A)との間で熱交換させることにより、冷却過程全域で冷媒 (R)および空気( A)間で一定の温度差を確保でき、効率良く熱交換することができる。さらに蒸発過程 においても、温度上昇する冷媒 (R)と、温度降下する空気 (A)との間で熱交換させる ことにより、蒸発過程全域において両者間で一定の温度差を確保でき、効率良く熱 交換することができる。  [0066] As described above, according to the heat exchanger (10) of the first embodiment, a mixed refrigerant of carbon dioxide and dimethyl ether that decreases in temperature in the cooling process and increases in temperature in the evaporation process is used. Therefore, when heat exchange is performed between the refrigerant (R) and the air (A), a counter flow method is adopted in which the flow direction of the refrigerant (R) is opposed to the flow direction of the air (A). Therefore, for example, in the cooling process, heat is exchanged between the refrigerant (R) whose temperature drops and the air (A) whose temperature rises, so that the refrigerant (R) and air (A) are exchanged throughout the cooling process. A certain temperature difference can be secured and heat can be exchanged efficiently. Furthermore, in the evaporation process, by exchanging heat between the refrigerant (R) whose temperature rises and the air (A) whose temperature drops, a constant temperature difference can be secured between the two throughout the evaporation process, and heat can be efficiently generated. Can be exchanged.
[0067] また本実施形態の熱交換器 (10)にお ヽては、両側に流入側メインヘッダー( 15a)  [0067] Further, in the heat exchanger (10) of the present embodiment, the inflow side main header (15a) is provided on both sides.
(15a)を配置しているため、その両側力も冷媒 (R)を、均等にバランス良くサブヘッダ 一(16a)を介してコア(11)に導入することができる。このためコア(11)全域に偏りな く分散させることができ、熱交換効率をより向上させることができる。  Since (15a) is arranged, the refrigerant (R) can be introduced into the core (11) through the subheader (16a) in a balanced manner with both side forces. For this reason, it is possible to disperse the entire core (11) without deviation, and the heat exchange efficiency can be further improved.
[0068] さらに本実施形態の熱交 ( 10)においては、両側に流出側メインヘッダー(15 b) (15b)を配置しているため、コア(11)を通過した冷媒 (R)をサブヘッダー(16b)を 介して、両側に均等に分散させて流出側メインヘッダー(15b) (15b)に導くことがで きる。このため冷媒 (R)をコア(11)力 流出側メインヘッダー(15b) (15b)にスムー ズに流出させることができ、熱交換効率をより一層向上させることができる。  [0068] Further, in the heat exchange (10) of the present embodiment, since the outflow side main headers (15b) (15b) are arranged on both sides, the refrigerant (R) that has passed through the core (11) is used as the subheader. Via (16b), it can be evenly distributed on both sides and led to the outflow main header (15b) (15b). Therefore, the refrigerant (R) can smoothly flow out to the core (11) force outflow side main header (15b) (15b), and the heat exchange efficiency can be further improved.
[0069] なお本実施形態においては、熱交換チューブ(12)として図 6, 7に示すように通路 間連通型熱交換チューブを用いることもできる。この通路間連通型熱交換チューブ([0069] In this embodiment, the heat exchange tube (12) is a passage as shown in Figs. An intercommunicating heat exchange tube can also be used. This inter-passage heat exchange tube (
12)は、内部に複数の冷媒通路孔(12a)が併設されるとともに、隣合う冷媒通路孔間 の仕切壁(12b)に、隣合う冷媒通路孔同士を連通する複数の連通孔(12c)が形成 されるものである。この通路間連通型熱交換チューブ(12)を用いる場合には、チュ ーブ内において、冷媒 (R)が連通孔(12c)を介して冷媒通路間を行き来することに より、冷媒 (R)がチューブ内を均等に分散するため、冷媒分布の偏りを防止でき、熱 交換効率をさらに向上させることができる。 12) is provided with a plurality of communication passage holes (12c) that communicate with adjacent refrigerant passage holes to a partition wall (12b) between the adjacent refrigerant passage holes, as well as a plurality of refrigerant passage holes (12a) provided inside. Is formed. When this inter-passage heat exchange tube (12) is used, the refrigerant (R) moves back and forth between the refrigerant passages through the communication holes (12c) in the tube, so that the refrigerant (R) However, since the inside of the tube is evenly distributed, it is possible to prevent uneven distribution of the refrigerant and to further improve the heat exchange efficiency.
[0070] <第 2実施形態 > [0070] <Second Embodiment>
図 9〜12はこの発明の第 2実施形態である熱交換器 (20)を示す図である。これら の図に示すように、この第 2実施形態の熱交換器(20)は、流入側メインヘッダー(15 a)が片側に 1本だけ配置されるとともに、流出側メインヘッダー(15b)が片側に 1本 だけ配置されている。  9 to 12 are views showing a heat exchanger (20) according to the second embodiment of the present invention. As shown in these figures, in the heat exchanger (20) of the second embodiment, only one inflow side main header (15a) is arranged on one side and the outflow side main header (15b) is on one side. Only one is placed in each.
[0071] また多数の流入側サブヘッダー(16a)はその一端部が、上記片側 1本の流入側メ インヘッダー(15a)にそれぞれ連通接続されるとともに、他端側がそれぞれ閉塞され ている。さらに多数の流出側サブヘッダー(16b)はその一端部が、上記片側 1本の 流出側メインヘッダー(15b)にそれぞれ連通接続されるとともに、他端側がそれぞれ 閉塞されている。  In addition, one end of each of the inflow side subheaders (16a) is connected to the one inflow side main header (15a) on one side, and the other end side is closed. In addition, one end of each of the large number of outflow side subheaders (16b) is connected to the single outflow side main header (15b) on one side, and the other end side is closed.
[0072] 本第 2実施形態において、他の構成は、上記第 1実施形態と実質的に同一である ため、同一または相当部分に同一符号を付して、重複説明は省略する。  In the second embodiment, other configurations are substantially the same as those in the first embodiment, and thus the same or corresponding parts are denoted by the same reference numerals, and redundant description is omitted.
[0073] この第 2実施形態の熱交換器 (20)においても、二酸化炭素を主成分とするジメチ ルエーテルとの混合冷媒を用いる上で、冷媒 (R)および空気 (A)とをカウンターフロ 一方式によって熱交換させるものであるため、たとえば冷却過程においては、温度降 下する冷媒 (R)と、温度上昇する空気 (A)との間で熱交換させることにより、冷却過 程全域にお!ヽて冷媒 (R)および空気 (A)間で一定の温度差を確保でき、効率良く熱 交換することができる。さらに蒸発過程においても、温度上昇する冷媒 (R)と、温度 降下する空気 (A)との間で熱交換させることにより、蒸発過程全域において両者間 で一定の温度差を確保でき、効率良く熱交換することができる。  [0073] In the heat exchanger (20) of the second embodiment as well, when using a mixed refrigerant with dimethyl ether containing carbon dioxide as a main component, the refrigerant (R) and air (A) are counterflowed. For example, during the cooling process, heat is exchanged between the refrigerant (R) that drops in temperature and the air (A) that rises in temperature during the cooling process! As a result, a certain temperature difference can be secured between the refrigerant (R) and the air (A), and heat can be exchanged efficiently. Furthermore, in the evaporation process, by exchanging heat between the rising temperature refrigerant (R) and the decreasing temperature air (A), a constant temperature difference between the two can be secured throughout the evaporation process, and heat can be efficiently generated. Can be exchanged.
[0074] また本実施形態にぉ 、ては、流入側および流出側メインヘッダー(15a) (15b)を 片側 1本だけで構成するものであるため、構成部品点数を減少させることができ、構 造の簡素化および装置の小型軽量ィ匕を図ることができるとともに、コストの削減を図る ことができる。 [0074] Further, according to the present embodiment, the inflow side and outflow side main headers (15a) (15b) are added. Since it is configured by only one on one side, the number of components can be reduced, the structure can be simplified, the apparatus can be reduced in size and weight, and the cost can be reduced.
[0075] <第 3実施形態 >  [0075] <Third embodiment>
図 13はこの発明の第 3実施形態である熱交換器 (30)を示す斜視図、図 14はその 熱交換器 (30)を示す平面図である。両図に示すようにこの第 3実施形態の熱交換器 (30)は、流入側ヘッダー(35a)と、流出側ヘッダー(35b)、冷媒ターン用ヘッダー( 36)と、 2つのパス (PI) (P2)を有するコア(31)と、を基本的な構成要素として備えて いる。  FIG. 13 is a perspective view showing a heat exchanger (30) according to a third embodiment of the present invention, and FIG. 14 is a plan view showing the heat exchanger (30). As shown in both figures, the heat exchanger (30) of the third embodiment includes an inflow header (35a), an outflow header (35b), a refrigerant turn header (36), and two paths (PI). And a core (31) having (P2) as a basic component.
[0076] 流入側および流出側ヘッダー(35a) (35b)は、空気 (A)の流れ方向を基準に風上 に向力う方向を前方としたとき、コア(31)に対して一方側(図 13の左側)に前後に並 んで、垂直方向に沿ってそれぞれ配置されている。このとき流入側ヘッダー(35a)は [0076] The inflow side and outflow side headers (35a) and (35b) are arranged on one side with respect to the core (31) when the direction facing the windward is forward based on the flow direction of the air (A) ( They are arranged along the vertical direction in the front-to-back direction (left side of Fig. 13). At this time, the inflow header (35a)
、流出側ヘッダー(35b)に対し、後方に配置されている。 It is arranged behind the outflow side header (35b).
[0077] 各ヘッダー(35a) (35b)は、アルミニウム製またはアルミニウム合金製の丸パイプ 部材によって構成されて 、る。 [0077] Each header (35a) (35b) is constituted by a round pipe member made of aluminum or aluminum alloy.
[0078] また流入側ヘッダー(35a)の下部には、冷媒入口ノズル (34a)が設けられて、この ノズル(34a)から冷媒が流入側ヘッダー(35a)内に流入されるよう構成されている。 In addition, a refrigerant inlet nozzle (34a) is provided at the lower part of the inflow side header (35a), and the refrigerant flows from the nozzle (34a) into the inflow side header (35a). .
[0079] さらに流出側ヘッダー(35b)の上部には、冷媒出口ノズル(34b)が設けられて、流 出側ヘッダー(35b)内の冷媒が冷媒出口ノズル(34b)から流出されるよう構成され ている。 [0079] Further, a refrigerant outlet nozzle (34b) is provided at the upper part of the outflow side header (35b) so that the refrigerant in the outflow side header (35b) flows out of the refrigerant outlet nozzle (34b). ing.
[0080] 冷媒ターン用ヘッダー(36)は、コア(31)の他方側(図 13の右側)に、垂直方向に 沿って配置される。冷媒ターン用ヘッダー(36)は、断面が前後方向に長い細長形 状のアルミニウム製またはアルミニウム合金製パイプ部材によって構成されており、前 半部が上記流出側ヘッダー(35b)に対応するとともに、後半部が上記流入側ヘッダ 一 (35a)に対応するように配置されて 、る。  [0080] The refrigerant turn header (36) is disposed along the vertical direction on the other side of the core (31) (the right side in FIG. 13). The refrigerant turn header (36) is formed of an elongated aluminum or aluminum alloy pipe member having a long cross section in the front-rear direction, and the front half corresponds to the outflow header (35b) and the latter half. Are arranged so as to correspond to the inflow side header (35a).
[0081] コア(31)は、その後半部を構成する第 1パス (P1)と、前半部を構成する第 2パス( P2)とを有している。 [0081] The core (31) has a first path (P1) constituting the latter half and a second path (P2) constituting the front half.
[0082] 各パス (PI) (P2)は、左右方向に沿って配置される熱交換チューブ(12)と、コルゲ 一トフイン(13)とを交互に上下方向に重ね合わせて積層配置されてそれぞれ構成さ れている。 [0082] Each path (PI) (P2) includes a heat exchange tube (12) disposed along the left-right direction, One tophine (13) is alternately stacked in the vertical direction, and each layer is arranged.
[0083] なお本実施形態において、熱交換チューブ(12)は、上記図 6, 7に示す通路間連 通型熱交換チューブによって構成される。もっとも本実施形態において、熱交換チュ ーブ(12)としては、図 5に示す押出チューブによっても構成することができる。  In the present embodiment, the heat exchange tube (12) is constituted by the inter-passage heat exchange tube shown in FIGS. However, in the present embodiment, the heat exchange tube (12) can also be constituted by an extruded tube shown in FIG.
[0084] そして、第 1パス (P1)は、各熱交換チューブ(12)の一端側が流入側ヘッダー(35 a)にそれぞれ連通接続されるとともに、他端側が冷媒ターン用ヘッダー(36)の後半 部にそれぞれ連通接続される。さらに第 2パス (P2)は、第 1パス (P1)の前面側に並 列状に配置した状態で、各熱交換チューブ(12)の一端側が流出側ヘッダー(35b) にそれぞれ連通接続されるとともに、他端側が冷媒ターン用ヘッダー(35)の前半部 にそれぞれ連通接続される。  [0084] In the first path (P1), one end side of each heat exchange tube (12) is connected to the inflow side header (35a), and the other end side is the second half of the refrigerant turn header (36). Are connected to each other. Furthermore, the second path (P2) is arranged in parallel on the front side of the first path (P1), and one end of each heat exchange tube (12) is connected to the outflow header (35b). At the same time, the other end is connected to the front half of the refrigerant turn header (35).
[0085] この熱交換器(10)においては、たとえばフィン(13)やヘッダー(35a) (35b) (36) として、芯材の少なくとも片面にろう材がクラッドされたアルミニウムブレージングシート 製のものなどによって構成されている。そして、熱交換チューブ(12)、フィン(13)、 ヘッダー(35a) (35b) (36)が、熱交換器形状に仮組された後、その仮組製品が炉 中にて一括ろう付けされることにより、全体が接合一体化されて、熱交 (30)が製 造されるちのである。  [0085] In this heat exchanger (10), for example, fins (13) or headers (35a) (35b) (36) made of an aluminum brazing sheet in which a brazing material is clad on at least one side of a core material, etc. It is constituted by. After the heat exchange tubes (12), fins (13), and headers (35a) (35b) (36) are temporarily assembled into a heat exchanger shape, the temporarily assembled products are collectively brazed in the furnace. As a result, the whole is joined and integrated, and the heat exchanger (30) is manufactured.
[0086] 本実施形態の熱交換器 (30)は、上記と同様、二酸化炭素を主体とする非共沸性 混合冷媒、たとえば二酸ィ匕炭素とジメチルエーテルとの混合冷媒が用いられる。  [0086] The heat exchanger (30) of the present embodiment uses a non-azeotropic mixed refrigerant mainly composed of carbon dioxide, for example, a mixed refrigerant of carbon dioxide and dimethyl ether, as described above.
[0087] そして本実施形態の熱交換器(30)を、たとえばカーエアコン用の冷凍サイクルに おける冷媒冷却器 (凝縮器)として用いた場合、圧縮機によって圧縮された冷媒 (R) は、熱交換器(30)における流入側ヘッダー(35a)に導入されて、第 1パス (P1)の各 熱交換チューブ(12)にそれぞれ導入される。続いて冷媒 (R)は、第 1パス (P1)の各 熱交 チューブ(12)を通過する間に、外気 (A)との間で熱交換して冷却されて、 冷媒ターン用ヘッダー(36)の後半部に導入される。  [0087] When the heat exchanger (30) of the present embodiment is used as a refrigerant cooler (condenser) in a refrigeration cycle for a car air conditioner, for example, the refrigerant (R) compressed by the compressor is heated. It is introduced into the inflow side header (35a) in the exchanger (30) and then introduced into each heat exchange tube (12) of the first path (P1). Subsequently, the refrigerant (R) is cooled by exchanging heat with the outside air (A) while passing through each heat exchange tube (12) in the first path (P1), and is then cooled to the refrigerant turn header (36). ) Will be introduced in the second half.
[0088] 冷媒ターン用ヘッダー(36)の後半部に導入された冷媒 (R)は前半部に回り込んで 、第 2パス (P2)の各熱交換チューブ(12)に導入される。その後、冷媒 (R)は第 2パ ス (P2)の各熱交換チューブ(12)を通過する間に、外気 (A)との間で熱交換して冷 却されて、流出側ヘッダー(35b)に導入される。 [0088] The refrigerant (R) introduced into the second half of the refrigerant turn header (36) goes around the first half and is introduced into each heat exchange tube (12) of the second path (P2). Thereafter, the refrigerant (R) is cooled by exchanging heat with the outside air (A) while passing through the heat exchange tubes (12) of the second path (P2). Rejected and introduced into the outflow header (35b).
[0089] ここで本実施形態においては、冷媒を風下側の第 1パス (P1)に通してから、風上 側の第 2パス (P2)に通過させるようにしているため、冷媒温度が第 1パス通過時より 第 2パス通過時の方が低くなるのに対し、空気 Aの温度は第 2パス通過時よりも第 1パ ス通過時の方が高くなる。つまり冷却過程において、温度低下する冷媒 (R)と、温度 上昇する空気 (A)とを擬似的に対向させるものであるため、この冷媒 (R)および空気 (A)が第 1および第 2パス (PI) (P2)を通過する間、両者の温度差を確保することが でき、効率良く熱交換することができる。  Here, in the present embodiment, since the refrigerant passes through the first path (P1) on the leeward side and then passes through the second path (P2) on the leeward side, the refrigerant temperature is the first. The air A temperature is lower when passing the first pass than when passing the second pass, whereas the temperature of the air A is higher when passing the first pass than when passing the second pass. That is, in the cooling process, the refrigerant (R) whose temperature decreases and the air (A) whose temperature rises are made to face each other in a pseudo manner, so that the refrigerant (R) and air (A) are in the first and second passes. (PI) While passing through (P2), the temperature difference between the two can be secured, and heat can be exchanged efficiently.
[0090] 一方、熱交換器(30)によって冷却された冷媒 (R)は、流出側ヘッダー(35b)の冷 媒出口ノズル (34b)から流出されて、膨張弁により減圧された後、蒸発器に流入され る。そして冷媒は蒸発器を通って自身は蒸発することにより外気から熱を吸収して外 気を冷却する。さらに蒸発器から流出された冷媒は圧縮機に戻るものである。  [0090] On the other hand, the refrigerant (R) cooled by the heat exchanger (30) flows out of the refrigerant outlet nozzle (34b) of the outflow side header (35b) and is depressurized by the expansion valve. Inflow. Then, the refrigerant passes through the evaporator and evaporates, thereby absorbing heat from the outside air and cooling the outside air. Further, the refrigerant flowing out from the evaporator returns to the compressor.
[0091] なお本実施形態の熱交換器 (30)を、冷凍サイクルの蒸発器として使用する場合に は、冷媒 (R)は第 1および第 2パス (PI) (P2)をこの順に通過して温度を上昇させる 一方、空気 (A)は第 2および第 1パス (P2) (P1)をこの順に通過して温度を降下させ る。従って上記と同様、蒸発過程全域において冷媒 (R)および空気 (A)間で一定の 温度差を確保することができ、熱交換効率を向上させることができる。  [0091] When the heat exchanger (30) of the present embodiment is used as an evaporator of a refrigeration cycle, the refrigerant (R) passes through the first and second passes (PI) (P2) in this order. On the other hand, air (A) passes through the second and first passes (P2) (P1) in this order to lower the temperature. Accordingly, as described above, a constant temperature difference between the refrigerant (R) and the air (A) can be secured in the entire evaporation process, and the heat exchange efficiency can be improved.
[0092] 以上のように本実施形態の熱交 (30)によれば、冷却過程では温度低下し、蒸 発過程では温度上昇する二酸ィ匕炭素とジメチルエーテルとの混合冷媒を用いる上で 、冷媒 (R)および空気 (A)間で熱交換するに際して、冷媒 (R)の流れ方向を、空気( A)の流れ方向に対し実質的に対向させるようにした疑似カウンターフロー方式を採 用するものであるため、冷却過程全域または蒸発過程全域にぉ 、て冷媒 (R)および 空気 (A)間に一定の温度差を確実に確保でき、効率良く熱交換することができる。  [0092] As described above, according to the heat exchange (30) of the present embodiment, when using a mixed refrigerant of diacid-carbon and dimethyl ether, which decreases in temperature in the cooling process and increases in temperature in the evaporation process, When exchanging heat between the refrigerant (R) and the air (A), a pseudo counter flow method is adopted in which the flow direction of the refrigerant (R) is substantially opposed to the flow direction of the air (A). Therefore, it is possible to ensure a certain temperature difference between the refrigerant (R) and the air (A) over the entire cooling process or the entire evaporation process, and to exchange heat efficiently.
[0093] <第 4実施形態 >  [0093] <Fourth embodiment>
図 15はこの発明の第 4実施形態である熱交換器 (40)を示す斜視図、図 16はその 熱交換器 (40)を示す平面図である。両図に示すようにこの第 4実施形態の熱交換器 (40)は、流入側ヘッダー (45a)と、流出側ヘッダー (45b)、第 1および第 2冷媒ター ン用ヘッダー(46a) (46b)と、 3つのパス(PI)〜(P3)を有するコア(41)と、を基本 的な構成要素として備えて 、る。 FIG. 15 is a perspective view showing a heat exchanger (40) according to a fourth embodiment of the present invention, and FIG. 16 is a plan view showing the heat exchanger (40). As shown in both figures, the heat exchanger (40) of the fourth embodiment includes an inflow header (45a), an outflow header (45b), and first and second refrigerant turn headers (46a) (46b). ) And a core (41) having three paths (PI) to (P3) It is prepared as a typical component.
[0094] コア (41)を構成する各パス (P1)〜(P3)は、上記第 3実施形態と同様に、熱交換 チューブ( 12)と、コルゲートフィン( 13)とが交互に積層されて構成されて 、る。  [0094] In the paths (P1) to (P3) constituting the core (41), the heat exchange tubes (12) and the corrugated fins (13) are alternately laminated as in the third embodiment. It is composed.
[0095] そして風下側 (後方側)力 順に第 1パス (P1)、第 2パス (P2)および第 3パス (P3) が並列に配置されてコア(41)が形成されている。  Then, the first path (P1), the second path (P2), and the third path (P3) are arranged in parallel in order of the leeward (rearward) force to form the core (41).
[0096] 流入側ヘッダー (45a)は、コア (41)の一方側 (右側)における第 1パス (P1)に対応 して配置されて、そのヘッダー(45a)に第 1パス(P1)の各熱交換チューブ(12)の一 端側が連通接続されている。  [0096] The inflow side header (45a) is arranged corresponding to the first path (P1) on one side (right side) of the core (41), and each header of the first path (P1) is placed on the header (45a). One end of the heat exchange tube (12) is connected in communication.
[0097] 第 1冷媒ターン用ヘッダー (46a)は、コア (41)の他方側 (左側)における第 1および 第 2パス (PI) (P2)に対応して配置されて、そのヘッダー (46a)の後半部に第 1パス (P1)の各熱交換チューブ(12)の他端側が連通接続されるとともに、前半部に第 2パ ス (P2)の各熱交換チューブ( 12)の他端側が連通接続されて 、る。  [0097] The first refrigerant turn header (46a) is arranged corresponding to the first and second paths (PI) (P2) on the other side (left side) of the core (41), and the header (46a) The other end of each heat exchange tube (12) in the first path (P1) is connected to the second half of the first path (P1), and the other end of each heat exchange tube (12) in the second path (P2) is connected to the first half. Connected and connected.
[0098] 第 2冷媒ターン用ヘッダー (46b)は、コア (41)の一方側 (右側)における第 2および 第 3パス (P2) (P3)に対応して配置されて、そのヘッダー (46b)の後半部に第 2パス (P2)の各熱交換チューブ(12)の一端側が連通接続されるとともに、前半部に第 3パ ス (P3)の各熱交換チューブ( 13)の一端側が連通接続されて 、る。  [0098] The second refrigerant turn header (46b) is arranged corresponding to the second and third paths (P2) (P3) on one side (right side) of the core (41), and the header (46b) One end of each heat exchange tube (12) in the second path (P2) is connected to the second half of the pipe, and one end of each heat exchange tube (13) in the third path (P3) is connected to the first half. It has been.
[0099] さらに流出側ヘッダー (45b)は、コア (41)の他方側 (左側)における第 3パス (P3) に対応して配置されて、そのヘッダー (45b)に第 3パス (P3)の各熱交換チューブ(1 2)の他端側が連通接続されて!、る。  [0099] Further, the outflow side header (45b) is arranged corresponding to the third path (P3) on the other side (left side) of the core (41), and the header (45b) has the third path (P3). The other end of each heat exchange tube (12) is connected in communication!
[0100] また流入側ヘッダー(45a)の下部には、冷媒入口ノズル (44a)が設けられるととも に、流出側ヘッダー(45b)の上部には、冷媒出口ノズル (44b)が設けられている。  [0100] The refrigerant inlet nozzle (44a) is provided at the lower part of the inflow side header (45a), and the refrigerant outlet nozzle (44b) is provided at the upper part of the outflow side header (45b). .
[0101] この熱交換器 (40)にお 、ては、流入側ヘッダー (45a)に導入された冷媒 (R)は、 第 1パス (P1)を通過し、第 1冷媒ターン用ヘッダー (46a)で折り返して、第 2パス (P2 )を通過し、さらに第 2冷媒ターン用ヘッダー (46b)で折り返して、第 3パス (P3)を通 過した後、流出側ヘッダー (45b)を介して流出される。こうして冷媒 (R)を、第 1〜3 パス(P1)〜(P3)の順に通過させる一方、外気 (A)を、第 3〜1パス(P3)〜(P1)の 順に通過させて、冷媒 (R)および空気 (A)間で熱交換して、冷媒 (R)を冷却 (凝縮) または蒸発されるものである。 [0102] この熱交^^ (40)においても上記と同様に、冷却または蒸発過程では温度変化 する二酸ィ匕炭素を含む非共沸性混合冷媒を用いる上で、冷媒 (R)の流れ方向を、 空気 (A)の流れ方向に対し実質的に対向させるようにした疑似カウンターフロー方式 を採用するものであるため、冷却または蒸発過程全域にぉ 、て冷媒 (R)および空気 (A)間に一定の温度差を確実に確保でき、効率良く熱交換することができる。 [0101] In this heat exchanger (40), the refrigerant (R) introduced into the inflow side header (45a) passes through the first path (P1), and the first refrigerant turn header (46a ), Passes through the second path (P2), and then passes back through the second refrigerant turn header (46b), passes through the third path (P3), and then passes through the outflow header (45b). Leaked. In this way, the refrigerant (R) is passed in the order of the first to third passes (P1) to (P3), while the outside air (A) is passed in the order of the third to first passes (P3) to (P1). The refrigerant (R) is cooled (condensed) or evaporated by heat exchange between (R) and air (A). [0102] Also in this heat exchange ^^ (40), the flow of the refrigerant (R) is similar to the above when using a non-azeotropic mixed refrigerant containing diacid-carbon that changes in temperature during the cooling or evaporation process. Since the counter counter flow method is adopted in which the direction is substantially opposite to the flow direction of air (A), the refrigerant (R) and air (A) are used throughout the cooling or evaporation process. A certain temperature difference can be reliably ensured between them, and heat can be exchanged efficiently.
[0103] なお上記実施形態等においては、本発明の熱交換器を冷凍サイクルの冷媒冷却 器や蒸発器に適用する場合を例に挙げて説明したが、それだけに限られず、本発明 にお 、ては、他の熱交^^に適用するようにしても良 、。  [0103] In the above-described embodiment and the like, the case where the heat exchanger of the present invention is applied to a refrigerant cooler or an evaporator of a refrigeration cycle has been described as an example. However, the present invention is not limited thereto, and May be applied to other heat exchange ^^.
[0104] 本願は、 2005年 12月 2日付で出願された日本国特許出願の特願 2005— 34905 4号の優先権主張を伴うものであり、その開示内容は、そのまま本願の一部を構成す るものである。  [0104] This application is accompanied by the priority claim of Japanese Patent Application No. 2005-34905 4 filed on December 2, 2005, the disclosure of which constitutes part of the present application as it is. It is something.
[0105] ここに用いられた用語及び表現は、説明のために用いられたものであって限定的に 解釈するために用いられたものではなぐここに示されかつ述べられた特徴事項の ヽ かなる均等物をも排除するものではなぐこの発明のクレームされた範囲内における 各種変形をも許容するものであると認識されなければならない。  [0105] The terms and expressions used herein are for illustrative purposes only and are not intended to be interpreted in a limited way. It should be recognized that various modifications within the claimed scope of the present invention are allowed without departing from such equivalents.
[0106] 本発明は、多くの異なった形態で具現ィ匕され得るものであるが、この開示は本発明 の原理の実施例を提供するものと見なされるべきであって、それら実施例は、本発明 をここに記載しかつ zまたは図示した好ましい実施形態に限定することを意図するも のではないという了解のもとで、多くの図示実施形態がここに記載されている。  [0106] While this invention may be embodied in many different forms, this disclosure should be considered as providing examples of the principles of the invention, and these examples are Numerous illustrated embodiments are described herein with the understanding that the present invention is not intended to be limited to the preferred embodiments illustrated and illustrated herein or illustrated.
[0107] 本発明の図示実施形態をいくつ力ここに記載した力 本発明は、ここに記載した各 種の好ま 、実施形態に限定されるものではなぐこの開示に基づ!/、て 、わゆる当業 者によって認識され得る、均等な要素、修正、削除、組み合わせ (例えば、各種実施 形態に跨る特徴の組み合わせ)、改良および Zまたは変更を有するありとあらゆる実 施形態をも包含するものである。クレームの限定事項はそのクレームで用いられた用 語に基づいて広く解釈されるべきであり、本明細書あるいは本願のプロセキューショ ン中に記載された実施例に限定されるべきではなぐそのような実施例は非排他的で あると解釈されるべきである。  [0107] The power of the illustrated embodiment of the present invention is described here. The present invention is based on this disclosure, which is not limited to the various preferred embodiments described herein! It encompasses any and all embodiments with equivalent elements, modifications, deletions, combinations (eg, combinations of features across various embodiments), improvements, and Z or changes that can be recognized by any person skilled in the art. Claim limitations should be construed broadly based on the terminology used in the claims and should not be limited to the embodiments described herein or in the process of this application. Such embodiments should be construed as non-exclusive.
産業上の利用可能性 この発明の熱交換器およびその関連技術は、例えばカーエアコン用の冷凍システ ムに採用可能である。 Industrial applicability The heat exchanger and related technology of the present invention can be employed in a refrigeration system for a car air conditioner, for example.

Claims

請求の範囲 The scope of the claims
[1] 二酸ィ匕炭素を含む非共沸性混合冷媒を熱交換路に流通させるとともに、その冷媒 と空気との間で熱交換させるようにした熱交^^であって、  [1] Non-azeotropic refrigerant mixture containing diacid-carbon is circulated through the heat exchange path and heat exchange between the refrigerant and air
前記熱交換路を流通する冷媒の流れ方向を、空気の流れ方向に対し対向させるよ うにしたことを特徴とする熱交^^。  The heat exchange is characterized in that the flow direction of the refrigerant flowing through the heat exchange path is opposed to the air flow direction.
[2] 二酸ィ匕炭素を含む非共沸性混合冷媒を複数の熱交換チューブに流通させるととも に、その冷媒と空気との間で熱交換させるようにした熱交^^であって、  [2] Non-azeotropic mixed refrigerant containing diacid and carbon dioxide is circulated through multiple heat exchange tubes and heat exchange is performed between the refrigerant and air. ,
前記複数の熱交換チューブがその長さ方向を空気の流れ方向に対し平行させた 状態で並列に配置される一方、  While the plurality of heat exchange tubes are arranged in parallel with their length directions parallel to the air flow direction,
前記熱交換チューブを流通する冷媒の流れ方向を、空気の流れ方向に対し対向さ せるようにしたことを特徴とする熱交^^。  A heat exchanger characterized in that the flow direction of the refrigerant flowing through the heat exchange tube is opposed to the flow direction of air.
[3] 空気の流れ方向に対し風下側に流入側メインヘッダーが配置されるとともに、風上 側に流出側メインヘッダーが配置され、 [3] An inflow side main header is arranged on the leeward side with respect to the air flow direction, and an outflow side main header is arranged on the leeward side.
流入側サブヘッダーの端部が前記流入側メインヘッダーに連通接続され、 流出側サブヘッダーの端部が前記流出側メインヘッダーに連通接続され、 前記複数の熱交換チューブ力 その流入側端部が前記流入側サブヘッダーに連 通接続されるとともに、流出側端部が前記流出側サブヘッダーに連通接続された状 態で前記流入側および流出側サブヘッダー間に並列に配置される請求項 2に記載 の熱交換器。  An end portion of the inflow side subheader is connected in communication with the inflow side main header, an end portion of the outflow side subheader is connected in communication with the outflow side main header, and the plurality of heat exchange tube forces have their inflow side ends 3. The inflow side subheader is connected in parallel, and the outflow side end portion is connected in parallel to the outflow side subheader and arranged in parallel between the inflow side and outflow side subheaders. Heat exchanger.
[4] 空気の流れ方向に対し風下側に一対の流入側メインヘッダーが並列に配置される とともに、前記流入側メインヘッダーに対応して風上側に一対の流出側メインヘッダ 一が並列に配置され、  [4] A pair of inflow side main headers are arranged in parallel on the leeward side with respect to the air flow direction, and a pair of outflow side main headers are arranged in parallel on the upwind side corresponding to the inflow side main header. ,
流入側サブヘッダーの両端部が前記一対の流入側メインヘッダーにそれぞれ連通 接続され、  Both end portions of the inflow side subheader are connected to the pair of inflow side main headers, respectively,
流出側サブヘッダーの両端部が前記一対の流出側メインヘッダーにそれぞれ連通 接続され、  Both end portions of the outflow side subheader are respectively connected to the pair of outflow side main headers,
前記複数の熱交換チューブ力 その流入側端部が前記流入側サブヘッダーに連 通接続されるとともに、流出側端部が前記流出側サブヘッダーに連通接続された状 態で前記流入側および流出側サブヘッダー間に並列に配置される請求項 2に記載 の熱交換器。 The plurality of heat exchange tube forces The inflow end is connected to the inflow subheader, and the outflow end is connected to the outflow subheader. The heat exchanger according to claim 2, wherein the heat exchanger is arranged in parallel between the inflow side and outflow side subheaders.
[5] 前記流入側サブヘッダーが、前記流入側メインヘッダーの長さ方向に沿って並列 に複数設けられるとともに、  [5] A plurality of the inflow side subheaders are provided in parallel along the length direction of the inflow side main header,
前記流出側サブヘッダーが、前記流出側メインヘッダーの長さ方向に沿って並列 に複数設けられ、  A plurality of the outflow side subheaders are provided in parallel along the length direction of the outflow side main header,
対応し合う前記流入側サブヘッダーおよび前記流出側サブヘッダー間に前記熱交 換チューブがそれぞれ併設される請求項 3に記載の熱交換器。  4. The heat exchanger according to claim 3, wherein the heat exchange tubes are provided between the corresponding inflow side subheaders and the outflow side subheaders.
[6] 二酸ィ匕炭素を含む非共沸性混合冷媒を複数の熱交換チューブに流通させるととも に、その冷媒と空気との間で熱交換させるようにした熱交^^であって、 [6] Non-azeotropic mixed refrigerant containing diacid-carbon is circulated through multiple heat exchange tubes and heat exchange is performed between the refrigerant and air. ,
前記複数の熱交換チューブが並列に配置されてパスが構成され、  The plurality of heat exchange tubes are arranged in parallel to form a path,
前記パスがその熱交換チューブを空気の流れ方向に対し直交させた状態で空気 流れ方向に沿って並列に複数配置され、  A plurality of the paths are arranged in parallel along the air flow direction in a state where the heat exchange tubes are orthogonal to the air flow direction,
前記複数のパスに冷媒を順次流通させるに際して、冷媒流れ方向の下流側のパス が上流側のパスに対し空気流れ方向の風上側に配置されたことを特徴とする熱交換  When the refrigerant is circulated sequentially through the plurality of paths, the downstream path in the refrigerant flow direction is disposed on the windward side in the air flow direction with respect to the upstream path.
[7] 前記複数のパスのうち、上流側端部に配置されるパスにおける熱交換チューブの 流入側端部が流入側ヘッダーに連通接続され、下流側端部に配置されるパスにお ける熱交換チューブの流出側端部が流出側ヘッダーに連通接続され、 [7] Among the plurality of paths, the inflow end of the heat exchange tube in the path disposed at the upstream end is connected to the inflow header, and the heat in the path disposed at the downstream end. The outflow side end of the exchange tube is connected to the outflow side header,
隣合う 2つのパスのうち、上流側に配置されるノ スにおける熱交換チューブの流出 側端部と、下流側に配置されるパスにおける熱交換チューブの流入側端部とが、冷 媒ターン用ヘッダーを介して連通される請求項 6に記載の熱交換器。  Out of the two adjacent paths, the outflow side end of the heat exchange tube in the upstream arranged path and the inflow side end of the heat exchange tube in the downstream arranged path are for the coolant turn. The heat exchanger according to claim 6, wherein the heat exchanger communicates with the header.
[8] 冷媒が、二酸化炭素を主成分とするジメチルエーテルとの混合冷媒によって構成さ れる請求項 1〜7のいずれかに記載の熱交^^。  [8] The heat exchanger according to any one of claims 1 to 7, wherein the refrigerant is composed of a mixed refrigerant with dimethyl ether containing carbon dioxide as a main component.
[9] 前記熱交換チューブは、チューブ長さ方向に連続する複数の冷媒通路孔がチュー ブ幅方向に並列に設けられる請求項 2のいずれかに記載の熱交^^。  [9] The heat exchanger according to claim 2, wherein the heat exchange tube is provided with a plurality of refrigerant passage holes continuous in the tube length direction in parallel in the tube width direction.
[10] 前記熱交換チューブは、隣合う冷媒通路孔間の仕切壁に、隣合う冷媒通路孔同士 を連通する連通孔が形成されて、冷媒通路孔を流通する冷媒が、前記連通孔を介し て冷媒通路孔間を行き来できるよう構成される請求項 9に記載の熱交換器。 [10] In the heat exchange tube, a communication hole that connects adjacent refrigerant passage holes is formed in a partition wall between adjacent refrigerant passage holes, and the refrigerant that circulates through the refrigerant passage holes passes through the communication holes. The heat exchanger according to claim 9, wherein the heat exchanger is configured to be able to go back and forth between the refrigerant passage holes.
[11] 請求項 1〜10のいずれか 1項に記載された熱交換器によって構成されたことを特 徴とする冷媒冷却器。 [11] A refrigerant cooler comprising the heat exchanger according to any one of claims 1 to 10.
[12] 請求項 1〜10のいずれか 1項に記載された熱交換器によって構成されたことを特 徴とする蒸発器。  [12] An evaporator comprising the heat exchanger according to any one of claims 1 to 10.
[13] 圧縮機によって圧縮された冷媒が冷却器によって冷却されるとともに、その冷却冷 媒が減圧手段によって減圧されて蒸発器で蒸発されてから、前記圧縮機に戻る冷凍 サイクルであって、  [13] A refrigeration cycle in which the refrigerant compressed by the compressor is cooled by a cooler, and the cooling refrigerant is depressurized by a decompression unit and evaporated by the evaporator, and then returns to the compressor.
前記冷却器および前記蒸発器のうち少なくともいずれか一方が、請求項 1〜10の いずれか 1項に記載された熱交^^によって構成されたことを特徴とする冷凍サイク ル。  A refrigeration cycle, wherein at least one of the cooler and the evaporator is constituted by the heat exchange described in any one of claims 1 to 10.
[14] 請求項 13に記載の冷凍サイクルを備えたことを特徴とする自動車用エアコン。  [14] An automotive air conditioner comprising the refrigeration cycle according to claim 13.
[15] 二酸ィ匕炭素を含む非共沸性混合冷媒を熱交換路に流通させるとともに、その冷媒 と空気との間で熱交換させるようにした熱交換方法であって、 [15] A heat exchange method in which a non-azeotropic mixed refrigerant containing carbon dioxide and carbon is circulated through a heat exchange path and heat is exchanged between the refrigerant and air,
前記熱交換路を流通する冷媒の流れ方向を、空気の流れ方向に対し対向させるよ うにしたことを特徴とする熱交換方法。  A heat exchange method characterized in that the flow direction of the refrigerant flowing through the heat exchange path is opposed to the air flow direction.
[16] 冷媒が、二酸化炭素を主成分とするジメチルエーテルとの混合冷媒によって構成さ れる請求項 15に記載の熱交換方法。 16. The heat exchange method according to claim 15, wherein the refrigerant is composed of a mixed refrigerant with dimethyl ether containing carbon dioxide as a main component.
PCT/JP2006/324055 2005-12-02 2006-12-01 Heat exchanger WO2007063978A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112006003241T DE112006003241T5 (en) 2005-12-02 2006-12-01 heat exchangers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-349054 2005-12-02
JP2005349054A JP2007155183A (en) 2005-12-02 2005-12-02 Heat exchanger

Publications (1)

Publication Number Publication Date
WO2007063978A1 true WO2007063978A1 (en) 2007-06-07

Family

ID=38092310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/324055 WO2007063978A1 (en) 2005-12-02 2006-12-01 Heat exchanger

Country Status (3)

Country Link
JP (1) JP2007155183A (en)
DE (1) DE112006003241T5 (en)
WO (1) WO2007063978A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015039894A1 (en) * 2013-09-17 2015-03-26 Volkswagen Aktiengesellschaft Heat exchanger
WO2015063857A1 (en) * 2013-10-29 2015-05-07 三菱電機株式会社 Heat exchanger and air conditioner
CN114072297A (en) * 2019-07-01 2022-02-18 三菱重工制冷空调系统株式会社 Air conditioning unit, heat exchanger, and air conditioner

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009006674B4 (en) 2009-01-29 2021-12-09 Rheinmetall Landsysteme Gmbh Condenser device for a cooling system
US10907903B2 (en) 2016-01-21 2021-02-02 Samsung Electronics Co., Ltd. Air conditioner with flow direction changing mechanism

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10185471A (en) * 1996-12-26 1998-07-14 Showa Alum Corp Heat exchanger
JP2000104085A (en) * 1998-09-29 2000-04-11 Nippon Mitsubishi Oil Corp Lubricating oil for refrigerator using dimetyl ether as refrigerant
JP2001012821A (en) * 1999-06-25 2001-01-19 Denso Corp Serpentine type evaporator
JP2001050685A (en) * 1999-08-06 2001-02-23 Sanyo Electric Co Ltd Heat exchanger
JP2001336896A (en) * 2000-05-30 2001-12-07 Matsushita Electric Ind Co Ltd Heat exchanger and refrigerating cycle system
JP2003090690A (en) * 2001-09-18 2003-03-28 Hitachi Ltd Lamination type heat exchanger and refrigerating cycle
JP2004198063A (en) * 2002-12-20 2004-07-15 Sanyo Electric Co Ltd Non-azeotropic refrigerant mixture, refrigerating cycle and refrigerating device
JP2004225961A (en) * 2003-01-21 2004-08-12 Denso Corp Multi-flow type heat exchanger

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4016544B2 (en) 1999-09-29 2007-12-05 株式会社デンソー Radiator for supercritical vapor compression refrigeration cycle
JP4383968B2 (en) 2004-06-14 2009-12-16 日立アプライアンス株式会社 Electric washing machine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10185471A (en) * 1996-12-26 1998-07-14 Showa Alum Corp Heat exchanger
JP2000104085A (en) * 1998-09-29 2000-04-11 Nippon Mitsubishi Oil Corp Lubricating oil for refrigerator using dimetyl ether as refrigerant
JP2001012821A (en) * 1999-06-25 2001-01-19 Denso Corp Serpentine type evaporator
JP2001050685A (en) * 1999-08-06 2001-02-23 Sanyo Electric Co Ltd Heat exchanger
JP2001336896A (en) * 2000-05-30 2001-12-07 Matsushita Electric Ind Co Ltd Heat exchanger and refrigerating cycle system
JP2003090690A (en) * 2001-09-18 2003-03-28 Hitachi Ltd Lamination type heat exchanger and refrigerating cycle
JP2004198063A (en) * 2002-12-20 2004-07-15 Sanyo Electric Co Ltd Non-azeotropic refrigerant mixture, refrigerating cycle and refrigerating device
JP2004225961A (en) * 2003-01-21 2004-08-12 Denso Corp Multi-flow type heat exchanger

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015039894A1 (en) * 2013-09-17 2015-03-26 Volkswagen Aktiengesellschaft Heat exchanger
CN105518406A (en) * 2013-09-17 2016-04-20 大众汽车有限公司 Heat exchanger
CN105518406B (en) * 2013-09-17 2018-01-16 大众汽车有限公司 Heat exchanger
WO2015063857A1 (en) * 2013-10-29 2015-05-07 三菱電機株式会社 Heat exchanger and air conditioner
AU2013404239B2 (en) * 2013-10-29 2016-11-03 Mitsubishi Electric Corporation Heat exchanger and air-conditioning apparatus
JP6091641B2 (en) * 2013-10-29 2017-03-08 三菱電機株式会社 Heat exchanger and air conditioner
JPWO2015063857A1 (en) * 2013-10-29 2017-03-09 三菱電機株式会社 Heat exchanger and air conditioner
US10054376B2 (en) 2013-10-29 2018-08-21 Mitsubishi Electric Corporation Heat exchanger and air-conditioning apparatus
CN114072297A (en) * 2019-07-01 2022-02-18 三菱重工制冷空调系统株式会社 Air conditioning unit, heat exchanger, and air conditioner
CN114072297B (en) * 2019-07-01 2023-10-13 三菱重工制冷空调系统株式会社 Air conditioning unit, heat exchanger and air conditioner

Also Published As

Publication number Publication date
DE112006003241T5 (en) 2008-10-09
JP2007155183A (en) 2007-06-21

Similar Documents

Publication Publication Date Title
JP5071597B2 (en) Heat exchanger and air conditioner
WO2007083680A1 (en) Evaporator
US9410745B2 (en) Heat exchanger
US9625214B2 (en) Heat exchanger
WO2013084466A1 (en) Heat exchange system
US20030116308A1 (en) Heat exchanger
WO2013084465A1 (en) Heat exchange system
WO2014132602A1 (en) Stacked heat exchanger
CN104089436B (en) cool-storage type heat exchanger
JP2010175241A (en) Heat exchanger for two fluids, in particular, storage evaporator for air conditioning device
WO2012063454A1 (en) Heat exchanger
WO2013168526A1 (en) Heat exchanger and vehicle air conditioning device
WO2014091747A1 (en) Heat exchanger
US6814135B2 (en) Stacked-type evaporator
WO2007063978A1 (en) Heat exchanger
WO2020179651A1 (en) Cooling module for cooling vehicle battery
EP1479992A2 (en) Heat exchanger
JP2006097911A (en) Heat exchanger
JP2019105380A (en) Heat exchanger
KR102609386B1 (en) Heat exchanger and air conditioner for vehicle
JPH10217758A (en) Air conditioning device
JP2008275187A (en) Manufacturing method of heat exchanger
WO2019031155A1 (en) Heat exchanger
JP6406441B2 (en) Refrigerant evaporator
JP5238408B2 (en) Heat exchanger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
RET De translation (de og part 6b)

Ref document number: 112006003241

Country of ref document: DE

Date of ref document: 20081009

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 112006003241

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06823534

Country of ref document: EP

Kind code of ref document: A1