WO2007063898A1 - Method and apparatus for crystallization of protein, and apparatus for protein crystallization treatment - Google Patents

Method and apparatus for crystallization of protein, and apparatus for protein crystallization treatment Download PDF

Info

Publication number
WO2007063898A1
WO2007063898A1 PCT/JP2006/323812 JP2006323812W WO2007063898A1 WO 2007063898 A1 WO2007063898 A1 WO 2007063898A1 JP 2006323812 W JP2006323812 W JP 2006323812W WO 2007063898 A1 WO2007063898 A1 WO 2007063898A1
Authority
WO
WIPO (PCT)
Prior art keywords
droplet
crystallization
sample
electrode
electric field
Prior art date
Application number
PCT/JP2006/323812
Other languages
French (fr)
Japanese (ja)
Inventor
Toru Torii
Muhammad Imran Al-Haq
Eric Lebrasseur
Hiroki Yamazaki
Koji Nagata
Masaru Tanokura
Original Assignee
The University Of Tokyo
Techno Medica Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The University Of Tokyo, Techno Medica Co., Ltd. filed Critical The University Of Tokyo
Priority to JP2007547972A priority Critical patent/JPWO2007063898A1/en
Publication of WO2007063898A1 publication Critical patent/WO2007063898A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/54Organic compounds
    • C30B29/58Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/12Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions by electrolysis

Definitions

  • Protein crystallization method and apparatus and protein crystallization treatment apparatus
  • the present invention relates to a method and apparatus for crystallizing a protein and a protein crystallization treatment apparatus to which the method for crystallizing the protein is applied.
  • the most common method for analyzing the three-dimensional structure of proteins is the X-ray structure analysis method.
  • a high-quality single crystal of the protein is required.
  • Protein crystallization is indispensable for protein structural analysis. Protein crystals are precipitated and grown by mixing reagents necessary for protein crystallization and a protein solution at an appropriate concentration and placing the mixed solution in an appropriate environment.
  • Patent Document 1 Japanese Patent Application 2005— 176339
  • Patent Document 2 Japanese Patent Application 2005— 176344
  • Patent Document 3 Japanese Patent Application 2005— 176351
  • Patent Document 4 # 112005-176354
  • Patent Document 5 Japanese Patent Application 2005— 176359
  • Patent Document 6 JP 2000-63199 A
  • the molecules to be crystallized in the solution can be electrophoresed, the amount of movement of the molecules increases, and the molecules collide with each other in the solution. Is likely to occur, and the formation of crystal nuclei is promoted.
  • the apparatus since the conventional crystallization method described above is configured to apply a voltage to the sample solution with the sample solution sandwiched between a pair of electrodes, the apparatus itself has a very special and complicated structure.
  • the generated microsample droplets are electrostatically transported to a predetermined storage position. Since a small sample droplet must be moved to a crystallization apparatus having a pair of electrodes and a voltage must be applied, if the structure of the apparatus becomes complicated, the entire structure of the apparatus will naturally increase in size. It will be against the purpose.
  • an object of the present invention is to provide a crystallization method and apparatus capable of obtaining high-quality crystals with high X-ray diffraction resolution, and a protein crystallization treatment apparatus to which the crystallization method is applied! .
  • the crystallization method in the microbatch method according to the present invention is a sample droplet obtained by directly adding a droplet of a reagent necessary for protein crystallization to a small amount of a protein solution droplet.
  • a microbatch method in which the sample droplet is crystallized in a predetermined environment to crystallize the protein in the sample droplet, and a pair of electrodes are arranged side by side above or below each sample droplet.
  • an electric field for crystallization is applied to the sample droplet by the electrode with an upward or downward force.
  • the crystallization apparatus used in the microbatch method according to the present invention is a sample droplet generated by directly adding a droplet of a reagent necessary for protein crystallization to a small amount of a protein solution droplet. And a pair of electrodes arranged above or below the holding means and above or below each sample droplet, and the sample held by the holding means by the electrodes It is characterized in that an electric field for crystallization is applied to the droplet from the upper or lower side.
  • the protein crystallization treatment apparatus comprises a traveling wave electric field generating electrode and a liquid having an unresolved solution layer mixed with sample droplets disposed on the traveling wave electric field generating electrode.
  • a droplet holding means and applying a voltage at a predetermined frequency to the traveling wave electric field generating electrode, thereby providing a droplet of a reagent necessary for crystallization of the protein supplied in the droplet holding means.
  • a solution processing means configured to move and combine the droplets of the protein solution to generate a sample droplet, and then hold the sample droplet in the droplet holding means; and the solution A droplet supply means for supplying the droplet to the droplet holding means in the processing means, and an upward or downward force on each sample droplet in the droplet holding means for holding the sample droplet.
  • Crystallization growth monitoring means for monitoring the crystallization growth of the sample droplet in the holding means, and the droplet holding means is transferred to the crystallization means after holding the sample droplet, and the crystallization means and the crystallization growth monitoring And a transfer means capable of transferring the droplet holding means to and from the means.
  • a pair of electrodes are arranged side by side above or below each sample droplet in the microbatch method, and an upward or downward force is applied to the sample droplet by the electrodes for crystallization.
  • an electric field By applying an electric field, crystallization in the sample droplet can be promoted, and high-quality crystals with high z or X-ray diffraction resolution can be obtained.
  • the crystallization is promoted and the resolution of z or X-ray diffraction becomes higher with a simple structure. , Has an effect.
  • the electric field applied for the crystallization can be 200 V / mm or more. By increasing the applied electric field to 200 V / mm or more, crystallization in the sample droplet is promoted.
  • the crystallization apparatus includes a holding means for holding a sample droplet generated by directly adding a reagent droplet necessary for protein crystallization to a minute amount of a protein solution droplet; A pair of electrodes arranged above or below the holding means and above or below each of the sample droplets, and by the electrodes, an upward or downward force is exerted on the sample droplet held by the holding means. Since the electric field for crystallization is configured to be applied, the crystallization is promoted and Z or X is simply configured so that the sample droplet can be disposed above or below the electrodes arranged side by side. High-quality crystals can be precipitated with higher resolution of line diffraction.
  • the crystallization apparatus can arrange the sample droplet above or below the electrodes arranged side by side. Configure Therefore, the structure of the apparatus is simple, and the apparatus itself can be made smaller than the conventional apparatus.
  • the protein crystallization apparatus comprises a traveling wave electric field generating electrode and a droplet holding means having a solution layer that does not mix with the sample droplet disposed on the traveling wave electric field generating electrode. And applying a voltage at a predetermined frequency to the traveling-wave electric field generating electrode, thereby supplying a droplet of a reagent necessary for crystallization of the protein supplied in the droplet holding means and a liquid of a protein solution.
  • a liquid processing unit configured to move and combine the droplets to form a sample liquid droplet, and then hold the sample droplet in the droplet holding unit; and a droplet in the solution processing unit Electrodes are provided so that an electric field for crystallization can be applied to each sample droplet in the droplet supply means for supplying the droplet to the holding means and each sample droplet in the droplet holding means for holding the sample droplet.
  • FIGS. 1A and 1B are a schematic perspective view and a schematic cross-sectional view of a crystallization apparatus for explaining the principle of a crystallization method according to the present invention.
  • this crystallization apparatus is
  • An electrode plate 6 in which a plurality of rows of a pair of electrodes 2a and 2b are arranged on the substrate 1,
  • Sample droplets 5 consisting of a mixture of various protein crystallization reagents and protein solutions such as precipitants, salts and surfactants are placed on insulator 3 and each sample solution The drop 5 is placed in the middle of the pair of electrodes.
  • the sample droplet 5 is surrounded by a solution 4 that does not mix with sample droplets such as oil to prevent evaporation.
  • the setup that surrounds the sample droplet 5 with the solution 4 in combination with the sample droplet corresponds to the so-called microbatch method.
  • a high-voltage power supply (not shown) is used to create a continuous electric field.
  • the sample droplet 5 can be positioned, for example, by creating a hydrophilic spot on a hydrophobic surface.
  • the droplet positioned by the hydrophilic spot is fixed with a tenacity.
  • egg white lysozyme was dissolved in 0.2 M phosphate buffer (pH 4.6), and the solution prepared at 40 mg / mL was used as the protein solution, and NaCl and 0.2 M phosphate buffer (pH 4.6) were used as the precipitant.
  • 0.2 M phosphate buffer pH 4.6
  • NaCl and 0.2 M phosphate buffer pH 4.6
  • an electric field of DC 200 V / mm (60 V) is applied to each sample droplet by an electrode arranged below,
  • an electric field of DC 400 V / mm (120 V) is applied to each sample droplet by an electrode arranged below,
  • the fourth sample holder has a DC 6 electrode connected to each sample drop. Apply an electric field of 00V / mm (180V),
  • an electric field of DC 800 V / mm (240 V) is applied to each sample droplet by an electrode disposed below,
  • FIG. 2 is a graph showing the relationship between the size of the largest crystal finally produced in each sample droplet of each sample and the number of crystals.
  • FIG. 3 is a graph showing the number of crystals finally formed in each sample droplet of each sample and the ratio of the crystals in the droplet.
  • FIG. 4 is a schematic top view of sample droplets picked up from the first to fifth samples and photographed from above.
  • FIG. 5 is a graph showing the results of observing the crystallization of another protein (thaumatin) by actually applying a predetermined electric field to the sample droplet 5 using the protein crystallization apparatus described above.
  • thaumatin was dissolved in 0.1 M phosphate buffer (pH 6.25) and adjusted to 100 mg / mL as the protein solution, and 1.0 M sodium tartrate solution as the precipitating agent in 0.1 ⁇ 1 phosphate buffer.
  • 60 samples dissolved in (pH 6.25) 60 sample droplets (2 ⁇ L) each mixed with 1.0 ⁇ L (diameter 1.2 mm) were generated, and the sample was prepared in an inert solution of paraffin oil.
  • an electric field of DC 500 V / mm (100 V) is applied to each sample droplet by an electrode arranged below,
  • the third sample holder is given an electric field of DC 1 000 V / mm (200 V) by the electrode placed below each sample droplet,
  • FIG. 5 is a graph showing an average value of the number of crystals finally generated in each sample droplet of each sample.
  • Fig. 6 shows X-ray diffracting equipment (super high brightness X-ray generator FR-E SuperBright (Rigaku)) for crystals picked up from samples 1 to 4 one by one. This is a diffraction image detected by a detector (high-speed imaging plate X-ray detector R-AXIS VII (Rigaku)). Table 1 shows the resolution.
  • the electric field is not applied!
  • the resolution when the electric field is 500 V / mm and the resolution when the electric field is 500 V / mm are both 1.54 A.
  • the resolution is 1.3 7 A. It was confirmed that the resolution improved to 1.35A when an electric field of 1350 V / mm was applied. Thus, it was confirmed that the quality of crystals obtained by the electric field was improved.
  • FIGS. 7 (a) and 7 (b) show schematic cross-sectional views of the second embodiment of the crystallization apparatus, respectively.
  • A shows that the sample droplet holding means is set on the substrate 1 having the electrode 2.
  • B shows a state in which the sample droplet holding means is separated from the substrate 1 having the electrode 2.
  • the electrode plate 6 is formed by arranging a plurality of pairs of electrodes 2 a and 2 b on a substrate 1.
  • the material of the substrate 1 can be any non-conductive material such as glass or plastic plate.
  • any conductive material such as copper, gold, ITO (isodium stannate) can be used.
  • a sample droplet holding means 9 is detachably provided on the electrode plate 6 described above.
  • the separable sample droplet holding means 9 is formed by fixing a plastic film 7 to a holder 8 and contains therein a solution 4 that does not mix with sample droplets.
  • the sample droplet 5 is disposed in the solution 4 that does not mix with the sample droplet in the sample droplet holding means 9 described above.
  • the plastic film 7 functions as an insulator, it is not necessary to provide the electrode plate 6 with an insulator (the insulator 3 in the embodiment of FIG. 1).
  • the thickness of the plastic film 7 is in the range between 5 ⁇ m and 100 ⁇ m, preferably in the range between 5 ⁇ m and 40 ⁇ m.
  • the film material can be any insulating material, preferably a material that is impermeable to oil when the soot solution mixed with the sample droplets is oil.
  • the protein crystallization apparatus configured as described above generates an electric field on the electrodes 2a and 2b on which the sample droplet 5 is placed by applying a potential difference between the electrodes 2a and 2b.
  • FIG. 8 is a schematic block diagram of a protein crystallization treatment apparatus (hereinafter simply referred to as a crystallization treatment apparatus) provided with a protein crystallization apparatus according to the present invention.
  • this protein crystallization treatment apparatus is
  • a liquid particle supply unit A for supplying liquid fine particles of a reagent and a protein solution
  • a solution processing unit B for mixing the reagent and protein solution supplied from the liquid particle supply unit A and holding them on the sample droplet holding means 9;
  • a protein crystallization apparatus C for applying an electric field to the sample droplet 5 held on the sample droplet holding means 9 to promote protein crystallization
  • Sample droplets that are promoted by crystallization in the protein crystallization apparatus C The crystallization growth monitoring unit D that periodically monitors the crystallization growth of proteins in the sample and the sample droplet holding means 9 are transferred from the solution processing unit B to the crystallization device C and, if necessary, the crystallization device. Transfer means E for transferring from C to the crystallization growth monitoring section D, and from the crystallization growth monitoring section D to the crystallization apparatus C.
  • FIG. 9 is a schematic diagram showing a circuit configuration of the solution processing unit B
  • FIG. 10 is a schematic cross-sectional view corresponding to the AA cross section of the solution processing unit B in FIG.
  • the solution processing unit B includes a circuit unit 13 in which a plurality of electrode lines for generating static electricity are arranged on a substrate 11, and a sample droplet holding unit 9 configured to be detachable from the circuit unit 13.
  • a first electrode group 13a in which 18 electrode wires are concentrically arranged in a fan shape of 90 degrees;
  • a second electrode group 13b composed of 26 electrode wires arranged in parallel with the electrode line located in the center of the first electrode group 13a;
  • a third electrode group 13c that is arranged adjacent to the second electrode group 13b and that also includes five electrode line forces arranged in parallel to the direction of each electrode line of the second electrode group 13b;
  • a fourth electrode group 13d which is arranged adjacent to the third electrode group 13c, and which also has 26 electrode line forces arranged in parallel to the direction of each electrode line of the third electrode group 13c,
  • a fifth electrode group 13e that is arranged adjacent to the fourth electrode group 13d and that also includes five electrode line forces arranged in parallel to the direction of each electrode line of the fourth electrode group 13d;
  • a sixth electrode group 13f that is arranged adjacent to the fifth electrode group 13e and that also has 26 electrode line forces arranged in parallel to the direction of each electrode line of the fifth electrode group 13e;
  • a seventh electrode group 13g consisting of five electrode line forces arranged adjacent to the sixth electrode group 13f and parallel to the direction of each electrode line of the sixth electrode group 13f;
  • An 8th electrode group 13h that is arranged adjacent to the 7th electrode group 13g, and that also has 26 electrode line forces arranged in parallel to the direction of each electrode line of the 7th electrode group 13g;
  • a ninth electrode group 13i that is arranged adjacent to the eighth electrode group 13h and that also has five electrode line forces arranged in parallel to the direction of each electrode line of the eighth electrode group 13h;
  • a tenth electrode group 13j which is arranged adjacent to the ninth electrode group 13i, and also includes 26 electrode line forces arranged in parallel to the direction orthogonal to the direction of each electrode line of the ninth electrode group 13i;
  • the eleventh electrode group 13k which is also arranged adjacent to the tenth electrode group 13 ⁇ 4, and also has five electrode line forces arranged in parallel to the direction orthogonal to the direction of each electrode line of the tenth electrode group 13 ⁇ 4,
  • the solution processing unit B has one or more control devices (not shown) that control the voltage of the electrode lines of the electrode groups 13a to 13k.
  • the sample droplet holding means 9 includes a base portion 16 made of an electrically insulating material.
  • the base portion 16 includes a lower portion 16a configured to be detachable from the circuit portion 13 and an upper portion 16b that contains a solution (for example, oil) mixed with the sample droplet.
  • 10 shows a state in which the sample droplet holding means 9 is attached to the circuit unit 13
  • FIG. 11 shows a state in which the sample droplet holding unit 9 is removed from the circuit unit 13.
  • a hydrophilic film 17 is formed on the bottom surface inside the upper portion 16b, and a hydrophobic film 8 is further formed on the upper surface of the hydrophilic film 7.
  • a plurality of hydrophilization spots 19 are formed at positions corresponding to the fourth electrode group 13d, the sixth electrode group 13f, the eighth electrode group 13h, and the tenth electrode group 13 ⁇ 4 in the hydrophobic membrane 8. .
  • These hydrophilized spots 19 are formed by, for example, forming a resist in a predetermined pattern in advance before depositing the hydrophobic film 18 on the hydrophilic film 17, and then depositing the hydrophobic film 18 on the resist portion. And the hydrophilic film 17 is partially exposed. Further, at the position corresponding to the first electrode group 13a on the upper wall of the upper portion 16b of the base portion 16, a necessary number of openings 16c for introducing the liquid fine particles from the liquid fine particle supply portion 1 are provided (( Two in this example).
  • FIG. 12 is a diagram showing a positional relationship between the electrode group of the circuit unit 13 and the hydrophilic spot 19 and the opening 16c of the sample droplet holding means 9.
  • the sample droplet holding means 9 configured as described above is used by being attached to the circuit unit 13 when the sample droplet is generated, and is removed from the circuit unit 13 after the required number of sample droplets are generated and held. Then, it is transferred to the crystallization apparatus C and the crystallization growth monitoring unit D by the transfer means E.
  • the principle of moving a droplet by applying a voltage to a plurality of electrode lines as described above will be described.
  • Figs. 13 (a) to (d) six-phase voltages (++) are sequentially applied to the electrode lines so that the electrode lines are moved one by one at an appropriate cycle time.
  • the direction in which the voltage is moved is the direction in which the droplet travels (note that the voltage application pattern is not limited to this example).
  • the voltage of 6 phases (+ + +) is moving at an appropriate cycle time.
  • a droplet is placed on the electrode wire, a negative voltage is applied to the negatively charged droplet.
  • the electrode repels and is attracted to the electrode to which a positive voltage is applied, so that the voltage moves in the moving direction.
  • the voltage stops moving the droplet stops at that position.
  • the droplet moves according to the principle described above.
  • electrode group X and electrode group Y have different electrode line directions.
  • Figure 1
  • a six-phase voltage (+++) is applied to the electrode group X. However, since there is no voltage movement in the electrode group X, a positive voltage is applied to the droplet. Between the active electrode and the voltage to which a negative voltage is applied.
  • a negative voltage is applied to all electrode lines of the electrode group X, and the electrode group Y is adjacent to the electrode group X.
  • the negatively charged droplets repel the electrode wire of electrode part X and attract to the electrode line of electrode part Y. Therefore, the electrode part X changes to the electrode part Y.
  • the droplet moves between the electrode portions having different electrode line directions on the principle described above.
  • the droplet 5a of the protein solution supplied to the first electrode group 13a through the opening 16c and the droplet 5b of the reagent necessary for crystallization are formed in the first electrode group 13a according to the principle described above. As a result of the electrostatic transport, they collide at the center of the first electrode group 13a and coalesce into a sample droplet 5 (see FIG. 15).
  • sample droplet 5 is electrostatically conveyed from the second electrode group 13b to the hydrophilic spot 19 of the predetermined electrode group according to the principle described above.
  • the sample droplet contacts the exposed hydrophilic film when it reaches the hydrophilization spot.
  • the sample droplet comes into contact with the hydrophilic film, its spherical shape collapses, so that the sample droplet does not move any more due to the action of the voltage applied to the electrode wire, and as a result is held on the hydrophilization spot. Therefore, once held on the lyophilic spot, the sample droplet 5 does not move even if no voltage is applied to the electrode wire.
  • FIG. 16 is a diagram conceptually showing a state where the sample droplet is held in the hydrophilization spot.
  • FIG. 17 shows a state in which the necessary number of sample liquid droplets are held on the hydrophilized spot by repeating the above-described process continuously the required number of times.
  • the sample droplet does not move even if a voltage is not applied to the electrode. (See FIG. 11) and transported to the protein crystallizer C by the transfer means 40.
  • the protein crystallization apparatus C includes an electrode plate 6 on which a sample droplet holding means 9 can be attached.
  • FIG. 18 shows the sample droplet holding means 9 on the electrode plate 6 in the protein crystallizer C.
  • FIG. 19 is a schematic cross-sectional view showing a state in which the sample droplet holding means 9 is removed from the electrode plate 6.
  • the electrode plate 6 is formed by arranging a plurality of rows of a pair of electrodes 2 on the substrate 1, and is held on the hydrophilization spot 19 in a state where the sample droplet holding means 9 is mounted on the electrode plate 6.
  • the sample droplet 5 is configured to be positioned between the pair of electrodes 2a and 2b.
  • droplet supply unit A that supplies droplets to the solution processing unit B configured as described above will be briefly described.
  • the droplet supply unit A is configured to supply the solution processing unit B with a protein solution droplet and a reagent droplet.
  • the droplets supplied from the droplet supply unit A are adjusted so that the combined sample droplets are lm m or less (volume 1 ⁇ 1 or less).
  • the transfer means ⁇ periodically takes out the sample droplet holding means 9 from the crystallization part C and transfers it to the crystallization growth monitoring part D.
  • the crystallization growth monitoring unit D optically or electrically monitors the crystallization of the sample droplets of the sample droplet holding means 9 transferred by the transfer means ⁇ , and records and displays or displays the result.
  • crystallization growth monitoring unit D Various configurations are possible for the crystallization growth monitoring unit D. Here, some examples will be described.
  • the crystallization growth monitoring unit D includes a light source and a photomultiplier tube.
  • the light source irradiates the sample droplet on the sample droplet holding means with light
  • the photomultiplier tube irradiates the refractive index of the sample droplet.
  • the degree of crystallization growth of the protein in the sample droplet can be determined based on the detected change in the refractive index. In this case, for example, an increase in the detected refractive index.
  • the detection results can be recorded on a suitable recording device and, if necessary, visually and Z or audibly by a display, printer, lamp and Z or speaker etc.
  • the degree of crystallization growth of the protein can be displayed to the user.
  • the crystallization growth monitoring apparatus D includes an optical measurement unit having an automatic focusing function, and the focal position in the sample droplet on the sample droplet holding unit by the automatic focusing function.
  • the degree of crystallization growth of the protein can be determined by detecting the focal position. In this case, for example, when the focal position cannot be detected, crystallization growth has not progressed, but when the focal position can be detected, it can be determined that crystallization growth has progressed.
  • the detection results can be recorded on an appropriate recording device, and if necessary, the crystallized growth of the protein visually and Z or audibly with a display, printer, lamp and / or speaker. The degree can be displayed to the user.
  • the crystallization growth monitoring apparatus D includes a light source and a light receiving unit, and after irradiating the sample droplet on the sample droplet holding unit with the light source, the light irradiated by the light receiving unit is emitted. Based on the amount of light received and received by the light receiving means, the absorbance of the sample droplet can be detected, and the degree of crystallization growth of the protein can be determined based on the detected absorbance. In this case, for example, it can be determined that the crystallization of the protein in the sample droplet is progressing as the amount of light absorption increases.
  • the detection results can be recorded in an appropriate recording device, and the degree of protein crystallization growth can be visually and Z or audible visually, using a display, printer, lamp and z or speaker, etc., if necessary. Can be displayed to the user.
  • the diameter of the droplets is typically 3 mm or less (volume 10 1 or less), allowing a very large number of droplets to be set on a small surface.
  • volume 10 1 or less volume 10 1 or less
  • an electrode is arranged below the droplet holding means, and a force for applying an electric field for crystallization of the downward force to the sample droplet is limited to this embodiment.
  • the electrode may be arranged above the droplet holding means so that the upper force applies an electric field to the sample droplet.
  • the solution processing section B and the protein crystallization apparatus C are configured to have different electrodes.
  • the electrode for generating the traveling wave electric field of the solution processing unit B and the electrode for generating the electric field for crystallization of the protein crystallization apparatus C are used in common, and the electrode of the solution processing unit B is used. Configure the sample droplet to apply a voltage for crystallization.
  • the force for applying the voltage for crystallization from the beginning to the sample droplet in the crystallization apparatus is applied to the sample droplet.
  • the sample droplet is applied to the sample droplet.
  • the shadow (black portion) around the droplets is reduced.
  • the force that makes it difficult to determine whether the crystal overlapping the shadow portion is a shadow or a crystal.
  • Figure 20 (a) and (b) shows the state of the sample droplet after applying a voltage of 800 V / mm to a sample droplet under the same conditions for one week and after applying a voltage of 880 V / mm for 1 second. It is a photograph which shows the state of a sample droplet. From the results of this experiment, the shape of the sample droplet was deformed even when applied at a voltage of 800 V / mm for one week, whereas a voltage of 880 V / mm was applied. It can be seen that the sample droplet can be deformed in 1 second. Therefore, it can be seen that the sample droplet can be deformed by instantaneously applying a voltage higher than 800 V / mm (preferably a voltage of 880 V / mm or more).
  • any conductive material such as copper, gold, or ITO (isodium stannate) can be used.
  • ITO isodium stannate
  • FIG. 4 is a top view photograph of a sample droplet as a result of an experiment using a copper electrode.
  • the ITO film is transparent, so as shown in FIG. 21, the sample droplet holding means 35 is mounted on the electrode plate 30, and the microscope is used with the polarized light of the transmitted light. Crystals can be observed at 40 mag.
  • FIG. 21 is a schematic cross-sectional view of the crystallization apparatus when the crystal is observed with a microscope 40 or the like while the sample droplet holding means 35 is mounted on the electrode plate 30.
  • symbol 32 is a glass substrate with ITO electrode
  • symbol 36 is an insulating film such as plastic film
  • symbol 37 is a holder
  • symbol 38 is a solution that does not mix with sample droplets (eg oil)
  • Reference numeral 39 denotes a droplet
  • reference numerals 41 and 42 denote deflecting plates
  • reference numeral 43 denotes a light source.
  • FIG. 22 is a photograph of a crystal actually crystallized using the crystallization apparatus of FIG. 21 using an ITO film, using the polarization of transmitted light.
  • FIG. 1 (a) and (b) are a schematic perspective view and a schematic cross-sectional view of a crystallization apparatus for explaining the principle of a crystallization method according to the present invention.
  • FIG. 2 is a graph showing the relationship between the maximum crystal size generated in each sample droplet of each sample using lysozyme and the number of crystals.
  • FIG. 3 is a graph showing the number of crystals generated in each sample droplet of each sample.
  • FIG. 4 (a) A schematic top view of a sample droplet in which one first sample force is also picked up.
  • FIG. 4 (b) is a schematic top view photograph of a sample droplet picked up from the second sample.
  • FIG. 4 (c) A schematic top view of a sample droplet picked up by one third sample force.
  • FIG. 4 (d) is a schematic top view photograph of a sample droplet picked up from the fourth sample.
  • FIG. 4 (e) A schematic top view of a sample droplet in which a fifth sample force is also picked up.
  • FIG. 5 is a graph showing the average number of crystals generated in each sample droplet of each sample finally using thaumatin.
  • FIG. 6 (a) to (d) are X-ray diffractometers (super-high brightness X-ray generators) for crystals picked up one by one from each sample applied with an electric field at 0, 500, 1000, 1350 V / mm FR-E SuperBright (Rigaku)) is used to irradiate X-rays, and is a diffraction image detected by a detector (high-speed imaging plate X-ray detector R-AXIS VII (Rigaku)).
  • a detector high-speed imaging plate X-ray detector R-AXIS VII (Rigaku)
  • FIG. 7 shows schematic cross-sectional views of the second embodiment of the crystallization apparatus, respectively.
  • A shows that the sample droplet holding means is set on the substrate 1 having the electrode 2.
  • B shows a state where the sample droplet holding means is separated from the substrate 1 having the electrode 2.
  • FIG. 8 is a schematic block diagram of a protein crystallization treatment apparatus including the crystallization apparatus according to the present invention.
  • FIG. 9 is a schematic diagram showing a circuit configuration of a solution processing unit B.
  • FIG. 10 is a schematic cross-sectional view of the solution processing section B corresponding to the AA cross section in FIG.
  • FIG. 11 is a schematic cross-sectional view corresponding to FIG. 10, showing a state where the sample droplet holding means is removed from the circuit section 13.
  • FIG. 12 is a diagram showing the positional relationship between the electrode group of the circuit section 13 and the hydrophilization spot 19 and opening 16c of the sample droplet holding means 9.
  • FIG. 13 is a diagram for explaining the relationship between the voltage applied to the electrode lines arranged in the same direction and the movement of the droplet.
  • FIG. 14 is a diagram for explaining the relationship between the voltage applied to electrode lines arranged in different directions and the movement of a droplet.
  • FIG. 15 is a diagram illustrating a process of generating a sample droplet 5 by combining a droplet 5a of a protein solution and a droplet 5b of a reagent necessary for crystallization.
  • FIG. 16 is a diagram conceptually showing a state in which a sample droplet is held in a hydrophilic spot.
  • FIG. 17 is a view showing a state in which a necessary number of sample droplets are held on a hydrophilization spot.
  • FIG. 18 is a schematic cross-sectional view showing a state where the sample droplet holding means 9 is attached to the electrode plate 6 in the protein crystallization apparatus C.
  • FIG. 19 is a schematic cross-sectional view showing a state where the sample droplet holding means 9 is removed from the electrode plate 6 in the protein crystallization apparatus C.
  • FIG. 20 (a) is a photograph showing the state of the sample droplet after applying a voltage of 800 V / mm to the sample droplet for one week.
  • FIG. 20 (b) is a photograph showing the state of the sample droplet after a voltage of 880 V / mm is applied to the sample droplet under the same conditions as in FIG. 20 (a) for 1 second.
  • FIG. 21 is a schematic cross-sectional view of a crystallization apparatus when a crystal is observed with a microscope 40 or the like while the sample droplet holding means 35 is mounted on the electrode plate 30.
  • FIG. 22 is a photograph of a crystal crystallized using an ITO film electrode, taken using polarized light of transmitted light.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Peptides Or Proteins (AREA)

Abstract

Disclosed is a method for crystallization of a protein by a microbatch process comprising directly adding a droplet of a reagent required for the crystallization of the protein to a trace amount of a droplet of a solution of the protein to yield a sample droplet and placing the sample droplet under a predetermined environment to cause the crystallization of the protein in the sample droplet. The method is characterized in that, in the microbatch process, a pair of electrodes are arranged side by side over or below the sample droplet and an electric field is applied to the sample droplet from the upper or lower side thereof by means of the electrodes to cause the crystallization of the protein.

Description

タンパク質結晶化方法及び装置並びにタンパク質結晶化処理装置 技術分野  Protein crystallization method and apparatus, and protein crystallization treatment apparatus
[0001] 本発明は、タンパク質を結晶化する方法及び装置並びに前記タンパク質を結晶化 する方法を適用したタンパク質結晶化処理装置に関する。  [0001] The present invention relates to a method and apparatus for crystallizing a protein and a protein crystallization treatment apparatus to which the method for crystallizing the protein is applied.
背景技術  Background art
[0002] 生物学や医学の見地力もタンパク質の構造や機能を知るためにタンパク質の構造 解析の研究が盛んに行われて 、る。  [0002] In order to know the structure and function of proteins from the viewpoint of biology and medicine, protein structure analysis has been actively studied.
タンパク質の三次元構造を解析するための最も一般的な手法は X線構造解析法で ある。そして、この X線構造解析法によりタンパク質の三次元構造を解析するために は、タンパク質の良質な単結晶が必要になる。  The most common method for analyzing the three-dimensional structure of proteins is the X-ray structure analysis method. In order to analyze the three-dimensional structure of a protein by this X-ray structure analysis method, a high-quality single crystal of the protein is required.
このためタンパク質の構造解析のためには、タンパク質の結晶化が不可欠である。 タンパク質の結晶は、タンパク質の結晶化のために必要な試薬とタンパク質溶液と を適当な濃度で混合し、混合した溶液を適当な環境下に置くことで析出して成長す る。  For this reason, protein crystallization is indispensable for protein structural analysis. Protein crystals are precipitated and grown by mixing reagents necessary for protein crystallization and a protein solution at an appropriate concentration and placing the mixed solution in an appropriate environment.
しかしながら、結晶化条件が確認できているタンパク質は非常に少ない。結晶化条 件が確認できて 、な 、タンパク質の結晶化条件を確認するためには、試薬の種類、 試薬濃度及び温度条件等を試行錯誤的に変化させ、数千種類を超える結晶化条件 をスクリーニングする必要がある。  However, very few proteins have confirmed crystallization conditions. In order to confirm the crystallization conditions, and in order to confirm the protein crystallization conditions, the types of reagents, reagent concentrations and temperature conditions are changed by trial and error, and more than several thousand crystallization conditions are set. Need to be screened.
タンパク質の結晶化条件のスクリーニングを非常に多くの種類の結晶化条件に対し て行うためには、非常に多くのサンプル溶液が必要になる。このため、非常に多くの サンプル溶液を確保して、保管しておく必要がある。また、同様の理由で、タンパク質 の結晶化のために必要な試薬も多数保管しておく必要がある。その結果、非常に大 きな保管設備が必要になる。  To screen protein crystallization conditions for a very large variety of crystallization conditions, a very large number of sample solutions are required. For this reason, it is necessary to secure and store a very large amount of sample solution. For the same reason, it is necessary to store many reagents necessary for protein crystallization. As a result, very large storage facilities are required.
発明者等は、上記した問題を解決し、サンプル溶液に微小液滴を使ったマイクロバ ツチ法を既に提案している (特許文献 1〜5参照)。これにより、大きな保管設備を必 要とせずに多数のサンプル溶液のスクリーニングを行うことができるようになる。 一方、タンパク質等の生体高分子は非常に大きな分子量を有し、サンプル溶液中 での自己拡散係数が小さいため、結晶核形成に必要な分子同士の集合又は会合が 起こりにくぐこのため、多数のサンプル溶液を用意しても結晶化が得られないサンプ ル溶液も多い。 The inventors have already proposed a microbatch method using the fine droplets in the sample solution to solve the above-described problems (see Patent Documents 1 to 5). As a result, a large number of sample solutions can be screened without requiring large storage facilities. On the other hand, biopolymers such as proteins have a very large molecular weight and a small self-diffusion coefficient in the sample solution, which makes it difficult for the molecules to aggregate or associate to form crystal nuclei. There are many sample solutions that cannot be crystallized even if sample solutions are prepared.
このように結晶化が困難なタンパク質等の生体高分子の結晶化を促進するために サンプル溶液に電圧を印加することが既に提案されている(特許文献 6参照)。  In order to promote the crystallization of biopolymers such as proteins that are difficult to crystallize, it has already been proposed to apply a voltage to the sample solution (see Patent Document 6).
[0003] 特許文献 1 :特願 2005— 176339 [0003] Patent Document 1: Japanese Patent Application 2005— 176339
特許文献 2 :特願 2005— 176344  Patent Document 2: Japanese Patent Application 2005— 176344
特許文献 3 :特願 2005— 176351  Patent Document 3: Japanese Patent Application 2005— 176351
特許文献 4: #112005 - 176354  Patent Document 4: # 112005-176354
特許文献 5 :特願 2005— 176359  Patent Document 5: Japanese Patent Application 2005— 176359
特許文献 6:特開 2000— 63199  Patent Document 6: JP 2000-63199 A
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] 上記したように、サンプル溶液に電圧を印加することにより、溶液中の結晶化させる べき分子を電気泳動させることができ、分子の移動量が増大し、溶液中における分 子同士の衝突が起こりやすくなり、結晶核の形成が促進される。 [0004] As described above, by applying a voltage to the sample solution, the molecules to be crystallized in the solution can be electrophoresed, the amount of movement of the molecules increases, and the molecules collide with each other in the solution. Is likely to occur, and the formation of crystal nuclei is promoted.
しかし、上記した従来の結晶化方法は、一対の電極でサンプル溶液を挟んでサン プル溶液に電圧を印加するように構成されて ヽるため装置自体が非常に特殊で複雑 な構造になる。  However, since the conventional crystallization method described above is configured to apply a voltage to the sample solution with the sample solution sandwiched between a pair of electrodes, the apparatus itself has a very special and complicated structure.
特に、この従来の結晶化方法を、発明者等が提案する微小液滴を用いたマイクロ ノ ツチ法に適用しょうとすると、生成した微小サンプル液滴を所定の保管位置に静電 搬送した後、一対の電極を有する結晶化装置へ微小サンプル液滴を移動して電圧 を印加しなければならないため装置の構造が複雑になるば力りでなぐ当然装置全 体の大きさも大きくなるため小型化の目的に反することになる。  In particular, when this conventional crystallization method is applied to the micronotch method using microdroplets proposed by the inventors, the generated microsample droplets are electrostatically transported to a predetermined storage position. Since a small sample droplet must be moved to a crystallization apparatus having a pair of electrodes and a voltage must be applied, if the structure of the apparatus becomes complicated, the entire structure of the apparatus will naturally increase in size. It will be against the purpose.
また、 X線構造解析を行う際に、得られた結晶に X線を照射して、 X線の反射像又 は透過像を撮影する。しかし、得られた結晶の質が良くないと、撮影した結晶の解像 度が低くなり、正確な三次元構造の解析が行えな 、な 、と 、う問題もある。 本発明は、上記した従来の問題点を解決し、微小液滴を用いたマイクロバッチ法に おいて、装置構造を複雑化することなぐかつ、装置自体を大きくすることなぐ結晶 化の促進を可能すると共に、 X線回折の解像度が高くなる質の高 、結晶を得ることが できる結晶化方法及び装置並びに同結晶化方法を適用したタンパク質結晶化処理 装置を提供することを目的として!/ヽる。 In addition, when performing X-ray structural analysis, the obtained crystal is irradiated with X-rays, and an X-ray reflection image or transmission image is taken. However, if the quality of the obtained crystal is not good, the resolution of the photographed crystal will be low, and an accurate three-dimensional structure analysis will not be possible. The present invention solves the above-mentioned conventional problems, and can promote crystallization without complicating the structure of the apparatus and enlarging the apparatus itself in the microbatch method using microdroplets. In addition, an object of the present invention is to provide a crystallization method and apparatus capable of obtaining high-quality crystals with high X-ray diffraction resolution, and a protein crystallization treatment apparatus to which the crystallization method is applied! .
課題を解決するための手段 Means for solving the problem
上記した目的を達成するために本発明に係るマイクロバッチ法における結晶化方 法は、微量のタンパク質溶液の液滴に、タンパク質の結晶化に必要な試薬の液滴を 直接添加してサンプル液滴を生成し、該サンプル液滴を所定の環境下にお 、てサン プル液滴内のタンパク質を結晶化させるマイクロバッチ法お 、て、各サンプル液滴の 上方または下方に一対の電極を並べて配置し、前記電極によりサンプル液滴に上方 または下方力も結晶化のための電場を印加することを特徴とする。  In order to achieve the above-mentioned object, the crystallization method in the microbatch method according to the present invention is a sample droplet obtained by directly adding a droplet of a reagent necessary for protein crystallization to a small amount of a protein solution droplet. A microbatch method in which the sample droplet is crystallized in a predetermined environment to crystallize the protein in the sample droplet, and a pair of electrodes are arranged side by side above or below each sample droplet. In addition, an electric field for crystallization is applied to the sample droplet by the electrode with an upward or downward force.
また、本発明に係るマイクロバッチ法において用いられる結晶化装置は、微量のタ ンパク質溶液の液滴にタンパク質の結晶化に必要な試薬の液滴を直接添加して生 成されたサンプル液滴を保持する保持手段と、前記保持手段の上方または下方であ つて、各サンプル液滴の上方または下方に並べて配置された一対の電極とを有し、 前記電極により、保持手段で保持されたサンプル液滴に上方または下方カゝら結晶化 のための電場を印加するように構成したことを特徴とする。  The crystallization apparatus used in the microbatch method according to the present invention is a sample droplet generated by directly adding a droplet of a reagent necessary for protein crystallization to a small amount of a protein solution droplet. And a pair of electrodes arranged above or below the holding means and above or below each sample droplet, and the sample held by the holding means by the electrodes It is characterized in that an electric field for crystallization is applied to the droplet from the upper or lower side.
さらに、本発明に係るタンパク質結晶化処理装置は、進行波電場発生用電極並び に、該進行波電場発生用電極の上に配置されるサンプル液滴と混じりあわな!/ヽ溶液 層を有する液滴保持手段とを備え、前記進行波電場発生用電極に所定の周波数で 電圧を印加することにより、前記液滴保持手段中に供給されたタンパク質の結晶化 のために必要な試薬の液滴と、タンパク質溶液の液滴とを移動して合体させてサンプ ル液滴を生成し、次いで、前記サンプル液滴を前記液滴保持手段内で保持するよう に構成された溶液処理手段と、前記溶液処理手段における液滴保持手段に、前記 液滴を供給する液滴供給手段と、前記サンプル液滴を保持した液滴保持手段にお ける各サンプル液滴に上方又は下方力 結晶化のための電場を付与できるように電 極が配置された結晶化手段と、結晶化手段において結晶化がなされている液滴保 持手段中のサンプル液滴の結晶化成長を監視するための結晶化成長監視手段と、 前記液滴保持手段をサンプル液滴保持後に結晶化手段へ移送し、結晶化手段と結 晶化成長監視手段との間で液滴保持手段を移送することができる移送手段とを有す ることを特徴とする。 Furthermore, the protein crystallization treatment apparatus according to the present invention comprises a traveling wave electric field generating electrode and a liquid having an unresolved solution layer mixed with sample droplets disposed on the traveling wave electric field generating electrode. A droplet holding means, and applying a voltage at a predetermined frequency to the traveling wave electric field generating electrode, thereby providing a droplet of a reagent necessary for crystallization of the protein supplied in the droplet holding means. A solution processing means configured to move and combine the droplets of the protein solution to generate a sample droplet, and then hold the sample droplet in the droplet holding means; and the solution A droplet supply means for supplying the droplet to the droplet holding means in the processing means, and an upward or downward force on each sample droplet in the droplet holding means for holding the sample droplet. Electric field for crystallization So that you can give There the arrangement crystallisation unit, Ekishizukuho crystallization have been made in the crystallization unit Crystallization growth monitoring means for monitoring the crystallization growth of the sample droplet in the holding means, and the droplet holding means is transferred to the crystallization means after holding the sample droplet, and the crystallization means and the crystallization growth monitoring And a transfer means capable of transferring the droplet holding means to and from the means.
発明の効果 The invention's effect
本発明に係る結晶化方法は、マイクロバッチ法にぉ 、て、各サンプル液滴の上方 又は下方に一対の電極を並べて配置し、前記電極によりサンプル液滴に上方又は 下方力 結晶化のための電場を印加することにより、サンプル液滴中の結晶化を促 進することができ、及び z又は X線回折の解像度が高くなる質の高い結晶を得ること ができるので、一対の電極でサンプル液滴を挟んで結晶化の促進を行う従来の促進 方法に比べて簡単な構造で結晶化の促進及び z又は X線回折の解像度が高くなる 質の高 、結晶の析出を行うことが可能になると 、う効果を奏する。  In the crystallization method according to the present invention, a pair of electrodes are arranged side by side above or below each sample droplet in the microbatch method, and an upward or downward force is applied to the sample droplet by the electrodes for crystallization. By applying an electric field, crystallization in the sample droplet can be promoted, and high-quality crystals with high z or X-ray diffraction resolution can be obtained. Compared to the conventional accelerating method that promotes crystallization by interposing a droplet, the crystallization is promoted and the resolution of z or X-ray diffraction becomes higher with a simple structure. , Has an effect.
前記結晶化のために印加される電場は 200V/mm以上であり得る。印加する電場を 200V/mm以上にすることにより、サンプル液滴中の結晶化が促進される。  The electric field applied for the crystallization can be 200 V / mm or more. By increasing the applied electric field to 200 V / mm or more, crystallization in the sample droplet is promoted.
また、前記結晶化のために印加する電場を lOOOV/mm以上にすることで、サンプル 溶液中に X線回折の解像度が高くなる質の高い結晶が析出される。  In addition, by setting the electric field applied for the crystallization to lOOOV / mm or more, high quality crystals with high X-ray diffraction resolution are precipitated in the sample solution.
また、本発明に係る結晶化装置は、微量のタンパク質溶液の液滴にタンパク質の 結晶化に必要な試薬の液滴を直接添加して生成されたサンプル液滴を保持する保 持手段と、前記保持手段の上方または下方であって、各サンプル液滴の上方または 下方に並べて配置された一対の電極とを有し、前記電極により、保持手段で保持さ れたサンプル液滴に上方または下方力 結晶化のための電場を印加するように構成 して 、るので、単に並べて配置された電極の上方又は下方にサンプル液滴を配置で きるように構成するだけで結晶化の促進及び Z又は X線回折の解像度が高くなる質 の高い結晶の析出を図ることが可能になる。従来の一対の電極でサンプル液滴を挟 んで結晶化の促進を行う装置の場合には、一対の電極間にサンプル液滴を配置し なければならないので、構造が複雑になり、また、各サンプル液滴を一対の電極で挟 むため装置が大型化してしまうという問題があるが、本発明に係る結晶化装置は、単 に並べて配置された電極の上方又は下方にサンプル液滴を配置できるように構成す るだけでよいので、装置の構造が簡単であり、また、装置自体も従来の装置に比べて 小型化することが可能になる。 The crystallization apparatus according to the present invention includes a holding means for holding a sample droplet generated by directly adding a reagent droplet necessary for protein crystallization to a minute amount of a protein solution droplet; A pair of electrodes arranged above or below the holding means and above or below each of the sample droplets, and by the electrodes, an upward or downward force is exerted on the sample droplet held by the holding means. Since the electric field for crystallization is configured to be applied, the crystallization is promoted and Z or X is simply configured so that the sample droplet can be disposed above or below the electrodes arranged side by side. High-quality crystals can be precipitated with higher resolution of line diffraction. In the case of a conventional device that promotes crystallization by sandwiching a sample droplet between a pair of electrodes, the sample droplet must be placed between the pair of electrodes, which complicates the structure and each sample. Although there is a problem that the apparatus becomes large because the droplet is sandwiched between the pair of electrodes, the crystallization apparatus according to the present invention can arrange the sample droplet above or below the electrodes arranged side by side. Configure Therefore, the structure of the apparatus is simple, and the apparatus itself can be made smaller than the conventional apparatus.
さらに、本発明に係るタンパク質結晶化装置は、進行波電場発生用電極並びに、 該進行波電場発生用電極の上に配置されるサンプル液滴と混じりあわない溶液層を 有する液滴保持手段とを備え、前記進行波電場発生用電極に所定の周波数で電圧 を印加することにより、前記液滴保持手段中に供給されたタンパク質の結晶化のため に必要な試薬の液滴と、タンパク質溶液の液滴とを移動して合体させてサンプル液 滴を生成し、次いで、前記サンプル液滴を前記液滴保持手段内で保持するように構 成された溶液処理手段と、前記溶液処理手段における液滴保持手段に、前記液滴 を供給する液滴供給手段と、前記サンプル液滴を保持した液滴保持手段における各 サンプル液滴に上方又は下方力 結晶化のための電場を付与できるように電極が配 置された結晶化手段と、結晶化手段において結晶化がなされている液滴保持手段 中のサンプル液滴の結晶化成長を監視するための結晶化成長監視手段と、前記液 滴保持手段をサンプル液滴保持後に結晶化手段へ移送し、結晶化手段と結晶化成 長監視手段との間で液滴保持手段を移送することができる移送手段とを備えている ためサンプル液滴の生成力 結晶化及び観察迄の一連の作業を自動的に行うこと が可能になる。また、サンプル液滴の生成から結晶化及び結晶化観察の作業を、共 通の液滴保持手段を用いて行うことができるので、サンプル液滴の移動等を非常に 簡単に行うことが可能になる。  Furthermore, the protein crystallization apparatus according to the present invention comprises a traveling wave electric field generating electrode and a droplet holding means having a solution layer that does not mix with the sample droplet disposed on the traveling wave electric field generating electrode. And applying a voltage at a predetermined frequency to the traveling-wave electric field generating electrode, thereby supplying a droplet of a reagent necessary for crystallization of the protein supplied in the droplet holding means and a liquid of a protein solution. A liquid processing unit configured to move and combine the droplets to form a sample liquid droplet, and then hold the sample droplet in the droplet holding unit; and a droplet in the solution processing unit Electrodes are provided so that an electric field for crystallization can be applied to each sample droplet in the droplet supply means for supplying the droplet to the holding means and each sample droplet in the droplet holding means for holding the sample droplet. Arrangement The crystallization growth monitoring means for monitoring the crystallization growth of the sample droplet in the crystallization means placed in the crystallization means and the crystallization growth monitoring means for monitoring the crystallization growth of the sample droplet in the crystallization means; Since it is transported to the crystallization means after holding the droplet, and the transfer means capable of transferring the droplet holding means between the crystallization means and the crystallization growth monitoring means, the generation force of the sample droplet is crystallized. It is possible to automatically perform a series of operations up to observation. In addition, sample droplet generation, crystallization, and crystallization observation can be performed using common droplet holding means, so sample droplets can be moved very easily. Become.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0007] 以下、添付図面に示した一実施例を参照して、本発明に係る結晶化方法及び装置 並びに同結晶化方法を適用した結晶化処理装置の実施の形態を説明していく。  Hereinafter, embodiments of a crystallization method and apparatus according to the present invention and a crystallization processing apparatus to which the crystallization method is applied will be described with reference to one embodiment shown in the accompanying drawings.
[0008] 図 1 (a)及び (b)は、本発明に係る結晶化方法の原理を説明するための結晶化装 置の概略斜視図及び概略横断面図である。  [0008] FIGS. 1A and 1B are a schematic perspective view and a schematic cross-sectional view of a crystallization apparatus for explaining the principle of a crystallization method according to the present invention.
図面に示すように、この結晶化装置は、  As shown in the drawing, this crystallization apparatus is
基板 1上に一対の電極 2a及び 2bを複数列配置した電極板 6と、  An electrode plate 6 in which a plurality of rows of a pair of electrodes 2a and 2b are arranged on the substrate 1,
サンプル液滴 5を保持するためのサンプル液滴と混じりあわない溶液 4カゝらなる液 滴保持手段と を有する。前記電極 2a及び 2bは絶縁体 3で覆われて 、る。 A solution that does not mix with the sample droplet to hold the sample droplet 5. Have The electrodes 2a and 2b are covered with an insulator 3.
沈殿剤、塩及び界面活性剤等のような様々なタンパク質結晶化のための試薬とタ ンパク質溶液との混合物から成るサンプル液滴 5は、絶縁体 3の上に配置され、各サ ンプル液滴 5がー対の電極の中間に位置するように配置される。  Sample droplets 5 consisting of a mixture of various protein crystallization reagents and protein solutions such as precipitants, salts and surfactants are placed on insulator 3 and each sample solution The drop 5 is placed in the middle of the pair of electrodes.
サンプル液滴 5は、蒸発を防止するために油等のようなサンプル液滴と混じりあわ な 、溶液 4で囲まれて 、る。このサンプル液滴と混じりあわな 、溶液 4によってサンプ ル液滴 5を囲むセットアップは、いわゆる、マイクロバッチ方法に対応している。  The sample droplet 5 is surrounded by a solution 4 that does not mix with sample droplets such as oil to prevent evaporation. The setup that surrounds the sample droplet 5 with the solution 4 in combination with the sample droplet corresponds to the so-called microbatch method.
電極 2a及び 2b間に電位差を与えると、サンプル液滴 5が置かれている電極 2a及び 2b上に電場が生じる。継続的な電場を作り出すために不図示の高圧電源が用いら れる。また、図示していないが、例えば、増幅器に接続された信号発生器を用いるこ とにより交流電場を生成することも可能である。  When a potential difference is applied between the electrodes 2a and 2b, an electric field is generated on the electrodes 2a and 2b on which the sample droplet 5 is placed. A high-voltage power supply (not shown) is used to create a continuous electric field. Although not shown, it is also possible to generate an AC electric field by using a signal generator connected to an amplifier, for example.
前記サンプル液滴 5は、例えば、疎水性の表面上に親水ィ匕スポットを作ることによつ て位置決めすることができる。親水ィ匕スポットにより位置決めされた液滴は、しつ力りと 固定される。  The sample droplet 5 can be positioned, for example, by creating a hydrophilic spot on a hydrophobic surface. The droplet positioned by the hydrophilic spot is fixed with a tenacity.
図 2及び図 3は、上記したタンパク質結晶化装置を用いて、実際にサンプル液滴 5 に所定の電場を付与して、タンパク質 (卵白リゾチーム)の結晶化を経時的に観察し た結果を示すグラフである。  2 and 3 show the results of observing the crystallization of protein (egg white lysozyme) over time by actually applying a predetermined electric field to the sample droplet 5 using the protein crystallization apparatus described above. It is a graph.
この実験では、卵白リゾチームを 0.2 Mリン酸緩衝液 (pH 4.6)に溶解し、 40 mg/mL に調製したものをタンパク溶液とし、沈殿剤として NaCl、 0.2 Mリン酸緩衝液 (pH 4.6) を用い、それぞれ 0.5 1 (直径 1 mm )を混合したサンプル液滴(1 1、直径 1.2mm) を 60個生成して、パラフィンオイル力 成るサンプル液滴と混じりあわな 、溶液中で 前記サンプル液滴を保持したサンプルホルダーを3つ準備し、 In this experiment, egg white lysozyme was dissolved in 0.2 M phosphate buffer (pH 4.6), and the solution prepared at 40 mg / mL was used as the protein solution, and NaCl and 0.2 M phosphate buffer (pH 4.6) were used as the precipitant. Using 60 sample droplets (1 1 and 1.2 mm in diameter) each mixed with 0.5 1 (diameter 1 mm), and mixed with the sample droplets made of paraffin oil force, the sample droplets in solution Prepare three sample holders that hold
第 1のサンプルホルダーには電場を付与せず、  No electric field is applied to the first sample holder,
第 2のサンプルホルダーには各サンプル液滴に下方に配置された電極により直流 2 00V/mm(60V)の電場を付与し、  In the second sample holder, an electric field of DC 200 V / mm (60 V) is applied to each sample droplet by an electrode arranged below,
第 3のサンプルホルダーには各サンプル液滴に下方に配置された電極により直流 4 00V/mm(120V)の電場を付与し、  To the third sample holder, an electric field of DC 400 V / mm (120 V) is applied to each sample droplet by an electrode arranged below,
第 4のサンプルホルダーには各サンプル液滴に下方に配置された電極により直流 6 00V/mm(180V)の電場を付与し、 The fourth sample holder has a DC 6 electrode connected to each sample drop. Apply an electric field of 00V / mm (180V),
第 5のサンプルホルダーには各サンプル液滴に下方に配置された電極により直流 8 00V/mm(240V)の電場を付与し、  In the fifth sample holder, an electric field of DC 800 V / mm (240 V) is applied to each sample droplet by an electrode disposed below,
結晶化の状態を 1週間観察した。 The state of crystallization was observed for 1 week.
尚、実験に使用したタンパク質結晶化装置における電極板の電極間の間隔は 0. 3 mmであり、上記括弧内に記載した電圧は実際に印加した電圧値を示している。 図 2は、最終的に各サンプルの各サンプル液滴に生成された最大結晶の大きさと、 結晶の数との関係を示すグラフである。  In the protein crystallization apparatus used in the experiment, the distance between the electrodes of the electrode plate was 0.3 mm, and the voltage described in the parenthesis indicates the actually applied voltage value. FIG. 2 is a graph showing the relationship between the size of the largest crystal finally produced in each sample droplet of each sample and the number of crystals.
図 3は、最終的に各サンプルの各サンプル液滴に生成された結晶の数と、液滴中 に占める結晶の割合を示したグラフである。  FIG. 3 is a graph showing the number of crystals finally formed in each sample droplet of each sample and the ratio of the crystals in the droplet.
さらに、図 4は、第 1〜5のサンプルから一つずつピックアップして上方から撮影した サンプル液滴の概略上面写真である。  FIG. 4 is a schematic top view of sample droplets picked up from the first to fifth samples and photographed from above.
図 2〜図 4の実験結果力も明らかなように、電場を全く付与しない第 1のサンプルに 比べて電場を付与した場合に、電場強度を上げるにつれて 1つの液滴中に生成する 結晶数が 1-3になる割合が増加することを表している。一方、結晶サイズでは、 400 V /mmの電場を付与した場合に 0.3mm以上の結晶が得られた力 他の条件ではすべ て 0.3mm未満であった。このことより、電場を付与した場合、結晶化が促進され、析出 される結晶のサイズが増加することが分かる。特に、卵白リゾチームにおいては、 200 V/mmから 600 V/mmの電場を付与すると、結晶化が促進され、結晶サイズが増加す る効果が顕著に現れて ヽることが分かる。  As is clear from the experimental results in Figs. 2 to 4, when an electric field is applied compared to the first sample that does not apply an electric field at all, the number of crystals generated in one droplet increases as the electric field strength increases. This means that the ratio of -3 increases. On the other hand, in terms of crystal size, when an electric field of 400 V / mm was applied, the force with which a crystal of 0.3 mm or more was obtained was all less than 0.3 mm under other conditions. This shows that when an electric field is applied, crystallization is promoted and the size of precipitated crystals increases. In particular, in egg white lysozyme, it can be seen that when an electric field of 200 V / mm to 600 V / mm is applied, crystallization is promoted and the effect of increasing the crystal size appears prominently.
電場を付与しな 、第 1のサンプルのように各サンプル液滴中に生成される結晶の数 が多いと、大きな結晶に成長しないため必要な結晶が得られないが、前記条件の電 場を与えると、各サンプル液滴中に生成される結晶の数が少なくなり、その分、結晶 の大きさが大きくなるため必要な結晶が得られる。  Without applying an electric field, if the number of crystals generated in each sample droplet is large as in the first sample, it will not grow into a large crystal and the necessary crystals will not be obtained. If given, the number of crystals generated in each sample droplet is reduced, and the crystal size is increased accordingly, so that necessary crystals can be obtained.
尚、液滴の直径は、典型的には、 1mm以下 (容積 1 μ 1以下)であるため、非常に多 くの数の液滴を小さい表面上にセットすることが可能になる。例えば、容積が: L 1の 液滴であれば、 3 X 4. 5cmの表面上に、 8 X 12の列に配置して 96個の液滴を簡単 に乗せることができる。 図 5は、上記したタンパク質結晶化装置を用いて、実際にサンプル液滴 5に所定の 電場を付与して、別のタンパク質 (ソーマチン)の結晶化を観察した結果を示すグラフ である。 Since the diameter of the droplet is typically 1 mm or less (volume 1 μ1 or less), a very large number of droplets can be set on a small surface. For example, if the volume is: L 1 droplets, 96 droplets can be easily placed in a 8 x 12 row on a 3 x 4.5 cm surface. FIG. 5 is a graph showing the results of observing the crystallization of another protein (thaumatin) by actually applying a predetermined electric field to the sample droplet 5 using the protein crystallization apparatus described above.
この実験では、ソーマチンを 0.1 Mリン酸緩衝液 (pH 6.25)に溶解し、 100 mg/mLに 調製したものをタンパク溶液とし、沈殿剤として 1.0 M酒石酸ナトリウム溶液を 0.1 \1リ ン酸緩衝液 (pH 6.25)に溶解したものを用い、それぞれ 1.0 μ L (直径 1.2 mm )を混 合したサンプル液滴 (2 μ L )を 60個生成して、パラフィンオイルから成る不活性溶液 中で前記サンプル液滴を保持したサンプルホルダーを 4つ準備し、  In this experiment, thaumatin was dissolved in 0.1 M phosphate buffer (pH 6.25) and adjusted to 100 mg / mL as the protein solution, and 1.0 M sodium tartrate solution as the precipitating agent in 0.1 \ 1 phosphate buffer. Using 60 samples dissolved in (pH 6.25), 60 sample droplets (2 μL) each mixed with 1.0 μL (diameter 1.2 mm) were generated, and the sample was prepared in an inert solution of paraffin oil. Prepare four sample holders holding droplets,
第 1のサンプルホルダーには電場を付与せず、  No electric field is applied to the first sample holder,
第 2のサンプルホルダーには各サンプル液滴に下方に配置された電極により直流 5 00V/mm(100V)の電場を付与し、  To the second sample holder, an electric field of DC 500 V / mm (100 V) is applied to each sample droplet by an electrode arranged below,
第 3のサンプルホルダーには各サンプル液滴に下方に配置された電極により直流 1 000V/mm(200V)の電場を付与し、  The third sample holder is given an electric field of DC 1 000 V / mm (200 V) by the electrode placed below each sample droplet,
第 4のサンプルホルダーには各サンプル液滴に下方に配置された電極により直流 1 350 V/mm(270V)の電場を付与し、結晶化の状態を観察した。  In the fourth sample holder, an electric field of DC 1 350 V / mm (270 V) was applied to each sample droplet by an electrode disposed below, and the state of crystallization was observed.
尚、実験に使用したタンパク質結晶化装置における電極板の電極間の間隔は 0. 2 mmであり、上記括弧内に記載した電圧は実際に印加した電圧値を示している。 図 5は、最終的に各サンプルの各サンプル液滴に生成された結晶数の平均値を示 したグラフである。  In the protein crystallization apparatus used in the experiment, the distance between the electrodes of the electrode plate is 0.2 mm, and the voltage described in the parenthesis indicates the actually applied voltage value. FIG. 5 is a graph showing an average value of the number of crystals finally generated in each sample droplet of each sample.
図 5の実験結果から明らかなように、電場を全く付与しない第 1のサンプルに比べて 電場を付与した場合に、電場強度を上げるにつれて 1つの液滴中に生成する結晶数 が減少することを表している。このことより、電場を付与した場合、結晶化が促進され、 析出される結晶のサイズが増加することが分かる。特に、ソーマチンの場合、 1000 V/ mmから 1350 V/mmの電場を付与した場合に電場により結晶数が減少する効果が 顕著に現れて ヽることが分かる。  As can be seen from the experimental results in Fig. 5, when an electric field is applied compared to the first sample that does not apply an electric field at all, the number of crystals generated in one droplet decreases as the electric field strength increases. Represents. This shows that when an electric field is applied, crystallization is promoted and the size of the precipitated crystals increases. In particular, in the case of thaumatin, when an electric field of 1000 V / mm to 1350 V / mm is applied, the effect of reducing the number of crystals due to the electric field is noticeable.
電場を付与しな 、第 1のサンプルのように各サンプル液滴中に生成される結晶の数 が多いと、大きな結晶に成長しないため必要な結晶が得られないが、前記条件の電 場を与えると、各サンプル液滴中に生成される結晶の数が少なくなり、その分、結晶 の大きさが大きくなるため十分な X線回折の解像度を得るために必要な結晶が得ら れる。 Without applying an electric field, if the number of crystals generated in each sample droplet is large as in the first sample, it will not grow into a large crystal and the necessary crystals will not be obtained. If given, the number of crystals generated in each sample droplet is reduced, and the crystal As the size of the crystal increases, the crystals necessary to obtain sufficient X-ray diffraction resolution can be obtained.
図 6は、第 1〜4のサンプルから一つずつピックアップした結晶に対して X線回折装 置 (超高輝度 X線発生装置 FR-E SuperBright (リガク))を用いて X線を照射し、検出 器 (高速イメージングプレート X線検出器 R-AXIS VII (リガク))により検出した回折像 である。その解像度を表 1に示す。  Fig. 6 shows X-ray diffracting equipment (super high brightness X-ray generator FR-E SuperBright (Rigaku)) for crystals picked up from samples 1 to 4 one by one. This is a diffraction image detected by a detector (high-speed imaging plate X-ray detector R-AXIS VII (Rigaku)). Table 1 shows the resolution.
[表 1] [table 1]
Figure imgf000011_0001
図 6及び表 1から、電場を付与しな!ヽ場合の解像度及び 500V/mmの電場を付与し た場合の解像度は共に 1.54Aである力 lOOOV/mmの電場を付与すると解像度が 1.3 7Aに上がり、 1350 V/mmの電場を付与すると解像度が 1.35Aに向上することが確認 できた。このように、電場により得られる結晶の質が向上することが確認された。
Figure imgf000011_0001
From Fig. 6 and Table 1, the electric field is not applied! The resolution when the electric field is 500 V / mm and the resolution when the electric field is 500 V / mm are both 1.54 A. When the electric field of lOOOV / mm is applied, the resolution is 1.3 7 A. It was confirmed that the resolution improved to 1.35A when an electric field of 1350 V / mm was applied. Thus, it was confirmed that the quality of crystals obtained by the electric field was improved.
次に、図 7を参照して、本発明に係る結晶化装置のさらに好ましい実施例を説明し てく。  Next, a more preferred embodiment of the crystallization apparatus according to the present invention will be described with reference to FIG.
図 7 (a)及び (b)は、結晶化装置の第 2実施例の概略横断面図を各々示しており、 ( a)は、電極 2を有する基板 1にサンプル液滴保持手段がセットされた状態を示してお り、(b)は、電極 2を有する基板 1からサンプル液滴保持手段が分離された状態を示 している。  FIGS. 7 (a) and 7 (b) show schematic cross-sectional views of the second embodiment of the crystallization apparatus, respectively. (A) shows that the sample droplet holding means is set on the substrate 1 having the electrode 2. (B) shows a state in which the sample droplet holding means is separated from the substrate 1 having the electrode 2.
尚、本実施例では、図 1に示した要素と同一又は同等の要素には、図 1に用いた符 号を同じ符号を付して、詳細な説明は省略する。  In the present embodiment, the same or equivalent elements as those shown in FIG. 1 are denoted by the same reference numerals used in FIG. 1, and detailed description thereof is omitted.
電極板 6は、基板 1上に一対の電極 2a及び 2bを複数列配置して成る。 基板 1の材料は、ガラスやプラスチック板のような任意の非導電性材料であり得る。 電極 2の加工には、例えば、銅、金、 ITO (イソジゥムスズ酸ィ匕物)等の任意の導電性 材料が用いられ得る。 The electrode plate 6 is formed by arranging a plurality of pairs of electrodes 2 a and 2 b on a substrate 1. The material of the substrate 1 can be any non-conductive material such as glass or plastic plate. For the processing of the electrode 2, for example, any conductive material such as copper, gold, ITO (isodium stannate) can be used.
上記した電極板 6の上には、サンプル液滴保持手段 9が着脱可能に設けられる。 分離可能なサンプル液滴保持手段 9は、ホルダー 8にプラスチックフィルム 7を固定 することにより形成され、その内部にサンプル液滴と混じりあわない溶液 4が収容され ている。サンプル液滴 5は、上記したサンプル液滴保持手段 9におけるサンプル液滴 と混じりあわない溶液 4内に配置される。この実施例では、プラスチックフィルム 7が絶 縁体として機能するため、電極板 6に絶縁体(図 1の実施例における絶縁体 3)を設け る必要がない。  A sample droplet holding means 9 is detachably provided on the electrode plate 6 described above. The separable sample droplet holding means 9 is formed by fixing a plastic film 7 to a holder 8 and contains therein a solution 4 that does not mix with sample droplets. The sample droplet 5 is disposed in the solution 4 that does not mix with the sample droplet in the sample droplet holding means 9 described above. In this embodiment, since the plastic film 7 functions as an insulator, it is not necessary to provide the electrode plate 6 with an insulator (the insulator 3 in the embodiment of FIG. 1).
プラスチックフィルム 7の厚さは、 5 μ m〜100 μ mの間の範囲であり、好ましくは、 5 μ m〜40 μ mの間の範囲である。フィルム材料は、任意の絶縁性材料、好ましくは、 サンプル液滴と混じりあわな ヽ溶液が油の場合には、油に対して非浸透性の材料で あり得る。  The thickness of the plastic film 7 is in the range between 5 μm and 100 μm, preferably in the range between 5 μm and 40 μm. The film material can be any insulating material, preferably a material that is impermeable to oil when the soot solution mixed with the sample droplets is oil.
上記したように構成されたタンパク質結晶化装置は、電極 2a及び 2b間に電位差を 与えることにより、サンプル液滴 5が置かれている電極 2a及び 2b上に電場を生じさせ る。  The protein crystallization apparatus configured as described above generates an electric field on the electrodes 2a and 2b on which the sample droplet 5 is placed by applying a potential difference between the electrodes 2a and 2b.
[0012] 最後に、上記したように構成された結晶化装置を備えたタンパク質結晶化処理装 置の実施例を説明する。  [0012] Finally, an example of a protein crystallization treatment apparatus including the crystallization apparatus configured as described above will be described.
[0013] 図 8は、本発明に係るタンパク質結晶化装置を備えたタンパク質結晶化処理装置( 以下、単に結晶化処理装置と称する。)の概略ブロック図である。 FIG. 8 is a schematic block diagram of a protein crystallization treatment apparatus (hereinafter simply referred to as a crystallization treatment apparatus) provided with a protein crystallization apparatus according to the present invention.
図面に示すように、このタンパク質結晶化処理装置は、  As shown in the drawing, this protein crystallization treatment apparatus is
試薬及びタンパク質溶液の液体微粒子を供給する液体微粒子供給部 A、 液体微粒子供給部 Aから供給された試薬及びタンパク質溶液を混合してサンプル 液滴保持手段 9上に保持させる溶液処理部 Bと、  A liquid particle supply unit A for supplying liquid fine particles of a reagent and a protein solution, a solution processing unit B for mixing the reagent and protein solution supplied from the liquid particle supply unit A and holding them on the sample droplet holding means 9;
サンプル液滴保持手段 9上に保持されたサンプル液滴 5に電場を印加してタンパク 質の結晶化を促進させるタンパク質結晶化装置 Cと、  A protein crystallization apparatus C for applying an electric field to the sample droplet 5 held on the sample droplet holding means 9 to promote protein crystallization; and
前記タンパク質結晶化装置 Cにお ヽて結晶化の促進がなされて ヽるサンプル液滴 におけるタンパク質の結晶化成長を定期的に監視する結晶化成長監視部 Dと、 サンプル液滴保持手段 9を溶液処理部 Bから結晶化装置 Cへ移送すると共に、必 要に応じて、結晶化装置 Cから結晶化成長監視部 Dへ、また、結晶化成長監視部 D から結晶化装置 Cへ移送する移送手段 Eと Sample droplets that are promoted by crystallization in the protein crystallization apparatus C The crystallization growth monitoring unit D that periodically monitors the crystallization growth of proteins in the sample and the sample droplet holding means 9 are transferred from the solution processing unit B to the crystallization device C and, if necessary, the crystallization device. Transfer means E for transferring from C to the crystallization growth monitoring section D, and from the crystallization growth monitoring section D to the crystallization apparatus C.
を有する。  Have
始めに、溶液処理部 Bについて説明する。  First, the solution processing unit B will be described.
図 9は溶液処理部 Bの回路構成を示す概略図であり、図 10は溶液処理部 Bの図 1 0における A— A断面に相当する概略断面図である。  FIG. 9 is a schematic diagram showing a circuit configuration of the solution processing unit B, and FIG. 10 is a schematic cross-sectional view corresponding to the AA cross section of the solution processing unit B in FIG.
溶液処理部 Bは、基板 11上に複数の静電気発生用の電極線を配置した回路部 13 と、回路部 13に着脱可能に構成されたサンプル液滴保持手段 9とを有する。  The solution processing unit B includes a circuit unit 13 in which a plurality of electrode lines for generating static electricity are arranged on a substrate 11, and a sample droplet holding unit 9 configured to be detachable from the circuit unit 13.
前記回路部 11は、図 9に示すように、  As shown in FIG.
18本の電極線を同芯状に 90度の扇型に配置した第 1電極郡 13aと、  A first electrode group 13a in which 18 electrode wires are concentrically arranged in a fan shape of 90 degrees;
第 1電極郡 13aにおける中心に位置する電極線と平行に配置された 26本の電極線 から成る第 2電極郡 13bと、  A second electrode group 13b composed of 26 electrode wires arranged in parallel with the electrode line located in the center of the first electrode group 13a;
第 2電極郡 13bに隣接するように配置され、第 2電極郡 13bの各電極線の向きと直 交する向きに平行に配置された 5本の電極線力も成る第 3電極郡 13cと、  A third electrode group 13c that is arranged adjacent to the second electrode group 13b and that also includes five electrode line forces arranged in parallel to the direction of each electrode line of the second electrode group 13b; and
第 3電極郡 13cに隣接するように配置され、第 3電極郡 13cの各電極線の向きと直 交する向きに平行に配置された 26本の電極線力も成る第 4電極郡 13dと、  A fourth electrode group 13d which is arranged adjacent to the third electrode group 13c, and which also has 26 electrode line forces arranged in parallel to the direction of each electrode line of the third electrode group 13c,
第 4電極郡 13dに隣接するように配置され、第 4電極郡 13dの各電極線の向きと直 交する向きに平行に配置された 5本の電極線力も成る第 5電極郡 13eと、  A fifth electrode group 13e that is arranged adjacent to the fourth electrode group 13d and that also includes five electrode line forces arranged in parallel to the direction of each electrode line of the fourth electrode group 13d; and
第 5電極郡 13eに隣接するように配置され、第 5電極郡 13eの各電極線の向きと直 交する向きに平行に配置された 26本の電極線力も成る第 6電極郡 13fと、  A sixth electrode group 13f that is arranged adjacent to the fifth electrode group 13e and that also has 26 electrode line forces arranged in parallel to the direction of each electrode line of the fifth electrode group 13e; and
第 6電極郡 13fに隣接するように配置され、第 6電極郡 13fの各電極線の向きと直 交する向きに平行に配置された 5本の電極線力 成る第 7電極郡 13gと、  A seventh electrode group 13g consisting of five electrode line forces arranged adjacent to the sixth electrode group 13f and parallel to the direction of each electrode line of the sixth electrode group 13f;
第 7電極郡 13gに隣接するように配置され、第 7電極郡 13gの各電極線の向きと直 交する向きに平行に配置された 26本の電極線力も成る第 8電極郡 13hと、  An 8th electrode group 13h that is arranged adjacent to the 7th electrode group 13g, and that also has 26 electrode line forces arranged in parallel to the direction of each electrode line of the 7th electrode group 13g;
第 8電極郡 13hに隣接するように配置され、第 8電極郡 13hの各電極線の向きと直 交する向きに平行に配置された 5本の電極線力も成る第 9電極郡 13iと、 第 9電極郡 13iに隣接するように配置され、第 9電極郡 13iの各電極線の向きと直交 する向きに平行に配置された 26本の電極線力も成る第 10電極郡 13jと、 A ninth electrode group 13i that is arranged adjacent to the eighth electrode group 13h and that also has five electrode line forces arranged in parallel to the direction of each electrode line of the eighth electrode group 13h; A tenth electrode group 13j, which is arranged adjacent to the ninth electrode group 13i, and also includes 26 electrode line forces arranged in parallel to the direction orthogonal to the direction of each electrode line of the ninth electrode group 13i;
第 10電極郡 1¾に隣接するように配置され、第 10電極郡 1¾の各電極線の向きと 直交する向きに平行に配置された 5本の電極線力も成る第 11電極郡 13kと  The eleventh electrode group 13k, which is also arranged adjacent to the tenth electrode group 1¾, and also has five electrode line forces arranged in parallel to the direction orthogonal to the direction of each electrode line of the tenth electrode group 1¾,
を有する。  Have
溶液処理部 Bは、各電極郡 13a〜13kの電極線の電圧を制御する一つ又は複数 の制御装置(図示せず)を有する。  The solution processing unit B has one or more control devices (not shown) that control the voltage of the electrode lines of the electrode groups 13a to 13k.
サンプル液滴保持手段 9は、図 10に示すように、電気絶縁性材料から成る基部 16 を備えている。この基部 16は、回路部 13に着脱可能に構成された下側部分 16aと、 サンプル液滴と混じりあわな 、溶液 (例えば、油)を収容する上側部分 16bとから成る 。尚、図 10はサンプル液滴保持手段 9が回路部 13に取り付けられている状態を、図 11はサンプル液滴保持手段 9を回路部 13から取り外した状態を各々示して 、る。 上側部分 16bの内部の底面には親水性膜 17が形成されており、この親水性膜 7の 上面にはさらに疎水性膜 8が形成されて!ヽる。  As shown in FIG. 10, the sample droplet holding means 9 includes a base portion 16 made of an electrically insulating material. The base portion 16 includes a lower portion 16a configured to be detachable from the circuit portion 13 and an upper portion 16b that contains a solution (for example, oil) mixed with the sample droplet. 10 shows a state in which the sample droplet holding means 9 is attached to the circuit unit 13, and FIG. 11 shows a state in which the sample droplet holding unit 9 is removed from the circuit unit 13. A hydrophilic film 17 is formed on the bottom surface inside the upper portion 16b, and a hydrophobic film 8 is further formed on the upper surface of the hydrophilic film 7.
前記疎水性膜 8における第 4電極郡 13d、第 6電極郡 13f、第 8電極郡 13h及び第 10電極郡 1 ¾に対応する位置には、複数の親水化スポット 19が形成されて!、る。 これらの親水化スポット 19は、例えば、親水性膜 17上に疎水性膜 18を堆積させる 前に、予めレジストを所定のパターンで形成しておき、疎水性膜 18を堆積させた後に 、レジスト部分を除去して親水性膜 17を部分的に露出させることにより形成される。 また、基部 16の上側部分 16bの上壁における第 1電極郡 13aに対応する位置には 、液体微粒子供給部 1からの液体微粒子を導入するための開口 16cが必要数設けら れて 、る(この実施例では 2つ)。  A plurality of hydrophilization spots 19 are formed at positions corresponding to the fourth electrode group 13d, the sixth electrode group 13f, the eighth electrode group 13h, and the tenth electrode group 1¾ in the hydrophobic membrane 8. . These hydrophilized spots 19 are formed by, for example, forming a resist in a predetermined pattern in advance before depositing the hydrophobic film 18 on the hydrophilic film 17, and then depositing the hydrophobic film 18 on the resist portion. And the hydrophilic film 17 is partially exposed. Further, at the position corresponding to the first electrode group 13a on the upper wall of the upper portion 16b of the base portion 16, a necessary number of openings 16c for introducing the liquid fine particles from the liquid fine particle supply portion 1 are provided (( Two in this example).
図 12は、回路部 13の電極郡と、サンプル液滴保持手段 9の親水ィヒスポット 19及び 開口 16cとの位置関係を示す図である。  FIG. 12 is a diagram showing a positional relationship between the electrode group of the circuit unit 13 and the hydrophilic spot 19 and the opening 16c of the sample droplet holding means 9.
上記したように構成されたサンプル液滴保持手段 9は、サンプル液滴の生成時には 回路部 13に取り付けて使用され、必要数のサンプル液滴が生成保持された後は、 回路部 13から取り外されて、移送手段 Eにより結晶化装置 C及び結晶化成長監視部 Dへ移送される。 ここで、上記したように複数の電極線に電圧を印加して液滴を移動させる原理につ いて説明する。 The sample droplet holding means 9 configured as described above is used by being attached to the circuit unit 13 when the sample droplet is generated, and is removed from the circuit unit 13 after the required number of sample droplets are generated and held. Then, it is transferred to the crystallization apparatus C and the crystallization growth monitoring unit D by the transfer means E. Here, the principle of moving a droplet by applying a voltage to a plurality of electrode lines as described above will be described.
始めに、同方向に並べられた電極線に印加する電圧と液滴の移動との関係につい て図 13を参照しながら説明する。これは、各電極郡内において液滴の移動させる時 の原理である。  First, the relationship between the voltage applied to the electrode lines arranged in the same direction and the movement of the droplet will be described with reference to FIG. This is the principle of droplet movement within each electrode group.
電極線には、図 13 (a)〜(d)に示すように、適当なサイクル時間で電極線を一本づ つ移動するように 6相の電圧 ( + + + )が順次印加される。電圧を移動する方 向が液滴の進行方向になる(尚、電圧の印加パターンは本実施例に限定されるもの ではない。 )  As shown in Figs. 13 (a) to (d), six-phase voltages (++) are sequentially applied to the electrode lines so that the electrode lines are moved one by one at an appropriate cycle time. The direction in which the voltage is moved is the direction in which the droplet travels (note that the voltage application pattern is not limited to this example).
上記したように、適当なサイクル時間で 6相の電圧(+ + + )が移動している 電極線上に液滴が載ると、マイナスに帯電している液滴は、負の電圧が印加されて いる電極とは反発し、正の電圧が印加されている電極には引き寄せられるため、電圧 が移動する方向に移動することになる。そして、電圧を移動を止めると、液滴はその 位置で止まる。  As described above, the voltage of 6 phases (+ + +) is moving at an appropriate cycle time. When a droplet is placed on the electrode wire, a negative voltage is applied to the negatively charged droplet. The electrode repels and is attracted to the electrode to which a positive voltage is applied, so that the voltage moves in the moving direction. When the voltage stops moving, the droplet stops at that position.
各電極郡内にぉ ヽては、上記した原理で液滴は移動する。  In each electrode group, the droplet moves according to the principle described above.
次に、異なる方向に並べられた電極線に印加する電圧と液滴の移動との関係を図 14 (a)及び (b)を参照して説明する。これは、電極線の方向が異なる電極郡間で液 滴を移動させる原理である。  Next, the relationship between the voltage applied to the electrode lines arranged in different directions and the movement of the droplet will be described with reference to FIGS. 14 (a) and 14 (b). This is the principle of moving droplets between electrode groups with different electrode wire directions.
図 14において、電極郡 Xと電極郡 Yとは、その電極線の方向が異なっている。図 1 In FIG. 14, electrode group X and electrode group Y have different electrode line directions. Figure 1
4 (a)においては、電極郡 Xには、 6相の電圧(+ + + )が印加されているが、 電極郡 X内において電圧の移動がないため液滴は、正の電圧が印加された電極と 負の電圧が印加された電圧との間で停止している。 4 In (a), a six-phase voltage (+++) is applied to the electrode group X. However, since there is no voltage movement in the electrode group X, a positive voltage is applied to the droplet. Between the active electrode and the voltage to which a negative voltage is applied.
そして、図 14 (a)に示す状態から、図 14 (b)に示すように、電極郡 Xの全電極線に 負の電圧を印加し、電極郡 Yにおける電極郡 Xと隣接して ヽる電極線(全ての電極線 でもよい)に正の電圧を印加することにより、マイナスに帯電している液滴は、電極部 Xの電極線とは反発し、電極部 Yの電極線には引き寄せられるため電極部 Xから電 極部 Yに移り変わる。  Then, from the state shown in FIG. 14 (a), as shown in FIG. 14 (b), a negative voltage is applied to all electrode lines of the electrode group X, and the electrode group Y is adjacent to the electrode group X. By applying a positive voltage to the electrode wire (or all electrode wires), the negatively charged droplets repel the electrode wire of electrode part X and attract to the electrode line of electrode part Y. Therefore, the electrode part X changes to the electrode part Y.
電極線の方向が異なる電極部間においては、上記した原理で液滴は移動する。 [0016] 開口 16cを介して、第 1電極郡 13aに供給されたタンパク質溶液の液滴 5aと結晶化 のために必要な試薬の液滴 5bとは、上記した原理により第 1電極郡 13aにおいて静 電搬送された結果、第 1電極郡 13aの中心において衝突して合体し、サンプル液滴 5 となる(図 15参照)。 The droplet moves between the electrode portions having different electrode line directions on the principle described above. [0016] The droplet 5a of the protein solution supplied to the first electrode group 13a through the opening 16c and the droplet 5b of the reagent necessary for crystallization are formed in the first electrode group 13a according to the principle described above. As a result of the electrostatic transport, they collide at the center of the first electrode group 13a and coalesce into a sample droplet 5 (see FIG. 15).
次いで、サンプル液滴 5は、上記した原理により、第 2電極郡 13bから所定の電極 郡の親水ィ匕スポット 19まで静電搬送される。  Next, the sample droplet 5 is electrostatically conveyed from the second electrode group 13b to the hydrophilic spot 19 of the predetermined electrode group according to the principle described above.
親水化スポット 19は、親水性膜が露出しているため、サンプル液滴は、親水化スポ ットに到達した時に、露出された親水性膜に接触する。サンプル液滴は、親水性膜に 接触すると、その球状形状が崩れるため電極線に印加した電圧の作用ではそれ以 上移動しなくなり、結果的に、親水化スポット上で保持される。したがって、一度、親 水ィ匕スポット上で保持されると電極線に電圧を印加しなくてもサンプル液滴 5は移動 しない。  Since the hydrophilic film is exposed in the hydrophilization spot 19, the sample droplet contacts the exposed hydrophilic film when it reaches the hydrophilization spot. When the sample droplet comes into contact with the hydrophilic film, its spherical shape collapses, so that the sample droplet does not move any more due to the action of the voltage applied to the electrode wire, and as a result is held on the hydrophilization spot. Therefore, once held on the lyophilic spot, the sample droplet 5 does not move even if no voltage is applied to the electrode wire.
図 16は、サンプル液滴が親水化スポットに保持される状態を概念的に示す図であ る。  FIG. 16 is a diagram conceptually showing a state where the sample droplet is held in the hydrophilization spot.
以上説明した処理を、必要回数連続して繰り返して親水化スポット上に必要数のサ ンプル液滴を保持させた状態を図 17に示す。  FIG. 17 shows a state in which the necessary number of sample liquid droplets are held on the hydrophilized spot by repeating the above-described process continuously the required number of times.
前記したように、一度、親水ィ匕スポット上で保持されると電極に電圧を印加しなくて もサンプル液滴は動かないので、この状態で、サンプル液滴保持手段 9は、回路部 1 3から取り外され (図 11参照)、移送手段 40によりタンパク質結晶化装置 Cへ運ばれ る。  As described above, once the sample droplet is held on the hydrophilic spot, the sample droplet does not move even if a voltage is not applied to the electrode. (See FIG. 11) and transported to the protein crystallizer C by the transfer means 40.
尚、上記した実施例では、ある電極群から、その電極群の電極線と電極線の方向 が異なる他の電極群へ液滴を移動させる時に、乗せかえ前の電極群の全ての電極 線に正の電圧を印加すると共に、乗せかえ後の電極群の全ての電極線に負の電圧 を印加している力 これは本実施例に限定されることなぐ乗せかえ前の電極群と乗 せかえ後の電極群に逆相の電圧を印加すればょ 、。  In the above-described embodiment, when a droplet is moved from one electrode group to another electrode group in which the direction of the electrode line is different from that of the electrode group, all the electrode lines of the electrode group before the transfer are transferred. Force to apply a positive voltage and apply a negative voltage to all electrode wires of the electrode group after replacement. This is not limited to this example. Apply reverse-phase voltage to the later electrode group.
[0017] タンパク質結晶化装置 Cは、サンプル液滴保持手段 9を装着可能な電極板 6を備え ている。 The protein crystallization apparatus C includes an electrode plate 6 on which a sample droplet holding means 9 can be attached.
図 18は、タンパク質結晶化装置 Cにおいて電極板 6にサンプル液滴保持手段 9を 装着した状態を示す概略横断面図、図 19は、電極板 6からサンプル液滴保持手段 9 を取り外した状態示す概略横断面図である。 Fig. 18 shows the sample droplet holding means 9 on the electrode plate 6 in the protein crystallizer C. FIG. 19 is a schematic cross-sectional view showing a state in which the sample droplet holding means 9 is removed from the electrode plate 6.
図面に示すように、電極板 6は基板 1に一対の電極 2を複数列配置して成り、電極 板 6にサンプル液滴保持手段 9を装着した状態において、親水化スポット 19上に保 持されたサンプル液滴 5が、一対の電極 2a及び 2bの中間に位置するように構成され ている。  As shown in the drawing, the electrode plate 6 is formed by arranging a plurality of rows of a pair of electrodes 2 on the substrate 1, and is held on the hydrophilization spot 19 in a state where the sample droplet holding means 9 is mounted on the electrode plate 6. The sample droplet 5 is configured to be positioned between the pair of electrodes 2a and 2b.
この状態において、不図示の制御装置を用いて電極 2a及び 2b間に電位差を与え てサンプル液滴 5が置かれて!/、る電極 2a及び 2b上に電場を生じさせ、サンプル液滴 における結晶化を促進させ、及び Z又は X線回折の解像度が高くなる質の高 、結晶 の析出を図る。  In this state, a potential difference is applied between the electrodes 2a and 2b by using a control device (not shown), and the sample droplet 5 is placed! /, And an electric field is generated on the electrodes 2a and 2b. And promotes the precipitation of high quality crystals that increase the resolution of Z or X-ray diffraction.
[0018] ここで、上記したように構成された溶液処理部 Bに、液滴を供給する液滴供給部 A について簡単に説明する。  Here, the droplet supply unit A that supplies droplets to the solution processing unit B configured as described above will be briefly described.
液滴供給部 Aは、溶液処理部 Bにタンパク質溶液の液滴と試薬の液滴とを供給す るよう構成されている。  The droplet supply unit A is configured to supply the solution processing unit B with a protein solution droplet and a reagent droplet.
好ましくは、この液滴供給部 Aから供給される液滴は、合体したサンプル液滴が lm m以下 (容積 1 μ 1以下)になるように調整される。  Preferably, the droplets supplied from the droplet supply unit A are adjusted so that the combined sample droplets are lm m or less (volume 1 μ 1 or less).
[0019] 最後に、結晶化成長監視部 Dの構成について説明する。 [0019] Finally, the configuration of the crystallization growth monitoring unit D will be described.
移送手段 Εは、定期的に結晶化部 Cからサンプル液滴保持手段 9を取り出し、結晶 化成長監視部 Dに移送する。  The transfer means 定期 periodically takes out the sample droplet holding means 9 from the crystallization part C and transfers it to the crystallization growth monitoring part D.
結晶化成長監視部 Dは、移送手段 Εにより移送されてきたサンプル液滴保持手段 9 のサンプル液滴の結晶化を光学的又は電気的に監視し、その結果を記録及び Ζ又 は表示する。  The crystallization growth monitoring unit D optically or electrically monitors the crystallization of the sample droplets of the sample droplet holding means 9 transferred by the transfer means 記録, and records and displays or displays the result.
結晶化成長監視部 Dとしては、様々な構成が考えられるが、ここで、幾つかの例を 説明する。  Various configurations are possible for the crystallization growth monitoring unit D. Here, some examples will be described.
例えば、結晶化成長監視部 Dは、光源と光電子増倍管を備え、前記光源によりサ ンプル液滴保持手段上のサンプル液滴に光を照射し、光電子増倍管によりサンプル 液滴の屈折率を検出し、検出した屈折率の変化に基づいてサンプル液滴中のタン パク質の結晶化成長度合いを判断し得る。この場合、例えば、検出した屈折率の増 加に伴ってサンプル液滴中のタンパク質の結晶化が進んでいると判断することができ る。検出結果は、適当な記録装置に記録することができ、また、必要に応じて、デイス プレイ、プリンタ、ランプ及び Z又はスピーカ一等により視覚的及び Z又は聴覚的にFor example, the crystallization growth monitoring unit D includes a light source and a photomultiplier tube. The light source irradiates the sample droplet on the sample droplet holding means with light, and the photomultiplier tube irradiates the refractive index of the sample droplet. And the degree of crystallization growth of the protein in the sample droplet can be determined based on the detected change in the refractive index. In this case, for example, an increase in the detected refractive index. In addition, it can be determined that the crystallization of the protein in the sample droplet is progressing. The detection results can be recorded on a suitable recording device and, if necessary, visually and Z or audibly by a display, printer, lamp and Z or speaker etc.
、タンパク質の結晶化成長度合 、を使用者に表示することができる。 The degree of crystallization growth of the protein can be displayed to the user.
別の例としては、例えば、結晶化成長監視装置 Dは、自動焦点合わせ機能を有す る光学測定手段を備え、自動焦点合わせ機能によりサンプル液滴保持手段上のサ ンプル液滴中の焦点位置を検出し、焦点位置の検出によりタンパク質の結晶化成長 度合いを判断し得る。この場合、例えば、焦点位置が検出できない場合は結晶化成 長が進んでいないが、焦点位置が検出できた場合には結晶化成長が進んでいると 判断することができる。検出結果は、適当な記録装置に記録することができ、また、必 要に応じて、ディスプレイ、プリンタ、ランプ及び/又はスピーカ一等により視覚的及 び Z又は聴覚的に、タンパク質の結晶化成長度合いを使用者に表示することができ る。  As another example, for example, the crystallization growth monitoring apparatus D includes an optical measurement unit having an automatic focusing function, and the focal position in the sample droplet on the sample droplet holding unit by the automatic focusing function. And the degree of crystallization growth of the protein can be determined by detecting the focal position. In this case, for example, when the focal position cannot be detected, crystallization growth has not progressed, but when the focal position can be detected, it can be determined that crystallization growth has progressed. The detection results can be recorded on an appropriate recording device, and if necessary, the crystallized growth of the protein visually and Z or audibly with a display, printer, lamp and / or speaker. The degree can be displayed to the user.
さらに別の例としては、例えば、結晶化成長監視装置 Dは、光源と受光手段を備え 、光源によりサンプル液滴保持手段上のサンプル液滴に光を照射した後、受光手段 で照射した光を受光し、受光手段で受光した光量に基づいて、サンプル液滴の吸光 量を検出し、検出した吸光量に基づいてタンパク質の結晶化成長度合いを判断し得 る。この場合、例えば、吸光量の増加に伴ってサンプル液滴中のタンパク質の結晶 化が進んでいると判断することができる。検出結果は、適当な記録装置に記録するこ とができ、また、必要に応じて、ディスプレイ、プリンタ、ランプ及び z又はスピーカー 等により視覚的及び Z又は聴覚的に、タンパク質の結晶化成長度合いを使用者に 表示することができる。  As yet another example, for example, the crystallization growth monitoring apparatus D includes a light source and a light receiving unit, and after irradiating the sample droplet on the sample droplet holding unit with the light source, the light irradiated by the light receiving unit is emitted. Based on the amount of light received and received by the light receiving means, the absorbance of the sample droplet can be detected, and the degree of crystallization growth of the protein can be determined based on the detected absorbance. In this case, for example, it can be determined that the crystallization of the protein in the sample droplet is progressing as the amount of light absorption increases. The detection results can be recorded in an appropriate recording device, and the degree of protein crystallization growth can be visually and Z or audible visually, using a display, printer, lamp and z or speaker, etc., if necessary. Can be displayed to the user.
尚、上記した結晶化処理装置の実施例では、構成が分力りやすいように一つのサ ンプル液滴保持手段に 8つの液滴を保持する例を示して 、るが、サンプル液滴保持 手段に保持すべき液滴の数は本実施例に限定されるものではない。  In the embodiment of the crystallization processing apparatus described above, an example is shown in which eight sample droplets are held in one sample droplet holding means so that the configuration can be easily divided. The number of droplets to be held in is not limited to this embodiment.
前述したが、液滴の直径は、典型的には、 3mm以下 (容積 10 1以下)であるため、 非常に多くの数の液滴を小さい表面上にセットすることが可能になる。例えば、容積 が 10 1の液滴であれば、 3 X 4. 5cmの表面上に、 8 X 12の列に配置して 96個の液 滴を簡単に乗せることが可能である。 As described above, the diameter of the droplets is typically 3 mm or less (volume 10 1 or less), allowing a very large number of droplets to be set on a small surface. For example, for a droplet with a volume of 101, there are 96 liquids placed in 8 x 12 rows on a 3 x 4.5 cm surface. Drops can be placed easily.
また、上記した実施例では、液滴保持手段の下方に電極を配置し、サンプル液滴 に対して下方力 結晶化のための電場を印加している力 これは本実施例に限定さ れることなぐ例えば、電極を液滴保持手段の上方に配置して、サンプル液滴に対し て上方力も電場を印加するように構成してもよ 、。  Further, in the above-described embodiment, an electrode is arranged below the droplet holding means, and a force for applying an electric field for crystallization of the downward force to the sample droplet is limited to this embodiment. For example, the electrode may be arranged above the droplet holding means so that the upper force applies an electric field to the sample droplet.
さらにまた、上記したタンパク質結晶化処理装置の実施例では、溶液処理部 Bとタ ンパク質結晶化装置 Cとが個々に異なる電極を有するように構成しているが、この構 成は本実施例に限定されることなぐ溶液処理部 Bの進行波電場発生用電極とタン パク質結晶化装置 Cの結晶化のための電場発生用電極とを共通化して、溶液処理 部 Bの電極を用いてサンプル液滴に結晶化のための電圧を印加するように構成して ちょい。  Furthermore, in the embodiment of the protein crystallization apparatus described above, the solution processing section B and the protein crystallization apparatus C are configured to have different electrodes. The electrode for generating the traveling wave electric field of the solution processing unit B and the electrode for generating the electric field for crystallization of the protein crystallization apparatus C are used in common, and the electrode of the solution processing unit B is used. Configure the sample droplet to apply a voltage for crystallization.
また、上記した実施例では、結晶化装置においてサンプル液滴に始めから結晶化 のための電圧を印加している力 好ましくは、結晶化のための電圧を印加する前に、 サンプル液滴に対して瞬間的 (好ましくは、 1秒以下)に少なくとも 800V/mmより高い 電場を印加するように構成され得る。このようにサンプル液滴に瞬間的に高い電場を 印加することにより、高電場下でサンプル液滴が電極に強く引き付けられて変形し、 液滴が電極面に接触する面積が増加し、その後の電場付与による結晶化促進効果 及び Z又は X線回折の解像度が高くなる質の高い結晶の析出の増大を図ることがで きる。また、液滴を電極面に多く接触するように変形させることで、液滴周辺の影(黒 い部分)が少なくなる。サンプル液滴における結晶化の観察を画像処理によって行う 場合、液滴周辺の影の部分が多いと、その影の部分に重なる結晶が、影なのか結晶 なの力判別し難くなる力 このように液滴を電極面に多く接触するように変形させるこ とで液滴周辺の影の部分を少なくすることができ、結果として、結晶化の観察が行い やすくなる。  In the above-described embodiment, the force for applying the voltage for crystallization from the beginning to the sample droplet in the crystallization apparatus. Preferably, before applying the voltage for crystallization, the sample droplet is applied to the sample droplet. And can be configured to apply an electric field of at least 800 V / mm instantaneously (preferably less than 1 second). By applying a high electric field instantaneously to the sample droplet in this way, the sample droplet is strongly attracted to the electrode and deforms under a high electric field, and the area where the droplet contacts the electrode surface increases. It is possible to increase the crystallization promotion effect by applying an electric field and increase the precipitation of high-quality crystals that increase the resolution of Z or X-ray diffraction. Also, by deforming the droplets so as to come into contact with the electrode surface, the shadow (black portion) around the droplets is reduced. When observing crystallization in a sample droplet by image processing, if there are many shadow portions around the droplet, the force that makes it difficult to determine whether the crystal overlapping the shadow portion is a shadow or a crystal. By deforming the droplets so as to be in contact with the electrode surface, shadows around the droplets can be reduced, and as a result, crystallization can be easily observed.
図 20 (a)及び (b)は、同じ条件のサンプル液滴に対して 800V/mmの電圧を 1週間 印加した後のサンプル液滴の状態と、 880V/mmの電圧を 1秒印加した後のサンプル 液滴の状態を示す写真である。この実験結果から、 800V/mmの電圧では 1週間印加 してもサンプル液滴の形状が変形して 、な 、のに対して、 880V/mmの電圧を印加す ると 1秒間でサンプル液滴を変形できることが分かる。よって、少なくとも 800V/mmより 高い電圧 (好ましくは、 880V/mm以上の電圧)を瞬間的に印加することにより、サンプ ル液滴を変形させることができることがわかる。 Figure 20 (a) and (b) shows the state of the sample droplet after applying a voltage of 800 V / mm to a sample droplet under the same conditions for one week and after applying a voltage of 880 V / mm for 1 second. It is a photograph which shows the state of a sample droplet. From the results of this experiment, the shape of the sample droplet was deformed even when applied at a voltage of 800 V / mm for one week, whereas a voltage of 880 V / mm was applied. It can be seen that the sample droplet can be deformed in 1 second. Therefore, it can be seen that the sample droplet can be deformed by instantaneously applying a voltage higher than 800 V / mm (preferably a voltage of 880 V / mm or more).
さらにまた、前述したが、電極には、例えば、銅、金、 ITO (イソジゥムスズ酸ィ匕物)等 の任意の導電性材料を用いることができる。尚、先に説明した図 4の写真は、銅電極 を用いて実験を行った結果のサンプル液滴の上面写真である。銅電極を用いる場合 は、銅に透光性がないため反射光を用いた写真しか撮影することができない。このた め図 4に示すように、写真に電極が写りこんでしまう。しかし、電極に ITO膜を用いると 、 ITO膜が透明であるため図 21に示すように、電極板 30の上に、サンプル液滴保持 手段 35を搭載したまま、透過光の偏光を使って顕微鏡 40等で結晶の観察を行うこと ができる。  Furthermore, as described above, for the electrode, any conductive material such as copper, gold, or ITO (isodium stannate) can be used. Note that the above-described photograph of FIG. 4 is a top view photograph of a sample droplet as a result of an experiment using a copper electrode. In the case of using a copper electrode, only a photograph using reflected light can be taken because copper is not translucent. For this reason, as shown in Fig. 4, the electrode appears in the photograph. However, when an ITO film is used for the electrode, the ITO film is transparent, so as shown in FIG. 21, the sample droplet holding means 35 is mounted on the electrode plate 30, and the microscope is used with the polarized light of the transmitted light. Crystals can be observed at 40 mag.
尚、図 21は、電極板 30の上にサンプル液滴保持手段 35を搭載したまま顕微鏡 40 等で結晶の観察を行う場合の結晶化装置の概略横断面図であり、図中、符号 31は I TO電極、符号 32は ITO電極を配したガラス基板、符号 36はプラスチックフィルム等 の絶縁膜、符号 37はホルダー、符号 38はサンプル液滴と混じりあわない溶液 (例え ば、油等)、符号 39は液滴、符号 41及び 42は偏向板、符号 43は光源を各々示して いる。  FIG. 21 is a schematic cross-sectional view of the crystallization apparatus when the crystal is observed with a microscope 40 or the like while the sample droplet holding means 35 is mounted on the electrode plate 30. In FIG. ITO electrode, symbol 32 is a glass substrate with ITO electrode, symbol 36 is an insulating film such as plastic film, symbol 37 is a holder, symbol 38 is a solution that does not mix with sample droplets (eg oil), symbol Reference numeral 39 denotes a droplet, reference numerals 41 and 42 denote deflecting plates, and reference numeral 43 denotes a light source.
図 22は、 ITO膜を利用した図 21の結晶化装置を用いて実際に結晶化させた結晶 を透過光の偏光を使って撮影した写真である。  FIG. 22 is a photograph of a crystal actually crystallized using the crystallization apparatus of FIG. 21 using an ITO film, using the polarization of transmitted light.
図面の簡単な説明 Brief Description of Drawings
[図 1] (a)及び (b)は、本発明に係る結晶化方法の原理を説明するための結晶化装 置の概略斜視図及び概略横断面図である。 FIG. 1 (a) and (b) are a schematic perspective view and a schematic cross-sectional view of a crystallization apparatus for explaining the principle of a crystallization method according to the present invention.
[図 2]リゾチームを用いた各サンプルの各サンプル液滴に生成された最大結晶の大き さと、結晶の数との関係を示すグラフである。  FIG. 2 is a graph showing the relationship between the maximum crystal size generated in each sample droplet of each sample using lysozyme and the number of crystals.
[図 3]各サンプルの各サンプル液滴に生成された結晶の数を示すグラフである。  FIG. 3 is a graph showing the number of crystals generated in each sample droplet of each sample.
[図 4(a)]第 1サンプル力も一つピックアップしたサンプル液滴の概略上面写真である。 [FIG. 4 (a)] A schematic top view of a sample droplet in which one first sample force is also picked up.
[図 4(b)]第 2サンプルから一つピックアップしたサンプル液滴の概略上面写真である。 FIG. 4 (b) is a schematic top view photograph of a sample droplet picked up from the second sample.
[図 4(c)]第 3サンプル力も一つピックアップしたサンプル液滴の概略上面写真である。 [図 4(d)]第 4サンプルから一つピックアップしたサンプル液滴の概略上面写真である。 [FIG. 4 (c)] A schematic top view of a sample droplet picked up by one third sample force. FIG. 4 (d) is a schematic top view photograph of a sample droplet picked up from the fourth sample.
[図 4(e)]第 5サンプル力も一つピックアップしたサンプル液滴の概略上面写真である。 [FIG. 4 (e)] A schematic top view of a sample droplet in which a fifth sample force is also picked up.
[図 5]最終的にソーマチンを用いた各サンプルの各サンプル液滴に生成された結晶 数の平均値を示したグラフである。 FIG. 5 is a graph showing the average number of crystals generated in each sample droplet of each sample finally using thaumatin.
[図 6] (a)〜(d)は、 0、 500、 1000, 1350V/mmで電場付与した各サンプルから一 つずつピックアップした結晶に対して X線回折装置 (超高輝度 X線発生装置 FR-E S uperBright (リガク) )を用いて X線を照射し、検出器 (高速イメージングプレート X線検 出器 R-AXIS VII (リガク))により検出した回折像である。  [Fig. 6] (a) to (d) are X-ray diffractometers (super-high brightness X-ray generators) for crystals picked up one by one from each sample applied with an electric field at 0, 500, 1000, 1350 V / mm FR-E SuperBright (Rigaku)) is used to irradiate X-rays, and is a diffraction image detected by a detector (high-speed imaging plate X-ray detector R-AXIS VII (Rigaku)).
圆 7] (a)及び (b)は、結晶化装置の第 2実施例の概略横断面図を各々示しており、 ( a)は、電極 2を有する基板 1にサンプル液滴保持手段がセットされた状態を示してお り、(b)は、電極 2を有する基板 1からサンプル液滴保持手段が分離された状態を示 している。 7] (a) and (b) show schematic cross-sectional views of the second embodiment of the crystallization apparatus, respectively. (A) shows that the sample droplet holding means is set on the substrate 1 having the electrode 2. (B) shows a state where the sample droplet holding means is separated from the substrate 1 having the electrode 2.
圆 8]本発明に係る結晶化装置を備えたタンパク質結晶化処理装置の概略ブロック 図である。 [8] FIG. 8 is a schematic block diagram of a protein crystallization treatment apparatus including the crystallization apparatus according to the present invention.
[図 9]溶液処理部 Bの回路構成を示す概略図である。  FIG. 9 is a schematic diagram showing a circuit configuration of a solution processing unit B.
[図 10]溶液処理部 Bの図 9における A— A断面に相当する概略断面図である。  FIG. 10 is a schematic cross-sectional view of the solution processing section B corresponding to the AA cross section in FIG.
圆 11]サンプル液滴保持手段を回路部 13から取り外した状態を示す図 10に相当す る概略断面図である。 FIG. 11 is a schematic cross-sectional view corresponding to FIG. 10, showing a state where the sample droplet holding means is removed from the circuit section 13.
[図 12]回路部 13の電極郡と、サンプル液滴保持手段 9の親水化スポット 19及び開口 16cとの位置関係を示す図である。  FIG. 12 is a diagram showing the positional relationship between the electrode group of the circuit section 13 and the hydrophilization spot 19 and opening 16c of the sample droplet holding means 9.
[図 13]同方向に並べられた電極線に印加する電圧と液滴の移動との関係を説明する 図である。  FIG. 13 is a diagram for explaining the relationship between the voltage applied to the electrode lines arranged in the same direction and the movement of the droplet.
[図 14]異なる方向に並べられた電極線に印加する電圧と液滴の移動との関係を説明 する図である。  FIG. 14 is a diagram for explaining the relationship between the voltage applied to electrode lines arranged in different directions and the movement of a droplet.
[図 15]タンパク質溶液の液滴 5aと結晶化のために必要な試薬の液滴 5bと合体させ てサンプル液滴 5を生成する工程を説明する図である。  FIG. 15 is a diagram illustrating a process of generating a sample droplet 5 by combining a droplet 5a of a protein solution and a droplet 5b of a reagent necessary for crystallization.
圆 16]サンプル液滴が親水化スポットに保持される状態を概念的に示す図である。 圆 17]親水化スポット上に必要数のサンプル液滴を保持させた状態を示す図である [図 18]タンパク質結晶化装置 Cにおいて電極板 6にサンプル液滴保持手段 9を装着 した状態を示す概略横断面図である。 FIG. 16 is a diagram conceptually showing a state in which a sample droplet is held in a hydrophilic spot. FIG. 17 is a view showing a state in which a necessary number of sample droplets are held on a hydrophilization spot. FIG. 18 is a schematic cross-sectional view showing a state where the sample droplet holding means 9 is attached to the electrode plate 6 in the protein crystallization apparatus C.
[図 19]タンパク質結晶化装置 Cにおいて電極板 6からサンプル液滴保持手段 9を取り 外した状態を示す概略横断面図である。  FIG. 19 is a schematic cross-sectional view showing a state where the sample droplet holding means 9 is removed from the electrode plate 6 in the protein crystallization apparatus C.
[図 20(a)]サンプル液滴に対して 800V/mmの電圧を 1週間印加した後のサンプル液 滴の状態を示す写真である。  FIG. 20 (a) is a photograph showing the state of the sample droplet after applying a voltage of 800 V / mm to the sample droplet for one week.
[図 20(b)]図 20 (a)と同条件のサンプル液滴に対して 880V/mmの電圧を 1秒印加した 後のサンプル液滴の状態を示す写真である。  FIG. 20 (b) is a photograph showing the state of the sample droplet after a voltage of 880 V / mm is applied to the sample droplet under the same conditions as in FIG. 20 (a) for 1 second.
[図 21]電極板 30の上にサンプル液滴保持手段 35を搭載したまま顕微鏡 40等で結 晶の観察を行う場合の結晶化装置の概略横断面図である。  FIG. 21 is a schematic cross-sectional view of a crystallization apparatus when a crystal is observed with a microscope 40 or the like while the sample droplet holding means 35 is mounted on the electrode plate 30.
[図 22]ITO膜電極を用いて結晶化させた結晶を透過光の偏光を使って撮影した写真 である。  FIG. 22 is a photograph of a crystal crystallized using an ITO film electrode, taken using polarized light of transmitted light.
符号の説明 Explanation of symbols
1 基板  1 Board
2 電極  2 electrodes
3 絶縁体  3 Insulator
4 サンプル液滴と混じりあわない溶液  4 Solution that does not mix with sample droplets
5 サンプル液滴  5 Sample droplet
6 電極板  6 Electrode plate
7 プラスチックフィルム  7 Plastic film
8 ホルダー  8 Holder
9 サンプル液滴保持手段  9 Sample droplet holding means
Α 液体微粒子供給部  液体 Liquid particulate supply unit
B 溶液処理部  B Solution processing section
11 基板  11 Board
13 回路部  13 Circuit part
13a〜13k 電極郡 16 基部 13a-13k electrode county 16 base
16a 下側部分  16a Lower part
16b 上側部分  16b Upper part
16c 開口(液滴導入部) 17 親水性膜  16c Opening (droplet introduction part) 17 Hydrophilic membrane
18 疎水性膜 18 Hydrophobic membrane
19 親水化スポット 19 Hydrophilic spot
C タンパク質結晶化促進装置 D 結晶化成長監視部 E 移送手段 C Protein crystallization accelerating device D Crystallization growth monitoring unit E Transfer means

Claims

請求の範囲 The scope of the claims
[1] 微量のタンパク質溶液の液滴に、タンパク質の結晶化に必要な試薬の液滴を直接 添加してサンプル液滴を生成し、該サンプル液滴を所定の環境下にお 、てサンプル 液滴内のタンパク質を結晶化させるマイクロバッチ法おいて、  [1] A sample droplet is generated by directly adding a droplet of a reagent necessary for protein crystallization to a small amount of a protein solution droplet, and the sample droplet is placed in a predetermined environment. In the microbatch method to crystallize the protein in the drop,
各サンプル液滴の上方または下方に一対の電極を並べて配置し、前記電極により サンプル液滴に上方または下方力 結晶化のための電場を印加する  A pair of electrodes are placed side by side above or below each sample droplet, and an electric field for crystallization is applied to the sample droplet by the above-mentioned electrodes.
ことを特徴とするマイクロバッチ法における結晶化方法。  The crystallization method in the microbatch method characterized by the above-mentioned.
[2] 前記結晶化のための電場を印加する前に、前記電極により 800V/mmより高い電場 を瞬間的にサンプル液滴に付加し、液滴が電極面に接触する面積を拡大させる ことを特徴とする請求項 1に記載の結晶化方法。  [2] Before applying the electric field for crystallization, an electric field higher than 800 V / mm is instantaneously applied to the sample droplet by the electrode to enlarge the area where the droplet contacts the electrode surface. The crystallization method according to claim 1, wherein
[3] 前記電場が直流電場又は交流電場である [3] The electric field is a DC electric field or an AC electric field
ことを特徴とする請求項 1又は 2に記載の結晶化方法。  The crystallization method according to claim 1 or 2, wherein:
[4] 前記電極を透明な材料で構成し、サンプル液滴の上方または下方に電極を配置し たまま前記サンプル液滴の観察を行えるようにした [4] The electrode is made of a transparent material so that the sample droplet can be observed with the electrode placed above or below the sample droplet.
ことを特徴とする請求項 1〜3の何れか一項に記載の結晶化方法。  The crystallization method according to any one of claims 1 to 3, wherein:
[5] 微量のタンパク質溶液の液滴にタンパク質の結晶化に必要な試薬の液滴を直接添 加して生成されたサンプル液滴を保持する保持手段と、 [5] holding means for holding a sample droplet generated by directly adding a droplet of a reagent necessary for protein crystallization to a minute amount of a protein solution droplet;
前記保持手段の上方または下方であって、各サンプノレ液滴の上方または下方に並 ベて配置された一対の電極と  A pair of electrodes arranged above or below the holding means and above or below each Sampnore droplet;
を有し、  Have
前記電極により、保持手段で保持されたサンプル液滴に上方または下方カゝら結晶 化のための電場を印加するように構成した  The electrode is configured to apply an electric field for crystallization from the upper or lower side to the sample droplet held by the holding means.
ことを特徴とするマイクロバッチ法において用いられる結晶化装置。  A crystallization apparatus for use in a microbatch method.
[6] 前記電極の上方又は下方に電気絶縁疎水性層が設けられ、 [6] An electrically insulating hydrophobic layer is provided above or below the electrode,
該電気絶縁疎水性層に隣接してサンプル液滴と混じりあわな ヽ溶液層から成る保 持手段が配置され、  A holding means consisting of a soot solution layer mixed with sample droplets is arranged adjacent to the electrically insulating hydrophobic layer,
前記サンプル液滴と混じりあわな 、溶液層内でサンプル液滴が保持される ことを特徴とする請求項 5に記載の結晶化装置。 6. The crystallization apparatus according to claim 5, wherein the sample droplet is held in the solution layer when mixed with the sample droplet.
[7] 前記結晶化のための電場を印加する前に、前記電極により 800V/mmより高い電場 を瞬間的にサンプル液滴に付加し、液滴が電極面に接触する面積を拡大させる ことを特徴とする請求項 5又は 6に記載の結晶化装置。 [7] Before applying the electric field for crystallization, an electric field higher than 800 V / mm is instantaneously applied to the sample droplet by the electrode to enlarge the area where the droplet contacts the electrode surface. The crystallization apparatus according to claim 5 or 6, characterized in that
[8] 前記電場が直流電場又は交流電場である [8] The electric field is a DC electric field or an AC electric field
ことを特徴とする請求項 5〜7の何れか一項に記載の結晶化装置。  The crystallization apparatus according to any one of claims 5 to 7, wherein
[9] 前記電極を透明な材料で構成し、サンプル液滴の上方または下方に電極を配置し たまま前記サンプル液滴の観察を行えるようにした [9] The electrode is made of a transparent material so that the sample droplet can be observed with the electrode placed above or below the sample droplet.
ことを特徴とする請求項 5〜8の何れか一項に記載の結晶化装置。  The crystallization apparatus according to any one of claims 5 to 8, wherein
[10] 進行波電場発生用電極及び、 [10] a traveling wave electric field generating electrode;
該進行波電場発生用電極の上に配置されるサンプル液滴と混じりあわない溶液層 を有する液滴保持手段とを備え、  A droplet holding means having a solution layer that does not mix with the sample droplets disposed on the traveling wave electric field generating electrode;
前記進行波電場発生用電極に所定の周波数で電圧を印加することにより、前記液 滴保持手段中に供給されたタンパク質の結晶化のために必要な試薬の液滴とタンパ ク質溶液の液滴とを移動して合体させてサンプル液滴を生成し、次いで、前記サンプ ル液滴を前記液滴保持手段内で保持するように構成された溶液処理手段と、 前記溶液処理手段における液滴保持手段に、前記液滴を供給する液滴供給手段 と、  By applying a voltage at a predetermined frequency to the traveling wave electric field generating electrode, a droplet of a reagent and a droplet of a protein solution necessary for crystallization of the protein supplied into the droplet holding means are used. Are combined to generate sample droplets, and then a solution processing means configured to hold the sample droplets in the droplet holding means, and a droplet holding in the solution processing means Droplet supply means for supplying the droplets to the means;
前記サンプル液滴を保持した液滴保持手段における各サンプル液滴に上方又は 下方力 結晶化のための電場を付与できるように電極が配置された結晶化手段と、 結晶化手段にぉ ヽて結晶化がなされて ヽる液滴保持手段中のサンプル液滴の結 晶化成長を監視するための結晶化成長監視手段と、  Crystallization means in which an electrode is arranged so that an electric field for crystallization can be applied to each sample droplet in the droplet holding means holding the sample droplet, and the crystallization means has a crystal. A crystallization growth monitoring means for monitoring the crystallization growth of the sample droplet in the droplet holding means that has been converted into a liquid;
前記液滴保持手段をサンプル液滴保持後に結晶化手段へ移送し、結晶化手段と 結晶化成長監視手段との間で液滴保持手段を移送することができる移送手段と を有することを特徴とするタンパク質結晶化処理装置。  The droplet holding means is transferred to the crystallization means after holding the sample droplet, and has a transfer means capable of transferring the droplet holding means between the crystallization means and the crystallization growth monitoring means. A protein crystallization treatment apparatus.
[11] 前記溶液処理手段の進行波電場発生用電極と前記結晶化手段の電極とが別々の 電極である [11] The traveling wave electric field generating electrode of the solution processing means and the electrode of the crystallization means are separate electrodes.
ことを特徴とする請求項 10に記載のタンパク質結晶化処理装置。  The protein crystallization treatment apparatus according to claim 10, wherein:
[12] 前記溶液処理手段の進行波電場発生用電極と前記結晶化手段の電極とが同一の 電極である [12] The traveling wave electric field generating electrode of the solution processing means and the electrode of the crystallization means are the same. Electrode
ことを特徴とする請求項 10に記載のタンパク質結晶化処理装置。 The protein crystallization treatment apparatus according to claim 10, wherein:
PCT/JP2006/323812 2005-11-29 2006-11-29 Method and apparatus for crystallization of protein, and apparatus for protein crystallization treatment WO2007063898A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007547972A JPWO2007063898A1 (en) 2005-11-29 2006-11-29 Protein crystallization method and apparatus, and protein crystallization treatment apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005344697 2005-11-29
JP2005-344697 2005-11-29

Publications (1)

Publication Number Publication Date
WO2007063898A1 true WO2007063898A1 (en) 2007-06-07

Family

ID=38092231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/323812 WO2007063898A1 (en) 2005-11-29 2006-11-29 Method and apparatus for crystallization of protein, and apparatus for protein crystallization treatment

Country Status (2)

Country Link
JP (1) JPWO2007063898A1 (en)
WO (1) WO2007063898A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010100847A1 (en) * 2009-03-03 2010-09-10 独立行政法人国立高等専門学校機構 Device for crystallizing biopolymer, cell of solution for crystallizing biopolymer, method for controlling alignment of biopolymer, method for crystallizing biopolymer and biopolymer crystal
JP2021026152A (en) * 2019-08-07 2021-02-22 日本精工株式会社 Manipulation system and method for driving manipulation system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000063199A (en) * 1998-08-12 2000-02-29 Sumitomo Metal Ind Ltd Method and device for growing crystal
JP2001213699A (en) * 2000-01-31 2001-08-07 Sumitomo Metal Ind Ltd Crystal preparation equipment, crystal preparation method, and its equipment kit
JP2003332266A (en) * 2002-05-13 2003-11-21 Kansai Tlo Kk Wiring method for nanotube and control circuit for nanotube wiring
JP2004226226A (en) * 2003-01-23 2004-08-12 Japan Science & Technology Agency Protein crystallizing method and device by electrostatic transportation
JP2005069893A (en) * 2003-08-25 2005-03-17 Shimadzu Corp Surface plasmon resonance device and analyzer using the same
JP2005533509A (en) * 2002-07-23 2005-11-10 コミサリア ア レネルジィ アトミーク Method and apparatus for screening molecules in cells

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000063199A (en) * 1998-08-12 2000-02-29 Sumitomo Metal Ind Ltd Method and device for growing crystal
JP2001213699A (en) * 2000-01-31 2001-08-07 Sumitomo Metal Ind Ltd Crystal preparation equipment, crystal preparation method, and its equipment kit
JP2003332266A (en) * 2002-05-13 2003-11-21 Kansai Tlo Kk Wiring method for nanotube and control circuit for nanotube wiring
JP2005533509A (en) * 2002-07-23 2005-11-10 コミサリア ア レネルジィ アトミーク Method and apparatus for screening molecules in cells
JP2004226226A (en) * 2003-01-23 2004-08-12 Japan Science & Technology Agency Protein crystallizing method and device by electrostatic transportation
JP2005069893A (en) * 2003-08-25 2005-03-17 Shimadzu Corp Surface plasmon resonance device and analyzer using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010100847A1 (en) * 2009-03-03 2010-09-10 独立行政法人国立高等専門学校機構 Device for crystallizing biopolymer, cell of solution for crystallizing biopolymer, method for controlling alignment of biopolymer, method for crystallizing biopolymer and biopolymer crystal
JP5626914B2 (en) * 2009-03-03 2014-11-19 独立行政法人国立高等専門学校機構 Biopolymer crystallization apparatus, biopolymer crystallization solution cell, biopolymer orientation control method, biopolymer crystallization method, and biopolymer crystallization
US8945303B2 (en) 2009-03-03 2015-02-03 Institute Of National Colleges Of Technology, Japan Device for crystallizing biopolymer, cell of solution for crystallizing biopolymer, method for controlling alignment of biopolymer, method for crystallizing biopolymer and biopolymer crystal
JP2021026152A (en) * 2019-08-07 2021-02-22 日本精工株式会社 Manipulation system and method for driving manipulation system
JP7222331B2 (en) 2019-08-07 2023-02-15 日本精工株式会社 MANIPULATION SYSTEM AND METHOD FOR DRIVING MANIPULATION SYSTEM

Also Published As

Publication number Publication date
JPWO2007063898A1 (en) 2009-05-07

Similar Documents

Publication Publication Date Title
US4894343A (en) Chamber plate for use in cell fusion and a process for production thereof
US6379916B1 (en) Device and process for the examination of cells using the patch-clamp method
JP4530991B2 (en) Microinjection method and apparatus
US6350609B1 (en) Electrospraying for mass fabrication of chips and libraries
DE60010666T2 (en) METHOD AND DEVICE FOR PROGRAMMABLE TREATMENT OF FLUIDS
US20080213855A1 (en) Planar electroporation apparatus and method
DE69215282T2 (en) Immunological test procedure
US20110042215A1 (en) Ac field induced biomolecule cyrstallization and hydration cage disruption
JP2002511337A (en) Method and apparatus for manipulating particulates in a fluid stream
EP2270130B1 (en) Cell fusion device, and method for cell fusion using the same
EP2324911A2 (en) Processing of samples in solutions with defined small wall contact area
US8961898B2 (en) Method for producing bilayer membrane and planar bilayer membrane
KR20010041041A (en) Particle Transporter Chucks Using Repulsive Field Guidance
US20080227664A1 (en) Cell array structural body and cell array
US8128797B2 (en) Microfluidic system and corresponding operating method
WO2007063898A1 (en) Method and apparatus for crystallization of protein, and apparatus for protein crystallization treatment
EP0750194B1 (en) Two-dimensional sensor having photoconductive layer for measuring cell activity
KR100723427B1 (en) Device and method for printing bio-drop on a substrate
US7335882B1 (en) High resolution low dose transmission electron microscopy real-time imaging and manipulation of nano-scale objects in the electron beam
Watanabe et al. Semi-automatic protein crystallization system that allows in situ observation of X-ray diffraction from crystals in the drop
JP4910716B2 (en) Cell fusion device and cell fusion method using the same
JP2008137961A (en) Protein crystallization method
JP4135967B2 (en) Electrode pair type non-contact manipulation device and manipulation method
JP2006346583A (en) Apparatus and method for supplying droplets
JP2006347811A (en) Apparatus for crystallization treatment of protein

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007547972

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06833616

Country of ref document: EP

Kind code of ref document: A1