WO2007058299A1 - Composite material - Google Patents

Composite material Download PDF

Info

Publication number
WO2007058299A1
WO2007058299A1 PCT/JP2006/322972 JP2006322972W WO2007058299A1 WO 2007058299 A1 WO2007058299 A1 WO 2007058299A1 JP 2006322972 W JP2006322972 W JP 2006322972W WO 2007058299 A1 WO2007058299 A1 WO 2007058299A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon fiber
carbon
composite material
granular
boron
Prior art date
Application number
PCT/JP2006/322972
Other languages
French (fr)
Japanese (ja)
Inventor
Takayuki Tsukada
Jiayi Shan
Jin Chen
Original Assignee
Bussan Nanotech Research Institute Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bussan Nanotech Research Institute Inc. filed Critical Bussan Nanotech Research Institute Inc.
Publication of WO2007058299A1 publication Critical patent/WO2007058299A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/522Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • C04B35/83Carbon fibres in a carbon matrix
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/10Reinforcing macromolecular compounds with loose or coherent fibrous material characterised by the additives used in the polymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/421Boron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5264Fibers characterised by the diameter of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5284Hollow fibers, e.g. nanotubes
    • C04B2235/5288Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances

Definitions

  • the present invention relates to a composite material using fine carbon fibers (so-called carbon nanotubes).
  • Patent Documents 1 and 2 propose composite materials containing carbon nanotubes in a matrix. Further, in Patent Document 3, when carbon nanotubes are blended in a resin composition, aggregates are formed by carbon nanotubes that are not simply blended with carbon nanotubes as they are, or entangled with each other. It is also known to form things and blend them.
  • Patent Document 1 Japanese Patent No. 2641712
  • Patent Document 2 Japanese Unexamined Patent Publication No. 2003-12939
  • Patent Document 3 Japanese Patent No. 3034027
  • the present invention is an invention made in such a situation, and a main object is to provide a novel skeletal structure and a composite material that make the most of the unique properties of fine carbon fibers. .
  • the present inventors have intensively studied, and in order to impart various properties such as conductivity and strength properties to the composite material, the finest possible carbon A structure in which fibers are firmly bonded to each other without being separated from each other, and each of the carbon fibers constituting the structure has few defects as much as possible.
  • the present inventors have found that it is effective to use a skeletal structure bonded in three dimensions and to impregnate voids formed in the skeleton structure with a resin or the like, and have reached the present invention. It is.
  • the present invention that solves the above problems is a three-dimensional network formed by carbon fiber cables having an outer diameter of 15 to: LOOnm, and a plurality of the carbon fibers extend.
  • the carbon fiber has a granular part for bonding the carbon fibers to each other, and the granular part is formed by three-dimensionally bonding a carbon fiber structure formed in the carbon fiber growth process with carbon. It is a skeleton structure characterized by the above.
  • the skeleton structure may contain boron!
  • the boron content may be 0.001 to 10 mass% with respect to the skeleton structure.
  • the carbon fiber structure may have an area-based circle-equivalent mean diameter of 50 to 500 m.
  • the skeletal structure is not more than I / ⁇ 1S1.4 measured by Raman spectroscopy.
  • G '/ ⁇ may be 1.5 or less.
  • the skeletal structure may have a bulk density of 0.2 to 2.3 gZcm 3 .
  • the skeleton structure may have a combustion start temperature in air of 700 ° C or higher! /
  • the particle diameter of the granular portion may be larger than the outer diameter of the carbon fiber at the bonding position of the carbon fibers.
  • the carbon fiber structure may be produced using at least two carbon compounds having different decomposition temperatures as a carbon source.
  • the present invention that solves the above problems is a three-dimensional network formed by carbon fiber cables having an outer diameter of 15 to: LOOnm, and in a mode in which a plurality of the carbon fibers extend,
  • the carbon fiber structure has a granular part for bonding carbon fibers to each other, and the granular part is formed by joining carbon fiber structures formed in the carbon fiber growth process in three dimensions with carbon.
  • a void formed inside the skeleton structure is impregnated with resin, rubber, metal, or carbon-based material.
  • the skeleton structure may contain boron.
  • the boron content may be 0.001 to 10 mass% with respect to the skeleton structure.
  • the carbon fiber structure may have an area-based circle equivalent average diameter of 50 to 500 m.
  • the skeleton structure may have a bulk density of 0.2 to 2.3 gZcm 3 .
  • the skeleton structure may have a combustion start temperature in air of 700 ° C or higher! /
  • the particle diameter of the granular portion may be larger than the outer diameter of the carbon fiber at the bonding position of the carbon fiber.
  • the carbon fiber structure may be produced using at least two carbon compounds having different decomposition temperatures as a carbon source.
  • the skeletal structure force that becomes the framework of the composite material As described above, the fine-diameter carbon fiber force arranged in a three-dimensional network shape
  • the granular portion formed in the growth process of the carbon fiber The carbon fiber structure itself has a structure in which the carbon fiber structure having a shape in which a plurality of the carbon fibers extend is bonded in three dimensions with carbon.
  • the carbon fiber structures are further bonded in three dimensions, so that a skeletal structure with an unprecedented expansion can be obtained, and the conductive properties of the fine carbon fibers. It is possible to fully exhibit the properties, mechanical properties and heat conduction properties.
  • FIG. 1 is a SEM photograph of an intermediate of a carbon fiber structure used in the skeleton structure of the present invention.
  • FIG. 2 is a TEM photograph of an intermediate of a carbon fiber structure used in the skeleton structure of the present invention.
  • FIG. 3 is an SEM photograph of a carbon fiber structure used in the skeleton structure of the present invention.
  • FIG. 4 is a drawing showing a schematic configuration of a production furnace used for producing a carbon fiber structure in an example of the present invention.
  • the composite material of the present invention is composed of a skeleton structure composed of a carbon fiber structure and a resin, rubber, metal, or carbon-based material impregnated in a void formed inside the skeleton structure.
  • the skeletal structure is formed by bonding carbon fiber structures in three dimensions with carbon.
  • the carbon fiber structure used in the present invention is composed of carbon fibers having an outer diameter of 15 to: LOOnm as seen in, for example, the SEM photograph shown in FIG. 1 or the TEM photograph shown in FIG.
  • the carbon fiber structure is a three-dimensional network-like carbon fiber structure, and the carbon fiber structure has a granular portion that binds the carbon fibers to each other in a form in which a plurality of the carbon fibers extend! This is a carbon fiber structure.
  • the carbon fiber constituting the carbon fiber structure has an outer diameter in the range of 15 to LOONm.
  • the outer diameter is less than 15 nm, the carbon fiber has a polygonal cross section as described later.
  • the smaller the diameter of the carbon fiber the greater the number per unit amount, and the longer the length of the carbon fiber in the axial direction, resulting in higher conductivity.
  • Having a diameter is because it is not suitable as a carbon fiber structure to be arranged as a modifier or additive in a matrix such as rosin.
  • the outer diameter of the carbon fiber is more preferably in the range of 20 to 70 nm. This outer diameter range, in which cylindrical dalafen sheets are laminated in the direction perpendicular to the axis, that is, a multilayer, is difficult to bend and is elastic, that is, has the property of returning to its original shape after deformation. Because.
  • the fine carbon fiber has an outer diameter that changes along the axial direction. If the outer diameter of the carbon fiber is constant and changes along the axial direction in this way, it is considered that when carbon fiber is impregnated, a kind of anchoring effect is produced on the carbon fiber. It is possible to cause the movement of the urinary resin to be moved.
  • fine carbon fibers having such a predetermined outer diameter exist in a three-dimensional network, and these carbon fibers are composed of the carbon fibers.
  • the granular portions formed during the fiber growth process are bonded to each other, and the granular portion has a shape in which a plurality of the carbon fibers extend.
  • the fine carbon fibers are not simply entangled with each other but are firmly bonded to each other in the granular portion, a strong structure is obtained when the skeleton structure is formed. be able to.
  • the carbon fibers are bonded to each other by the granular portion formed during the growth process of the carbon fiber, the structure is obtained.
  • the electrical resistance value measured at a constant compression density is a simple entanglement of fine carbon fibers, or the junction between fine carbon fibers. Compared with the value of a structure or the like that is later adhered by a carbonaceous substance or its carbide, the value is very low, and a good conductive path can be formed when a composite material is used.
  • the carbon-carbon bond in the granular part is sufficiently developed, and it is not clear exactly. Appears to contain a mixed state of sp 2 and sp 3 bonds. After generation (intermediate and first intermediate described later), the granular part and the fiber part are continuous with a structure in which patch-like sheet pieces having carbon atomic force are bonded together, and thereafter After the high-temperature heat treatment, at least a part of the graphene layer constituting the granular portion is continuous with the graphene layer constituting the fine carbon fiber extending from the granular portion.
  • carbon fiber strength extends from the granular part
  • the term "carbon fiber strength extends from the granular part” means that the granular part and the carbon fiber are merely apparently formed by other binders (including carbonaceous ones). It is not intended to indicate a state where they are connected with each other, but as described above, it is mainly connected with a carbon crystal structural bond.
  • the granular part is formed in the growth process of the carbon fiber.
  • at least one catalyst particle or the catalyst particle is subjected to a subsequent heat treatment inside the granular part.
  • These pores (or catalyst particles) are essentially independent of the hollow portion formed inside each fine carbon fiber extending from the granular portion (note that only a small part is incidental) Some of them are connected to the hollow part;).
  • the number of catalyst particles or pores is not particularly limited, but there are about 1 to about LOOO, more preferably about 3 to 500 per granular part. By forming the granular portion in the presence of such a number of catalyst particles, it is possible to obtain a granular portion having a desired size as described later.
  • each catalyst particle or hole existing in the granular part is, for example, 1 to: LOOnm, more preferably 2 to 40 nm, and still more preferably 3 to 15 nm. .
  • the particle diameter of the granular portion is larger than the outer diameter of the fine carbon fiber as shown in FIG.
  • the outer diameter of the fine carbon fiber is 1.3 to 250 times, more preferably 1.5 to: LOO times, and further preferably 2.0 to 25 times.
  • the said value is an average value.
  • the particle size of the granular part which is the bonding point between the carbon fibers, is sufficiently large as 1.3 times or more of the outer diameter of the fine carbon fiber, it is higher than the carbon fiber extending from the granular part
  • the three-dimensional network structure is maintained.
  • the size of the granular portion is extremely large exceeding 250 times the outer diameter of the fine carbon fiber, the fibrous properties of the carbon fiber structure may be impaired, and the composite material according to the present invention.
  • the “particle size of the granular part” is a value measured by regarding the granular part, which is a bonding point between carbon fibers, as one particle.
  • the specific particle size of the granular portion is a force that depends on the size of the carbon fiber structure and the outer diameter of the fine carbon fibers in the carbon fiber structure.
  • the average value is 20 to 5000 nm. It is preferably 25 to 2000 nm, more preferably about 30 to 500 nm.
  • the granular portion is formed in the carbon fiber growth process as described above, it has a relatively spherical shape, and its circularity is 0.2 on average.
  • the granular portion is formed in the carbon fiber growth process, and for example, the carbonaceous material is formed after the carbon fiber is synthesized at the junction between the fine carbon fibers.
  • the bonding between the carbon fibers in the granular portion is very strong compared to a structure or the like attached by the carbide, and the carbon fiber breaks in the carbon fiber structure. Even below, this granular part (joint part) is kept stable.
  • the carbon fiber structure is dispersed in a liquid medium, and an ultrasonic wave with a predetermined output and a predetermined frequency is applied to the carbon fiber structure, so that the average length of the carbon fibers is almost halved.
  • the change rate of the average particle diameter of the granular part is less than 10%, more preferably less than 5%, and the granular part, that is, the bonded part of the fibers is stably held. It is what has been.
  • the carbon fiber structure used in the present invention preferably has an area-based circle-equivalent mean diameter of about 50 to 500 m.
  • the area-based circle-equivalent mean diameter is obtained by photographing the outer shape of the carbon fiber structure using an electron microscope or the like, and in this photographed image, the contour of each carbon fiber structure is represented by appropriate image analysis software, for example, Using WinRoof (trade name, manufactured by Mitani Shoji Co., Ltd.), the area within the contour was obtained, the equivalent circle diameter of each fiber structure was calculated, and this was averaged.
  • the circle-equivalent average diameter is 50 m or less, the three-dimensional structure cannot sufficiently exhibit the effects such as conductivity and strength.
  • the carbon fiber structure used for the skeletal structure is preferably larger, but if it is too large, it becomes difficult to handle as a powder, and therefore it is preferably 500 m or less.
  • the carbon fibers existing in a three-dimensional network are bonded to each other in the granular portion, and the granular portion force is described above.
  • the average distance is, for example, 0.5 m to 300 m, more preferably 0.5 to: LOO / zm, more preferably about 1 to 50 / ⁇ ⁇ .
  • the distance between the adjacent granular parts is a distance measured from the central part of one granular body to the central part of the granular part adjacent thereto. If the average distance between the granular materials is less than 0.5 m, the carbon fiber does not fully develop into a three-dimensional network. On the other hand, if the average distance exceeds 300 m, the skeletal structure constituting the composite material becomes rough! / !, sufficient strength This is because there is a drowning that cannot be obtained.
  • the carbon fiber structure used in the present invention is such that carbon fibers existing in a three-dimensional network form are bonded to each other in the granular portion formed during the growth process! Therefore, as described above, the force that the electrical characteristics of the structure itself is very excellent, for example, the powder resistance value force measured at a constant compression density of 0.8 gZcm 3 is 0.02 ⁇ • cm or less. Desirably, it is preferably 0.001-0.010 ⁇ 'cm. This is because when the powder resistance value exceeds 0.02 ⁇ 'cm, it becomes difficult to form a good conductive path when a composite material is formed.
  • the skeletal structure that forms the skeleton of the composite material of the present invention is configured by further three-dimensionally joining the above-described three-dimensional network-like carbon fiber structure with carbon.
  • the carbon fiber that is the starting material itself has a three-dimensional network, so that it has a strong bond. It is a skeletal structure with high power and high conductivity.
  • the skeletal structure used in the present invention may contain boron.
  • each carbon fiber can be made into a highly crystalline carbon fiber. You can.
  • boron is contained in the skeletal structure means that boron is present on the surface of the skeletal structure in addition to a state in which a part of carbon atoms constituting the skeletal structure is substituted with boron. It also includes those that are attached.
  • the method for containing (doping) boron in the carbon fibers and the bonding carbon constituting the skeleton structure is not particularly limited, but for example, the carbon fiber and the bonding carbon may be heat-treated at a low temperature (eg, 1500 ° C or lower). The crystal is still developing! / Carbon fiber in the ⁇ state, and after heat treatment! /, The carbon fiber in the ⁇ ⁇ state is mixed with boron (including boron compounds), and then By annealing at a high temperature, boron can be contained in the carbon fiber and the bonded carbon. It is not impossible to incorporate boron into carbon fiber that has been treated with graphite at temperatures of 2000 ° C or higher, or even 2300 ° C or higher. Since boron also acts as a catalyst for accelerating crystallization of carbon fibers, it is preferable to contain boron before the graphite soot treatment.
  • a low temperature eg, 1500 ° C or lower
  • the crystal is still developing! / Carbon fiber in the
  • the boron contained in the skeleton structure is not particularly limited.
  • “boron” in the present invention is a concept including not only elemental boron but also boron compounds. As described above, when boron is included in the skeletal structure, annealing is performed at a high temperature (for example, 1800 ° C or higher), so boron that has not evaporated by decomposition or the like before reaching at least 1800 ° C is used. It is necessary to use it. Examples of boron that satisfies this condition include elemental boron, B O, H BO, B C, and BN.
  • the boron content is preferably 0.001 to 10 mass%, more preferably 0.01 to 3.0 mass%, based on the skeletal structure. If the boron content is less than 0.001% by mass, it is difficult to improve the effect of boron content, that is, the crystallinity of the carbon fiber. On the other hand, if the content exceeds 10% by mass, the heat treatment will not only increase the processing cost, but it may be easily melted and consolidated, or the fiber surface may be coated with boron, conversely deteriorating conductivity. There is a case to let you.
  • the size and shape of the skeleton structure constituting the composite material of the present invention are not particularly limited, and can be appropriately selected depending on the application field, required performance, and the like.
  • the bulk density is desirably 0.2 to 2.3 gZcm 3 , more preferably 0.4 to 2.1 cm 3 . If the bulk density exceeds 2.3 gZcm 3 , it will be difficult to impregnate the voids of the skeletal structure with resin or the like.
  • the skeletal structure used in the present invention desirably has high strength and conductivity, and preferably has few defects in the graph sheet constituting the carbon fiber.
  • I measured by Raman spectroscopy I measured by Raman spectroscopy
  • G is 0.25 or less, more preferably 0.1 or less, and I ZI is 0.6 to 1.5.
  • the force is considered to contain boron in the graph ensheet. If boron is contained in the graph ensheet, the G-band waveform in Raman spectroscopy becomes asymmetric, and a shoulder appears on the high wavenumber side.
  • the carbon fiber structure having the desired shape as described above is not particularly limited, and can be prepared, for example, as follows.
  • an organic compound such as a hydrocarbon is chemically pyrolyzed by a CVD method using a transition metal ultrafine particle as a catalyst to obtain a fiber structure (hereinafter referred to as an intermediate).
  • the metal fiber contains boron
  • boron or a boron compound is mixed. Further, a high temperature heat treatment is performed.
  • boron or a boron compound may be mixed in advance with an organic compound such as a hydrocarbon (that is, boron is added before obtaining an intermediate), and further boron is mixed after a high-temperature heat treatment. It is also possible.
  • the raw material organic compound hydrocarbons such as benzene, toluene and xylene, alcohols such as carbon monoxide (CO) and ethanol can be used.
  • at least two or more carbon compounds having different decomposition temperatures as the carbon source.
  • “at least two or more carbon compounds” does not necessarily mean that two or more kinds of raw material organic compounds are used, but a case where one kind of raw material organic compound is used. Even in the process of synthesizing the fiber structure, for example, a reaction such as hydrodealkylation of toluene-xylene occurs, and the subsequent pyrolysis reaction system! It also includes a mode in which two or more carbon compounds having different!
  • the decomposition temperature of each carbon compound is not limited to the type of carbon compound. Therefore, by adjusting the composition ratio of two or more carbon compounds in the raw material gas, a relatively large number of combinations are used as the carbon compounds. be able to.
  • alkanes or cycloalkanes such as methane, ethane, propanes, butanes, pentanes, hexanes, heptanes, cyclopropane, cyclohexane, etc., particularly alkanes having about 1 to 7 carbon atoms; ethylene, Alkenes such as propylene, butylenes, pentenes, heptenes, cyclopentene, etc., especially alkenes having about 1 to 7 carbon atoms; alkynes such as acetylene and propyne, especially alkynes having about 1 to 7 carbon atoms; benzene, tolylene , Styrene, xylene, naphthalene, methenolenaphthalene, indene, Aromatic or heteroaromatic hydrocarbons such as phenanthrene, especially aromatic or heteroaromatic hydrocarbons having about 6 to 18 carbon atoms, alcohols such as
  • the molar ratio of methane / benzene is> 1 to 600, more preferably 1.1 to 200, More preferably, 3 to: LOO is desirable.
  • This value is the gas composition ratio at the inlet of the reactor.
  • toluene is used as one of the carbon sources, toluene is decomposed 100% in the reactor and methane and benzene are 1 : In consideration of what occurs in 1, it is sufficient to supply the shortage of methane separately.
  • the molar ratio of methane to benzene is 3, add 2 moles of methane to 1 mole of toluene.
  • methane to be added to toluene is not limited to the method of preparing fresh methane separately, but unreacted methane contained in the exhaust gas discharged from the reactor is circulated and used. It is also possible to use it.
  • composition ratio within such a range, it is possible to obtain a carbon fiber structure having a structure in which both the carbon fiber portion and the granular portion are sufficiently developed.
  • an inert gas such as argon, helium, xenon, or hydrogen can be used.
  • transition metals such as iron, cobalt and molybdenum, transition metal compounds such as iron cene, and metal acetates, and sulfur compounds such as sulfur, thiophene and iron sulfide is used.
  • the synthesis of the intermediate is performed by using a CVD method such as hydrocarbon, which is usually performed, and evaporating the mixed liquid of hydrocarbon and catalyst as raw materials and introducing hydrogen gas or the like into the reactor as a carrier gas. And pyrolyze at a temperature of 800-1300 ° C.
  • the outer diameter is 15 ⁇ : An assembly of several centimeters of force and several tens of centimeters in which a plurality of carbon fiber structures (intermediates) having a sparse three-dimensional structure joined together by granular materials grown using the catalyst particles as cores. Synthesize.
  • the pyrolysis reaction of the hydrocarbon as a raw material is mainly produced on the surface of granular particles that are grown using the catalyst particles as a nucleus, and the recrystallization of carbon generated by the decomposition is caused by the catalyst particles or granular materials. By proceeding in a certain direction, it grows in a fibrous form.
  • the tolerance between the thermal decomposition rate and the growth rate is intentionally changed, for example, as described above, the decomposition temperature as a carbon source.
  • the carbon material is grown three-dimensionally around the granular material that does not grow the carbon material only in one-dimensional direction.
  • the growth of such three-dimensional carbon fibers is not dependent only on the balance between the pyrolysis rate and the growth rate, but the crystal face selectivity of the catalyst particles, the residence time in the reactor, The temperature distribution is also affected, and the balance between the pyrolysis reaction and the growth rate is affected not only by the type of carbon source as described above but also by the reaction temperature and gas temperature.
  • the carbon material grows in a fibrous form, whereas when the pyrolysis rate is faster than the growth rate, the carbon material becomes a catalyst particle. Grows in the circumferential direction.
  • the growth direction of the carbon material as described above is made to be a multi-direction under control without making the growth direction constant.
  • Such a three-dimensional structure can be formed.
  • the composition of the catalyst, the residence time in the reaction furnace, the reaction temperature, and the gas It is desirable to optimize the temperature and the like.
  • a reaction other than the above-described approach using two or more carbon compounds having different decomposition temperatures at an optimum mixing ratio may be used.
  • One approach is to generate turbulence in the vicinity of the supply port of the raw material gas supplied to the furnace.
  • the turbulent flow here is a turbulent and turbulent flow.
  • the metal catalyst fine particles are formed by the decomposition of the transition metal compound as the catalyst in the raw material mixed gas, and this is brought about through the following steps. That is, the transition metal compound is first decomposed into metal atoms, and then, cluster formation occurs by collision of a plurality of, for example, about 100 atoms. At the stage of this generated cluster, it does not act as a catalyst for fine carbon fibers, and the generated clusters further gather together by collision, resulting in about 3 ⁇ ! It grows to crystalline particles of about lOnm and is used as metal catalyst fine particles for the production of fine carbon fibers.
  • each metal catalyst fine particle of the aggregate is radially formed as a nucleus.
  • the thermal decomposition rate of some of the carbon compounds is faster than the growth rate of the carbon material as described above, the carbon material also grows in the circumferential direction of the catalyst particles, A granular portion is formed around the aggregate to efficiently form a carbon fiber structure having an intended three-dimensional structure.
  • the aggregate of metal catalyst fine particles may include catalyst fine particles that are less active than other catalyst fine particles or that have been deactivated during the reaction.
  • This carbon material layer is considered to form the granular part of the carbon fiber structure according to the present invention by being present at the peripheral position of the aggregate.
  • Specific means for generating a turbulent flow in the raw material gas flow in the vicinity of the raw material gas supply port of the reaction furnace is not particularly limited.
  • a collision part is provided at a position where it can interfere with the flow of the raw material gas Measures can be taken.
  • the shape of the collision part is not limited in any way as long as a sufficient turbulent flow is formed in the reactor by the vortex generated from the collision part.
  • various shapes of baffle plates If one or more paddles, taper tubes, umbrellas, etc. are used alone or in combination, a plurality of forms can be adopted.
  • the intermediate obtained by heating the catalyst and hydrocarbon mixed gas at a constant temperature in the range of 800 to 1300 ° C is pasted with patch-like sheet pieces that also contain carbon nuclear power. It has a combined (incomplete, burnt-in) structure, and when it is analyzed by Raman spectroscopy, there are many defects that are very large.
  • the generated intermediate contains unreacted raw materials, non-fibrous carbides, tar content and catalytic metal, it was heated at 800-1200 ° C to remove volatile content such as unreacted raw materials and tar content. You can use it later for the skeletal structure!
  • high-temperature heat treatment (1800 ° C or higher) may be applied to the intermediate and then used for the skeleton structure. However, as described above, it is preferable that the surface energy of boron doping is also good! /.
  • the carbon fiber structure has a circle equivalent average diameter of 50 to 500 m, and is subjected to a step of crushing and pulverizing to obtain a desired circle equivalent average diameter. A carbon fiber structure is obtained.
  • the method for producing a skeleton structure according to the present invention having such characteristics is not particularly limited, but specific examples are as follows.
  • the carbon fiber structure described above and the organic noinder are mixed and kneaded by using a double-arm / single-mixer type kneader.
  • the noda include thermosetting resin or pitch.
  • Thermosetting resin is in a liquid state at room temperature, or in a solid state but becomes a liquid state at a heating temperature of about 50 to 90 ° C. It is crosslinked by a curing process by heating at about 100 to 200 ° C. It has the property of polymerizing into a polymer and solidifying. If it is decomposed and carbonized without heating even when heated to a high temperature! ⁇ ⁇ Have properties! / Anything that can be used is acceptable.
  • pitch There are various types of pitch, but any pitch such as isotropic pitch and mesophase pitch may be used.
  • thermosetting resin using a solvent during kneading the solvent is dried at a temperature that does not cure the thermosetting resin after kneading.
  • the carbon fiber structure is crushed and used for the next forming step.
  • the molding pressure during pressing is preferably about 1 to 2000 kg / cm 3 .
  • the carbon fiber structures are bonded with thermosetting resin during molding, but if the pressure is weakened if the thermosetting resin is not cured, the carbon fiber structure will be restored. Since the bonded material is removed due to the property, it is preferable to heat the thermosetting resin by heating to a temperature of about 100 to 200 ° C. during pressing to increase the bonding force.
  • thermosetting resin is carbonized by heating the molded product obtained by curing the thermosetting resin in a deoxygenated atmosphere or an inert gas atmosphere.
  • the thermosetting resin is decomposed and carbonized within a range of 300 to 900 ° C, and further subjected to an annealing treatment at a high temperature, whereby the patch-like sheet pieces constituting the carbon fiber structure are bonded to each other. A plurality of dalafen sheet-like layers are formed.
  • the carbonized portion of the thermosetting resin is also modified and graphitized in the same manner as the carbon fiber structure.
  • pitch When pitch is used for the noinder, it is infusibilized in an oxidizing atmosphere at 150 to 400 ° C after press molding, and then carbonized at 800 to 1500 ° C.
  • boron can be contained (doped) in the crystal of the carbon fiber by mixing the compact and boron.
  • boron or boron compound particles having a particle size as small as possible. If the particles are large, a high-concentration region is partially generated, which may cause consolidation.
  • the average particle size of boron is 100 m or less, preferably 50 m or less, more preferably 20 m or less.
  • boric acid or the like when boric acid or the like is used as the boron source, a method of adding it as an aqueous solution and evaporating water in advance or a method of evaporating water in a caloric heat process can be used. If the aqueous solution is uniformly mixed, the boron compound can be uniformly adhered to the fiber surface after the water evaporation. [0085] Even if a deviation of the thermosetting resin or pitch is used, pressure is applied to the molded body until the binder is cured or infusible to prevent contact and separation of the joint portion due to restoration of the carbon fiber structure. It is preferable.
  • the pressure under pressure when the binder in the carbonization and graphite process is carbonized and the carbon fiber structure and carbon derived from the binder are graphitized is preferable to keep the pressure under pressure when the binder in the carbonization and graphite process is carbonized and the carbon fiber structure and carbon derived from the binder are graphitized.
  • heat treatment is performed at a high temperature of 1800 ° C or higher, the carbon fiber structure is heat-treated while being restrained, and the shape of the carbon fiber structure in the molded body can be fixed by annealing.
  • a resin, rubber, metal, carbon-based resin is formed in a void formed inside a skeleton structure in which a carbon fiber structure is bonded with carbon.
  • An impregnation process for impregnating the material is performed.
  • Examples of the resin to be impregnated in the impregnation step include polypropylene, polyethylene, polystyrene, polychlorinated butyl, polyacetal, polyethylene terephthalate, polycarbonate, polybutyrate, polyamide, polyamideimide, polyetherimide, polyetheretherketone. , Polyvinyl alcohol, polyphenylene ether, poly (meth) acrylate, liquid crystal polymer and other thermoplastic resins, epoxy resins, burester resin, phenol resin, unsaturated polyester resin, furan resin, imide resin Examples thereof include various thermosetting resins such as fats, urethane resins, melamine resins, silicone resins and urea resins.
  • Natural rubber styrene butadiene rubber (SBR), butadiene rubber (BR), isoprene rubber (IR), ethylene propylene rubber (EPD M), nitrile rubber (NBR), chloroprene rubber (CR ), Butyl rubber (IIR), urethane rubber, silicone rubber, fluorine rubber, acrylic rubber (ACM), epichlorohydrin rubber, ethylene acrylic rubber, norbornene rubber and the like.
  • the metal to be impregnated include aluminum, magnesium, lead, copper, tungsten, titanium, niobium, hafnium, vanadium, and alloys and mixtures thereof.
  • the one-bon-based material includes, for example, glassy carbon.
  • the impregnation method either a pressure method or a suction method can be applied.
  • a pressure type impregnation apparatus When a pressure type impregnation apparatus is used, the aforementioned skeletal structure and impregnation material are inserted into a compression mold composed of a female mold and a male mold, and the impregnation material is placed inside the skeleton structure by pressure. Formed Impregnated into the voids.
  • the compression mold can be heated by a heater.
  • the impregnating material is a resin monomer that is cured by a curing agent, heating by the heater is not necessary. This pressure method is applicable to all of the above impregnated materials
  • the impregnation material is a metal or a carbon-based material, but it is an effective method for a resin monomer cured by a curing agent.
  • the volume% of the skeletal structure with respect to the entire composite material of the present invention depends on the porosity of the skeletal structure and the type of impregnating material, and cannot be generally specified. 99.9% is preferred 30 to 90% is particularly preferred. When the volume% of the skeletal structure is 10% or less, the strength of the skeletal structure is not sufficient. On the other hand, if the volume% of the skeletal structure is 99.9% or more, it is difficult to impregnate the material into the voids.
  • a conductive resin and a conductive resin molding by impregnating the resin it is suitably used for packaging materials, gaskets, containers, resistors, electric wires, and the like.
  • the same effect can be expected for composite materials impregnated with inorganic materials, especially ceramics, metals, etc., in addition to composite materials with resin.
  • the fine fibers of the carbon fiber structure have excellent strength, flexibility, and excellent filler characteristics that constitute a network structure. By utilizing this characteristic, it can contribute to the enhancement of the electrodes of the energy devices such as lithium-ion secondary battery, lead-acid battery, capacitor, fuel cell and the improvement of cycle characteristics.
  • each physical property value of the carbon fiber structure used in the present invention was measured as follows.
  • the conductivity of the obtained plate-shaped test piece was measured using a four-point probe low resistivity meter (Made by Mitsubishi Kagaku Co., Ltd., Loresta GP), and the volume resistance ( ⁇ 'cm) was measured using the same resistance meter. Converted and calculated the average value
  • TG-DTA Mac Science TG-DTA
  • the temperature was increased at a rate of 10 ° CZ while flowing air at a flow rate of 0.1 liters Z, and the combustion behavior was measured.
  • TG shows a weight loss
  • DTA shows an exothermic peak, so the top position of the exothermic peak was defined as the combustion start temperature.
  • CNT powder lg is weighed, filled and compressed into a resin die (inner dimensions L 40mm, W 10mm, H 80mm), and the displacement and load are read. When the density of 0.9 gZcm 3 was measured, the pressure was released and the density after restoration was measured.
  • the granular part which is the bonding point between carbon fibers, is regarded as one particle, and its outline is image analysis software WinRoof (trade name, Mitani Corp.
  • the area within the contour was obtained, and the equivalent circle diameter of each granular part was calculated and averaged to obtain the average particle diameter of the granular part.
  • the circularity (R) is calculated based on the following equation from the area (A) in the contour measured using the image analysis software and the measured contour length (L) of each granular portion. The degree was obtained and averaged.
  • R A water 4 TU / L 2 [0107] Further, the outer diameter of the fine carbon fiber in each target carbon fiber structure is obtained, and from this and the equivalent circle diameter of the granular part of each carbon fiber structure, the granular part in each carbon fiber structure was determined as a ratio to the fine carbon fiber and averaged.
  • a carbon fiber structure was added to 100 ml of toluene placed in a vial with a lid at a rate of 30 gZml to prepare a dispersion sample of the carbon fiber structure.
  • an ultrasonic wave is irradiated, and after 30 minutes, a predetermined amount of 2 ml of the dispersion liquid sample is withdrawn from the bottle, and a photograph of the carbon fiber structure in the dispersion liquid is taken with an SEM.
  • 200 fine carbon fibers (fine carbon fibers with at least one end bonded to the granular part) in the carbon fiber structure of the obtained SEM photograph were randomly selected, and each selected fine carbon fiber was selected. The length was measured to determine the D average value, which was used as the initial average fiber length.
  • the 50 50 average diameter was determined in the same manner as described above.
  • the calculated D average length of fine carbon fibers is about half of the initial average fiber length.
  • the D average diameter of the granular portion at the time was compared with the initial average diameter, and the fluctuation ratio (%) was examined.
  • a carbon fiber structure was synthesized using toluene as a raw material by the CVD method.
  • the catalyst was a mixture of phlocene and thiophene, and the reaction was performed in a reducing atmosphere of hydrogen gas. Toluene and catalyst were heated together with hydrogen gas to 380 ° C, supplied to the production furnace, and pyrolyzed at 1250 ° C to obtain a carbon fiber structure (first intermediate).
  • FIGS. 1 and 2 show SEM and TEM photographs of the first intermediate dispersed in toluene and observed after preparing a sample for an electron microscope.
  • Fig. 4 shows a schematic configuration of the generating furnace used in producing this carbon fiber structure (first intermediate).
  • the generating furnace 1 has a power having an introduction nozzle 2 for introducing a raw material mixed gas composed of toluene, a catalyst and hydrogen gas as described above into the generating furnace 1 at its upper end.
  • a cylindrical collision portion 3 is provided outside the introduction nozzle 2. The collision part 3 can interfere with the flow of the raw material gas introduced into the reactor through the raw material gas supply port 4 located at the lower end of the introduction nozzle 2.
  • the inner diameter a of the introduction nozzle 2, the inner diameter b of the production furnace 1, the inner diameter c of the cylindrical collision part 3, and the raw material mixed gas from the upper end of the production furnace 1 Each dimension is defined as follows: distance d to inlet 4; distance e from raw material mixed gas inlet 4 to the lower end of collision section 3; and f from raw material mixed gas inlet 4 to the lower end of generation furnace 1.
  • the feed gas introduction rate into the reactor was 1850 NLZmin and the pressure was 1.03 atm.
  • the intermediate synthesized as described above was calcined in nitrogen at 900 ° C to separate hydrocarbons such as tar to obtain a second intermediate. The R value of this second intermediate measured by Raman spectroscopy was 0.82.
  • Fig. 3 shows the SEM photograph of the obtained carbon fiber structure as it is placed on the electron microscope sample holder, and Table 1 shows the particle size distribution.
  • the obtained carbon fiber structure had a circle-equivalent mean diameter of 155 m, a bulk density of 0.000029 g / cm 3 , a Raman I / ⁇ ratio value of 0.82, and a density after restoration of 0. 25 g / cm 3 .
  • the average particle size of the granular portion in the carbon fiber structure was 443 nm (SD207 nm), which was 7.38 times the outer diameter of the fine carbon fiber in the carbon fiber structure.
  • the circularity of the granular part was 0.67 (SD 0.14) on average.
  • the average fiber length (D) of 6.7 m is almost half of 6.7 m.
  • the average diameter (D) of the granular part 500 minutes after ultrasonic application was compared with the initial average diameter (D) 30 minutes after ultrasonic application.
  • Table 2 summarizes various physical property values of the carbon fiber structure synthesized in Example 1.
  • a skeleton structure was formed using the carbon fiber structure synthesized in i) above.
  • phenolic resin (Gunei Chemical Industry Co., Ltd., Resid Top) using methanol as a solvent was added to and mixed with the carbon fiber structure synthesized in i).
  • the binder was added in an amount of 25% by mass with respect to the carbon fiber structure.
  • the obtained kneaded material was dried on a hot plate at 70 ° C., dried, and then heat-molded at 150 ° C. to cure the phenolic resin.
  • the obtained molded body was heated to 2500 ° C. in an argon gas atmosphere to obtain a skeleton structure in which the binder component was carbonized and graphitized.
  • Table 3 shows the physical property values of the skeleton structure of Example 1.
  • the step of impregnating and drying was repeated so that the amount of boron added was 3.5% by mass relative to the compact.
  • the formed body supporting boron was heated to 2500 ° C. in an argon gas atmosphere in the same manner as in Example 1 to obtain a skeleton structure in which the binder component was carbonized and graphitized.
  • Table 3 shows the physical property values of the skeleton structure of Example 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Structural Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Inorganic Fibers (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

Disclosed is a composite material which has a backbone structure formed by binding carbon fiber structures through a carbon in a three-dimensional manner. In the composite material, each carbon fiber structure has a three-dimensional network structure formed with carbon fibers having an outer diameter of 15 to 100 nm and has a particulate part which binds up the carbon fibers in such a state where the carbon fibers are extended from the particulate part, and the particulate part is formed in the growing process of the carbon fibers. In a void formed in the backbone structure, a resin, a rubber, a metal or a carbon-containing material is impregnated. The composite material takes full advantages of the specific properties of the microfine carbon fiber.

Description

明 細 書  Specification
複合材料  Composite material
技術分野  Technical field
[0001] 本発明は、微細な炭素繊維 (いわゆる、カーボンナノチューブ)を利用した複合材 料に関する。  The present invention relates to a composite material using fine carbon fibers (so-called carbon nanotubes).
背景技術  Background art
[0002] 従来から、榭脂にカーボンブラックなどのフィラーを配合することによって、所望の 特性、(例えば導電性や力学特性など)が付与された榭脂組成物、いわゆる複合材 料が提案されている。  [0002] Conventionally, there has been proposed a resin composition, so-called composite material, to which desired characteristics (for example, conductivity, mechanical characteristics, etc.) are imparted by blending a filler such as carbon black with the resin. Yes.
[0003] 近年にお 、ては、複合材料によって成形された成形体にさらに優れた導電性、力 学特性を付与するために、従来用いられていたカーボンブラックに代えて、微細な炭 素繊維 (V、わゆるカーボンナノチューブ)を配合する試みが行われて 、る。カーボン ナノチューブを構成するグラフアイト層は、通常では規則正しい六員環配列構造を有 し、その特異な電気的性質とともに、化学的、機械的および熱的に安定した性質を持 つ物質である。従って、例えば、各種榭脂、セラミックス、金属等の固体材料、あるい は燃料油、潤滑剤等の液体材料中に、このような微細炭素繊維を分散配合して前記 したような物性を生かすことができれば、優れた複合材料を提供することができると期 待されている。  [0003] In recent years, fine carbon fibers have been used in place of carbon black, which has been used in the past, in order to impart even better electrical conductivity and mechanical properties to a molded body formed of a composite material. Attempts have been made to blend (V, so-called carbon nanotubes). The graphite layer constituting carbon nanotubes is a substance that usually has an ordered six-membered ring arrangement structure, and has stable electrical, chemical, mechanical, and thermal properties along with its unique electrical properties. Therefore, for example, such fine carbon fibers are dispersed and blended in solid materials such as various types of resin, ceramics, metals, etc., or liquid materials such as fuel oils, lubricants, etc. to make use of the physical properties as described above. If possible, it is expected that an excellent composite material can be provided.
[0004] 具体的には、例えば、特許文献 1、 2には、カーボンナノチューブをマトリクス中に含 む複合材料が提案されている。また、特許文献 3には、榭脂組成物中にカーボンナノ チューブを配合するにあっては、単にカーボンナノチューブをそのまま配合するので はなぐカーボンナノチューブにより凝集体を形成し、または互いを絡み合わせたもの を形成し、これを配合することも知られている。  [0004] Specifically, for example, Patent Documents 1 and 2 propose composite materials containing carbon nanotubes in a matrix. Further, in Patent Document 3, when carbon nanotubes are blended in a resin composition, aggregates are formed by carbon nanotubes that are not simply blended with carbon nanotubes as they are, or entangled with each other. It is also known to form things and blend them.
特許文献 1 :日本国特許第 2641712号公報  Patent Document 1: Japanese Patent No. 2641712
特許文献 2 :日本国特開 2003— 12939号公報  Patent Document 2: Japanese Unexamined Patent Publication No. 2003-12939
特許文献 3 :日本国特許第 3034027号公報  Patent Document 3: Japanese Patent No. 3034027
発明の開示 発明が解決しょうとする課題 Disclosure of the invention Problems to be solved by the invention
[0005] しかしながら、上記に挙げた各文献に代表される従来の複合材料にあっては、未だ 微細炭素繊維 (カーボンナノチューブ)の優れた特性を充分に利用できておらず、ま た、微細炭素繊維自体の改良の余地があった。  [0005] However, in the conventional composite materials represented by the above-mentioned documents, the excellent characteristics of fine carbon fibers (carbon nanotubes) have not been fully utilized, and fine carbon There was room for improvement of the fiber itself.
[0006] 本発明はこのような状況においてなされた発明であり、微細炭素繊維が有する特異 な性質を最大限に利用した新規な骨格構造体および複合材料を提供することを主た る課題とする。 [0006] The present invention is an invention made in such a situation, and a main object is to provide a novel skeletal structure and a composite material that make the most of the unique properties of fine carbon fibers. .
課題を解決するための手段  Means for solving the problem
[0007] 上記課題を解決するために、本発明者らは鋭意検討の結果、複合材料に対して、 導電性や強度特性等の種々の特性を付与するためには、可能な限り微細な炭素繊 維が一本一本ばらばらになることなく互いに強固に結合した構造体であって、当該構 造体を構成する炭素繊維自体の一本一本が極力欠陥の少な 、ものを、炭素を用い て 3次元に結合せしめた骨格構造体を用いること、並びに、当該骨格構造体の内部 に形成される空隙部に榭脂等を含浸せしめることが有効であることを見出し、本発明 に到達したものである。 [0007] In order to solve the above problems, the present inventors have intensively studied, and in order to impart various properties such as conductivity and strength properties to the composite material, the finest possible carbon A structure in which fibers are firmly bonded to each other without being separated from each other, and each of the carbon fibers constituting the structure has few defects as much as possible. The present inventors have found that it is effective to use a skeletal structure bonded in three dimensions and to impregnate voids formed in the skeleton structure with a resin or the like, and have reached the present invention. It is.
[0008] すなわち、上記課題を解決する本発明は、外径 15〜: LOOnmの炭素繊維カゝら構成 される 3次元ネットワーク状を呈しており、前記炭素繊維が複数延出する態様で、当 該炭素繊維を互いに結合する粒状部を有しており、かつ、当該粒状部は前記炭素 繊維の成長過程において形成されてなる炭素繊維構造体を、炭素により 3次元に接 合させることにより形成されることを特徴とする骨格構造体である。  [0008] That is, the present invention that solves the above problems is a three-dimensional network formed by carbon fiber cables having an outer diameter of 15 to: LOOnm, and a plurality of the carbon fibers extend. The carbon fiber has a granular part for bonding the carbon fibers to each other, and the granular part is formed by three-dimensionally bonding a carbon fiber structure formed in the carbon fiber growth process with carbon. It is a skeleton structure characterized by the above.
[0009] また、前記骨格構造体には、ホウ素が含有されて!、てもよ 、。 [0009] Further, the skeleton structure may contain boron!
[0010] また、前記ホウ素の含有量が、前記骨格構造体に対して 0. 001〜10質量%であ つてもよい。 [0010] The boron content may be 0.001 to 10 mass% with respect to the skeleton structure.
[0011] また、前記炭素繊維構造体は、面積基準の円相当平均径が 50〜500 mであつ てもよい。  [0011] Further, the carbon fiber structure may have an area-based circle-equivalent mean diameter of 50 to 500 m.
[0012] また、前記骨格構造体は、ラマン分光分析法で測定される I /\ 1S 1. 4以下であ  [0012] Further, the skeletal structure is not more than I / \ 1S1.4 measured by Raman spectroscopy.
D G  D G
り、且つ、 I  And I
G' /\が 1. 5以下であってもよい。  G '/ \ may be 1.5 or less.
G  G
[0013] また、前記骨格構造体は、嵩密度が、 0. 2〜2. 3gZcm3であってもよい。 [0014] また、前記骨格構造体は、空気中での燃焼開始温度が 700°C以上であってもよ!/、 [0013] The skeletal structure may have a bulk density of 0.2 to 2.3 gZcm 3 . [0014] The skeleton structure may have a combustion start temperature in air of 700 ° C or higher! /
[0015] また、前記炭素繊維の結合箇所にお!、て、前記粒状部の粒径が、前記炭素繊維 の外径よりも大きくてもよい。 [0015] In addition, the particle diameter of the granular portion may be larger than the outer diameter of the carbon fiber at the bonding position of the carbon fibers.
[0016] また、前記炭素繊維構造体は、炭素源として、分解温度の異なる少なくとも 2っ以 上の炭素化合物を用いて、生成されたものであってもょ 、。  [0016] Further, the carbon fiber structure may be produced using at least two carbon compounds having different decomposition temperatures as a carbon source.
[0017] また、上記課題を解決する本発明は、外径 15〜: LOOnmの炭素繊維カゝら構成され る 3次元ネットワーク状を呈しており、前記炭素繊維が複数延出する態様で、当該炭 素繊維を互いに結合する粒状部を有しており、かつ、当該粒状部は前記炭素繊維の 成長過程において形成されてなる炭素繊維構造体を、炭素により 3次元に接合させ ることにより形成される骨格構造体を有し、当該骨格構造体の内部に形成される空隙 部には榭脂、ゴム、金属、またはカーボン系材料が含浸されていることを特徴とする 複合材料である。  [0017] In addition, the present invention that solves the above problems is a three-dimensional network formed by carbon fiber cables having an outer diameter of 15 to: LOOnm, and in a mode in which a plurality of the carbon fibers extend, The carbon fiber structure has a granular part for bonding carbon fibers to each other, and the granular part is formed by joining carbon fiber structures formed in the carbon fiber growth process in three dimensions with carbon. And a void formed inside the skeleton structure is impregnated with resin, rubber, metal, or carbon-based material.
[0018] また、前記骨格構造体には、ホウ素が含有されていてもよい。  [0018] The skeleton structure may contain boron.
[0019] また、前記ホウ素の含有量が、前記骨格構造体に対して 0. 001〜10質量%であ つてもよい。 [0019] The boron content may be 0.001 to 10 mass% with respect to the skeleton structure.
[0020] また、前記炭素繊維構造体は、面積基準の円相当平均径が 50〜500 mであつ てもよい。  [0020] Further, the carbon fiber structure may have an area-based circle equivalent average diameter of 50 to 500 m.
[0021] また、前記骨格構造体は、ラマン分光分析法で測定される I /\ 1S 1. 4  [0021] Further, the skeletal structure is measured by Raman spectroscopy. I / \ 1S 1.4
D G 以下であ り、且つ、 I が 1. 5以  D G or less and I is 1.5 or more
G' /\ 下であってもよい。  It may be under G '/ \.
G  G
[0022] また、前記骨格構造体は、嵩密度が、 0. 2〜2. 3gZcm3であってもよい。 [0022] The skeleton structure may have a bulk density of 0.2 to 2.3 gZcm 3 .
[0023] また、前記骨格構造体は、空気中での燃焼開始温度が 700°C以上であってもよ!/、  [0023] The skeleton structure may have a combustion start temperature in air of 700 ° C or higher! /
[0024] また、前記炭素繊維の結合箇所にお!、て、前記粒状部の粒径が、前記炭素繊維 の外径よりも大きくてもよい。 [0024] In addition, the particle diameter of the granular portion may be larger than the outer diameter of the carbon fiber at the bonding position of the carbon fiber.
[0025] また、前記炭素繊維構造体は、炭素源として、分解温度の異なる少なくとも 2っ以 上の炭素化合物を用いて、生成されたものであってもょ 、。 [0025] Further, the carbon fiber structure may be produced using at least two carbon compounds having different decomposition temperatures as a carbon source.
発明の効果 [0026] 本発明にお 、ては、複合材料の骨組みとなる骨格構造体力 上記したように 3次元 ネットワーク状に配された微細径の炭素繊維力 前記炭素繊維の成長過程において 形成された粒状部によって互いに強固に結合され、該粒状部力 前記炭素繊維が 複数延出する形状を有する炭素繊維構造体を、炭素により 3次元に結合してなるも のであるために、炭素繊維構造体自体が有する 3次元的な広がりに加えて、当該炭 素繊維構造体同士がさらに 3次元に結合しているため、従来にない広がりを持った、 骨格構造体とすることができ、微細炭素繊維が有する導電性や力学特性及び熱伝 導特性を充分に発揮することが可能となる。 The invention's effect [0026] In the present invention, the skeletal structure force that becomes the framework of the composite material As described above, the fine-diameter carbon fiber force arranged in a three-dimensional network shape The granular portion formed in the growth process of the carbon fiber The carbon fiber structure itself has a structure in which the carbon fiber structure having a shape in which a plurality of the carbon fibers extend is bonded in three dimensions with carbon. In addition to the three-dimensional expansion, the carbon fiber structures are further bonded in three dimensions, so that a skeletal structure with an unprecedented expansion can be obtained, and the conductive properties of the fine carbon fibers. It is possible to fully exhibit the properties, mechanical properties and heat conduction properties.
[0027] また、元々 3次元ネットワーク状を呈する炭素繊維を出発物質としているため、従来 のように外力を加えて無理に作った凝集体とは異なり、炭素繊維の一本一本に欠陥 がな!/ヽことも本発明の特徴であり、当該特徴によっても導電性や力学特性及び熱伝 導特性を向上せしめることができる。  [0027] In addition, since carbon fibers originally having a three-dimensional network shape are used as starting materials, unlike the aggregates that are forcibly created by applying external force as in the past, there is no defect in each carbon fiber. ! / ヽ is also a feature of the present invention, and this feature can also improve electrical conductivity, mechanical properties, and heat conduction properties.
[0028] さらに、本願発明において、骨格構造体にホウ素を含有せしめたときは、構造に多 少の欠陥を含んで 、る場合であっても、高 、導電性を得ることができる。  [0028] Furthermore, in the present invention, when boron is contained in the skeletal structure, high conductivity can be obtained even if the structure contains a few defects.
図面の簡単な説明  Brief Description of Drawings
[0029] [図 1]本発明の骨格構造体に用いる炭素繊維構造体の中間体の SEM写真である。  [0029] FIG. 1 is a SEM photograph of an intermediate of a carbon fiber structure used in the skeleton structure of the present invention.
[図 2]本発明の骨格構造体に用いる炭素繊維構造体の中間体の TEM写真である。  FIG. 2 is a TEM photograph of an intermediate of a carbon fiber structure used in the skeleton structure of the present invention.
[図 3]本発明の骨格構造体に用いる炭素繊維構造体の SEM写真である。  FIG. 3 is an SEM photograph of a carbon fiber structure used in the skeleton structure of the present invention.
[図 4]本発明の実施例において炭素繊維構造体の製造に用いた生成炉の概略構成 を示す図面である。  FIG. 4 is a drawing showing a schematic configuration of a production furnace used for producing a carbon fiber structure in an example of the present invention.
符号の説明  Explanation of symbols
[0030] 1 生成炉 [0030] 1 Generation furnace
2 導入ノズル  2 Introduction nozzle
3 衝突部  3 Collision
4 原料ガス供給口  4 Source gas supply port
a 導入ノズルの内径  a Inner nozzle inner diameter
b 生成炉の内径  b Inner diameter of the generating furnace
c 衝突部の内径 d 生成炉の上端から原料混合ガス導入口までの距離 c Inner diameter of collision part d Distance from the top of the generator to the raw material gas inlet
e 原料混合ガス導入ロカ 衝突部の下端までの距離  e Raw material mixed gas introduction loca Distance to the bottom of the collision part
f 原料混合ガス導入口から生成炉の下端までの距離  f Distance from the raw material gas inlet to the bottom of the generator
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0031] 以下、本発明を好ましい実施形態に基づき詳細に説明する。 [0031] Hereinafter, the present invention will be described in detail based on preferred embodiments.
本発明の複合材料は、炭素繊維構造体からなる骨格構造体と、当該骨格構造体 の内部に形成される空隙部に含浸される榭脂、ゴム、金属、またはカーボン系材料と 、から構成される。  The composite material of the present invention is composed of a skeleton structure composed of a carbon fiber structure and a resin, rubber, metal, or carbon-based material impregnated in a void formed inside the skeleton structure. The
[0032] まずは、本発明の特徴の 1つである骨格構造体について説明する。  First, the skeletal structure that is one of the features of the present invention will be described.
骨格構造体は、炭素繊維構造体を炭素により 3次元に結合させることにより形成さ れている。  The skeletal structure is formed by bonding carbon fiber structures in three dimensions with carbon.
[0033] ここで、本発明において用いられる炭素繊維構造体は、例えば、図 1に示す SEM 写真または図 2に示す TEM写真に見られるように、外径 15〜: LOOnmの炭素繊維か ら構成される 3次元ネットワーク状の炭素繊維構造体であって、前記炭素繊維構造体 は、前記炭素繊維が複数延出する態様で、当該炭素繊維を互いに結合する粒状部 を有して!/ヽることを特徴とする炭素繊維構造体である。  [0033] Here, the carbon fiber structure used in the present invention is composed of carbon fibers having an outer diameter of 15 to: LOOnm as seen in, for example, the SEM photograph shown in FIG. 1 or the TEM photograph shown in FIG. The carbon fiber structure is a three-dimensional network-like carbon fiber structure, and the carbon fiber structure has a granular portion that binds the carbon fibers to each other in a form in which a plurality of the carbon fibers extend! This is a carbon fiber structure.
[0034] 炭素繊維構造体を構成する炭素繊維の外径を、 15〜: LOOnmの範囲のものとする のは、外径が 15nm未満であると、後述するように炭素繊維の断面が多角形状となら ず、一方、炭素繊維の物性上直径が小さいほど単位量あたりの本数が増えるとともに 、炭素繊維の軸方向への長さも長くなり、高い導電性が得られるためであり、 lOOnm を越える外径を有することは、榭脂等のマトリックスへ改質剤、添加剤として配される 炭素繊維構造体として適当でないためである。なお、炭素繊維の外径としては特に、 20〜70nmの範囲内にあることがより望ましい。この外径範囲のもので、筒状のダラ フェンシートが軸直角方向に積層したもの、すなわち多層であるものは、曲がりにくく 、弾性、すなわち変形後も元の形状に戻ろうとする性質が付与されるためである。  [0034] The carbon fiber constituting the carbon fiber structure has an outer diameter in the range of 15 to LOONm. When the outer diameter is less than 15 nm, the carbon fiber has a polygonal cross section as described later. However, on the other hand, the smaller the diameter of the carbon fiber, the greater the number per unit amount, and the longer the length of the carbon fiber in the axial direction, resulting in higher conductivity. Having a diameter is because it is not suitable as a carbon fiber structure to be arranged as a modifier or additive in a matrix such as rosin. In particular, the outer diameter of the carbon fiber is more preferably in the range of 20 to 70 nm. This outer diameter range, in which cylindrical dalafen sheets are laminated in the direction perpendicular to the axis, that is, a multilayer, is difficult to bend and is elastic, that is, has the property of returning to its original shape after deformation. Because.
[0035] なお、 1800°C以上でァニール処理すると、積層したグラフエンシートの面間隔が狭 まり真密度が増加するとともに、炭素繊維の軸直交断面が多角形状となり、この構造 の炭素繊維は、積層方向および炭素繊維を構成する筒状のグラフヱンシートの面方 向の両方において緻密で欠陥の少ないものとなるため、曲げ剛性 (EI)が向上する。 [0035] It should be noted that when annealing is performed at 1800 ° C or higher, the surface spacing of the laminated graph ensheets is reduced and the true density is increased, and the carbon fiber has a polygonal axial cross section. Laminating direction and face of cylindrical graphene sheet constituting carbon fiber Bending rigidity (EI) is improved because it is dense and has few defects in both directions.
[0036] カロえて、当該微細炭素繊維は、その外径が軸方向に沿って変化するものであること が望ましい。このように炭素繊維の外径が軸方向に沿って一定でなぐ変化するもの であると、榭脂等を含浸させた際に当該炭素繊維に一種のアンカー効果が生じるも のと思われ、含浸される榭脂等が移動することを生じに《することができる。 [0036] It is desirable that the fine carbon fiber has an outer diameter that changes along the axial direction. If the outer diameter of the carbon fiber is constant and changes along the axial direction in this way, it is considered that when carbon fiber is impregnated, a kind of anchoring effect is produced on the carbon fiber. It is possible to cause the movement of the urinary resin to be moved.
[0037] そして本発明に用いられる炭素繊維構造体にお!ヽては、このような所定外径を有 する微細炭素繊維が 3次元ネットワーク状に存在するが、これら炭素繊維は、当該炭 素繊維の成長過程にお ヽて形成された粒状部にお!ヽて互いに結合され、該粒状部 力 前記炭素繊維が複数延出する形状を呈しているものである。このように、微細炭 素繊維同士が単に絡合しているものではなぐ粒状部において相互に強固に結合さ れているものであることから、骨格構造体を形成した際に強固な構造とすることができ る。また、本発明に用いられる炭素繊維構造体においては、当該炭素繊維の成長過 程にぉ 、て形成された粒状部によって炭素繊維同士が互 、に結合されて 、ることか ら、その構造体自体の電気的特性等も非常に優れたものであり、例えば、一定圧縮 密度において測定した電気抵抗値は、微細炭素繊維の単なる絡合体、あるいは微 細炭素繊維同士の接合点を当該炭素繊維合成後に炭素質物質ないしその炭化物 によって付着させてなる構造体等の値と比較して、非常に低い値を示し、複合材料と した場合に良好な導電パスを形成することができる。 [0037] In the carbon fiber structure used in the present invention, fine carbon fibers having such a predetermined outer diameter exist in a three-dimensional network, and these carbon fibers are composed of the carbon fibers. The granular portions formed during the fiber growth process are bonded to each other, and the granular portion has a shape in which a plurality of the carbon fibers extend. In this way, since the fine carbon fibers are not simply entangled with each other but are firmly bonded to each other in the granular portion, a strong structure is obtained when the skeleton structure is formed. be able to. Further, in the carbon fiber structure used in the present invention, since the carbon fibers are bonded to each other by the granular portion formed during the growth process of the carbon fiber, the structure is obtained. For example, the electrical resistance value measured at a constant compression density is a simple entanglement of fine carbon fibers, or the junction between fine carbon fibers. Compared with the value of a structure or the like that is later adhered by a carbonaceous substance or its carbide, the value is very low, and a good conductive path can be formed when a composite material is used.
[0038] 当該粒状部は、上述するように炭素繊維の成長過程において形成されるものであ るため、当該粒状部における炭素間結合は十分に発達したものとなり、正確には明ら かではないが、 sp2結合および sp3結合の混合状態を含むと思われる。そして、生成 後 (後述する中間体および第一中間体)においては、粒状部と繊維部とが、炭素原 子力もなるパッチ状のシート片を貼り合せたような構造をもって連続しており、その後 の高温熱処理後においては、、粒状部を構成するグラフヱン層の少なくとも一部は、 当該粒状部より延出する微細炭素繊維を構成するグラフ ン層に連続するものとなる 。本発明に用いられる炭素繊維構造体において、粒状部と微細炭素繊維との間は、 上記したような粒状部を構成するグラフェン層が微細炭素繊維を構成するダラフェン 層と連続していることに象徴されるように、炭素結晶構造的な結合によって (少なくと もその一部が)繋がって!/、るものであって、これによつて粒状部と微細炭素繊維との 間の強固な結合が形成されているものである。 [0038] Since the granular part is formed in the growth process of the carbon fiber as described above, the carbon-carbon bond in the granular part is sufficiently developed, and it is not clear exactly. Appears to contain a mixed state of sp 2 and sp 3 bonds. After generation (intermediate and first intermediate described later), the granular part and the fiber part are continuous with a structure in which patch-like sheet pieces having carbon atomic force are bonded together, and thereafter After the high-temperature heat treatment, at least a part of the graphene layer constituting the granular portion is continuous with the graphene layer constituting the fine carbon fiber extending from the granular portion. In the carbon fiber structure used in the present invention, between the granular portion and the fine carbon fiber, it is a symbol that the graphene layer constituting the granular portion as described above is continuous with the darafen layer constituting the fine carbon fiber. Carbon crystal structural bonds (as at least (Some of them) are connected! /, Which forms a strong bond between the granular portion and the fine carbon fiber.
[0039] なお、本願明細書において、粒状部から炭素繊維力 ^延出する」とは、粒状部と炭 素繊維とが他の結着剤 (炭素質のものを含む)によって、単に見かけ上で繋がってい るような状態をさすものではなぐ上記したように炭素結晶構造的な結合によって繋が つて 、る状態を主として意味するものである。  [0039] In this specification, the term "carbon fiber strength extends from the granular part" means that the granular part and the carbon fiber are merely apparently formed by other binders (including carbonaceous ones). It is not intended to indicate a state where they are connected with each other, but as described above, it is mainly connected with a carbon crystal structural bond.
[0040] また、当該粒状部は、上述するように炭素繊維の成長過程において形成されるが、 その痕跡として粒状部の内部には、少なくとも 1つの触媒粒子、あるいはその触媒粒 子がその後の熱処理工程にぉ 、て揮発除去されて生じる空孔を有して 、る。この空 孔 (ないし触媒粒子)は、粒状部より延出している各微細炭素繊維の内部に形成され る中空部とは、本質的に独立したものである(なお、ごく一部に、偶発的に中空部と連 続してしまったものも観察される。;)。  [0040] Further, as described above, the granular part is formed in the growth process of the carbon fiber. As a trace, at least one catalyst particle or the catalyst particle is subjected to a subsequent heat treatment inside the granular part. In the process, there are vacancies generated by volatilization and removal. These pores (or catalyst particles) are essentially independent of the hollow portion formed inside each fine carbon fiber extending from the granular portion (note that only a small part is incidental) Some of them are connected to the hollow part;).
[0041] この触媒粒子ないし空孔の数としては特に限定されるものではないが、粒状部 1つ 当りに 1〜: LOOO個程度、より望ましくは 3〜500個程度存在する。このような範囲の数 の触媒粒子の存在下で粒状部が形成されたことによって、後述するような所望の大き さの粒状部とすることができる。  [0041] The number of catalyst particles or pores is not particularly limited, but there are about 1 to about LOOO, more preferably about 3 to 500 per granular part. By forming the granular portion in the presence of such a number of catalyst particles, it is possible to obtain a granular portion having a desired size as described later.
[0042] また、この粒状部中に存在する触媒粒子ないし空孔の 1つ当りの大きさとしては、例 えば、 1〜: LOOnm、より好ましくは 2〜40nm、さらに好ましくは 3〜15nmである。  [0042] The size of each catalyst particle or hole existing in the granular part is, for example, 1 to: LOOnm, more preferably 2 to 40 nm, and still more preferably 3 to 15 nm. .
[0043] さらに、特に限定されるわけではないが、この粒状部の粒径は、図 2に示すように、 前記微細炭素繊維の外径よりも大きいことが望ましい。具体的には、例えば、前記微 細炭素繊維の外径の 1. 3〜250倍、より好ましくは 1. 5〜: LOO倍、さらに好ましくは 2 . 0〜25倍である。なお、前記値は平均値である。このように炭素繊維相互の結合点 である粒状部の粒径が微細炭素繊維外径の 1. 3倍以上と十分に大きなものであると 、当該粒状部より延出する炭素繊維に対して高い結合力がもたらされ、これを用いて 骨格構造体を形成し本発明の複合材料を得た場合に、ある程度のせん弾力を加え た場合であっても、 3次元ネットワーク構造を保持したままとなる。一方、粒状部の大 きさが微細炭素繊維の外径の 250倍を超える極端に大きなものとなると、炭素繊維構 造体の繊維状の特性が損なわれる虞れがあり、本発明の複合材を形成する骨格構 造体を構成する上で適当なものとならない虞れがあるために望ましくない。なお、本 明細書でいう「粒状部の粒径」とは、炭素繊維相互の結合点である粒状部を 1つの粒 子とみなして測定した値である。 [0043] Further, although not particularly limited, it is desirable that the particle diameter of the granular portion is larger than the outer diameter of the fine carbon fiber as shown in FIG. Specifically, for example, the outer diameter of the fine carbon fiber is 1.3 to 250 times, more preferably 1.5 to: LOO times, and further preferably 2.0 to 25 times. In addition, the said value is an average value. In this way, if the particle size of the granular part, which is the bonding point between the carbon fibers, is sufficiently large as 1.3 times or more of the outer diameter of the fine carbon fiber, it is higher than the carbon fiber extending from the granular part When a skeleton structure is formed using this to form a composite material of the present invention and a composite material of the present invention is obtained, even if a certain amount of elasticity is applied, the three-dimensional network structure is maintained. Become. On the other hand, if the size of the granular portion is extremely large exceeding 250 times the outer diameter of the fine carbon fiber, the fibrous properties of the carbon fiber structure may be impaired, and the composite material according to the present invention. The skeletal structure that forms This is not desirable because there is a possibility that the structure is not suitable. As used herein, the “particle size of the granular part” is a value measured by regarding the granular part, which is a bonding point between carbon fibers, as one particle.
[0044] その粒状部の具体的な粒径は、炭素繊維構造体の大きさ、炭素繊維構造体中の 微細炭素繊維の外径にも左右される力 例えば、平均値で 20〜5000nm、より好ま しくは 25〜2000nm、さらに好ましくは 30〜500nm程度である。  [0044] The specific particle size of the granular portion is a force that depends on the size of the carbon fiber structure and the outer diameter of the fine carbon fibers in the carbon fiber structure. For example, the average value is 20 to 5000 nm. It is preferably 25 to 2000 nm, more preferably about 30 to 500 nm.
[0045] さらにこの粒状部は、前記したように炭素繊維の成長過程において形成されるもの であるため、比較的球状に近い形状を有しており、その円形度は、平均値で 0. 2〜 < 1、好ましく ίま 0. 5〜0. 99、より好ましく ίま 0. 7〜0. 98程度である。  [0045] Further, since the granular portion is formed in the carbon fiber growth process as described above, it has a relatively spherical shape, and its circularity is 0.2 on average. ~ <1, preferably ί or 0.5 to 0.99, more preferably ί or about 0.7 to 0.98.
[0046] カロえて、この粒状部は、前記したように炭素繊維の成長過程にお 、て形成されるも のであって、例えば、微細炭素繊維同士の接合点を当該炭素繊維合成後に炭素質 物質ないしその炭化物によって付着させてなる構造体等と比較して、当該粒状部に おける、炭素繊維同士の結合は非常に強固なものであり、炭素繊維構造体における 炭素繊維の破断が生じるような条件下においても、この粒状部 (結合部)は安定に保 持される。具体的には例えば、後述する実施例において示すように、当該炭素繊維 構造体を液状媒体中に分散させ、これに一定出力で所定周波数の超音波をかけて 、炭素繊維の平均長がほぼ半減する程度の負荷条件としても、該粒状部の平均粒 径の変化率は、 10%未満、より好ましくは 5%未満であって、粒状部、すなわち、繊 維同士の結合部は、安定に保持されているものである。  [0046] As described above, the granular portion is formed in the carbon fiber growth process, and for example, the carbonaceous material is formed after the carbon fiber is synthesized at the junction between the fine carbon fibers. In addition, the bonding between the carbon fibers in the granular portion is very strong compared to a structure or the like attached by the carbide, and the carbon fiber breaks in the carbon fiber structure. Even below, this granular part (joint part) is kept stable. Specifically, for example, as shown in Examples described later, the carbon fiber structure is dispersed in a liquid medium, and an ultrasonic wave with a predetermined output and a predetermined frequency is applied to the carbon fiber structure, so that the average length of the carbon fibers is almost halved. Even under such a load condition, the change rate of the average particle diameter of the granular part is less than 10%, more preferably less than 5%, and the granular part, that is, the bonded part of the fibers is stably held. It is what has been.
[0047] また、本発明において用いられる炭素繊維構造体は、面積基準の円相当平均径が 50〜500 m程度であることが望ましい。ここで面積基準の円相当平均径とは、炭素 繊維構造体の外形を電子顕微鏡などを用いて撮影し、この撮影画像において、各炭 素繊維構造体の輪郭を、適当な画像解析ソフトウェア、例えば WinRoof (商品名、三 谷商事株式会社製)を用いてなぞり、輪郭内の面積を求め、各繊維構造体の円相当 径を計算し、これを平均化したものである。この円相当平均径が 50 m以下であると 、 3次元構造体として導電性、強度等の効果を十分に発揮することができない。なお 、骨格構造体に用いられる炭素繊維構造体は、大きいほうが好ましいが、大きすぎる と粉体としての取扱が困難となるため、 500 m以下であることが好ましい。 [0048] また、本発明にお 、て用いられる炭素繊維構造体は、上記したように、 3次元ネット ワーク状に存在する炭素繊維が粒状部において互いに結合され、該粒状部力 前 記炭素繊維が複数延出する形状を呈しているが、 1つの炭素繊維構造体において、 炭素繊維を結合する粒状部が複数個存在して 3次元ネットワークを形成している場 合、隣接する粒状部間の平均距離は、例えば、 0. 5 m〜300 m、より好ましくは 0. 5〜: LOO /z m さらに好ましくは 1〜50 /ζ πι程度となる。なお、この隣接する粒状部 間の距離は、 1つの粒状体の中心部からこれに隣接する粒状部の中心部までの距離 を測定したものである。粒状体間の平均距離が、 0. 5 m未満であると、炭素繊維が 3次元ネットワーク状に十分に発展した形態とならないため、最終的に複合材料とし た場合に良好な導電パスや熱伝導パスを形成し得ないものとなる虞れがあり、一方、 平均距離が 300 mを越えるものであると、複合材料を構成する骨格構造体が粗に なってしま!/ヽ、充分な強度が得られな ヽ虡れがあるためである。 [0047] The carbon fiber structure used in the present invention preferably has an area-based circle-equivalent mean diameter of about 50 to 500 m. Here, the area-based circle-equivalent mean diameter is obtained by photographing the outer shape of the carbon fiber structure using an electron microscope or the like, and in this photographed image, the contour of each carbon fiber structure is represented by appropriate image analysis software, for example, Using WinRoof (trade name, manufactured by Mitani Shoji Co., Ltd.), the area within the contour was obtained, the equivalent circle diameter of each fiber structure was calculated, and this was averaged. When the circle-equivalent average diameter is 50 m or less, the three-dimensional structure cannot sufficiently exhibit the effects such as conductivity and strength. The carbon fiber structure used for the skeletal structure is preferably larger, but if it is too large, it becomes difficult to handle as a powder, and therefore it is preferably 500 m or less. [0048] Further, as described above, in the carbon fiber structure used in the present invention, the carbon fibers existing in a three-dimensional network are bonded to each other in the granular portion, and the granular portion force is described above. In a single carbon fiber structure, if there are multiple granular parts that combine carbon fibers to form a three-dimensional network, there is a gap between adjacent granular parts. The average distance is, for example, 0.5 m to 300 m, more preferably 0.5 to: LOO / zm, more preferably about 1 to 50 / ζ πι. The distance between the adjacent granular parts is a distance measured from the central part of one granular body to the central part of the granular part adjacent thereto. If the average distance between the granular materials is less than 0.5 m, the carbon fiber does not fully develop into a three-dimensional network. On the other hand, if the average distance exceeds 300 m, the skeletal structure constituting the composite material becomes rough! / !, sufficient strength This is because there is a drowning that cannot be obtained.
[0049] また、本発明において用いられる炭素繊維構造体は、 3次元ネットワーク状に存在 する炭素繊維がその成長過程にお 、て形成された粒状部にお 、て互いに結合され て!、ることから、上記したように構造体自体の電気的特性等も非常に優れたものであ る力 例えば、一定圧縮密度 0. 8gZcm3において測定した粉体抵抗値力 0. 02 Ω •cm以下、より望ましくは、 0. 001-0. 010 Ω 'cmであることが好ましい。粉体抵抗 値が 0. 02 Ω 'cmを超えるものであると、複合材料となった場合に良好な導電パスを 形成することが難しくなるためである。 [0049] In addition, the carbon fiber structure used in the present invention is such that carbon fibers existing in a three-dimensional network form are bonded to each other in the granular portion formed during the growth process! Therefore, as described above, the force that the electrical characteristics of the structure itself is very excellent, for example, the powder resistance value force measured at a constant compression density of 0.8 gZcm 3 is 0.02 Ω • cm or less. Desirably, it is preferably 0.001-0.010 Ω'cm. This is because when the powder resistance value exceeds 0.02 Ω'cm, it becomes difficult to form a good conductive path when a composite material is formed.
[0050] 次に上記で説明した炭素繊維構造体を用いて形成する骨格構造体につ!ヽて説明 する。  [0050] Next, a skeletal structure formed using the carbon fiber structure described above! I will explain in a moment.
本発明の複合材料の骨格をなす骨格構造体は、上記 3次元ネットワーク状の炭素 繊維構造体がさらに炭素により 3次元に接合されることにより構成されている。このよう な骨格構造体によれば、従来の、炭素繊維単体を接合してなる骨格構造体に比べ て、出発物質である炭素繊維自体が 3次元ネットワークを有している分だけ、強固な 結合力と、高い導電性を持った骨格構造体となっている。  The skeletal structure that forms the skeleton of the composite material of the present invention is configured by further three-dimensionally joining the above-described three-dimensional network-like carbon fiber structure with carbon. According to such a skeletal structure, compared to the conventional skeletal structure obtained by bonding carbon fibers alone, the carbon fiber that is the starting material itself has a three-dimensional network, so that it has a strong bond. It is a skeletal structure with high power and high conductivity.
[0051] また、本発明に用いられる骨格構造体にあっては、ホウ素が含有されていてもよい 。ホウ素を含有することにより、炭素繊維一本一本を結晶性の高い炭素繊維とするこ とができる。本発明において、「骨格構造体にホウ素が含有されている」とは、骨格構 造体を構成する炭素原子の一部がホウ素に置換されている状態の他、骨格構造体 の表面にホウ素が付着した状態をも含むものをいう。 [0051] The skeletal structure used in the present invention may contain boron. By containing boron, each carbon fiber can be made into a highly crystalline carbon fiber. You can. In the present invention, “boron is contained in the skeletal structure” means that boron is present on the surface of the skeletal structure in addition to a state in which a part of carbon atoms constituting the skeletal structure is substituted with boron. It also includes those that are attached.
[0052] 骨格構造体を構成する炭素繊維および接合炭素にホウ素を含有 (ドーピング)する 方法については、本発明は特に限定することはないが、例えば、低温 (例えば 1500 °C以下)で熱処理されたのみで未だ結晶の発達して!/ヽな ヽ状態の炭素繊維、さらに は熱処理して!/、な ヽ (ァズグロゥン)状態の炭素繊維とホウ素(ホウ素化合物を含む) とを混合し、その後、高温でアニーリング処理することにより、炭素繊維および接合炭 素にホウ素を含有せしめることができる。 2000°C以上、さらには 2300°C以上の温度 で黒鉛ィ匕処理された状態の炭素繊維にホウ素を含有せしめることも不可能ではない 力 ホウ素をドーピングさせるためのエネルギーの面力 考えれば好ましくなぐホウ 素は炭素繊維の結晶化を促進するための触媒としても作用するため、黒鉛ィ匕処理の 前段階でホウ素を含有せしめることが好適である。  [0052] The method for containing (doping) boron in the carbon fibers and the bonding carbon constituting the skeleton structure is not particularly limited, but for example, the carbon fiber and the bonding carbon may be heat-treated at a low temperature (eg, 1500 ° C or lower). The crystal is still developing! / Carbon fiber in the ヽ state, and after heat treatment! /, The carbon fiber in the グ ロ state is mixed with boron (including boron compounds), and then By annealing at a high temperature, boron can be contained in the carbon fiber and the bonded carbon. It is not impossible to incorporate boron into carbon fiber that has been treated with graphite at temperatures of 2000 ° C or higher, or even 2300 ° C or higher. Since boron also acts as a catalyst for accelerating crystallization of carbon fibers, it is preferable to contain boron before the graphite soot treatment.
[0053] 骨格構造体に含有されるホウ素としても、本発明は特に限定することはない。なおこ こで、本発明における「ホウ素」とは、元素状のホウ素のみならずホウ素化合物も包含 する概念である。前記のように骨格構造体にホウ素を含有せしめるにあっては、高温 (例えば 1800°C以上)でアニーリング処理を行う関係上、少なくとも 1800°Cに達する 前に分解などによって蒸発しない状態のホウ素を用いることが必要である。この条件 を満たすホウ素としては、例えば、元素状のホウ素、 B O , H BO , B C, BNなどを  [0053] The boron contained in the skeleton structure is not particularly limited. Here, “boron” in the present invention is a concept including not only elemental boron but also boron compounds. As described above, when boron is included in the skeletal structure, annealing is performed at a high temperature (for example, 1800 ° C or higher), so boron that has not evaporated by decomposition or the like before reaching at least 1800 ° C is used. It is necessary to use it. Examples of boron that satisfies this condition include elemental boron, B O, H BO, B C, and BN.
2 3 3 4 4  2 3 3 4 4
挙げることができる。  Can be mentioned.
[0054] ホウ素の含有量としては、骨格構造体に対して 0. 001〜10質量%であることが好 ましぐ 0. 01〜3. 0質量%であることが特に好ましい。ホウ素の含有量が 0. 001質 量%未満の場合、ホウ素含有による効果、つまり炭素繊維の結晶性を向上せしめる ことが難しくなる。一方、含有量が 10質量%を超えると、処理コストが高くなるだけで なぐ熱処理の段階で、溶融燒結し易ぐ固まったり、繊維表面をホウ素が被覆してし まい、逆に導電性を悪化させる場合がある。  [0054] The boron content is preferably 0.001 to 10 mass%, more preferably 0.01 to 3.0 mass%, based on the skeletal structure. If the boron content is less than 0.001% by mass, it is difficult to improve the effect of boron content, that is, the crystallinity of the carbon fiber. On the other hand, if the content exceeds 10% by mass, the heat treatment will not only increase the processing cost, but it may be easily melted and consolidated, or the fiber surface may be coated with boron, conversely deteriorating conductivity. There is a case to let you.
[0055] また、本発明の複合材料を構成する骨格構造体の大きさや形状については、特に 限定されることはなく利用分野や要求される性能などにより適宜選択することが可能 であるが、例えば、その嵩密度が、具体的には、 0. 2〜2. 3gZcm3、より好ましくは 0 . 4〜2. 1cm3であることが望ましい。嵩密度が 2. 3gZcm3を超えるものであると、骨 格構造体の空隙に対して榭脂等を含浸させることが困難となるためである。 [0055] The size and shape of the skeleton structure constituting the composite material of the present invention are not particularly limited, and can be appropriately selected depending on the application field, required performance, and the like. However, for example, the bulk density is desirably 0.2 to 2.3 gZcm 3 , more preferably 0.4 to 2.1 cm 3 . If the bulk density exceeds 2.3 gZcm 3 , it will be difficult to impregnate the voids of the skeletal structure with resin or the like.
[0056] また、本発明にお ヽて用いられる骨格構造体は、高 ヽ強度および導電性を有する 上から、炭素繊維を構成するグラフエンシート中における欠陥が少ないことが望ましく 、具体的には、例えば、ラマン分光分析法で測定される I 、 [0056] Further, the skeletal structure used in the present invention desirably has high strength and conductivity, and preferably has few defects in the graph sheet constituting the carbon fiber. Specifically, , For example, I measured by Raman spectroscopy,
D Λ比が  D Λ ratio is
G 0. 25以下、より 好ましくは 0. 1以下であり、且つ、 I ZI が 0. 6〜1. 5であることが望ましい。ここで  It is desirable that G is 0.25 or less, more preferably 0.1 or less, and I ZI is 0.6 to 1.5. here
G' G  G 'G
、 2000cm_1までのラマン分光分析では、大きな単結晶の黒鉛では 1580cm_1付近 のピーク (Gバンド)しか現れな 、。結晶が有限の微小サイズであることや格子欠陥に より、 1360cm— 1付近にピーク(Dバンド)が出現する。また、測定範囲を広げると、 27 OOcnT1付近に G'バンドが出現する。このため、 Dバンドと Gバンドの強度比(R=I , Do, appear only 1580 cm _1 vicinity of the peak (G band) of graphite in the Raman spectroscopic analysis of up to 2000 cm _1, large single crystals. A peak (D band) appears in the vicinity of 1360 cm- 1 due to the fact that the crystal is finite in size and lattice defects. In addition, when the measurement range is expanded, a G 'band appears near 27 OOcnT 1 . For this reason, the intensity ratio of D band and G band (R = I
13 13
/\ =1 Zi )及び G,バンドと Gバンドの強度比 (I /\ =I ZI )が上記し/ \ = 1 Zi) and G, the intensity ratio of band to G band (I / \ = I ZI)
60 1580 D G 2700 1580 G' G たように所定範囲であると、グラフエンシート中における欠陥量が少な 、ことが認めら れるためである。 60 1580 D G 2700 1580 G 'G As described above, it is recognized that the amount of defects in the graph sheet is small when it is within the predetermined range.
[0057] なお、構造に多少の欠陥を含んで 、ても高 、導電性を得ることが目的の用途であ る場合は、グラフエンシート中にホウ素を添加することが望ましぐ具体的には、例え ば、ラマン分光分析法で測定される I が  [0057] It should be noted that it is desirable to add boron to the graph ensheet when it is intended to obtain high conductivity even if it contains some defects in the structure. For example, the I measured by Raman spectroscopy is
D Λ比  D Λ ratio
G 0. 2〜1. 4であり、且つ、 I G' ZI が  G 0.2 to 1.4, and I G 'ZI is
G 0 G 0
. 2〜0. 8であることが望ましい。この Dバンドと Gバンドの強度比(R=I /\ =1 It is desirable to be 2 to 0.8. The intensity ratio of this D band and G band (R = I / \ = 1
1360 1580 1360 1580
Zi )及び G,バンドと Gバンドの強度比 (I /\ =1 Zi )が上記したように所Zi) and G, and the intensity ratio of band to G band (I / \ = 1 Zi)
D G 2700 1580 G' G D G 2700 1580 G 'G
定範囲であると、グラフエンシート中にホウ素が含有されていると考えられる力 であ る。なお、ホウ素がグラフエンシート内に含有されるとラマン分光における Gバンドの 波形が非対称となり、高波数側に肩が認められるようになる。  Within a certain range, the force is considered to contain boron in the graph ensheet. If boron is contained in the graph ensheet, the G-band waveform in Raman spectroscopy becomes asymmetric, and a shoulder appears on the high wavenumber side.
[0058] また、本発明において用いられる骨格構造体は、空気中での燃焼開始温度が 700 °C以上、より好ましくは 800〜900°Cであることが望ましい。前記したように骨格構造 体を構成する炭素繊維構造体が欠陥が少なぐかつ炭素繊維が所期の外径を有す るものであることから、このような高い熱的安定性を有するものとなる。  [0058] The skeletal structure used in the present invention desirably has a combustion start temperature in air of 700 ° C or higher, more preferably 800 to 900 ° C. As described above, since the carbon fiber structure constituting the skeleton structure has few defects and the carbon fiber has an intended outer diameter, it has such a high thermal stability. Become.
[0059] 上記したような所期の形状を有する炭素繊維構造体は、特に限定されるものではな いが、例えば、次のようにして調製することができる。 [0060] 基本的には、遷移金属超微粒子を触媒として炭化水素等の有機化合物を CVD法 で化学熱分解して繊維構造体 (以下、中間体という)を得る。金属繊維にホウ素を含 有する場合には、この段階、若しくは、タールなどの炭化水素を分離したのち、ホウ 素またはホウ素化合物を混合した状態とする。そしてさらに高温熱処理する。なお、 ホウ素またはホウ素化合物は、炭化水素等の有機化合物に予め混合せしめておい てもよく(つまり中間体を得る前段階でホウ素を添加しておく)、さらには、高温熱処理 後にホウ素を混合せしめることも可能である。 [0059] The carbon fiber structure having the desired shape as described above is not particularly limited, and can be prepared, for example, as follows. [0060] Basically, an organic compound such as a hydrocarbon is chemically pyrolyzed by a CVD method using a transition metal ultrafine particle as a catalyst to obtain a fiber structure (hereinafter referred to as an intermediate). When the metal fiber contains boron, after separating hydrocarbons such as this stage or tar, boron or a boron compound is mixed. Further, a high temperature heat treatment is performed. Note that boron or a boron compound may be mixed in advance with an organic compound such as a hydrocarbon (that is, boron is added before obtaining an intermediate), and further boron is mixed after a high-temperature heat treatment. It is also possible.
[0061] 原料有機化合物としては、ベンゼン、トルエン、キシレンなどの炭化水素、一酸化炭 素(CO)、エタノール等のアルコール類などが使用できる。特に限定されるわけでは ないが、本発明において用いる繊維構造体を得る上においては、炭素源として、分 解温度の異なる少なくとも 2つ以上の炭素化合物を用いることが好ましい。なお、本 明細書において述べる「少なくとも 2つ以上の炭素化合物」とは、必ずしも原料有機 化合物として 2種以上のものを使用するというものではなぐ原料有機化合物としては 1種のものを使用した場合であっても、繊維構造体の合成反応過程において、例え ば、トルエンゃキシレンの水素脱アルキル化(hydrodealkylation)などのような反応を 生じて、その後の熱分解反応系にお!、ては分解温度の異なる 2つ以上の炭素化合 物となって!/ヽるような態様も含むものである。  [0061] As the raw material organic compound, hydrocarbons such as benzene, toluene and xylene, alcohols such as carbon monoxide (CO) and ethanol can be used. Although not particularly limited, in obtaining the fiber structure used in the present invention, it is preferable to use at least two or more carbon compounds having different decomposition temperatures as the carbon source. As used herein, “at least two or more carbon compounds” does not necessarily mean that two or more kinds of raw material organic compounds are used, but a case where one kind of raw material organic compound is used. Even in the process of synthesizing the fiber structure, for example, a reaction such as hydrodealkylation of toluene-xylene occurs, and the subsequent pyrolysis reaction system! It also includes a mode in which two or more carbon compounds having different!
[0062] なお、熱分解反応系にお 、て炭素源としてこのように 2種以上の炭素化合物を存在 させた場合、それぞれの炭素化合物の分解温度は、炭素化合物の種類のみでなぐ 原料ガス中の各炭素化合物のガス分圧ないしモル比によっても変動するものである ため、原料ガス中における 2種以上の炭素化合物の組成比を調整することにより、炭 素化合物として比較的多くの組み合わせを用いることができる。  [0062] When two or more kinds of carbon compounds are present as carbon sources in the thermal decomposition reaction system, the decomposition temperature of each carbon compound is not limited to the type of carbon compound. Therefore, by adjusting the composition ratio of two or more carbon compounds in the raw material gas, a relatively large number of combinations are used as the carbon compounds. be able to.
[0063] 例えば、メタン、ェタン、プロパン類、ブタン類、ペンタン類、へキサン類、ヘプタン 類、シクロプロパン、シクロへキサンなどといったアルカンないしシクロアルカン、特に 炭素数 1〜7程度のアルカン;エチレン、プロピレン、ブチレン類、ペンテン類、ヘプテ ン類、シクロペンテンなどといったアルケンないしシクロォレフイン、特に炭素数 1〜7 程度のアルケン;アセチレン、プロピン等のアルキン、特に炭素数 1〜7程度のアルキ ン;ベンゼン、トノレェン、スチレン、キシレン、ナフタレン、メチノレナフタレン、インデン、 フ ナントレン等の芳香族ないし複素芳香族炭化水素、特に炭素数 6〜18程度の芳 香族ないし複素芳香族炭化水素、メタノール、エタノール等のアルコール類、特に炭 素数 1〜7程度のアルコール類;その他、一酸化炭素、ケトン類、エーテル類等の中 力も選択した 2種以上の炭素化合物を、所期の熱分解反応温度域にぉ 、て異なる分 解温度を発揮できるようにガス分圧を調整し、組み合わせて用いること、および Zま たは、所定の温度領域における滞留時間を調整することで可能であり、その混合比 を最適化することで効率よく本発明に用いる炭素繊維構造体を製造することができる [0063] For example, alkanes or cycloalkanes such as methane, ethane, propanes, butanes, pentanes, hexanes, heptanes, cyclopropane, cyclohexane, etc., particularly alkanes having about 1 to 7 carbon atoms; ethylene, Alkenes such as propylene, butylenes, pentenes, heptenes, cyclopentene, etc., especially alkenes having about 1 to 7 carbon atoms; alkynes such as acetylene and propyne, especially alkynes having about 1 to 7 carbon atoms; benzene, tolylene , Styrene, xylene, naphthalene, methenolenaphthalene, indene, Aromatic or heteroaromatic hydrocarbons such as phenanthrene, especially aromatic or heteroaromatic hydrocarbons having about 6 to 18 carbon atoms, alcohols such as methanol and ethanol, especially alcohols having about 1 to 7 carbon atoms; In addition, the gas partial pressure should be adjusted so that two or more types of carbon compounds, such as carbon monoxide, ketones, ethers, etc., selected in the middle, can be used in the desired thermal decomposition reaction temperature range to exhibit different decomposition temperatures. It is possible to adjust and use in combination, and to adjust the residence time in a predetermined temperature range or Z, and by optimizing the mixing ratio, the carbon fiber structure used in the present invention can be efficiently used. Can be manufactured
[0064] このような 2種以上の炭素化合物の組み合わせのうち、例えば、メタンとベンゼンと の組み合わせにおいては、メタン/ベンゼンのモル比が、 > 1〜600、より好ましくは 1. 1〜200、さらに好ましくは 3〜: LOOとすることが望ましい。なお、この値は、反応炉 の入り口におけるガス組成比であり、例えば、炭素源の 1つとしてトルエンを使用する 場合には、反応炉内でトルエンが 100%分解して、メタンおよびベンゼンが 1: 1で生 じることを考慮して、不足分のメタンを別途供給するようにすれば良い。例えば、メタ ン Zベンゼンのモル比を 3とする場合には、トルエン 1モルに対し、メタン 2モルを添 加すれば良い。なお、このようなトルエンに対して添加するメタンとしては、必ずしも新 鮮なメタンを別途用意する方法のみならず、当該反応炉より排出される排ガス中に含 まれる未反応のメタンを循環使用することにより用いることも可能である。 [0064] Among such combinations of two or more carbon compounds, for example, in the combination of methane and benzene, the molar ratio of methane / benzene is> 1 to 600, more preferably 1.1 to 200, More preferably, 3 to: LOO is desirable. This value is the gas composition ratio at the inlet of the reactor. For example, when toluene is used as one of the carbon sources, toluene is decomposed 100% in the reactor and methane and benzene are 1 : In consideration of what occurs in 1, it is sufficient to supply the shortage of methane separately. For example, if the molar ratio of methane to benzene is 3, add 2 moles of methane to 1 mole of toluene. Note that methane to be added to toluene is not limited to the method of preparing fresh methane separately, but unreacted methane contained in the exhaust gas discharged from the reactor is circulated and used. It is also possible to use it.
[0065] このような範囲内の組成比とすることで、炭素繊維部および粒状部のいずれもが十 分を発達した構造を有する炭素繊維構造体を得ることが可能となる。  [0065] By setting the composition ratio within such a range, it is possible to obtain a carbon fiber structure having a structure in which both the carbon fiber portion and the granular portion are sufficiently developed.
[0066] なお、雰囲気ガスには、アルゴン、ヘリウム、キセノン等の不活性ガスや水素を用い ることがでさる。  [0066] As the atmospheric gas, an inert gas such as argon, helium, xenon, or hydrogen can be used.
[0067] また、触媒としては、鉄、コバルト、モリブデンなどの遷移金属あるいはフエ口セン、 酢酸金属塩などの遷移金属化合物と硫黄あるいはチォフェン、硫化鉄などの硫黄化 合物の混合物を使用する。  [0067] Further, as the catalyst, a mixture of transition metals such as iron, cobalt and molybdenum, transition metal compounds such as iron cene, and metal acetates, and sulfur compounds such as sulfur, thiophene and iron sulfide is used.
[0068] 中間体の合成は、通常行われている炭化水素等の CVD法を用い、原料となる炭 化水素および触媒の混合液を蒸発させ、水素ガス等をキャリアガスとして反応炉内に 導入し、 800〜1300°Cの温度で熱分解する。これにより、外径が 15〜: LOOnmの繊 維相互が、前記触媒の粒子を核として成長した粒状体によって結合した疎な三次元 構造を有する炭素繊維構造体(中間体)が複数集まった数 cm力 数十センチの大き さの集合体を合成する。 [0068] The synthesis of the intermediate is performed by using a CVD method such as hydrocarbon, which is usually performed, and evaporating the mixed liquid of hydrocarbon and catalyst as raw materials and introducing hydrogen gas or the like into the reactor as a carrier gas. And pyrolyze at a temperature of 800-1300 ° C. As a result, the outer diameter is 15 ~: An assembly of several centimeters of force and several tens of centimeters in which a plurality of carbon fiber structures (intermediates) having a sparse three-dimensional structure joined together by granular materials grown using the catalyst particles as cores. Synthesize.
[0069] 原料となる炭化水素の熱分解反応は、主として触媒粒子な 、しこれを核として成長 した粒状体表面において生じ、分解によって生じた炭素の再結晶化が当該触媒粒 子ないし粒状体より一定方向に進むことで、繊維状に成長する。し力しながら、本発 明に係る炭素繊維構造体を得る上においては、このような熱分解速度と成長速度と のノ ランスを意図的に変化させる、例えば上記したように炭素源として分解温度の異 なる少なくとも 2つ以上の炭素化合物を用いることで、一次元的方向にのみ炭素物質 を成長させることなぐ粒状体を中心として三次元的に炭素物質を成長させる。もちろ ん、このような三次元的な炭素繊維の成長は、熱分解速度と成長速度とのバランスに のみ依存するものではなぐ触媒粒子の結晶面選択性、反応炉内における滞留時間 、炉内温度分布等によっても影響を受け、また、前記熱分解反応と成長速度とのバラ ンスは、上記したような炭素源の種類のみならず、反応温度およびガス温度等によつ ても影響受けるが、概して、上記したような熱分解速度よりも成長速度の方が速いと、 炭素物質は繊維状に成長し、一方、成長速度よりも熱分解速度の方が速いと、炭素 物質は触媒粒子の周面方向に成長する。従って、熱分解速度と成長速度とのバラン スを意図的に変化させることで、上記したような炭素物質の成長方向を一定方向とす ることなく、制御下に多方向として、本発明に係るような三次元構造を形成することが できるものである。なお、生成する中間体において、繊維相互が粒状体により結合さ れた前記したような三次元構造を容易に形成する上では、触媒等の組成、反応炉内 における滞留時間、反応温度、およびガス温度等を最適化することが望ましい。  [0069] The pyrolysis reaction of the hydrocarbon as a raw material is mainly produced on the surface of granular particles that are grown using the catalyst particles as a nucleus, and the recrystallization of carbon generated by the decomposition is caused by the catalyst particles or granular materials. By proceeding in a certain direction, it grows in a fibrous form. However, in order to obtain the carbon fiber structure according to the present invention, the tolerance between the thermal decomposition rate and the growth rate is intentionally changed, for example, as described above, the decomposition temperature as a carbon source. By using at least two or more different carbon compounds, the carbon material is grown three-dimensionally around the granular material that does not grow the carbon material only in one-dimensional direction. Of course, the growth of such three-dimensional carbon fibers is not dependent only on the balance between the pyrolysis rate and the growth rate, but the crystal face selectivity of the catalyst particles, the residence time in the reactor, The temperature distribution is also affected, and the balance between the pyrolysis reaction and the growth rate is affected not only by the type of carbon source as described above but also by the reaction temperature and gas temperature. In general, when the growth rate is faster than the pyrolysis rate as described above, the carbon material grows in a fibrous form, whereas when the pyrolysis rate is faster than the growth rate, the carbon material becomes a catalyst particle. Grows in the circumferential direction. Therefore, by intentionally changing the balance between the thermal decomposition rate and the growth rate, the growth direction of the carbon material as described above is made to be a multi-direction under control without making the growth direction constant. Such a three-dimensional structure can be formed. In order to easily form a three-dimensional structure as described above in which the fibers are bonded together by granular materials in the produced intermediate, the composition of the catalyst, the residence time in the reaction furnace, the reaction temperature, and the gas It is desirable to optimize the temperature and the like.
[0070] なお、本発明に用いる炭素繊維構造体を効率良く製造する方法としては、上記した ような分解温度の異なる 2つ以上の炭素化合物を最適な混合比にて用いるアブロー チ以外に、反応炉に供給される原料ガスに、その供給口近傍において乱流を生じさ せるアプローチを挙げることができる。ここでいう乱流とは、激しく乱れた流れであり、 猶 ヽて流れるような流れを ヽぅ。  [0070] In addition, as a method for efficiently producing the carbon fiber structure used in the present invention, a reaction other than the above-described approach using two or more carbon compounds having different decomposition temperatures at an optimum mixing ratio may be used. One approach is to generate turbulence in the vicinity of the supply port of the raw material gas supplied to the furnace. The turbulent flow here is a turbulent and turbulent flow.
[0071] 反応炉においては、原料ガスが、その供給口より反応炉内へ導入された直後にお いて、原料混合ガス中の触媒としての遷移金属化合物の分解により金属触媒微粒子 が形成されるが、これは、次のような段階を経てもたらされる。すなわち、まず、遷移 金属化合物が分解され金属原子となり、次いで、複数個、例えば、約 100原子程度 の金属原子の衝突によりクラスター生成が起こる。この生成したクラスターの段階では 、微細炭素繊維の触媒として作用せず、生成したクラスター同士が衝突により更に集 合し、約 3ηπ!〜 lOnm程度の金属の結晶性粒子に成長して、微細炭素繊維の製造 用の金属触媒微粒子として利用されることとなる。 [0071] In the reaction furnace, immediately after the source gas is introduced into the reaction furnace from the supply port. In addition, the metal catalyst fine particles are formed by the decomposition of the transition metal compound as the catalyst in the raw material mixed gas, and this is brought about through the following steps. That is, the transition metal compound is first decomposed into metal atoms, and then, cluster formation occurs by collision of a plurality of, for example, about 100 atoms. At the stage of this generated cluster, it does not act as a catalyst for fine carbon fibers, and the generated clusters further gather together by collision, resulting in about 3ηπ! It grows to crystalline particles of about lOnm and is used as metal catalyst fine particles for the production of fine carbon fibers.
[0072] この触媒形成過程にお!、て、上記したように激 、乱流による渦流が存在すると、 ブラウン運動のみの金属原子又はクラスター同士の衝突と比してより激しい衝突が可 能となり、単位時間あたりの衝突回数の増加によって金属触媒微粒子が短時間に高 収率で得られ、又、渦流によって濃度、温度等が均一化されることにより粒子のサイ ズの揃った金属触媒微粒子を得ることができる。さらに、金属触媒微粒子が形成され る過程で、渦流による激しい衝突により金属の結晶性粒子が多数集合した金属触媒 微粒子の集合体を形成する。このようにして金属触媒微粒子が速やかに生成される ため、炭素化合物の分解が促進されて、十分な炭素物質が供給されることになり、前 記集合体の各々の金属触媒微粒子を核として放射状に微細炭素繊維が成長し、一 方で、前記したように一部の炭素化合物の熱分解速度が炭素物質の成長速度よりも 速いと、炭素物質は触媒粒子の周面方向にも成長し、前記集合体の周りに粒状部を 形成し、所期の三次元構造を有する炭素繊維構造体を効率よく形成する。なお、前 記金属触媒微粒子の集合体中には、他の触媒微粒子よりも活性の低 ヽな ヽしは反 応途中で失活してしまった触媒微粒子も一部に含まれていることも考えられ、集合体 として凝集するより以前にこのような触媒微粒子の表面に成長していた、あるいは集 合体となった後にこのような触媒微粒子を核として成長した非繊維状ないしはごく短 い繊維状の炭素物質層が、集合体の周縁位置に存在することで、本発明に係る炭 素繊維構造体の粒状部を形成しているものとも思われる。  [0072] In this catalyst formation process, if there is a vortex due to intense and turbulent flow as described above, more intense collisions are possible compared to collisions between metal atoms or clusters with only Brownian motion, By increasing the number of collisions per unit time, metal catalyst fine particles can be obtained in a high yield in a short time, and by concentrating the concentration, temperature, etc. by eddy current, metal catalyst fine particles with uniform particle size can be obtained. be able to. Furthermore, in the process of forming the metal catalyst fine particles, an aggregate of metal catalyst fine particles in which a large number of metal crystalline particles are gathered is formed by vigorous collision due to the vortex. Since the metal catalyst fine particles are generated promptly in this way, the decomposition of the carbon compound is promoted and sufficient carbon material is supplied, and each metal catalyst fine particle of the aggregate is radially formed as a nucleus. On the other hand, if the thermal decomposition rate of some of the carbon compounds is faster than the growth rate of the carbon material as described above, the carbon material also grows in the circumferential direction of the catalyst particles, A granular portion is formed around the aggregate to efficiently form a carbon fiber structure having an intended three-dimensional structure. The aggregate of metal catalyst fine particles may include catalyst fine particles that are less active than other catalyst fine particles or that have been deactivated during the reaction. The non-fibrous or very short fibrous shape that has grown on the surface of such a catalyst fine particle before agglomerating as an aggregate, or has grown with such a catalyst fine particle as a nucleus after becoming an aggregate. This carbon material layer is considered to form the granular part of the carbon fiber structure according to the present invention by being present at the peripheral position of the aggregate.
[0073] 反応炉の原料ガス供給口近傍にお!、て、原料ガスの流れに乱流を生じさせる具体 的手段としては、特に限定されるものではなぐ例えば、原料ガス供給口より反応炉 内に導出される原料ガスの流れに干渉し得る位置に、何らかの衝突部を設ける等の 手段を採ることができる。前記衝突部の形状としては、何ら限定されるものではなぐ 衝突部を起点として発生した渦流によって十分な乱流が反応炉内に形成されるもの であれば良いが、例えば、各種形状の邪魔板、パドル、テーパ管、傘状体等を単独 であるいは複数組み合わせて 1な 、し複数個配置すると 、つた形態を採択することが できる。 [0073] Specific means for generating a turbulent flow in the raw material gas flow in the vicinity of the raw material gas supply port of the reaction furnace is not particularly limited. For example, a collision part is provided at a position where it can interfere with the flow of the raw material gas Measures can be taken. The shape of the collision part is not limited in any way as long as a sufficient turbulent flow is formed in the reactor by the vortex generated from the collision part. For example, various shapes of baffle plates If one or more paddles, taper tubes, umbrellas, etc. are used alone or in combination, a plurality of forms can be adopted.
[0074] このようにして、触媒および炭化水素の混合ガスを 800〜1300°Cの範囲の一定温 度で加熱生成して得られた中間体は、炭素原子力もなるパッチ状のシート片を貼り合 わせたような (生焼け状態の、不完全な)構造を有し、ラマン分光分析をすると、 ンドが非常に大きぐ欠陥が多い。また、生成した中間体は、未反応原料、非繊維状 炭化物、タール分および触媒金属を含んでいるため、 800〜1200°Cで加熱して未 反応原料やタール分などの揮発分を除去した後に骨格構造体に用いてもよ!、。また 高温熱処理(1800°C以上)を中間体に施した後、骨格構造体に用いてもよいが、上 記したようにホウ素をドーピングさせるエネルギーの面力もすると好ましくな!/、。  [0074] In this way, the intermediate obtained by heating the catalyst and hydrocarbon mixed gas at a constant temperature in the range of 800 to 1300 ° C is pasted with patch-like sheet pieces that also contain carbon nuclear power. It has a combined (incomplete, burnt-in) structure, and when it is analyzed by Raman spectroscopy, there are many defects that are very large. In addition, since the generated intermediate contains unreacted raw materials, non-fibrous carbides, tar content and catalytic metal, it was heated at 800-1200 ° C to remove volatile content such as unreacted raw materials and tar content. You can use it later for the skeletal structure! In addition, high-temperature heat treatment (1800 ° C or higher) may be applied to the intermediate and then used for the skeleton structure. However, as described above, it is preferable that the surface energy of boron doping is also good! /.
[0075] なお、このような高温熱処理前もしくは処理後において、炭素繊維構造体の円相当 平均径を 50〜500 mに解砕 '粉砕処理する工程を経ることで、所望の円相当平均 径を有する炭素繊維構造体を得る。  [0075] It should be noted that before or after such high-temperature heat treatment, the carbon fiber structure has a circle equivalent average diameter of 50 to 500 m, and is subjected to a step of crushing and pulverizing to obtain a desired circle equivalent average diameter. A carbon fiber structure is obtained.
[0076] このような特性を有する本発明における骨格構造体の製造方法にっ 、ては、特に 限定されることはないが、具体例を示すと以下の通りである。  [0076] The method for producing a skeleton structure according to the present invention having such characteristics is not particularly limited, but specific examples are as follows.
[0077] まず、上記で説明した炭素繊維構造体と、有機ノインダ一とを双腕型-一ダーゃミ キサー型混練機を用いて混合混練する。ノインダ一としては、熱硬化性榭脂あるい はピッチなどが挙げられる。熱硬化性榭脂は、常温では液体状態のもの、固形状で あるが加熱温度 50〜90°C程度で液体状になるものがある力 100〜200°C程度の 加熱による硬化工程により架橋,重合して高分子となり固化する性質を有し、カロえて、 高温に加熱しても流動状態とならずに分解して炭素化すると!ヽぅ性質を有して!/ヽるも のであればいずれのものであってもよい。ピッチは様々な種類のものがあるが、等方 性ピッチ、メソフェーズピッチ等、いずれのものであってもよい。  [0077] First, the carbon fiber structure described above and the organic noinder are mixed and kneaded by using a double-arm / single-mixer type kneader. Examples of the noda include thermosetting resin or pitch. Thermosetting resin is in a liquid state at room temperature, or in a solid state but becomes a liquid state at a heating temperature of about 50 to 90 ° C. It is crosslinked by a curing process by heating at about 100 to 200 ° C. It has the property of polymerizing into a polymer and solidifying. If it is decomposed and carbonized without heating even when heated to a high temperature!ヽ ぅ Have properties! / Anything that can be used is acceptable. There are various types of pitch, but any pitch such as isotropic pitch and mesophase pitch may be used.
[0078] なお、混練時に溶剤を用いる熱硬化性榭脂においては、混練後において熱硬化 性榭脂を硬化させない程度の温度で溶剤を乾燥させておく。 [0079] 続ヽて、炭素繊維構造体が熱硬化性榭脂と混合混練されて塊状になって ヽる場合 には、解砕して次工程である成形工程に供することとする。 [0078] In the thermosetting resin using a solvent during kneading, the solvent is dried at a temperature that does not cure the thermosetting resin after kneading. [0079] Subsequently, when the carbon fiber structure is mixed and kneaded with the thermosetting resin to form a lump, the carbon fiber structure is crushed and used for the next forming step.
[0080] 成形工程においては、金型を用いて上下力 プレスする方法、ゴム型を用いて静 水圧にて等方的にプレスする方法などが好適である。  [0080] In the molding step, a method in which vertical force pressing is performed using a mold, a method in which isotropic pressing is performed with a hydrostatic pressure using a rubber mold, and the like are preferable.
[0081] プレス時における成形圧力は、 l〜2000kg/cm3程度が好ましい。なお、成形時に 炭素繊維構造体間が熱硬化性榭脂にて結合されるが、熱硬化性榭脂が硬化してい ないと結合力が弱ぐ圧力を抜くと、炭素繊維構造体が有する復元性により結合した のものが外れてしまうため、プレス時に 100〜200°C程度の温度に加熱して熱硬化 性榭脂を硬化させて結合力を高めておくことが好ましい。 [0081] The molding pressure during pressing is preferably about 1 to 2000 kg / cm 3 . The carbon fiber structures are bonded with thermosetting resin during molding, but if the pressure is weakened if the thermosetting resin is not cured, the carbon fiber structure will be restored. Since the bonded material is removed due to the property, it is preferable to heat the thermosetting resin by heating to a temperature of about 100 to 200 ° C. during pressing to increase the bonding force.
[0082] 次に、熱硬化性榭脂を硬化して得た成形体を脱酸素雰囲気または不活性ガス雰 囲気中で加熱することにより熱硬化性榭脂を炭化させる。熱硬化性榭脂は、 300〜9 00°Cの範囲で分解して炭素化し、さらに高温にてアニーリング処理を施すことにより 、炭素繊維構造体を構成するパッチ状のシート片は、それぞれ結合して複数のダラ フェンシート状の層を形成する。なお、アニーリング処理の際に、熱硬化性榭脂が炭 化した部分も炭素繊維構造体と同様改質され、黒鉛化することとなる。  [0082] Next, the thermosetting resin is carbonized by heating the molded product obtained by curing the thermosetting resin in a deoxygenated atmosphere or an inert gas atmosphere. The thermosetting resin is decomposed and carbonized within a range of 300 to 900 ° C, and further subjected to an annealing treatment at a high temperature, whereby the patch-like sheet pieces constituting the carbon fiber structure are bonded to each other. A plurality of dalafen sheet-like layers are formed. In the annealing process, the carbonized portion of the thermosetting resin is also modified and graphitized in the same manner as the carbon fiber structure.
[0083] ノインダ一にピッチを用いる場合は、プレス成形後 150〜400°Cで酸化性雰囲気 で不融化処理し、その後、 800〜1500°Cで炭素化する。 [0083] When pitch is used for the noinder, it is infusibilized in an oxidizing atmosphere at 150 to 400 ° C after press molding, and then carbonized at 800 to 1500 ° C.
[0084] なお、当該高温熱処理をする段階において、成形体とホウ素とを混合しておくこと により、炭素繊維の結晶内にホウ素を含有せしめる(ドーピングする)ことができる。こ こで、炭素繊維構造体の結晶内にホウ素を効率良く含有せしめるためには、炭素繊 維構造体とホウ素とをよく混合し、これらが均一に接触するようにすることが必要であ る。そのためには、ホウ素(またはホウ素化合物)の粒子はできるだけ粒径の小さいも のを使用することが好ましい。粒子が大きいと部分的に高濃度領域が発生することに なり、固結化の原因になりかねない。具体的にはホウ素の粒度は平均粒径で 100 m以下、好ましくは 50 m以下、より好ましくは 20 m以下とする。また、ホウ素源と して硼酸等を用いる場合は、水溶液として添加し、予め水分を蒸発させる方法やカロ 熱過程で水分を蒸発する方法も用いることができる。水溶液を均一に混合すれば水 分蒸発後はホウ素化合物を繊維表面に均一に付着させることができる。 [0085] 熱硬化性榭脂またはピッチの 、ずれを用いてもノ インダ一が硬化あるいは不融化 するまでは成形体に圧力を加え、炭素繊維構造体の復元による接合部分の接離を 防止することが好ましい。さらに好ましくは、炭素化及び黒鉛ィ匕工程においてのバイ ンダ一が炭素化し、炭素繊維構造体およびバインダー由来の炭素が黒鉛ィ匕する際も 圧力をカ卩えておくことが好ましい。 1800°C以上の温度の高温にて熱処理を施すと炭 素繊維構造体が拘束されたまま熱処理され、アニーリングにより成形体内での炭素 繊維構造体の形状は固定ィ匕することができる。 [0084] In the stage of performing the high-temperature heat treatment, boron can be contained (doped) in the crystal of the carbon fiber by mixing the compact and boron. Here, in order to efficiently contain boron in the crystal of the carbon fiber structure, it is necessary to mix the carbon fiber structure and boron well so that they are in uniform contact. . For this purpose, it is preferable to use boron (or boron compound) particles having a particle size as small as possible. If the particles are large, a high-concentration region is partially generated, which may cause consolidation. Specifically, the average particle size of boron is 100 m or less, preferably 50 m or less, more preferably 20 m or less. In addition, when boric acid or the like is used as the boron source, a method of adding it as an aqueous solution and evaporating water in advance or a method of evaporating water in a caloric heat process can be used. If the aqueous solution is uniformly mixed, the boron compound can be uniformly adhered to the fiber surface after the water evaporation. [0085] Even if a deviation of the thermosetting resin or pitch is used, pressure is applied to the molded body until the binder is cured or infusible to prevent contact and separation of the joint portion due to restoration of the carbon fiber structure. It is preferable. More preferably, it is preferable to keep the pressure under pressure when the binder in the carbonization and graphite process is carbonized and the carbon fiber structure and carbon derived from the binder are graphitized. When heat treatment is performed at a high temperature of 1800 ° C or higher, the carbon fiber structure is heat-treated while being restrained, and the shape of the carbon fiber structure in the molded body can be fixed by annealing.
[0086] 次に、上記の炭素化及び黒鉛化工程を終えた、炭素繊維構造体が炭素で接合し てなる骨格構造体の内部に形成される空隙部に榭脂、ゴム、金属、カーボン系材料 を含浸させる含浸工程を行う。  [0086] Next, after the above carbonization and graphitization steps, a resin, rubber, metal, carbon-based resin is formed in a void formed inside a skeleton structure in which a carbon fiber structure is bonded with carbon. An impregnation process for impregnating the material is performed.
[0087] 含浸工程において含浸せしめる榭脂としては、例えばポリプロピレン、ポリエチレン 、ポリスチレン、ポリ塩化ビュル、ポリアセタール、ポリエチレンテレフタレート、ポリ力 ーボネート、ポリビュルアセテート、ポリアミド、ポリアミドイミド、ポリエーテルイミド、ポリ エーテルエーテルケトン、ポリビニルアルコール、ポリフエ二レンエーテル、ポリ(メタ) アタリレート及び液晶ポリマー等の各種熱可塑性樹脂、エポキシ樹脂、ビュルエステ ル榭脂、フエノール榭脂、不飽和ポリエステル榭脂、フラン榭脂、イミド榭脂、ウレタン 榭脂、メラミン榭脂、シリコーン榭脂およびユリア榭脂等の各種熱硬化性榭脂等を挙 げることができる。また、含浸させるゴムとしては、天然ゴム、スチレン 'ブタジエンゴム (SBR)、ブタジエンゴム(BR)、イソプレンゴム(IR)、エチレン 'プロピレンゴム(EPD M)、二トリルゴム(NBR)、クロロプレンゴム(CR)、ブチルゴム(IIR)、ウレタンゴム、 シリコーンゴム、フッ素ゴム、アクリルゴム(ACM)、ェピクロロヒドリンゴム、エチレンァ クリルゴム、ノルボルネンゴム等を挙げることができる。また、含浸せしめる金属として は、アルミニウム、マグネシウム、鉛、銅、タングステン、チタン、ニオブ、ハフニウム、 バナジウム、並びにこれらの合金及び混合物等が挙げられる。さらに含浸せしめる力 一ボン系材料としては、例えばグラッシ一カーボンを挙げることができる。  [0087] Examples of the resin to be impregnated in the impregnation step include polypropylene, polyethylene, polystyrene, polychlorinated butyl, polyacetal, polyethylene terephthalate, polycarbonate, polybutyrate, polyamide, polyamideimide, polyetherimide, polyetheretherketone. , Polyvinyl alcohol, polyphenylene ether, poly (meth) acrylate, liquid crystal polymer and other thermoplastic resins, epoxy resins, burester resin, phenol resin, unsaturated polyester resin, furan resin, imide resin Examples thereof include various thermosetting resins such as fats, urethane resins, melamine resins, silicone resins and urea resins. Natural rubber, styrene butadiene rubber (SBR), butadiene rubber (BR), isoprene rubber (IR), ethylene propylene rubber (EPD M), nitrile rubber (NBR), chloroprene rubber (CR ), Butyl rubber (IIR), urethane rubber, silicone rubber, fluorine rubber, acrylic rubber (ACM), epichlorohydrin rubber, ethylene acrylic rubber, norbornene rubber and the like. Examples of the metal to be impregnated include aluminum, magnesium, lead, copper, tungsten, titanium, niobium, hafnium, vanadium, and alloys and mixtures thereof. Further, as an impregnating force, the one-bon-based material includes, for example, glassy carbon.
[0088] 含浸方法としては、圧力方式と吸引方式のいずれもが適用可能である。圧力方式 の含浸装置を用いる場合には、雌金型と雄金型からなる圧縮用金型の中に前述の 骨格構造体と含浸材料を挿入し、圧力により含浸材料を骨格構造体の内部に形成さ れた空隙部に含浸させる。前記圧縮用金型はヒーターにより加熱することができる。 含浸材料が硬化剤により硬化させる榭脂モノマーである場合には前記ヒーターによる 加熱は必要としない。この圧力方式は、上記の含浸材料のすべてに適用可能である [0088] As the impregnation method, either a pressure method or a suction method can be applied. When a pressure type impregnation apparatus is used, the aforementioned skeletal structure and impregnation material are inserted into a compression mold composed of a female mold and a male mold, and the impregnation material is placed inside the skeleton structure by pressure. Formed Impregnated into the voids. The compression mold can be heated by a heater. When the impregnating material is a resin monomer that is cured by a curing agent, heating by the heater is not necessary. This pressure method is applicable to all of the above impregnated materials
[0089] 一方、吸引方式の含浸装置を用いる場合、含浸材料が金属やカーボン系材料の 場合には適用できないが、硬化剤により硬化させる榭脂モノマーなどに対して有効な 方法である。 On the other hand, in the case of using a suction type impregnation apparatus, it is not applicable when the impregnation material is a metal or a carbon-based material, but it is an effective method for a resin monomer cured by a curing agent.
[0090] 本発明の複合材料全体に対する骨格構造体の体積%については、骨格構造体の 空隙率や含浸材料の種類によって左右されるものであり、一概に特定することはでき ないが、 10〜99. 9%であることが好ましぐ 30〜90%が特に好ましい。骨格構造体 の体積%が10%以下であると、骨格構造体の強度が充分なものとならない。一方、 骨格構造体の体積%が、 99. 9%以上であると、空隙部への材料の含浸が困難とな るためである。  [0090] The volume% of the skeletal structure with respect to the entire composite material of the present invention depends on the porosity of the skeletal structure and the type of impregnating material, and cannot be generally specified. 99.9% is preferred 30 to 90% is particularly preferred. When the volume% of the skeletal structure is 10% or less, the strength of the skeletal structure is not sufficient. On the other hand, if the volume% of the skeletal structure is 99.9% or more, it is difficult to impregnate the material into the voids.
[0091] さらに、本発明に係る複合材料に関して、これを、配合される炭素繊維構造体の機 能別に具体例を示すと、次のようなものが例示されが、もちろん、これらに何ら限定さ れるものではない。  [0091] Further, regarding the composite material according to the present invention, when specific examples are shown according to the function of the carbon fiber structure to be blended, the following are exemplified, but of course, the present invention is not limited to these. Is not something
[0092] 1)導電性を利用するもの [0092] 1) Using electrical conductivity
榭脂を含浸することによる、導電性榭脂及び導電性榭脂成型体として,例えば包装 材、ガスケット、容器、抵抗体、電線、等に好適に用いられる。また、榭脂との複合材 に加え、無機材料、特にセラミックス、金属等の材料を含浸した複合材料においても 同様の効果が期待できる。  As a conductive resin and a conductive resin molding by impregnating the resin, it is suitably used for packaging materials, gaskets, containers, resistors, electric wires, and the like. The same effect can be expected for composite materials impregnated with inorganic materials, especially ceramics, metals, etc., in addition to composite materials with resin.
[0093] 2)熱伝導性を利用するもの [0093] 2) Using thermal conductivity
上記導電性の利用の場合と同様の用い方ができる。  It can be used in the same manner as in the case of using the conductivity.
[0094] 3)電磁波遮蔽性を利用するもの [0094] 3) Using electromagnetic wave shielding
榭脂を含浸することにより、電磁波遮蔽材等として好適である。  It is suitable as an electromagnetic shielding material or the like by impregnating with rosin.
[0095] 4)物理的特性を利用するもの [0095] 4) Using physical properties
摺動性を高めるために榭脂、金属を含浸することで、ロール、ブレーキ部品、タイヤ 、ベアリング、潤滑油、歯車、パンタグラフ等に利用することができる。 また、軽量で強靭な特性を活かして電線、家電 '車輛'飛行機等のボディ、機械の ハウジングに利用することも可能であろう。このほか、従来の炭素繊維、ビーズの代替 としても使用でき、例えば電池の極材、スィッチ、防振材に応用することもできる。 By impregnating with grease or metal to improve slidability, it can be used for rolls, brake parts, tires, bearings, lubricants, gears, pantographs, and the like. In addition, it will be possible to use it for the body of electric wires, home appliances 'vehicles' airplanes, etc., and the housing of machinery by utilizing its light weight and tough characteristics. In addition, it can also be used as a substitute for conventional carbon fibers and beads, and can be applied to battery pole materials, switches, and vibration-proof materials, for example.
[0096] 5)フィラー特性を利用するもの  [0096] 5) Using filler properties
炭素繊維構造体の有する微細繊維は優れた強度を持ち、柔軟性があり、網目構造 を構成するフイラ一特性が優れている。この特性を利用することによって、リチウムィ オン 2次電池、鉛蓄電池、キャパシター、燃料電池等のエネルギーディバイスの電極 の強化とサイクル特性の向上に寄与できる。  The fine fibers of the carbon fiber structure have excellent strength, flexibility, and excellent filler characteristics that constitute a network structure. By utilizing this characteristic, it can contribute to the enhancement of the electrodes of the energy devices such as lithium-ion secondary battery, lead-acid battery, capacitor, fuel cell and the improvement of cycle characteristics.
実施例  Example
[0097] 以下、実施例により本発明を更に詳しく説明するが、本発明は下記の実施例に何 ら限定されるものではない。  Hereinafter, the present invention will be described in more detail by way of examples. However, the present invention is not limited to the following examples.
なお、以下において、本発明に用いられる炭素繊維構造体の各物性値は次のよう にして測定した。  In the following, each physical property value of the carbon fiber structure used in the present invention was measured as follows.
[0098] <面積基準の円相当平均径>  [0098] <Area-based circle-equivalent mean diameter>
まず、粉砕品の写真を SEMで撮影する。得られた SEM写真において、炭素繊維 構造体の輪郭が明瞭なもののみを対象とし、炭素繊維構造体が崩れているようなも のは輪郭が不明瞭であるために対象としな力つた。 1視野で対象とできる炭素繊維構 造体 (60〜80個程度)はすべて用い、 3視野で約 200個の炭素繊維構造体を対象と した。対象とされた各炭素繊維構造体の輪郭を、画像解析ソフトウェア WinRoof ( 商品名、三谷商事株式会社製)を用いてなぞり、輪郭内の面積を求め、各繊維構造 体の円相当径を計算し、これを平均化した。  First, take a photograph of the pulverized product with SEM. In the obtained SEM photograph, only the carbon fiber structure with a clear outline was the target, and the carbon fiber structure that was broken was unclear because the outline was unclear. All carbon fiber structures (about 60 to 80) that can be targeted in one field of view were used, and about 200 carbon fiber structures were targeted in three fields of view. The contour of each carbon fiber structure is traced using image analysis software WinRoof (trade name, manufactured by Mitani Corporation), the area within the contour is obtained, and the equivalent circle diameter of each fiber structure is calculated. This was averaged.
[0099] <嵩密度の測定 >  [0099] <Measurement of bulk density>
内径 70mmで分散板付透明円筒に lg粉体を充填し、圧力 0. IMpa、容量 1. 3リツ トルの空気を分散板下部力 送り粉体を吹出し、自然沈降させる。 5回吹出した時点 で沈降後の粉体層の高さを測定する。このとき測定箇所は 6箇所とることとし、 6箇所 の平均を求めた後、嵩密度を算出した。  Fill a transparent cylinder with an inner diameter of 70 mm with lg powder, pressure 0. IMpa, capacity 1.3 liters of air. Measure the height of the powder layer after settling at the time of blowing out 5 times. At this time, the number of measurement locations was assumed to be 6, and the average of the 6 locations was obtained, and then the bulk density was calculated.
[0100] <ラマン分光分析 > [0100] <Raman spectroscopy>
堀場ジョバンイボン製 LabRam800を用い、アルゴンレーザーの 514nmの波長を 用いて測定した。 Using LabRam800 manufactured by Horiba Jobin Yvon, the wavelength of 514nm of the argon laser And measured.
[0101] <導電性 >  [0101] <Conductivity>
得られた板状試験片の導電性を、四探針低抵抗率計 (三菱ィ匕学 (株)製、ロレスタ G P)を用いて測定し、同抵抗計により体積抵抗(Ω 'cm)に換算し、平均値を算出した  The conductivity of the obtained plate-shaped test piece was measured using a four-point probe low resistivity meter (Made by Mitsubishi Kagaku Co., Ltd., Loresta GP), and the volume resistance (Ω'cm) was measured using the same resistance meter. Converted and calculated the average value
[0102] <TG燃焼温度 > [0102] <TG combustion temperature>
マックサイエンス製 TG— DTAを用い、空気を 0. 1リットル Z分の流速で流通させ ながら、 10°CZ分の速度で昇温し、燃焼挙動を測定した。燃焼時に TGは減量を示 し、 DTAは発熱ピークを示すので、発熱ピークのトップ位置を燃焼開始温度と定義し た。  Using Mac Science TG-DTA, the temperature was increased at a rate of 10 ° CZ while flowing air at a flow rate of 0.1 liters Z, and the combustion behavior was measured. During combustion, TG shows a weight loss and DTA shows an exothermic peak, so the top position of the exothermic peak was defined as the combustion start temperature.
[0103] <復元性>  [0103] <Restorability>
CNT粉体 lgを秤取り、榭脂製ダイス(内寸 L 40mm, W 10mm, H 80mm) に充填圧縮し、変位および荷重を読み取る。 0. 9gZcm3の密度まで測定したら、圧 力を解除し復元後の密度を測定した。 CNT powder lg is weighed, filled and compressed into a resin die (inner dimensions L 40mm, W 10mm, H 80mm), and the displacement and load are read. When the density of 0.9 gZcm 3 was measured, the pressure was released and the density after restoration was measured.
[0104] <粒状部の平均粒径、円形度、微細炭素繊維との比 >  [0104] <Average particle diameter of granular part, circularity, ratio with fine carbon fiber>
面積基準の円相当平均径の測定と同様に、まず、炭素繊維構造体の写真を SEM で撮影する。得られた SEM写真において、炭素繊維構造体の輪郭が明瞭なものの みを対象とし、炭素繊維構造体が崩れているようなものは輪郭が不明瞭であるために 対象としな力つた。 1視野で対象とできる炭素繊維構造体 (60〜80個程度)はすべて 用い、 3視野で約 200個の炭素繊維構造体を対象とした。  As with the measurement of the circle-based average diameter based on area, first take a picture of the carbon fiber structure with SEM. In the obtained SEM photographs, only the carbon fiber structure with a clear outline was targeted, and those with a collapsed carbon fiber structure were not targeted because the outline was unclear. All carbon fiber structures (about 60 to 80) that can be targeted in one field of view were used, and about 200 carbon fiber structures were targeted in three fields of view.
[0105] 対象とされた各炭素繊維構造体にお!、て、炭素繊維相互の結合点である粒状部を 1つの粒子とみなして、その輪郭を、画像解析ソフトウェア WinRoof (商品名、三谷 商事株式会社製)を用いてなぞり、輪郭内の面積を求め、各粒状部の円相当径を計 算し、これを平均化して粒状部の平均粒径とした。また、円形度 (R)は、前記画像解 析ソフトウェアを用いて測定した輪郭内の面積 (A)と、各粒状部の実測の輪郭長さ (L) より、次式により各粒状部の円形度を求めこれを平均化した。  [0105] For each target carbon fiber structure, the granular part, which is the bonding point between carbon fibers, is regarded as one particle, and its outline is image analysis software WinRoof (trade name, Mitani Corp. The area within the contour was obtained, and the equivalent circle diameter of each granular part was calculated and averaged to obtain the average particle diameter of the granular part. Also, the circularity (R) is calculated based on the following equation from the area (A) in the contour measured using the image analysis software and the measured contour length (L) of each granular portion. The degree was obtained and averaged.
[0106] [数 1]  [0106] [Equation 1]
R=A水 4 TU /L2 [0107] さらに、対象とされた各炭素繊維構造体における微細炭素繊維の外径を求め、これ と前記各炭素繊維構造体の粒状部の円相当径から、各炭素繊維構造体における粒 状部の大きさを微細炭素繊維との比として求め、これを平均化した。 R = A water 4 TU / L 2 [0107] Further, the outer diameter of the fine carbon fiber in each target carbon fiber structure is obtained, and from this and the equivalent circle diameter of the granular part of each carbon fiber structure, the granular part in each carbon fiber structure Was determined as a ratio to the fine carbon fiber and averaged.
[0108] <粒状部の間の平均距離 >  [0108] <Average distance between granular parts>
面積基準の円相当平均径の測定と同様に、まず、炭素繊維構造体の写真を SEM で撮影する。得られた SEM写真において、炭素繊維構造体の輪郭が明瞭なものの みを対象とし、炭素繊維構造体が崩れているようなものは輪郭が不明瞭であるために 対象としな力つた。 1視野で対象とできる炭素繊維構造体 (60〜80個程度)はすべて 用い、 3視野で約 200個の炭素繊維構造体を対象とした。  As with the measurement of the circle-based average diameter based on area, first take a picture of the carbon fiber structure with SEM. In the obtained SEM photographs, only the carbon fiber structure with a clear outline was targeted, and those with a collapsed carbon fiber structure were not targeted because the outline was unclear. All carbon fiber structures (about 60 to 80) that can be targeted in one field of view were used, and about 200 carbon fiber structures were targeted in three fields of view.
[0109] 対象とされた各炭素繊維構造体において、粒状部が微細炭素繊維によって結ばれ ている箇所を全て探し出し、このように微細炭素繊維によって結ばれる隣接する粒状 部間の距離 (一端の粒状体の中心部力 他端の粒状体の中心部までを含めた微細 炭素繊維の長さ)をそれぞれ測定し、これを平均化した。  [0109] In each of the targeted carbon fiber structures, all the portions where the granular portions are connected by the fine carbon fibers are searched, and the distance between the adjacent granular portions connected by the fine carbon fibers in this way (granularity at one end) Body center force The length of the fine carbon fiber including the center of the granular material at the other end) was measured and averaged.
[0110] <炭素繊維構造体の破壊試験 >  [0110] <Destructive test of carbon fiber structure>
蓋付バイアル瓶中に入れられたトルエン 100mlに、 30 gZmlの割合で炭素繊維 構造体を添加し、炭素繊維構造体の分散液試料を調製した。  A carbon fiber structure was added to 100 ml of toluene placed in a vial with a lid at a rate of 30 gZml to prepare a dispersion sample of the carbon fiber structure.
[0111] このようにして得られた炭素繊維構造体の分散液試料に対し、発信周波数 38kHz 、出力 150wの超音波洗浄器((株)エスェヌディ製、商品名: USK-3)を用いて、超音 波を照射し、分散液試料中の炭素繊維構造体の変化を経時的に観察した。  [0111] With respect to the carbon fiber structure dispersion liquid sample thus obtained, using an ultrasonic cleaner with a transmission frequency of 38 kHz and an output of 150 w (trade name: USK-3, manufactured by SNEUDY Co., Ltd.) Ultrasonic waves were irradiated, and changes in the carbon fiber structure in the dispersion sample were observed over time.
[0112] まず超音波を照射し、 30分経過後において、瓶中から一定量 2mlの分散液試料を 抜き取り、この分散液中の炭素繊維構造体の写真を SEMで撮影する。得られた SE M写真の炭素繊維構造体中における微細炭素繊維 (少なくとも一端部が粒状部に 結合している微細炭素繊維)をランダムに 200本を選出し、選出された各微細炭素繊 維の長さを測定し、 D 平均値を求め、これを初期平均繊維長とした。  [0112] First, an ultrasonic wave is irradiated, and after 30 minutes, a predetermined amount of 2 ml of the dispersion liquid sample is withdrawn from the bottle, and a photograph of the carbon fiber structure in the dispersion liquid is taken with an SEM. 200 fine carbon fibers (fine carbon fibers with at least one end bonded to the granular part) in the carbon fiber structure of the obtained SEM photograph were randomly selected, and each selected fine carbon fiber was selected. The length was measured to determine the D average value, which was used as the initial average fiber length.
50  50
[0113] 一方、得られた SEM写真の炭素繊維構造体中における炭素繊維相互の結合点で ある粒状部をランダムに 200個を選出し、選出された各粒状部をそれぞれ 1つの粒子 とみなしてその輪郭を、画像解析ソフトウェア WinRoof (商品名、三谷商事株式会 社製)を用いてなぞり、輪郭内の面積を求め、各粒状部の円相当径を計算し、この D 平均値を求めた。そして得られた D 平均値を粒状部の初期平均径とした。 [0113] On the other hand, 200 granular parts that are the bonding points between carbon fibers in the carbon fiber structure of the obtained SEM photograph were randomly selected, and each selected granular part was regarded as one particle. The contour is traced using image analysis software WinRoof (trade name, manufactured by Mitani Trading Co., Ltd.), the area within the contour is obtained, and the equivalent circle diameter of each granular part is calculated. The average value was obtained. The obtained D average value was used as the initial average diameter of the granular portion.
0 50  0 50
[0114] その後、一定時間毎に、前記と同様に瓶中から一定量 2mlの分散液試料を抜き取 り、この分散液中の炭素繊維構造体の写真を SEMで撮影し、この得られた SEM写 真の炭素繊維構造体中における微細炭素繊維の D 平均長さおよび粒状部の D  [0114] Thereafter, a fixed amount 2 ml of the dispersion liquid sample was taken out from the bottle at regular time intervals in the same manner as described above, and a photograph of the carbon fiber structure in the dispersion liquid was taken with an SEM. SEM photo D Fine length of carbon fiber in carbon fiber structure and D of granular part
50 50 平均径を前記と同様にして求めた。  The 50 50 average diameter was determined in the same manner as described above.
[0115] そして、算出される微細炭素繊維の D 平均長さが、初期平均繊維長の約半分とな [0115] Then, the calculated D average length of fine carbon fibers is about half of the initial average fiber length.
50  50
つた時点 (本実施例においては超音波を照射し、 500分経過後)における、粒状部の D 平均径を、初期平均径と対比しその変動割合 (%)を調べた。  The D average diameter of the granular portion at the time (in this example was irradiated with ultrasonic waves and after 500 minutes had elapsed) was compared with the initial average diameter, and the fluctuation ratio (%) was examined.
50  50
[0116] (実施例 1)  [0116] (Example 1)
i)炭素繊維構造体の合成  i) Synthesis of carbon fiber structure
CVD法によって、トルエンを原料として炭素繊維構造体を合成した。  A carbon fiber structure was synthesized using toluene as a raw material by the CVD method.
[0117] 触媒としてフエ口セン及びチォフェンの混合物を使用し、水素ガスの還元雰囲気で 行った。トルエン、触媒を水素ガスとともに 380°Cに加熱し、生成炉に供給し、 1250 °Cで熱分解して、炭素繊維構造体 (第一中間体)を得た。 [0117] The catalyst was a mixture of phlocene and thiophene, and the reaction was performed in a reducing atmosphere of hydrogen gas. Toluene and catalyst were heated together with hydrogen gas to 380 ° C, supplied to the production furnace, and pyrolyzed at 1250 ° C to obtain a carbon fiber structure (first intermediate).
[0118] また、この第一中間体をトルエン中に分散して電子顕微鏡用試料調製後に観察し た SEMおよび TEM写真を図 1、 2に示す。 [0118] FIGS. 1 and 2 show SEM and TEM photographs of the first intermediate dispersed in toluene and observed after preparing a sample for an electron microscope.
[0119] なお、この炭素繊維構造体 (第一中間体)を製造する際に用いられた生成炉の概 略構成を図 4に示す。図 4に示すように、生成炉 1は、その上端部に、上記したような トルエン、触媒および水素ガスからなる原料混合ガスを生成炉 1内へ導入する導入ノ ズル 2を有している力 さらにこの導入ノズル 2の外側方には、円筒状の衝突部 3が設 けられている。この衝突部 3は、導入ノズル 2の下端に位置する原料ガス供給口 4より 反応炉内に導出される原料ガスの流れに干渉し得るものとされている。なお、この実 施例において用いられた生成炉 1では、導入ノズル 2の内径 a、生成炉 1の内径 b、筒 状の衝突部 3の内径 c、生成炉 1の上端カゝら原料混合ガス導入口 4までの距離 d、原 料混合ガス導入口 4から衝突部 3の下端までの距離 e、原料混合ガス導入口 4から生 成炉 1の下端までの距離を fとすると、各々の寸法比は、おおよそ a :b : c : d: e :f=l . 0 : 3. 6 : 1. 8 : 3. 2 : 2. 0 : 21. 0に形成されていた。また、反応炉への原料ガス導入速 度は、 1850NLZmin、圧力は 1. 03atmとした。 [0120] 上記のようにして合成された中間体を窒素中で 900°Cで焼成して、タールなどの炭 化水素を分離し、第二中間体を得た。この第二中間体のラマン分光測定の R値は 0. 82であった。 [0119] Fig. 4 shows a schematic configuration of the generating furnace used in producing this carbon fiber structure (first intermediate). As shown in FIG. 4, the generating furnace 1 has a power having an introduction nozzle 2 for introducing a raw material mixed gas composed of toluene, a catalyst and hydrogen gas as described above into the generating furnace 1 at its upper end. Further, a cylindrical collision portion 3 is provided outside the introduction nozzle 2. The collision part 3 can interfere with the flow of the raw material gas introduced into the reactor through the raw material gas supply port 4 located at the lower end of the introduction nozzle 2. In the production furnace 1 used in this example, the inner diameter a of the introduction nozzle 2, the inner diameter b of the production furnace 1, the inner diameter c of the cylindrical collision part 3, and the raw material mixed gas from the upper end of the production furnace 1 Each dimension is defined as follows: distance d to inlet 4; distance e from raw material mixed gas inlet 4 to the lower end of collision section 3; and f from raw material mixed gas inlet 4 to the lower end of generation furnace 1. The ratio was approximately a: b: c: d: e: f = l. 0: 3.6: 1.8: 3.2: 2.0: 21.0. The feed gas introduction rate into the reactor was 1850 NLZmin and the pressure was 1.03 atm. [0120] The intermediate synthesized as described above was calcined in nitrogen at 900 ° C to separate hydrocarbons such as tar to obtain a second intermediate. The R value of this second intermediate measured by Raman spectroscopy was 0.82.
[0121] また、得られた炭素繊維構造体をそのまま電子顕微鏡用試料ホルダーに載置して 観察した SEM写真を図 3に、またその粒度分布を表 1に示した。  [0121] Fig. 3 shows the SEM photograph of the obtained carbon fiber structure as it is placed on the electron microscope sample holder, and Table 1 shows the particle size distribution.
[0122] また、得られた炭素繊維構造体の円相当平均径は、 155 m、嵩密度は 0. 0029 g/cm3、ラマン I /\比値は 0. 82、復元後の密度は 0. 25g/cm3であった。 [0122] Further, the obtained carbon fiber structure had a circle-equivalent mean diameter of 155 m, a bulk density of 0.000029 g / cm 3 , a Raman I / \ ratio value of 0.82, and a density after restoration of 0. 25 g / cm 3 .
D G  D G
[0123] さらに炭素繊維構造体における粒状部の粒径は平均で、 443nm (SD207nm)で あり、炭素繊維構造体における微細炭素繊維の外径の 7. 38倍となる大きさであった 。また粒状部の円形度は、平均値で 0. 67 (SD0. 14)であった。  [0123] Further, the average particle size of the granular portion in the carbon fiber structure was 443 nm (SD207 nm), which was 7.38 times the outer diameter of the fine carbon fiber in the carbon fiber structure. The circularity of the granular part was 0.67 (SD 0.14) on average.
[0124] また、前記した手順によって炭素繊維構造体の破壊試験を行ったところ、超音波印 加 30分後の初期平均繊維長(D )は、 12. 8 mであったが、超音波印加 500分後  [0124] Further, when the carbon fiber structure was subjected to a destructive test according to the procedure described above, the initial average fiber length (D) after 30 minutes of ultrasonic application was 12.8 m. 500 minutes later
50  50
の平均繊維長(D )は、6. 7 mとほぼ半分の長さとなり、炭素繊維構造体において  The average fiber length (D) of 6.7 m is almost half of 6.7 m.
50  50
微細炭素繊維に多くの切断が生じたことが示された。し力しながら、超音波印加 500 分後の粒状部の平均径 (D )を、超音波印加 30分後の初期平均径 (D )と対比した  It was shown that many cuts occurred in the fine carbon fibers. The average diameter (D) of the granular part 500 minutes after ultrasonic application was compared with the initial average diameter (D) 30 minutes after ultrasonic application.
50 50 ところ、その変動 (減少)割合は、わずか 4. 8%であり、測定誤差等を考慮すると、微 細炭素繊維に多くの切断が生じた負荷条件下でも、切断粒状部自体はほとんど破壊 されることなぐ繊維相互の結合点として機能していることが明らかとなった。  However, the fluctuation (decrease) rate is only 4.8%, and considering the measurement error etc., the cut granular part itself is almost destroyed even under the load condition where many cuts are generated in the fine carbon fiber. It became clear that it functions as a bonding point between fibers.
[0125] なお、実施例 1で合成した炭素繊維構造体の各種物性値を表 2にまとめた。  [0125] Table 2 summarizes various physical property values of the carbon fiber structure synthesized in Example 1.
[0126] [表 1]  [0126] [Table 1]
Figure imgf000026_0001
Figure imgf000026_0001
[0127] [表 2] 実施例 1 [0127] [Table 2] Example 1
円相当平均径 1 55 /i m  Circle equivalent average diameter 1 55 / i m
^密度 0. 0029 g/cm3 ^ Density 0.0029 g / cm 3
I n/ I G比 0. 82  I n / I G ratio 0.82
復元後の密度 0. 25 g/c m3 Density after restoration 0.25 g / cm 3
[0128] ii)骨格構造体の形成 [0128] ii) Formation of skeletal structure
上記 i)で合成した炭素繊維構造体を用いて骨格構造体を形成した。  A skeleton structure was formed using the carbon fiber structure synthesized in i) above.
具体的には、 i)で合成した炭素繊維構造体にメタノールを溶剤としたフエノール榭 脂 (群栄化学工業株式会社レヂトップ)をバインダーとして添加混合した。バインダー は、炭素繊維構造体に対して 25質量%添加し、混鍊はミキサー方式の混鍊機 (株式 会社シンキー製あわとり鍊太郎)を用いた。次に、得られた混鍊物を 70°Cのホットプ レート上で乾燥し、乾燥後、 150°Cで加熱成形してフ ノール榭脂を硬化した。次に 得られた成形体をアルゴンガス雰囲気において、 2500°Cに加熱し、バインダー成分 を炭化及び黒鉛化させた骨格構造体を得た。  Specifically, phenolic resin (Gunei Chemical Industry Co., Ltd., Resid Top) using methanol as a solvent was added to and mixed with the carbon fiber structure synthesized in i). The binder was added in an amount of 25% by mass with respect to the carbon fiber structure. Next, the obtained kneaded material was dried on a hot plate at 70 ° C., dried, and then heat-molded at 150 ° C. to cure the phenolic resin. Next, the obtained molded body was heated to 2500 ° C. in an argon gas atmosphere to obtain a skeleton structure in which the binder component was carbonized and graphitized.
[0129] 実施例 1における骨格構造体の物性値を表 3に示す。 [0129] Table 3 shows the physical property values of the skeleton structure of Example 1.
[0130] (実施例 2) [0130] (Example 2)
実施例 1と同様に榭脂を硬化して得た成形体に、 B Oをメタノールに溶解した溶液  A solution in which B 2 O is dissolved in methanol in a molded body obtained by curing rosin as in Example 1.
2 3  twenty three
を含浸後乾燥する工程をホウ素添加量が成形体に対して 3.5質量%となるよう繰り 返した。ホウ素を担持させた成形体を実施例 1と同様に、アルゴンガス雰囲気中にお いて、 2500°Cに加熱し、バインダー成分を炭化及び黒鉛化させた骨格構造体を得 た。  The step of impregnating and drying was repeated so that the amount of boron added was 3.5% by mass relative to the compact. The formed body supporting boron was heated to 2500 ° C. in an argon gas atmosphere in the same manner as in Example 1 to obtain a skeleton structure in which the binder component was carbonized and graphitized.
[0131] 実施例 2における骨格構造体の物性値を表 3に示す。  [0131] Table 3 shows the physical property values of the skeleton structure of Example 2.
[0132] [表 3] 実施例 1 実施例 2 [0132] [Table 3] Example 1 Example 2
嵩密度 (gZcm3) 0. 71 0. 71 Bulk density (gZcm 3 ) 0. 71 0. 71
ラマン I π/ 1 G比 0. 22 0. 67 Raman I π / 1 G ratio 0.22 0. 67
ラマン I G'Z I (;比 0. 70 0. 23 Raman I G 'ZI (; ratio 0. 70 0. 23
圧縮強度 (kN) > 10 > 1 0  Compressive strength (kN)> 10> 1 0
体積抵抗 (Ω cm) 0. 010 0. 004  Volume resistance (Ω cm) 0. 010 0. 004
TG燃焼温度 (°C) 707 720  TG combustion temperature (° C) 707 720

Claims

請求の範囲 The scope of the claims
[1] 外径 15〜: LOOnmの炭素繊維力も構成される 3次元ネットワーク状を呈しており、前 記炭素繊維が複数延出する態様で、当該炭素繊維を互いに結合する粒状部を有し ており、かつ、当該粒状部は前記炭素繊維の成長過程において形成されてなる炭素 繊維構造体を、炭素により 3次元に接合させることにより形成されることを特徴とする 骨格構造体。  [1] Outer diameter 15 ~: It has a three-dimensional network configuration that also includes the LOOnm carbon fiber force, and has a granular part that binds the carbon fibers to each other in a form in which a plurality of the carbon fibers extend. The skeletal structure is characterized in that the granular part is formed by joining a carbon fiber structure formed in the carbon fiber growth process in three dimensions with carbon.
[2] ホウ素が含有されて!ヽることを特徴とする請求項 1に記載の骨格構造体。  [2] Contains boron! 2. The skeletal structure according to claim 1, wherein the skeleton structure is wound.
[3] 前記ホウ素の含有量が、前記骨格構造体に対して 0. 001〜10質量%であることを 特徴とする請求項 2に記載の骨格構造体。  [3] The skeletal structure according to claim 2, wherein a content of the boron is 0.001 to 10% by mass with respect to the skeleton structure.
[4] 前記炭素繊維構造体は、面積基準の円相当平均径が 50〜500 mであることを 特徴とする請求項 1〜3のいずれか 1つに記載の骨格構造体。 [4] The skeleton structure according to any one of claims 1 to 3, wherein the carbon fiber structure has an area-based circle-equivalent mean diameter of 50 to 500 m.
[5] 前記骨格構造体は、ラマン分光分析法で測定される I 1. 4 [5] The skeletal structure is measured by Raman spectroscopy.
D Λ Gが 以下であり、且 つ、 I /\が 1. 5以下であることを特徴とする請求項 1〜4のいずれか 1つに記載の D Λ G is the following, and I / \ is 1.5 or less, according to any one of claims 1 to 4,
G' G G 'G
骨格構造体。  Skeletal structure.
[6] 前記骨格構造体は、嵩密度が、 0. 2〜2. 3g/cm3であることを特徴とする請求項[6] The skeleton structure has a bulk density of 0.2 to 2.3 g / cm3.
1〜5のいずれか 1つに記載の骨格構造体。 The skeletal structure according to any one of 1 to 5.
[7] 前記骨格構造体は、空気中での燃焼開始温度が 700°C以上であることを特徴とす る請求項 1〜6のいずれ力 1つに記載の骨格構造体。 7. The skeletal structure according to any one of claims 1 to 6, wherein the skeletal structure has a combustion start temperature in air of 700 ° C or higher.
[8] 前記炭素繊維の結合箇所にお!、て、前記粒状部の粒径が、前記炭素繊維の外径 よりも大きいことを特徴とする請求項 1〜7のいずれか 1つに記載の骨格構造体。 [8] The bonding portion of the carbon fiber according to any one of claims 1 to 7, wherein a particle size of the granular portion is larger than an outer diameter of the carbon fiber. Skeletal structure.
[9] 前記炭素繊維構造体は、炭素源として、分解温度の異なる少なくとも 2つ以上の炭 素化合物を用いて、生成されたものである請求項 1〜8のいずれか 1つに記載の骨格 構造体。 [9] The skeleton according to any one of claims 1 to 8, wherein the carbon fiber structure is produced using at least two or more carbon compounds having different decomposition temperatures as a carbon source. Structure.
[10] 外径 15〜: LOOnmの炭素繊維力も構成される 3次元ネットワーク状を呈しており、前 記炭素繊維が複数延出する態様で、当該炭素繊維を互いに結合する粒状部を有し ており、かつ、当該粒状部は前記炭素繊維の成長過程において形成されてなる炭素 繊維構造体を、炭素により 3次元に接合させることにより形成される骨格構造体を有 し、 当該骨格構造体の内部に形成される空隙部には榭脂、ゴム、金属、またはカーボ ン系材料が含浸されて 、ることを特徴とする複合材料。 [10] Outer diameter 15 ~: It exhibits a three-dimensional network configuration that also includes the LOOnm carbon fiber force, and has a granular portion that binds the carbon fibers to each other in a manner in which a plurality of the carbon fibers extend. And the granular part has a skeletal structure formed by joining a carbon fiber structure formed in the carbon fiber growth process in three dimensions with carbon, A composite material characterized in that voids formed inside the skeleton structure are impregnated with resin, rubber, metal, or carbon-based material.
[11] 前記骨格構造体には、ホウ素が含有されていることを特徴とする請求項 10に記載 の複合材料。  [11] The composite material according to [10], wherein the skeleton structure contains boron.
[12] 前記ホウ素の含有量が、前記骨格構造体に対して 0. 001〜10質量%であることを 特徴とする請求項 11に記載の複合材料。  12. The composite material according to claim 11, wherein a content of the boron is 0.001 to 10% by mass with respect to the skeleton structure.
[13] 前記炭素繊維構造体は、面積基準の円相当平均径が 50〜500 mであることを 特徴とする請求項 10〜12のいずれか 1つに記載の複合材料。 [13] The composite material according to any one of [10] to [12], wherein the carbon fiber structure has an area-based circle-equivalent mean diameter of 50 to 500 m.
[14] 前記骨格構造体は、ラマン分光分析法で測定される I [14] The skeletal structure is measured by Raman spectroscopy.
D Λが 1. 4以下であり、且 G  D Λ is 1.4 or less, and G
つ、 I /\が 1. 5以下であることを特徴とする請求項 10〜13のいずれか 1つに記載 The I / \ is not more than 1.5, according to any one of claims 10 to 13,
G' G G 'G
の複合材料。  Composite material.
[15] 前記骨格構造体は、嵩密度が、 0. 2〜2. 3gZcm3であることを特徴とする請求項[15] the framework structure, the claims bulk density, characterized in that it is a 0. 2~2. 3gZcm 3
10〜14のいずれ力 1つに記載の複合材料。 The composite material according to any one of 10 to 14.
[16] 前記骨格構造体は、空気中での燃焼開始温度が 700°C以上であることを特徴とす る請求項 10〜15のいずれ力 1つに記載の複合材料。 16. The composite material according to any one of claims 10 to 15, wherein the skeletal structure has a combustion start temperature in air of 700 ° C or higher.
[17] 前記炭素繊維の結合箇所にお!、て、前記粒状部の粒径が、前記炭素繊維の外径 よりも大きいことを特徴とする請求項 10〜16のいずれか 1つに記載の複合材料。 [17] The method according to any one of [10] to [16], wherein a particle diameter of the granular portion is larger than an outer diameter of the carbon fiber at a bonding portion of the carbon fibers. Composite material.
[18] 前記炭素繊維構造体は、炭素源として、分解温度の異なる少なくとも 2つ以上の炭 素化合物を用いて、生成されたものである請求項 10〜17のいずれか 1つに記載の 複合材料。 [18] The composite according to any one of [10] to [17], wherein the carbon fiber structure is formed using at least two or more carbon compounds having different decomposition temperatures as a carbon source. material.
PCT/JP2006/322972 2005-11-18 2006-11-17 Composite material WO2007058299A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-334472 2005-11-18
JP2005334472A JP2007138338A (en) 2005-11-18 2005-11-18 Composite material

Publications (1)

Publication Number Publication Date
WO2007058299A1 true WO2007058299A1 (en) 2007-05-24

Family

ID=38048682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/322972 WO2007058299A1 (en) 2005-11-18 2006-11-17 Composite material

Country Status (2)

Country Link
JP (1) JP2007138338A (en)
WO (1) WO2007058299A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106904986A (en) * 2017-02-23 2017-06-30 辽宁奥亿达新材料有限公司 A kind of manufacture method of high-performance composite carbon fiber insulation board

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5247129B2 (en) * 2007-11-26 2013-07-24 日本カーリット株式会社 Catalyst body and method for producing the same
JP5411652B2 (en) * 2009-10-15 2014-02-12 大阪瓦斯株式会社 Method for producing lump-dispersed carbon material and method for producing lump-dispersed graphite material
GB201002447D0 (en) 2010-02-12 2010-03-31 Micromass Ltd Mass spectrometer
EP2792712B1 (en) 2011-12-15 2016-07-20 Tokuyama Dental Corporation Organic/inorganic composite, manufacturing method therefor, dental material, and bone substitute material
JP5784101B2 (en) * 2013-12-20 2015-09-24 ニッタ株式会社 Manufacturing method of CNT network structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57117623A (en) * 1981-01-14 1982-07-22 Showa Denko Kk Production of carbon fiber with branches
JP2002266170A (en) * 2000-12-20 2002-09-18 Showa Denko Kk Branched vapor grown carbon fiber, transparent electrically conductive composition and use thereof
JP2003081621A (en) * 2001-09-06 2003-03-19 Fuji Xerox Co Ltd Nanowire, production method therefor, nanonetwork obtained by using the same, method for producing nanonetwork, carbon structure, and electronic device
JP2003227039A (en) * 2001-11-07 2003-08-15 Showa Denko Kk Fine carbon fiber, method for producing the same and use thereof
JP2004176244A (en) * 2002-11-11 2004-06-24 Showa Denko Kk Vapor grown carbon fiber, and production method and use thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3600640B2 (en) * 1994-08-17 2004-12-15 昭和電工株式会社 Heat treatment method of vapor grown carbon fiber
JPH11107052A (en) * 1997-09-30 1999-04-20 Nikkiso Co Ltd Apparatus for continuous production of vapor-phase grown carbon fiber and process for continuous production of vapor-phase grown carbon fiber
JP4000257B2 (en) * 2001-12-26 2007-10-31 日機装株式会社 Post-treatment method for carbon nanofiber and method for producing graphitized carbon nanofiber
CN1965114B (en) * 2004-06-08 2011-01-12 昭和电工株式会社 Vapor grown carbon fiber, production method thereof and composite material containing the carbon fiber
JP3776111B1 (en) * 2004-08-31 2006-05-17 株式会社物産ナノテク研究所 Carbon fiber structure
JP2006183227A (en) * 2004-08-31 2006-07-13 Bussan Nanotech Research Institute Inc Carbon fiber structure
JP2006240958A (en) * 2005-03-07 2006-09-14 Kyushu Univ Ultrahigh graphitization degree carbon nanofiber having many carbon hexagonal edge faces on surface and its manufacturing method
JP3720044B1 (en) * 2005-03-22 2005-11-24 株式会社物産ナノテク研究所 Composite material
JP3850427B2 (en) * 2005-03-22 2006-11-29 株式会社物産ナノテク研究所 Carbon fiber bonded body and composite material using the same
JP2007119647A (en) * 2005-10-28 2007-05-17 Bussan Nanotech Research Institute Inc Composite material
JP4570553B2 (en) * 2005-11-18 2010-10-27 保土谷化学工業株式会社 Composite material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57117623A (en) * 1981-01-14 1982-07-22 Showa Denko Kk Production of carbon fiber with branches
JP2002266170A (en) * 2000-12-20 2002-09-18 Showa Denko Kk Branched vapor grown carbon fiber, transparent electrically conductive composition and use thereof
JP2003081621A (en) * 2001-09-06 2003-03-19 Fuji Xerox Co Ltd Nanowire, production method therefor, nanonetwork obtained by using the same, method for producing nanonetwork, carbon structure, and electronic device
JP2003227039A (en) * 2001-11-07 2003-08-15 Showa Denko Kk Fine carbon fiber, method for producing the same and use thereof
JP2004176244A (en) * 2002-11-11 2004-06-24 Showa Denko Kk Vapor grown carbon fiber, and production method and use thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106904986A (en) * 2017-02-23 2017-06-30 辽宁奥亿达新材料有限公司 A kind of manufacture method of high-performance composite carbon fiber insulation board

Also Published As

Publication number Publication date
JP2007138338A (en) 2007-06-07

Similar Documents

Publication Publication Date Title
KR100682445B1 (en) Composite material
JP3776111B1 (en) Carbon fiber structure
JP3850427B2 (en) Carbon fiber bonded body and composite material using the same
JP4570553B2 (en) Composite material
WO2010002004A1 (en) Carbon fiber and composite material
JP2008163535A (en) Carbon fiber composite structure and method for producing the carbon fiber composite structure
WO2007049590A1 (en) Electrically conductive sheet
WO2007058297A1 (en) Carbon fiber structure
CA2576733C (en) Carbon fibrous structure
WO2007058298A1 (en) Recycled composite material
WO2007058299A1 (en) Composite material
WO2007049748A1 (en) Composite material
WO2007049592A1 (en) Synthetic fiber
JP2006183227A (en) Carbon fiber structure
JP2007119522A (en) Fluororesin molded product
JP2007139668A (en) Control rod for reactor and manufacturing method for the same
JP5242124B2 (en) Fine carbon fiber and composite material
WO2007058340A1 (en) Process for producing carbon fiber structure
WO2007046413A1 (en) Electron emission source
JP2009096694A5 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06832851

Country of ref document: EP

Kind code of ref document: A1