JP3600640B2 - Heat treatment method of vapor grown carbon fiber - Google Patents

Heat treatment method of vapor grown carbon fiber Download PDF

Info

Publication number
JP3600640B2
JP3600640B2 JP21667394A JP21667394A JP3600640B2 JP 3600640 B2 JP3600640 B2 JP 3600640B2 JP 21667394 A JP21667394 A JP 21667394A JP 21667394 A JP21667394 A JP 21667394A JP 3600640 B2 JP3600640 B2 JP 3600640B2
Authority
JP
Japan
Prior art keywords
carbon fiber
molded body
grown carbon
vapor
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21667394A
Other languages
Japanese (ja)
Other versions
JPH0860446A (en
Inventor
邦夫 西村
利夫 森田
彰孝 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP21667394A priority Critical patent/JP3600640B2/en
Publication of JPH0860446A publication Critical patent/JPH0860446A/en
Application granted granted Critical
Publication of JP3600640B2 publication Critical patent/JP3600640B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は気相法の炭素繊維、より詳しくは有機化合物の熱分解による気相成長法によって得られた炭素繊維を熱処理する方法に関する。
【0002】
【従来の技術】
気相成長炭素繊維の製造方法は、反応炉内で有機化合物を熱分解してウイスカー状の微細な炭素繊維を1工程で得ることの出来る優れた方法である。しかし工業的な生産性に問題があり種々改善がなされてきた。
例えば初めはセラミック基板に遷移金属の超微粒子を付着させてから有機化合物を供給し分解させ長時間成長させて比較的太く長い気相法炭素繊維を製造する方法であった(特開昭52−103528)。
【0003】
この方法は良好な物性の炭素繊維が得られるが、繊維径が太くなることや反応速度が遅いことが、工業生産に向かないなど不十分な点が多かった。
これを改善するために、鉄を始めとする遷移金属またはその化合物を触媒とし、この触媒とキャリヤーガス及び例えばベンゼン、トルエン、天然ガス等の有機化合物を液または気体状で反応炉に導入して有機化合物を800℃〜1300℃程度で熱分解し、微細な炭素繊維を短時間で生産する方法が開発され生産性が改善された。
【0004】
これら気相法炭素繊維の製造方法としては
▲1▼フェロセン等の遷移金属化合物を気化させ反応炉(熱分解炉)に導入し、遷移金属の微粒子を生成させシードとして用い製造する方法(特開昭60−54998)。
▲2▼鉄等の遷移金属を直接熱分解炉中で気化させてシードを作り製造する方法(特開昭61−291497)。
▲3▼フェロセン等の遷移金属化合物を液体有機化合物に分散あるいは溶解させて反応炉中にスプレーしてシードとして製造する方法(特開昭58−180615)。
等によって製造されるようになった。
これらの方法によって得られる気相法炭素繊維は繊維径が0.01μm〜5μm、長さ1μm〜1000μm程度の繊維状を形成し、黒鉛構造の網面が繊維軸に沿って発達し、内部に中空の孔があるのが特徴である。
【0005】
この炭素繊維には通常タール分、粒状炭素、触媒の金属やその化合物が含まれ、これらの炭素や金属等がタールによって繊維に付着している。製品としてはこれらを除去する必要がある。通常は加熱(熱処理)してタール分を炭化し、得られた繊維の凝集体を解砕あるいは粉砕し、気流分級等で粒状炭素や金属等を除去している。
また気相法炭素繊維は高くとも1300℃程度の温度で製造されたものであり、黒鉛の結晶構造が十分に発達していない。そのために用途によってはさらに高温で熱処理して黒鉛の結晶構造を発達させ、電気や熱の伝導性をよくする方法が採用されている。
従来の熱処理方法は繊維の集合体を加熱されている管内を通すかあるいは容器に入れて電気炉等の中で加熱する等の外熱法がとられている。
【0006】
【発明が解決しようとする課題】
本発明における気相法炭素繊維は上記のような微細なもので、それが集合体をなし、粉末状を呈している(以下この集合体を繊維状粉末という)。
1)繊維状粉末はその嵩密度が0.005g/cm 以下と小さいため繊維状粉末のまま熱処理するには処理に要する加熱炉を始め処理設備容量が大きくなり処理コストが高くなる原因となる。
2)繊維状粉末の熱処理は通常外部加熱の炉を使う。しかし、繊維状粉末は嵩密度が小さいために設備容量が大きく充填率も小さい。従って、熱伝導率も小さく熱効率が悪くなり、結果的にコストが高くなる。
3)繊維状粉末のまま加熱処理するには繊維状粉末の移送機構が必要となり、しかも1500℃以上の高温域を移送するには設備的にも材質的にも問題が多く複雑となるばかりではなく、繊維状粉末の付着や詰まりのトラブルで実用になりにくい。そこで、通常繊維状粉末を容器に充填し、ほとんどが容器のまま加熱処理する方法がとられている。しかしこの方法では、繊維状粉末のように嵩密度が小さい粉体では容器内に充填する繊維の量は著しく少なく、熱はほとんど容器を加熱することに費やされ、その結果熱処理コストが高くなる。
4)容器の材質は1400℃以上、特に2000℃以上での高温処理になるとこの温度にもつ材料は少なく、また繊維状粉末の異種元素による汚染などを考慮し、黒鉛ルツボの様な炭素材料が望ましい。しかし黒鉛でも高温では僅かに混入する酸素や窒素等による腐食が激しく長期間の使用は無理で消耗品となってしまう。本発明は繊維状粉末を熱処理する際の上記の様な装置上等の問題がなく、かつ熱効率のよい熱処理方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明者は微細な気相法炭素繊維は単繊維自体で電気比抵抗は0.0001〜0.001Ωcmであって通常の炭素材料と同様に導電性がよいこと、また生成したままの繊維状粉末は嵩密度が非常に小さいがタール分等が含まれているため、圧縮成形することにより、嵩密度の高い成形体が得られることに着目し、本発明に到達した。
即ち、本発明は微細な気相法炭素繊維を圧縮成形して成形体の嵩密度を0.03g/cm 以上とし、該成形体の両側に電極端子を当接し、成形体に通電加熱することを特徴とする気相法炭素繊維の熱処理方法である。
【0008】
本発明で使用される微細な気相法炭素繊維は前記したように直径が0.01μm〜5μm、長さが1μm〜1000μm程度の繊維が集合した繊維状粉末である。生成したままの繊維状粉末は嵩密度が0.005g/cm 以下と非常に小さいので、先ずこれを圧縮成形する。繊維状粉末は金型や圧縮方法を選ぶことによりあらゆる形状に成形が可能である。例えば円柱状、立方体、直方体、角柱、平板状等であり、その他複雑な形状でも成形できる。しかし工業的にはできるだけ単純な形状でかつ両側(両端)から通電し易いように円柱や角柱が望ましい。
【0009】
成形方法はプレス成形法や押出し成形法が最も容易である。繊維状粉末は各繊維の絡みがよく、またタール分が少量含まれているので、そのまま圧縮成形しただけでも通電加熱に支障ない程度に形状が保持されるが、さらに高い強度を望む場合は繊維状粉末に澱粉、CMC、タール、ナフタレン、アントラセン等の1次結合材を少量添加して成形すればよい。
【0010】
成形体の強度は、成形時の加圧圧力と繊維状粉末の嵩密度によって調整できるので目的とする成形体の強度、目標の嵩密度によって最適な圧力条件を選定する。具体的には0.1kg/cm 以上あればよい。圧力は高いほどしっかりした成形品が得られるが高くなりすぎると繊維の崩壊を起こし繊維特性が低下する。
即ち加圧圧力が0.1kg/cm より小さくなると、成形品の強度が不十分で取扱中に崩壊して粉化する確率が高くなる。一方100kg/cm 以上の圧力になると繊維の切断や崩壊が多くなり繊維特性が悪くなる。
また加圧圧力が高くなると金型を始め加圧システム自体の設備費が高くなるので設備面コストから見ても圧力は低い方が好ましい。従って成形圧力としては0.1〜100kg/cm 程度、好ましくは1〜10kg/cm 程度がよい。
【0011】
成形圧力が0.1kg/cm 以上であれば成形体は嵩密度が通常0.03g/cm 以上となる。しかし繊維状粉末の成形体は圧力が開放されると多少復元する性質があるので通電加熱する際にはこれを考慮する必要がある。本発明においては成形体の嵩密度は通電加熱時において0.03g/cm 以上とする。この密度であれば電気比抵抗は100Ωcm以下となる。
成形体の通電加熱は例えば図1のような方法で行なう。図において1は繊維状粉末の成形体でその嵩密度は0.03g/cm 以上である。2は成形体の上下の電極で導体4′により電源4に接続されている。電極は導電性がよくかつ高温に耐える炭素電極が最も適する。3はセラミックス等の絶縁体である。通電加熱は非酸化性雰囲気下で行なう必要があり、また成形体よりガスが発生するので通電部を筐体5で囲み、筐体5に窒素ガス、アルゴンガス等の導入口6及びガス排出口7を設ける。
【0012】
成形体に負荷する圧力は上部の電極に取付けた保持装置(図示せず)により調整できるようにする。電極と成形体の接触をよくし、かつ成形体の嵩密度が0.03g/cm となっておれば圧力は殆ど負荷しなくても通電は可能であるが好ましくは100g/cm 以上に加圧して通電する。成形体の加圧力は高過ぎると崩壊するので通常上限は100kg/cm 程度である。通電加熱は繊維状粉末を成形したままのものでもよく、またその成形体を一旦外熱法で可能な温度で加熱したものでもよい。成形したままのものは急速加熱するとガスの発生が激しいのでゆっくり加熱することが好ましい。通電加熱は黒鉛化のような高温処理に特に有効である。2500℃以上の高温処理の際には電極間の電圧が高いと熱放電のおそれがあるので、あまり電圧は高くしない方がよく、例えば20V以下程度が好ましい。この電圧でも必要な発熱が得られるように成形体の断面積、高さ等を調整する。熱処理のための加熱温度は1300℃位から3000℃前後の範囲で通常選ばれる。
【0013】
図2は成形体を電気絶縁性の型8内で通電加熱する方法を示す。成形体1は別に成形したものを型8に入れてもよく、またこの型で成形し、続いて通電することもできる。図2の方法では成形体が崩壊することがないので目的とする温度における型の耐圧力の範囲で加圧力を高めることが可能である。しかし、絶縁性の型としてはアルミナ等のセラミックスが用いられるが、加熱温度は1800℃程度が限度である。
【0014】
図3は成形装置と通電加熱装置を直結し、成形と通電加熱を連続的にできるようにしたものである。
生成した繊維状粉末はホッパー9内に一時収容する。ホッパーの下部にシリンダー10とプランジャー11からなる成形装置を設置する。11′はプランジャーの駆動装置である。ホッパーから繊維状粉末を所定量シリンダー内に落しプランジャーで圧縮成形する。粉末の落下量はホッパー下部のフィダー9′で定量的に調整するのが好ましい。繊維状粉末は圧縮すると体積が非常に小さくなるので所定の成形体にするには落下した粉末を受ける部分の容積を十分大きくするかあるいは粉末の落下と予備圧縮を繰り返し、最後に所定の成形体に圧縮する方法などを採用する。前者の場合はシリンダーに直角方向(紙面に垂直方向)に空間を設け、そこに落下した粉末をシリンダーに直角方向に作動するプランジャー(図示してない)でシリンダーと同じ位置まで圧縮し、次いで図示のプランジャー11で圧縮するなどの方法が可能である。図示のシリンダーは断面が四角であるがシリンダーが円筒の場合は直角方向のプランジャーの先端をシリンダーに合せた半円形とする。
【0015】
シリンダーの底部は開閉ダンパー12がその保持装置13内を駆動装置12′によりスライドするようになっている。保持装置は中央部分がシリンダーと同一の穴を有している。成形時はダンパーを閉とし、成形終了後ダンパーを開にし、成形体をプランジャーで押出す。
成形体は次に通電加熱するのがその方法は前記図1の場合と本質的な変りはない。加熱が終了した成形体は受け器14内に収容する。
【0016】
図4は成形体が通電加熱される前に外熱法による加熱(焼成)領域を設けた方法を示す。その他は図3と変りはない。ダンパーから出た成形体は加熱装置16を備えた炉芯管15内に入り、そこで焼成される。炉芯管は成形体が充填されていてもガスが通るように成形体より太くする。
炉芯管による焼成及び通電加熱においてガスが発生するが、これらのガスは導入される窒素ガス6等により通電加熱室から炉芯管内を通り、排出口7より出るが、そのガスの揮発分を凝縮、吸着、吸収等の方法で除いてリサイクル使用することも可能である。この装置では炉芯管による焼成は1800℃程度以下とし、その後通電により3000℃位まで加熱することができる。
以上の図示の方法は成形体を上下より電極で挟んで縦に通電しているが、左右から横方向に通電することも勿論可能である。
【0017】
【実施例】
[実施例1]
繊維状粉末として各繊維の大部分が直径0.05〜3μm、長さが2〜100μmの範囲にあるものを用い、図3の装置によりその成形体に通電加熱した。シリンダーは断面が30mm×30mmの角筒体である。ホッパーから繊維状粉末をシリンダーに供給し、5kg/cm の圧力で成形した。
成形後ダンパー12を開とし、成形体を押出した。成形体の長さは50mm、嵩密度は0.08g/cm で、電気比抵抗は0.4Ωcmであった。この成形体の30×50mmの両面を上下の黒鉛電極で挟み、5g/cm の加圧で通電した。初期の電圧は2.5V、電流は1Aで、徐々に電圧を上げ、最終的には電圧を15.2V、電流を18.5Aとし、それまでのスタートからの時間は5分であった。
この最終的な電圧、電流の条件で10分間保持した。成形体は約1400℃となった。通電中は窒素ガスを0.5リットル/分流した。冷却後成形体を取外し、粉砕して気流分級器により粒状の炭素や鉄化合物を除き製品とした。
製品のCoは6.928Å、Lcは50Åであった。
【0018】
[実施例2]
図4に示す装置で熱処理した。成形までは実施例1と同様である。成形体は先ず炉芯管内に送り、熱処理した。炉芯管の最高温度領域は1400℃である。この領域での滞溜時間は10分間である。次に成形体を熱いまま通電加熱装置に移し実施例1と同様に黒鉛電極に挟み5kg/cm の加圧下で通電した。初期の電圧2.5V、電流1Aで徐々に電圧を上げ、最終的には電圧20.3V、電流61Aとし、それまでのスタートからの時間は10分であった。最終的な電圧、電流で10分間保持した。成形体の温度は放射温度計で推定3014℃であった。
実施例1と同様に粉砕、分級し製品とした。
製品のCoは6.765Å、Lcは280Åでよく黒鉛化されていた。
【0019】
【発明の効果】
嵩密度の小さい気相法炭素繊維の熱処理は効率が悪かったが、本発明のように圧力を加えることによって成形して得られた成形体の嵩密度が0.03g/cm 以上となり、成形体の電気比抵抗が100Ωcm以下に出来たことによって気相法炭素繊維に通電加熱できるようになった。この結果本発明では気相法炭素繊維を容器に入れることなく短時間で連続的に効率よく熱処理できるようになった。
【図面の簡単な説明】
【図1】微細な気相法炭素繊維の成形体の通電加熱を示す断面図。
【図2】図1における成形体を電気絶縁体の中に入れて通電加熱する場合を示す断面図。
【図3】微細な気相法炭素繊維を成形し、次いで通電加熱を示す断面図。
【図4】図3における成形と通電加熱の間に外熱式の加熱装置を設けた場合を示す断面図。
【符号の説明】
1 微細な気相法炭素繊維の成形体
2 電極
4 電源
6 不活性ガス導入口
7 ガス排出口
8 セラミックス絶縁体
9 ホッパー
9′ フィダー
10 シリンダー
11 プランジャー
12 ダンパー
14 受け器
15 炉芯管
16 加熱装置
[0001]
[Industrial applications]
The present invention relates to a method of heat-treating a carbon fiber obtained by a vapor phase method, more specifically, a carbon fiber obtained by a vapor growth method by thermal decomposition of an organic compound.
[0002]
[Prior art]
The method for producing a vapor-grown carbon fiber is an excellent method in which an organic compound is thermally decomposed in a reaction furnace to obtain whisker-like fine carbon fibers in one step. However, there has been a problem in industrial productivity, and various improvements have been made.
For example, at first, a relatively thick and long vapor-grown carbon fiber was produced by depositing ultrafine particles of a transition metal on a ceramic substrate and then supplying and decomposing an organic compound to grow it for a long time. 103528).
[0003]
Although this method can provide carbon fibers having good physical properties, there are many unsatisfactory points such as the fact that the fiber diameter is large and the reaction rate is slow, which is not suitable for industrial production.
In order to improve this, a transition metal such as iron or a compound thereof is used as a catalyst, and the catalyst and a carrier gas and an organic compound such as benzene, toluene and natural gas are introduced into the reaction furnace in a liquid or gaseous state. A method for thermally decomposing organic compounds at about 800 ° C. to 1300 ° C. to produce fine carbon fibers in a short time has been developed, and the productivity has been improved.
[0004]
As a method for producing these vapor grown carbon fibers, (1) a method in which a transition metal compound such as ferrocene is vaporized and introduced into a reaction furnace (pyrolysis furnace) to produce transition metal fine particles and produce them as seeds (Japanese Patent Laid-Open 60-54998).
{Circle around (2)} A method in which a transition metal such as iron is directly vaporized in a pyrolysis furnace to produce a seed and produce it (JP-A-61-291497).
{Circle around (3)} A method in which a transition metal compound such as ferrocene is dispersed or dissolved in a liquid organic compound and sprayed into a reaction furnace to produce a seed as a seed (JP-A-58-180615).
And so on.
The vapor grown carbon fiber obtained by these methods forms a fiber having a fiber diameter of about 0.01 μm to 5 μm and a length of about 1 μm to 1000 μm, and the graphite surface of the graphite structure develops along the fiber axis and is internally formed. The feature is that there is a hollow hole.
[0005]
This carbon fiber usually contains tar content, granular carbon, a catalyst metal or a compound thereof, and the carbon, metal, and the like are attached to the fiber by tar. It is necessary to remove these as a product. Usually, the tar content is carbonized by heating (heat treatment), and the obtained fiber aggregates are crushed or pulverized to remove particulate carbon and metal by airflow classification or the like.
Further, the vapor grown carbon fiber is manufactured at a temperature of at most about 1300 ° C., and the crystal structure of graphite is not sufficiently developed. For this purpose, a method of improving the conductivity of electricity or heat by applying a heat treatment at a higher temperature to develop the crystal structure of graphite depending on the application is adopted.
The conventional heat treatment method employs an external heat method such as passing an aggregate of fibers through a heated tube or placing the aggregate in a container and heating in an electric furnace or the like.
[0006]
[Problems to be solved by the invention]
The vapor grown carbon fiber in the present invention is fine as described above, and forms an aggregate, which is in the form of powder (hereinafter, this aggregate is referred to as fibrous powder).
1) Since the bulk density of the fibrous powder is as small as 0.005 g / cm 3 or less, if the fibrous powder is to be heat-treated, the capacity of the processing equipment including the heating furnace required for the processing becomes large and the processing cost becomes high. .
2) Heat treatment of the fibrous powder usually uses an external heating furnace. However, since the fibrous powder has a low bulk density, it has a large equipment capacity and a small filling rate. Therefore, the thermal conductivity is low and the thermal efficiency is poor, resulting in a high cost.
3) A heating mechanism for the fibrous powder requires a mechanism for transferring the fibrous powder, and a high temperature range of 1500 ° C. or more requires complicated facilities and materials, and is difficult to transfer. And it is difficult to put into practical use due to the problem of adhesion and clogging of the fibrous powder. Therefore, a method is generally used in which a fibrous powder is filled in a container and heat treatment is performed in almost all of the container. However, in this method, in a powder having a low bulk density such as a fibrous powder, the amount of fibers to be filled in the container is extremely small, and heat is mostly spent on heating the container, and as a result, the heat treatment cost increases. .
4) The material of the container is 1400 ° C. or higher, especially at 2000 ° C. or higher. In case of high temperature treatment, there are few materials having this temperature. In consideration of the contamination of the fibrous powder by different elements, a carbon material such as graphite crucible is used. desirable. However, even at high temperatures, graphite is highly corroded by oxygen and nitrogen that are slightly mixed therein, and cannot be used for a long period of time, resulting in consumables. SUMMARY OF THE INVENTION An object of the present invention is to provide a heat treatment method which does not have the above-mentioned problems in the apparatus when heat treating fibrous powder and has good thermal efficiency.
[0007]
[Means for Solving the Problems]
The inventor of the present invention has reported that the fine vapor-grown carbon fiber is a single fiber itself and has an electrical resistivity of 0.0001 to 0.001 Ωcm, and has good conductivity like a normal carbon material. Since the powder has a very low bulk density but contains a tar component and the like, the present invention has been achieved by noting that a compact having a high bulk density can be obtained by compression molding.
That is, in the present invention, fine vapor-grown carbon fibers are compression-molded so that the bulk density of the molded body is 0.03 g / cm 3 or more, electrode terminals are brought into contact with both sides of the molded body, and the molded body is electrically heated. A heat treatment method for vapor grown carbon fiber, characterized in that:
[0008]
The fine vapor-grown carbon fiber used in the present invention is a fibrous powder in which fibers having a diameter of about 0.01 μm to 5 μm and a length of about 1 μm to 1000 μm as described above are collected. Since the as-produced fibrous powder has a very low bulk density of 0.005 g / cm 3 or less, it is first compression-molded. The fibrous powder can be formed into any shape by selecting a mold and a compression method. For example, it has a columnar shape, a cubic shape, a rectangular parallelepiped shape, a prism, a flat shape, and the like, and can be formed into other complicated shapes. However, industrially, it is desirable to use a column or a prism that has a shape as simple as possible and that is easy to conduct electricity from both sides (both ends).
[0009]
As the molding method, a press molding method or an extrusion molding method is easiest. Since the fibrous powder has good entanglement of each fiber and contains a small amount of tar, the shape is maintained to the extent that it does not disturb the electric heating even if compression molding is performed as it is, but if higher strength is desired, the fiber What is necessary is just to add a small amount of a primary binder such as starch, CMC, tar, naphthalene, anthracene to the powdery powder and form the mixture.
[0010]
Since the strength of the compact can be adjusted by the pressurizing pressure during molding and the bulk density of the fibrous powder, optimal pressure conditions are selected according to the strength of the target compact and the target bulk density. Specifically, it may be 0.1 kg / cm 2 or more. The higher the pressure, the more stable the molded article can be obtained. However, if the pressure is too high, the fiber collapses and the fiber properties deteriorate.
That is, if the pressure is less than 0.1 kg / cm 2 , the strength of the molded product is insufficient, and the probability of collapse and powdering during handling increases. On the other hand, when the pressure is 100 kg / cm 2 or more, the fiber is frequently cut or collapsed, and the fiber properties are deteriorated.
In addition, if the pressurizing pressure increases, the equipment cost of the pressurizing system itself including the die increases, and therefore, it is preferable that the pressure is low from the viewpoint of the facility cost. Therefore, the molding pressure is about 0.1 to 100 kg / cm 2 , preferably about 1 to 10 kg / cm 2 .
[0011]
If the molding pressure is 0.1 kg / cm 2 or more, the molded body usually has a bulk density of 0.03 g / cm 3 or more. However, since the fibrous powder compact has the property of being slightly restored when the pressure is released, it is necessary to take this into account when conducting heating. In the present invention, the bulk density of the molded body is set to 0.03 g / cm 3 or more during electric heating. At this density, the electrical resistivity is 100 Ωcm or less.
Electric heating of the molded body is performed, for example, by a method as shown in FIG. In the figure, reference numeral 1 denotes a fibrous powder compact having a bulk density of 0.03 g / cm 3 or more. Reference numeral 2 denotes upper and lower electrodes of the molded body, which are connected to a power supply 4 by a conductor 4 '. As the electrode, a carbon electrode having good conductivity and enduring high temperature is most suitable. Reference numeral 3 denotes an insulator such as ceramics. The energization heating must be performed in a non-oxidizing atmosphere, and since a gas is generated from the molded body, the energization section is surrounded by a housing 5, and the housing 5 has an inlet 6 for nitrogen gas, argon gas, etc. and a gas outlet. 7 is provided.
[0012]
The pressure applied to the compact can be adjusted by a holding device (not shown) attached to the upper electrode. If the contact between the electrode and the molded body is improved and the bulk density of the molded body is 0.03 g / cm 3 , it is possible to conduct electricity even with little pressure, but preferably to 100 g / cm 2 or more. Apply electricity by applying pressure. The upper limit is usually about 100 kg / cm 2 because the pressure of the molded product collapses when it is too high. The electric heating may be performed while the fibrous powder is formed as it is, or the formed body may be heated once by an external heat method at a possible temperature. It is preferable to heat the as-molded product slowly because rapid generation of gas causes severe gas generation. Electric heating is particularly effective for high-temperature treatment such as graphitization. In the case of a high-temperature treatment at 2500 ° C. or higher, if the voltage between the electrodes is high, there is a risk of thermal discharge. Therefore, it is preferable that the voltage is not too high, for example, about 20 V or less. The cross-sectional area, height, and the like of the molded body are adjusted so that necessary heat is obtained even with this voltage. The heating temperature for the heat treatment is usually selected from the range of about 1300 ° C to about 3000 ° C.
[0013]
FIG. 2 shows a method of electrically heating the molded body in an electrically insulating mold 8. The molded body 1 may be separately molded and placed in the mold 8, or molded with this mold and subsequently energized. In the method shown in FIG. 2, since the molded body does not collapse, it is possible to increase the pressure within the range of the pressure resistance of the mold at the target temperature. However, ceramics such as alumina are used as the insulating mold, but the heating temperature is limited to about 1800 ° C.
[0014]
FIG. 3 shows a configuration in which the molding device and the electric heating device are directly connected so that molding and electric heating can be performed continuously.
The generated fibrous powder is temporarily stored in the hopper 9. A molding device including a cylinder 10 and a plunger 11 is installed below the hopper. 11 'is a driving device for the plunger. A predetermined amount of fibrous powder is dropped from a hopper into a cylinder and compression molded with a plunger. It is preferable that the amount of powder falling is quantitatively adjusted by the feeder 9 'at the bottom of the hopper. Since the volume of the fibrous powder becomes extremely small when compressed, the volume of the part receiving the dropped powder should be sufficiently large to form a predetermined molded body, or the powder should be dropped and pre-compressed repeatedly, and finally the predetermined molded body should be formed. Adopt a compression method. In the former case, a space is provided in the cylinder at right angles (perpendicular to the plane of the paper), and the powder that has fallen there is compressed by a plunger (not shown) operating at right angles to the cylinder to the same position as the cylinder. A method such as compression with the illustrated plunger 11 is possible. The illustrated cylinder has a square cross section, but if the cylinder is a cylinder, the tip of the plunger in the right angle direction is a semicircle with the cylinder fitted.
[0015]
At the bottom of the cylinder, the opening / closing damper 12 slides in the holding device 13 by the driving device 12 '. The holding device has the same hole in the central part as the cylinder. At the time of molding, the damper is closed, and after the molding is completed, the damper is opened, and the molded body is extruded with a plunger.
The molded body is then heated by energization in the same manner as in the case of FIG. The molded body after the heating is accommodated in the receiver 14.
[0016]
FIG. 4 shows a method in which a heating (firing) area is provided by an external heating method before the molded body is heated by electric current. Others are the same as FIG. The molded body coming out of the damper enters a furnace core tube 15 provided with a heating device 16, where it is fired. The furnace core tube is made thicker than the compact so that gas can pass even if the compact is filled.
Gases are generated during the baking by the furnace tube and the electric heating, and these gases pass through the furnace core tube from the electric heating chamber by the introduced nitrogen gas 6 and the like and exit from the outlet 7. It is also possible to recycle it after removing it by methods such as condensation, adsorption and absorption. In this apparatus, the sintering with the furnace core tube is performed at about 1800 ° C. or less, and thereafter, it can be heated to about 3000 ° C. by energizing.
In the above method shown in the drawings, the molded body is vertically energized by sandwiching it between the electrodes from above and below, but it is of course possible to energize horizontally from left and right.
[0017]
【Example】
[Example 1]
As a fibrous powder, most of each fiber had a diameter of 0.05 to 3 μm and a length of 2 to 100 μm, and the molded body was electrically heated by the apparatus shown in FIG. The cylinder is a rectangular cylinder having a cross section of 30 mm × 30 mm. The fibrous powder was supplied from a hopper to a cylinder, and was molded at a pressure of 5 kg / cm 2 .
After the molding, the damper 12 was opened, and the molded body was extruded. The molded body had a length of 50 mm, a bulk density of 0.08 g / cm 3 , and an electrical resistivity of 0.4 Ωcm. Both sides of this molded body having a size of 30 × 50 mm were sandwiched between upper and lower graphite electrodes, and electricity was supplied at a pressure of 5 g / cm 2 . The initial voltage was 2.5 V and the current was 1 A. The voltage was gradually increased, and finally, the voltage was 15.2 V and the current was 18.5 A. The time from the start was 5 minutes.
The final voltage and current conditions were maintained for 10 minutes. The molded body reached about 1400 ° C. During energization, nitrogen gas was flowed at 0.5 liter / minute. After cooling, the molded body was removed and pulverized to remove a granular carbon or iron compound by an airflow classifier to obtain a product.
The Co of the product was 6.928 ° and the Lc was 50 °.
[0018]
[Example 2]
Heat treatment was performed using the apparatus shown in FIG. The steps up to the molding are the same as in the first embodiment. The molded body was first sent into a furnace core tube and heat-treated. The maximum temperature range of the furnace core tube is 1400 ° C. The residence time in this area is 10 minutes. Next, the molded body was transferred to an electric heating device while being hot, and was sandwiched between graphite electrodes and energized under a pressure of 5 kg / cm 2 as in Example 1. The voltage was gradually increased at an initial voltage of 2.5 V and a current of 1 A, and finally was 20.3 V and a current of 61 A, and the time from the start was 10 minutes. The final voltage and current were maintained for 10 minutes. The temperature of the molded body was estimated to be 3014 ° C. by a radiation thermometer.
Pulverized and classified in the same manner as in Example 1 to obtain a product.
The Co of the product was 6.765% and the Lc was 280 ° and was well graphitized.
[0019]
【The invention's effect】
Although the heat treatment of the vapor-grown carbon fiber having a low bulk density was inefficient, the bulk density of the molded product obtained by applying pressure as in the present invention became 0.03 g / cm 3 or more, and Since the electrical resistivity of the body was reduced to 100 Ωcm or less, the vapor-grown carbon fiber could be heated by electricity. As a result, in the present invention, heat treatment can be performed continuously and efficiently in a short time without putting the vapor grown carbon fiber in a container.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing electric heating of a molded article of fine vapor-grown carbon fiber.
FIG. 2 is a cross-sectional view showing a case where the molded body in FIG.
FIG. 3 is a cross-sectional view showing the formation of fine vapor-grown carbon fibers, and then heating by energization.
FIG. 4 is a cross-sectional view showing a case where an external heating type heating device is provided between molding and electric heating in FIG. 3;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Fine vapor-grown carbon fiber compact 2 Electrode 4 Power supply 6 Inert gas inlet 7 Gas outlet 8 Ceramic insulator 9 Hopper 9 'Feeder 10 Cylinder 11 Plunger 12 Damper 14 Receiver 15 Furnace tube 16 Heating apparatus

Claims (7)

微細な気相法炭素繊維を圧縮成形して成形体の嵩密度を0.03g/cm3 以上とし、該成形体の電気比抵抗を100Ωcm以下にして、成形体の両側に電極端子を当接し、成形体に通電加熱することを特徴とする気相法炭素繊維の熱処理方法。The fine vapor grown carbon fiber is compression molded to make the bulk density of the molded body 0.03 g / cm 3 or more, the electric resistivity of the molded body to 100 Ωcm or less, and contact the electrode terminals on both sides of the molded body. And a method for heat-treating a vapor-grown carbon fiber, wherein the molded body is electrically heated. 型内で成形体に通電加熱する請求項1記載の気相法炭素繊維の熱処理方法。2. The heat treatment method for vapor-grown carbon fiber according to claim 1, wherein the molded body is electrically heated in the mold. 底部に開閉ダンパーを備えたシリンダー型の成形装置で微細な気相法炭素繊維を成形し、成形後シリンダーのダンパーを開とし、成形体をシリンダーから押出し、該成形体の両側に電極端子を当接し、成形体に通電加熱することを特徴とする気相法炭素繊維の熱処理方法。Fine vapor-grown carbon fiber is molded with a cylinder-type molding device equipped with an opening / closing damper at the bottom. A heat treatment method for vapor-grown carbon fiber, comprising contacting and electrically heating a molded body. 底部に開閉ダンパーを備えたシリンダー型の成形装置で微細な気相法炭素繊維を成形し、成形後シリンダーのダンパーを開とし、成形体をシリンダーから押出してシリンダーに接続された炉芯管内に送り込み、成形体を1800℃以下の温度で焼成し、次いで炉芯管から押出された成形体の両側に電極端子を当接し、焼成成形体に通電加熱することを特徴とする気相法炭素繊維の熱処理方法。Fine vapor-grown carbon fiber is molded with a cylinder-type molding device equipped with an opening / closing damper at the bottom. And firing the molded body at a temperature of 1800 ° C. or less, then contacting electrode terminals on both sides of the molded body extruded from the furnace core tube, and electrically heating the fired molded body. Heat treatment method. 微細な気相法炭素繊維を収納したホッパーの下部にシリンダー型成形装置を直結して該炭素繊維の成形を行なう請求項3又は4記載の気相法炭素繊維の熱処理方法。The heat treatment method for vapor-grown carbon fiber according to claim 3 or 4, wherein the carbon fiber is molded by directly connecting a cylinder-type molding device to a lower portion of a hopper storing fine vapor-grown carbon fiber. 成形体の通電加熱を100g/cm2 以上の加圧下で行なう請求項1〜5のいずれかに記載の気相法炭素繊維の熱処理方法。The heat treatment method for vapor-grown carbon fiber according to any one of claims 1 to 5, wherein the heating of the formed body is performed under a pressure of 100 g / cm 2 or more. 微細な気相法炭素繊維を圧縮成形して成形体の嵩密度を0.03g/cm3 以上とし、成形体の両側に電極端子を当接し、成形体に通電加熱を行う気相法炭素繊維の製造方法であって、熱処理が請求項1〜6のいずれかに記載の熱処理方法によることを特徴とする気相法炭素繊維の製造方法。Vapor-grown carbon fiber obtained by compression-molding fine vapor-grown carbon fiber to increase the bulk density of the molded body to 0.03 g / cm 3 or more, contacting electrode terminals on both sides of the molded body, and applying electric heating to the molded body A method for producing vapor-grown carbon fiber, wherein the heat treatment is performed by the heat treatment method according to any one of claims 1 to 6.
JP21667394A 1994-08-17 1994-08-17 Heat treatment method of vapor grown carbon fiber Expired - Fee Related JP3600640B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21667394A JP3600640B2 (en) 1994-08-17 1994-08-17 Heat treatment method of vapor grown carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21667394A JP3600640B2 (en) 1994-08-17 1994-08-17 Heat treatment method of vapor grown carbon fiber

Publications (2)

Publication Number Publication Date
JPH0860446A JPH0860446A (en) 1996-03-05
JP3600640B2 true JP3600640B2 (en) 2004-12-15

Family

ID=16692137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21667394A Expired - Fee Related JP3600640B2 (en) 1994-08-17 1994-08-17 Heat treatment method of vapor grown carbon fiber

Country Status (1)

Country Link
JP (1) JP3600640B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4920135B2 (en) * 2001-02-08 2012-04-18 昭和電工株式会社 Electrical insulator-coated vapor-phase carbon fiber, method for producing the same, and use thereof
WO2004038074A1 (en) * 2002-10-28 2004-05-06 Bussan Nanotech Reserch Institute Inc. Method and apparatus for heat treatment of powder of fine carbon fiber
JP3850427B2 (en) * 2005-03-22 2006-11-29 株式会社物産ナノテク研究所 Carbon fiber bonded body and composite material using the same
JP4876441B2 (en) * 2005-06-06 2012-02-15 株式会社デンソー Method and apparatus for producing carbon nanotube fiber
JP2007138338A (en) * 2005-11-18 2007-06-07 Bussan Nanotech Research Institute Inc Composite material
EP3096387A4 (en) 2014-01-14 2017-07-19 Showa Denko K.K. Lithium secondary battery and conductive assistant used in same

Also Published As

Publication number Publication date
JPH0860446A (en) 1996-03-05

Similar Documents

Publication Publication Date Title
JP3502490B2 (en) Carbon fiber material and method for producing the same
EP2537801B1 (en) Method for producing a carbon material
JP4533146B2 (en) Fine carbon fiber powder heat treatment method and heat treatment apparatus
JP5802129B2 (en) Method for manufacturing and processing graphite powder
JP4157791B2 (en) Method for producing carbon nanofiber
CZ292640B6 (en) Method for increasing regularity of carbon particle nanostructure
JP2004299986A (en) Carbon nanotube, and its production method
CN103191683A (en) Device of preparing nano powder material through electrical explosion
JP3600640B2 (en) Heat treatment method of vapor grown carbon fiber
JP2004003097A (en) Carbon fiber, process for producing the same and electrode for electric batteries
JP4920135B2 (en) Electrical insulator-coated vapor-phase carbon fiber, method for producing the same, and use thereof
JP2004119386A (en) Carbon fiber material and its composite material
KR102176380B1 (en) Catalytically active additives for coke derived from petroleum or coal
JP2595296B2 (en) Vapor-grown carbon fiber granulated material
JP3609458B2 (en) Heat treatment method and apparatus for fine carbon fiber
JP2003020527A (en) Carbon fiber, method for producing the same and use thereof
JP2514274B2 (en) Method for manufacturing hydrogen storage alloy material
CN113574015A (en) Heating furnace and method for producing graphite
JP2006306724A (en) Graphite carbon powder and method and apparatus for producing the same
JPH0733420A (en) Carbonaceous fine particles of special shape, compact of them and their production
JP2001114506A (en) Graphite powder, and method of and device for producing the same
JP4552163B2 (en) Manufacturing method of carbonaceous granular heat insulating material
JP2000281444A (en) Cylindrical graphite material and its production
JP2808807B2 (en) Production method of raw material powder for carbon material
JPS58176180A (en) Manufacture of carbon material

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040917

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees