WO2007058267A1 - Novel protein and gene encoding the protein - Google Patents

Novel protein and gene encoding the protein Download PDF

Info

Publication number
WO2007058267A1
WO2007058267A1 PCT/JP2006/322879 JP2006322879W WO2007058267A1 WO 2007058267 A1 WO2007058267 A1 WO 2007058267A1 JP 2006322879 W JP2006322879 W JP 2006322879W WO 2007058267 A1 WO2007058267 A1 WO 2007058267A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
amino acid
gene
seq
acid sequence
Prior art date
Application number
PCT/JP2006/322879
Other languages
French (fr)
Japanese (ja)
Other versions
WO2007058267A8 (en
Inventor
Kenichi Mikitani
Original Assignee
Kenichi Mikitani
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kenichi Mikitani filed Critical Kenichi Mikitani
Publication of WO2007058267A1 publication Critical patent/WO2007058267A1/en
Publication of WO2007058267A8 publication Critical patent/WO2007058267A8/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans

Definitions

  • the present invention relates to a novel protein and a gene encoding the same.
  • Non-Patent Document 2 Schultz, J., SAM as a protein interaction domain involved in developm ental regulation, Protein Sci., 1997, 6, 249-253
  • Non-Patent Document 3 Kim, C.A. and Bowie, J.U., SAM domains: Uniform structure, diversit y of lunction, Trends Biochem. Sci., 2003, 28, 625-628
  • the present invention firstly provides a novel protein related to ontogeny, a gene encoding the protein, a recombinant vector containing the gene, a transformant containing the recombinant vector, and an antibody against the protein Alternatively, an object is to provide a fragment thereof.
  • a second object of the present invention is to provide a screening method for substances that affect ontogeny.
  • the present invention provides the following protein, gene, recombinant vector, transformant, antibody or fragment thereof, and screening method.
  • a transformant comprising the recombinant vector according to (6).
  • the test substance is an affinity reciprocal between the protein described in (3) and Bax inhibitor-1
  • a method for screening a substance that affects ontogeny comprising the step of determining whether or not the action can be suppressed or promoted and screening the test substance capable of suppressing or promoting the affinity interaction as a substance that affects ontogeny .
  • a novel protein related to ontogeny a gene encoding the protein, a recombinant vector containing the gene, a transformant containing the recombinant vector, and an antibody against the protein or its Fragments are provided.
  • the present invention also provides a method for screening for substances that affect ontogeny.
  • FIG. 1 is a diagram showing the genomic structures of human gene 1 and mouse gene 1.
  • FIG. 2 is a graph showing the expression of human gene 1 in tissues such as brain, kidney, lung, muscle, placenta, small intestine, testis, adrenal gland, salivary gland, spleen, and stomach.
  • FIG. 3 shows the results of observing the localization of a GFP-fused human gene 1 product in COS-7 cells using a fluorescence microscope.
  • FIG. 4 is a diagram showing the detection result of interaction between human gene 1 products by co-immunoprecipitation method.
  • FIG. 5 is a diagram showing the results of detecting the interaction between human gene 1 products by the mammalian cell two-hybrid method.
  • FIG. 6 is a view showing the detection results of the interaction between the human gene 1 product and the human Bax inhibitor 1 gene product by the mammalian cell two-hybrid method.
  • FIG. 7 is a diagram showing the detection result of human gene 1 product by Western blotting using anti-gene 1 antibody.
  • FIG. 8 is a block diagram of a GFP human gene 1 vector.
  • FIG. 9 is a block diagram of a FLAG human gene 1 vector.
  • FIG. 10 is a block diagram of the HA-human gene 1 vector.
  • FIG. 11 is a block diagram of a GAL4 human gene 1 vector.
  • FIG. 12 is a block diagram of a VP16 human gene 1 vector.
  • FIG. 13 is a block diagram of a VP16 human Bax inhibitor-1 gene vector.
  • FIG. 14 is a block diagram of a mouse gene 1 gene targeting vector.
  • the protein of the present invention is a protein shown in the following (a), (b), (c) or (d).
  • protein (a) a protein having an amino acid sequence ability described in SEQ ID NO: 2 or 4 (hereinafter sometimes referred to as “protein (a)”)
  • protein (b) In the amino acid sequence set forth in SEQ ID NO: 2 or 4, one or more amino acids are deleted, substituted or added, and it is also an amino acid sequence that is essential for ontogeny (hereinafter referred to as “protein (b)”) There may be cases.)
  • protein (c) a protein having an affinity interaction with the protein shown in (a) above, wherein one or more amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 2 or 4 (Hereafter referred to as “protein (c)”!
  • protein (d) A protein having an amino acid sequence ability in which one or more amino acids are deleted, substituted or added in the amino acid sequence described in SEQ ID NO: 2 or 4, and has an affinity interaction with Bax inhibitor-1 (hereinafter referred to as “protein ( d) "may occur.)
  • the protein having the amino acid sequence ability described in SEQ ID NO: 2 is a protein derived from human, and the protein consisting of the amino acid sequence described in SEQ ID NO: 4 is a mouse-derived protein.
  • Protein (a) is an essential protein for ontogeny. Protein (a) is essential for ontogeny especially in the embryonic period, and if the gene encoding the protein comprising the amino acid sequence described in SEQ ID NO: 2 becomes homo-deficient in the human genome, the fertilized egg The normal development process cannot be achieved and the human fetus is fatal. In addition, if the gene encoding the protein having the amino acid sequence shown in SEQ ID NO: 4 becomes homo-deficient in the mouse genome, the fertilized egg cannot go through a normal development process, and the mouse fetus It will be lethal. In addition, if it is a hetero deficiency type, a human fetus and a mouse fetus will not be lethal.
  • Protein (a) exhibits an affinity interaction with another protein (a).
  • the affinity interaction of protein (a) is considered to be involved in ontogeny, especially in embryonic development.
  • “Affinity interaction between proteins (a)” means protein (a) It means both direct binding between proteins and indirect binding between proteins (a) via other substances, preferably direct binding between proteins (a).
  • Protein (a) exhibits an affinity interaction with Bax inhibitor-1.
  • the affinity interaction between protein (a) and Bax inhibitor-1 is thought to be involved in ontogeny, particularly in embryonic development.
  • “Friendly interaction between protein (a) and Bax inhibitor-1” refers to direct binding between protein (a) and Bax inhibitor-1 and protein (a) via other substances. This also means a shift in indirect binding with Bax inhibitor-1, but preferably means direct binding between protein (a) and Bax inhibitor-1.
  • Bax inhibitor-1 inhibits the action of Bax, a factor that induces apoptosis, and suppresses cell death.
  • proteins that interact with Bax inhibitor-1 include Be 1-2 and Bel-XL.
  • the amino acid sequence of human-derived Bax inhibitor-1 is shown in SEQ ID NO: 6, and the base sequence of the DNA encoding it is shown in SEQ ID NO: 5.
  • the 73rd amino acid force and the 140th amino acid moiety contain a peptide motif characteristic of a signal transduction factor called a SAM (Sterile Alpha Motif) domain.
  • SAM Sterile Alpha Motif
  • the Ser residue of amino acid 52 is included in the motif characteristic of the MAP kinase substrate, and the region from amino acid 247 to amino acid 250 (Pro-Pro-Leu-Pro) is an SH3 binding region motif.
  • the SAM domain is a peptide domain structure of about 70 amino acids, is found in eukaryotic gene products from yeast to humans, and is thought to mediate protein-protein interactions. ing. In some SAM domains, RNA binding ability, lipid binding ability, etc. have been reported.
  • MAP kinase is a serine-threonine kinase that is ubiquitous in eukaryotes and plays an important role in cell proliferation, differentiation, apoptosis, morphogenesis, and the like.
  • a MAP kinase substrate is a protein that is activated or inactivated by being phosphorylated by MAP kinase.
  • the SH3 (Src homology 3) binding domain is a domain that binds to the SH3 domain, which is a functional domain in the oncogenic tyrosine kinase gene product Src.
  • Pro- Xaal- Xaa2- ro X aa 2 is usually a hydrophobic amino acid.
  • the Src gene product is thought to play an important role in embryonic development and cell proliferation.
  • the number and position of amino acids deleted, substituted or added to the amino acid sequence shown in SEQ ID NO: 2 or 4 retains the function of protein (a), which is essential for ontogeny.
  • the number is not particularly limited as long as it is one or more, preferably one or several.
  • the specific range for deletion is usually 1 to 40, preferably 1 to 20, more preferably 1 to 10, and the specific range for substitution is usually 1 to 20, preferably 1 to 10. 10, more preferably 1-5, and the specific range for addition is usually 1-10, preferably 1-5, more preferably 1-2.
  • the amino acid sequence of protein (b) has a homology of usually 70% or more, preferably 80% or more, more preferably 90% or more with the amino acid sequence of protein (a).
  • protein (a) is introduced with mutations such as deletion, substitution and addition. It includes proteins that exist in nature and proteins that have been artificially introduced with mutations such as deletions, substitutions, and additions. Naturally occurring proteins with mutations such as deletions, substitutions and additions include, for example, mammals (eg, humans, monkeys, bushes, hidges, goats, horses, pigs, rabbits, And the like (including proteins that can be generated by polymorphism in these mammals).
  • mammals eg, humans, monkeys, bushes, hidges, goats, horses, pigs, rabbits, And the like (including proteins that can be generated by polymorphism in these mammals).
  • the number and position of amino acids deleted, substituted, or added to the amino acid sequence shown in SEQ ID NO: 2 or 4 indicates an affinity interaction with another protein (a) (
  • the number is not particularly limited as long as the function of a) is maintained, and the number is one or more, preferably one or several.
  • the specific range for deletion is usually 1 to 40, preferably 1 to 20, more preferably 1 to: LO, and the specific range for substitution is usually 1 to 20, preferably 1.
  • ⁇ : LO, more preferably 1-5, and the specific range for addition is usually 1-10, preferably 1-5, more preferably 1-2.
  • the amino acid sequence of protein (c) usually has a homology of 70% or more, preferably 80% or more, more preferably 90% or more with the amino acid sequence of protein (a).
  • the 1st to 62nd amino acids are amino acids. Even if one or more amino acids are deleted, substituted, or added in the sequence part or the amino acid sequence part of the 159th to 478th amino acids, the protein interacts with other proteins (a). The function of protein (a) is retained.
  • the amino acid sequence portion having 1st to 62nd amino acid force is present on the N-terminal side of the SAM domain, includes a MAP kinase basic motif, and is a portion having a relatively large difference between human and mouse.
  • the amino acid sequence part of the 478th amino acid is located on the C-terminal side of the SAM domain, contains the SH3 binding domain, and has relatively high homology between humans and mice! , Part.
  • protein () in addition to a protein in which mutations such as deletion, substitution, and addition have been artificially introduced into protein (a), natural mutations in which mutations such as deletion, substitution, and addition have been introduced.
  • proteins that are present in humans and proteins into which mutations such as deletions, substitutions, and additions have been artificially introduced are also included.
  • Naturally occurring proteins with mutations such as deletions, substitutions and additions include, for example, mammals (eg, humans, monkeys, bushes, hidges, goats, horses, pigs, rabbits, And the like (including proteins that can be generated by polymorphism in these mammals).
  • the number and position of amino acids deleted, substituted, or added to the amino acid sequence shown in SEQ ID NO: 2 or 4 is a protein that exhibits an affinity interaction with Bax inhibitor-1 ( The number is not particularly limited as long as the function of a) is maintained, and the number is one or more, preferably one or several.
  • the specific range for deletion is usually 1 to 40, preferably 1 to 20, more preferably 1 to: L0, and the specific range for substitution is usually 1 to 20, preferably 1 ⁇ : L0, more preferably 1-5, and the specific range for addition is usually 1-10, preferably 1-5, more preferably 1-2.
  • the amino acid sequence of the protein (d) has a homology of usually 70% or more, preferably 80% or more, more preferably 90% or more with the amino acid sequence of the protein (a).
  • the amino acid sequence portion having the amino acid strength of 1 to 232 or the amino acid sequence portion having the amino acid strength of 264 to 478 is missing one or more amino acids. Even if it is lost, substituted or added, the function of the protein (a), which shows an affinity interaction with Bax inhibitor-1, is retained.
  • the amino acid sequence portion consisting of amino acids 1 to 232 contains a SAM domain and a MAP kinase substrate motif
  • the amino acid sequence portion consisting of amino acids 264 to 478 is a portion containing a relatively large amount of hydrophobic amino acids, including the SH3 binding region domain, and a portion containing a relatively large amount of hydrophobic amino acids.
  • protein () in addition to a protein in which mutations such as deletion, substitution, addition, etc. are artificially introduced into protein (a), a mutation, such as deletion, substitution, addition, etc., is naturally introduced.
  • proteins that are present in humans and proteins into which mutations such as deletions, substitutions, and additions have been artificially introduced are also included.
  • Naturally occurring proteins with mutations such as deletions, substitutions and additions include, for example, mammals (eg, humans, monkeys, bushes, hidges, goats, horses, pigs, rabbits, And the like (including proteins that can be generated by polymorphism in these mammals).
  • the animal derived from Bax inhibitor-1 in which protein (d) exhibits an affinity interaction is not particularly limited. However, when protein (d) is a naturally occurring protein, a protein ( If the animal derived from d) and the animal derived from Bax inhibitor-1 are of the same species, protein (d) is considered to exhibit a high affinity interaction with Bax inhibitor-1.
  • the protein (a), (b), (c) or (d) includes a protein to which a sugar chain has been added and a shift of the protein to which the sugar chain has been added.
  • the type and position of the sugar chain added to the protein varies depending on the type of host cell used in the production of the protein. Any host cell can be used for the protein with the added sugar chain. Proteins are also included.
  • protein), (b) or (d) includes pharmaceutically acceptable salts thereof.
  • the gene encoding protein), (b), (c) or (d) is, for example, mammalian brain, kidney, lung, muscle, placenta, small intestine, testis, adrenal gland, salivary gland, spleen, stomach, etc.
  • a cDNA library is prepared using the mRNA extracted from the tissue strength of each, and a clone containing the target DNA is screened from the cDNA library using probes synthesized based on the nucleotide sequences described in SEQ ID NO: 1 or 3, respectively. Can be obtained. The following explains each step of cDNA library preparation and screening of clones containing the target DNA.
  • RNA is obtained by the affinity column method, batch method, etc. using cellulose or poly-sepharose. At this time, poly (A +) RNA (mRNA) may be fractionated by sucrose density gradient centrifugation or the like.
  • single-stranded cDNA is synthesized using an oligo dT primer and reverse transcriptase, and then double-stranded cDNA is synthesized from the single-stranded cDNA.
  • the double-stranded cDNA thus obtained is incorporated into an appropriate cloning vector to prepare a recombinant vector, and the recombinant vector is used to transform host cells such as Escherichia coli, which have tetracycline resistance and ampicillin resistance.
  • a cDNA library can be obtained.
  • the cloning vector for preparing the cDNA library is not particularly limited as long as it can replicate autonomously in the host cell.
  • a phage vector or a plasmid vector can be used.
  • Escherichia coli can be used.
  • Transformation of host cells such as Escherichia coli is carried out by a method in which a recombinant vector is coated on a competent cell prepared in the presence of salt calcium salt, salt magnesium or salt rubidium. Can do.
  • a plasmid it is preferable to contain a drug resistance gene such as tetracycline or ampicillin.
  • a primer is synthesized based on the nucleotide sequence described in SEQ ID NO: 1 or 3, and this is used to perform a polymerase chain reaction (PCR). An amplified fragment is obtained. PCR amplified fragments can be subcloned using an appropriate plasmid vector.
  • the primer set used for PCR is not particularly limited, and can be designed based on the nucleotide sequence described in SEQ ID NO: 1 or 3.
  • the target DNA can be obtained by performing a hybridization or plaque hybridization.
  • a PCR-amplified fragment labeled with an isotope eg, 32 P, 35 S
  • piotin e.g., digoxigenin
  • alkaline phosphatase e.g., alkaline phosphatase
  • a clone containing the target DNA can be obtained by expression screening such as immunoscreening using an antibody.
  • the obtained DNA base sequence is obtained by cleaving the DNA fragment as it is or with a suitable restriction enzyme, etc., and then incorporating the DNA fragment into a vector by a conventional method, for example, a commonly used base sequence analysis method, such as Maxam Gilbert's chemistry. It can be determined using the modification method or the dideoxynucleotide chain termination method.
  • a base sequence analyzer such as 373A DNA Sequencer (manufactured by Perkin Elmer) is usually used.
  • the gene encoding protein), (b), (c) or (d) includes an open reading frame and a stop codon located at the 3 'end thereof.
  • the gene encoding protein), (b), (c) or (d) can contain an untranslated region (UTR) at the 5 ′ end and Z or 3 ′ end of the open reading frame.
  • Examples of the gene encoding the protein having the amino acid sequence ability described in SEQ ID NO: 2 include a gene containing DNA consisting of the 19th to 1452th base sequences in the base sequence described in SEQ ID NO: 1.
  • the open reading frame is located at the 19th to 1452th base sequence
  • the translation initiation codon is located at the 19th to 21st base sequence
  • the stop codon is from 1453 to Located at the 1455th nucleotide sequence.
  • the base sequence of the gene encoding the protein consisting of the amino acid sequence described in SEQ ID NO: 2 is not particularly limited as long as it encodes the protein.
  • the base sequence of the open reading frame is the base sequence described in SEQ ID NO: 1. Of these, the base sequence is not limited to the 19th to 1452st positions.
  • Examples of the gene encoding the protein having the amino acid sequence ability described in SEQ ID NO: 4 include a gene containing DNA consisting of the 46th to 1479th base sequences of the base sequence described in SEQ ID NO: 3.
  • the open reading frame is located at the 46th to 1479th base sequence
  • the translation initiation codon is located at the 46th to 48th base sequence
  • the stop codon is from 1480 to Located at base 1482
  • the base sequence of the gene encoding the protein having the amino acid sequence ability described in SEQ ID NO: 4 is not particularly limited as long as it encodes the protein.
  • the base sequence of the open reading frame is the base sequence described in SEQ ID NO: 4. Of these, it is not limited to the 46th to 1479th nucleotide sequences.
  • the gene encoding protein), (b), (c) or (d) can also be obtained by chemical synthesis according to the base sequence.
  • a commercially available DNA synthesizer for example, a DNA synthesizer using the thiophosphite method (manufactured by Shimadzu Corporation), or a DNA synthesizer using the phosphoramidite method (manufactured by Perkin 'Elma Corporation) Can be used.
  • the gene encoding protein (c), (c) or (d) is, for example, a stringent to a DNA complementary to the DNA comprising the 19th to 1452th base sequences of the base sequence described in SEQ ID NO: 1. Including DNA that hybridizes under mild conditions, or DNA that hybridizes under stringent conditions to DNA complementary to DNA consisting of the 46th to 1479th nucleotide sequences of the nucleotide sequence set forth in SEQ ID NO: 3. Gene.
  • “Stringent conditions” include, for example, conditions of 42 ° C., 2 ⁇ SSC and 0.1% SDS, preferably conditions of 65 ° C., 0.1 ⁇ SSC and 0.1% SDS.
  • the DNA that hybridizes under stringent conditions to DNA complementary to the DNA consisting of the 19th to 1452th base sequences of the base sequence set forth in SEQ ID NO: 1 includes 19 of the base sequence set forth in SEQ ID NO: 1.
  • the DNA that hybridizes under stringent conditions to DNA complementary to the DNA that also has the second base sequence ability is at least 70% or more of the DNA consisting of the 46th to 1479th base sequences of the base sequence described in SEQ ID NO: 3.
  • a DNA having a homology of preferably 80% or more, more preferably 90% or more is mentioned.
  • the gene encoding protein (b), (c) or (d) is artificially added to the gene encoding protein (a) using a known method such as site-directed mutagenesis. It can also be obtained by introducing mutations.
  • mutation introduction kits such as Mutant-K (TAKARA), Mutant-G (TAKARA), TAKARA LA PCR in vitro M Can be performed using the utagenesis series kit.
  • a gene whose base sequence has already been determined can be obtained by chemical synthesis according to the base sequence.
  • the protein), (b), (c) or (d) can be produced, for example, by expressing a gene encoding each protein in a host cell according to the following steps.
  • DNA fragment of appropriate length that contains the coding region of the protein of interest.
  • DNA with a base substitution is prepared so that the base sequence of the coding region of the target protein becomes the optimal codon for expression in the host cell.
  • a recombinant protein can be produced by inserting this DNA fragment downstream of the promoter of an appropriate expression vector, and the desired protein can be produced by introducing the recombinant vector into an appropriate host cell.
  • a transformant is obtained.
  • the above DNA fragment must be incorporated into a vector so that its function can be exerted.
  • the vector is not only a propeller motor, but also a cis element such as an enhancer, splicing signal, poly A addition signal, selection A marker (for example, dihydrofolate reductase gene, ampicillin resistance gene, neomycin resistance gene), ribosome binding sequence (SD sequence) and the like can be contained.
  • the expression vector is not particularly limited as long as it can replicate autonomously in a host cell, and for example, a plasmid vector, a phage vector, a virus vector, and the like can be used.
  • plasmid vectors include plasmids derived from E.
  • coli eg, pRSET, pBR322, pBR325, pUC118, pUC119, pUC18, pUC19
  • plasmids derived from Bacillus subtilis eg, pUB110, pTP5
  • yeast eg, YEpl3 YEp24, YCp50
  • phage vectors include, for example, ⁇ phage (for example, Charon4A, Charon21A, EMBL3, EMBL4, gtl0, gtll, ⁇ ZAP)
  • viral vectors include, for example, retro Examples include viruses, animal viruses such as vaccinia virus, and insect viruses such as baculovirus.
  • any of prokaryotic cells, yeast, animal cells, insect cells, plant cells and the like may be used as long as the target gene can be expressed.
  • bacterium for example, Escherichia coli and other Escherichia genus, Bacillus subtilis and other Bacillus genus, Pseudomonas putida and Pseudomonas putida genus Bacteria belonging to the genus Rhizobium such as Rhizobium meliloti can be used as host cells.
  • Escherichia coli BL21, Escherichia coli XL1-Blue, Escherichia coli XL2-Blue, Esch ericnia coli DH1, Escherichia coli K12, Escherichia coli JM109, Escherichia coli HB 101, etc., Bacillus subtilis MI 114, Bacillus subtilis Bacillus subtilis such as 207-21 can be used as the host cell.
  • the promoter is not particularly limited as long as it can be expressed in bacteria such as Escherichia coli.
  • promoters derived from E. coli and phages such as motors and P promoters
  • promoters such as tac promoter, lacT7 promoter, let I promoter can also be used.
  • the method for introducing the recombinant vector into the bacterium is not particularly limited as long as it is a method capable of introducing DNA into the bacterium, and for example, a method using calcium ions, an electoporation method, or the like can be used.
  • yeast When yeast is used as a host cell, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Pichia pastoris, etc. can be used as host cells.
  • the promoter in this case is not particularly limited as long as it can be expressed in yeast.
  • gall promoter, gallO promoter, heat shock protein promoter, MFa 1 promoter, PH05 promoter, PGK promoter, GAP promoter, ADH promoter AOX1 promoter, etc. can be used.
  • the method for introducing the recombinant vector into yeast is not particularly limited as long as it is a method capable of introducing DNA into yeast, and for example, the electopore position method, the spheroplast method, the lithium acetate method and the like can be used.
  • monkey cells such as COS-7, Vero, Chinese nomstar ovary cells (CHO cells), mouse L cells, rat GH3, and human FL cells are used as host cells.
  • the promoter in this case is not particularly limited as long as it can be expressed in animal cells.
  • SRa promoter SV40 promoter, LTR (Long Terminal Repeat) promoter, CMV promoter, human cytomegalovirus early gene Promoters can be used.
  • the method for introducing a recombinant vector into an animal cell is not particularly limited as long as it is a method capable of introducing DNA into an animal cell.
  • the electopore position method, the calcium phosphate method, the lipofection method and the like can be used.
  • Spodoptera frugiperda ovary cells When an insect cell is used as a host, Spodoptera frugiperda ovary cells, Trichoplusia ni ovary cells, silkworm ovary-derived cultured cells, and the like can be used as host cells.
  • Spodopt era frugiperda ovary cells such as S19, Sf21 etc., Trichoplusia ni ovary cells Hi gh 5, ⁇ - ⁇ -5 ⁇ 1-4 (manufactured by Invitrogen), etc.
  • the method for introducing a recombinant vector into an insect cell is not particularly limited as long as DNA can be introduced into an insect cell.
  • a calcium phosphate method, a lipofusion method, an electopore position method, or the like can be used.
  • Transformants into which a recombinant vector incorporating a DNA encoding the target protein has been introduced are cultured according to a conventional culture method.
  • the transformant can be cultured according to a conventional method used for culturing host cells.
  • the medium As a medium for culturing a transformant obtained using a microorganism such as Escherichia coli or yeast as a host cell, the medium contains a carbon source, a nitrogen source, inorganic salts and the like that can be assimilated by the microorganism. As long as the medium can efficiently cultivate the culture medium, a combination of a natural medium and a synthetic medium may be used.
  • the carbon source carbohydrates such as glucose, fructose, sucrose, and starch, organic acids such as acetic acid and propionic acid, and alcohols such as ethanol and propanol can be used.
  • Nitrogen sources include ammonia, ammonium chloride, ammonium sulfate, ammonium acetate, ammonium salts of organic acids such as ammonium phosphate, peptone, meat extract. Yeast extract, corn steep liquor, casein hydrolyzate and the like can be used.
  • machine salt examples include monopotassium phosphate, dipotassium phosphate, magnesium phosphate, magnesium sulfate, sodium chloride salt, ferrous sulfate, manganese sulfate, copper sulfate, and calcium carbonate.
  • the transformant obtained by using microorganisms such as Escherichia coli and yeast as host cells is cultured under aerobic conditions such as shaking culture or aeration and agitation culture.
  • the culture temperature is usually 25 to 37 ° C
  • the culture time is usually 16 to 24 hours
  • the pH is maintained at 6.0 to 8.0 during the culture period.
  • the pH can be adjusted using an inorganic acid, organic acid, alkaline solution, urea, calcium carbonate, ammonia or the like.
  • antibiotics such as ampicillin and tetracycline may be added to the medium as needed during the culture.
  • an inducer may be added to the medium as necessary.
  • cultivate a microorganism transformed with an expression vector using the lac promoter cultivate a microorganism transformed with an expression vector using trp promoter, such as isopropyl ⁇ -D-thiogalatatopyranoside. When doing so, indoleacrylic acid or the like may be added to the medium.
  • a medium for culturing a transformant obtained by using animal cells as host cells RPMI1640 medium, Eagle's MEM medium, DMEM medium, Ham F12 medium, Ham F12K medium, or these mediums may be used.
  • a medium supplemented with fetal calf serum or the like can be used.
  • Transformants are usually cultured at 37 ° C for 1 to 3 days in the presence of 5% CO. Also, when culturing
  • antibiotics such as kanamycin, penicillin and streptomycin may be added to the medium.
  • Transformants obtained using insect cells as host cells
  • TNM-FH medium Pharmingen
  • Sf-900 II SFM medium G3 ⁇ 4co BRL
  • Manufactured ExCell400
  • ExCell405 manufactured by JRH Biosciences
  • Transformants are usually cultured at 20-28 ° C for 2-4 days.
  • an antibiotic such as gentamicin may be added to the medium as needed during the culture.
  • the target protein can also be expressed as a secreted protein or a fusion protein.
  • proteins to be fused include 13-galatatosidase, protein A, IgG binding region of protein A, chloramphee-chol'acetylyltransferase, poly (Arg), poly (Glu), protein G, maltose binding protein, dartathione S-transferase, polyhistidine chain (His-tag), S peptides, DNA-binding protein domains, Tac antigens, thioredoxin, green 'fluorescent' protein (GFP), and the like.
  • the target protein By collecting the target protein from the transformant culture, the target protein can be obtained.
  • the “culture” includes deviations of culture supernatant, cultured cells, cultured cells, cells or disrupted cells.
  • the target protein When the target protein accumulates in the cells of the transformant, the cells in the culture are collected by centrifuging the culture, and the cells are washed and then disrupted. Extract the protein. When the target protein is secreted outside the transformant, use the culture supernatant as it is, or remove cells or cells from the culture supernatant by centrifugation or the like.
  • the protein (a), (b), (c) or (d) thus obtained can be obtained by solvent extraction method, salting-out method using ammonium sulfate, desalting method, precipitation method using organic solvent, jetylaminoethyl (DEAE ) -Sepharose, ion exchange chromatography method, hydrophobic chromatography method, gel filtration method, fineness chromatography method and the like.
  • Protein (a), (b), (c) or (d) is based on the amino acid sequence based on the Fmoc method (fluoromethyloxycarbon method), tBoc method (tbutyl). It can also be produced by chemical synthesis methods such as the oxycarbon method. At this time, a commercially available peptide synthesizer can be used.
  • the antibody or fragment thereof of the present invention is an antibody or fragment thereof capable of reacting with the protein (a), (b), (c) or (d).
  • “antibodies” include both monoclonal antibodies and polyclonal antibodies, and “monoclonal antibodies and polyclonal antibodies” include all classes of monoclonal antibodies and polyclonal antibodies.
  • “antibodies” are obtained by immunizing animals such as rabbits and mice with antisera obtained by immunizing protein (a), (b), (c) or (d), human antibodies, or genetic recombination. Also included are humanized antibodies.
  • Antibody fragments include Fab fragments, F (ab) ′ fragments, single-chain antibodies (scFv) and the like.
  • the antibody of the present invention or a fragment thereof can be prepared by using the protein), (b), (c) or (d) as an immunizing antigen.
  • immunizing antigens include, for example, disrupted cells or tissues expressing (0 protein), (b), (c) or (d) or purified products thereof, and (ii) gene recombination techniques.
  • a recombinant protein expressed by introducing a gene encoding protein (a), (b), (c) or (d) into a host such as Escherichia coli, insect cells or animal cells, (m) chemically synthesized Peptides etc. can be used.
  • mammals such as rats, mice, guinea pigs, rabbits, hidges, horses, horseshoes, etc. are immunized using an immunizing antigen. It is preferable that rabbits use rabbits because immunized animals can easily produce antibodies.
  • an immune assistant such as Freund's complete adjuvant.
  • an immunity assistant Freund's complete adjuvant (FCA), Freund's incomplete adjuvant (FIA), aluminum hydroxide gel, and the like can be used.
  • the dose of antigen per mammal can be set as appropriate according to the type of mammal, but in the case of rabbits it is usually 10 to: LOOO / zg.
  • the administration site is, for example, intravenous, intradermal, subcutaneous, intraperitoneal or the like. Immunization is usually performed every few days to several weeks, preferably 5 days to 3 weeks, for a total of 3 to 8 times, preferably 4 to 6 times. Then, 10 to 14 days after the last immunization day, the antibody titer against the protein (a), (b), (c) or (d) is measured, blood is collected after the antibody titer is increased, and antiserum is collected. obtain. Antibody titer can be measured by enzyme immunoassay (ELISA), radioimmunoassay (RIA), or the like.
  • ELISA enzyme immunoassay
  • RIA radioimmunoassay
  • Antiserum ability When purification of the antibody is required, a known method such as salting out with ammonium sulfate, gel chromatography, ion exchange chromatography, and affinity chromatography is appropriately selected. Or they can be used in combination.
  • a mammal is immunized with an immunizing antigen as in the case of a polyclonal antibody, and antibody-producing cells are collected 3 to 4 days after the final immunization.
  • antibody-producing cells include spleen cells, lymph node cells, thymocytes, and peripheral blood cells, and spleen cells are generally used.
  • Myeloma cells to be fused with antibody-producing cells include human and mouse mammals
  • a cell line derived from a product and generally available can be used.
  • Preferred cell lines are those that have drug selectivity and cannot survive in a selective medium (for example, HAT medium) in an unfused state, but can survive only in a state fused with antibody-producing cells. Better ,.
  • myeloma cells include mouse myeloma cell lines such as P3X63-Ag.8.Ul (P3Ul), P3 / NSI / 1-Ag4-1, Sp2 / 0-Agl4.
  • antibody-producing cells and myeloma cells are mixed in a predetermined ratio (for example, 3: 1 to 1.5: 1) in animal cell culture media such as serum-free DMEM, RPMI-1640 medium, etc. And the fusion reaction is carried out in the presence of a cell fusion promoter such as polyethylene glycol, or by electric pulse treatment (eg, electoral positioning).
  • a cell fusion promoter such as polyethylene glycol, or by electric pulse treatment (eg, electoral positioning).
  • the cells are cultured using a selective medium, and the desired hyperidoma is selected. Subsequently, the culture supernatant of the grown hyperidoma is screened for the presence of the antibody of interest.
  • Hypridoma screening is not particularly limited as long as it is in accordance with a normal method. For example, a part of the culture supernatant contained in the wells grown as robin and hybridoma can be collected and screened by enzyme immunoassay (ELISA), radioimmunoassay (RIA) and the like.
  • Cloning of the hybridoma can be performed, for example, by limiting dilution, soft agar, fibrin gel, fluorescence excitation cell sorter, or the like, and finally a hyperidoma that produces a monoclonal antibody is obtained.
  • a normal cell culture method or the like can be used as a method for collecting the acquired monoclonal antibody monoclonal antibody.
  • a normal cell culture method for example, Hypridoma is used in animal cell culture media such as RPMI-1640 medium containing 10 to 20% fetal calf serum and MEM medium under normal culture conditions (for example, 37 ° C, 5% CO concentration).
  • animal cell culture media such as RPMI-1640 medium containing 10 to 20% fetal calf serum and MEM medium under normal culture conditions (for example, 37 ° C, 5% CO concentration).
  • Monoclonal antibodies can also be obtained from the culture supernatant strength. It is also possible to transplant a hyperidoma into the abdominal cavity of a mouse or the like, collect ascites after 10 to 20 days, and obtain a monoclonal antibody from the ascites.
  • the monoclonal antibody When purification of the monoclonal antibody is required, a known method such as salting out with ammonium sulfate, gel chromatography, ion exchange chromatography, affinity chromatography, or the like is appropriately selected or These can be used in combination.
  • a known method such as salting out with ammonium sulfate, gel chromatography, ion exchange chromatography, affinity chromatography, or the like is appropriately selected or These can be used in combination.
  • a known method such as salting out with ammonium sulfate, gel chromatography, ion exchange chromatography, affinity chromatography, or the like is appropriately selected or These can be used in combination.
  • a human antibody or a humanized antibody When the monoclonal antibody is used for human administration (antibody therapy), it is preferable to use a human antibody or a humanized antibody in order to reduce immunogenicity.
  • Human antibodies or humanized antibodies can be obtained, for example, by preparing mice or hybridomas using
  • a transgenic animal having a repertoire of human antibody genes is immunized with an antigen protein, a protein-expressing cell, or a solution thereof to obtain antibody-producing cells, which are fused with myeloma cells.
  • a human antibody against the protein of interest can be obtained using the thus-prepared hybridoma (see International Publication Nos. W09 2-03918, W093-2227, WO94-02602, W096-33735 and WO96-34096).
  • a phage displaying an antibody that binds to a protein serving as an antigen, a protein-expressing cell, or a lysate thereof, from an antibody library in which a plurality of different human scFvs are displayed on a phage.
  • the scFv that binds to the protein of interest can be selected (Griffiths. Et al., EMBO J. 12, 725-734, 1993).
  • the test substance determines whether or not the affinity interaction between the proteins (a) or (c) can be suppressed or promoted, and the affinity interaction is suppressed or Includes screening of test substances that can be accelerated as substances that affect ontogeny.
  • Affinity interaction between proteins (a) or (c) is considered to be involved in ontogeny, particularly ontogeny in the embryonic period, so affinity between proteins (a) or (c) By selecting substances that can suppress or promote interactions, substances that may affect ontogeny, particularly ontogeny during the embryonic period, can be screened.
  • test substance can suppress or promote the affinity interaction between the proteins (a) or (c) can be determined, for example, as follows, but the determination method is limited to this. It is not a thing.
  • the protein (a) or (c) After contacting the protein (a) or (c) with another protein (a) or (c) in the presence or absence of the test substance, the protein (a) or (c) is bound to each other. Measure the amount and compare the amount of binding in the presence of the test substance with the amount of binding in the absence of the test substance. As a result, the amount of binding in the presence of the test substance is greater than the amount of binding in the absence of the test substance. If it is less, it can be determined that the test substance can suppress the binding between the proteins (a) and (c). On the other hand, if the amount of binding in the presence of the test substance is greater than the amount of binding in the absence of the test substance, it can be determined that the test substance can promote the binding between the proteins (a) or (c).
  • the substance capable of suppressing or promoting the binding between proteins (a) or (c) may be a substance acting on one protein (a) or (c)! /, And both proteins It may be a substance that acts on (a) or (c). Further, the substance capable of suppressing the binding between the proteins (a) or (c) may be a substance capable of suppressing the binding between the proteins (a) or (c) in a dissociated state or in a bound state. It may be a substance capable of dissociating proteins (a) or (c).
  • Protein (a) or (c) and another protein (a) or (c) may be contacted in vitro or in vivo.
  • a cell or tissue that expresses the target protein or extracted endogenous protein (ii) the target protein A recombinant vector capable of expressing the quality can be introduced into a host cell to produce a transformant, and a recombinant protein extracted from the culture of the transformant, () a chemically synthesized peptide, or the like can be used.
  • a recombinant vector capable of expressing the target protein is introduced into the host cell.
  • a recombinant protein or the like present in the transformant produced by the introduction can be used.
  • Mutants, wild-type or mutant derivatives, fusion proteins of wild-type or mutants with other proteins or peptides, and the like can be used.
  • Examples of conditions that affect the binding between proteins (a) and (c) include temperature, Examples include medium type, protein (a) or (c) concentration, stirring intensity, coexistence time, gravity, and magnetic field.
  • the temperature at which the proteins (a) or (c) are brought into contact with each other can be set to 2 to 65 ° C, for example.
  • As the solvent for bringing the proteins (a) or (c) into contact with each other for example, PBS, TBS, Hepes buffer, etc. can be used.
  • the concentration of the protein (a) or (c) can be set to, for example, lng Zml to 1 OOmgZml.
  • the amount of binding between proteins (a) or (c) is, for example, the amount of binding between proteins (a) or (c), the amount of signal produced by the binding between proteins (a) or (c), etc. It can be measured as an index.
  • the amount of the conjugate between the proteins (a) or (c) is determined by, for example, adding a labeling substance to the protein (a) or (c) and bringing the proteins (a) or (c) into contact with each other. Thereafter, the conjugate of protein (a) or (c) can be separated, and the amount of labeling substance possessed by the conjugate can be measured as an index. Specifically, it can be measured using a known method such as the GST pull down method.
  • the amount of the conjugate between the proteins (a) and (c) is determined using a known protein analysis technique, for example, an antibody or fragment thereof that can react with the conjugate between the proteins (a) or (c). Western blotting method, immunoprecipitation method, ELISA, yarn and tissue immunostaining method, etc.
  • the “antibody” includes both monoclonal antibodies and polyclonal antibodies, and “monoclonal antibodies” and “polyclonal antibodies” include all classes of monoclonal antibodies and polyclonal antibodies.
  • “Antibody fragments” include Fab fragments, F (ab) ′ fragments, single-chain antibodies (scFv) and the like.
  • the type of signal generated by the binding between proteins (a) or (c) is not particularly limited.
  • reporter gene expression fluorescence energy transfer (FRET), surface plasmon resonance (SPR) or
  • FRET fluorescence energy transfer
  • SPR surface plasmon resonance
  • reporter gene examples include ⁇ -galactosidase gene, chloramphenicol acetyltransferase gene, luciferase gene, ampicillin resistance gene, tetracycline resistance gene, kanamycin resistance gene and the like.
  • Reporter activity includes, for example, j8 galactosidase activity, Chloramhue-Coleacetillan Examples include sulferase activity, luciferase activity, ampicillin resistance, tetracycline resistance, strength namicin resistance, and the like.
  • the second screening method of the present invention determines whether or not the test substance can suppress or promote the affinity interaction between the protein (a) or (d) and Baxinhibitor-1, and Screening a test substance capable of suppressing or promoting sex interaction as a substance affecting ontogenesis.
  • the affinity interaction between the protein (a) or (d) and Bax inhibitor-1 is considered to be involved in ontogeny, particularly ontogeny in the embryonic period.
  • a substance that can suppress or promote the affinity interaction between (d) and Bax inhibitor-1 it is possible to screen for substances that may affect ontogeny, particularly ontogenesis during the embryonic period.
  • test substance can suppress or promote the affinity interaction between the protein (a) or (d) and Bax inhibitor-1 can be determined, for example, as follows. It is not limited to this.
  • the amount of protein (a) or (d) and Bax inhibitor-1 bound after contacting protein (a) or (d) with Bax inhibitor-1 in the presence or absence of the test substance The amount of binding in the presence of the test substance is compared with the amount of binding in the absence of the test substance. As a result, if the amount of binding in the presence of the test substance is less than the amount of binding in the absence of the test substance, the test substance will interact with the protein (a) or (d) and Bax inhibitor-1. It can be determined that the action can be suppressed. On the other hand, if the amount of binding in the presence of the test substance is greater than the amount of binding in the absence of the test substance, the test substance has an affinity interaction between the protein (a) or (d) and Bax inhibitor-1. Can be determined to promote
  • a substance capable of suppressing or promoting the affinity interaction between protein (a) or (d) and Bax inhibitor-1 acts on one of protein (a) or (d) and Bax inhibitor-1. It may be a substance or a substance that acts on both.
  • a substance capable of inhibiting the affinity interaction between protein (a) or (d) and Bax inhibitor-1 binds to protein (a) or (d) in the dissociated state and Bax inhibitor-1.
  • the protein (a) or (d) and Bax inhibitor-1 may be contacted in vitro! Or in vivo.
  • a protein (a) or (d) When contacted in vivo, as a protein (a) or (d), (i) an endogenous protein present in the cell, (ii) a recombinant vector capable of expressing the target protein is introduced into the host cell.
  • a recombinant protein or the like present in the transformant produced by the introduction can be used. The same applies to Bax inhibitor-1.
  • the protein (a) or (d) is contacted with Bax inhibitor-1
  • the protein (a) or (d) is a wild type, mutant type, wild type or mutant type derivative, wild type or mutation.
  • a fusion protein of a mold with another protein or peptide can be used. The same applies to Bax inhibitor-1.
  • the temperature can be set to 2 to 65 ° C, for example.
  • the solvent for example, PBS, TBS, Hepes buffer, etc. can be used.
  • the concentration of the protein (a) or (d) can be set to, for example, lngZml to lOOmgZml.
  • the concentration of Bax inhibitor-1 can be set to, for example, lngZml to 100 mgZml.
  • the amount of binding between protein (a) or (d) and Bax inhibitor-1 is, for example, the amount of binding between protein (a) or (d) and Bax inhibitor-1 as in the amount of binding between proteins (a) or (c). inhibitor — binding to 1
  • the combined amount, the amount of signal produced by the binding of protein (a) or (d) and Bax inhibitor-1, etc. can be measured as indicators.
  • PCR polymerase chain reaction
  • 5 '— aagcagttccggttcggctccgagcagctgccg— 3' is used as a 5 'primer
  • 5' — ggcatctaagacacctagggggaacgc— 3 ' is used as a 3' primer
  • heat-resistant DN A polymerase (Expand Long Template PCR System, manufactured by Roche) 5 units, 200 ⁇ dNTP (dATP, dTTP, dCTP, dGTP), human lung tissue-derived cDNA 0.5 ng, and 1.75 mM magnesium chloride 94 after treatment for 10 minutes at ° C. C for 30 seconds, 62. C for 45 seconds, 68. Repeat 5 minutes with C for 35 cycles and 68 more. Processing for C10 minutes was performed.
  • Primers were designed as follows. In Drosophila, a homologous cDNA was searched from human EST based on the DNA sequence encoding a protein (GH24627p) that interacts with a receptor involved in developmental differentiation (etadyson receptor). Based on this cDNA sequence, 5'-RACE was performed using human testis-derived cDNA as a saddle, and a 5 'primer was designed based on the sequence obtained. The 3 'primer was designed assuming the human genome sequence.
  • the reaction solution was subjected to electrophoresis using 1% agarose gel (TBE buffer), and then the gel was stained with ethidium bromide and amplified by observing with a transilluminator. DNA fragments were detected. Furthermore, this DNA fragment was recovered from an agarose gel using a QUIAquick Gel Extraction Kit (manufactured by QUIAGEN), inserted into a multicloning site of a cloning vector plasmid such as pGEMTE, and then E. coli was used as a host. Amplified and sequenced. Cloning vector clone The insertion into the site was performed by TA clawing.
  • T thymidine
  • A adenine
  • the cultured Escherichia coli was recovered by centrifugation, and the plasmid was purified using a QIAGEN miniprep kit (manufactured by Qiagen).
  • the insertion sequence was determined using a fluorescent sequencer by the dye terminator method.
  • mouse gene 1 was isolated from mouse cDNA based on human gene 1.
  • Designed the RACE primer (5 and cttcggtcatggagaaggcccacgggatcct—3), and designed the mouse sperm-derived cDNA into a vertical shape.
  • 5'-RACE was performed, and 5 'primer (5—ccaaaggggccggagcgatgcccgctggtagccg—3) was set up from the obtained sequence.
  • puffima 5′—ctcattacagagagagagtcttcatcc—3, 15pmole each, heat resistance DNA polymerase (Ex pand Long Template PCR System, Roche) 5 units, 200 ⁇ 200 dNTP (dATP, dTTP, dCTP, dGTP), mouse sperm-derived cDNA 0.5 ng and 1.
  • the nucleotide sequence of human gene 1 is shown in SEQ ID NO: 1.
  • Human gene 1 contains an open reading frame encoding 478 amino acids.
  • the amino acid sequence of the protein encoded by human gene 1 is shown in SEQ ID NO: 2.
  • SEQ ID NO: 2 the 73rd amino acid part and the 140th amino acid part contain a peptide motif characteristic of a signaling factor called SAM (Sterile Alpha Motif) domain.
  • SAM Sterile Alpha Motif domain.
  • the Ser residue of the 52nd amino acid is included in the motif characteristic of the MAP kinase substrate, and the region from the 247th to the 250th amino acid (PPLP: Pro-Pro-Leu-Pro) is the SH3 binding region motif. is there.
  • SEQ ID NO: 3 shows the base sequence of mouse gene 1.
  • Mouse gene 1 contains an open reading frame encoding 478 amino acids.
  • the amino acid sequence of the protein encoded by mouse gene 1 is shown in SEQ ID NO: 4.
  • SAM Sterile Alpha Motif
  • the Ser residue at amino acid 52 is contained in a motif characteristic of the MAP kinase substrate, and the region from amino acid 247 to amino acid 250 (PPLP: Pro-Pro-Leu-Pro) is a SH3 binding region motif.
  • human gene 1 and mouse gene 1 showed homology of 89.5% at the DNA level and 90.2% at the protein level.
  • the genomic structure of human gene 1 was determined by homologous search of the cDNA sequence of human gene 1 with the published human genome sequence.
  • the genomic structure of mouse gene 1 was determined by homologous searching of the mouse gene 1 cDNA sequence against the published mouse genome sequence.
  • genomic structures of human gene 1 and mouse gene 1 are shown in FIG. As shown in FIG. 1, the genomic structures of human gene 1 and mouse gene 1 were very similar. In particular, all homologous exoregions had the same number of bases. Intron length was found to differ between human gene 1 and mouse gene 1.
  • Example 13 Human gene 1 expression tissue Nylon membrane blotted with polyA RNA prepared for human tissue, using 32 P-labeled human gene 1 as a probe in a hybridization buffer (ULTRAhyb Ultrasensitive Hybridization Buffer, Ambion) at 42 ° C After hybridization for 22 hours, the cells were washed with LS buffer (composition: 2XSSC, 0.1% SDS) or HS buffer (composition: 0.1% SSC, 0.1% SDS). Hybridized images were detected using an image analyzer (Fuji).
  • the expression of human gene 1 was confirmed in tissues such as brain, kidney, lung, muscle, placenta, small intestine, testis, adrenal gland, salivary gland, spleen, and stomach.
  • a gene expression vector 1 designed to produce a protein in which the human gene 1 product was fused to the C-terminus of GFP (Green Fluorescent Protein) in mammalian cells was constructed ( Figure 8).
  • a basic GFP vector designed so that expression of GFP fusion protein is induced in mammalian cells by CMV promoter by adding EcoRI-Notl site to the 3 'end of the GFP coding region cDNA was performed. Digested with restriction.
  • the human gene lcDNA was introduced with an EcoRI site at the 5 'end and a Notl site at the 3' end.
  • the gene fragment cleaved with both enzymes was ligated to the basic GFP vector digested with EcoRI and Notl, and the gene was introduced into Escherichia coli. Then, gene expression vector 1 was cloned.
  • Gene vector 1 was introduced into COS-7 cells using Fugene6 (Roche). That is, 1 ⁇ g of gene vector 1 and 3 ⁇ 1 of serum-free medium 100 1 containing Fugene6 (Roche) were mixed, allowed to stand at room temperature for 15 minutes, and then COS-7 was mixed 24 hours before. The gene was introduced by dripping and mixing into the best cell culture dish. The transfected COS-7 cells were cultured for 24 hours at 37 ° C in the presence of 5% CO. 1.5 in medium to stain cell nuclei 1106 ⁇ 13 33342 was added to the sample, incubated at 37 ° C for 10 minutes, and then washed 4 times with PBS.
  • Fugene6 Fugene6
  • the localization of the GFP-fused human gene 1 product in COS-7 cells was observed by fluorescence microscopy. As a result, as shown in FIG. 3, the GFP-fused human gene 1 product was found to exhibit a fibrous or vesicular structure in COS-7 cells.
  • Example 5 Detection of interaction between human gene 1 products by co-immunoprecipitation method A gene expression vector capable of expressing in a mammalian cell a protein in which a FLAG tag or HA tag was fused to the N-terminus of one human gene product was constructed (FIGS. 9 and 10). That is, a basic FLAG tag vector designed so that the expression of GFP fusion protein is induced in mammalian cells by CMV promoter, with EcoRI-Notl site attached to the 3, terminal part of FLAG tag cDNA. Restricted digest with EcoRI and Notl.
  • the gene expression vector for mammalian cells (PGAL4—human gene 1 vector, Fig. 11) and the human gene 1 product designed to be able to be expressed are fused to the C-terminal region of the VP 16 gene expression activation protein derived from Herpes Simplex Virus.
  • PVP16 human gene 1 vector, Fig. 12
  • the pGAL4—human gene 1 vector has an EcoRI—Sail site attached to the GAL4DNA binding region cDNA at the 3, end of the cDNA, and the early SV40 promoter allows expression of the GAL4DNA binding region fusion protein in mammalian cells.
  • a basic GAL4 vector designed to be induced was digested with EcoRI and Sail.
  • Human gene lcDNA is introduced into EcoRI site at 5 'end, Xhol site at 3' end and cleaved with both enzymes and ligated to EcoRI — Sail digested basic GAL4 vector, introduced into Escherichia coli, pGAL 4-human gene 1 vector cloned.
  • the pVP16-human gene 1 vector has an EcoRI-Notl site attached to the 3 'end of the VP16 transcriptional activation region cDNA, and expression of the VP16 transcriptional activation region fusion protein in mammalian cells using the CMV promoter.
  • the basic VP16 vector, designed to induce, was restriction digested with EcoRI and Notl.
  • the human gene lcDNA was ligated to the basic VP16 vector introduced with EcoRI and Notl at the 5 'end and Notl site at the 3' end and digested with both enzymes, and introduced into Escherichia coli.
  • PVP16—human gene 1 vector was cloned. These vectors were transfected into COS-7 cells. After incubation for 24 hours at 37 ° C in the presence of 5% CO
  • Gene expression vector for mammalian cells (PGAL4 human gene 1, Fig. 11) and human Bax inhibitor-1 gene product designed so that the human gene 1 product can be expressed by fusing to the C-terminal region of yeast-derived GAL4 DNA binding protein Constructed a gene expression vector for mammalian cells (pVP 16- Bax inhibitor-1, 13) designed to be fused and expressed in the C-terminal region of the Herpes Simplex Virus-derived VP 16 gene expression activity protein.
  • the pVP16-Bax inhibitor-1 vector has an EcoRI-Notl site attached to the 3 'end of the VP16 transcriptional activation region cDNA, and a VP16 transcriptional activity fusion region fusion protein in a mammalian cell by the CMV promoter.
  • a basic VP16 vector designed to induce expression of E. coli was digested with EcoRI and Notl.
  • Human Bax inhibitor A gene fragment that had an EcoRI site at the 5 'end and a Notl site at the 3' end, and a Notl site at the end and was cleaved with both enzymes was ligated to the basic VP16 vector digested with EcoRI and Notl, and introduced into E. coli.
  • Human Bax inhibitor-1 vector was cloned.
  • the base sequence of Bax inhibit or-1 gene is shown in SEQ ID NO: 5, and the amino acid sequence of Bax inhibitor-1 gene product is shown in SEQ ID NO: 6.
  • These vectors were transfected into COS-7 cells. 3 After culturing for 24 hours in the presence of 7 ° C and 5% CO, the cells are washed with PBS and luciferase activity
  • Cell lysate for measurement (25 mM TAE, ImM EDTA, 10% Glycerol, 1% TritonX 100, 2 mM DTT) was prepared, and the luciferase activity in the cell extract was measured with a luminometer in the presence of luciferin and ATP. .
  • ADSEVG-COOH was synthesized as a peptide
  • KLH Keyhole Limpet Hemocyanin
  • the mice were injected intramuscularly and subcutaneously into rabbits (2 birds) together with adjuvant. Further After 2 weeks, 5 weeks, 11 weeks, and 17 weeks, the peptide and adjuvant mixture was also injected, and antisera was prepared 25 weeks after the first antigen injection.
  • the FLAG tag-human gene 1 product was transiently expressed in HEK 293T cells, treated with SDS-PAGE sample buffer, and then separated by SDS-PAGE electrophoresis and transferred to a nitrocellulose membrane. Was under 1 hour at room temperature the membranes in blocking buffer (0.
  • an antigen-specific band was detected in the HEK293T cell-extracted protein lane in which human gene 1 was forcibly expressed.
  • the 5 ′ genomic DNA containing the first and second exons of mouse gene 1 and the 3 ′ genomic DNA containing the second exon and the third and fourth exons PCR amplification was performed with a restriction enzyme site added. That is, the 5 'genomic DNA containing part of the first and second exons is 5, the primer (5'-gactcgtcctcttcagtgctggatgtaggc gtg-3') and the 3 'primer designed with the Sail site attached.
  • the mouse gene 1 gene targeting vector was made double-stranded by digestion with restriction enzyme Notl and introduced into mouse ES cells by electroporation. Select the cells at 37 ° C, 5% CO
  • the cells were cultured in the presence of G418 and ganciclovir, which are two selective drugs. Resistant cell colonies were also prepared with genomic DNA, and homologous recombination-positive ES cells were selected by PCR, Southern nose and hybridization. Positive ES cells were introduced into blastocysts by microinjection and then transplanted into pseudopregnant female mice. The resulting chimeric mouse was bred with a wild-type mouse, and the resulting baby was genotyped using the agouti hair color as a marker to produce a heterozygous mouse deficient in gene 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Zoology (AREA)
  • Toxicology (AREA)
  • Immunology (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

Disclosed is a novel protein involved in ontogeny. The protein is any one selected from the following proteins (a) to (d): (a) a protein which comprises an amino acid sequence depicted in SEQ ID NO:2 or 4; (b) a protein which comprises an amino acid sequence having deletion, substitution or addition of one or several amino acid residues in the amino acid sequence depicted in SEQ ID NO:2 or 4 and is essential for ontogeny; (c) a protein which comprises an amino acid sequence having deletion, substitution or addition of one or several amino acid residues in the amino acid sequence depicted in SEQ ID NO:2 or 4 and has an affinity interaction with the protein (a); and (d) a protein which comprises an amino acid sequence having deletion, substitution or addition of one or several amino acid residues in the amino acid sequence depicted in SEQ ID NO:2 or 4 and has an affinity interaction with Bax inhibitor-1.

Description

明 細 書  Specification
新規タンパク質及びそれをコードする遺伝子  Novel protein and gene encoding the same
技術分野  Technical field
[0001] 本発明は、新規タンパク質及びそれをコードする遺伝子に関する。  [0001] The present invention relates to a novel protein and a gene encoding the same.
背景技術  Background art
[0002] 本発明者が本発明を完成した後、本発明のタンパク質と公知のタンパク質との比較 を行ったところ、本発明のタンパク質の C末端 326アミノ酸部分は、仮想タンパク質と して、 NCBIのデータベースに公開されていることが判明した(PID gl6553765) 0また 、本発明のタンパク質に含まれるモチーフである SAMドメインに関しては、非特許文 献 1〜3に総説されている。 [0002] After the present inventor completed the present invention, the present protein was compared with a known protein. As a result, the C-terminal 326 amino acid portion of the protein of the present invention was used as a virtual protein. (PID gl6553765) 0 The SAM domain, which is a motif contained in the protein of the present invention, is reviewed in Non-Patent Documents 1-3.
特干文献 1 : Ponting, し. P., SAM: A novel motif in yeast sterile and Drosophila pol yhomeotic proteins, Protein Sci" , 1995, 4, 1928 - 1930  Special Reference 1: Ponting, Shi. P., SAM: A novel motif in yeast sterile and Drosophila pol yhomeotic proteins, Protein Sci ", 1995, 4, 1928-1930
非特許文献 2 : Schultz, J., SAM as a protein interaction domain involved in developm ental regulation, Protein Sci., 1997, 6, 249-253  Non-Patent Document 2: Schultz, J., SAM as a protein interaction domain involved in developm ental regulation, Protein Sci., 1997, 6, 249-253
非特許文献 3 : Kim, C.A. and Bowie, J.U., SAM domains: Uniform structure, diversit y of lunction, Trends Biochem. Sci., 2003, 28, 625 - 628  Non-Patent Document 3: Kim, C.A. and Bowie, J.U., SAM domains: Uniform structure, diversit y of lunction, Trends Biochem. Sci., 2003, 28, 625-628
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] 本発明は、第一に、個体発生に関連する新規タンパク質、該タンパク質をコードす る遺伝子、該遺伝子を含む組換えベクター、該組換えベクターを含む形質転換体、 及び上記タンパク質に対する抗体又はその断片を提供することを目的とする。また、 本発明は、第二に、個体発生に影響を与える物質のスクリーニング方法を提供するこ とを目的とする。 [0003] The present invention firstly provides a novel protein related to ontogeny, a gene encoding the protein, a recombinant vector containing the gene, a transformant containing the recombinant vector, and an antibody against the protein Alternatively, an object is to provide a fragment thereof. A second object of the present invention is to provide a screening method for substances that affect ontogeny.
課題を解決するための手段  Means for solving the problem
[0004] 上記目的を達成するために、本発明は、以下のタンパク質、遺伝子、組換えべクタ 一、形質転換体、抗体又はその断片、及びスクリーニング方法を提供する。 In order to achieve the above object, the present invention provides the following protein, gene, recombinant vector, transformant, antibody or fragment thereof, and screening method.
(1)下記 (a)又は (b)に示すタンパク質。 (a)配列番号 2又は 4記載のアミノ酸配列力もなるタンパク質 (1) Protein shown in the following (a) or (b). (a) a protein having an amino acid sequence ability described in SEQ ID NO: 2 or 4
(b)配列番号 2又は 4記載のアミノ酸配列において 1又は複数個のアミノ酸が欠失、 置換又は付加されたアミノ酸配列カゝらなり、個体発生に必須のタンパク質  (b) an amino acid sequence in which one or more amino acids are deleted, substituted or added in the amino acid sequence of SEQ ID NO: 2 or 4, and is essential for ontogeny
(2)下記 (a)又は (c)に示すタンパク質。  (2) Protein shown in the following (a) or (c).
(a)配列番号 2又は 4記載のアミノ酸配列力もなるタンパク質  (a) a protein having an amino acid sequence ability described in SEQ ID NO: 2 or 4
(c)配列番号 2又は 4記載のアミノ酸配列において 1又は複数個のアミノ酸が欠失、 置換又は付加されたアミノ酸配列カゝらなり、前記 (a)に示すタンパク質と親和性相互 作用を示すタンパク質  (c) a protein having an affinity interaction with the protein shown in (a) above, wherein one or more amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 2 or 4
(3)下記 (a)又は (d)に示すタンパク質。  (3) Protein shown in the following (a) or (d).
(a)配列番号 2又は 4記載のアミノ酸配列力もなるタンパク質  (a) a protein having an amino acid sequence ability described in SEQ ID NO: 2 or 4
(d)配列番号 2又は 4記載のアミノ酸配列において 1又は複数個のアミノ酸が欠失、 置換又は付加されたアミノ酸配列力もなり、 Bax inhibitor— 1と親和性相互作用を 示すタンパク質  (d) a protein that also has an amino acid sequence ability in which one or more amino acids are deleted, substituted, or added in the amino acid sequence of SEQ ID NO: 2 or 4, and exhibits an affinity interaction with Bax inhibitor-1
(4)前記(1)〜(3)の ヽずれかに記載のタンパク質をコードする遺伝子。  (4) A gene encoding the protein according to any one of (1) to (3).
(5)下記 (e)又は (f)に示す DNAを含む前記 (4)記載の遺伝子。  (5) The gene according to (4) above, which comprises the DNA shown in (e) or (f) below.
(e)配列番号 1記載の塩基配列のうち 19〜 1452番目の塩基配列からなる DNA又 は配列番号 3記載の塩基配列のうち 46〜1479番目の塩基配列力もなる DNA (e) DNA consisting of the 19-1452th base sequence in the base sequence described in SEQ ID NO: 1 or DNA having 46-1479th base sequence ability in the base sequence described in SEQ ID NO: 3
(f)前記(e)に示す DNAと相補的な DNAにストリンジヱントな条件下でノヽイブリダィ ズする DNA (f) DNA that is hybridized under stringent conditions to DNA complementary to the DNA shown in (e) above
(6)前記(5)記載の遺伝子を含む組換えベクター。  (6) A recombinant vector comprising the gene according to (5).
(7)前記 (6)記載の組換えベクターを含む形質転換体。  (7) A transformant comprising the recombinant vector according to (6).
(8)前記(1)〜(3)の 、ずれかに記載のタンパク質に反応し得る抗体又はその断片  (8) The antibody or fragment thereof capable of reacting with the protein according to any one of (1) to (3)
(9)試験物質が、前記 (2)記載のタンパク質同士の親和性相互作用を抑制又は促進 できる否かを判別し、前記親和性相互作用を抑制又は促進できる試験物質を個体 発生に影響を与える物質としてスクリーニングする工程を含む、個体発生に影響を与 える物質のスクリーニング方法。 (9) Determine whether the test substance can suppress or promote the affinity interaction between the proteins described in (2) above, and affect the ontogeny of the test substance that can suppress or promote the affinity interaction A method for screening a substance that affects ontogeny, comprising a step of screening as a substance.
(10)試験物質が、前記(3)記載のタンパク質と Bax inhibitor— 1との親和性相互 作用を抑制又は促進できる否かを判別し、前記親和性相互作用を抑制又は促進で きる試験物質を個体発生に影響を与える物質としてスクリーニングする工程を含む、 個体発生に影響を与える物質のスクリーニング方法。 (10) The test substance is an affinity reciprocal between the protein described in (3) and Bax inhibitor-1 A method for screening a substance that affects ontogeny, comprising the step of determining whether or not the action can be suppressed or promoted and screening the test substance capable of suppressing or promoting the affinity interaction as a substance that affects ontogeny .
発明の効果  The invention's effect
[0005] 本発明によれば、個体発生に関連する新規タンパク質、該タンパク質をコードする 遺伝子、該遺伝子を含む組換えベクター、該組換えベクターを含む形質転換体、及 び上記タンパク質に対する抗体又はその断片が提供される。また、本発明によれば、 個体発生に影響を与える物質のスクリーニング方法が提供される。  [0005] According to the present invention, a novel protein related to ontogeny, a gene encoding the protein, a recombinant vector containing the gene, a transformant containing the recombinant vector, and an antibody against the protein or its Fragments are provided. The present invention also provides a method for screening for substances that affect ontogeny.
図面の簡単な説明  Brief Description of Drawings
[0006] [図 1]ヒト遺伝子 1及びマウス遺伝子 1のゲノム構造を示す図である。 [0006] Fig. 1 is a diagram showing the genomic structures of human gene 1 and mouse gene 1.
[図 2]脳、腎臓、肺、筋肉、胎盤、小腸、精巣、副腎、唾液腺、脾臓、胃等の組織でヒト 遺伝子 1の発現を示す図である。  FIG. 2 is a graph showing the expression of human gene 1 in tissues such as brain, kidney, lung, muscle, placenta, small intestine, testis, adrenal gland, salivary gland, spleen, and stomach.
[図 3]蛍光顕微鏡によって COS— 7細胞内での GFP融合ヒト遺伝子 1産物の局在を 観察した結果を示す図である。  FIG. 3 shows the results of observing the localization of a GFP-fused human gene 1 product in COS-7 cells using a fluorescence microscope.
[図 4]免疫共沈法によるヒト遺伝子 1産物同士の相互作用の検出結果を示す図である  FIG. 4 is a diagram showing the detection result of interaction between human gene 1 products by co-immunoprecipitation method.
[図 5]哺乳動物細胞ツーハイブリッド法によるヒト遺伝子 1産物同士の相互作用の検 出結果を示す図である。 FIG. 5 is a diagram showing the results of detecting the interaction between human gene 1 products by the mammalian cell two-hybrid method.
[図 6]哺乳動物細胞ツーハイブリッド法によるヒト遺伝子 1産物及びヒト Bax inhibitor 1遺伝子産物間の相互作用の検出結果を示す図である。  FIG. 6 is a view showing the detection results of the interaction between the human gene 1 product and the human Bax inhibitor 1 gene product by the mammalian cell two-hybrid method.
[図 7]抗遺伝子 1抗体を用いたウェスタンブロッテイングによるヒト遺伝子 1産物の検出 結果を示す図である。  FIG. 7 is a diagram showing the detection result of human gene 1 product by Western blotting using anti-gene 1 antibody.
[図 8]GFP ヒト遺伝子 1ベクターの構成図である。  FIG. 8 is a block diagram of a GFP human gene 1 vector.
[図 9]FLAG ヒト遺伝子 1ベクターの構成図である。  FIG. 9 is a block diagram of a FLAG human gene 1 vector.
[図 10]HA—ヒト遺伝子 1ベクターの構成図である。  FIG. 10 is a block diagram of the HA-human gene 1 vector.
[図 11]GAL4 ヒト遺伝子 1ベクターの構成図である。  FIG. 11 is a block diagram of a GAL4 human gene 1 vector.
[図 12]VP16 ヒト遺伝子 1ベクターの構成図である。  FIG. 12 is a block diagram of a VP16 human gene 1 vector.
[図 13]VP16 ヒト Bax inhibitor— 1遺伝子ベクターの構成図である。 [図 14]マウス遺伝子 1ジーンターゲッティングベクターの構成図である。 発明を実施するための最良の形態 FIG. 13 is a block diagram of a VP16 human Bax inhibitor-1 gene vector. FIG. 14 is a block diagram of a mouse gene 1 gene targeting vector. BEST MODE FOR CARRYING OUT THE INVENTION
[0007] 以下、本発明について詳細に説明する。 [0007] Hereinafter, the present invention will be described in detail.
本発明のタンパク質は、下記 (a)、 (b)、 (c)又は (d)に示すタンパク質である。 The protein of the present invention is a protein shown in the following (a), (b), (c) or (d).
(a)配列番号 2又は 4記載のアミノ酸配列力もなるタンパク質 (以下「タンパク質 (a)」と いう場合がある。) (a) a protein having an amino acid sequence ability described in SEQ ID NO: 2 or 4 (hereinafter sometimes referred to as “protein (a)”)
(b)配列番号 2又は 4記載のアミノ酸配列において 1又は複数個のアミノ酸が欠失、 置換又は付加されたアミノ酸配列力もなり、個体発生に必須のタンパク質 (以下「タン パク質 (b)」という場合がある。)  (b) In the amino acid sequence set forth in SEQ ID NO: 2 or 4, one or more amino acids are deleted, substituted or added, and it is also an amino acid sequence that is essential for ontogeny (hereinafter referred to as “protein (b)”) There may be cases.)
(c)配列番号 2又は 4記載のアミノ酸配列において 1又は複数個のアミノ酸が欠失、 置換又は付加されたアミノ酸配列カゝらなり、前記 (a)に示すタンパク質と親和性相互 作用を示すタンパク質 (以下「タンパク質 (c)」と!、う場合がある。 )  (c) a protein having an affinity interaction with the protein shown in (a) above, wherein one or more amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 2 or 4 (Hereafter referred to as “protein (c)”!)
(d)配列番号 2又は 4記載のアミノ酸配列において 1又は複数個のアミノ酸が欠失、 置換又は付加されたアミノ酸配列力もなり、 Bax inhibitor— 1と親和性相互作用を 示すタンパク質 (以下「タンパク質 (d)」と 、う場合がある。 )  (d) A protein having an amino acid sequence ability in which one or more amino acids are deleted, substituted or added in the amino acid sequence described in SEQ ID NO: 2 or 4, and has an affinity interaction with Bax inhibitor-1 (hereinafter referred to as “protein ( d) "may occur.)
[0008] タンパク質 (a)のうち、配列番号 2記載のアミノ酸配列力 なるタンパク質は、ヒト由 来のタンパク質であり、配列番号 4記載のアミノ酸配列からなるタンパク質は、マウス 由来のタンパク質である。  [0008] Among the proteins (a), the protein having the amino acid sequence ability described in SEQ ID NO: 2 is a protein derived from human, and the protein consisting of the amino acid sequence described in SEQ ID NO: 4 is a mouse-derived protein.
[0009] タンパク質 (a)は、個体発生に必須のタンパク質である。タンパク質 (a)は、特に胎 生期における個体発生に必須であり、ヒトのゲノム中において、配列番号 2記載のアミ ノ酸配列からなるタンパク質をコードする遺伝子がホモ欠損型になると、受精卵は正 常な発生過程を経ることができず、ヒト胎児は致死に至る。また、マウスのゲノム中に ぉ 、て、配列番号 4記載のアミノ酸配列力 なるタンパク質をコードする遺伝子がホ モ欠損型になると、受精卵は正常な発生過程を経ることができず、マウス胎児は致死 に至る。なお、ヘテロ欠損型であれば、ヒト胎児及びマウス胎児は致死に至らない。  [0009] Protein (a) is an essential protein for ontogeny. Protein (a) is essential for ontogeny especially in the embryonic period, and if the gene encoding the protein comprising the amino acid sequence described in SEQ ID NO: 2 becomes homo-deficient in the human genome, the fertilized egg The normal development process cannot be achieved and the human fetus is fatal. In addition, if the gene encoding the protein having the amino acid sequence shown in SEQ ID NO: 4 becomes homo-deficient in the mouse genome, the fertilized egg cannot go through a normal development process, and the mouse fetus It will be lethal. In addition, if it is a hetero deficiency type, a human fetus and a mouse fetus will not be lethal.
[0010] タンパク質 (a)は、別のタンパク質 (a)と親和性相互作用を示す。タンパク質 (a)同 士の親和性相互作用は、個体発生、特に胎生期における個体発生に関与している ものと考えられる。なお、「タンパク質 (a)同士の親和性相互作用」は、タンパク質 (a) 同士の直接的な結合、及び他の物質を介したタンパク質 (a)同士の間接的な結合の いずれをも意味するが、好ましくはタンパク質 (a)同士の直接的な結合を意味する。 [0010] Protein (a) exhibits an affinity interaction with another protein (a). The affinity interaction of protein (a) is considered to be involved in ontogeny, especially in embryonic development. “Affinity interaction between proteins (a)” means protein (a) It means both direct binding between proteins and indirect binding between proteins (a) via other substances, preferably direct binding between proteins (a).
[0011] タンパク質 (a)は、 Bax inhibitor— 1と親和性相互作用を示す。タンパク質 (a)と B ax inhibitor— 1との親和性相互作用は、個体発生、特に胎生期における個体発生 に関与しているものと考えられる。なお、「タンパク質(a)と Bax inhibitor— 1との親 和性相互作用」は、タンパク質 (a)と Bax inhibitor— 1との直接的な結合、及び他の 物質を介したタンパク質 (a)と Bax inhibitor— 1との間接的な結合の 、ずれをも意 味するが、好ましくはタンパク質 (a)と Bax inhibitor— 1との直接的な結合を意味す る。 [0011] Protein (a) exhibits an affinity interaction with Bax inhibitor-1. The affinity interaction between protein (a) and Bax inhibitor-1 is thought to be involved in ontogeny, particularly in embryonic development. “Friendly interaction between protein (a) and Bax inhibitor-1” refers to direct binding between protein (a) and Bax inhibitor-1 and protein (a) via other substances. This also means a shift in indirect binding with Bax inhibitor-1, but preferably means direct binding between protein (a) and Bax inhibitor-1.
[0012] Bax inhibitor— 1は、アポトーシスを誘導する因子である Baxの作用を阻害し、細 胞死を抑制する。 Bax inhibitor— 1と相互作用するタンパク質としては、例えば、 Be 1—2、 Bel— XL等が知られている。ヒト由来の Bax inhibitor— 1のアミノ酸配列を配 列番号 6に示し、それをコードする DNAの塩基配列を配列番号 5に示す。  [0012] Bax inhibitor-1 inhibits the action of Bax, a factor that induces apoptosis, and suppresses cell death. Examples of proteins that interact with Bax inhibitor-1 include Be 1-2 and Bel-XL. The amino acid sequence of human-derived Bax inhibitor-1 is shown in SEQ ID NO: 6, and the base sequence of the DNA encoding it is shown in SEQ ID NO: 5.
[0013] 配列番号 2又は 4記載のアミノ酸配列のうち、第 73アミノ酸力も第 140アミノ酸部分 は、 SAM (Sterile Alpha Motif)ドメインと称されるシグナル伝達因子に特徴的なぺプ チドモチーフを含む。第 52アミノ酸の Ser残基は、 MAPキナーゼ基質に特徴的なモ チーフに含まれ、第 247から第 250アミノ酸までの部位(Pro— Pro— Leu— Pro)は 、 SH3結合領域モチーフである。  [0013] Of the amino acid sequence set forth in SEQ ID NO: 2 or 4, the 73rd amino acid force and the 140th amino acid moiety contain a peptide motif characteristic of a signal transduction factor called a SAM (Sterile Alpha Motif) domain. The Ser residue of amino acid 52 is included in the motif characteristic of the MAP kinase substrate, and the region from amino acid 247 to amino acid 250 (Pro-Pro-Leu-Pro) is an SH3 binding region motif.
[0014] SAMドメインは、約 70アミノ酸のペプチドドメイン構造であり、酵母からヒトに至る真 核生物の遺伝子産物中に見出されており、タンパク質 タンパク質間の相互作用を 仲介していると考えられている。また、一部の SAMドメインでは、 RNA結合能、脂質 結合能等も報告されている。 MAPキナーゼは、真核生物に普遍的に存在するセリン スレオニンキナーゼであり、細胞増殖、分化、アポトーシス、形態形成等に重要な役 割を果たしている。 MAPキナーゼ基質は、 MAPキナーゼによりリン酸ィ匕されて活性 化又は不活性化するタンパク質であり、 Elk— 1、 c Myc等の転写因子、 RSK、 M APKAPK— 2等のキナーゼ等が知られている。 SH3 (Src homology 3)結合領域 ドメインは、発がんチロシンキナーゼ遺伝子産物 Src中に存在する機能ドメインである SH3ドメインと結合するドメインで、共通アミノ酸配列として、 Pro— Xaal— Xaa2— P ro (Xaa2は通常、疎水的アミノ酸)を有する。 Src遺伝子産物は、胎生期発生、細胞 増殖に重要な役割を果たして 、ると考えられて 、る。 [0014] The SAM domain is a peptide domain structure of about 70 amino acids, is found in eukaryotic gene products from yeast to humans, and is thought to mediate protein-protein interactions. ing. In some SAM domains, RNA binding ability, lipid binding ability, etc. have been reported. MAP kinase is a serine-threonine kinase that is ubiquitous in eukaryotes and plays an important role in cell proliferation, differentiation, apoptosis, morphogenesis, and the like. A MAP kinase substrate is a protein that is activated or inactivated by being phosphorylated by MAP kinase. Transcription factors such as Elk-1, cMyc, kinases such as RSK, M APKAPK-2, etc. are known. Yes. The SH3 (Src homology 3) binding domain is a domain that binds to the SH3 domain, which is a functional domain in the oncogenic tyrosine kinase gene product Src. Pro- Xaal- Xaa2- ro (X aa 2 is usually a hydrophobic amino acid). The Src gene product is thought to play an important role in embryonic development and cell proliferation.
[0015] タンパク質お)において、配列番号 2又は 4記載のアミノ酸配列に対して欠失、置換 又は付加されるアミノ酸の個数及び位置は、個体発生に必須であるというタンパク質 (a)の機能が保持される限り特に限定されるものではなぐその個数は 1又は複数個 、好ましくは 1又は数個である。欠失に関する具体的な範囲は通常 1〜40個、好まし くは 1〜20個、さらに好ましくは 1〜10個であり、置換に関する具体的な範囲は通常 1〜20個、好ましくは 1〜10個、さらに好ましくは 1〜5個であり、付加に関する具体 的な範囲は通常 1〜10個、好ましくは 1〜5個、さらに好ましくは 1〜2個である。タン ノ ク質 (b)のアミノ酸配列は、タンパク質 (a)のアミノ酸配列と通常 70%以上、好まし くは 80%以上、さらに好ましくは 90%以上の相同性を有する。  In [Protein], the number and position of amino acids deleted, substituted or added to the amino acid sequence shown in SEQ ID NO: 2 or 4 retains the function of protein (a), which is essential for ontogeny. The number is not particularly limited as long as it is one or more, preferably one or several. The specific range for deletion is usually 1 to 40, preferably 1 to 20, more preferably 1 to 10, and the specific range for substitution is usually 1 to 20, preferably 1 to 10. 10, more preferably 1-5, and the specific range for addition is usually 1-10, preferably 1-5, more preferably 1-2. The amino acid sequence of protein (b) has a homology of usually 70% or more, preferably 80% or more, more preferably 90% or more with the amino acid sequence of protein (a).
[0016] タンパク質お)には、タンパク質 (a)に対して人為的に欠失、置換、付加等の変異を 導入したタンパク質の他、欠失、置換、付加等の変異が導入された状態で天然に存 在するタンパク質や、それに対して人為的に欠失、置換、付加等の変異を導入したタ ンパク質も含まれる。欠失、置換、付加等の変異が導入された状態で天然に存在す るタンパク質としては、例えば、哺乳動物(例えば、ヒト、サル、ゥシ、ヒッジ、ャギ、ゥ マ、ブタ、ゥサギ、ィヌ、ネコ、マウス、ラット等)由来のタンパク質 (これらの哺乳動物に おいて多型によって生じ得るタンパク質を含む。)が挙げられる。  [0016] In addition to a protein in which mutations such as deletion, substitution and addition are artificially introduced into protein (a), protein (a) is introduced with mutations such as deletion, substitution and addition. It includes proteins that exist in nature and proteins that have been artificially introduced with mutations such as deletions, substitutions, and additions. Naturally occurring proteins with mutations such as deletions, substitutions and additions include, for example, mammals (eg, humans, monkeys, bushes, hidges, goats, horses, pigs, rabbits, And the like (including proteins that can be generated by polymorphism in these mammals).
[0017] タンパク質 )において、配列番号 2又は 4記載のアミノ酸配列に対して欠失、置換 又は付加されるアミノ酸の個数及び位置は、他のタンパク質 (a)と親和性相互作用を 示すというタンパク質 (a)の機能が保持される限り特に限定されるものではなぐその 個数は 1又は複数個、好ましくは 1又は数個である。欠失に関する具体的な範囲は通 常 1〜40個、好ましくは 1〜20個、さらに好ましくは 1〜: LO個であり、置換に関する具 体的な範囲は通常 1〜20個、好ましくは 1〜: LO個、さらに好ましくは 1〜5個であり、 付加に関する具体的な範囲は通常 1〜10個、好ましくは 1〜5個、さらに好ましくは 1 〜2個である。タンパク質 (c)のアミノ酸配列は、タンパク質 (a)のアミノ酸配列と通常 7 0%以上、好ましくは 80%以上、さらに好ましくは 90%以上の相同性を有する。  [0017] In the protein (1), the number and position of amino acids deleted, substituted, or added to the amino acid sequence shown in SEQ ID NO: 2 or 4 indicates an affinity interaction with another protein (a) ( The number is not particularly limited as long as the function of a) is maintained, and the number is one or more, preferably one or several. The specific range for deletion is usually 1 to 40, preferably 1 to 20, more preferably 1 to: LO, and the specific range for substitution is usually 1 to 20, preferably 1. ~: LO, more preferably 1-5, and the specific range for addition is usually 1-10, preferably 1-5, more preferably 1-2. The amino acid sequence of protein (c) usually has a homology of 70% or more, preferably 80% or more, more preferably 90% or more with the amino acid sequence of protein (a).
[0018] 配列番号 2又は 4記載のアミノ酸配列のうち、 1〜62番目のアミノ酸力 なるアミノ酸 配列部分、又は 159〜478番目のアミノ酸力もなるアミノ酸配列部分において、 1又 は複数個のアミノ酸が欠失、置換又は付加されても、他のタンパク質 (a)と親和性相 互作用を示すというタンパク質 (a)の機能が保持される。なお、 1〜62番目のアミノ酸 力もなるアミノ酸配列部分は、 SAMドメインよりも N末側に存在し、 MAPキナーゼ基 質モチーフを含み、ヒトとマウス間で比較的相違の大きい部分であり、 159〜478番 目のアミノ酸力もなるアミノ酸配列部分は、 SAMドメインよりも C末側に存在し、 SH3 結合領域ドメインを含み、ヒトとマウス間で比較的相同性の高!、部分である。 [0018] Among the amino acid sequences set forth in SEQ ID NO: 2 or 4, the 1st to 62nd amino acids are amino acids. Even if one or more amino acids are deleted, substituted, or added in the sequence part or the amino acid sequence part of the 159th to 478th amino acids, the protein interacts with other proteins (a). The function of protein (a) is retained. In addition, the amino acid sequence portion having 1st to 62nd amino acid force is present on the N-terminal side of the SAM domain, includes a MAP kinase basic motif, and is a portion having a relatively large difference between human and mouse. The amino acid sequence part of the 478th amino acid is located on the C-terminal side of the SAM domain, contains the SH3 binding domain, and has relatively high homology between humans and mice! , Part.
[0019] タンパク質 )には、タンパク質 (a)に対して人為的に欠失、置換、付加等の変異を 導入したタンパク質の他、欠失、置換、付加等の変異が導入された状態で天然に存 在するタンパク質や、それに対して人為的に欠失、置換、付加等の変異を導入したタ ンパク質も含まれる。欠失、置換、付加等の変異が導入された状態で天然に存在す るタンパク質としては、例えば、哺乳動物(例えば、ヒト、サル、ゥシ、ヒッジ、ャギ、ゥ マ、ブタ、ゥサギ、ィヌ、ネコ、マウス、ラット等)由来のタンパク質 (これらの哺乳動物に おいて多型によって生じ得るタンパク質を含む。)が挙げられる。  [0019] In protein (), in addition to a protein in which mutations such as deletion, substitution, and addition have been artificially introduced into protein (a), natural mutations in which mutations such as deletion, substitution, and addition have been introduced In addition, proteins that are present in humans and proteins into which mutations such as deletions, substitutions, and additions have been artificially introduced are also included. Naturally occurring proteins with mutations such as deletions, substitutions and additions include, for example, mammals (eg, humans, monkeys, bushes, hidges, goats, horses, pigs, rabbits, And the like (including proteins that can be generated by polymorphism in these mammals).
[0020] タンパク質 (d)において、配列番号 2又は 4記載のアミノ酸配列に対して欠失、置換 又は付加されるアミノ酸の個数及び位置は、 Bax inhibitor— 1と親和性相互作用を 示すというタンパク質 (a)の機能が保持される限り特に限定されるものではなぐその 個数は 1又は複数個、好ましくは 1又は数個である。欠失に関する具体的な範囲は通 常 1〜40個、好ましくは 1〜20個、さらに好ましくは 1〜: L0個であり、置換に関する具 体的な範囲は通常 1〜20個、好ましくは 1〜: L0個、さらに好ましくは 1〜5個であり、 付加に関する具体的な範囲は通常 1〜10個、好ましくは 1〜5個、さらに好ましくは 1 〜2個である。タンパク質 (d)のアミノ酸配列は、タンパク質 (a)のアミノ酸配列と通常 70%以上、好ましくは 80%以上、さらに好ましくは 90%以上の相同性を有する。  [0020] In the protein (d), the number and position of amino acids deleted, substituted, or added to the amino acid sequence shown in SEQ ID NO: 2 or 4 is a protein that exhibits an affinity interaction with Bax inhibitor-1 ( The number is not particularly limited as long as the function of a) is maintained, and the number is one or more, preferably one or several. The specific range for deletion is usually 1 to 40, preferably 1 to 20, more preferably 1 to: L0, and the specific range for substitution is usually 1 to 20, preferably 1 ~: L0, more preferably 1-5, and the specific range for addition is usually 1-10, preferably 1-5, more preferably 1-2. The amino acid sequence of the protein (d) has a homology of usually 70% or more, preferably 80% or more, more preferably 90% or more with the amino acid sequence of the protein (a).
[0021] 配列番号 2又は 4記載のアミノ酸配列のうち、 1〜232番目のアミノ酸力 なるアミノ 酸配列部分、又は 264〜478番目のアミノ酸力もなるアミノ酸配列部分において、 1 又は複数個のアミノ酸が欠失、置換又は付加されても、 Bax inhibitor— 1と親和性 相互作用を示すというタンパク質 (a)の機能が保持される。 1〜232番目のアミノ酸か らなるアミノ酸配列部分は、 SAMドメイン及び MAPキナーゼ基質モチーフを含み、 比較的親水性アミノ酸の多く含まれる部分であり、 264〜478番目のアミノ酸からなる アミノ酸配列部分は、 SH3結合領域ドメインを含み、疎水性アミノ酸の比較的多く含 まれる部分である。 [0021] Among the amino acid sequences described in SEQ ID NO: 2 or 4, the amino acid sequence portion having the amino acid strength of 1 to 232 or the amino acid sequence portion having the amino acid strength of 264 to 478 is missing one or more amino acids. Even if it is lost, substituted or added, the function of the protein (a), which shows an affinity interaction with Bax inhibitor-1, is retained. The amino acid sequence portion consisting of amino acids 1 to 232 contains a SAM domain and a MAP kinase substrate motif, The amino acid sequence portion consisting of amino acids 264 to 478 is a portion containing a relatively large amount of hydrophobic amino acids, including the SH3 binding region domain, and a portion containing a relatively large amount of hydrophobic amino acids.
[0022] タンパク質 )には、タンパク質 (a)に対して人為的に欠失、置換、付加等の変異を 導入したタンパク質の他、欠失、置換、付加等の変異が導入された状態で天然に存 在するタンパク質や、それに対して人為的に欠失、置換、付加等の変異を導入したタ ンパク質も含まれる。欠失、置換、付加等の変異が導入された状態で天然に存在す るタンパク質としては、例えば、哺乳動物(例えば、ヒト、サル、ゥシ、ヒッジ、ャギ、ゥ マ、ブタ、ゥサギ、ィヌ、ネコ、マウス、ラット等)由来のタンパク質 (これらの哺乳動物に おいて多型によって生じ得るタンパク質を含む。)が挙げられる。  [0022] In protein (), in addition to a protein in which mutations such as deletion, substitution, addition, etc. are artificially introduced into protein (a), a mutation, such as deletion, substitution, addition, etc., is naturally introduced. In addition, proteins that are present in humans and proteins into which mutations such as deletions, substitutions, and additions have been artificially introduced are also included. Naturally occurring proteins with mutations such as deletions, substitutions and additions include, for example, mammals (eg, humans, monkeys, bushes, hidges, goats, horses, pigs, rabbits, And the like (including proteins that can be generated by polymorphism in these mammals).
[0023] タンパク質 (d)が親和性相互作用を示す Bax inhibitor- 1の由来動物は特に限 定されるものではないが、タンパク質 (d)が天然に存在するタンパク質である場合、タ ンパク質(d)の由来動物と Bax inhibitor— 1の由来動物とが同種であると、タンパク 質 (d)は Bax inhibitor— 1と高い親和性相互作用を示すと考えられる。  [0023] The animal derived from Bax inhibitor-1 in which protein (d) exhibits an affinity interaction is not particularly limited. However, when protein (d) is a naturally occurring protein, a protein ( If the animal derived from d) and the animal derived from Bax inhibitor-1 are of the same species, protein (d) is considered to exhibit a high affinity interaction with Bax inhibitor-1.
[0024] タンパク質 (a)、 (b)、 (c)又は (d)には、糖鎖が付加されたタンパク質及び糖鎖が 付加されて 、な 、タンパク質の 、ずれもが含まれる。タンパク質に付加される糖鎖の 種類、位置等は、タンパク質の製造の際に使用される宿主細胞の種類によって異な る力 糖鎖が付加されたタンパク質には、いずれの宿主細胞を用いて得られるタンパ ク質も含まれる。また、タンパク質 )、(b)又は (d)には、その医薬的に許容される塩 も含まれる。  [0024] The protein (a), (b), (c) or (d) includes a protein to which a sugar chain has been added and a shift of the protein to which the sugar chain has been added. The type and position of the sugar chain added to the protein varies depending on the type of host cell used in the production of the protein. Any host cell can be used for the protein with the added sugar chain. Proteins are also included. In addition, protein), (b) or (d) includes pharmaceutically acceptable salts thereof.
[0025] タンパク質 )、(b)、 (c)又は(d)をコードする遺伝子は、例えば、哺乳動物の脳、 腎臓、肺、筋肉、胎盤、小腸、精巣、副腎、唾液腺、脾臓、胃等の組織力も抽出した mRNAを用いて cDNAライブラリーを作製し、それぞれ配列番号 1又は 3記載の塩 基配列に基づいて合成したプローブを用いて、 cDNAライブラリーから目的の DNA を含むクローンをスクリーニングすることにより得られる。以下、 cDNAライブラリーの 作製、及び目的の DNAを含むクローンのスクリーニングの各工程について説明する  [0025] The gene encoding protein), (b), (c) or (d) is, for example, mammalian brain, kidney, lung, muscle, placenta, small intestine, testis, adrenal gland, salivary gland, spleen, stomach, etc. A cDNA library is prepared using the mRNA extracted from the tissue strength of each, and a clone containing the target DNA is screened from the cDNA library using probes synthesized based on the nucleotide sequences described in SEQ ID NO: 1 or 3, respectively. Can be obtained. The following explains each step of cDNA library preparation and screening of clones containing the target DNA.
[0026] 〔cDNAライブラリーの作製〕 cDNAライブラリーを作製する際には、例えば、哺乳動物の脳、腎臓、肺、筋肉、胎 盤、小腸、精巣、副腎、唾液腺、脾臓、胃等の組織力 全 RNAを得た後、オリゴ dT セルロースやポリ u セファロース等を用 、たァフィユティーカラム法、バッチ法等 によりポリ(A+)RNA(mRNA)を得る。この際、ショ糖密度勾配遠心法等によりポリ( A+)RNA(mRNA)を分画してもよい。次いで、得られた mRNAを铸型として、オリ ゴ dTプライマー及び逆転写酵素を用いて一本鎖 cDNAを合成した後、該一本鎖 cD NAから二本鎖 cDNAを合成する。このようにして得られた二本鎖 cDNAを適当なク ローニングベクターに組み込んで組換えベクターを作製し、該組換えベクターを用い て大腸菌等の宿主細胞を形質転換し、テトラサイクリン耐性、アンピシリン耐性を指標 として形質転換体を選択することにより、 cDNAのライブラリーが得られる。 cDNAラ イブラリーを作製するためのクローユングベクターは、宿主細胞中で自立複製できる ものであればよぐ例えば、ファージベクター、プラスミドベクター等を使用できる。宿 主細胞としては、例えば、大腸菌(Escherichia coli)等を使用できる。 [Creation of cDNA library] When preparing a cDNA library, for example, tissue deficiency of mammalian brain, kidney, lung, muscle, placenta, small intestine, testis, adrenal gland, salivary gland, spleen, stomach, etc. Poly (A +) RNA (mRNA) is obtained by the affinity column method, batch method, etc. using cellulose or poly-sepharose. At this time, poly (A +) RNA (mRNA) may be fractionated by sucrose density gradient centrifugation or the like. Next, using the obtained mRNA as a saddle type, single-stranded cDNA is synthesized using an oligo dT primer and reverse transcriptase, and then double-stranded cDNA is synthesized from the single-stranded cDNA. The double-stranded cDNA thus obtained is incorporated into an appropriate cloning vector to prepare a recombinant vector, and the recombinant vector is used to transform host cells such as Escherichia coli, which have tetracycline resistance and ampicillin resistance. By selecting a transformant as an index, a cDNA library can be obtained. The cloning vector for preparing the cDNA library is not particularly limited as long as it can replicate autonomously in the host cell. For example, a phage vector or a plasmid vector can be used. As the host cell, for example, Escherichia coli can be used.
[0027] 大腸菌等の宿主細胞の形質転換は、塩ィ匕カルシウム、塩ィ匕マグネシウム又は塩ィ匕 ルビジウムを共存させて調製したコンビテント細胞に、組換えベクターをカ卩える方法 等により行うことができる。ベクターとしてプラスミドを用いる場合は、テトラサイクリン、 アンピシリン等の薬剤耐性遺伝子を含有させておくことが好ましい。  [0027] Transformation of host cells such as Escherichia coli is carried out by a method in which a recombinant vector is coated on a competent cell prepared in the presence of salt calcium salt, salt magnesium or salt rubidium. Can do. When using a plasmid as a vector, it is preferable to contain a drug resistance gene such as tetracycline or ampicillin.
[0028] cDNAライブラリーの作製にあたっては、市販のキット、例えば、 Superscript Plasmi d System for cDNA Synthesis and Plasmid Cloning (Gibco BRL社製;)、 ZAP— cDNA S ynthesis Kit (ストラタジーン社製)等を使用できる。  [0028] When preparing a cDNA library, a commercially available kit such as Superscript Plasmid System for cDNA Synthesis and Plasmid Cloning (Gibco BRL;), ZAP—cDNA Synthesis Kit (Stratagene), etc. is used. it can.
[0029] 〔目的の DNAを含むクローンのスクリーニング〕  [0029] [Screening of clones containing the target DNA]
cDNAライブラリーから目的の DNAを含むクローンをスクリーニングする際には、配 列番号 1又は 3記載の塩基配列に基づいてプライマーを合成し、これを用いてポリメ ラーゼ連鎖反応 (PCR)を行い、 PCR増幅断片を得る。 PCR増幅断片は、適当なプ ラスミドベクターを用いてサブクロー-ングしてもょ 、。 PCRに使用するプライマーセ ットは特に限定されるものではなぐ配列番号 1又は 3記載の塩基配列に基づいて設 計できる。  When screening a clone containing the target DNA from a cDNA library, a primer is synthesized based on the nucleotide sequence described in SEQ ID NO: 1 or 3, and this is used to perform a polymerase chain reaction (PCR). An amplified fragment is obtained. PCR amplified fragments can be subcloned using an appropriate plasmid vector. The primer set used for PCR is not particularly limited, and can be designed based on the nucleotide sequence described in SEQ ID NO: 1 or 3.
[0030] cDNAライブラリーに対して、 PCR増幅断片をプローブとしてコロニーハイブリダィ ゼーシヨン又はプラークハイブリダィゼーシヨンを行うことにより、 目的の DNAが得ら れる。プローブとしては、 PCR増幅断片をアイソトープ (例えば、 32P、 35S)、ピオチン 、ジゴキシゲニン、アルカリホスファターゼ等で標識したものを使用できる。 目的の DN Aを含むクローンは、抗体を用いたィムノスクリーニング等の発現スクリーニングによつ てち得ることがでさる。 [0030] Colony hybrid to a cDNA library using PCR amplified fragment as a probe The target DNA can be obtained by performing a hybridization or plaque hybridization. As the probe, a PCR-amplified fragment labeled with an isotope (eg, 32 P, 35 S), piotin, digoxigenin, alkaline phosphatase, or the like can be used. A clone containing the target DNA can be obtained by expression screening such as immunoscreening using an antibody.
[0031] 取得された DNAの塩基配列は、該 DNA断片をそのまま、又は適当な制限酵素等 で切断した後、常法によりベクターに組み込み、通常用いられる塩基配列解析方法 、例えば、マキサム ギルバートの化学修飾法、ジデォキシヌクレオチド鎖終結法を 用いて決定できる。塩基配列解析の際には、通常、 373A DNAシークェンサ一(Pe rkin Elmer社製)等の塩基配列分析装置が用いられる。  [0031] The obtained DNA base sequence is obtained by cleaving the DNA fragment as it is or with a suitable restriction enzyme, etc., and then incorporating the DNA fragment into a vector by a conventional method, for example, a commonly used base sequence analysis method, such as Maxam Gilbert's chemistry. It can be determined using the modification method or the dideoxynucleotide chain termination method. For base sequence analysis, a base sequence analyzer such as 373A DNA Sequencer (manufactured by Perkin Elmer) is usually used.
[0032] タンパク質 )、(b)、 (c)又は(d)をコードする遺伝子は、オープンリーディングフレ ームとその 3'末端に位置する終止コドンとを含む。また、タンパク質 )、(b)、 (c)又 は(d)をコードする遺伝子は、オープンリーディングフレームの 5'末端及び Z又は 3' 末端に非翻訳領域 (UTR)を含むことができる。  [0032] The gene encoding protein), (b), (c) or (d) includes an open reading frame and a stop codon located at the 3 'end thereof. In addition, the gene encoding protein), (b), (c) or (d) can contain an untranslated region (UTR) at the 5 ′ end and Z or 3 ′ end of the open reading frame.
[0033] 配列番号 2記載のアミノ酸配列力 なるタンパク質をコードする遺伝子としては、例 えば、配列番号 1記載の塩基配列のうち 19〜1452番目の塩基配列からなる DNA を含む遺伝子が挙げられる。ここで、配列番号 1記載の塩基配列のうち、オープンリ ーデイングフレームは 19〜1452番目の塩基配列に位置し、翻訳開始コドンは 19〜 21番目の塩基配列に位置し、終止コドンは 1453〜1455番目の塩基配列に位置す る。配列番号 2記載のアミノ酸配列からなるタンパク質をコードする遺伝子の塩基配 列は、当該タンパク質をコードする限り特に限定されるものではなぐオープンリーデ イングフレームの塩基配列は、配列番号 1記載の塩基配列のうち 19〜1452番目の 塩基配列に限定されるものではない。  [0033] Examples of the gene encoding the protein having the amino acid sequence ability described in SEQ ID NO: 2 include a gene containing DNA consisting of the 19th to 1452th base sequences in the base sequence described in SEQ ID NO: 1. Here, in the base sequence described in SEQ ID NO: 1, the open reading frame is located at the 19th to 1452th base sequence, the translation initiation codon is located at the 19th to 21st base sequence, and the stop codon is from 1453 to Located at the 1455th nucleotide sequence. The base sequence of the gene encoding the protein consisting of the amino acid sequence described in SEQ ID NO: 2 is not particularly limited as long as it encodes the protein. The base sequence of the open reading frame is the base sequence described in SEQ ID NO: 1. Of these, the base sequence is not limited to the 19th to 1452st positions.
[0034] 配列番号 4記載のアミノ酸配列力 なるタンパク質をコードする遺伝子としては、例 えば、配列番号 3記載の塩基配列のうち 46〜1479番目の塩基配列からなる DNA を含む遺伝子が挙げられる。ここで、配列番号 4記載の塩基配列のうち、オープンリ ーデイングフレームは 46〜1479番目の塩基配列に位置し、翻訳開始コドンは 46〜 48番目の塩基配列に位置し、終止コドンは 1480〜1482番目の塩基配列に位置す る。配列番号 4記載のアミノ酸配列力もなるタンパク質をコードする遺伝子の塩基配 列は、当該タンパク質をコードする限り特に限定されるものではなぐオープンリーデ イングフレームの塩基配列は、配列番号 4記載の塩基配列のうち 46〜 1479番目の 塩基配列に限定されるものではない。 [0034] Examples of the gene encoding the protein having the amino acid sequence ability described in SEQ ID NO: 4 include a gene containing DNA consisting of the 46th to 1479th base sequences of the base sequence described in SEQ ID NO: 3. Here, in the base sequence described in SEQ ID NO: 4, the open reading frame is located at the 46th to 1479th base sequence, the translation initiation codon is located at the 46th to 48th base sequence, and the stop codon is from 1480 to Located at base 1482 The The base sequence of the gene encoding the protein having the amino acid sequence ability described in SEQ ID NO: 4 is not particularly limited as long as it encodes the protein. The base sequence of the open reading frame is the base sequence described in SEQ ID NO: 4. Of these, it is not limited to the 46th to 1479th nucleotide sequences.
[0035] タンパク質 )、(b)、 (c)又は(d)をコードする遺伝子は、その塩基配列に従って化 学合成により得ることもできる。 DNAの化学合成は、市販の DNA合成機、例えば、 チォホスファイト法を利用した DNA合成機(島津製作所社製)、フォスフォアミダイト 法を利用した DNA合成機 (パーキン 'エルマ一社製)を用いて行うことができる。  [0035] The gene encoding protein), (b), (c) or (d) can also be obtained by chemical synthesis according to the base sequence. For the chemical synthesis of DNA, a commercially available DNA synthesizer, for example, a DNA synthesizer using the thiophosphite method (manufactured by Shimadzu Corporation), or a DNA synthesizer using the phosphoramidite method (manufactured by Perkin 'Elma Corporation) Can be used.
[0036] タンパク質お)、(c)又は (d)をコードする遺伝子としては、例えば、配列番号 1記載 の塩基配列のうち 19〜1452番目の塩基配列からなる DNAと相補的な DNAにスト リンジヱントな条件下でハイブリダィズする DNAを含む遺伝子、又は配列番号 3記載 の塩基配列のうち 46〜1479番目の塩基配列からなる DNAと相補的な DNAにスト リンジェントな条件下でノヽイブリダィズする DNAを含む遺伝子が挙げられる。  [0036] The gene encoding protein (c), (c) or (d) is, for example, a stringent to a DNA complementary to the DNA comprising the 19th to 1452th base sequences of the base sequence described in SEQ ID NO: 1. Including DNA that hybridizes under mild conditions, or DNA that hybridizes under stringent conditions to DNA complementary to DNA consisting of the 46th to 1479th nucleotide sequences of the nucleotide sequence set forth in SEQ ID NO: 3. Gene.
「ストリンジェントな条件」としては、例えば、 42°C、 2 X SSC及び 0. 1%SDSの条件 、好ましくは 65°C、 0. 1 X SSC及び 0. 1%SDSの条件が挙げられる。  “Stringent conditions” include, for example, conditions of 42 ° C., 2 × SSC and 0.1% SDS, preferably conditions of 65 ° C., 0.1 × SSC and 0.1% SDS.
[0037] 配列番号 1記載の塩基配列のうち 19〜 1452番目の塩基配列からなる DNAと相補 的な DNAにストリンジェントな条件下でハイブリダィズする DNAとしては、配列番号 1 記載の塩基配列のうち 19〜1452番目の塩基配列からなる DNAと少なくとも 70%以 上、好ましくは 80%以上、さらに好ましくは 90%以上の相同性を有する DNAが挙げ られ、配列番号 3記載の塩基配列のうち 46〜 1479番目の塩基配列力もなる DNAと 相補的な DNAにストリンジェントな条件下でハイブリダィズする DNAとしては、配列 番号 3記載の塩基配列のうち 46〜1479番目の塩基配列からなる DNAと少なくとも 7 0%以上、好ましくは 80%以上、さらに好ましくは 90%以上の相同性を有する DNA が挙げられる。  [0037] The DNA that hybridizes under stringent conditions to DNA complementary to the DNA consisting of the 19th to 1452th base sequences of the base sequence set forth in SEQ ID NO: 1 includes 19 of the base sequence set forth in SEQ ID NO: 1. DNA having the homology of at least 70% or more, preferably 80% or more, more preferably 90% or more with DNA consisting of the ˜1452 base sequence, and 46 to 1479 of the base sequence described in SEQ ID NO: 3 The DNA that hybridizes under stringent conditions to DNA complementary to the DNA that also has the second base sequence ability is at least 70% or more of the DNA consisting of the 46th to 1479th base sequences of the base sequence described in SEQ ID NO: 3. A DNA having a homology of preferably 80% or more, more preferably 90% or more is mentioned.
[0038] タンパク質 (b)、 (c)又は (d)をコードする遺伝子は、タンパク質 (a)をコードする遺 伝子に、部位特異的変異誘発法等の公知の方法を用いて人為的に変異を導入する ことにより得ることもできる。変異の導入は、例えば、変異導入用キット、例えば、 Muta nt- K(TAKARA社製)、 Mutant- G (TAKARA社製)、 TAKARA社の LA PCR in vitro M utagenesisシリーズキットを用いて行うことができる。また、塩基配列が既に決定され ている遺伝子については、その塩基配列に従って化学合成することにより得ることが できる。 [0038] The gene encoding protein (b), (c) or (d) is artificially added to the gene encoding protein (a) using a known method such as site-directed mutagenesis. It can also be obtained by introducing mutations. For example, mutation introduction kits such as Mutant-K (TAKARA), Mutant-G (TAKARA), TAKARA LA PCR in vitro M Can be performed using the utagenesis series kit. A gene whose base sequence has already been determined can be obtained by chemical synthesis according to the base sequence.
[0039] タンパク質 )、(b)、 (c)又は(d)は、例えば、以下の工程に従って、それぞれのタ ンパク質をコードする遺伝子を宿主細胞中で発現させることにより製造できる。  [0039] The protein), (b), (c) or (d) can be produced, for example, by expressing a gene encoding each protein in a host cell according to the following steps.
〔組換えベクター及び形質転換体の作製〕  [Production of recombinant vector and transformant]
組換えベクターを作製する際には、 目的とするタンパク質のコード領域を含む適当 な長さの DNA断片を調製する。また、 目的とするタンパク質のコード領域の塩基配 列を、宿主細胞における発現に最適なコドンとなるように、塩基を置換した DNAを調 製する。  When preparing a recombinant vector, prepare a DNA fragment of appropriate length that contains the coding region of the protein of interest. In addition, DNA with a base substitution is prepared so that the base sequence of the coding region of the target protein becomes the optimal codon for expression in the host cell.
[0040] この DNA断片を適当な発現ベクターのプロモーターの下流に挿入することにより 組換えベクターを作製し、該組換えベクターを適当な宿主細胞に導入することにより 、 目的とするタンパク質を生産し得る形質転換体が得られる。上記 DNA断片は、そ の機能が発揮されるようにベクターに組み込まれることが必要であり、ベクターは、プ 口モーターの他、ェンハンサ一等のシスエレメント、スプライシングシグナル、ポリ A付 加シグナル、選択マーカー(例えば、ジヒドロ葉酸還元酵素遺伝子、アンピシリン耐性 遺伝子、ネオマイシン耐性遺伝子)、リボソーム結合配列(SD配列)等を含有できる。  [0040] A recombinant protein can be produced by inserting this DNA fragment downstream of the promoter of an appropriate expression vector, and the desired protein can be produced by introducing the recombinant vector into an appropriate host cell. A transformant is obtained. The above DNA fragment must be incorporated into a vector so that its function can be exerted. The vector is not only a propeller motor, but also a cis element such as an enhancer, splicing signal, poly A addition signal, selection A marker (for example, dihydrofolate reductase gene, ampicillin resistance gene, neomycin resistance gene), ribosome binding sequence (SD sequence) and the like can be contained.
[0041] 発現ベクターとしては、宿主細胞において自立複製が可能なものであれば特に限 定されず、例えば、プラスミドベクター、ファージベクター、ウィルスベクター等を使用 できる。プラスミドベクターとしては、例えば、大腸菌由来のプラスミド (例えば、 pRSET 、 pBR322、 pBR325、 pUC118、 pUC119、 pUC18、 pUC19)、枯草菌由来のプラスミド( 例えば、 pUB110、 pTP5)、酵母由来のプラスミド(例えば、 YEpl3、 YEp24、 YCp50)が 挙げられ、ファージベクターとしては、例えば、 λファージ(例えば、 Charon4A、 Charo n21A、 EMBL3、 EMBL4、 gtl0、 gtll、 λ ZAP)が挙げられ、ウィルスベクターとし ては、例えば、レトロウイルス、ワクシニアウィルス等の動物ウィルス、バキュロウィルス 等の昆虫ウィルスが挙げられる。  [0041] The expression vector is not particularly limited as long as it can replicate autonomously in a host cell, and for example, a plasmid vector, a phage vector, a virus vector, and the like can be used. Examples of plasmid vectors include plasmids derived from E. coli (eg, pRSET, pBR322, pBR325, pUC118, pUC119, pUC18, pUC19), plasmids derived from Bacillus subtilis (eg, pUB110, pTP5), plasmids derived from yeast (eg, YEpl3 YEp24, YCp50), and phage vectors include, for example, λ phage (for example, Charon4A, Charon21A, EMBL3, EMBL4, gtl0, gtll, λZAP), and viral vectors include, for example, retro Examples include viruses, animal viruses such as vaccinia virus, and insect viruses such as baculovirus.
[0042] 宿主細胞としては、 目的とする遺伝子を発現し得る限り、原核細胞、酵母、動物細 胞、昆虫細胞、植物細胞等のいずれを使用してもよい。また、動物個体、植物個体、 カイコ虫体等を使用してもょ 、。 [0042] As a host cell, any of prokaryotic cells, yeast, animal cells, insect cells, plant cells and the like may be used as long as the target gene can be expressed. In addition, animal individuals, plant individuals, Use silkworms, etc.
[0043] 細菌を宿主細胞とする場合、例えば、エッシェリヒァ 'コリ(Escherichia coli)等のェシ エリヒア属、バチルス'ズブチリス(Bacillus subtilis)等のバチルス属、シユードモナス' プチダ(Pseudomonas putida)等のシユードモナス属、リゾビゥム 'メリロティ(Rhizobium meliloti)等のリゾビゥム属に属する細菌を宿主細胞として使用できる。具体的には、 Escherichia coli BL21、 Escherichia coli XL1— Blue、 Escherichia coli XL2— Blue、 Esch ericnia coli DH1、 Escherichia coli K12、 Escherichia coli JM109、 Escherichia coli HB 101等の大腸菌や、 Bacillus subtilis MI 114、 Bacillus subtilis 207- 21等の枯草菌を宿 主細胞として使用できる。この場合のプロモーターは、大腸菌等の細菌中で発現でき るものであれば特に限定されず、例えば、 trpプロモーター、 lacプロモーター、 Pプロ  [0043] When a bacterium is used as a host cell, for example, Escherichia coli and other Escherichia genus, Bacillus subtilis and other Bacillus genus, Pseudomonas putida and Pseudomonas putida genus Bacteria belonging to the genus Rhizobium such as Rhizobium meliloti can be used as host cells. Specifically, Escherichia coli BL21, Escherichia coli XL1-Blue, Escherichia coli XL2-Blue, Esch ericnia coli DH1, Escherichia coli K12, Escherichia coli JM109, Escherichia coli HB 101, etc., Bacillus subtilis MI 114, Bacillus subtilis Bacillus subtilis such as 207-21 can be used as the host cell. In this case, the promoter is not particularly limited as long as it can be expressed in bacteria such as Escherichia coli. For example, trp promoter, lac promoter, P promoter
L  L
モーター、 Pプロモーター等の大腸菌やファージ等に由来するプロモーターを使用  Uses promoters derived from E. coli and phages such as motors and P promoters
R  R
できる。また、 tacプロモーター、 lacT7プロモーター、 let Iプロモーターのように人為的 に設計改変されたプロモーターも使用できる。  it can. In addition, artificially designed and modified promoters such as tac promoter, lacT7 promoter, let I promoter can also be used.
[0044] 細菌への組換えベクターの導入方法としては、細菌に DNAを導入し得る方法であ れば特に限定されず、例えば、カルシウムイオンを用いる方法、エレクト口ポレーショ ン法等を使用できる。 [0044] The method for introducing the recombinant vector into the bacterium is not particularly limited as long as it is a method capable of introducing DNA into the bacterium, and for example, a method using calcium ions, an electoporation method, or the like can be used.
[0045] 酵母を宿主細胞とする場合、サッカロミセス ·セレビシェ(Saccharomycescerevisiae) 、シゾサッカロミセス 'ボンべ(Schizosaccharomyces pombe)、ピヒア'パストリス(Pichia pastoris)等を宿主細胞として使用できる。この場合のプロモーターは、酵母中で発現 できるものであれば特に限定されず、例えば、 gallプロモーター、 gallOプロモーター 、ヒートショックタンパク質プロモーター、 MF a 1プロモーター、 PH05プロモーター、 P GKプロモーター、 GAPプロモーター、 ADHプロモーター、 AOX1プロモーター等を使 用できる。  [0045] When yeast is used as a host cell, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Pichia pastoris, etc. can be used as host cells. The promoter in this case is not particularly limited as long as it can be expressed in yeast. For example, gall promoter, gallO promoter, heat shock protein promoter, MFa 1 promoter, PH05 promoter, PGK promoter, GAP promoter, ADH promoter AOX1 promoter, etc. can be used.
[0046] 酵母への組換えベクターの導入方法は、酵母に DNAを導入し得る方法であれば 特に限定されず、例えば、エレクト口ポレーシヨン法、スフエロプラスト法、酢酸リチウム 法等を使用できる。  [0046] The method for introducing the recombinant vector into yeast is not particularly limited as long as it is a method capable of introducing DNA into yeast, and for example, the electopore position method, the spheroplast method, the lithium acetate method and the like can be used.
[0047] 動物細胞を宿主細胞とする場合、サル細胞 COS-7、 Vero、チャイニーズノヽムスター 卵巣細胞 (CHO細胞)、マウス L細胞、ラット GH3、ヒト FL細胞等を宿主細胞として使 用できる。この場合のプロモーターは、動物細胞中で発現できるものであれば特に限 定されず、例えば、 SR aプロモーター、 SV40プロモーター、 LTR(Long Terminal Repe at)プロモーター、 CMVプロモーター、ヒトサイトメガロウィルスの初期遺伝子プロモー ター等を使用できる。 [0047] When animal cells are used as host cells, monkey cells such as COS-7, Vero, Chinese nomstar ovary cells (CHO cells), mouse L cells, rat GH3, and human FL cells are used as host cells. Can be used. The promoter in this case is not particularly limited as long as it can be expressed in animal cells. For example, SRa promoter, SV40 promoter, LTR (Long Terminal Repeat) promoter, CMV promoter, human cytomegalovirus early gene Promoters can be used.
[0048] 動物細胞への組換えベクターの導入方法は、動物細胞に DNAを導入し得る方法 であれば特に限定されず、例えば、エレクト口ポレーシヨン法、リン酸カルシウム法、リ ポフエクシヨン法等を使用できる。  [0048] The method for introducing a recombinant vector into an animal cell is not particularly limited as long as it is a method capable of introducing DNA into an animal cell. For example, the electopore position method, the calcium phosphate method, the lipofection method and the like can be used.
[0049] 昆虫細胞を宿主とする場合には、 Spodoptera frugiperdaの卵巣細胞、 Trichoplusia niの卵巣細胞、カイコ卵巣由来の培養細胞等を宿主細胞として使用できる。 Spodopt era frugiperdaの卵巣細胞としては S19、 Sf21等、 Trichoplusia niの卵巣細胞としては Hi gh 5、 ΒΤΙ-ΤΝ-5Β1-4 (インビトロジェン社製)等、カイコ卵巣由来の培養細胞としては[0049] When an insect cell is used as a host, Spodoptera frugiperda ovary cells, Trichoplusia ni ovary cells, silkworm ovary-derived cultured cells, and the like can be used as host cells. Spodopt era frugiperda ovary cells such as S19, Sf21 etc., Trichoplusia ni ovary cells Hi gh 5, ΒΤΙ-ΤΝ-5Β1-4 (manufactured by Invitrogen), etc.
Bombyx mori N4等が挙げられる。 Bombyx mori N4 and so on.
[0050] 昆虫細胞への組換えベクターの導入方法は、昆虫細胞に DNAを導入し得る限り 特に限定されず、例えば、リン酸カルシウム法、リポフエクシヨン法、エレクト口ポレー シヨン法等を使用できる。 [0050] The method for introducing a recombinant vector into an insect cell is not particularly limited as long as DNA can be introduced into an insect cell. For example, a calcium phosphate method, a lipofusion method, an electopore position method, or the like can be used.
[0051] 〔形質転換体の培養〕 [0051] [Culture of transformant]
目的とするタンパク質をコードする DNAを組み込んだ組換えベクターを導入した形 質転換体を通常の培養方法に従って培養する。形質転換体の培養は、宿主細胞の 培養に用いられる通常の方法に従って行うことができる。  Transformants into which a recombinant vector incorporating a DNA encoding the target protein has been introduced are cultured according to a conventional culture method. The transformant can be cultured according to a conventional method used for culturing host cells.
[0052] 大腸菌や酵母等の微生物を宿主細胞として得られた形質転換体を培養する培地と しては、該微生物が資化し得る炭素源、窒素源、無機塩類等を含有し、形質転換体 の培養を効率的に行える培地であれば天然培地、合成培地の ヽずれを使用してもよ い。 [0052] As a medium for culturing a transformant obtained using a microorganism such as Escherichia coli or yeast as a host cell, the medium contains a carbon source, a nitrogen source, inorganic salts and the like that can be assimilated by the microorganism. As long as the medium can efficiently cultivate the culture medium, a combination of a natural medium and a synthetic medium may be used.
[0053] 炭素源としては、グルコース、フラクトース、スクロース、デンプン等の炭水化物、酢 酸、プロピオン酸等の有機酸、エタノール、プロパノール等のアルコール類を使用で きる。窒素源としては、アンモニア、塩化アンモ-ゥム、硫酸アンモ-ゥム、酢酸アン モ-ゥム、リン酸アンモ-ゥム等の無機酸又は有機酸のアンモ-ゥム塩、ペプトン、肉 エキス、酵母エキス、コーンスチープリカー、カゼイン加水分解物等を使用できる。無 機塩としては、リン酸第一カリウム、リン酸第二カリウム、リン酸マグネシウム、硫酸マグ ネシゥム、塩ィ匕ナトリウム、硫酸第一鉄、硫酸マンガン、硫酸銅、炭酸カルシウム等を 使用できる。 [0053] As the carbon source, carbohydrates such as glucose, fructose, sucrose, and starch, organic acids such as acetic acid and propionic acid, and alcohols such as ethanol and propanol can be used. Nitrogen sources include ammonia, ammonium chloride, ammonium sulfate, ammonium acetate, ammonium salts of organic acids such as ammonium phosphate, peptone, meat extract. Yeast extract, corn steep liquor, casein hydrolyzate and the like can be used. Nothing Examples of the machine salt include monopotassium phosphate, dipotassium phosphate, magnesium phosphate, magnesium sulfate, sodium chloride salt, ferrous sulfate, manganese sulfate, copper sulfate, and calcium carbonate.
[0054] 大腸菌や酵母等の微生物を宿主細胞として得られた形質転換体の培養は、振盪 培養又は通気攪拌培養等の好気的条件下で行う。培養温度は通常 25〜37°C、培 養時間は通常 16〜24時間であり、培養期間中は pHを 6. 0〜8. 0に保持する。 pH の調整は、無機酸、有機酸、アルカリ溶液、尿素、炭酸カルシウム、アンモニア等を 用いて行うことができる。また、培養の際、必要に応じてアンピシリン、テトラサイクリン 等の抗生物質を培地に添加してもよ ヽ。  [0054] The transformant obtained by using microorganisms such as Escherichia coli and yeast as host cells is cultured under aerobic conditions such as shaking culture or aeration and agitation culture. The culture temperature is usually 25 to 37 ° C, the culture time is usually 16 to 24 hours, and the pH is maintained at 6.0 to 8.0 during the culture period. The pH can be adjusted using an inorganic acid, organic acid, alkaline solution, urea, calcium carbonate, ammonia or the like. In addition, antibiotics such as ampicillin and tetracycline may be added to the medium as needed during the culture.
[0055] プロモーターとして誘導性のプロモーターを用いた発現ベクターで形質転換した微 生物を培養するときには、必要に応じてインデューサーを培地に添加してもよい。例 えば、 lacプロモーターを用いた発現ベクターで形質転換した微生物を培養するとき にはイソプロピル一 β—D—チォガラタトピラノシド等を、 trpプロモーターを用いた発 現ベクターで形質転換した微生物を培養するときにはインドールアクリル酸等を培地 に添カ卩してもよい。  [0055] When cultivating a microorganism transformed with an expression vector using an inducible promoter as a promoter, an inducer may be added to the medium as necessary. For example, when cultivating a microorganism transformed with an expression vector using the lac promoter, cultivate a microorganism transformed with an expression vector using trp promoter, such as isopropyl β-D-thiogalatatopyranoside. When doing so, indoleacrylic acid or the like may be added to the medium.
[0056] 動物細胞を宿主細胞として得られた形質転換体を培養する培地としては、一般に 使用されている RPMI1640培地、 Eagleの MEM培地、 DMEM培地、 Ham F12培地、 Ha m F12K培地又はこれら培地に牛胎児血清等を添加した培地等を使用できる。形質 転換体の培養は、通常 5%CO存在下、 37°Cで 1〜3日間行う。また、培養の際、必  [0056] As a medium for culturing a transformant obtained by using animal cells as host cells, RPMI1640 medium, Eagle's MEM medium, DMEM medium, Ham F12 medium, Ham F12K medium, or these mediums may be used. A medium supplemented with fetal calf serum or the like can be used. Transformants are usually cultured at 37 ° C for 1 to 3 days in the presence of 5% CO. Also, when culturing
2  2
要に応じてカナマイシン、ペニシリン、ストレプトマイシン等の抗生物質を培地に添カロ してちよい。  If necessary, antibiotics such as kanamycin, penicillin and streptomycin may be added to the medium.
[0057] 昆虫細胞を宿主細胞として得られた形質転換体を培養する培地としては、一般に 使用されている TNM- FH培地(ファーミンジェン社製)、 Sf- 900 II SFM培地(G¾co BR L社製)、 ExCell400、 ExCell405 (JRHバイオサイエンシーズ社製)等を使用できる。形 質転換体の培養は、通常 20〜28°Cで 2〜4日間行う。また、培養の際、必要に応じ てゲンタマイシン等の抗生物質を培地に添加してもよい。  [0057] As a medium for culturing transformants obtained using insect cells as host cells, commonly used TNM-FH medium (Pharmingen), Sf-900 II SFM medium (G¾co BRL) Manufactured), ExCell400, ExCell405 (manufactured by JRH Biosciences), etc. can be used. Transformants are usually cultured at 20-28 ° C for 2-4 days. In addition, an antibiotic such as gentamicin may be added to the medium as needed during the culture.
[0058] 目的とするタンパク質は、分泌タンパク質又は融合タンパク質として発現させること もできる。融合させるタンパク質としては、例えば、 13—ガラタトシダーゼ、プロテイン A、プロテイン Aの IgG結合領域、クロラムフエ-コール'ァセチルトランスフェラーゼ、 ポリ(Arg)、ポリ(Glu)、プロテイン G、マルトース結合タンパク質、ダルタチオン S-トラ ンスフェラーゼ、ポリヒスチジン鎖(His-tag)、 Sペプチド、 DNA結合タンパク質ドメイ ン、 Tac抗原、チォレドキシン、グリーン 'フルォレツセント'プロテイン(GFP)等が挙 げられる。 [0058] The target protein can also be expressed as a secreted protein or a fusion protein. Examples of proteins to be fused include 13-galatatosidase, protein A, IgG binding region of protein A, chloramphee-chol'acetylyltransferase, poly (Arg), poly (Glu), protein G, maltose binding protein, dartathione S-transferase, polyhistidine chain (His-tag), S peptides, DNA-binding protein domains, Tac antigens, thioredoxin, green 'fluorescent' protein (GFP), and the like.
[0059] 〔タンパク質の単離 ·精製〕  [0059] [Protein isolation and purification]
形質転換体の培養物より目的とするタンパク質を採取することにより、 目的とするタ ンパク質が得られる。ここで、「培養物」には、培養上清、培養細胞、培養菌体、細胞 又は菌体の破砕物の 、ずれもが含まれる。  By collecting the target protein from the transformant culture, the target protein can be obtained. Here, the “culture” includes deviations of culture supernatant, cultured cells, cultured cells, cells or disrupted cells.
目的とするタンパク質が形質転換体の細胞内に蓄積される場合には、培養物を遠 心分離することにより、培養物中の細胞を集め、該細胞を洗浄した後に細胞を破砕し て、 目的とするタンパク質を抽出する。 目的とするタンパク質が形質転換体の細胞外 に分泌される場合には、培養上清をそのまま使用するか、遠心分離等により培養上 清から細胞又は菌体を除去する。  When the target protein accumulates in the cells of the transformant, the cells in the culture are collected by centrifuging the culture, and the cells are washed and then disrupted. Extract the protein. When the target protein is secreted outside the transformant, use the culture supernatant as it is, or remove cells or cells from the culture supernatant by centrifugation or the like.
[0060] こうして得られるタンパク質 (a)、 (b)、 (c)又は(d)は、溶媒抽出法、硫安等による塩 析法脱塩法、有機溶媒による沈殿法、ジェチルアミノエチル (DEAE)—セファロース 、イオン交換クロマトグラフィー法、疎水性クロマトグラフィー法、ゲルろ過法、了フィニ ティークロマトグラフィー法等により精製できる。  [0060] The protein (a), (b), (c) or (d) thus obtained can be obtained by solvent extraction method, salting-out method using ammonium sulfate, desalting method, precipitation method using organic solvent, jetylaminoethyl (DEAE ) -Sepharose, ion exchange chromatography method, hydrophobic chromatography method, gel filtration method, fineness chromatography method and the like.
[0061] タンパク質(a)、 (b)、 (c)又は(d)は、そのアミノ酸配列に基づいて、 Fmoc法(フル ォレ-ルメチルォキシカルボ-ル法)、 tBoc法(t ブチルォキシカルボ-ル法)等の 化学合成法によっても製造できる。この際、市販のペプチド合成機を使用できる。  [0061] Protein (a), (b), (c) or (d) is based on the amino acid sequence based on the Fmoc method (fluoromethyloxycarbon method), tBoc method (tbutyl). It can also be produced by chemical synthesis methods such as the oxycarbon method. At this time, a commercially available peptide synthesizer can be used.
[0062] 本発明の抗体又はその断片は、タンパク質 (a)、 (b)、 (c)又は (d)に反応し得る抗 体又はその断片である。ここで、「抗体」には、モノクローナル抗体及びポリクローナル 抗体のいずれもが含まれ、「モノクローナル抗体及びポリクローナル抗体」には全て のクラスのモノクローナル抗体及びポリクローナル抗体が含まれる。また、「抗体」には 、ゥサギ、マウス等の免疫動物にタンパク質 (a)、(b)、(c)又は (d)を免疫して得られ る抗血清、ヒト抗体、遺伝子組換えによって得られるヒト型化抗体も含まれる。また、「 抗体の断片」には、 Fab断片、 F(ab)'断片、単鎖抗体 (scFv)等が含まれる。 [0063] 本発明の抗体又はその断片は、タンパク質 )、(b)、(c)又は (d)を免疫用抗原と して利用することより作製できる。免疫用抗原としては、例えば、 (0タンパク質 )、 (b )、(c)又は(d)を発現している細胞又は組織の破砕物又はその精製物、(ii)遺伝子 組換え技術を用いて、タンパク質 (a)、(b)、(c)又は (d)をコードする遺伝子を大腸 菌、昆虫細胞又は動物細胞等の宿主に導入して発現させた組換えタンパク質、(m) 化学合成したペプチド等を使用できる。 [0062] The antibody or fragment thereof of the present invention is an antibody or fragment thereof capable of reacting with the protein (a), (b), (c) or (d). Here, “antibodies” include both monoclonal antibodies and polyclonal antibodies, and “monoclonal antibodies and polyclonal antibodies” include all classes of monoclonal antibodies and polyclonal antibodies. In addition, “antibodies” are obtained by immunizing animals such as rabbits and mice with antisera obtained by immunizing protein (a), (b), (c) or (d), human antibodies, or genetic recombination. Also included are humanized antibodies. “Antibody fragments” include Fab fragments, F (ab) ′ fragments, single-chain antibodies (scFv) and the like. [0063] The antibody of the present invention or a fragment thereof can be prepared by using the protein), (b), (c) or (d) as an immunizing antigen. Examples of immunizing antigens include, for example, disrupted cells or tissues expressing (0 protein), (b), (c) or (d) or purified products thereof, and (ii) gene recombination techniques. , A recombinant protein expressed by introducing a gene encoding protein (a), (b), (c) or (d) into a host such as Escherichia coli, insect cells or animal cells, (m) chemically synthesized Peptides etc. can be used.
[0064] ポリクローナル抗体の作製にあたっては、免疫用抗原を用いて、ラット、マウス、モ ルモット、ゥサギ、ヒッジ、ゥマ、ゥシ等の哺乳動物を免疫する。免疫動物は、抗体を 容易に作製できることからゥサギを利用することが好ましい。免疫の際には、抗体産 生誘導する為に、フロイント完全アジュバント等の免疫助剤を用いてェマルジヨンィ匕し た後、複数回の免疫することが好ましい。免疫助剤としては、フロイント完全アジュバ ント (FCA)の他、フロイント不完全アジュバント (FIA)、水酸化アルミニウムゲル等を利 用できる。哺乳動物 1匹当たりの抗原の投与量は、哺乳動物の種類に応じて適宜設 定できるが、ゥサギの場合には通常 10〜: LOOO /z gである。投与部位は、例えば、静 脈内、皮内、皮下、腹腔内等である。免疫の間隔は、通常、数日から数週間間隔、好 ましくは 5日〜 3週間間隔で、合計 3〜8回、好ましくは 4〜6回免疫を行う。そして、最 終免疫日から 10〜14日後に、タンパク質 (a)、(b)、(c)又は (d)に対する抗体力価 を測定し、抗体力価が上昇した後に採血し、抗血清を得る。抗体力価の測定は、酵 素免疫測定法 (ELISA)、放射性免疫測定法 (RIA)等により行うことができる。  [0064] In the production of a polyclonal antibody, mammals such as rats, mice, guinea pigs, rabbits, hidges, horses, horseshoes, etc. are immunized using an immunizing antigen. It is preferable that rabbits use rabbits because immunized animals can easily produce antibodies. In immunization, in order to induce antibody production, it is preferable to immunize several times after emulsification using an immune assistant such as Freund's complete adjuvant. As an immunity assistant, Freund's complete adjuvant (FCA), Freund's incomplete adjuvant (FIA), aluminum hydroxide gel, and the like can be used. The dose of antigen per mammal can be set as appropriate according to the type of mammal, but in the case of rabbits it is usually 10 to: LOOO / zg. The administration site is, for example, intravenous, intradermal, subcutaneous, intraperitoneal or the like. Immunization is usually performed every few days to several weeks, preferably 5 days to 3 weeks, for a total of 3 to 8 times, preferably 4 to 6 times. Then, 10 to 14 days after the last immunization day, the antibody titer against the protein (a), (b), (c) or (d) is measured, blood is collected after the antibody titer is increased, and antiserum is collected. obtain. Antibody titer can be measured by enzyme immunoassay (ELISA), radioimmunoassay (RIA), or the like.
[0065] 抗血清力 抗体の精製が必要とされる場合は、硫酸アンモ-ゥムによる塩析、ゲル クロマトグラフィー、イオン交換クロマトグラフィー、ァフィ-ティークロマトグラフィー等 の公知の方法を適宜選択して又はこれらを組み合わせて利用できる。  [0065] Antiserum ability When purification of the antibody is required, a known method such as salting out with ammonium sulfate, gel chromatography, ion exchange chromatography, and affinity chromatography is appropriately selected. Or they can be used in combination.
[0066] モノクローナル抗体の作製にあたっては、ポリクローナル抗体の場合と同様に免疫 用抗原を用いて哺乳動物を免疫し、最終免疫日から 3〜4日後に抗体産生細胞を採 取する。抗体産生細胞としては、例えば、脾臓細胞、リンパ節細胞、胸腺細胞、末梢 血細胞等が挙げられるが、脾臓細胞が一般的に利用される。  [0066] For the production of a monoclonal antibody, a mammal is immunized with an immunizing antigen as in the case of a polyclonal antibody, and antibody-producing cells are collected 3 to 4 days after the final immunization. Examples of antibody-producing cells include spleen cells, lymph node cells, thymocytes, and peripheral blood cells, and spleen cells are generally used.
[0067] 次いで、ハイプリドーマを得るために、抗体産生細胞とミエローマ細胞との細胞融合 を行う。抗体産生細胞と融合させるミエローマ細胞としては、ヒト、マウス等の哺乳動 物由来の細胞であって一般に入手可能な株化細胞を利用できる。利用する細胞株と しては、薬剤選択性を有し、未融合の状態では選択培地 (例えば HAT培地)で生存で きず、抗体産生細胞と融合した状態でのみ生存できる性質を有するものが好まし 、。 ミエローマ細胞の具体例としては、 P3X63- Ag.8.Ul (P3Ul)、 P3/NSI/1- Ag4- 1、 Sp2/ 0-Agl4等のマウスミエローマ細胞株が挙げられる。 [0067] Next, in order to obtain a hyperidoma, cell fusion between the antibody-producing cells and the myeloma cells is performed. Myeloma cells to be fused with antibody-producing cells include human and mouse mammals A cell line derived from a product and generally available can be used. Preferred cell lines are those that have drug selectivity and cannot survive in a selective medium (for example, HAT medium) in an unfused state, but can survive only in a state fused with antibody-producing cells. Better ,. Specific examples of myeloma cells include mouse myeloma cell lines such as P3X63-Ag.8.Ul (P3Ul), P3 / NSI / 1-Ag4-1, Sp2 / 0-Agl4.
[0068] 細胞融合は、血清を含まない DMEM、 RPMI-1640培地等の動物細胞培養用培地 中に、抗体産生細胞とミエローマ細胞とを所定の割合 (例えば 3 : 1〜1. 5 : 1)で混合 し、ポリエチレングリコール等の細胞融合促進剤の存在下で、又は電気パルス処理( 例えばエレクト口ポレーシヨン)により融合反応を行う。  [0068] In cell fusion, antibody-producing cells and myeloma cells are mixed in a predetermined ratio (for example, 3: 1 to 1.5: 1) in animal cell culture media such as serum-free DMEM, RPMI-1640 medium, etc. And the fusion reaction is carried out in the presence of a cell fusion promoter such as polyethylene glycol, or by electric pulse treatment (eg, electoral positioning).
[0069] 細胞融合処理後、選択培地を用いて培養し、 目的とするハイプリドーマを選別する 。次いで、増殖したハイプリドーマの培養上清中に、 目的とする抗体が存在するか否 かをスクリーニングする。ハイプリドーマのスクリーニングは、通常の方法に従えばよく 、特に限定されるものではない。例えば、ノ、イブリドーマとして生育したゥエルに含ま れる培養上清の一部を採集し、酵素免疫測定法(ELISA)、放射性免疫測定法 (RIA) 等によってスクリーニングできる。  [0069] After the cell fusion treatment, the cells are cultured using a selective medium, and the desired hyperidoma is selected. Subsequently, the culture supernatant of the grown hyperidoma is screened for the presence of the antibody of interest. Hypridoma screening is not particularly limited as long as it is in accordance with a normal method. For example, a part of the culture supernatant contained in the wells grown as robin and hybridoma can be collected and screened by enzyme immunoassay (ELISA), radioimmunoassay (RIA) and the like.
[0070] ノ、イブリドーマのクローニングは、例えば、限界希釈法、軟寒天法、フイブリンゲル 法、蛍光励起セルソーター法等により行うことができ、最終的にモノクローナル抗体を 産生するハイプリドーマを取得する。  [0070] Cloning of the hybridoma can be performed, for example, by limiting dilution, soft agar, fibrin gel, fluorescence excitation cell sorter, or the like, and finally a hyperidoma that produces a monoclonal antibody is obtained.
[0071] 取得したノヽイブリドーマ力 モノクローナル抗体を採取する方法としては、通常の細 胞培養法等を利用することができる。細胞培養法においては、例えばハイプリドーマ を 10〜20%牛胎児血清含有 RPMI-1640培地、 MEM培地等の動物細胞培養培地中 、通常の培養条件 (例えば 37°C, 5%CO濃度)で 3〜14日間培養することにより、そ  [0071] As a method for collecting the acquired monoclonal antibody monoclonal antibody, a normal cell culture method or the like can be used. In the cell culture method, for example, Hypridoma is used in animal cell culture media such as RPMI-1640 medium containing 10 to 20% fetal calf serum and MEM medium under normal culture conditions (for example, 37 ° C, 5% CO concentration). By culturing for ~ 14 days,
2  2
の培養上清力もモノクローナル抗体を取得することができる。また、ハイプリドーマを マウス等の腹腔内に移植し、 10〜20日後に腹水を採取し、当該腹水からモノクロ一 ナル抗体を取得することもできる。  Monoclonal antibodies can also be obtained from the culture supernatant strength. It is also possible to transplant a hyperidoma into the abdominal cavity of a mouse or the like, collect ascites after 10 to 20 days, and obtain a monoclonal antibody from the ascites.
[0072] モノクローナル抗体の精製が必要とされる場合は、硫酸アンモ-ゥムによる塩析、ゲ ルクロマトグラフィー、イオン交換クロマトグラフィー、ァフィユティークロマトグラフィー 等の公知の方法を適宜選択して又はこれらを組み合わせて利用できる。 [0073] モノクローナル抗体をヒトに投与する目的 (抗体治療)で使用する場合には、免疫原 性を低下させるため、ヒト抗体又はヒト型化抗体を使用することが好ましい。ヒト抗体又 はヒト型化抗体は、例えば、免疫動物としてヒト抗体遺伝子を導入したマウス等を用い てノ、イブリドーマを作製することにより、また、ファージ上に抗体を提示したライブラリ 一を用いることにより取得できる。具体的には、ヒト抗体遺伝子のレパートリーを有す るトランスジエニック動物に、抗原となるタンパク質、タンパク質発現細胞又はその溶 解物を免疫して抗体産生細胞を取得し、これをミエローマ細胞と融合させたハイプリ ドーマを用いて目的のタンパク質に対するヒト抗体を取得できる(国際公開番号 W09 2-03918、 W093-2227, WO94-02602, W096-33735及び WO96-34096参照)。また 、複数の異なるヒト scFvをファージ上に提示させた抗体ライブラリーから、抗原となるタ ンパク質、タンパク質発現細胞又はその溶解物に結合する抗体を提示しているファ ージを選り分けることで、 目的のタンパク質に結合する scFvを選択できる(Griffiths.等 , EMBO J. 12, 725-734, 1993)。 [0072] When purification of the monoclonal antibody is required, a known method such as salting out with ammonium sulfate, gel chromatography, ion exchange chromatography, affinity chromatography, or the like is appropriately selected or These can be used in combination. [0073] When the monoclonal antibody is used for human administration (antibody therapy), it is preferable to use a human antibody or a humanized antibody in order to reduce immunogenicity. Human antibodies or humanized antibodies can be obtained, for example, by preparing mice or hybridomas using a mouse into which a human antibody gene has been introduced as an immunized animal, or by using a library that displays antibodies on phage. You can get it. Specifically, a transgenic animal having a repertoire of human antibody genes is immunized with an antigen protein, a protein-expressing cell, or a solution thereof to obtain antibody-producing cells, which are fused with myeloma cells. A human antibody against the protein of interest can be obtained using the thus-prepared hybridoma (see International Publication Nos. W09 2-03918, W093-2227, WO94-02602, W096-33735 and WO96-34096). In addition, by selecting a phage displaying an antibody that binds to a protein serving as an antigen, a protein-expressing cell, or a lysate thereof, from an antibody library in which a plurality of different human scFvs are displayed on a phage. The scFv that binds to the protein of interest can be selected (Griffiths. Et al., EMBO J. 12, 725-734, 1993).
[0074] 本発明の第 1のスクリーニング方法は、試験物質が、タンパク質 (a)又は (c)同士の 親和性相互作用を抑制又は促進できる否かを判別し、当該親和性相互作用を抑制 又は促進できる試験物質を個体発生に影響を与える物質としてスクリーニングするェ 程を含む。  [0074] In the first screening method of the present invention, the test substance determines whether or not the affinity interaction between the proteins (a) or (c) can be suppressed or promoted, and the affinity interaction is suppressed or Includes screening of test substances that can be accelerated as substances that affect ontogeny.
[0075] タンパク質 (a)又は (c)同士の親和性相互作用は、個体発生、特に胎生期における 個体発生に関与していると考えられるので、タンパク質 (a)又は(c)同士の親和性相 互作用を抑制又は促進できる物質を選択することにより、個体発生、特に胎生期に おける個体発生に影響を与える可能性がある物質をスクリーニングできる。  [0075] Affinity interaction between proteins (a) or (c) is considered to be involved in ontogeny, particularly ontogeny in the embryonic period, so affinity between proteins (a) or (c) By selecting substances that can suppress or promote interactions, substances that may affect ontogeny, particularly ontogeny during the embryonic period, can be screened.
[0076] 試験物質が、タンパク質 (a)又は (c)同士の親和性相互作用を抑制又は促進でき る否かは、例えば、次のようにして判別できるが、判別方法はこれに限定されるもので はない。  [0076] Whether or not the test substance can suppress or promote the affinity interaction between the proteins (a) or (c) can be determined, for example, as follows, but the determination method is limited to this. It is not a thing.
[0077] タンパク質 (a)又は (c)と別のタンパク質 (a)又は(c)とを試験物質の存在下又は不 存在下で接触させた後、タンパク質 (a)又は (c)同士の結合量を測定し、試験物質の 存在下における結合量と試験物質の不存在下における結合量とを比較する。その結 果、試験物質の存在下における結合量が試験物質の不存在下における結合量より も少なければ、試験物質が、タンパク質 (a)又は (c)同士の結合を抑制できると判別 できる。一方、試験物質の存在下における結合量が試験物質の不存在下における 結合量よりも多ければ、試験物質が、タンパク質 (a)又は (c)同士の結合を促進でき ると判別できる。 [0077] After contacting the protein (a) or (c) with another protein (a) or (c) in the presence or absence of the test substance, the protein (a) or (c) is bound to each other. Measure the amount and compare the amount of binding in the presence of the test substance with the amount of binding in the absence of the test substance. As a result, the amount of binding in the presence of the test substance is greater than the amount of binding in the absence of the test substance. If it is less, it can be determined that the test substance can suppress the binding between the proteins (a) and (c). On the other hand, if the amount of binding in the presence of the test substance is greater than the amount of binding in the absence of the test substance, it can be determined that the test substance can promote the binding between the proteins (a) or (c).
[0078] タンパク質 (a)又は (c)同士の結合を抑制又は促進できる物質は、一方のタンパク 質 (a)又は (c)に作用する物質であってもよ!/、し、両方のタンパク質 (a)又は (c)に作 用する物質であってもよい。また、タンパク質 (a)又は (c)同士の結合を抑制できる物 質は、解離状態にあるタンパク質 (a)又は (c)同士の結合を抑制できる物質であって もよいし、結合状態にあるタンパク質 (a)又は (c)同士を解離させることができる物質 であってもよい。  [0078] The substance capable of suppressing or promoting the binding between proteins (a) or (c) may be a substance acting on one protein (a) or (c)! /, And both proteins It may be a substance that acts on (a) or (c). Further, the substance capable of suppressing the binding between the proteins (a) or (c) may be a substance capable of suppressing the binding between the proteins (a) or (c) in a dissociated state or in a bound state. It may be a substance capable of dissociating proteins (a) or (c).
[0079] タンパク質 (a)又は(c)と別のタンパク質 (a)又は(c)とは、 in vitroで接触させてもよ いし、 in vivoで接触させてもよい。  [0079] Protein (a) or (c) and another protein (a) or (c) may be contacted in vitro or in vivo.
[0080] in vitroで接触させる場合、タンパク質 (a)又は (c)として、(i)目的とするタンパク質 を発現している細胞又は組織力 抽出した内因性タンパク質、(ii)目的とするタンパ ク質を発現できる組換えベクターを宿主細胞に導入して形質転換体を作製し、当該 形質転換体の培養物カゝら抽出した組換えタンパク質、( )化学合成したペプチド等 を使用できる。  [0080] When contacting in vitro, as protein (a) or (c), (i) a cell or tissue that expresses the target protein or extracted endogenous protein, (ii) the target protein A recombinant vector capable of expressing the quality can be introduced into a host cell to produce a transformant, and a recombinant protein extracted from the culture of the transformant, () a chemically synthesized peptide, or the like can be used.
[0081] in vivoで接触させる場合、タンパク質 (a)又は(c)として、(i)細胞内に存在する内 因性タンパク質、(ii)目的とするタンパク質を発現できる組換えベクターを宿主細胞 に導入することにより作製された形質転換体内に存在する組換えタンパク質等を使 用できる。  [0081] When contacting in vivo, as a protein (a) or (c), (i) an endogenous protein present in the cell, (ii) a recombinant vector capable of expressing the target protein is introduced into the host cell. A recombinant protein or the like present in the transformant produced by the introduction can be used.
[0082] タンパク質 (a)又は (c)同士を接触させる際、タンパク質 (a)又は(c)として、野生型 [0082] When proteins (a) or (c) are brought into contact with each other, the protein (a) or (c)
、変異型、野生型又は変異型の誘導体、野生型又は変異型と他のタンパク質又はべ プチドとの融合タンパク質等を使用できる。 , Mutants, wild-type or mutant derivatives, fusion proteins of wild-type or mutants with other proteins or peptides, and the like can be used.
[0083] タンパク質 (a)又は (c)同士を接触させる際、タンパク質 (a)又は (c)同士の結合に 影響を与える条件を調節し、タンパク質 (a)又は (c)同士の結合が試験物質の有無 に依存するようにする。 [0083] When proteins (a) or (c) are brought into contact with each other, conditions affecting the binding between proteins (a) or (c) are adjusted, and the binding between proteins (a) or (c) is tested. Depend on the presence or absence of substances.
[0084] タンパク質 (a)又は (c)同士の結合に影響を与える条件としては、例えば、温度、溶 媒の種類、タンパク質 (a)又は (c)の濃度、攪拌強度、共存時間、重力、磁場等が挙 げられる。 [0084] Examples of conditions that affect the binding between proteins (a) and (c) include temperature, Examples include medium type, protein (a) or (c) concentration, stirring intensity, coexistence time, gravity, and magnetic field.
[0085] タンパク質 (a)又は (c)同士を接触させる際の温度は、例えば、 2〜65°Cに設定で きる。タンパク質 (a)又は (c)同士を接触させる際の溶媒としては、例えば、 PBS、 TB S、 Hepesバッファ一等を使用できる。タンパク質 (a)又は(c)の濃度は、例えば lng Zml〜 1 OOmgZmlに設定できる。  [0085] The temperature at which the proteins (a) or (c) are brought into contact with each other can be set to 2 to 65 ° C, for example. As the solvent for bringing the proteins (a) or (c) into contact with each other, for example, PBS, TBS, Hepes buffer, etc. can be used. The concentration of the protein (a) or (c) can be set to, for example, lng Zml to 1 OOmgZml.
[0086] タンパク質 (a)又は (c)同士の結合量は、例えば、タンパク質 (a)又は(c)同士の結 合体量、タンパク質 (a)又は (c)同士の結合によって生じるシグナル量等を指標とし て測定できる。  [0086] The amount of binding between proteins (a) or (c) is, for example, the amount of binding between proteins (a) or (c), the amount of signal produced by the binding between proteins (a) or (c), etc. It can be measured as an index.
[0087] タンパク質 (a)又は (c)同士の結合体量は、例えば、タンパク質 (a)又は(c)に標識 物質を付加しておき、タンパク質 (a)又は (c)同士を接触させた後、タンパク質 (a)又 は (c)同士の結合体を分離し、当該結合体が有する標識物質量を指標として測定で きる。具体的には、 GST pull down法等の公知の方法を利用して測定できる。  [0087] The amount of the conjugate between the proteins (a) or (c) is determined by, for example, adding a labeling substance to the protein (a) or (c) and bringing the proteins (a) or (c) into contact with each other. Thereafter, the conjugate of protein (a) or (c) can be separated, and the amount of labeling substance possessed by the conjugate can be measured as an index. Specifically, it can be measured using a known method such as the GST pull down method.
[0088] また、タンパク質 (a)又は(c)同士の結合体量は、公知のタンパク質解析技術、例え ば、タンパク質 (a)又は (c)同士の結合体に反応できる抗体又はその断片を使用した ウェスタンブロッテイング法、免疫沈降法、 ELISA、糸且織免疫染色法等によって測定 できる。なお、「抗体」には、モノクローナル抗体及びポリクローナル抗体のいずれも が含まれ、「モノクローナル抗体」及び「ポリクローナル抗体」には全てのクラスのモノ クローナル抗体及びポリクローナル抗体が含まれる。また、「抗体の断片」には、 Fab 断片、 F(ab)'断片、単鎖抗体 (scFv)等が含まれる。  [0088] The amount of the conjugate between the proteins (a) and (c) is determined using a known protein analysis technique, for example, an antibody or fragment thereof that can react with the conjugate between the proteins (a) or (c). Western blotting method, immunoprecipitation method, ELISA, yarn and tissue immunostaining method, etc. The “antibody” includes both monoclonal antibodies and polyclonal antibodies, and “monoclonal antibodies” and “polyclonal antibodies” include all classes of monoclonal antibodies and polyclonal antibodies. “Antibody fragments” include Fab fragments, F (ab) ′ fragments, single-chain antibodies (scFv) and the like.
2  2
[0089] タンパク質 (a)又は (c)同士の結合によって生じるシグナルの種類は特に限定され るものではないが、例えば、レポーター遺伝子の発現、蛍光エネルギー移動(FRET )、表面プラズモン共鳴 (SPR)又は水晶振動子の振動数移動による局所密度変化 の検出等が挙げられる。  [0089] The type of signal generated by the binding between proteins (a) or (c) is not particularly limited. For example, reporter gene expression, fluorescence energy transfer (FRET), surface plasmon resonance (SPR) or For example, detection of changes in local density due to frequency shift of the crystal unit.
[0090] レポーター遺伝子としては、例えば、 βガラクトシダーゼ遺伝子、クロラムフエニコー ルァセチルトランスフェラーゼ遺伝子、ルシフェラーゼ遺伝子、アンピシリン耐性遺伝 子、テトラサイクリン耐性遺伝子、カナマイシン耐性遺伝子等が挙げられ、レポーター 活性としては、例えば、 j8ガラクトシダーゼ活性、クロラムフエ-コールァセチルトラン スフエラーゼ活性、ルシフェラーゼ活性、アンピシリン耐性、テトラサイクリン耐性、力 ナマイシン耐性等が挙げられる。 [0090] Examples of the reporter gene include β-galactosidase gene, chloramphenicol acetyltransferase gene, luciferase gene, ampicillin resistance gene, tetracycline resistance gene, kanamycin resistance gene and the like. Reporter activity includes, for example, j8 galactosidase activity, Chloramhue-Coleacetillan Examples include sulferase activity, luciferase activity, ampicillin resistance, tetracycline resistance, strength namicin resistance, and the like.
[0091] 本発明の第 2のスクリーニング方法は、試験物質が、タンパク質 (a)又は (d)と Bax i nhibitor— 1との親和性相互作用を抑制又は促進できる否かを判別し、当該親和性 相互作用を抑制又は促進できる試験物質を個体発生に影響を与える物質としてスク リー-ングする工程を含む。 [0091] The second screening method of the present invention determines whether or not the test substance can suppress or promote the affinity interaction between the protein (a) or (d) and Baxinhibitor-1, and Screening a test substance capable of suppressing or promoting sex interaction as a substance affecting ontogenesis.
[0092] タンパク質 (a)又は(d)と Bax inhibitor— 1との親和性相互作用は、個体発生、特 に胎生期における個体発生に関与して 、ると考えられるので、タンパク質 (a)又は (d )と Bax inhibitor— 1との親和性相互作用を抑制又は促進できる物質を選択するこ とにより、個体発生、特に胎生期における個体発生に影響を与える可能性がある物 質をスクリーニングできる。  [0092] The affinity interaction between the protein (a) or (d) and Bax inhibitor-1 is considered to be involved in ontogeny, particularly ontogeny in the embryonic period. By selecting a substance that can suppress or promote the affinity interaction between (d) and Bax inhibitor-1, it is possible to screen for substances that may affect ontogeny, particularly ontogenesis during the embryonic period.
[0093] 試験物質が、タンパク質 (a)又は(d)と Bax inhibitor— 1との親和性相互作用を抑 制又は促進できる否かは、例えば、次のようにして判別できるが、判別方法はこれに 限定されるものではない。  [0093] Whether or not the test substance can suppress or promote the affinity interaction between the protein (a) or (d) and Bax inhibitor-1 can be determined, for example, as follows. It is not limited to this.
[0094] タンパク質(a)又は(d)と Bax inhibitor— 1とを試験物質の存在下又は不存在下 で接触させた後、タンパク質 (a)又は(d)と Bax inhibitor— 1との結合量を測定し、 試験物質の存在下における結合量と試験物質の不存在下における結合量とを比較 する。その結果、試験物質の存在下における結合量が試験物質の不存在下におけ る結合量よりも少なければ、試験物質が、タンパク質 (a)又は(d)と Bax inhibitor - 1との親和性相互作用を抑制できると判別できる。一方、試験物質の存在下における 結合量が試験物質の不存在下における結合量よりも多ければ、試験物質が、タンパ ク質 (a)又は(d)と Bax inhibitor— 1との親和性相互作用を促進できると判別できる  [0094] The amount of protein (a) or (d) and Bax inhibitor-1 bound after contacting protein (a) or (d) with Bax inhibitor-1 in the presence or absence of the test substance The amount of binding in the presence of the test substance is compared with the amount of binding in the absence of the test substance. As a result, if the amount of binding in the presence of the test substance is less than the amount of binding in the absence of the test substance, the test substance will interact with the protein (a) or (d) and Bax inhibitor-1. It can be determined that the action can be suppressed. On the other hand, if the amount of binding in the presence of the test substance is greater than the amount of binding in the absence of the test substance, the test substance has an affinity interaction between the protein (a) or (d) and Bax inhibitor-1. Can be determined to promote
[0095] タンパク質 (a)又は(d)と Bax inhibitor— 1との親和性相互作用を抑制又は促進 できる物質は、タンパク質(a)又は(d)と Bax inhibitor— 1のうちの一方に作用する 物質であってもよいし、両方に作用する物質であってもよい。また、タンパク質 (a)又 は(d)と Bax inhibitor— 1との親和性相互作用を抑制できる物質は、解離状態にあ るタンパク質 (a)又は(d)と Bax inhibitor— 1との結合を抑制できる物質であってもよ いし、結合状態にあるタンパク質 (a)又は (d)と Bax inhibitor— 1とを解離させること ができる物質であってもよ!/、。 [0095] A substance capable of suppressing or promoting the affinity interaction between protein (a) or (d) and Bax inhibitor-1 acts on one of protein (a) or (d) and Bax inhibitor-1. It may be a substance or a substance that acts on both. In addition, a substance capable of inhibiting the affinity interaction between protein (a) or (d) and Bax inhibitor-1 binds to protein (a) or (d) in the dissociated state and Bax inhibitor-1. Even a substance that can be suppressed Or it may be a substance that can dissociate Bax inhibitor-1 from protein (a) or (d) in a bound state! /.
[0096] タンパク質(a)又は(d)と Bax inhibitor— 1とは、 in vitroで接触させてもよ!、し、 in vivoで接触させてもよい。 [0096] The protein (a) or (d) and Bax inhibitor-1 may be contacted in vitro! Or in vivo.
[0097] in vitroで接触させる場合、タンパク質 (a)又は (d)として、(i)目的とするタンパク質 を発現している細胞又は組織力 抽出した内因性タンパク質、(ii)目的とするタンパ ク質を発現できる組換えベクターを宿主細胞に導入して形質転換体を作製し、当該 形質転換体の培養物カゝら抽出した組換えタンパク質、( )化学合成したペプチド等 を使用できる。 Bax inhibitor— 1についても同様である。  [0097] When contacting in vitro, as protein (a) or (d), (i) a cell or tissue expressing the target protein, extracted endogenous protein, (ii) target protein A recombinant vector capable of expressing the quality can be introduced into a host cell to produce a transformant, and a recombinant protein extracted from the culture of the transformant, () a chemically synthesized peptide, or the like can be used. The same applies to Bax inhibitor-1.
[0098] in vivoで接触させる場合、タンパク質 (a)又は(d)として、(i)細胞内に存在する内 因性タンパク質、(ii)目的とするタンパク質を発現できる組換えベクターを宿主細胞 に導入することにより作製された形質転換体内に存在する組換えタンパク質等を使 用できる。 Bax inhibitor— 1についても同様である。 [0098] When contacted in vivo, as a protein (a) or (d), (i) an endogenous protein present in the cell, (ii) a recombinant vector capable of expressing the target protein is introduced into the host cell. A recombinant protein or the like present in the transformant produced by the introduction can be used. The same applies to Bax inhibitor-1.
[0099] タンパク質 (a)又は(d)と Bax inhibitor— 1とを接触させる際、タンパク質 (a)又は( d)として、野生型、変異型、野生型又は変異型の誘導体、野生型又は変異型と他の タンパク質又はペプチドとの融合タンパク質等を使用できる。 Bax inhibitor— 1につ いても同様である。 [0099] When the protein (a) or (d) is contacted with Bax inhibitor-1, the protein (a) or (d) is a wild type, mutant type, wild type or mutant type derivative, wild type or mutation. A fusion protein of a mold with another protein or peptide can be used. The same applies to Bax inhibitor-1.
[0100] タンパク質 (a)又は (d)と Bax inhibitor— 1とを接触させる際、両者の結合に影響 を与える条件を調節し、両者の結合が試験物質の有無に依存するようにする。両者 の結合に影響を与える条件としては、例えば、温度、溶媒の種類、タンパク質 (a)又 は(d)の濃度、 Bax inhibitor— 1の濃度、攪拌強度、共存時間、重力、磁場等が挙 げられる。  [0100] When contacting protein (a) or (d) with Bax inhibitor-1, adjust the conditions that affect the binding of the two so that the binding of both depends on the presence or absence of the test substance. Conditions that affect the binding of the two include, for example, temperature, solvent type, protein (a) or (d) concentration, Bax inhibitor-1 concentration, stirring intensity, coexistence time, gravity, magnetic field, and the like. I can get lost.
[0101] 温度は、例えば、 2〜65°Cに設定できる。溶媒としては、例えば、 PBS、 TBS、 Hep esバッファ一等を使用できる。タンパク質 (a)又は (d)の濃度は、例えば、 lngZml〜 lOOmgZmlに設定できる。 Bax inhibitor— 1の濃度は、例えば、 lngZml〜100 mgZmlに設定できる。  [0101] The temperature can be set to 2 to 65 ° C, for example. As the solvent, for example, PBS, TBS, Hepes buffer, etc. can be used. The concentration of the protein (a) or (d) can be set to, for example, lngZml to lOOmgZml. The concentration of Bax inhibitor-1 can be set to, for example, lngZml to 100 mgZml.
[0102] タンパク質(a)又は(d)と Bax inhibitor— 1との結合量は、例えば、タンパク質(a) 又は(c)同士の結合量と同様に、タンパク質 (a)又は(d)と Bax inhibitor— 1との結 合体量、タンパク質(a)又は(d)と Bax inhibitor— 1との結合によって生じるシグナ ル量等を指標として測定できる。 [0102] The amount of binding between protein (a) or (d) and Bax inhibitor-1 is, for example, the amount of binding between protein (a) or (d) and Bax inhibitor-1 as in the amount of binding between proteins (a) or (c). inhibitor — binding to 1 The combined amount, the amount of signal produced by the binding of protein (a) or (d) and Bax inhibitor-1, etc. can be measured as indicators.
実施例  Example
[0103] 〔実施例 1〕ヒト遺伝子 1及びマウス遺伝子 1の単離及び同定  [Example 1] Isolation and identification of human gene 1 and mouse gene 1
ポリメラーゼ連鎖反応 (PCR)によりヒト肺由来 cDNAの中力もヒト遺伝子 1を単離し た。 PCRは、変性工程、プライマーのアニーリング工程及び DNAポリメラーゼによる 伸長工程カゝらなる DNA増幅サイクルを繰り返して行う反応であり、例えば、 Saiki等, S cience,第 230卷,第 1350頁(1985年)、 Williams等, Nucleic Acid Research,第 18卷, 第 22号,第 6531頁〜第 6535頁(1991年)等に記載されている常法に従って行った。  Human gene 1 was isolated from human lung cDNA by polymerase chain reaction (PCR). PCR is a reaction in which a DNA amplification cycle consisting of a denaturation step, a primer annealing step, and an extension step using DNA polymerase is repeated. For example, Saiki et al., Science, 230, 1350 (1985) , Williams et al., Nucleic Acid Research, Vol. 18, No. 22, pages 6531-6535 (1991), etc.
[0104] 具体的には、 5 '— aagcagttccggttcggctccgagcagctgccg— 3 'を 5 'プライマーとして用 ヽ、 5 '— ggcatctaagacacctagggggaacgc— 3 'を 3 'プライマーとして用 ヽ、耐熱'性 DN Aポリメラ ーゼ(Expand Long Template PCR System, Roche社製) 5ユニット、 200 μ Μ dNTP ( dATP, dTTP, dCTP, dGTP)、ヒト肺組織由来 cDNA 0. 5ng、及び 1. 75mM 塩化マグネシウムを含有する増幅用バッファ一中で、 94°Cで 10分間処理の後、 94 。Cで 30秒、 62。Cで 45秒、 68。Cで 5分の処理を 35サイクル繰り返し、さらに 68。C10 分の処理を行った。  [0104] Specifically, 5 '— aagcagttccggttcggctccgagcagctgccg— 3' is used as a 5 'primer, 5' — ggcatctaagacacctagggggaacgc— 3 'is used as a 3' primer, and heat-resistant DN A polymerase (Expand Long Template PCR System, manufactured by Roche) 5 units, 200 μΜ dNTP (dATP, dTTP, dCTP, dGTP), human lung tissue-derived cDNA 0.5 ng, and 1.75 mM magnesium chloride 94 after treatment for 10 minutes at ° C. C for 30 seconds, 62. C for 45 seconds, 68. Repeat 5 minutes with C for 35 cycles and 68 more. Processing for C10 minutes was performed.
[0105] プライマーは次のように設計した。ショウジヨウバエにおいて、発生分化に関わるレ セプター(エタダイソンレセプター)と相互作用するタンパク質(GH24627p)をコード する DNA配列に基づいて、その相同 cDNAをヒト ESTから検索し、この cDNA配列 に基づいて、ヒト精巣由来 cDNAを铸型として 5'— RACEを行い、得られた配列に基 づいて 5'プライマーを設計した。 3'プライマーは、ヒトゲノム配列から想定して設計し た。  [0105] Primers were designed as follows. In Drosophila, a homologous cDNA was searched from human EST based on the DNA sequence encoding a protein (GH24627p) that interacts with a receptor involved in developmental differentiation (etadyson receptor). Based on this cDNA sequence, 5'-RACE was performed using human testis-derived cDNA as a saddle, and a 5 'primer was designed based on the sequence obtained. The 3 'primer was designed assuming the human genome sequence.
[0106] 反応終了後、反応液を、 1%ァガロースゲル (TBEバッファー)を用いた電気泳動に 供した後、ゲルをェチジゥムブロマイド染色し、トランスイルミネーターにより観察する ことにより、増幅された DNA断片を検出した。さらにこの DNA断片を、 QUIAquick G el Extraction Kit (QUIAGEN社製)を用いてァガロースゲルから回収し、 pGEMTE 等のクロー-ング用ベクタープラスミドのマルチクロー-ングサイトに挿入した後、大 腸菌を宿主として増幅し、配列を決定した。クロー-ング用ベクターのクローニンダサ イトへの挿入は、 TAクローユングにより行った。すなわち、 EcoRV消化により平滑末 端ィ匕したベクターの 3,末端に T (チミジン)を付加し、 3,末端に A (アデニン)が付加さ れた PCR産物をライゲートした。これを電気穿孔法により、大腸菌内に遺伝子導入し 、ポジティブクローンを選抜した後、 LB液体培地中、 37°Cで 16〜20時間攪拌培養 した。培養後の大腸菌を、遠心により回収し、 QIAGENミニプレップキット (キアゲン 社製)を用いてプラスミドの精製を行った。挿入配列の決定は、 Dye Terminator法に より、蛍光シークェンサ一を用いて行った。 [0106] After completion of the reaction, the reaction solution was subjected to electrophoresis using 1% agarose gel (TBE buffer), and then the gel was stained with ethidium bromide and amplified by observing with a transilluminator. DNA fragments were detected. Furthermore, this DNA fragment was recovered from an agarose gel using a QUIAquick Gel Extraction Kit (manufactured by QUIAGEN), inserted into a multicloning site of a cloning vector plasmid such as pGEMTE, and then E. coli was used as a host. Amplified and sequenced. Cloning vector clone The insertion into the site was performed by TA clawing. That is, the PCR product in which T (thymidine) was added to the 3, end of the vector that had been blunt-ended by EcoRV digestion and A (adenine) was added to the 3, end was ligated. This was introduced into Escherichia coli by electroporation, and positive clones were selected, followed by agitation culture at 37 ° C. for 16 to 20 hours in LB liquid medium. The cultured Escherichia coli was recovered by centrifugation, and the plasmid was purified using a QIAGEN miniprep kit (manufactured by Qiagen). The insertion sequence was determined using a fluorescent sequencer by the dye terminator method.
さらにヒト遺伝子 1を基にマウス cDNAからマウス遺伝子 1を単離した。ヒト遺伝子 1 の部分 cDNAと相同性を示すマウス cDNAを公開データベース力も探索し、この配 歹 IJを に 5し RACEプライマー (5し cttcggtcatggagaaggcccacgggatcct— 3,)を設計し、マ ウス精子由来 cDNAを铸型として 5'-RACEを行い、得られた配列より 5'プライマー( 5— ccaaaggggccggagcgatgcccgctggtagccg— 3 を設十した。 oプフイマ一及び 3'プフィ マー (5'— ctcattacagagagagagtcttcatcc— 3,)各 15pmole、耐熱'性 DN Aポリメラーゼ (Ex pand Long Template PCR System, Roche社製) 5ユニット、 200 μ Μ dNTP (dATP, dTTP, dCTP, dGTP)、マウス精子由来 cDNA 0. 5ng及び 1. 75mM塩化マグ ネシゥムを含有する増幅用バッファ一中、 94°Cで 10分間処理の後、 94°Cで 30秒、 6 2°Cで 45秒、 68°Cで 5分の処理を 35サイクル繰り返し、さらに 68°C10分の処理を行 つた。反応終了後、反応液を、 1%ァガロースゲル (TBEバッファー)を用いた電気泳 動に供した後、ゲルをェチジゥムブロマイド染色し、トランスイルミネーターにより観察 することにより、増幅された DNA断片を検出した。さらにこの DNA断片を、 QUIAquic k Gel Extraction Kit (QIAGEN社製)を用いてァガロースゲルから回収し、 pGEMTE 等のクロー-ング用ベクタープラスミドのマルチクロー-ングサイトに挿入した後、大 腸菌を宿主として増幅し、配列を決定した。クロー-ング用ベクターのクローニンダサ イトへの挿入は、 TAクローユングにより行った。すなわち、 EcoRV消化により、平滑 末端ィ匕したベクターの 3,末端に T (チミジン)を付加し、 3 '末端に A (アデニン)が付 カロされた PCR産物をライゲートした。これを電気穿孔法により、大腸菌内に遺伝子導 入し、 LB液体培地中で、 37°C下で 16〜20時間攪拌培養した。培養後の大腸菌を、 遠心により回収し、 QIAGENミニプレップキット (キアゲン社製)を用いてプラスミドの 精製を行った。挿入配列の決定は、 Dye Terminator法により、蛍光シークェンサ一を 用いて行った。 Furthermore, mouse gene 1 was isolated from mouse cDNA based on human gene 1. We searched mouse cDNAs that are homologous to the partial cDNA of human gene 1, and also searched the public database. Designed the RACE primer (5 and cttcggtcatggagaaggcccacgggatcct—3), and designed the mouse sperm-derived cDNA into a vertical shape. 5'-RACE was performed, and 5 'primer (5—ccaaaggggccggagcgatgcccgctggtagccg—3) was set up from the obtained sequence. OPhufuima and 3 ′ puffima (5′—ctcattacagagagagagtcttcatcc—3, 15pmole each, heat resistance DNA polymerase (Ex pand Long Template PCR System, Roche) 5 units, 200 μ 200 dNTP (dATP, dTTP, dCTP, dGTP), mouse sperm-derived cDNA 0.5 ng and 1. 75 mM magnesium chloride amplification In buffer for 10 minutes at 94 ° C, followed by 35 cycles of 94 ° C for 30 seconds, 62 ° C for 45 seconds, 68 ° C for 5 minutes, and 68 ° C for 10 minutes After completion of the reaction, the reaction mixture was diluted with 1% agarose gel (TBE buffer). The gel fragment was stained with ethidium bromide and observed with a transilluminator to detect the amplified DNA fragment. It was recovered from agarose gel using Extraction Kit (manufactured by QIAGEN), inserted into the cloning site of a cloning vector plasmid such as pGEMTE, and then amplified using Escherichia coli as a host to determine the sequence. -Insertion of the vector for cloning into the cloning site was performed by TA cloning, that is, by digestion with EcoRV, T (thymidine) was added to the 3, end of the blunt-ended vector, and A ( A PCR product with adenine was ligated, and the product was introduced into E. coli by electroporation and stirred in LB liquid medium at 37 ° C for 16-20 hours. Was. E. coli after culture, were harvested by centrifugation, the plasmid using QIAGEN mini prep kit (Qiagen) Purification was performed. The insertion sequence was determined using a fluorescent sequencer by the dye terminator method.
[0108] ヒト遺伝子 1の塩基配列を配列番号 1に示す。ヒト遺伝子 1は、 478アミノ酸をコード するオープンリーディングフレームを含む。ヒト遺伝子 1にコードされるタンパク質のァ ミノ酸配列を配列番号 2に示す。配列番号 2のうち、第 73アミノ酸力も第 140アミノ酸 部分は、 SAM (Sterile Alpha Motif)ドメインと称されるシグナル伝達因子に特徴的な ペプチドモチーフを含む。第 52アミノ酸の Ser残基は、 MAPキナーゼ基質に特徴的 なモチーフに含まれ、第 247力ら第 250アミノ酸までの部位 (PPLP: Pro - Pro - Le u-Pro)は、 SH3結合領域モチーフである。  [0108] The nucleotide sequence of human gene 1 is shown in SEQ ID NO: 1. Human gene 1 contains an open reading frame encoding 478 amino acids. The amino acid sequence of the protein encoded by human gene 1 is shown in SEQ ID NO: 2. In SEQ ID NO: 2, the 73rd amino acid part and the 140th amino acid part contain a peptide motif characteristic of a signaling factor called SAM (Sterile Alpha Motif) domain. The Ser residue of the 52nd amino acid is included in the motif characteristic of the MAP kinase substrate, and the region from the 247th to the 250th amino acid (PPLP: Pro-Pro-Leu-Pro) is the SH3 binding region motif. is there.
[0109] マウス遺伝子 1の塩基配列を配列番号 3に示す。マウス遺伝子 1は、 478アミノ酸を コードするオープンリーディングフレームを含む。マウス遺伝子 1にコードされるタンパ ク質のアミノ酸配列を配列番号 4に示す。配列番号 4のうち、第 73アミノ酸力も第 140 アミノ酸部分は、 SAM (Sterile Alpha Motif)ドメインと称されるシグナル伝達因子に 特徴的なペプチドモチーフを含む。第 52アミノ酸の Ser残基は、 MAPキナーゼ基質 に特徴的なモチーフに含まれ、第 247から第 250アミノ酸までの部位 (PPLP: Pro - Pro -Leu -Pro)は、 SH3結合領域モチーフである。  [0109] SEQ ID NO: 3 shows the base sequence of mouse gene 1. Mouse gene 1 contains an open reading frame encoding 478 amino acids. The amino acid sequence of the protein encoded by mouse gene 1 is shown in SEQ ID NO: 4. Of SEQ ID NO: 4, the 73rd amino acid force and the 140th amino acid part contain a peptide motif characteristic of a signal transduction factor called SAM (Sterile Alpha Motif) domain. The Ser residue at amino acid 52 is contained in a motif characteristic of the MAP kinase substrate, and the region from amino acid 247 to amino acid 250 (PPLP: Pro-Pro-Leu-Pro) is a SH3 binding region motif.
[0110] オープンリーディングフレーム領域について、ヒト遺伝子 1及びマウス遺伝子 1は、 D NAレベルで 89. 5%、タンパク質レベルで 90. 2%の相同性を示した。  [0110] Regarding the open reading frame region, human gene 1 and mouse gene 1 showed homology of 89.5% at the DNA level and 90.2% at the protein level.
[0111] 〔実施例 2〕ヒト遺伝子 1及びマウス遺伝子 1のゲノム構造  [Example 2] Genomic structure of human gene 1 and mouse gene 1
ヒト遺伝子 1の cDNA配列を公開済ヒトゲノム配列に対して相同検索することにより 、ヒト遺伝子 1のゲノム構造を決定した。マウス遺伝子 1の cDNA配列を公開済マウス ゲノム配列に対して相同検索することにより、マウス遺伝子 1のゲノム構造を決定した  The genomic structure of human gene 1 was determined by homologous search of the cDNA sequence of human gene 1 with the published human genome sequence. The genomic structure of mouse gene 1 was determined by homologous searching of the mouse gene 1 cDNA sequence against the published mouse genome sequence.
[0112] ヒト遺伝子 1及びマウス遺伝子 1のゲノム構造を図 1に示す。図 1に示すように、ヒト 遺伝子 1及びマウス遺伝子 1のゲノム構造は極めて類似していた。特に相同なェクソ ン領域は全て同一の塩基数であった。イントロンの長さは、ヒト遺伝子 1及びマウス遺 伝子 1間で相違が認められた。 [0112] The genomic structures of human gene 1 and mouse gene 1 are shown in FIG. As shown in FIG. 1, the genomic structures of human gene 1 and mouse gene 1 were very similar. In particular, all homologous exoregions had the same number of bases. Intron length was found to differ between human gene 1 and mouse gene 1.
[0113] 〔実施例 3〕ヒト遺伝子 1の発現組織 ヒト各組織力も調製した polyA RNAをブロットしたナイロンメンブレンに対し、 32P標 識ヒト遺伝子 1をプローブとして用い、ハイブリダィゼーシヨンバッファー(ULTRAhyb Ultrasensitive Hybridization Buffer, Ambion社製)中で、 42°C、 22時間ハイブリダィ ズさせた後、 LSバッファー(組成: 2XSSC, 0. 1%SDS)又は HSバッファー(組成: 0. 1%SSC, 0. 1%SDS)を用いて洗浄した。ハイブリダィズ像の検出は、イメージ アナライザー (Fuji社製)を用いて行った。 [Example 13] Human gene 1 expression tissue Nylon membrane blotted with polyA RNA prepared for human tissue, using 32 P-labeled human gene 1 as a probe in a hybridization buffer (ULTRAhyb Ultrasensitive Hybridization Buffer, Ambion) at 42 ° C After hybridization for 22 hours, the cells were washed with LS buffer (composition: 2XSSC, 0.1% SDS) or HS buffer (composition: 0.1% SSC, 0.1% SDS). Hybridized images were detected using an image analyzer (Fuji).
[0114] その結果、図 2に示すように、脳、腎臓、肺、筋肉、胎盤、小腸、精巣、副腎、唾液 腺、脾臓、胃等の組織でヒト遺伝子 1の発現が確認された。  As a result, as shown in FIG. 2, the expression of human gene 1 was confirmed in tissues such as brain, kidney, lung, muscle, placenta, small intestine, testis, adrenal gland, salivary gland, spleen, and stomach.
[0115] 〔実施例 4〕 GFP融合ヒト遺伝子 1産物の細胞内での存在状態の観察  [Example 4] Observation of presence of GFP-fused human gene 1 product in cells
哺乳動物細胞内で GFP (Green Fluorescent Protein)の C末端にヒト遺伝子 1産物 が融合したタンパク質が産生されるように設計した遺伝子発現ベクター 1を構築した( 図 8)。すなわち、 GFPコード領域 cDNAの 3 '末端部位に EcoRI— Notl部位を付カロ し、 CMVプロモーターにより哺乳動物細胞内で GFP融合タンパク質の発現が誘導さ れるように設計した基本 GFPベクターを、 EcoRIと Notlで制限消化した。ヒト遺伝子 lcDNAの 5 '末端に EcoRI部位、 3 '末端に Notl部位を導入し、両酵素で切断した 遺伝子断片を EcoRIと Notlで消化した前述の基本 GFPベクターにライゲートし、大 腸菌に遺伝子導入し、遺伝子発現ベクター 1をクローユングした。  A gene expression vector 1 designed to produce a protein in which the human gene 1 product was fused to the C-terminus of GFP (Green Fluorescent Protein) in mammalian cells was constructed (Figure 8). In other words, a basic GFP vector designed so that expression of GFP fusion protein is induced in mammalian cells by CMV promoter by adding EcoRI-Notl site to the 3 'end of the GFP coding region cDNA was performed. Digested with restriction. The human gene lcDNA was introduced with an EcoRI site at the 5 'end and a Notl site at the 3' end. The gene fragment cleaved with both enzymes was ligated to the basic GFP vector digested with EcoRI and Notl, and the gene was introduced into Escherichia coli. Then, gene expression vector 1 was cloned.
[0116] Fugene6 (Roche社)を用いて、遺伝子ベクター 1を COS— 7細胞内に遺伝子導 入した。すなわち、 1 μ gの遺伝子ベクター 1と 3 μ 1の Fugene6 (Roche社)を含む無 血清培地 100 1を混和し、室温下で 15分間静置した後、 COS— 7を 24時間前にハ 一べストした細胞培養シャーレに滴下、混和することにより遺伝子導入した。遺伝子 導入された COS— 7細胞を 37°C、 5%CO存在下で、 24時間培養した。細胞核を染 色するため、培地中に 1. 5
Figure imgf000028_0001
に1106^13 33342を加ぇ、 10分 間 37°Cでインキュベートした後、 PBSで 4回洗浄した。蛍光顕微鏡により COS— 7細 胞内での GFP融合ヒト遺伝子 1産物の局在を観察した。その結果、図 3に示すように 、 GFP融合ヒト遺伝子 1産物は、 COS— 7細胞内で繊維状又は小胞状の構造を呈す ることが判明した。
[0116] Gene vector 1 was introduced into COS-7 cells using Fugene6 (Roche). That is, 1 μg of gene vector 1 and 3 μ1 of serum-free medium 100 1 containing Fugene6 (Roche) were mixed, allowed to stand at room temperature for 15 minutes, and then COS-7 was mixed 24 hours before. The gene was introduced by dripping and mixing into the best cell culture dish. The transfected COS-7 cells were cultured for 24 hours at 37 ° C in the presence of 5% CO. 1.5 in medium to stain cell nuclei
Figure imgf000028_0001
1106 ^ 13 33342 was added to the sample, incubated at 37 ° C for 10 minutes, and then washed 4 times with PBS. The localization of the GFP-fused human gene 1 product in COS-7 cells was observed by fluorescence microscopy. As a result, as shown in FIG. 3, the GFP-fused human gene 1 product was found to exhibit a fibrous or vesicular structure in COS-7 cells.
[0117] 〔実施例 5〕免疫共沈法によるヒト遺伝子 1産物同士の相互作用の検出 ヒト遺伝子 1産物の N末端に FLAGタグ又は HAタグが融合したタンパク質を哺乳 動物細胞内で発現できる遺伝子発現ベクターを構築した(図 9,図 10)。すなわち、 F LAGタグ cDNAの 3,末端部位に EcoRI— Notl部位を付カ卩し、 CMVプロモーター により哺乳動物細胞内で GFP融合タンパク質の発現が誘導されるように設計した基 本 FLAGタグベクターを、 EcoRIと Notlで制限消化した。ヒト遺伝子 lcDNAの 5'末 端に EcoRI部位、 3'末端に Notl部位を導入した遺伝子断片を EcoRI— Notl消化 した基本 GFPベクターにライゲートし、大腸菌に遺伝子導入し、 FLAG—ヒト遺伝子 1ベクターをクロー-ングした。 HAタグベクターも同様に作製した。 [Example 5] Detection of interaction between human gene 1 products by co-immunoprecipitation method A gene expression vector capable of expressing in a mammalian cell a protein in which a FLAG tag or HA tag was fused to the N-terminus of one human gene product was constructed (FIGS. 9 and 10). That is, a basic FLAG tag vector designed so that the expression of GFP fusion protein is induced in mammalian cells by CMV promoter, with EcoRI-Notl site attached to the 3, terminal part of FLAG tag cDNA. Restricted digest with EcoRI and Notl. Human gene lcDNA gene fragment introduced with EcoRI site at 5 'end and Notl site at 3' end is ligated to EcoRI-Notl digested basic GFP vector, introduced into E. coli, and FLAG-human gene 1 vector is cloned. -I ran. An HA tag vector was prepared in the same manner.
[0118] HEK293T細胞に Fugene6 (Roche社)を用いて、遺伝子導入した。 2日間培養 後、細胞溶解液(25mM Tris-Cl, 225mM NaCl, 0. 2%NP— 40, pH7. 4)を 培養プレートに加え、細胞抽出液を調製した。抗 FLAG抗体を加え、 4°Cで 60分間 反転混和し、さらにプロテイン G— Sepharoseを細胞抽出液にカ卩え、 4°Cで 60分間 反転混和し、遠心分離後、細胞溶解液でペレットを 3回洗浄し、 20mMTris-Cl (p H7. 4)で 1回洗浄後、 SDS— PAGEにより、タンパク質を分離した。泳動終了後、二 トロセルロースメンブレンにタンパク質を転写し、マウス抗 HA (へマグルチュン)抗体( [0118] Gene transfer was performed on HEK293T cells using Fugene6 (Roche). After culturing for 2 days, a cell lysate (25 mM Tris-Cl, 225 mM NaCl, 0.2% NP-40, pH 7.4) was added to the culture plate to prepare a cell extract. Add anti-FLAG antibody, mix by inversion at 4 ° C for 60 minutes, add protein G—Sepharose to the cell extract, mix by inversion at 4 ° C for 60 minutes, centrifuge, and pellet with cell lysate. After washing 3 times and washing once with 20 mM Tris-Cl (pH7.4), proteins were separated by SDS-PAGE. After the electrophoresis, the protein is transferred to a nitrocellulose membrane and mouse anti-HA (hemagglutin) antibody (
Roche社)を一次抗体、ペルォキシダーゼ標識抗マウスィムノグロブリン抗体 (アマ一 シャムーフアルマシア社)を 2次抗体として用いて、 HAタグタンパク質の存在を検出 した。 Roche) was used as the primary antibody, and peroxidase-labeled anti-mouse immunoglobulin antibody (Ama Shamaf Almacia) was used as the secondary antibody to detect the presence of the HA tag protein.
[0119] その結果、図 4に示すように、 FLAGタグーヒト遺伝子 1産物(レーン 1)又は HAタグ —ヒト遺伝子 1産物(レーン 3)を単独で発現させた場合、 HA—ヒト遺伝子 1産物は検 出されなかった。しかし、 FLAGタグ—ヒト遺伝子 1産物及び HAタグ—ヒト遺伝子 1産 物(レーン 2)を同時に発現させた場合、 HAタグ—ヒト遺伝子 1産物が検出された。こ のことは、 FLAGタグ—ヒト遺伝子 1産物及び HAタグ—ヒト遺伝子 1産物が親和性を 持ち、 FLAG抗体による免疫沈降複合体に HAタグ—ヒト遺伝子 1産物が含まれるこ とを示している。  As a result, as shown in FIG. 4, when the FLAG tag-human gene 1 product (lane 1) or the HA tag-human gene 1 product (lane 3) was expressed alone, the HA-human gene 1 product was detected. It was not issued. However, when the FLAG tag—human gene 1 product and the HA tag—human gene 1 product (lane 2) were expressed simultaneously, the HA tag—human gene 1 product was detected. This indicates that the FLAG tag—human gene 1 product and HA tag—human gene 1 product have affinity, and the immunoprecipitation complex by FLAG antibody contains the HA tag—human gene 1 product. .
[0120] 〔実施例 6〕哺乳動物細胞ツーハイブリッド法によるヒト遺伝子 1産物同士の相互作用 の検出  [0120] [Example 6] Detection of interaction between one product of human gene by mammalian cell two-hybrid method
ヒト遺伝子 1産物が酵母由来 GAL4DNA結合タンパク質の C末領域に融合して発 現できるように設計した哺乳動物細胞用遺伝子発現ベクター (PGAL4—ヒト遺伝子 1 ベクター,図 11)、及びヒト遺伝子 1産物が Herpes Simplex Virus由来 VP 16遺伝 子発現活性化タンパク質の C末領域に融合して発現できるように設計した哺乳動物 細胞用遺伝子発現ベクター (PVP16—ヒト遺伝子 1ベクター,図 12)を構築した。す なわち、 pGAL4—ヒト遺伝子 1ベクターは、 GAL4DNA結合結合領域 cDNAの 3, 末端部位に EcoRI— Sail部位を付カ卩し、 Early SV40プロモーターにより哺乳動物 細胞内で GAL4DNA結合領域融合タンパク質の発現が誘導されるように設計した 基本 GAL4ベクターを、 EcoRIと Sailで制限消化した。ヒト遺伝子 lcDNAの 5'末端 に EcoRI部位、 3'末端に Xhol部位を導入し両酵素で切断した遺伝子断片を EcoRI — Sail消化した基本 GAL4ベクターにライゲートし、大腸菌に遺伝子導入し、 pGAL 4ーヒト遺伝子 1ベクターをクローユングした。 pVP16—ヒト遺伝子 1ベクターは、 VP1 6転写活性化領域 cDNAの 3'末端部位に EcoRI— Notl部位を付カ卩し、 CMVプロ モーターにより哺乳動物細胞内で VP 16転写活性化領域融合タンパク質の発現が 誘導されるように設計した基本 VP16ベクターを、 EcoRIと Notlで制限消化した。ヒト 遺伝子 lcDNAの 5'末端に EcoRI部位、 3'末端に Notl部位を導入し両酵素で切 断した遺伝子断片を EcoRIと Notlで消化した基本 VP16ベクターにライゲートし、大 腸菌に遺伝子導入し、 PVP16—ヒト遺伝子 1ベクターをクローユングした。これらのベ クタ一を COS— 7細胞に遺伝子導入した。 37°C、 5%CO存在下で、 24時間培養後 1 human gene product is fused to the C-terminal region of yeast-derived GAL4 DNA binding protein The gene expression vector for mammalian cells (PGAL4—human gene 1 vector, Fig. 11) and the human gene 1 product designed to be able to be expressed are fused to the C-terminal region of the VP 16 gene expression activation protein derived from Herpes Simplex Virus. We constructed a gene expression vector for mammalian cells (PVP16—human gene 1 vector, Fig. 12) that was designed so that it could be expressed in a stable manner. In other words, the pGAL4—human gene 1 vector has an EcoRI—Sail site attached to the GAL4DNA binding region cDNA at the 3, end of the cDNA, and the early SV40 promoter allows expression of the GAL4DNA binding region fusion protein in mammalian cells. A basic GAL4 vector designed to be induced was digested with EcoRI and Sail. Human gene lcDNA is introduced into EcoRI site at 5 'end, Xhol site at 3' end and cleaved with both enzymes and ligated to EcoRI — Sail digested basic GAL4 vector, introduced into Escherichia coli, pGAL 4-human gene 1 vector cloned. The pVP16-human gene 1 vector has an EcoRI-Notl site attached to the 3 'end of the VP16 transcriptional activation region cDNA, and expression of the VP16 transcriptional activation region fusion protein in mammalian cells using the CMV promoter. The basic VP16 vector, designed to induce, was restriction digested with EcoRI and Notl. The human gene lcDNA was ligated to the basic VP16 vector introduced with EcoRI and Notl at the 5 'end and Notl site at the 3' end and digested with both enzymes, and introduced into Escherichia coli. PVP16—human gene 1 vector was cloned. These vectors were transfected into COS-7 cells. After incubation for 24 hours at 37 ° C in the presence of 5% CO
2  2
、細胞を PBSで洗浄し、ルシフェラーゼ活性測定用細胞溶解液(25mM TAE, lm M EDTA, 10% Glycerol, l%TritonX- 100, 2mM DTT)をカ卩え、ノレシフェリ ン、 ATP存在下でルミノメーターにより、細胞抽出液中のルシフェラーゼ活性を測定 した。  Wash the cells with PBS, and prepare a cell lysate for luciferase activity measurement (25 mM TAE, lm M EDTA, 10% Glycerol, l% TritonX-100, 2 mM DTT), and luminometer in the presence of noreciferin and ATP. Was used to measure the luciferase activity in the cell extract.
[0121] その結果、図 5に示すように、 pGAL4—ヒト遺伝子 1及び pVP16—ヒト遺伝子 1を 同時に遺伝子導入した場合には、 pGAL4—ヒト遺伝子 1及び遺伝子 1領域をもたな い PVP16を同時に遺伝子導入させた場合に比べて、 9. 3倍のルシフェラーゼ活性 が検出された。この結果から、ヒト遺伝子 1産物同士の親和性相互作用が示唆された  As a result, as shown in FIG. 5, when pGAL4-human gene 1 and pVP16-human gene 1 were introduced simultaneously, pGAL4-human gene 1 and PVP16 without the gene 1 region were simultaneously introduced. The luciferase activity was detected by a factor of 9.3 compared to when the gene was introduced. This result suggests an affinity interaction between one human gene product
[0122] 〔実施例 7〕哺乳動物細胞ツーハイブリッド法によるヒト遺伝子 1産物及びヒト Bax inhi bitor- 1遺伝子産物間の相互作用の検出 [Example 7] Human gene 1 product and human Bax inhi by mammalian cell two-hybrid method Detection of interactions between bitor-1 gene products
ヒト遺伝子 1産物が酵母由来 GAL4DNA結合タンパク質の C末領域に融合して発 現できるように設計した哺乳動物細胞用遺伝子発現ベクター (PGAL4 ヒト遺伝子 1 ,図 11)、及びヒト Bax inhibitor- 1遺伝子産物が Herpes Simplex Virus由来 VP 16遺伝子発現活性ィ匕タンパク質の C末領域に融合して発現できるように設計した哺 乳動物細胞用遺伝子発現ベクター (pVP 16— Bax inhibitor - 1, 13)を構築した。 すなわち、 pVP16-Bax inhibitor— 1ベクターは、 VP16転写活性化領域cDNA の 3'末端部位に EcoRI— Notl部位を付カ卩し、 CMVプロモーターにより哺乳動物細 胞内で VP16転写活性ィ匕領域融合タンパク質の発現が誘導されるように設計した基 本 VP16ベクターを、 EcoRIと Notlで制限消化した。ヒト Bax inhibitor— lcDNAの 5,末端に EcoRI部位、 3,末端に Notl部位を導入し両酵素で切断した遺伝子断片 を EcoRIと Notlで消化した基本 VP16ベクターにライゲートし、大腸菌に遺伝子導入 し、 pVP16 ヒト Bax inhibitor— 1ベクターをクローユングした。なお、 Bax inhibit or— 1遺伝子の塩基配列を配列番号 5に、 Bax inhibitor— 1遺伝子産物のアミノ酸 配列を配列番号 6に示す。これらのベクターを、 COS— 7細胞に遺伝子導入した。 3 7°C、 5%CO存在下で、 24時間培養後、細胞を PBSで洗浄し、ルシフェラーゼ活性  Gene expression vector for mammalian cells (PGAL4 human gene 1, Fig. 11) and human Bax inhibitor-1 gene product designed so that the human gene 1 product can be expressed by fusing to the C-terminal region of yeast-derived GAL4 DNA binding protein Constructed a gene expression vector for mammalian cells (pVP 16- Bax inhibitor-1, 13) designed to be fused and expressed in the C-terminal region of the Herpes Simplex Virus-derived VP 16 gene expression activity protein. That is, the pVP16-Bax inhibitor-1 vector has an EcoRI-Notl site attached to the 3 'end of the VP16 transcriptional activation region cDNA, and a VP16 transcriptional activity fusion region fusion protein in a mammalian cell by the CMV promoter. A basic VP16 vector designed to induce expression of E. coli was digested with EcoRI and Notl. Human Bax inhibitor—A gene fragment that had an EcoRI site at the 5 'end and a Notl site at the 3' end, and a Notl site at the end and was cleaved with both enzymes was ligated to the basic VP16 vector digested with EcoRI and Notl, and introduced into E. coli. Human Bax inhibitor-1 vector was cloned. The base sequence of Bax inhibit or-1 gene is shown in SEQ ID NO: 5, and the amino acid sequence of Bax inhibitor-1 gene product is shown in SEQ ID NO: 6. These vectors were transfected into COS-7 cells. 3 After culturing for 24 hours in the presence of 7 ° C and 5% CO, the cells are washed with PBS and luciferase activity
2  2
測定用細胞溶解液(25mM TAE, ImM EDTA, 10% Glycerol, 1% TritonX 100, 2mM DTT)をカ卩え、ルシフェリン、 ATP存在下でルミノメーターにより、細 胞抽出液中のルシフェラーゼ活性を測定した。  Cell lysate for measurement (25 mM TAE, ImM EDTA, 10% Glycerol, 1% TritonX 100, 2 mM DTT) was prepared, and the luciferase activity in the cell extract was measured with a luminometer in the presence of luciferin and ATP. .
[0123] その結果、図 6に示すように、 pGAL4 ヒト遺伝子 1及び pVP16— Bax inhibitor  As a result, as shown in FIG. 6, pGAL4 human gene 1 and pVP16—Bax inhibitor
1を同時に遺伝子導入した場合、 PGAL4及び pVP16を同時に遺伝子導入させ た場合に比べて、 11. 3倍のルシフェラーゼ活性が検出された。この結果から、ヒト遺 伝子 1産物及び Bax inhibitor- 1遺伝子産物の親和性相互作用が示唆される。  When gene 1 was introduced at the same time, 11.3 times more luciferase activity was detected than when PGAL4 and pVP16 were introduced simultaneously. This result suggests an affinity interaction between the human gene 1 product and the Bax inhibitor-1 gene product.
[0124] 〔実施例 8〕抗遺伝子 1抗体を用いたウェスタンブロッテイングによるヒト遺伝子 1産物 の検出  [Example 8] Detection of human gene 1 product by Western blotting using anti-gene 1 antibody
ヒト遺伝子 1産物のうち第 30から 49アミノ酸部分(NH - GEAGRAPDSDGGSD  30th to 49th amino acids of a human gene product (NH-GEAGRAPDSDGGSD
2  2
ADSEVG-COOH)をペプチド合成し、 KLH (Keyhole Limpet Hemocyanin) をキャリア一とし、アジュバンドとともにゥサギ(2羽)に筋肉及び皮下注射した。さらに 2週後、 5週後、 11週後、 17週後にもペプチド、アジュバンド混合液を注射し、抗血 清を最初の抗原注射から 25週後に調製した。 FLAGタグ—ヒト遺伝子 1産物を HEK 293T細胞に一過的に発現させ、 SDS— PAGEサンプルバッファーで処理した後、 SDS— PAGE電気泳動でタンパク質を分離し、ニトロセルロースメンブレンに転写し た。メンブレンをブロッキングバッファー (0. 1% TWeen20及び 5%脱脂粉乳含有 P BS)で室温下 1時間ブロックし、 1000倍希釈した抗血清を含む新たなブロッキング バッファ一中で、 4°C、 2時間インキュベートした。 PBST(0. l%Tween20含有 PBS )で 3回メンブレンを洗浄した後、ヮサビペルォキシダーゼ標識抗ゥサギ IgG抗体を含 む、ブロッキングバッファ一中で室温下 1時間インキュベートした。 PBST(0. l%Tw een20含有 PBS)で 3回メンブレンを洗浄した後、ケミルミネッセンス法(例えば、 Wes tPico Chemiluminescent Substrate, PIERCE社)を用いて、抗体特異的バンド を検出した。 ADSEVG-COOH) was synthesized as a peptide, KLH (Keyhole Limpet Hemocyanin) was used as the carrier, and the mice were injected intramuscularly and subcutaneously into rabbits (2 birds) together with adjuvant. further After 2 weeks, 5 weeks, 11 weeks, and 17 weeks, the peptide and adjuvant mixture was also injected, and antisera was prepared 25 weeks after the first antigen injection. The FLAG tag-human gene 1 product was transiently expressed in HEK 293T cells, treated with SDS-PAGE sample buffer, and then separated by SDS-PAGE electrophoresis and transferred to a nitrocellulose membrane. Was under 1 hour at room temperature the membranes in blocking buffer (0. 1% T W een20 and 5% non-fat dry milk containing P BS), in the new blocking buffer one containing antiserum diluted 1000-fold, 4 ° C, 2 Incubated for hours. The membrane was washed 3 times with PBST (0.1% Tween20-containing PBS), and then incubated at room temperature for 1 hour in a blocking buffer containing rabbit antiperoxidase-labeled anti-rabbit IgG antibody. After washing the membrane three times with PBST (0.1% Tween20-containing PBS), an antibody-specific band was detected using a chemiluminescence method (for example, WestPico Chemiluminescent Substrate, PIERCE).
[0125] その結果、図 7に示すように、ヒト遺伝子 1を強制発現させた HEK293T細胞抽出タ ンパク質レーンに抗原特異的バンドが検出された。  As a result, as shown in FIG. 7, an antigen-specific band was detected in the HEK293T cell-extracted protein lane in which human gene 1 was forcibly expressed.
[0126] 〔実施例 9〕  [Example 9]
(1)マウス遺伝子 1ジーンターゲッティングベクターの構築  (1) Mouse gene 1 Gene targeting vector construction
マウス遺伝子 1の第 1ェクソン及び第 2ェクソンの一部を含む 5'側のゲノム DNAと、 第 2ェクソンの一部、第 3及び第 4ェクソンを含む 3'側のゲノム DNAとを、末端に制限 酵素部位を付加した形で、 PCR増幅した。すなわち、第 1ェクソン及び第 2ェクソンの 一部を含む 5'側のゲノム DNAは、 5,プライマー(5'-gactcgtcctcttcagtgctggatgtaggc gtg-3' )と、 Sail部位を付カ卩して設計した 3'プライマー(5'-tcgtcgacacagccacatgcttggta gtccagcggc- 3,)各 15pmoleゝ而ォ熱性 DNAポリメラーゼ(Expand Long Template PCR System, Roche社製) 5ユニット、 dNTP (dATP, dTTP, dCTP, dGTP)、マウス精 子由来 cDNAO. 5ng及び 1. 75mM塩化マグネシウムを含有する増幅用バッファ 一中で、 94°Cで 10分間処理の後、 94°Cで 30秒、 65°Cで 45秒、 68°Cで 15分の処 理を 26サイクル繰り返し、さらに 68°C15分の処理を子なつた。第 2ェクソンの一部、 第 3及び第 4ェクソンを含む 3'側のゲノム DNAは、 Clal部位を付加して設計した 5'プ フィマ1 ~~ (o catcgatttaggttattgttcatgagcgagtgcctg— )と、 dゾフィマ1 ~~ (5— caggtgctg tcctggcacggagagggaggtc— 3,)各 15pmole、耐熱'性 DNAポリメラーゼ (Expand Long T emplate PCR System, Roche社製) 5ユニット、 200 ^ M dNTP (dATP, dTTP, dC TP, dGTP)、マウス精子由来 cDNA 0. 5ng及び 1. 75mM塩化マグネシウムを含 有する増幅用バッファ一中で、 94°Cで 10分間処理の後、 94°Cで 30秒、 62°Cで 45 秒、 68°Cで 20分の処理を 26サイクル繰り返し、さらに 68°C20分の処理を行った。 G FP Neo遺伝子を GFPcDNAとマウス遺伝子 1の第 2ェクソンのタンパク質コード領 域とインフレームになるよう接続し、 Neo遺伝子の 3'側には、ストップコドンを導入した マウス遺伝子 1ジーンターゲッティングベクターを構築した(図 14)。 The 5 ′ genomic DNA containing the first and second exons of mouse gene 1 and the 3 ′ genomic DNA containing the second exon and the third and fourth exons PCR amplification was performed with a restriction enzyme site added. That is, the 5 'genomic DNA containing part of the first and second exons is 5, the primer (5'-gactcgtcctcttcagtgctggatgtaggc gtg-3') and the 3 'primer designed with the Sail site attached. (5'-tcgtcgacacagccacatgcttggta gtccagcggc-3,) 15pmole metathermal DNA polymerase (Expand Long Template PCR System, Roche) 5 units, dNTP (dATP, dTTP, dCTP, dGTP), mouse sperm-derived cDNAO. 5ng And 1.Amplification buffer containing 75 mM magnesium chloride. Treat for 10 minutes at 94 ° C, then for 30 seconds at 94 ° C, 45 seconds at 65 ° C, and 15 minutes at 68 ° C. Repeated 26 cycles and further treated at 68 ° C for 15 minutes. The 3 'genomic DNA containing part of the second exon, the third and fourth exons, was designed by adding a Clal site to 5' pima 1 ~~ (o catcgatttaggttattgttcatgagcgagtgcctg-) and d zofima 1 ~~ (5— caggtgctg tcctggcacggagagggaggtc— 3,) 15 pmole each, heat-resistant DNA polymerase (Expand Long Template PCR System, Roche) 5 units, 200 ^ M dNTP (dATP, dTTP, dC TP, dGTP), mouse sperm-derived cDNA 0.5 ng And 1.In an amplification buffer containing 75 mM magnesium chloride, after treatment at 94 ° C for 10 minutes, treatment at 94 ° C for 30 seconds, 62 ° C for 45 seconds, and 68 ° C for 20 minutes 26 The cycle was repeated and further treated at 68 ° C for 20 minutes. GFP Neo gene is connected to GFP cDNA and mouse gene 1 second exon protein coding region in-frame, and mouse gene 1 gene targeting vector with stop codon introduced on the 3 'side of Neo gene is constructed. (Fig. 14).
[0127] (2)遺伝子 1ノックアウトマウスの作製 [0127] (2) Generation of gene 1 knockout mice
マウス遺伝子 1ジーンターゲッティングベクターを制限酵素 Notl消化により、 2本鎖 状にし、電気穿孔法によりマウス ES細胞に導入した。同細胞を 37°C、 5%COで選  The mouse gene 1 gene targeting vector was made double-stranded by digestion with restriction enzyme Notl and introduced into mouse ES cells by electroporation. Select the cells at 37 ° C, 5% CO
2 択薬剤である G418及びガンシクロビル存在下で培養した。耐性細胞コロニーカもゲ ノミック DNAを調製し、 PCR及びサザンノ、イブリダィゼーシヨンにより相同組み換え 陽性 ES細胞を選抜した。陽性 ES細胞を胚盤胞にマイクロインジェクション法により導 入後、偽妊娠雌マウスに移植した。産生したキメラマウスを野生型マウスと交配し、ァ グーチ毛色をマーカーとして、得られた産児のゲノタイピングを行い、ヘテロに遺伝 子 1を欠損したマウスを作出した。  The cells were cultured in the presence of G418 and ganciclovir, which are two selective drugs. Resistant cell colonies were also prepared with genomic DNA, and homologous recombination-positive ES cells were selected by PCR, Southern nose and hybridization. Positive ES cells were introduced into blastocysts by microinjection and then transplanted into pseudopregnant female mice. The resulting chimeric mouse was bred with a wild-type mouse, and the resulting baby was genotyped using the agouti hair color as a marker to produce a heterozygous mouse deficient in gene 1.
[0128] (3)遺伝子 1ヘテロ欠損マウス間交配より得られた産児及び胎児のゲノタイプ解析 遺伝子 1のへテロ欠損雌マウスと遺伝子 1のへテロ欠損雄マウスを交配し、得られた 産児のゲノタイピングを行った。また、遺伝子 1のへテロ欠損雌マウスと遺伝子 1のへ テロ欠損雄マウスを交配し、一定時期経過後、妊娠雌マウスを解剖し、胎児又は羊 膜よりゲノム DNAを調製し、ゲノタイピングを行った。 [0128] (3) Genotype analysis of infants and fetuses obtained by crossing between gene 1 hetero-deficient mice Mating heterozygous female mice with gene 1 and male mice deficient with gene 1 were obtained Typing was done. In addition, a heterozygous female mouse with gene 1 and a male male with gene 1 are mated, and after a certain period of time, the pregnant female mouse is dissected, genomic DNA is prepared from the fetus or amnion, and genotyping is performed. It was.
その結果、表 1に示すように、遺伝子 1ヘテロ欠損マウス間交配により産生した産児 のゲノタイプは、野生型又はへテロ欠損型で、ホモ欠損型は得られな力つた。また、 表 2に示すように、遺伝子 1ヘテロ欠損マウス間交配により得られた受精 12. 5日後、 9. 5日後、 8. 5日後の各胎児のゲノタイプは、野生型又はへテロ欠損型で、ホモ欠 損型は得られなかった。これらの結果から、遺伝子 1ホモ欠損型の胎児は受精 8. 5 日後以前の発生段階で致死して 、ると考えられる。 [0129] [表 1] ステージ 産児のゲノタイプ ft As a result, as shown in Table 1, the genotype of the infant produced by crossing between the gene 1 hetero-deficient mice was wild-type or hetero-deficient, and homozygous was not obtained. In addition, as shown in Table 2, the genotypes of each fetus obtained after mating between gene 1 hetero-deficient mice after 12.5 days, 9.5 days, and 8.5 days were either wild-type or hetero-deficient. A homo-deficient type was not obtained. From these results, it is considered that fetuses with homozygous gene 1 were dead at the developmental stage 8.5 days before fertilization. [0129] [Table 1] Stage Infant genotype ft
+/+ +/- -/- *P21 0 29 27 56  + / + +/--/-* P21 0 29 27 56
*P: 産生後日数 * P: Days after production
[0130] [表 2] 発育ステージ 胎児のゲノタイプ 計  [0130] [Table 2] Developmental stage Fetal genotype Total
-/- +/- +/+  -/-+/- + / +
*E12.5 0 5 4 9 * E12.5 0 5 4 9
E9.5 0 7 5 12E9.5 0 7 5 12
E8.5 0 13 5 18 E8.5 0 13 5 18
0 25 14 39  0 25 14 39
*E: 受精後日数 * E: Days after fertilization

Claims

請求の範囲 The scope of the claims
[1] 下記 (a)又は (b)に示すタンパク質。 [1] A protein shown in (a) or (b) below.
(a)配列番号 2又は 4記載のアミノ酸配列力 なるタンパク質  (a) a protein having an amino acid sequence ability described in SEQ ID NO: 2 or 4
(b)配列番号 2又は 4記載のアミノ酸配列において 1又は複数個のアミノ酸が欠失、 置換又は付加されたアミノ酸配列カゝらなり、個体発生に必須のタンパク質  (b) an amino acid sequence in which one or more amino acids are deleted, substituted or added in the amino acid sequence of SEQ ID NO: 2 or 4, and is essential for ontogeny
[2] 下記 (a)又は(c)に示すタンパク質。  [2] A protein shown in (a) or (c) below.
(a)配列番号 2又は 4記載のアミノ酸配列力 なるタンパク質  (a) a protein having an amino acid sequence ability described in SEQ ID NO: 2 or 4
(c)配列番号 2又は 4記載のアミノ酸配列において 1又は複数個のアミノ酸が欠失、 置換又は付加されたアミノ酸配列カゝらなり、前記 (a)に示すタンパク質と親和性相互 作用を示すタンパク質  (c) a protein having an affinity interaction with the protein shown in (a) above, wherein one or more amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 2 or 4
[3] 下記 (a)又は(d)に示すタンパク質。  [3] Protein shown in the following (a) or (d).
(a)配列番号 2又は 4記載のアミノ酸配列力 なるタンパク質  (a) a protein having an amino acid sequence ability described in SEQ ID NO: 2 or 4
(d)配列番号 2又は 4記載のアミノ酸配列において 1又は複数個のアミノ酸が欠失、 置換又は付加されたアミノ酸配列力もなり、 Bax inhibitor— 1と親和性相互作用を 示すタンパク質  (d) a protein that also has an amino acid sequence ability in which one or more amino acids are deleted, substituted, or added in the amino acid sequence of SEQ ID NO: 2 or 4, and exhibits an affinity interaction with Bax inhibitor-1
[4] 請求項 1〜3のいずれかに記載のタンパク質をコードする遺伝子。  [4] A gene encoding the protein according to any one of claims 1 to 3.
[5] 下記 (e)又は (f)に示す DNAを含む請求項 4記載の遺伝子。 [5] The gene according to claim 4, comprising the DNA shown in (e) or (f) below.
(e)配列番号 1記載の塩基配列のうち 19〜 1452番目の塩基配列からなる DNA又 は配列番号 3記載の塩基配列のうち 46〜1479番目の塩基配列力もなる DNA (e) DNA consisting of the 19-1452th base sequence in the base sequence described in SEQ ID NO: 1 or DNA having 46-1479th base sequence ability in the base sequence described in SEQ ID NO: 3
(f)前記(e)に示す DNAと相補的な DNAにストリンジェントな条件下でノヽイブリダィ ズする DNA (f) DNA that is hybridized under stringent conditions to DNA complementary to the DNA shown in (e) above
[6] 請求項 5記載の遺伝子を含む組換えベクター。  [6] A recombinant vector comprising the gene according to claim 5.
[7] 請求項 6記載の組換えベクターを含む形質転換体。 [7] A transformant comprising the recombinant vector according to claim 6.
[8] 請求項 1〜3のいずれかに記載のタンパク質に反応し得る抗体又はその断片。  [8] An antibody or fragment thereof capable of reacting with the protein according to any one of claims 1 to 3.
[9] 試験物質が、請求項 2記載のタンパク質同士の親和性相互作用を抑制又は促進で きる否かを判別し、前記親和性相互作用を抑制又は促進できる試験物質を個体発 生に影響を与える物質としてスクリーニングする工程を含む、個体発生に影響を与え る物質のスクリーニング方法。 試験物質が、請求項 3記載のタンパク質と Bax inhibitor— 1との親和性相互作用 を抑制又は促進できる否かを判別し、前記親和性相互作用を抑制又は促進できる試 験物質を個体発生に影響を与える物質としてスクリーニングする工程を含む、個体発 生に影響を与える物質のスクリーニング方法。 [9] Determine whether or not the test substance can suppress or promote the affinity interaction between the proteins according to claim 2, and affect the ontogeny of the test substance that can suppress or promote the affinity interaction. A method for screening a substance that affects ontogeny, comprising a step of screening as a given substance. Determine whether the test substance can inhibit or promote the affinity interaction between the protein of claim 3 and Bax inhibitor-1, and affect the ontogeny by the test substance capable of inhibiting or promoting the affinity interaction. A method for screening a substance that affects ontogenesis, which comprises a step of screening as a substance that imparts odor.
PCT/JP2006/322879 2005-11-16 2006-11-16 Novel protein and gene encoding the protein WO2007058267A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005331505A JP2007135441A (en) 2005-11-16 2005-11-16 New protein and gene encoding the same
JP2005-331505 2005-11-16

Publications (2)

Publication Number Publication Date
WO2007058267A1 true WO2007058267A1 (en) 2007-05-24
WO2007058267A8 WO2007058267A8 (en) 2008-02-14

Family

ID=38048651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/322879 WO2007058267A1 (en) 2005-11-16 2006-11-16 Novel protein and gene encoding the protein

Country Status (2)

Country Link
JP (1) JP2007135441A (en)
WO (1) WO2007058267A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009112439A1 (en) * 2008-03-10 2009-09-17 Janssen Pharmaceutica Nv 4-aryl-2-anilino-pyrimidines as plk kinase inhibitors
US8318731B2 (en) 2007-07-27 2012-11-27 Janssen Pharmaceutica Nv Pyrrolopyrimidines
US8492377B2 (en) 2006-07-13 2013-07-23 Janssen Pharmaceutica Nv MTKI quinazoline derivatives
US8772272B2 (en) 2003-12-18 2014-07-08 Janssen Pharmaceutica Nv Pyrido-and pyrimidopyrimidine derivatives as anti-proliferative agents
US9688691B2 (en) 2004-12-08 2017-06-27 Janssen Pharmaceutica Nv Macrocyclic quinazole derivatives and their use as MTKI
WO2021103733A1 (en) * 2019-11-28 2021-06-03 西北农林科技大学 Brucella suis strain with bi-1 gene deleted, and construction method therefor and use thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003022833A1 (en) * 2001-09-05 2003-03-20 Smithkline Beecham Plc Pyridylfurans and pyrroles as raf kinase inhibitors

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002362586A1 (en) * 2001-07-17 2003-04-07 Incyte Genomics, Inc. Receptors and membrane-associated proteins

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003022833A1 (en) * 2001-09-05 2003-03-20 Smithkline Beecham Plc Pyridylfurans and pyrroles as raf kinase inhibitors

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8772272B2 (en) 2003-12-18 2014-07-08 Janssen Pharmaceutica Nv Pyrido-and pyrimidopyrimidine derivatives as anti-proliferative agents
US8933067B2 (en) 2003-12-18 2015-01-13 Janssen Pharmaceutica Nv Pyrido and pyrimidopyrimidine derivatives as anti-profilerative agents
US9688691B2 (en) 2004-12-08 2017-06-27 Janssen Pharmaceutica Nv Macrocyclic quinazole derivatives and their use as MTKI
US10208062B2 (en) 2004-12-08 2019-02-19 Janssen Pharmaceutica Nv Macrocyclic quinazole derivatives and their use as MTKI
US8492377B2 (en) 2006-07-13 2013-07-23 Janssen Pharmaceutica Nv MTKI quinazoline derivatives
US8318731B2 (en) 2007-07-27 2012-11-27 Janssen Pharmaceutica Nv Pyrrolopyrimidines
WO2009112439A1 (en) * 2008-03-10 2009-09-17 Janssen Pharmaceutica Nv 4-aryl-2-anilino-pyrimidines as plk kinase inhibitors
US8318929B2 (en) 2008-03-10 2012-11-27 Janssen Pharmaceutica Nv 4-aryl-2-anilino-pyrimidines
US8609836B2 (en) 2008-03-10 2013-12-17 Janssen Pharmaceutica Nv 4-aryl-2-anilino-pyrimidines
WO2021103733A1 (en) * 2019-11-28 2021-06-03 西北农林科技大学 Brucella suis strain with bi-1 gene deleted, and construction method therefor and use thereof

Also Published As

Publication number Publication date
JP2007135441A (en) 2007-06-07
WO2007058267A8 (en) 2008-02-14

Similar Documents

Publication Publication Date Title
JP3462498B2 (en) CDNA cloning method of receptor tyrosine kinase target protein and hGRB protein
US7314621B2 (en) Cytidine deaminase
US20070020729A1 (en) Novel collectin
WO2007058267A1 (en) Novel protein and gene encoding the protein
JPH09510861A (en) Primary structure and functional expression of nucleotide sequences for a novel protein tyrosine phosphatase
JP2000512482A (en) Novel PTP20, PCP-2, BDP-1, CLK, and SIRP proteins and related products and methods
JP4201712B2 (en) GIP, a family of polypeptides with transcription factor activity that interact with Goodpasture antigen binding proteins
US20050171336A1 (en) Murine ortholog of the human disrupted-in-schizophrenia 1 gene
US7029912B1 (en) Tyrosine kinase substrate(Tks) proteins
JP4508872B2 (en) Gene transcription regulator
JP5099534B2 (en) Use of Kank3 gene for cancer therapy, cancer detection and drug discovery
US5840536A (en) Growth factor receptor-binding insulin receptor
JP5099535B2 (en) Use of Kank4 gene for cancer therapy, cancer detection and drug discovery
US20060019294A1 (en) Tyrosine kinase substrate (Tks) proteins
WO1997020573A1 (en) Growth factor receptor-binding protein 2 homolog
WO1999023218A1 (en) p16-BINDING PROTEINS, GENE THEREOF, AND ANTIBODY THEREAGAINST
EP1030859A1 (en) Ras-binding protein (pre1)
JP5114765B2 (en) Use of Kank2 gene for cancer therapy, cancer detection and drug discovery
JP4301541B2 (en) Screening method of SMG-1 binding protein and substance controlling its activity
JP2004530427A (en) DNA molecule encoding rhesus monkey androgen receptor
JP2003523181A (en) DNA helicase, DNA molecule encoding human NHL
JP2003144168A (en) Cell cycle-relating protein having nuclear export function or nucleus-cytoplasm transport function
US20030032592A1 (en) Protein-protein interactions
JP2018080131A (en) Drd1-derived tag peptide, and antibody to recognize drd1
JP2004073142A (en) Ganp binding protein

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06832759

Country of ref document: EP

Kind code of ref document: A1