WO2007054602A1 - Multifunctional sensor based on multilayer magnetic microwires with magnetoelastic coupling - Google Patents

Multifunctional sensor based on multilayer magnetic microwires with magnetoelastic coupling Download PDF

Info

Publication number
WO2007054602A1
WO2007054602A1 PCT/ES2006/070173 ES2006070173W WO2007054602A1 WO 2007054602 A1 WO2007054602 A1 WO 2007054602A1 ES 2006070173 W ES2006070173 W ES 2006070173W WO 2007054602 A1 WO2007054602 A1 WO 2007054602A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
sensor
multifunctional
sensor device
sensor element
Prior art date
Application number
PCT/ES2006/070173
Other languages
Spanish (es)
French (fr)
Inventor
Manuel VÁZQUEZ VILLALABEITIA
Kleber Robert Pirota
Giovanni Badini Confalonieri
Jacob TORREJÓN DÍAZ
Helmut Pfutzner
Original Assignee
Consejo Superior De Investigaciones Científicas
Universidad Tecnologica De Viena
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas, Universidad Tecnologica De Viena filed Critical Consejo Superior De Investigaciones Científicas
Publication of WO2007054602A1 publication Critical patent/WO2007054602A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/12Measuring magnetic properties of articles or specimens of solids or fluids
    • G01R33/18Measuring magnetostrictive properties

Definitions

  • the present invention relates to the field of magnetic materials, namely multilayer magnetic micro wires, and their application as sensor elements.
  • the present invention relates to a multifunctional sensor device formed by different elements, including a multilayer magnetic micro wire, and its use, not only as a magnetic field sensor, but also as a position, voltage, temperature, chemical and position sensor. optical.
  • thermocouples Hutter Thomas, Danhamer Bernd, Niedermann: Thermoanalytical sensor, and method of producing the thermoanalytical sensor, patent US2005169344 (March 2005)], thermistors [Welch Richard E, Yang Tung-Sheng, Miller William E: Thermistor sensor tested, patent USD507977S (March 2005)], solid state thermometers [Feder Jan, Beyerle Rick, Byers Stephen, Jones Thomas: Thermal control of a DUT using a thermal control substrate, patent US2005007136 (January 2005)], liquid state, gas, fiber optic [Jonh Laurence N, Corner Neil A : Optical temperature, patent US5180227 (January 1993)], etc.
  • Magnetic sensors also have a great variety in their types and shapes according to the physical principle of operation: there are those from which they act by the presence of a permanent magnet, whose principle of operation is based on the use of small contacts of copper, even fluxometer sensors that use an induced voltage to change the permeability of a ferromagnetic core.
  • the most common magnetic sensors are: Fluxgate type [Bartington Geoffrey William: Fluxgate sensor, patent GB2411964 (September 2005)], magnetoresistives that make use of behavior core magnetoresistive anisotrop [Holmes Stuart Nicholas: Anisotropic magnetoresistive sensor, patent GB2388915 (November 2003)], Hall effect
  • Naoya Spin-valve type magnetoresistive sensor and method ofmanufacturing the same, patent US6913836 (July 2005)], etc.
  • gas sensors made of solid material [Salter Carlton, Robert Pendergrass: Thin film gas sensor configuration, patent US2005183967 (March 2005)] that measures the variation of a physical property as a result of a reaction in the surface or of a solid electrolyte that detects the change in electrical conductivity;
  • Catalytic sensors such as by Pellistor, which measure the temperature change due to the heat of reaction on the surface [Hingold Volodymyr Markovych, Bondarchurk Anatolii Ivanovych, Bubleinyk Vitalii Anatoliiovyc, Medvediev Valerii Mykolaiovych, Koptikov Viktor Pavlovor Catic, Lupo Leonlovy Catalytic: Lupo thermal sensor for detecting fuel gases or vapors, patent UA73019 (January 2005)]; the biosensors, which contain
  • orientation and position sensors that include: GPS, compasses, devices based on amorphous magnetic elements [Masuda Sumió, Sumino Keiichi: Position sensor, patent JP8313237 (November 1996)]. All these types of sensors that are mentioned are just the tip of the iceberg of a very long panorama of sensor families. Clearly, the manufacture and use of multifunctional sensors, which may be able to detect different environmental conditions, brings immediate advantages in terms of simplifying technology and reducing measurement time and manufacturing cost. In the following sections, a new multifunctional sensor based on multilayer magnetic micro wires is introduced.
  • the wire-shaped and small-sized materials exhibit specific magnetic properties of great technological interest [M. Vázquez, Soft magnetic wires, Physica B, VoI. 299, pp. 302-313, 2001].
  • These types of materials are called amorphous magnetic microwires, and they can be obtained by two ultrafast solidification techniques: the ultrafast solidification and stretching method (Quenching and Drawing) [Gorynin; Igor V., Farmakovsky, Boris V., Khinsky; Alexander P., Kalogina, Karina V., Riviere V., Alfredo, Szekely; Julián, Saluja, Navtej S .; Method of casting amorphous and microcrystalline microwires; US Patent No.
  • the amorphous magnetic micro wire obtained by the first method is covered by a layer of insulated glass (glass-coated microwires).
  • the metal core has a ferromagnetic composition, and the dimensions of the diameter of the core and the thickness of the glass range between 1 and 200 ⁇ m.
  • multilayer magnetic micro wires are constituted, first, by an amorphous metallic core, obtained by any of the two ultrafast solidification methods mentioned above, and secondly, by one or more layers that are deposited on said core (with or without intermediate insulating layer of glass), so that at least the core or one of the covers must be magnetic [KR Pirota, M. Hernández Velez, D. Navas, A. Zhukov, M. Vázquez; Multilayer microwires: tayloring magnetic behavior by sputtering and electroplating, Adv. Funct.
  • this technique requires that the surface be covered, previously, by sputtering of a conductive metal (Au, Ag, Ti) of nanometric thickness, performing the function of electrode in the subsequent electrodeposition.
  • the electrodeposition is carried out by immersing the micro wire in an electrolytic solution, which is inside an electrolytic cell of an inert metal (generally platinum) with cylindrical geometry (to guarantee the homogeneous deposition of the material). While said metal is connected to the positive pole of the power supply, the micro wire is connected to the negative pole, so that when applying current the deposition of the metallic material occurs on the surface of the micro wire.
  • an inert metal generally platinum
  • Figure 2 shows a scheme of the multilayer magnetic micro wire with intermediate glass layer and nanometric layer of (of) a noble metal that precedes the outer metal layer
  • KR Pirota M. Hernández Velez, D. Navas, A. Zhukov , M. Vázquez; Multilayer microwires: tayloring magnetic behavior by sputtering and electroplating, Adv. Funct. Mater., 14 (2004) 266-268]
  • An object of this invention relates to a multifunctional sensor device, which can detect different modifications in the medium, and which comprises at least: a) A multilayer magnetic micro thread as a sensor element, with cylindrical geometry, formed by a metal core and covered by one or more external layers, with or without intermediate insulating glass layer, it being necessary that either the metal core, or one of the outer layers, be magnetic so that there is magnetoelastic coupling, b) A power supply to apply an alternating current through the metallic core of the sensor element, c) An apparatus for measuring the magnetic properties of the multilayer magnetic micro-wire, which will depend on certain changing external environmental conditions, d) Two electrical connections that connect the sensor element with the apparatus of measure and the power supply, and e) A rigid or flexible support, on which the element is fixed nsor or multilayer micro thread.
  • Another object of the invention is the use of this multi-functional sensor device in the field of sensors, in particular as a magnetic, voltage, temperature, position, optical and chemical sensor.
  • the present invention relates to a certain device, formed by several elements, including a multilayer magnetic micro-wire element, capable of detecting modifications in the external environment, functioning as a magnetic, thermal, position, tension, chemical, and optical sensor. Therefore, the sensor device is multifunctional, this being an important advantage over other devices on the market. Other advantages of the multifunctional sensor device are its low cost, high sensitivity, fast response time and easy integration into any miniaturized device due to its small mass and small dimensions.
  • an object of the invention refers to a multifunctional sensor device, hereinafter multifunctional sensor device of the invention, which can be used as a sensor of different parameters, and which comprises, at least: a) A multilayer magnetic micro wire as sensor element, with cylindrical geometry, formed by a metal core and covered by one or more external layers, with or without intermediate insulating glass layer, appropriate to the environment or medium to be detected.
  • a power supply consisting of equipment that generates a voltage or alternating current of small amplitude in the core of the multilayer micro wire, typically between 5OmV and IV
  • An apparatus for measuring the magnetic properties of the multilayer magnetic wire capable of detecting external environmental changes and converting them into an electronic signal
  • a non-conductive support or flat material on the one that supports the sensor element being able to be rigid or flexible, depending on the environmental conditions to be detected
  • Two connections of a conductive element capable of transporting an electric current, which connect the sensor element with the power supply and the apparatus of measure.
  • a particular object of the present invention is the multifunctional sensor device of the present invention in which the metal core of the sensor element described in a) is magnetic.
  • a particular object of the present invention is the multifunctional sensor device of the present invention in which one of the outer layers of the sensor element described in a) is magnetic.
  • a particular object of the present invention is the multifunctional sensor device of the present invention in which both the metal core and one of the outer layers of the sensor element described in a) are magnetic.
  • a particular embodiment of the present invention is constituted by the multifunctional sensor device of the present invention in which the sensor element described in a) is a micro-wire formed by four layers: a magnetic metal core, a layer glass intermediate on which a nanometric layer of Au or other noble metal and a magnetic outer layer are deposited, as shown in Figure 2.
  • a particular object of the present invention is the multifunctional sensor device of the present invention in which one of the outer layers of the sensor element described in a) is thermochromic, which allows its use as an optical sensor.
  • a particular object of the present invention is the multifunctional sensor device of the present invention in which one of the outer layers of the sensor element described in a) is organic, and sensitive to external conditions (such as the presence of CO, gas, or concentration of certain elements in the liquid phase), which allows its use as a chemical sensor.
  • a particular object of the present invention is the multifunctional sensor device of the present invention in which the metal core of the sensor element described in a) is formed by an alloy of Fe, Co or Ni, or combinations thereof, or with another metal, in different percentages.
  • a particular object of the present invention is the multifunctional sensor device of the present invention in which the metal core of the sensor element described in a) has percentages of Si, B or other metalloids, which guarantee an amorphous structure, and / or Cr, Mo or other transition metals, which can be added to improve resistance to corrosion and oxidation.
  • a particular object of the present invention is the multifunction sensor device of the present invention in which, as a measuring device described in c) an oscilloscope, amplifier, multimeter or other electronic devices is used, so that the output signal is collected in the form of voltage, resistance, impedance or inductance of the magnetic layer.
  • a particular object of the present invention is the multifunctional sensor device of the present invention in which an impedance bridge (inductance, capacitance and resistance meter, LCR-meter) is used which functions at the same time as a power supply and apparatus for measurement, so that the sensor device is simplified.
  • an impedance bridge inductance, capacitance and resistance meter, LCR-meter
  • a particular element of the present invention is the multifunctional sensor device of the present invention in which not only the sensor element is attached to the support, but that the other elements of the device are fixed, and even the entire device is mounted on a printed electronic circuit.
  • a particular element of the present invention is the multifunctional sensor device of the present invention in which the connections, by way of illustration and without limiting the scope of the present invention, belong to the following group: conductive cables, conductive paints, low welding temperature and / or printed circuit tracks (in the case of having the entire device mounted on a printed electronic circuit).
  • a particular element of the present invention is the multi-functional sensor device of the present invention in which the contact between the sensor element described in a) and the connections described in e) is made so that the applied current passes only through the metal core and Not by the outer layers.
  • FIG. 3 Two different examples of sensor device, with and without impedance bridge, are shown respectively in Figures 3 and 4.
  • Another object of the invention of the patent is the use of the multifunctional sensor device of the present invention in sensor technology. , and more specifically, its use as a magnetic, temperature, position, voltage, optical or chemical sensor.
  • the use of the multifunctional sensor device as a sensor is based on the magnetoelastic coupling that appears in the magnetic layer (s) as a result of being subjected to a mechanical tension, which depends on the composition of the micro thread layers.
  • a particular case for which an optimized response is obtained is that of a micro wire with a soft ferromagnetic amorphous core, intermediate glass layer and a magnetically hard outer layer that produces an axial magnetic field DC, which saturates the metal core.
  • an alternating current is applied through said core, producing a circular magnetic field AC of small amplitude, perpendicular to the axis of the wire.
  • This small alternating field causes the magnetization in the core to oscillate with a small angle, - &, around the axial axis.
  • the appearance of tensions, ⁇ , in the nucleus causes the angle of oscillation of the magnetization (magnetoelastic coupling, MEC) to vary with respect to the initial situation.
  • the use of the multifunctional sensor device of this invention as a magnetic sensor is based on the fact that the sensor element, in which at least either the metal core, or one of the outer layers is magnetic, mounted on a rigid support, modifies its properties magnetic with small changes of external magnetic field. This is due to the magnetoelastic coupling of one of the outer layers with the metal core, since when an external magnetic field is applied, the magnetostriction of the layer (s) (property of ferromagnetic materials that change in size under the application of a magnetic field) produces internal tensions in the multilayer micro thread, varying the output signal.
  • the use of the multifunctional sensor device of this invention as a temperature sensor is based on the fact that when a temperature change occurs in the medium, the difference in the coefficients of thermal expansion between the metal core and the outer layers generates internal stresses in the core , modifying the magnetic properties of the metal core and, therefore, the electrical output signal.
  • the use of the multifunctional sensor device of this invention as a position sensor is based on the fact that the effect of the earth's magnetic field, whose value varies with the direction, causes the metal core of the sensor element to modify its magnetic properties by changing its orientation. In this case also the sample is fixed to a rigid support, so that the change in the magnetic properties of the core Metallic are only due to modifications of the magnetic field, and not to other variations in the environment.
  • the tensions generated in the sensor element by an external force modify the magnetic properties of the metal core, thus varying the output signal.
  • This fact allows the use of the multifunctional sensor device of this invention as a voltage sensor.
  • Tensions can be pressure, bending, traction and torsion.
  • a single rigid and flexible support is required, respectively, allowing the detection of pressure generated by the flow of fluids (liquids or gases) or the curvature of the sensor element.
  • two small rigid supports are required, each located at both ends of the micro thread, leaving the rest of the free thread.
  • thermochromic outer layer including an additional thermochromic outer layer, IR irradiation will produce tensions at the interface between the metal core and the outer layers, and the device can be used as an optical sensor.
  • an organic outer layer sensitive to external conditions such as the presence of CO, gas, or concentration of certain elements in the liquid phase
  • Figure 1 Experimental assembly of the electrodeposition technique: (1) Electrical contacts, (2) Cathode, (3) Anode, (4) Glass, (5) Micro wire, (6) Inert weight, (7) Platinum cell.
  • Figure 2 Scheme of a magnetic multilayer micro thread: (1) Metallic core, (2)
  • FIG. 3 Experimental assembly of the multifunction sensor device in which an impedance bridge (LCR-meter) is used, which works at the same time as a measuring device and power supply.
  • Figure 4 Experimental assembly of the multifunction sensor device using an independent power supply and measuring device: (1) Preamplifier, (2) Filter (100KHz), (3) Lock-in amplifier, (4) AC source (100KHz; 2mA ), (5) Output signal, (6) Sensor element.
  • a micro wire of diameter 41.6 ⁇ m has been used, consisting of a metal core having a Co 67106 Fe 3184 Ni 1144 B composition. 11 53 Si 1166 and a diameter of 17.4 ⁇ m covered by a pyrex layer with a thickness of 12.1 ⁇ m, on which an Au layer has been deposited by sputtering with a thickness of 30 nm and as an external layer CoNi has been deposited by electrodeposition.
  • the relative percentage of CoNi deposited depends on the electrodeposition current density, while its thickness depends on both the current density and the electrodeposition time, typically between 5 and 15 ⁇ m.
  • the electrodeposition current densities used are 1, 12 and 24 mA / cm 2 and the times of Electrodeposition is 15, 30 and 60 minutes.
  • the length of the metal core covered by glass is 3 cm, while that of the outer layer is 2.5 cm, because the ends of the micro-wire must be free of deposition of the magnetic material in order to facilitate the contacts of the core with the AC power supply and measuring device.
  • a commercial impedance bridge (LCR-meter HP 4284A) has been used as the power supply and measuring device, the frequencies of the alternating signal applied in the core have been IMHz and 100KHz and the amplitude 10OmV.
  • the connection between the impedance bridge and the micro wire has been made with coaxial cables or Cu wire (only in tensile measurements).
  • conductive paint of Ag has been used for the contact between the metallic core of the wire and the wires.
  • the output signal has been collected in all cases in the form of inductance of the metallic core.
  • Example magnetic sensor The sensor element has been placed inside a half of a pair of Helmholtz coils (two coils, parallel and connected, of Cu, of homemade manufacture whose distance is equal to the radius of the coils, 120mm, and with 500 turns each coil that generates a homogeneous axial magnetic field in the intermediate zone of 36.8Oe / A per ampere of power supply current) and in the direction perpendicular to them, which when fed by a commercial DC power supply (Hameg) generate an axial magnetic field, continuous and homogeneous in the intermediate space enters both coils.
  • a multilayer micro wire with a current density and a CoNi electrodeposition time of 24mA / cm 2 and 60 min respectively has been used.
  • Figure 5 shows the dependence of the inductance with the magnetic field for a frequency of IMHz. In the magnetic field range between 0 to 15 Oe the inductance decreases from approximately 9.5 to 2.5 ⁇ H, demonstrating the sensitivity of the sensor device against magnetic field changes.
  • the sensor has been tested in both ultrapure water and air.
  • the ultrapure water heating device has been carried out in a commercial bath (Selecta-Digiterm), while the air heating has been carried out in a commercial oven (Termiber) that has the possibility of taking the connections out of the oven to measure the magnetic properties of the sensor with the temperature.
  • Figure 6 shows the dependence of temperature inductance for a multilayer micro wire with a current density and an electrodeposition time of CoNi of 1 mA / cm 2 and 30 minutes, respectively. In the temperature range between 5 and 60 0 C the inductance increases up to 1200% of its initial value, the sensitivity of the sensor device being very high, 20.22% / ° C.
  • Figure 7 shows the response time of the temperature sensor for a micro thread with a current density and an electrodeposition time of CoNi of 12 mA / cm 2 and 15 minutes, respectively.
  • the temperature change applied in this measure is 23 ° C, 0% corresponding to the inductance value before the temperature change, and 100% to the inductance stabilization value after the temperature change.
  • Defining the time constant of a sensor as the time it takes for the final value to decay 1 / e it has a value for this example of 0.67 seconds, which demonstrates a rapid response time of the sensor device according to the small mass of the thread magnetic multilayer
  • the frequency used has been IMHz.
  • FIG. 8 shows the dependence of the inductance with the angle of rotation for a multilayer magnetic wire whose current density and electrodeposition time of the CoNi has been 24mA / cm 2 and 30 min, respectively. It is observed that as the sensor is rotated, the inductance increases considerably until it reaches a maximum, which corresponds approximately to a 180 ° rotation and from here it begins to decrease until it reaches its initial value, which logically corresponds to 360 ° . The difference between the minimum and the maximum, 1 and 9 ⁇ H, once again demonstrates the high sensitivity of the sensor device. The frequency used has been 100KHz.
  • Example voltage sensor
  • the inductance decreases 1.7 ⁇ H.
  • the tension applied is bending.
  • the micro thread is mounted on a flexible support, one end of the support is fixed to a stationary object and the other is free, the application of bending stresses is produced using a mobile object that flexes the free end of the support , and therefore the micro thread.
  • the inductance increases by 0.5 ⁇ H.
  • the sensitivity can be improved by modifying the parameters of the external layer (composition, current and electrodeposition time) and of the AC signal that crosses the core (frequency and amplitude)

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

The invention relates to a multifunctional sensor device having a sensor element comprising a multilayer magnetic microwire consisting of a metal core which is surrounded by one or more outer layers, in which at least the core or one of the outer layers is magnetic. The operation of the multifunctional sensor device is based on a magnetoelastic coupling between the magnetic layer and the rest of the layers. In order to detect changes in the environment and consequently in the magnetic properties of the sensor element, an AC current is passed through the metal core, picking up the output signal in the form of voltage, impedance, resistance or inductance from the magnetic layer. The optimised response is obtained for a microwire formed by: an amorphous soft magnetic core, an intermediate glass layer and a hard magnetic outer layer. The inventive multifunctional sensor device can be used as a magnetic sensor, a temperature sensor, a voltage sensor, a position sensor, an optical sensor and a chemical sensor.

Description

TítuloTitle
SENSOR MULTIFUNCIONAL BASADO EN MICROHILOS MAGNÉTICOSMULTIFUNCTIONAL SENSOR BASED ON MAGNETIC MICROWAVES
MULTICAPAS CON ACOPLAMIENTO MAGNETOELÁSTICOMULTI-PAPERS WITH MAGNETOELASTIC COUPLING
Sector de la técnicaTechnical sector
La presente invención se refiere al campo de materiales magnéticos, en concreto microhilos magnéticos multicapas, y su aplicación como elementos sensores. En particular, la presente invención se refiere a un dispositivo sensor multifuncional formado por diferentes elementos, entre ellos un microhilo magnético multicapa, y su utilización, no solo como sensor de campo magnético, sino también como sensor de posición, tensión, temperatura, químico y óptico.The present invention relates to the field of magnetic materials, namely multilayer magnetic micro wires, and their application as sensor elements. In particular, the present invention relates to a multifunctional sensor device formed by different elements, including a multilayer magnetic micro wire, and its use, not only as a magnetic field sensor, but also as a position, voltage, temperature, chemical and position sensor. optical.
Estado de la técnicaState of the art
El mundo de los sensores está caracterizado por una profunda variedad de dispositivos, apropiadamente seleccionados para detectar las diferentes condiciones externas. Por ejemplo, numerosos sensores térmicos son presentados como sensores de contacto y no contacto, dispositivos basados en la medida de un flujo de calor o cambios de temperatura y tecnologías sensoras básicas para testar la temperatura que incluye termopares [Hutter Thomas, Danhamer Bernd, Niedermann: Thermoanalytical sensor, and method of producing the thermoanalytical sensor, patent US2005169344 (agosto 2005)], termistores [Welch Richard E, Yang Tung-Sheng, Miller William E: Thermistor sensor probé, patent USD507977S (Agosto 2005)], termómetros de estado sólido [Feder Jan, Beyerle Rick, Byers Stephen, Jones Thomas: Thermal control of a DUT using a thermal control substrate, patent US2005007136 (Enero 2005)], de estado líquido, de gas, de fibra óptica [Jonh Laurence N, Córner Neil A: Optical temperature, patent US5180227 (Enero 1993)], etc. Los sensores magnéticos presentan igualmente una gran variedad en sus tipos y formas de acuerdo con el principio físico de funcionamiento: los hay desde los que actúan por la presencia de un imán permanente, cuyo principio de operación está basado en el uso de unos pequeños contactos de cobre, hasta sensores de tipo fluxómetro que utilizan un voltaje inducido para cambiar la permeabilidad de un núcleo ferromagnético. Los sensores magnéticos más corrientes son: de tipo Fluxgate [Bartington Geoffrey William: Fluxgate sensor, patent GB2411964 (Septiembre 2005)], magnetoresistivos que hacen uso del comportamiento anisótropo de la magnetorresistencia del núcleo [Holmes Stuart Nicholas: Anisotropic magnetoresistive sensor, patent GB2388915 (noviembre 2003)], de efecto HallThe world of sensors is characterized by a deep variety of devices, appropriately selected to detect different external conditions. For example, numerous thermal sensors are presented as contact and non-contact sensors, devices based on the measurement of a heat flow or temperature changes and basic sensor technologies for testing the temperature including thermocouples [Hutter Thomas, Danhamer Bernd, Niedermann: Thermoanalytical sensor, and method of producing the thermoanalytical sensor, patent US2005169344 (August 2005)], thermistors [Welch Richard E, Yang Tung-Sheng, Miller William E: Thermistor sensor tested, patent USD507977S (August 2005)], solid state thermometers [Feder Jan, Beyerle Rick, Byers Stephen, Jones Thomas: Thermal control of a DUT using a thermal control substrate, patent US2005007136 (January 2005)], liquid state, gas, fiber optic [Jonh Laurence N, Corner Neil A : Optical temperature, patent US5180227 (January 1993)], etc. Magnetic sensors also have a great variety in their types and shapes according to the physical principle of operation: there are those from which they act by the presence of a permanent magnet, whose principle of operation is based on the use of small contacts of copper, even fluxometer sensors that use an induced voltage to change the permeability of a ferromagnetic core. The most common magnetic sensors are: Fluxgate type [Bartington Geoffrey William: Fluxgate sensor, patent GB2411964 (September 2005)], magnetoresistives that make use of behavior core magnetoresistive anisotrop [Holmes Stuart Nicholas: Anisotropic magnetoresistive sensor, patent GB2388915 (November 2003)], Hall effect
[Rumenin Chavdar: Microsensor for magnetic field, patent BGl 08430 (junio 2005)], magneto -ópticos basados en el efecto Kerr y Faraday, magnetómetro de RMN (Resonancia Magnética Nuclear), Squid, sensores de tipo spin válvula [Hasegawa[Rumenin Chavdar: Microsensor for magnetic field, patent BGl 08430 (June 2005)], magneto-optics based on the Kerr and Faraday effect, NMR magnetometer (Nuclear Magnetic Resonance), Squid, spin valve sensors [Hasegawa
Naoya: Spin-valve type magnetoresistive sensor and method ofmanufacturing the same, patent US6913836 (julio 2005)], etc. En los sensores químicos se diferencian: los sensores de gas fabricados de material sólido [Salter Carlton, Pendergrass Robert: Thin film gas sensor configuration, patent US2005183967 (agosto 2005)] que mide la variación de una propiedad física como consecuencia de una reacción en la superficie o de un electrolito sólido que detecta el cambio de conductividad eléctrica; los sensores catalíticos, como por ejemplo por Pellistor, que miden el cambio de temperatura debido al calor de reacción en la superficie [Hingold Volodymyr Markovych, Bondarchurk Anatolii Ivanovych, Bubleinyk Vitalii Anatoliiovyc, Medvediev Valerii Mykolaiovych, Koptikov Viktor Pavlovich, Lupo Leonid Heorhiiovych: Catalytic thermal sensor for detecting combustible gases or vapors, patent UA73019 (Enero de 2005)]; los biosensores, que contienen una parte biológica, una enzima o un anticuerpo, que está en contacto con un convertidor físico, que transforme la señal biológica en eléctrica [Kim Chang-Kyung, Yoon Chong-Seung, Lee Ji-Hyun, Yu Cheong-Si: Micro-magnetoelastic biosensor array for detection of DNA hybridization and fabrication method thereof patent US2004014201 (Enero 2004)]. También presentan una gran variedad de dispositivos, los sensores de tensión, de cambio de forma, de presión [Viola Jeffrey L, Moore William T: Magnetoelastic pressure sensor, patent US2004093951 (mayo 2004)] y de torque [Viola Jeffrey Louis, Laidlaw John Francis: Magnetoelastic torque sensor assembly, patent GB2395568 (mayo 2004)], extendiéndose desde los indicadores de cambio de forma (strain gauge) [Morimoto Hideo: Strain gauge type sensor and gauge type sensor unit using the same, patent WO2005045388 (mayo 2005)] hasta las cintas amorfas, usadas para medir cambios de curvatura para observar su respuesta magnética a las tensiones aplicadas [Patente Pfutzner]. Y finalmente los sensores de orientación y posición que incluye: GPS, brújulas, dispositivos basados en elementos magnéticos amorfos [Masuda Sumió, Sumino Keiichi: Position sensor, patent JP8313237( noviembre 1996)]. Todos estos tipos de sensores que se mencionan son solo la punta del iceberg de un larguísimo panorama de familias de sensores. Claramente, la fabricación y utilización de sensores multifuncionales, que puedan ser capaces de detectar diferentes condiciones ambientales, trae ventajas inmediatas en términos de simplificar la tecnología y reducir el tiempo de medida y el coste de fabricación. En las siguientes secciones se introduce un novedoso sensor multifuncional basado en microhilos magnéticos multicapas.Naoya: Spin-valve type magnetoresistive sensor and method ofmanufacturing the same, patent US6913836 (July 2005)], etc. In chemical sensors they differ: gas sensors made of solid material [Salter Carlton, Robert Pendergrass: Thin film gas sensor configuration, patent US2005183967 (August 2005)] that measures the variation of a physical property as a result of a reaction in the surface or of a solid electrolyte that detects the change in electrical conductivity; Catalytic sensors, such as by Pellistor, which measure the temperature change due to the heat of reaction on the surface [Hingold Volodymyr Markovych, Bondarchurk Anatolii Ivanovych, Bubleinyk Vitalii Anatoliiovyc, Medvediev Valerii Mykolaiovych, Koptikov Viktor Pavlovor Catic, Lupo Leonlovy Catalytic: Lupo thermal sensor for detecting fuel gases or vapors, patent UA73019 (January 2005)]; the biosensors, which contain a biological part, an enzyme or an antibody, that is in contact with a physical converter, that transforms the biological signal into electrical [Kim Chang-Kyung, Yoon Chong-Seung, Lee Ji-Hyun, Yu Cheong- Yes: Micro-magnetoelastic biosensor array for detection of DNA hybridization and fabrication method thereof patent US2004014201 (January 2004)]. They also feature a wide variety of devices, tension sensors, shape change, pressure sensors [Viola Jeffrey L, Moore William T: Magnetoelastic pressure sensor, patent US2004093951 (May 2004)] and torque [Viola Jeffrey Louis, Laidlaw John Francis: Magnetoelastic torque sensor assembly, patent GB2395568 (May 2004)], extending from strain gauge indicators [Morimoto Hideo: Strain gauge type sensor and gauge type sensor unit using the same, patent WO2005045388 (May 2005) ] to amorphous tapes, used to measure curvature changes to observe their magnetic response to the applied stresses [Pfutzner patent]. And finally the orientation and position sensors that include: GPS, compasses, devices based on amorphous magnetic elements [Masuda Sumió, Sumino Keiichi: Position sensor, patent JP8313237 (November 1996)]. All these types of sensors that are mentioned are just the tip of the iceberg of a very long panorama of sensor families. Clearly, the manufacture and use of multifunctional sensors, which may be able to detect different environmental conditions, brings immediate advantages in terms of simplifying technology and reducing measurement time and manufacturing cost. In the following sections, a new multifunctional sensor based on multilayer magnetic micro wires is introduced.
Los materiales con forma de hilo y de reducido tamaño, típicamente unas pequeñas decenas de mieras, exhiben unas propiedades magnéticas específicas y de gran interés tecnológico [M. Vázquez, Soft magnetic wires, Physica B, VoI. 299, pp. 302-313, 2001]. Este tipo de materiales se denominan microhilos magnéticos amorfos, y pueden ser obtenidos mediante dos técnicas de solidificación ultrarrápida: el método de solidificación ultrarrápida y estiramiento (Quenching and Drawing)[Gorynin; Igor V., Farmakovsky, Boris V., Khinsky; Alexander P., Kalogina, Karina V., Riviere V., Alfredo, Szekely; Julián, Saluja, Navtej S.; Method of casting amorphous and microcrystalline microwires; US Patent n° 5240066 (agosto 1993)] y el método de solidificación ultrarrápida en agua rotando (Quenching into rotating water) [I. Ohnaka, MeIt spinning into a liquid cooling médium, Int. J. of Rapid Solidification, 4 (1985) 219-236]. El microhilo magnético amorfo obtenido por el primer método, está recubierto por una capa de vidrio aislante (glass-coated microwires). En este tipo de microhilos, el núcleo metálico tiene una composición ferromagnética, y las dimensiones del diámetro del núcleo y del espesor del vidrio oscila entre 1 y 200 μm. Uno de los principales campos de aplicación de estos microhilos magnéticos amorfos, con o sin vidrio, reside en los sensores de campo magnético [ M. Vázquez; Giant magneto- impedance in soft magnetic wires, J. Magn. Magn. Mater., 226-230 (2001) 693-699; Antonenco; Alexandru; Brook-Levinson; Edward, Manov; Vladimir, Sorkine; Evgeni, Tarakanov; Yuri; Glass-coated amorphous magnetic microwire marker for article surveillance; US Patent n° 6,441 ,737 (Agosto 2002)].The wire-shaped and small-sized materials, typically a few dozen microns, exhibit specific magnetic properties of great technological interest [M. Vázquez, Soft magnetic wires, Physica B, VoI. 299, pp. 302-313, 2001]. These types of materials are called amorphous magnetic microwires, and they can be obtained by two ultrafast solidification techniques: the ultrafast solidification and stretching method (Quenching and Drawing) [Gorynin; Igor V., Farmakovsky, Boris V., Khinsky; Alexander P., Kalogina, Karina V., Riviere V., Alfredo, Szekely; Julián, Saluja, Navtej S .; Method of casting amorphous and microcrystalline microwires; US Patent No. 5240066 (August 1993)] and the method of ultrafast solidification in rotating water (Quenching into rotating water) [I. Ohnaka, MeIt spinning into a liquid cooling medium, Int. J. of Rapid Solidification, 4 (1985) 219-236]. The amorphous magnetic micro wire obtained by the first method is covered by a layer of insulated glass (glass-coated microwires). In this type of microwire, the metal core has a ferromagnetic composition, and the dimensions of the diameter of the core and the thickness of the glass range between 1 and 200 μm. One of the main fields of application of these amorphous magnetic micro wires, with or without glass, resides in the magnetic field sensors [M. Vázquez; Giant magneto- impedance in soft magnetic wires, J. Magn. Magn. Mater., 226-230 (2001) 693-699; Antonenco; Alexandru; Brook-Levinson; Edward, Manov; Vladimir, Sorkine; Evgeni, Tarakanov; Yuri; Glass-coated amorphous magnetic microwire marker for article surveillance; US Patent No. 6,441, 737 (August 2002)].
Tomando los microhilos amorfos como punto de referencia, una nueva generación de microhilos puede ser obtenida: los microhilos magnéticos multicapas. Los microhilos magnéticos multicapas están constituidos, en primer lugar, por un núcleo metálico amorfo, obtenido por cualquiera de los dos métodos de solidificación ultrarrápida anteriormente mencionados, y en segundo lugar, por una o varias capas que son depositadas sobre dicho núcleo (con o sin capa aislante intermedia de vidrio), de forma que al menos el núcleo o una de las cubiertas debe ser magnética [K. R. Pirota, M. Hernández Velez, D. Navas, A. Zhukov, M. Vázquez; Multilayer microwires: tayloring magnetic behaviour by sputtering and electroplating, Adv. Funct. Mater., 14 (2004) 266-268; K. R. Pirota, M. Provencio, K. L. García, R. Escobar-Galindo, P. Mendoza Zelis, M. Hernández Velez, M. Vázquez; Bi-magnetic microwires: a novel family of materials with controlled magnetic behaviour, J. Magn. Magn. Mater., 290-291 (2005) 68-73]. La deposición de estas capas externas pueden ser realizadas mediante numerosas de técnicas: sputtering, electrodeposición, CVD (Chemical Vapor Deposition), PVD (Physic Vapor Deposition), etc. La técnica de la electrodeposición es fácil y barata de aplicar. En el caso de los microhilos recubiertos de vidrio (glass-coated), esta técnica requiere que la superficie sea recubierta, previamente, por sputtering de un metal conductor (Au, Ag, Ti) de espesor nanométrico, desempeñando la función de electrodo en la posterior electrodeposición. La electrodeposición se realiza sumergiendo el microhilo en una solución electrolítica, que se encuentra dentro de una celda electrolítica de un metal inerte (en general platino) con geometría cilindrica (para garantizar la deposición homogénea del material). Mientras dicho metal está conectado al polo positivo de la fuente de alimentación, el microhilo se conecta al polo negativo, de forma que al aplicar corriente se produce la deposición del material metálico sobre la superficie del microhilo. En la figura 1 se muestra el montaje experimental de la técnica de electrodeposición. En la figura 2 se observa un esquema del microhilo multicapa magnético con capa de vidrio intermedia y capa nanométrica de (de) un metal noble que precede a la capa metálica externa [K. R. Pirota, M. Hernández Velez, D. Navas, A. Zhukov, M. Vázquez; Multilayer microwires: tayloring magnetic behaviour by sputtering and electroplating, Adv. Funct. Mater., 14 (2004) 266-268] [K. R. Pirota, M. Provencio, K. L. García, R. Escobar-Galindo, P. Mendoza Zelis, M. Hernández Velez, M. Vázquez; Bi-magnetic microwires: a novel family of materials with controlled magnetic behaviour, J. Magn. Magn. Mater., 290-291 (2005) 68-73]. Los microhilos magnéticos multicapas formados por diferentes capas, con o sin capa aislante de vidrio intermedia, constituyen una nueva familia de materiales con excelentes propiedades magnéticas y mecánicas que les confiere un gran potencial en aplicaciones de sensores. La presente patente protege un dispositivo sensor multifuncional basado en microhilos magnéticos multicapa y su utilización, no solo como sensores de campo magnético, sino también como sensores de posición, tensión, temperatura, químicos y ópticos. Descripción BreveTaking amorphous micro wires as a reference point, a new generation of micro wires can be obtained: multilayer magnetic micro wires. The multilayer magnetic microwires are constituted, first, by an amorphous metallic core, obtained by any of the two ultrafast solidification methods mentioned above, and secondly, by one or more layers that are deposited on said core (with or without intermediate insulating layer of glass), so that at least the core or one of the covers must be magnetic [KR Pirota, M. Hernández Velez, D. Navas, A. Zhukov, M. Vázquez; Multilayer microwires: tayloring magnetic behavior by sputtering and electroplating, Adv. Funct. Mater., 14 (2004) 266-268; KR Pirota, M. Provencio, KL García, R. Escobar-Galindo, P. Mendoza Zelis, M. Hernández Velez, M. Vázquez; Bi-magnetic microwires: a novel family of materials with controlled magnetic behavior, J. Magn. Magn. Mater., 290-291 (2005) 68-73]. The deposition of these outer layers can be performed by numerous techniques: sputtering, electrodeposition, CVD (Chemical Vapor Deposition), PVD (Physic Vapor Deposition), etc. The electrodeposition technique is easy and cheap to apply. In the case of glass-coated micro-wires, this technique requires that the surface be covered, previously, by sputtering of a conductive metal (Au, Ag, Ti) of nanometric thickness, performing the function of electrode in the subsequent electrodeposition. The electrodeposition is carried out by immersing the micro wire in an electrolytic solution, which is inside an electrolytic cell of an inert metal (generally platinum) with cylindrical geometry (to guarantee the homogeneous deposition of the material). While said metal is connected to the positive pole of the power supply, the micro wire is connected to the negative pole, so that when applying current the deposition of the metallic material occurs on the surface of the micro wire. The experimental assembly of the electrodeposition technique is shown in Figure 1. Figure 2 shows a scheme of the multilayer magnetic micro wire with intermediate glass layer and nanometric layer of (of) a noble metal that precedes the outer metal layer [KR Pirota, M. Hernández Velez, D. Navas, A. Zhukov , M. Vázquez; Multilayer microwires: tayloring magnetic behavior by sputtering and electroplating, Adv. Funct. Mater., 14 (2004) 266-268] [KR Pirota, M. Provencio, KL García, R. Escobar-Galindo, P. Mendoza Zelis, M. Hernández Velez, M. Vázquez; Bi-magnetic microwires: a novel family of materials with controlled magnetic behavior, J. Magn. Magn. Mater., 290-291 (2005) 68-73]. The multilayer magnetic micro wires formed by different layers, with or without intermediate glass insulating layer, constitute a new family of materials with excellent magnetic and mechanical properties that gives them great potential in sensor applications. The present patent protects a multifunctional sensor device based on multilayer magnetic microwires and their use, not only as magnetic field sensors, but also as position, voltage, temperature, chemical and optical sensors. Brief description
Un objeto de esta invención se refiere a un dispositivo sensor multifuncional, que puede detectar diferentes modificaciones en el medio, y que comprende al menos: a) Un microhilo magnético multicapa como elemento sensor, con geometría cilindrica, formado por un núcleo metálico y recubierto por una o varias capas externas, con o sin capa aislante intermedia de vidrio, siendo necesario que, o bien el núcleo metálico, o bien una de las capas externas, sea magnética de forma que haya acoplamiento magnetoelástico, b) Una fuente de alimentación para aplicar una corriente alterna a través del núcleo metálico del elemento sensor, c) Un aparato de medida de las propiedades magnéticas del microhilo magnético multicapa, que dependerán de ciertas condiciones ambientales externas cambiantes, d) Dos conexiones eléctricas que conectan el elemento sensor con el aparato de medida y la fuente de alimentación , y e) Un soporte rígido o flexible, sobre el que queda fijado el elemento sensor o microhilo multicapa.An object of this invention relates to a multifunctional sensor device, which can detect different modifications in the medium, and which comprises at least: a) A multilayer magnetic micro thread as a sensor element, with cylindrical geometry, formed by a metal core and covered by one or more external layers, with or without intermediate insulating glass layer, it being necessary that either the metal core, or one of the outer layers, be magnetic so that there is magnetoelastic coupling, b) A power supply to apply an alternating current through the metallic core of the sensor element, c) An apparatus for measuring the magnetic properties of the multilayer magnetic micro-wire, which will depend on certain changing external environmental conditions, d) Two electrical connections that connect the sensor element with the apparatus of measure and the power supply, and e) A rigid or flexible support, on which the element is fixed nsor or multilayer micro thread.
Otro objeto de la invención es la utilización de este dispositivo sensor multiíuncional en el campo de los sensores, en particular como sensor magnético, de tensión, de temperatura, de posición, óptico y químico.Another object of the invention is the use of this multi-functional sensor device in the field of sensors, in particular as a magnetic, voltage, temperature, position, optical and chemical sensor.
Descripción detalladaDetailed description
La presente invención se refiere a un determinado dispositivo, formado por varios elementos, entre ellos un elemento de microhilos magnéticos multicapa, capaz de detectar modificaciones en el medio externo, funcionando como sensor magnético, térmico, de posición, de tensión, químico y óptico. Por tanto, el dispositivo sensor es multifuncional, siendo esta una ventaja importante frente a otros dispositivos existentes en el mercado. Otras ventajas que presenta el dispositivo sensor multifuncional residen en su bajo coste, alta sensibilidad, rápido tiempo de respuesta y de fácil integración en cualquier dispositivo miniaturizado debido a su pequeña masa y a sus reducidas dimensiones. Por lo tanto, un objeto de la invención hace referencia a un dispositivo sensor multifuncional, en adelante dispositivo sensor multifuncional de la invención, que puede utilizarse como sensor de diferentes parámetros, y que comprende, por lo menos: a) Un microhilo magnético multicapa como elemento sensor, con geometría cilindrica, formado por un núcleo metálico y recubierto por una o varias capas externas, con o sin capa aislante intermedia de vidrio, apropiadas con el ambiente o medio que se quiere detectar. Es necesario que, o bien el núcleo metálico, o bien una de las capas externas sea magnética, de forma que haya acoplamiento magnetoelástico, b) Una fuente de alimentación, que consiste en un equipo que genera un voltaje o una corriente alterna de pequeña amplitud en el núcleo del microhilo multicapa, típicamente entre 5OmV y IV, c) Un aparato de medida de las propiedades magnéticas del microhilo magnético multicapa, capaz de detectar cambios ambientales externos y convertirlos en señal electrónica, d) Un soporte o material plano no conductor sobre el que se apoya el elemento sensor, pudiendo ser rígido o flexible, dependiendo de las condiciones ambientales a detectar, y e) Dos conexiones de un elemento conductor capaz de transportar una corriente eléctrica, que conectan el elemento sensor con la fuente de alimentación y el aparato de medida.The present invention relates to a certain device, formed by several elements, including a multilayer magnetic micro-wire element, capable of detecting modifications in the external environment, functioning as a magnetic, thermal, position, tension, chemical, and optical sensor. Therefore, the sensor device is multifunctional, this being an important advantage over other devices on the market. Other advantages of the multifunctional sensor device are its low cost, high sensitivity, fast response time and easy integration into any miniaturized device due to its small mass and small dimensions. Therefore, an object of the invention refers to a multifunctional sensor device, hereinafter multifunctional sensor device of the invention, which can be used as a sensor of different parameters, and which comprises, at least: a) A multilayer magnetic micro wire as sensor element, with cylindrical geometry, formed by a metal core and covered by one or more external layers, with or without intermediate insulating glass layer, appropriate to the environment or medium to be detected. It is necessary that either the metal core, or one of the outer layers is magnetic, so that there is magnetoelastic coupling, b) A power supply, consisting of equipment that generates a voltage or alternating current of small amplitude in the core of the multilayer micro wire, typically between 5OmV and IV, c) An apparatus for measuring the magnetic properties of the multilayer magnetic wire, capable of detecting external environmental changes and converting them into an electronic signal, d) A non-conductive support or flat material on the one that supports the sensor element, being able to be rigid or flexible, depending on the environmental conditions to be detected, and e) Two connections of a conductive element capable of transporting an electric current, which connect the sensor element with the power supply and the apparatus of measure.
Un objeto particular de la presente invención lo constituye el dispositivo sensor multifuncional de la presente invención en el que el núcleo metálico del elemento sensor descrito en a) es magnético. Un objeto particular de la presente invención lo constituye el dispositivo sensor multifuncional de la presente invención en el que una de las capas externas del elemento sensor descrito en a) es magnética.A particular object of the present invention is the multifunctional sensor device of the present invention in which the metal core of the sensor element described in a) is magnetic. A particular object of the present invention is the multifunctional sensor device of the present invention in which one of the outer layers of the sensor element described in a) is magnetic.
Un objeto particular de la presente invención lo constituye el dispositivo sensor multifuncional de la presente invención en el que tanto el núcleo metálico como una de las capas externas del elemento sensor descrito en a) son magnéticas.A particular object of the present invention is the multifunctional sensor device of the present invention in which both the metal core and one of the outer layers of the sensor element described in a) are magnetic.
Una realización particular de la presente invención lo constituye el dispositivo sensor multifuncional de la presente invención en el que el elemento sensor descrito en a) es un microhilo formado por cuatro capas: un núcleo metálico magnético, una capa intermedia de vidrio sobre la que se deposita una capa nanométrica de Au u otro metal noble y una capa externa magnética, tal y como se muestra en la figura 2. Un objeto particular de la presente invención lo constituye el dispositivo sensor multifuncional de la presente invención en el que una de las capas externas del elemento sensor descrito en a) es termocrómica, lo que posibilita su utilización como sensor óptico.A particular embodiment of the present invention is constituted by the multifunctional sensor device of the present invention in which the sensor element described in a) is a micro-wire formed by four layers: a magnetic metal core, a layer glass intermediate on which a nanometric layer of Au or other noble metal and a magnetic outer layer are deposited, as shown in Figure 2. A particular object of the present invention is the multifunctional sensor device of the present invention in which one of the outer layers of the sensor element described in a) is thermochromic, which allows its use as an optical sensor.
Un objeto particular de la presente invención lo constituye el dispositivo sensor multifuncional de la presente invención en el que una de las capas externas del elemento sensor descrito en a) es orgánica, y sensible a las condiciones externas (como presencia de CO, gas, o concentración de ciertos elementos en fase líquido), lo que posibilita su utilización como sensor químico.A particular object of the present invention is the multifunctional sensor device of the present invention in which one of the outer layers of the sensor element described in a) is organic, and sensitive to external conditions (such as the presence of CO, gas, or concentration of certain elements in the liquid phase), which allows its use as a chemical sensor.
Un objeto particular de la presente invención lo constituye el dispositivo sensor multifuncional de la presente invención en el que el núcleo metálico del elemento sensor descrito en a) esta formado por una aleación de Fe, Co o Ni, o de combinaciones entre ellos, o con otro metal, en diferentes porcentajes.A particular object of the present invention is the multifunctional sensor device of the present invention in which the metal core of the sensor element described in a) is formed by an alloy of Fe, Co or Ni, or combinations thereof, or with another metal, in different percentages.
Un objeto particular de la presente invención lo constituye el dispositivo sensor multifuncional de la presente invención en el que el núcleo metálico del elemento sensor descrito en a) tiene porcentajes de Si, B u otros metaloides, que garantizan una estructura amorfa, y/o de Cr, Mo u otros metales de transición, que pueden ser añadidos para mejorar la resistencia a la corrosión y oxidación.A particular object of the present invention is the multifunctional sensor device of the present invention in which the metal core of the sensor element described in a) has percentages of Si, B or other metalloids, which guarantee an amorphous structure, and / or Cr, Mo or other transition metals, which can be added to improve resistance to corrosion and oxidation.
Un objeto particular de la presente invención es el dispositivo sensor multifuncional de la presente invención en el que, como aparato de medida descrito en c) se utiliza un osciloscopio, amplificador, multímetro u otros dispositivos electrónicos, de forma que la señal de salida se recoge en forma de voltaje, resistencia, impedancia o inductancia de la capa magnética.A particular object of the present invention is the multifunction sensor device of the present invention in which, as a measuring device described in c) an oscilloscope, amplifier, multimeter or other electronic devices is used, so that the output signal is collected in the form of voltage, resistance, impedance or inductance of the magnetic layer.
Un objeto particular de la presente invención es el dispositivo sensor multifuncional de la presente invención en el que se utiliza un puente de impedancia (medidor de inductancia, capacitancia y resistencia, LCR-metro) que funcione al mismo tiempo como fuente de alimentación y aparato de medida, de forma que se consigue simplificar el dispositivo sensor.A particular object of the present invention is the multifunctional sensor device of the present invention in which an impedance bridge (inductance, capacitance and resistance meter, LCR-meter) is used which functions at the same time as a power supply and apparatus for measurement, so that the sensor device is simplified.
Un elemento particular de la presente invención es el dispositivo sensor multifuncional de la presente invención en el que no solo el elemento sensor esta sujeto al soporte, sino que los demás elementos del dispositivo son fijados, e incluso todo el dispositivo es montado en un circuito electrónico impreso.A particular element of the present invention is the multifunctional sensor device of the present invention in which not only the sensor element is attached to the support, but that the other elements of the device are fixed, and even the entire device is mounted on a printed electronic circuit.
Un elemento particular de la presente invención es el dispositivo sensor multifuncional de la presente invención en el que las conexiones, a título ilustrativo y sin que limite el alcance de la presente invención, pertenecen al siguiente grupo: cables conductores, pinturas conductoras, soldaduras a baja temperatura y/o pistas de circuito impreso (en el caso de tener todo el dispositivo montado en un circuito electrónico impreso). Un elemento particular de la presente invención es el dispositivo sensor multiíuncional de la presente invención en el que el contacto entre elemento sensor descrito en a) y las conexiones descritas en e) se realiza de forma que la corriente aplicada pase solo por el núcleo metálico y no por las capas externas.A particular element of the present invention is the multifunctional sensor device of the present invention in which the connections, by way of illustration and without limiting the scope of the present invention, belong to the following group: conductive cables, conductive paints, low welding temperature and / or printed circuit tracks (in the case of having the entire device mounted on a printed electronic circuit). A particular element of the present invention is the multi-functional sensor device of the present invention in which the contact between the sensor element described in a) and the connections described in e) is made so that the applied current passes only through the metal core and Not by the outer layers.
Dos ejemplos diferentes de dispositivo sensor, con puente de impedancia y sin él, se muestran respectivamente en las figuras 3 y 4. Otro objeto de la invención de la patente es la utilización del dispositivo sensor multifuncional de la presente invención en la tecnología de los sensores, y más concretamente, su utilización como sensor magnético, de temperatura, de posición, de tensión, óptico o químico.Two different examples of sensor device, with and without impedance bridge, are shown respectively in Figures 3 and 4. Another object of the invention of the patent is the use of the multifunctional sensor device of the present invention in sensor technology. , and more specifically, its use as a magnetic, temperature, position, voltage, optical or chemical sensor.
La utilización del dispositivo sensor multifuncional como sensor se basa en el acoplamiento magnetoelástico que aparece en la(s) capa(s) magnética(s) como consecuencia de estar sometida(s) a una tensión mecánica, el cual depende de la composición de las capas del microhilo.The use of the multifunctional sensor device as a sensor is based on the magnetoelastic coupling that appears in the magnetic layer (s) as a result of being subjected to a mechanical tension, which depends on the composition of the micro thread layers.
Un caso particular para el cual se obtiene una respuesta optimizada es el de un microhilo con núcleo amorfo ferromagnético blando, capa de vidrio intermedia y una capa externa magnéticamente dura que produce un campo magnético axial DC, que satura el núcleo metálico. A la misma vez que el núcleo está saturado, una corriente alterna es aplicada a través de dicho núcleo, produciendo un campo magnético circular AC de pequeña amplitud, perpendicular al eje del hilo. Este pequeño campo alterno hace que la imanación en el núcleo oscile con un ángulo pequeño, -&, entorno al eje axial. La aparición de tensiones, σ, en el núcleo, causa que varíe el ángulo de oscilación de la imanación (acoplamiento magnetoelástico, MEC) respecto a la situación inicial. El cambio en la respuesta magnetoelástica del núcleo saturado se produce cuando varían las condiciones externas que generan esas tensiones. Este nuevo método de detección de la señal de salida se basa en un antiguo método propuesto por Narita en 1980 (método SAMR) [K. Narita; Measurement of Saturation Magnetostriction of Thin amorphous ríbbon by means of Small Angle Magnetisation Rotation; IEEE Trans. Magn.; 16 (1980) 435-439] [P.L. Rossister, T. Keane; Small-angle magnetisation rotation of amorphous ríbbons under tensile and compressive stresses. J. Mater. Sci., 21 (1986) 3248-3252][A. Hernando, M. Vázquez, V. Madurga, H. Kronmuller. Modification of Saturation magnetostriction constant after termal treatments for CossFesNiioBiβSiπ amorphous ríbbon. J. Magn. Magn. Mater., 37(2): 161-163, 1983], usado para medir propiedades magnéticas (constante de saturación de la magnetoestricción). La diferencia entre el presente método, para la utilización del dispositivo como sensor, con el de Narita, reside en que el primero simplifica drásticamente el dispositivo de detección, de forma que no necesita ningún tipo de bobinas de Helmholtz, para crear los campos magnéticos, ni solenoides, para recoger la señal de salida, ni tampoco un dispositivo externo que aplique tensiones mecánicas en el microhilo. La utilización del dispositivo sensor multifuncional de esta invención como sensor magnético se basa en que el elemento sensor, en el que al menos o bien el núcleo metálico, o bien una de las capas externas es magnética, montado sobre un soporte rígido, modifica sus propiedades magnéticas con pequeños cambios de campo magnético externo. Esto es debido al acoplamiento magnetoelástico de una de las capas externas con el núcleo metálico, puesto que cuando se aplica un campo magnético externo, la magnetoestricción de la(s) capa(s) (propiedad de los materiales ferromagnéticos que cambian de tamaño bajo la aplicación de un campo magnético) produce tensiones internas en el microhilo multicapa, variando la señal de salida. La utilización del dispositivo sensor multifuncional de esta invención como sensor de temperatura se basa en que cuando se produce un cambio de temperatura en el medio, la diferencia de los coeficientes de expansión térmica entre el núcleo metálico y las capas externas genera tensiones internas en el núcleo, modificándose las propiedades magnéticas del núcleo metálico y, por tanto, la señal eléctrica de salida. La utilización del dispositivo sensor multifuncional de esta invención como sensor de posición se basa en que el efecto del campo magnético terrestre, cuyo valor varía con la dirección, produce que el núcleo metálico del elemento sensor modifique sus propiedades magnéticas al cambiar su orientación. En este caso también la muestra está fija a un soporte rígido, para que el cambio en las propiedades magnéticas del núcleo metálico sean sólo debidas a modificaciones del campo magnético, y no a otro tipo de variaciones en el entorno.A particular case for which an optimized response is obtained is that of a micro wire with a soft ferromagnetic amorphous core, intermediate glass layer and a magnetically hard outer layer that produces an axial magnetic field DC, which saturates the metal core. At the same time that the core is saturated, an alternating current is applied through said core, producing a circular magnetic field AC of small amplitude, perpendicular to the axis of the wire. This small alternating field causes the magnetization in the core to oscillate with a small angle, - &, around the axial axis. The appearance of tensions, σ, in the nucleus, causes the angle of oscillation of the magnetization (magnetoelastic coupling, MEC) to vary with respect to the initial situation. The change in the magnetoelastic response of the saturated nucleus occurs when the external conditions that generate these tensions vary. This new method of detecting the output signal is based on an old method proposed by Narita in 1980 (method SAMR) [K. Nose Measurement of Saturation Magnetostriction of Thin amorphous ríbbon by means of Small Angle Magnetisation Rotation; IEEE Trans. Magn .; 16 (1980) 435-439] [PL Rossister, T. Keane; Small-angle magnetization rotation of amorphous ríbbons under tensile and compressive stresses. J. Mater. Sci., 21 (1986) 3248-3252] [A. Hernando, M. Vázquez, V. Madurga, H. Kronmuller. Modification of Saturation magnetostriction constant after thermal treatments for CossFesNiioBiβSiπ amorphous ríbbon. J. Magn. Magn. Mater., 37 (2): 161-163, 1983], used to measure magnetic properties (saturation constant of magnetostriction). The difference between the present method, for the use of the device as a sensor, with that of Narita, is that the first one dramatically simplifies the detection device, so that it does not need any type of Helmholtz coils, to create the magnetic fields, nor solenoids, to pick up the output signal, nor an external device that applies mechanical stresses on the micro thread. The use of the multifunctional sensor device of this invention as a magnetic sensor is based on the fact that the sensor element, in which at least either the metal core, or one of the outer layers is magnetic, mounted on a rigid support, modifies its properties magnetic with small changes of external magnetic field. This is due to the magnetoelastic coupling of one of the outer layers with the metal core, since when an external magnetic field is applied, the magnetostriction of the layer (s) (property of ferromagnetic materials that change in size under the application of a magnetic field) produces internal tensions in the multilayer micro thread, varying the output signal. The use of the multifunctional sensor device of this invention as a temperature sensor is based on the fact that when a temperature change occurs in the medium, the difference in the coefficients of thermal expansion between the metal core and the outer layers generates internal stresses in the core , modifying the magnetic properties of the metal core and, therefore, the electrical output signal. The use of the multifunctional sensor device of this invention as a position sensor is based on the fact that the effect of the earth's magnetic field, whose value varies with the direction, causes the metal core of the sensor element to modify its magnetic properties by changing its orientation. In this case also the sample is fixed to a rigid support, so that the change in the magnetic properties of the core Metallic are only due to modifications of the magnetic field, and not to other variations in the environment.
Las tensiones generadas en el elemento sensor por una fuerza externa modifican las propiedades magnéticas del núcleo metálico, variando por tanto la señal de salida. Este hecho posibilita la utilización del dispositivo sensor multifuncional de esta invención como sensor de tensión. Las tensiones pueden ser de presión, flexión, tracción y torsión. Para poder detectar las dos primeras se requiere de un único soporte rígido y flexible respectivamente, permitiendo la detección de presión generada por el flujo de fluidos (líquidos o gases) o bien la curvatura del elemento sensor. Para la detección de tensiones de tracción o torsión, se requiere de dos pequeños soportes rígidos, cada uno situado a ambos extremos del microhilo, quedando el resto del microhilo libre. La introducción de una capa adicional en el elemento sensor del dispositivo sensor multifuncional de la presente invención posibilita su utilización para otro tipo de aplicaciones. Así, incluyendo una capa externa adicional termocrómica, la irradiación IR producirá tensiones en la interfase entre el núcleo metálico y las capas externas, y el dispositivo se podrá utilizar como sensor óptico. De igual forma, la inclusión de una capa externa orgánica sensible a las condiciones externas (como presencia de CO, gas, o concentración de ciertos elementos en fase líquido), inducirá tensiones en el núcleo metálico, por expansión de dicha capa como consecuencia de la absorción o reacción del elemento seleccionado, y posibilitará el uso del dispositivo sensor multifuncional como sensor químico, con aplicaciones en detección de humo, o diversos gases.The tensions generated in the sensor element by an external force modify the magnetic properties of the metal core, thus varying the output signal. This fact allows the use of the multifunctional sensor device of this invention as a voltage sensor. Tensions can be pressure, bending, traction and torsion. In order to detect the first two, a single rigid and flexible support is required, respectively, allowing the detection of pressure generated by the flow of fluids (liquids or gases) or the curvature of the sensor element. For the detection of tensile or torsional stresses, two small rigid supports are required, each located at both ends of the micro thread, leaving the rest of the free thread. The introduction of an additional layer in the sensor element of the multifunctional sensor device of the present invention allows its use for other types of applications. Thus, including an additional thermochromic outer layer, IR irradiation will produce tensions at the interface between the metal core and the outer layers, and the device can be used as an optical sensor. Likewise, the inclusion of an organic outer layer sensitive to external conditions (such as the presence of CO, gas, or concentration of certain elements in the liquid phase), will induce tensions in the metal core, by expansion of said layer as a result of the absorption or reaction of the selected element, and will allow the use of the multifunctional sensor device as a chemical sensor, with applications in smoke detection, or various gases.
Descripción de las figurasDescription of the figures
Figura 1: Montaje experimental de la técnica de electrodeposición: (1) Contactos eléctricos, (2) Cátodo, (3) Ánodo, (4) Vidrio, (5) Microhilo, (6) Peso inerte, (7) Celda de platino.Figure 1: Experimental assembly of the electrodeposition technique: (1) Electrical contacts, (2) Cathode, (3) Anode, (4) Glass, (5) Micro wire, (6) Inert weight, (7) Platinum cell.
Figura 2: Esquema de un microhilo multicapa magnético: (1) Núcleo metálico, (2)Figure 2: Scheme of a magnetic multilayer micro thread: (1) Metallic core, (2)
Vidrio, (3) metal noble depositado por sputtering (Au, Ag, Ti...), (4) Metal electrodepositado (Ni, Co, Fe, Ag, Cu...). Figura 3: Montaje experimental del dispositivo sensor multifuncional en el que se utiliza un puente de impedancia (LCR-metro), que funciona al mismo tiempo como aparato de medida y fuente de alimentación. Figura 4: Montaje experimental del dispositivo sensor multifuncional usando una fuente de alimentación y aparato de medida independientes: (1) Preamplificador, (2) Filtro (100KHz), (3) Lock-in amplificador, (4) Fuente AC (100KHz; 2mA), (5) Señal de salida, (6) Elemento sensor. Figura 5: Variación de la inductancia en función del campo magnético aplicado (Medidas de magnetoinductancia) para un dispositivo sensor multifuncional con microhilo multicapas con j= 24mA/cm2 y t^60min.Glass, (3) noble metal deposited by sputtering (Au, Ag, Ti ...), (4) Electrodeposited metal (Ni, Co, Fe, Ag, Cu ...). Figure 3: Experimental assembly of the multifunction sensor device in which an impedance bridge (LCR-meter) is used, which works at the same time as a measuring device and power supply. Figure 4: Experimental assembly of the multifunction sensor device using an independent power supply and measuring device: (1) Preamplifier, (2) Filter (100KHz), (3) Lock-in amplifier, (4) AC source (100KHz; 2mA ), (5) Output signal, (6) Sensor element. Figure 5: Variation of the inductance as a function of the applied magnetic field (Magnetoinductance measurements) for a multifunctional sensor device with multilayer micro wire with j = 24mA / cm 2 and t ^ 60min.
Figura 6: Variación de la inductancia, L, con la temperatura para un dispositivo sensor multifuncional con microhilo multicapas con j=lmA/cm2 y t^30min Figura 7: Tiempo de respuesta del sensor de temperatura para un dispositivo sensor multifuncional con microhilos multicapas j=12mA/cm2 y t^l5min Figura 8: Dependencia de la inductancia con la orientación del elemento sensor en un dispositivo sensor multifuncional con microhilos multicapas con j=24mA/cm2 y t^30min Figura 9: Variación de la inductancia con la tensión mecánica (de tracción) aplicada en el núcleo metálico de un dispositivo sensor multifuncional con microhilo multicapas con j=24mA/cm2 y t^30minFigure 6: Variation of the inductance, L, with the temperature for a multifunctional sensor device with multilayer micro thread with j = lmA / cm 2 and t ^ 30min Figure 7: Response time of the temperature sensor for a multifunction sensor device with multilayer micro wires j = 12mA / cm 2 yt ^ l5min Figure 8: Inductance dependence with the orientation of the sensor element in a multifunctional sensor device with multilayer micro wires with j = 24mA / cm 2 and t ^ 30min Figure 9: Variation of the inductance with mechanical tension (of traction) applied in the metallic core of a multifunctional sensor device with multilayer micro thread with j = 24mA / cm 2 and t ^ 30min
Figura 10: Variación de la inductancia con la flexión mecánica aplicada en un dispositivo sensor multifuncional con un microhilo multicapa con j=24mA/cm2 y t^30min.Figure 10: Variation of the inductance with the mechanical flexion applied in a multifunctional sensor device with a multilayer micro wire with j = 24mA / cm 2 and t ^ 30min.
Ejemplos de realización de la invenciónExamples of embodiment of the invention
Todos los ejemplos que se citan a continuación han sido realizados con el dispositivo sensor multifuncional que presenta las siguientes características: Como elemento sensor se ha utilizado un microhilo de diámetro 41.6 μm, constituido por un núcleo metálico tiene una composición Co67106Fe3184Ni1144B11 53Si1166 y un diámetro de 17.4 μm recubierto por una capa pirex de espesor 12.1μm, sobre el cual se ha depositado una capa de Au por sputtering con un espesor de 30 nm y como capa externa se ha depositado CoNi por electrodeposición. El porcentaje relativo de CoNi depositado depende de la densidad de corriente de la electrodeposición, mientras que su espesor depende tanto de la densidad de corriente como del tiempo de electrodeposición, típicamente entre 5 y 15 μm. En los ejemplos las densidades de corriente de electrodeposición usadas son 1, 12 y 24 mA/cm2 y los tiempos de electrodeposición son de 15, 30 y 60 minutos. La longitud del núcleo metálico recubierto por vidrio es de 3 cm, mientras que la de la capa externa es de 2.5cm, debido a que los extremos del microhilo deben de estar libre de deposición del material magnético con el fin de facilitar los contactos del núcleo con la fuente de alimentación AC y el aparato de medida . Como fuente de alimentación y aparato de medida se ha utilizado un puente de impedancia comercial (LCR-metro HP 4284A), las frecuencias de la señal alterna aplicada en el núcleo han sido IMHz y 100KHz y la amplitud 10OmV. Las conexión entre el puente de impedancia y el microhilo se ha realizado con cables coaxiales o hilo de Cu (solo en medidas de tracción). Para el contacto entre el núcleo metálico del microhilo y los cables se ha usado pintura conductora de Ag. La señal de salida ha sido recogida en todos los casos en forma de inductancia del núcleo metálico.All the examples cited below have been carried out with the multifunctional sensor device that has the following characteristics: As a sensor element, a micro wire of diameter 41.6 μm has been used, consisting of a metal core having a Co 67106 Fe 3184 Ni 1144 B composition. 11 53 Si 1166 and a diameter of 17.4 μm covered by a pyrex layer with a thickness of 12.1μm, on which an Au layer has been deposited by sputtering with a thickness of 30 nm and as an external layer CoNi has been deposited by electrodeposition. The relative percentage of CoNi deposited depends on the electrodeposition current density, while its thickness depends on both the current density and the electrodeposition time, typically between 5 and 15 μm. In the examples the electrodeposition current densities used are 1, 12 and 24 mA / cm 2 and the times of Electrodeposition is 15, 30 and 60 minutes. The length of the metal core covered by glass is 3 cm, while that of the outer layer is 2.5 cm, because the ends of the micro-wire must be free of deposition of the magnetic material in order to facilitate the contacts of the core with the AC power supply and measuring device. A commercial impedance bridge (LCR-meter HP 4284A) has been used as the power supply and measuring device, the frequencies of the alternating signal applied in the core have been IMHz and 100KHz and the amplitude 10OmV. The connection between the impedance bridge and the micro wire has been made with coaxial cables or Cu wire (only in tensile measurements). For the contact between the metallic core of the wire and the wires, conductive paint of Ag has been used. The output signal has been collected in all cases in the form of inductance of the metallic core.
Ejemplo sensor magnético. El elemento sensor se ha colocado en el interior de unas medio de un par de bobinas de Helmholtz (dos bobinas, paralelas y conectadas, de Cu, de fabricación casera cuya distancia es igual al radio de las bobinas ,120mm, y con 500 espiras cada bobina que generan un campo magnético axial homogéneo en la zona intermedia de 36.8Oe/A por amperio de corriente de la fuente de alimentación) y en dirección perpendicular a éstas, las cuales al ser alimentadas por una fuente de alimentación DC comercial (Hameg) generan un campo magnético axial, continuo y homogéneo en el espacio intermedio entra ambas bobinas. Como elemento sensor ha sido utilizado un microhilo multicapa con una densidad de corriente y un tiempo de electrodeposición del CoNi de 24mA/cm2 y 60 min respectivamente. En la figura 5 se observa la dependencia de la inductancia con el campo magnético para una frecuencia de IMHz. En el rango de campo magnético entre 0 a 15 Oe la inductancia decrece desde 9.5 a 2.5 μH aproximadamente, demostrándose la sensibilidad del dispositivo sensor frente a cambios de campo magnético.Example magnetic sensor. The sensor element has been placed inside a half of a pair of Helmholtz coils (two coils, parallel and connected, of Cu, of homemade manufacture whose distance is equal to the radius of the coils, 120mm, and with 500 turns each coil that generates a homogeneous axial magnetic field in the intermediate zone of 36.8Oe / A per ampere of power supply current) and in the direction perpendicular to them, which when fed by a commercial DC power supply (Hameg) generate an axial magnetic field, continuous and homogeneous in the intermediate space enters both coils. As a sensor element, a multilayer micro wire with a current density and a CoNi electrodeposition time of 24mA / cm 2 and 60 min respectively has been used. Figure 5 shows the dependence of the inductance with the magnetic field for a frequency of IMHz. In the magnetic field range between 0 to 15 Oe the inductance decreases from approximately 9.5 to 2.5 μH, demonstrating the sensitivity of the sensor device against magnetic field changes.
Ejemplo sensor de temperatura.Example temperature sensor.
El sensor ha sido testado tanto en agua ultrapura como en aire. El dispositivo de calentamiento del agua ultrapura se ha realizado en un baño comercial (Selecta- Digiterm), mientras que el calentamiento de aire se ha realizado en un horno comercial (Termiber) que tiene la posibilidad de sacar las conexiones fuera del horno para medir las propiedades magnéticas del sensor con la temperatura. La figura 6 muestra la dependencia de la inductancia con la temperatura para un microhilo multicapa con una densidad de corriente y un tiempo de electrodeposición del CoNi de 1 mA/cm2 y 30 minutos, respectivamente. En el rango de temperatura entre 5 y 600C la inductancia aumenta hasta un 1200% su valor inicial, siendo la sensibilidad del dispositivo sensor muy alta, 20.22%/°C. En la figura 7 se muestra el tiempo de respuesta del sensor de temperatura para un microhilo con una densidad de corriente y un tiempo de electrodeposición del CoNi de 12 mA/cm2 y 15 minutos, respectivamente. El cambio de temperatura aplicado en dicha medida es de 23°C, correspondiendo el 0% al valor de la inductancia antes del cambio de temperatura, y el 100% al valor de estabilización de la inductancia después del cambio de temperatura. Definiendo la constante de tiempo de un sensor como el tiempo que tarda el valor final en decaer 1/e, posee un valor para este ejemplo de 0.67 segundos, lo que demuestra un rápido tiempo de respuesta del dispositivo sensor acorde con la pequeña masa del microhilo multicapa magnético. Para ambas figuras la frecuencia usada ha sido de IMHz.The sensor has been tested in both ultrapure water and air. The ultrapure water heating device has been carried out in a commercial bath (Selecta-Digiterm), while the air heating has been carried out in a commercial oven (Termiber) that has the possibility of taking the connections out of the oven to measure the magnetic properties of the sensor with the temperature. Figure 6 shows the dependence of temperature inductance for a multilayer micro wire with a current density and an electrodeposition time of CoNi of 1 mA / cm 2 and 30 minutes, respectively. In the temperature range between 5 and 60 0 C the inductance increases up to 1200% of its initial value, the sensitivity of the sensor device being very high, 20.22% / ° C. Figure 7 shows the response time of the temperature sensor for a micro thread with a current density and an electrodeposition time of CoNi of 12 mA / cm 2 and 15 minutes, respectively. The temperature change applied in this measure is 23 ° C, 0% corresponding to the inductance value before the temperature change, and 100% to the inductance stabilization value after the temperature change. Defining the time constant of a sensor as the time it takes for the final value to decay 1 / e, it has a value for this example of 0.67 seconds, which demonstrates a rapid response time of the sensor device according to the small mass of the thread magnetic multilayer For both figures the frequency used has been IMHz.
Ejemplo de sensor deposición:Example of deposition sensor:
Todo el dispositivo sensor está montado sobre una plataforma circular giratoria de radio 0.3m de fabricación casera que tiene acoplado un goniómetro, también de fabricación casera. Al rotar la plataforma, la variación del campo magnético terrestre con la dirección hace que la señal de salida varíe, permitiendo deducir la orientación del sensor. En la figura 8 se observa la dependencia de la inductancia con el ángulo de giro para un microhilo multicapa magnético cuya densidad de corriente y el tiempo de electrodeposición del CoNi ha sido de 24mA/cm2 y 30 min, respectivamente. Se observa como a medida que se gira el sensor la inductancia aumenta considerablemente hasta llegar a un máximo, que corresponde aproximadamente a un giro de 180° y a partir de aquí empieza a disminuir hasta que llegar a su valor inicial, que lógicamente corresponde a 360°. La diferencia entre el mínimo y el máximo, 1 y 9μH, demuestran nuevamente la alta sensibilidad que posee el dispositivo sensor. La frecuencia usada ha sido de 100KHz. Ejemplo sensor de tensión:The entire sensor device is mounted on a rotating circular platform of 0.3m radius of homemade manufacture that has a goniometer attached, also homemade. When rotating the platform, the variation of the terrestrial magnetic field with the direction causes the output signal to vary, allowing to deduce the orientation of the sensor. Figure 8 shows the dependence of the inductance with the angle of rotation for a multilayer magnetic wire whose current density and electrodeposition time of the CoNi has been 24mA / cm 2 and 30 min, respectively. It is observed that as the sensor is rotated, the inductance increases considerably until it reaches a maximum, which corresponds approximately to a 180 ° rotation and from here it begins to decrease until it reaches its initial value, which logically corresponds to 360 ° . The difference between the minimum and the maximum, 1 and 9μH, once again demonstrates the high sensitivity of the sensor device. The frequency used has been 100KHz. Example voltage sensor:
La dependencia de la inductancia con las tensiones es mostrada en la figura 9 y 10 para una frecuencia de IMHz y 100KHz, respectivamente. En ambas figuras la densidad de corriente y el tiempo de electrodeposición del CoNi ha sido de 24mA/cm2y 30 minutos, respectivamente. En el caso de la figura 9 la tensión aplicada es de tracción (a lo largo del eje del hilo), para cuya aplicación, el núcleo del elemento sensor queda fijado por sus extremos a dos pequeños soportes rígidos quedando el resto libre, sobre estos soportes se realiza los contactos entre el núcleo del elemento sensor y el cable de Cu. Uno de los cables de Cu se fija a un objeto inmóvil, mientras que el otro se pasa por una polea y se le acopla un pequeño portapesas que queda suspendido en el aire. A medida que se va depositando más masa en el portapesas, el microhilo se va tensionando más. Para el rango de tracción entre 0 y 130MPa la inductancia decrece 1.7μH. En la figura 10 la tensión aplicada es de flexión. Para la aplicación de flexión se monta el microhilo en un soporte flexible, un extremo del soporte se fija a un objeto inmóvil y el otro queda libre, la aplicación de tensiones de flexión se produce usando un objeto móvil que va flexionando el extremo libre del soporte, y por tanto el microhilo. Para un ángulo de flexión entre 0 y 30° la inductancia incrementa en 0.5μH. En este ejemplo la sensibilidad se puede mejorar modificando los parámetros de la capa externa (composición, corriente y tiempo de electrodeposición) y de la señal AC que atraviesa el núcleo (frecuencia y amplitud) The dependence of the inductance on the voltages is shown in Figure 9 and 10 for a frequency of IMHz and 100KHz, respectively. In both figures the current density and electrodeposition time of the CoNi has been 24mA / cm 2 and 30 minutes, respectively. In the case of figure 9 the tension applied is tensile (along the axis of the thread), for whose application, the core of the sensor element is fixed at its ends to two small rigid supports, leaving the rest free, on these supports contacts are made between the core of the sensor element and the Cu cable. One of the Cu cables is fixed to a stationary object, while the other is passed through a pulley and a small weight carrier is attached that is suspended in the air. As more mass is deposited in the weight holder, the micro thread becomes more tensioned. For the traction range between 0 and 130MPa the inductance decreases 1.7μH. In figure 10 the tension applied is bending. For the application of bending, the micro thread is mounted on a flexible support, one end of the support is fixed to a stationary object and the other is free, the application of bending stresses is produced using a mobile object that flexes the free end of the support , and therefore the micro thread. For an angle of flexion between 0 and 30 ° the inductance increases by 0.5μH. In this example the sensitivity can be improved by modifying the parameters of the external layer (composition, current and electrodeposition time) and of the AC signal that crosses the core (frequency and amplitude)

Claims

Reivindicaciones Claims
1. Dispositivo sensor multifuncional capaz de detectar modificaciones en el medio externo, útil como sensor magnético, térmico, de posición, de tensión, químico y óptico, caracterizado por comprender, al menos, los siguientes elementos: a) Microhilo magnético multicapa como elemento sensor, con geometría cilindrica, formado por un núcleo metálico y recubierto por una o varias capas externas, con o sin capa aislante intermedia de vidrio, siendo necesario que, o bien el núcleo metálico, o bien una de las capas externas sea magnética, para que se produzca acoplamiento magnetoelastico, b) Fuente de alimentación que genera un voltaje o corriente alterna de pequeña amplitud en el núcleo del microhilo multicapa, típicamente entre 50 mV y IV, c) Aparato de medida de las propiedades magnéticas del microhilo magnético multicapa, que detecta cambios ambientales externos y los convierte en señal electrónica, d) Soporte o material plano no conductor, sobre el que se apoya el elemento sensor, pudiendo ser rígido o flexible, y e) Dos conexiones de un elemento conductor capaz de transportar una corriente eléctrica, que conectan el elemento sensor con la fuente de alimentación y el aparato de medida. 1. Multifunctional sensor device capable of detecting modifications in the external environment, useful as a magnetic, thermal, position, tension, chemical and optical sensor, characterized by comprising at least the following elements: a) Multilayer magnetic micro wire as a sensor element , with cylindrical geometry, formed by a metal core and covered by one or several external layers, with or without intermediate insulating glass layer, being necessary that either the metal core, or one of the external layers is magnetic, so that Magnetoelastic coupling is produced, b) Power supply that generates a voltage or alternating current of small amplitude in the core of the multilayer micro wire, typically between 50 mV and IV, c) Measuring device of the magnetic properties of the multilayer magnetic wire, which detects external environmental changes and converts them into electronic signal, d) Support or non-conductive flat material, on which the e slow sensor, being able to be rigid or flexible, and e) Two connections of a conductive element capable of transporting an electric current, which connect the sensor element with the power supply and the measuring device.
2. Dispositivo sensor multifuncional según la reivindicación 1 caracterizado porque en núcleo metálico del elemento sensor descrito en a) es magnético.2. Multifunctional sensor device according to claim 1 characterized in that the magnetic core of the sensor element described in a) is magnetic.
3. Dispositivo sensor multifuncional según la reivindicación 1 caracterizado porque una de las capas externas del elemento sensor descrito en a) es magnética.3. Multifunctional sensor device according to claim 1 characterized in that one of the outer layers of the sensor element described in a) is magnetic.
4. Dispositivo sensor multifuncional según la reivindicación 1 caracterizado porque tanto el núcleo metálico como una de las capas externas del elemento sensor descrito en a) son magnéticas.4. Multifunctional sensor device according to claim 1 characterized in that both the metal core and one of the outer layers of the sensor element described in a) are magnetic.
5. Dispositivo sensor multifuncional según la reivindicación 1 en el que el elemento sensor descrito en a) es un microhilo formado por cuatro capas: un núcleo metálico, una capa intermedia de vidrio sobre la que se deposita una capa de nanométrica de Au u otro metal noble y una capa externa magnética.5. Multifunctional sensor device according to claim 1 wherein the sensor element described in a) is a micro thread consisting of four layers: a metal core, an intermediate layer of glass on which an nanometer layer of Au or another metal is deposited noble and a magnetic outer layer.
6. Dispositivo sensor multifuncional según la reivindicación 1 caracterizado porque al elemento sensor descrito en a) contiene una capa externa termocrómica. 6. Multifunctional sensor device according to claim 1 characterized in that the thermochromic outer layer contains the sensor element described in a).
7. Dispositivo sensor multifuncional según la reivindicación 1 caracterizado por que al elemento sensor descrito en a) contiene una capa externa orgánica, sensible a las condiciones externas, como presencia de CO, gas, o concentración de ciertos elementos en fase líquido. 7. Multifunctional sensor device according to claim 1 characterized in that the sensor element described in a) contains an organic outer layer, sensitive to external conditions, such as the presence of CO, gas, or concentration of certain elements in the liquid phase.
8. Dispositivo sensor multifuncional según la reivindicación 1 en el que el núcleo metálico del elemento sensor descrito en a) esta formado por una aleación de Fe, Co o Ni, o de combinaciones entre ellos, o con otro metal, en diferentes porcentajes.8. Multifunctional sensor device according to claim 1 wherein the metal core of the sensor element described in a) is formed by an alloy of Fe, Co or Ni, or combinations thereof, or with another metal, in different percentages.
9. Dispositivo sensor multifuncional según la reivindicación 1 en el que el núcleo metálico del elemento sensor descrito en a) tiene porcentajes de Si, B u otros metaloides, y/o de Cr, Mo u otros metales de transición.9. Multifunctional sensor device according to claim 1 wherein the metal core of the sensor element described in a) has percentages of Si, B or other metalloids, and / or Cr, Mo or other transition metals.
10. Dispositivo sensor multifuncional según la reivindicación 1 en el que como aparato de medida descrito en c) se utiliza un osciloscopio, amplificador, multímetro u otros dispositivos electrónicos, de forma que la señal de salida se recoge en forma de voltaje, resistencia, impedancia o inductancia de la capa magnética. 11. Dispositivo sensor multifuncional según la reivindicación 1 en el se simplifica dicho dispositivo utilizando un puente de impedancia que funcione al mismo tiempo como fuente de alimentación y aparato de medida.10. Multifunctional sensor device according to claim 1 wherein an oscilloscope, amplifier, multimeter or other electronic devices is used as a measuring device, so that the output signal is collected in the form of voltage, resistance, impedance or inductance of the magnetic layer. 11. Multifunctional sensor device according to claim 1 wherein said device is simplified using an impedance bridge that functions at the same time as a power source and measuring device.
12. Dispositivo sensor multifuncional según la reivindicación 1 caracterizado porque todos los elementos del dispositivo son fijos o están montados en un circuito electrónico impreso.12. Multifunction sensor device according to claim 1, characterized in that all the elements of the device are fixed or mounted on a printed electronic circuit.
13. Dispositivo sensor multifuncional según la reivindicación 1 en el que las conexiones descritas en e) son cables conductores, pinturas conductoras, soldaduras a baja temperatura y/o pistas de circuito impreso.13. Multifunctional sensing device according to claim 1 wherein the connections described in e) are conductive cables, conductive paints, low temperature welding and / or printed circuit tracks.
14. Dispositivo sensor multifuncional según la reivindicación 1 en el que el contacto entre el elemento sensor descrito en a) y las conexiones descritas en e) se realiza de forma que la corriente aplicada pase solo por el núcleo metálico del elemento sensor y no por las capas externas.14. Multifunctional sensor device according to claim 1 wherein the contact between the sensor element described in a) and the connections described in e) is made so that the applied current passes only through the metal core of the sensor element and not through the outer layers
15. Utilización del dispositivo sensor multifuncional, según las reivindicaciones 1 a la15. Use of the multifunction sensor device according to claims 1 to
11. como sensor mutifuncional. 16. Utilización del dispositivo sensor multifuncional según la reivindicación 12, caracterizada por que se hace uso del mismo como sensor magnético, de temperatura, de posición, de tensión, óptico o químico. 11. as a mutifunctional sensor. 16. Use of the multifunctional sensor device according to claim 12, characterized in that it is used as a magnetic, temperature, position, voltage, optical or chemical sensor.
PCT/ES2006/070173 2005-11-11 2006-11-08 Multifunctional sensor based on multilayer magnetic microwires with magnetoelastic coupling WO2007054602A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200502760 2005-11-11
ES200502760A ES2277770B1 (en) 2005-11-11 2005-11-11 MULTIFUNCTIONAL SENSOR BASED ON MULTI-PAPER MAGNETIC MICROWAVE WITH MAGNETOELASTIC COUPLING.

Publications (1)

Publication Number Publication Date
WO2007054602A1 true WO2007054602A1 (en) 2007-05-18

Family

ID=38022993

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2006/070173 WO2007054602A1 (en) 2005-11-11 2006-11-08 Multifunctional sensor based on multilayer magnetic microwires with magnetoelastic coupling

Country Status (2)

Country Link
ES (1) ES2277770B1 (en)
WO (1) WO2007054602A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011009971A1 (en) * 2009-07-20 2011-01-27 Consejo Superior De Investigaciones Científicas (Csic) Bimetallic magnetic wires with helical anisotropy, method for manufacturing same, and uses thereof
ES2406383A2 (en) * 2011-02-28 2013-06-06 Universidad Publica De Navarra Multifunctional device based on ceramic oxides coatings with cylindrical symmetry (Machine-translation by Google Translate, not legally binding)
WO2018119212A3 (en) * 2016-12-21 2018-08-02 University Of South Florida Magneto-lc resonance technology for real-time respiratory motion monitoring
EP3422429A1 (en) 2017-06-30 2019-01-02 Consejo Superior de Investigaciones Cientificas (CSIC) Microactuator based on bimagnetic core/shell microwire having asymmetric shell and displacement methods
CN113281553A (en) * 2021-04-23 2021-08-20 上海电机学院 Weak direct current detection system and method based on fluxgate

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9091434B2 (en) 2008-04-18 2015-07-28 The Board Of Trustees Of The University Of Alabama Meso-scaled combustion system
ES2333575B1 (en) * 2008-06-30 2010-11-26 Micromag 2000, S.L. LOW CONSUMPTION MAGNETIC FIELD SENSOR.
ES2570398B1 (en) * 2014-10-16 2017-03-10 Consejo Superior De Investigaciones Científicas (Csic) TEMPERATURE SENSOR FOR MICROELECTROMECHANICAL SYSTEMS AND MANUFACTURING PROCEDURE

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050109435A1 (en) * 2003-09-12 2005-05-26 Liebermann Howard H. Multi-bit encoded glass-coated microwire and articles composed thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050109435A1 (en) * 2003-09-12 2005-05-26 Liebermann Howard H. Multi-bit encoded glass-coated microwire and articles composed thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHIRIAC ET AL.: "Saturation magnetostriction measurement in nearly zero magnetostrictive Co-rich glass-covered amorphous wires", JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, vol. 242-245, 2002, pages 251 - 253, XP004358669, DOI: doi:10.1016/S0304-8853(01)01246-X *
PIROTA ET AL.: "Novel magnetic materials prepared by electrodeposition techniques: arrays of nanowires and multi-layered microwires", JOURNAL OF ALLOYS AND COMPOUNDS, vol. 369, 2004, pages 18 - 26, XP004501134, DOI: doi:10.1016/j.jallcom.2003.09.040 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011009971A1 (en) * 2009-07-20 2011-01-27 Consejo Superior De Investigaciones Científicas (Csic) Bimetallic magnetic wires with helical anisotropy, method for manufacturing same, and uses thereof
ES2352631A1 (en) * 2009-07-20 2011-02-22 Consejo Superior De Investigaciones Cientificas (Csic) Bimetallic magnetic wires with helical anisotropy, method for manufacturing same, and uses thereof
ES2406383A2 (en) * 2011-02-28 2013-06-06 Universidad Publica De Navarra Multifunctional device based on ceramic oxides coatings with cylindrical symmetry (Machine-translation by Google Translate, not legally binding)
ES2406383R1 (en) * 2011-02-28 2013-07-11 Univ Navarra Publica MULTIFUNCTIONAL DEVICE BASED ON CERAMIC OXIDE COATINGS WITH CYLINDRICAL SIMETRY
WO2018119212A3 (en) * 2016-12-21 2018-08-02 University Of South Florida Magneto-lc resonance technology for real-time respiratory motion monitoring
US11607154B2 (en) 2016-12-21 2023-03-21 University Of South Florida Magneto-LC resonance technology for real-time respiratory motion monitoring
EP3422429A1 (en) 2017-06-30 2019-01-02 Consejo Superior de Investigaciones Cientificas (CSIC) Microactuator based on bimagnetic core/shell microwire having asymmetric shell and displacement methods
CN113281553A (en) * 2021-04-23 2021-08-20 上海电机学院 Weak direct current detection system and method based on fluxgate

Also Published As

Publication number Publication date
ES2277770B1 (en) 2008-06-16
ES2277770A1 (en) 2007-07-16

Similar Documents

Publication Publication Date Title
ES2277770B1 (en) MULTIFUNCTIONAL SENSOR BASED ON MULTI-PAPER MAGNETIC MICROWAVE WITH MAGNETOELASTIC COUPLING.
Ripka et al. Advances in magnetic field sensors
JP4655162B2 (en) Magneto-impedance element and magneto-impedance sensor
US10012705B2 (en) Magnetism measurement device
JP3091398B2 (en) Magnetic-impedance element and method of manufacturing the same
Yan et al. Developments and applications of tunneling magnetoresistance sensors
JP2009250931A (en) Magnetic sensor, operation method thereof, and magnetic sensor system
CN112379315B (en) Weak direct-current magnetic field measuring method suitable for magnetoelectric coupling sensor
CN201141845Y (en) Electromagnetic concentration analyzer outside pipes
CN104849679A (en) Magnetic probe and magnetic field sensor having same
US8072711B1 (en) System and method for the fabrication, characterization and use of magnetic corrosion and chemical sensors
Dost et al. Effect of annealing on the electrical and magnetic properties of electrodeposited Ni and permalloy nanowires
ES2802498T3 (en) Embedded sensor for continuous measurement of mechanical resistance in cementitious material structures, sensor manufacturing method, and system and method for continuous measurement of mechanical resistance in cementitious material structures
Wang et al. A highly sensitive magnetometer based on the Villari effect
CN108983123A (en) A kind of high-resolution amorphous wire orthogonal fluxgate sensor and its manufacturing technology
KR20080004866A (en) Flow detecting method using physical change of nano material
EP3418759B1 (en) Magnetic hybrid amr/phr based sensing device and method for measuring a local magnetic field
Han et al. Giant magnetoimpedance current sensor with array-structure double probes
Ong et al. Magnetism-based sensors
Petrucha et al. Race-track fluxgate sensor scaling versus noise
Zenchenko et al. A magnetic micromethod to measure Young's modulus of protein crystals and other polymer materials
JP7244157B1 (en) Magnetic sensor and magnetic detection method
Ioan et al. High-resolution fluxgate sensing elements using Co68, 25Fe4, 5Si12, 25B15 amorphous material
JPH07248365A (en) Magnetism-magnetic direction sensor and magnetism-magnetic direction measuring method
Corodeanu et al. RTD Fluxgate Sensors based on Twisted Glass-Coated Microwires

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06820045

Country of ref document: EP

Kind code of ref document: A1