WO2007052681A1 - Photoelectrochemical cell - Google Patents

Photoelectrochemical cell Download PDF

Info

Publication number
WO2007052681A1
WO2007052681A1 PCT/JP2006/321807 JP2006321807W WO2007052681A1 WO 2007052681 A1 WO2007052681 A1 WO 2007052681A1 JP 2006321807 W JP2006321807 W JP 2006321807W WO 2007052681 A1 WO2007052681 A1 WO 2007052681A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectrochemical cell
oxide
semiconductor fine
resin
sealant
Prior art date
Application number
PCT/JP2006/321807
Other languages
French (fr)
Japanese (ja)
Inventor
Kunihito Miyake
Original Assignee
Sumitomo Chemical Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Company, Limited filed Critical Sumitomo Chemical Company, Limited
Publication of WO2007052681A1 publication Critical patent/WO2007052681A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2068Panels or arrays of photoelectrochemical cells, e.g. photovoltaic modules based on photoelectrochemical cells
    • H01G9/2077Sealing arrangements, e.g. to prevent the leakage of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/88Passivation; Containers; Encapsulations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a photoelectrochemical cell. Background art
  • C_ ⁇ 2 released into the atmosphere in order to prevent global warming.
  • a solar using photoelectrochemical cell such as a silicon solar cell of the pn junction type can installed in the roof of the house -.
  • System utilization promotion have been proposed.
  • the single crystal, polycrystal and amorphous silicon used in the above silicon-based photoelectrochemical zero pond have a problem of high cost due to the necessity of high temperature and high vacuum conditions during the manufacturing process.
  • the charge transfer layer proposed in Nature uses iodine, fluoride, etc. as an electrolyte, and uses acetonitrile as a solvent. If a long-term use is required, a sealant is used to prevent the charge transfer layer from volatilizing.
  • BYNEL registered trademark, DuPont
  • an adhesive of polyethylene resin is used as a sealant.
  • the proposed photoelectrochemical cell has been proposed.
  • the present inventors have provided a photoelectrochemical cell obtained using iodine / iodide as an electrolyte contained in a charge transfer layer, using acetonitrile as a solvent, and using the adhesive as a sealant. 8 When stored at 5T: Iodine disappeared, indicating that the durability was not sufficient. Disclosure of the invention
  • An object of the present invention is to provide a photoelectrochemical cell excellent in durability. That is, the present invention provides the following [1] to [5].
  • a photoelectrochemical cell containing a resin comprising:
  • the resin containing a hydroxyl group is at least one resin selected from the group consisting of an ethylene-vinyl alcohol copolymer, a partially saponified polyvinyl alcohol, and a fully saponified polypinyl alcohol.
  • the photoelectrochemical cell described in [3] The photoelectrochemical cell according to [1] or [2], wherein the semiconductor fine particles are titanium oxide. '
  • FIG. 1 is a schematic cross-sectional view of wet photoelectrochemistry of the present invention.
  • the photoelectrochemical cell of the present invention is a photoelectrochemical cell formed by sealing a laminate including a conductive substrate, semiconductor fine particles adsorbed with a photosensitizing dye, a charge transfer layer and a counter electrode with a sealant. It is.
  • an electrolyte is filled between a conductive substrate in contact with a layer of semiconductor fine particles adsorbed with a photosensitizing dye (hereinafter also referred to as a dye adsorbing semiconductor particle layer) and a counter electrode.
  • a photosensitizing dye hereinafter also referred to as a dye adsorbing semiconductor particle layer
  • the conductive substrate and the counter electrode are stacked via a solid hole transport material, and the semi-fine particles adsorbed with the photosensitizing dye are solid hole transport materials. It is contained in.
  • the wet photoelectrochemical cell of the present invention will be described below as an example. A specific example is shown in Fig. 1.
  • the semiconductor particle layer (3) (with the dye adsorbed) is filled with the electrolytic solution (5) and sealed with a sealing material (10).
  • the conductive substrate (8) is composed of a substrate (1) and a conductive layer (2) in order from the top.
  • the counter electrode (9) consists of a substrate (7) and a conductive layer (6) in order from the bottom.
  • the conductive substrate (8) used in the photoelectrochemical cell of the present invention and the conductive layer in the counter electrode (9) ((2) for the conductive substrate, (6) for the counter electrode) The lower the resistance, the better.
  • the conductive layer (2) of the conductive substrate has a high transmittance in the high wavelength region, specifically, a region longer than 350 nm, specifically, a transmittance of 80% or more. It is preferable.
  • Examples of the conductive material used in the conductive layer include iron, nickel, chromium, titanium, aluminum, platinum, gold, silver, cobalt, palladium, .copper, tantalum, ruthenium, tungsten, zinc, tin, and the like;
  • Metal alloy Conductive metal oxide such as indium-muth tin complex oxide (ITO), tin oxide doped with fluorine: Conductivity such as carbon, polyethylene dioxythiophene (EDOT), poly'diphosphorus, etc.
  • the conductive polymer is usually doped with para-toluenesulfonic acid or the like.
  • the conductive layer include a conductive substance itself, or a non-conductive substrate, and a thin film of a conductive substance formed on the surface of the non-conductive substrate by vapor deposition, sputtering, adhesion, or the like. '.
  • the conductive substrate (8) preferably has a textured structure on the surface of the conductive material in order to confine incident light and use it effectively.
  • (1) for conductive substrate and (7) for counter electrode include glass or plastic.
  • Plastics include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyphenylene sulfide (PP S), poly force—bonate (PC), polypropylene (PP), polyimide (PI), rear Cetylcellulose (TAC), Syndiotactic polystyrene (SPS), Polyarylate (PAR); Aton (registered trademark of JSR), Zeonex ( ⁇ registered trademark of Nippon Zeon), Zeonor (registered trademark of Nippon Zeon), Cyclic polyolefin (COP) such as Abel (registered trademark of Mitsui Chemicals) and Topas (registered trademark of T icona); Polyester monosulfone (PES), Polyether imide (P, EI), Polysulfone (PSF) And polyamide (PA).
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PP S polyphenylene sulfide
  • PC poly force—bonate
  • the conductive substrate (8) and the counter electrode (9) glass or plastic coated with a conductive metal oxide is preferable.
  • conductive glass with a conductive layer made of tin dioxide doped with fluorine and conductive film with a conductive layer made of indium-tin composite oxide (ITO) have low electrical resistance and light transmission. It is particularly preferable because of its excellent properties and availability.
  • the semiconductor fine particles used in the present invention are fine particles having a semiconductor characteristic with a primary particle size of about 1 to 5000 nm, preferably about 5 to 500 nm. For the purpose of improving the photoelectric conversion efficiency by reflection, semiconductor fine particles having different primary particle diameters may be mixed. Tubes and hollow fine particles may be used.
  • Examples of the material of the semiconductor fine particles (2) include titanium oxide, tin oxide, zinc oxide, iron oxide, tungsten oxide, zirconium oxide, hafnium oxide, strontium oxide, indium oxide, cerium oxide, yttrium oxide, lanthanum oxide, Metal oxides such as vanadium oxide, niobium oxide, tantalum oxide, gallium oxide, nickel oxide, strontium titanate, barium titanate, potassium niobate and sodium tantalite; Metal halides such as silver iodide, silver bromide, copper iodide, copper bromide, etc .; zinc sulfide, titanium sulfide, indium sulfide, bismuth sulfide, cadmium sulfide, zirconium sulfide, tantalum sulfide, molybdenum sulfide, silver sulfide, Metal sulfides such as copper sulfide, tin sul
  • Metal selenides such as cadmium selenide, zirconium selenide, zinc selenide, titanium selenide, indium selenide, tungsten selenide, molybdenum selenide, bismuth selenide, lead selenide;
  • Metal tellurides such as cadmium telluride, tungsten telluride, molybdenum telluride, zinc telluride, bismuth telluride;
  • Metal phosphides such as zinc phosphide, gallium phosphide, indium phosphide, cadmium phosphide;
  • Examples include gallium arsenide, copper indium monoselenide, copper indium monosulfide, silicon, germanium, and the like.
  • it may be a mixture of two or more of zinc oxide, Z tin oxide, tin oxide, titanium oxide and the like.
  • Metal oxides such as tantalum, gallium oxide, nickel iodide, strontium titanate, barium titanate, potassium niobate, sodium tantalate, zinc oxide / oxide, tin, tin oxide, titanium oxide, etc. are available at relatively low prices It is preferable because it is easy to absorb and the photosensitizing dye is easily adsorbed.
  • titanium oxide is suitable.
  • the surface of the semiconductor fine particles On the surface of the semiconductor fine particles, chemical plating using a titanium tetrachloride aqueous solution or electrochemical using a titanium trichloride aqueous solution. You may perform a target treatment. As a result, the surface area of the semiconductor fine particles is increased, the purity in the vicinity of the semiconductor fine particles is increased, impurities such as iron existing on the surface of the conductive fine particles are obscured, or the connectivity and integrity of the semiconductor fine particles. Can be increased.
  • the semiconductor fine particles preferably have a large surface area so that many photosensitizing dyes can be adsorbed. Therefore, the surface area of the semiconductor fine particle (2) layer applied on the substrate is preferably 10 times or more, more preferably 100 times or more the projected area. This upper limit is usually around 100 times.
  • the layer of semiconductor fine particles (2) may be a single layer of semiconductor fine particles, but in the case of a wet photoelectrochemical cell, which is usually a layer composed of a plurality of semiconductor fine particles and a plurality of semiconductor fine particles having different particle diameters. After the semiconductor fine particle layer is formed on the conductive substrate, the photosensitizing dye is adsorbed on the fine particles of the layer.
  • a method of forming a semiconductor fine particle layer on a conductive substrate a method of directly forming a semiconductor fine particle as a thin film on a conductive substrate by spray spraying or the like; electrically depositing a semiconductor fine particle thin film using the conductive substrate as an electrode
  • the method include: a method in which a slurry of semiconductor fine particles is applied on a conductive substrate and then dried, cured, or baked.
  • the method for applying the semiconductor fine particle slurry onto the conductive substrate will be described in more detail. Examples thereof include a doctor blade, squeegee, spin coating, date coating, and screen printing.
  • the average particle diameter in the dispersed state of the semiconductor fine particles in the slurry is preferably 0, 0 1 nm to 100 m. ,
  • the dispersion medium for dispersing the slurry is not particularly limited as long as the semiconductor fine particles can be dispersed.
  • the dispersion includes a polymer such as polyethylene glycol; a surfactant such as T r i, t o n—X
  • An organic acid or an inorganic acid such as acetic acid, formic acid, nitric acid or hydrochloric acid; and a cleansing agent such as acetylacetone.
  • a semiconductor fine particle layer by firing a conductive substrate coated with a slurry of semiconductor fine particles.
  • the firing temperature is usually lower than the melting point of the conductive layer or substrate, and the upper limit of the firing temperature is 1200, preferably 600: or less.
  • the firing time is usually within 10 hours.
  • the thickness of the semiconductor fine particle layer on the conductive substrate is usually from 0.:! To 2 0 0, preferably :! ⁇ 50.
  • Other methods for forming a semiconductor fine particle layer on a conductive substrate at a relatively low temperature include, for example, a hydrothermal method in which a porous semiconductor fine particle layer is formed by hydrothermal treatment (dye-sensitized photoelectric for practical use).
  • the photosensitizing dye used in the present invention has absorption in the visible light region and / or infrared light region, and various metal complexes can be used as one or more organic dyes.
  • photosensitizing dyes having functional groups such as force lpoxyl group, hydroxyalkyl group, hydroxyl S., sulfone group, force lpoxyalkyl group in the molecule tend to be adsorbed to semiconductors quickly. It is preferably used because of its presence.
  • a metal complex is preferably used because of excellent photoelectric conversion efficiency and durability.
  • metal complex examples include copper phthalocyanine, metal phthalocyanine such as titanyl phthalocyanine, chlorophyll, hemin, and those described in JP-A No. 1 2 2 0 3 80 and JP-A-5-5 0 4 0 2 3 Ruthenium, osmium, iron, zinc complex, etc. can be used.
  • a more detailed example of a ruthenium complex is c / s-bis (isothiocyanate) bis (2,2'-bibilidyl-4,4'-dicarboxylate) -ruthenium (II) bis-tetrabutyl Ammonium, bis (isothiocyanate) bis (2,2'-bibilyl-4,4'-dicarboxylate) -ruthenium (11), tris (isothiocyanate) monoruthenium (II)- 2, 2 ': 6', 2 "-Te-pyridine-4,4 ', 4" -tricarboxylic acid tristetratetramethyl ammonium, cis-bis (isothiocyanate) (2, 2'-bipyridyl-4 , 4'-dicarboxylate) (2,2'-bibilidyl-4,4'-dinonyl) ruteni Um (II).
  • organic dyes include metal-free phthalocyanine, cyanine dye
  • cyanine dyes include NK 1 1 94, .NK 342 2 (both manufactured by Nippon Photosensitivity Laboratories).
  • merocyanine dyes include NK242 6 and NK 2 5 0 1 (both manufactured by Nippon Photosensitivity Laboratories).
  • xanthene dyes examples include uranin, eosin, rose bengal, rhodamine B, and dibromofluorescein.
  • triphenylmethane dye examples include malachite green and crystal violet.
  • Examples of the coumarin dye include NKX-267 7 (produced by Hayashibara Biochemical Research Institute) (see the following structural formula).
  • indoline-based organic dyes examples include D 149 (manufactured by Mitsubishi Paper Industries) (see the following structural formula). '
  • Examples of the method of adsorbing the photosensitizing dye to the semiconductor fine particles laminated on the conductive substrate include a well-dried semiconductor fine particle layer and a conductive material in a solution containing the photosensitizing dye of the present invention.
  • substrate for several hours is mentioned.
  • Adsorption of the photosensitizing dye may be performed at room temperature (at 25), may be performed under heating, or may be performed while refluxing a solution containing the photosensitizing dye.
  • the photosensitizing dye can be adsorbed before the semiconductor fine particle layer is formed on the conductive substrate, or the semiconductor fine particles and the photosensitizing dye may be applied to the conductive substrate at the same time.
  • the photosensitizing dye adsorption is performed after the heat treatment. After the heat treatment, the photosensitizing dye is adsorbed before water is adsorbed on the surface of the semiconductor fine particle layer. Particularly preferred is a method of making them.
  • 'It is preferable to remove the unadsorbed photosensitizing dye by washing in order to suppress the reduction of the sensitizing effect due to floating of the photosensitizing dye not adhering to the semiconductor fine particles.
  • One type of photosensitizing dye can be adsorbed or a mixture of several types can be used.
  • the application is a photoelectrochemical cell, it is preferable to select a photosensitizing dye to be mixed so that the wavelength range of photoelectric conversion of irradiation light such as sunlight is as wide as possible.
  • the adsorption amount of the photosensitizing dye to the semiconductor fine particles is 0.1. A millimolar is preferred. With such a dye amount, a sufficient sensitizing effect is obtained in the semiconductor fine particles, and there is a tendency to suppress a reduction in the sensitizing effect due to the floating of the dye not attached to the semiconductor fine particles. To preferred. ..
  • the photosensitizing dye adsorbed on the semiconductor fine particle layer (2) may be the same or different.
  • the first layer adsorbs a photosensitizing dye of 300 nm to '500 nm
  • the second layer adsorbs a photosensitizing dye of 500 nm to 700 nm.
  • a photosensitizing dye having a different absorption wavelength may be adsorbed to each layer, for example, a photosensitizing dye having a wavelength of 700 to 90 nm is adsorbed to the third layer.
  • a colorless compound may be co-adsorbed for the purpose of suppressing interactions such as association and aggregation between photosensitizing dyes.
  • the hydrophobic compound after co-adsorption include a steroid compound having a strong lpoxyl group (for example, chenodeoxycholic acid) and the like.
  • the surface of the semiconductor fine particles may be treated with amines after adsorbing the dye.
  • Preferred amines include, for example, pyridine, 4-tert-butylpyridine, polyvinyl pyridine and the like. When these are liquids, they may be used as they are, or when they are solids, they may be dissolved in an organic solvent.
  • Examples of the electrolyte contained in the charge transfer layer of the present invention include combinations of 12 and various iodides, combinations of Br 2 and various bromides, and combinations of ferrocyanate-ferricyanate metal complexes. , Combinations of metal complexes of phenoxy and ferricinium ions, combinations of alkyl compounds of alkylthio-l-alkyldisulfides, combinations of alkylviologens and their reduced forms, combinations of polyhydroxybenzenes and their oxidants, etc. Can be mentioned.
  • the ® ⁇ product that may be combined with I 2, for example, L i I, N a I , KI, C s I and C a I 2 of a metal such as iodides; 1-propyl one 3-methylimidazo Riumuai
  • a metal such as iodides
  • 1-propyl one 3-methylimidazo Riumuai examples include iodine salts of quaternary imidazolium compounds such as iodine, 1-propyl-2,3-dimethyldimethylimidazole, iodine salts of quaternary pyridinium compounds, iodine salts of tetraalkylammonium compounds, and the like.
  • the iodide may be combined with B r 2, for example, L i B r, N a B r, KB r, C s B r and C a B r 2, etc. of the metal bromide; tetraalkyl ammonium Niu beam blow amide Ya pyridinium Examples include bromine salts of quaternary ammonium compounds such as zinc bromide.
  • alkyl viologen examples include methyl viologen chloride, hexyl viologen promide, and benzyl viologen tetrafluoroborate.
  • polyhydroxybenzes and diols examples include, for example, hyde mouth quinone and naphthohyde mouth quinone.
  • the electrolyte is preferably a combination of I 2 and an iodide, and in particular, a metal iodide, an iodine salt of a quaternary imidazolium compound, an iodine salt of a quaternary pyridinium compound, and an iodine salt of a tetraalkylammonium compound.
  • a combination of at least one iodide selected from the group consisting of and I 2 is preferred.
  • the charge transfer layer contains an electrolyte.
  • the electrolytic solution include water and an organic solvent that dissolves the electrolyte.
  • organic solvent examples include nitrile solvents such as acetonitrile and methotisacetonitrile pionitrile; carbonate solvents such as ethylene power and propylene carbonate; Lactone solvents such as lolactone; Amide solvents such as N ,, N-dimethylformamide i 1-Methyl-3 —propylimidazolium ioidaid 1-methyl-3 —hexylimidazole An ionic liquid such as mu-iodide; 1-ethyl-3-methylimidazolium-bis (trifluoromethanesulfonic acid) imide. ..,
  • the electrolysis 3 ⁇ 4 may be gelled with a low molecular gelling agent shown in polyacrylonitrile, polyvinylidene fluoride, poly-4-vinylpyridine, or Chemistry Letters, 1 2 4 1 (1 9 9 8).
  • a solid electrolytic layer such as a solid hole transport material is used for the charge transfer layer.
  • Solid hole transport materials include those made of p-type inorganic semiconductors containing monovalent copper such as Cu I and Cu SCN, and Synthetic M etl, 8 9, 2 1 5 (1 9. 9 7) And aromatic, amines such as those shown by Nature, 3 95, 5 8 3 (1 9 9 8); polythiophene and its derivatives; polypyrrole and its derivatives; poly 7 phosphorus and its derivatives; And (2) vinylene) and derivatives thereof; poly ( ⁇ -phenylenepinylene) and derivatives thereof, and the like.
  • the sealing agent used in the present invention contains a resin containing a hydroxyl group. By using the resin as a sealing agent, when a volatile solvent such as acetonitrile or iodine is used as an electrolytic solution, they are In particular, it is difficult to volatilize at high temperatures, so durability is significantly improved.
  • a thermoplastic resin is preferable because of easy handling.
  • a resin containing a hydroxyl group an ethylene-vinyl alcohol copolymer obtained by hydrolyzing an acetate ester of an ethylene-vinyl acetate copolymer is used.
  • Resin structure such as polyvinyl acetate, partially saponified polyvinyl alcohol partially hydrolyzed with vinyl acetate, and fully saponified polyvinyl alcohol with approximately 98 mol% or more of polyvinyl acetate hydrolyzed Examples thereof include those containing a structural unit obtained by hydrolysis of vinyl ester as a unit.
  • the resin containing a hydroxyl group can be used as a film, and when used as a film, the film may be stretched.
  • the film may be stretched.
  • ethylene-vinyl alcohol copolymer is preferably used.
  • ethylene-vinyl alcohol copolymer examples include Kuraray's Ever, Lu (registered trademark), Nippon Synthetic Chemical's Soanol (registered trademark), Soarlite (registered trademark), and the like. Any grade in the EVAL RE SI N & F I LM catalog (issued in May 2006) can be used. For example, L, F, T, J, H, E, E, G with different ethylene polymerization ratios. Any grade can be used. Also; these films may contain a lubricant. .
  • ethylene-vinyl alcohol copolymer, partially saponified polyvinyl alcohol, fully saponified polyvinyl alcohol are polyethylene terephthalate (PET), polyamide: (PA), polyethylene (PE), polypropylene (PP) , they may form a multi-layered structure of aluminum S I_ ⁇ 2 film.
  • Kuraray's Kuraray Poval Japan
  • Synthetic Chemical's Gosensenol Shiramoto Vinegar Bipoval's J-Poval
  • 'Ryoke Chemical Company's Denka Poval Examples include Unitika Poval manufactured by Unitica.
  • the poval may contain a plasticizer. '.
  • the spacers of .. • further suppress the evaporation of volatile solvents such as acetonitrile and iodine.
  • a filler such as S i 0 T i '0 2 or A 1 2 0 3 may be mixed.
  • the sealing agent of the present invention includes Hi-Milan (registered trademark, Mitsui DuPont Polychemi).
  • Ionomer resins such as Calf); Glass frits; Hot mesole adhesives such as SX 1 1 70 (Solaronix); Adhesives such as Amo si 1 4 (So 1 aronix); B YNE L (DuPont)
  • Anhydrous-modified LLDPE made by modifying linear low density polyethylene with an acid anhydride such as maleic anhydride
  • epoxy adhesive may be used in combination.
  • pre-molded shapes such as films and sheets, or water before sealing Comprise a liquid, to drying during sealing 'shall and the like 3 ⁇ 4 ease of handling, film, sealing such sheets -. Those preformed in a shape to be sealed are preferred.
  • the thickness of the film is usually about 1 m to 1 mm.
  • a method for sealing using a molded sealant a method in which a sealant is sandwiched between a working electrode and a counter electrode and bonded by an electric heating press can be mentioned.
  • the bonding temperature may be at a temperature higher than the temperature at which the resin melts, and is usually between 50 and 300.
  • the sealing material portion may be locally heated and melted and bonded using laser light or the like.
  • a volatile solvent such as acetonitrile or a sealing agent that can prevent the evaporation of electrolyte such as iodine, the electrolyte contained in the charge transfer layer even when stored at high temperature
  • the charge transfer layer such as water and solvent is not lost and it has excellent durability. Examples, ⁇
  • the conductive surface of a conductive glass with a tin oxide film doped with fluorine (made by Nippon Sheet Glass Co., Ltd., 10 ⁇ / D) is a titanium oxide dispersion. Name, manufactured by Solaronix) was applied using a doctor blade, fired at 500, the glass was cooled, and a semiconductor fine particle layer was formed on a conductive substrate.
  • a 50-thick ethylene-vinyl alcohol copolymer resin (EVAL (registered trademark of Kuraray Co., Ltd.) F 1 0 1) film was installed around the layer as a sealant, A conductive glass with a tin oxide film and pre-deposited with platinum was overlaid with a hole drilled beforehand. After thermocompression bonding with an electrothermal brace machine, the electrolyte solution is passed through a hole in the counter electrode previously opened (solvent is acetonitrile; iodine concentration in the solvent is 0.05 mol liter, and the concentration of lithium iodide is also 0.1 mol) A 4-liter tert-butylpyridine concentration of 0 ...
  • the photoelectrochemical cell produced in this way was put into a xenon weathering tester and irradiated with light. (Light quantity: 0.48W / m 2 (340nm), black panel temperature: 83, humidity: 50% RH , No rain), observed the change in conversion efficiency over time.
  • the conversion efficiency was measured using a solar simulator manufactured by Yamashita Denso.
  • Table 1 shows the retention of conversion efficiency after 3.50 hours when the initial efficiency is 1.
  • a photoelectrochemical cell was obtained in the same manner as in Example 1 except that B YNEL (registered trademark, manufactured by DuPont), which is an anhydride-modified LLDPE, was used as the sealant.
  • B YNEL registered trademark, manufactured by DuPont
  • LLDPE anhydride-modified LLDPE
  • a 50-thick ethylene-vinyl alcohol sealant Copolymer resin (Eval (registered trademark of Kuraray Co., Ltd.) F 1 0 1)
  • the electrolyte solution (the solvent is acetonitrile, the iodine concentration in the solvent is 0.05 mol liters, the concentration of lithium niobate is 5 mol 0.1 mol noritol, 4 tert-butyl lysine concentration is 0.5 mol Z.
  • the glass plate encapsulating the electrolyte was aged in an oven at 85 t: and the time course of the amount of iodine was measured at an absorbance of 36 2 nm.
  • Table 2 shows the absorbance retention when the initial absorbance is 1. Absorbance is high ⁇ , which means that the iodine retained in the photoelectrochemical cell is high. ''
  • a glass plate encapsulating an electrolyte solution was obtained in the same manner as in Example 2 except that BYNEL (registered trademark, manufactured by DuPont), which is an anhydride-modified LLDPE, was used as the sealant.
  • BYNEL registered trademark, manufactured by DuPont
  • the change in absorbance over time was measured in the same manner as in Example 2. The results are shown in Table 2.
  • the photoelectrochemical cell of the present invention has a significant loss of electrolytes such as iodine and volatile solvents even when used at high temperatures or for long periods of time compared to the case of using a conventional sealant.
  • the photoelectrochemical cell of the present invention can be used as an optical sensor because current flows upon receiving light irradiation.

Abstract

Disclosed is a photoelectrochemical cell obtained by sealing a multilayer body, which includes a conductive substrate, semiconductor particles on which a photosensitizing dye is adsorbed, a charge transporting layer and a counter electrode, with a sealing agent. This photoelectrochemical cell is characterized in that the sealing agent contains a resin having a hydroxyl group.

Description

明 細 書 光電気化学電池 技術分野 、  Technical details Photoelectrochemical cell technology field,
本発明は、 光電気化学電池に関する。 背景技術  The present invention relates to a photoelectrochemical cell. Background art
近年、 地球温暖化防止のために大気中に放出される C〇2 の削減が求められ ている。 C〇2 の削減の有力な手段として、 例えば、 家屋の屋根など.に設置し 得る p n接合型のシリコン系太陽電池などの光電気化学電池を用いるソーラー- システムの利用促進が提唱されている。 しかしながら、 上記シリコン系光電気 化学零池に用いられる単結晶、 多結晶及びアモルファスシリコンは、.その製造 '過程において高温、 高真空条件が必要なために高コストになるという問題があ つた。 Recently, reduction of C_〇 2 released into the atmosphere in order to prevent global warming is demanded. As an effective means of reducing C_〇 2, for example, a solar using photoelectrochemical cell such as a silicon solar cell of the pn junction type can installed in the roof of the house -. System utilization promotion have been proposed. However, the single crystal, polycrystal and amorphous silicon used in the above silicon-based photoelectrochemical zero pond have a problem of high cost due to the necessity of high temperature and high vacuum conditions during the manufacturing process.
一方、 N a t u r e (第 7 37— 740頁、 ' 3 53卷、 .1 99.1年) には、 光増感色素を表面に吸着させた酸化チタンの薄膜を導電性基板に積層させた光 電変換素子、 電荷移動層及び対極を含む光電気化学電池が提案されている。 該 光電気化学電池は、 従来のシリコン系太陽電池と比較すると、 使用する材料の 多くは安価で、 製造過程においても高温高真空条件が必要ャないことかち、 よ り安価に製造できる.ことが期待されている。  On the other hand, Nature (p. 7 37-740, '3 53 卷, .1 99.1) describes a photoelectric conversion in which a thin film of titanium oxide with a photosensitizing dye adsorbed on its surface is laminated on a conductive substrate. A photoelectrochemical cell including an element, a charge transfer layer, and a counter electrode has been proposed. Compared with conventional silicon-based solar cells, the photoelectrochemical cell can be manufactured at a lower cost because many of the materials used are cheaper and high temperature and high vacuum conditions are not required in the manufacturing process. Expected.
ところで、 N a t u r e (第 7 3 7— 740頁、 3 53巻、 1 99 1年) に 提案されている電荷移動層は、 電解質としてヨウ素 · ョ,ゥ化物等を用い、 溶媒 どしてァセトニトリル等の揮発性溶媒を用いており、 長期使用する必要がある 場合は、 電荷移動層が揮発しないように封止剤が用いられる。  By the way, the charge transfer layer proposed in Nature (No. 7 37-740, pp. 3 53, 1 99 1) uses iodine, fluoride, etc. as an electrolyte, and uses acetonitrile as a solvent. If a long-term use is required, a sealant is used to prevent the charge transfer layer from volatilizing.
また、 N a t u r e ma t e r i a l s (第 406頁左下欄下から 2行目 、 2卷、 2 003年) には、 ポリエチレン系樹脂の接着剤である BYNEL ( 登録商標、 デュポン社) を封止剤として用いた光電気化学電池が提案されてい る。 . 本発明者らは、 電荷移動層に含まれる電解質としてヨウ素 · ヨウ化物を用い 、 溶媒としてァセ卜二卜リルを用い、 封止剤として前記接着剤を用いて得た光 電気化学電池を 8 5T:で保存すると、 ヨウ素が消失して、 耐久性が十分でない ことが明らかになった。 発明の開示  Also, in Nature material (2nd line from bottom left column on page 406, 2nd year, 2003), BYNEL (registered trademark, DuPont), an adhesive of polyethylene resin, is used as a sealant. The proposed photoelectrochemical cell has been proposed. The present inventors have provided a photoelectrochemical cell obtained using iodine / iodide as an electrolyte contained in a charge transfer layer, using acetonitrile as a solvent, and using the adhesive as a sealant. 8 When stored at 5T: Iodine disappeared, indicating that the durability was not sufficient. Disclosure of the invention
光電気化学電池の封止剤について検討したところ、 ある種の樹脂を含む封止 剤を用いて得られる光電気化学電池が、 耐久性に優れていることを見出した。 本発明の目的は、 耐久性に優れた光電気化学電池を提供することにある。 即ち、 本発明は、 以下の [ 1] 〜 [5] を提供するものである。  As a result of examining the sealant for photoelectrochemical cells, it was found that a photoelectrochemical cell obtained using a sealant containing a certain kind of resin is excellent in durability. An object of the present invention is to provide a photoelectrochemical cell excellent in durability. That is, the present invention provides the following [1] to [5].
[ 1 ] . 導電性基板、 光増感色素を吸着させた半導体微粒子、 電荷移動層及び 対極を含む積層体を、 封止剤で封止してなる光電気化学電池において、 封止剤 が水酸基を含む樹脂を含有する光電気化学電池。  [1]. In a photoelectrochemical cell in which a laminate including a conductive substrate, semiconductor fine particles adsorbed with a photosensitizing dye, a charge transfer layer and a counter electrode is sealed with a sealant, the sealant is a hydroxyl group A photoelectrochemical cell containing a resin comprising:
[2] . 水酸基を含む樹脂が、 エチレン—ビニルアルコール共重合体、 部分ケ ン化ポリビニルアルコール及び完全ケン化されたポリピニルアルコールからな る群から選ばれる少なくとも 1種の樹脂である [ 1 ] に記載の光電気化学電池 [3] . 半導体微粒子が酸化チタンである [1] 又は [2] に記載の光電気化 '学電池。 ' [2] The resin containing a hydroxyl group is at least one resin selected from the group consisting of an ethylene-vinyl alcohol copolymer, a partially saponified polyvinyl alcohol, and a fully saponified polypinyl alcohol. ] The photoelectrochemical cell described in [3] The photoelectrochemical cell according to [1] or [2], wherein the semiconductor fine particles are titanium oxide. '
[4] . 電荷移動層が、 12 及びヨウ素化物の組み合わせで.ある [ 1] 〜 [3 ] のいずれかに記載の光電気化学電池。 、 [4] The photoelectrochemical cell according to any one of [1] to [3], wherein the charge transfer layer is a combination of 12 and iodide. ,
[5] . エチレン—ビニルアルコール共重合体、 部分ゲン化ポリビニルアルコ —ル及び完全ケン化されたポリビニルアルコールからなる群から選ばれる少な くとも 1種の水酸基を含む樹脂を含有する光電気化学電¾用封止剤。 図面の簡単な説明  [5]. Photoelectrochemical cell containing a resin containing at least one hydroxyl group selected from the group consisting of ethylene-vinyl alcohol copolymer, partially genated polyvinyl alcohol and fully saponified polyvinyl alcohol. ¾ Sealant. Brief Description of Drawings
[図 1 ] , 本発明の湿式光電気化学の断面模式図である。  FIG. 1 is a schematic cross-sectional view of wet photoelectrochemistry of the present invention.
[符号の説明]  [Explanation of symbols]
- 1 基攸■■·■■  -1 Basics
2 導電層  2 Conductive layer
3 半導体粒子層  3 Semiconductor particle layer
4 光増感色素  4 Photosensitizing dye
5 電解液  5 Electrolyte
6 導電層  6 Conductive layer
7 基板  7 Board
8 導電性基板  8 Conductive board
9 対極  9 Counter electrode
1 0 封止剤 発明を実施するための形態  1 0 Sealant Mode for carrying out the invention
以下、 本発明を詳細に説明する。  Hereinafter, the present invention will be described in detail.
…本発明の光電気化学電池は、 導電性基板、 光増感色素を吸着させた半導体微 粒子、 電荷移動層及び対極を含む積層体を、 封止剤で封止してなる光電気化学 電池である。 The photoelectrochemical cell of the present invention is a photoelectrochemical cell formed by sealing a laminate including a conductive substrate, semiconductor fine particles adsorbed with a photosensitizing dye, a charge transfer layer and a counter electrode with a sealant. It is.
湿式光電気化学電池は、 光増感色素を吸着させた半導体微粒子の層 (以下、. 色素吸着半導体粒子層という場合がある) に接する導電性基板と対極との間に 電解液が充填されている。  In wet photoelectrochemical cells, an electrolyte is filled between a conductive substrate in contact with a layer of semiconductor fine particles adsorbed with a photosensitizing dye (hereinafter also referred to as a dye adsorbing semiconductor particle layer) and a counter electrode. Yes.
また、 乾式光電気化学電池は、 導電性基板と対極との間が、 固体のホール輸 送材料を介して積層されており、 光増感色素を吸着させた半 体微粒子は固体 のホール輸送材料中に含有されている。 本発明の湿式光電気化学電池を例にして以下に説明する。 具体例を図 1に示 した。 導電性基板 (8) と、 該導電性基板 (8) に対向する対極 (9) と、 こ れらの間に、 光増感色素 (4) が吸着された半導体微粒子層 (3) が存在する 。 湿式光電気化学電池の場合は、 (色素が吸着された) 半導体粒子層 (3) は 電解液 (5) で充填された状態で、 封止材 (1 0) で封止されている。  In dry photoelectrochemical cells, the conductive substrate and the counter electrode are stacked via a solid hole transport material, and the semi-fine particles adsorbed with the photosensitizing dye are solid hole transport materials. It is contained in. The wet photoelectrochemical cell of the present invention will be described below as an example. A specific example is shown in Fig. 1. A conductive substrate (8), a counter electrode (9) opposite to the conductive substrate (8), and a semiconductor fine particle layer (3) adsorbed with a photosensitizing dye (4) exist between them. To do. In the case of a wet photoelectrochemical cell, the semiconductor particle layer (3) (with the dye adsorbed) is filled with the electrolytic solution (5) and sealed with a sealing material (10).
導電性基板 (8) は、 上から順に基板 (1 ) と導電層 (2) で構成されてい る。 対極 (9) は、 下から順に基板 (7) と導電層 (6) で構成されている。 本発明の光電気化学電池に用いられる導電性基板 (8) 及び対極 (9) にお ける導電層 (導電性基板としては (2) 、 対極としては (6) ) としては電気 抵抗が低いほど好ましい。 また、 導電性基板の導電層 (2) としては、 高波長 領域、 具体的には 3 50 nmより長波長側の領域で、 高い透過率、 具体的には 、80 %以上め透過率であることが好ましい。 The conductive substrate (8) is composed of a substrate (1) and a conductive layer (2) in order from the top. The counter electrode (9) consists of a substrate (7) and a conductive layer (6) in order from the bottom. The conductive substrate (8) used in the photoelectrochemical cell of the present invention and the conductive layer in the counter electrode (9) ((2) for the conductive substrate, (6) for the counter electrode) The lower the resistance, the better. In addition, the conductive layer (2) of the conductive substrate has a high transmittance in the high wavelength region, specifically, a region longer than 350 nm, specifically, a transmittance of 80% or more. It is preferable.
導電層に用いられる導電性物質としては、 例えば、 鉄、 ニッケル、 クロム、 チタン、 アルミニウム、 白金、 金、 銀、 コバルト、 パラジウム、 .銅、 タンタル 、 ルテニウム、 タングステン、 亜鉛、 錫等の金属 ; 該金属のァロイ ; インジゥ ムースズ複合酸化物 ( I TO) 、 酸化スズにフッ素をドープしたもの等の導電 性金属酸化物 : 炭素、 ポリエチレンジォキシチォフェン ( EDOT) 、 ポリ ァ'二リン等の導電性高分子などが挙げられる。 導電性高分子には、 通常、 パラ トルエンスルホン酸等がドーピングされている。  Examples of the conductive material used in the conductive layer include iron, nickel, chromium, titanium, aluminum, platinum, gold, silver, cobalt, palladium, .copper, tantalum, ruthenium, tungsten, zinc, tin, and the like; Metal alloy: Conductive metal oxide such as indium-muth tin complex oxide (ITO), tin oxide doped with fluorine: Conductivity such as carbon, polyethylene dioxythiophene (EDOT), poly'diphosphorus, etc. A functional polymer. The conductive polymer is usually doped with para-toluenesulfonic acid or the like.
具体的な導電層と ては、 例えば、 導電性物質そのもの、 又は、 不導体の基. 板表面に導電性物質の薄膜を蒸着、 スパッタリング、 接着等により形成したも のなどが挙げられる。 ' .  Specific examples of the conductive layer include a conductive substance itself, or a non-conductive substrate, and a thin film of a conductive substance formed on the surface of the non-conductive substrate by vapor deposition, sputtering, adhesion, or the like. '.
' 導電性基板 (8) は、 入射じた光を閉じ込め、 有効に利用するた'めに、 導電 性物質の表面にテクスチャ一構造を有するものが好ましい。 導電性基板 (8) 及び対極 (9). における不導体の基板 (導電性基板として は ( 1) 、 対極としては (7) ) としては、 ガラス又はプラスチックなどが挙 げられる。  The conductive substrate (8) preferably has a textured structure on the surface of the conductive material in order to confine incident light and use it effectively. Non-conductive substrate in conductive substrate (8) and counter electrode (9). (1) for conductive substrate and (7) for counter electrode include glass or plastic.
プラスチックとしては、 ポリエチレンテレフタレー卜 (PET) .、 ポリエヂ レンナフタレート (PEN) 、 ポリフエ二レンスルフィ ド (PP S) 、 ポリ力 —ボネート (P C) 、 ポリプロピレン (P P) 、 ポリイミ ド (P I ) 、 卜リア セチルセルロース (TAC) 、 シンジオタクチックポリスチレン (S P S), 、 ポリアリ レート (PAR) ; ァ一トン (J S Rの登録商標) 、 ゼォネックス (■ 日本ゼオンの登録商標) 、 ゼォノア (日本ゼオンの登録商標) 、 アベル (三井 化学の登録商標) やトーパス (T i c o n a社の登録商標) 等の環状ポリオレ フィン (COP) ; ポ—リエ一テルスルホン (P E S) 、 ポリエーテルイミ ド ( P、E I ) 、 ポリスルブオン (P S F) 、 ポリアミ ド (PA) 等が挙げられる。 導電性基板 (8) 及び対極 (9) としては、 ガラス又はプラスチックに導電 性の金属酸化物を塗布したものが好まし 。 中でも、 フッ素をドーピングした 二酸化スズからなる導電層を積層した導電性ガラス、 インジウム—スズ複合酸 化物 ( I TO) からなる導電層を積層した導電性 Ρ ΕΤが、 電気抵抗が低く、 光の透過性に優れ、 入手もしゃすいことから特に好ましい。 本発明に用いられる半導体微粒子とは、 一次粒径が、 l〜 500 0 nm程度 、 好ましくは 5〜500 nm程度の半導体特性を有する微粒子である。 反射に よる光電変換効率の向上を目的として、 一次粒径の異なる半導体微粒子を混入 させてもよい。 また、 チューブや中空形状の微粒子を用いてもよい。 半導体微粒子 (2) の材質としては、 例えば、 酸化チタン、 酸化スズ、 酸化 亜鉛、 酸化鉄、 酸化タングステン、 酸化ジルコニウム、 酸化ハフニウム、 酸化 ストロンチウム、 酸化インジウム、 酸化セリウム、 酸化イッ トリウム、 酸化ラ ンタン、 酸化バナジウム、 酸化ニオブ、 酸化タンタル、 酸化ガリウム、 酸化二 ッケル、 チタン酸ストロンチウム、 チタン酸バリウム、 ニオブ酸カリウム、 夕 ンタル酸ナトリゥム等の金属酸化物 ; ヨウ化銀、 臭化銀、 ヨウ化銅、 臭化銅等'の金属ハロゲン化物 ; 硫化亜鉛、 硫化 チタン、 硫化インジウム、 硫化ビスマス、 硫化カ ドミウム、 硫化ジルコニウム 、 硫化タンタル、 硫化モリプデン、 硫化銀、 硫化銅、 硫化スズ、 硫化夕ングス テン、 硫化アンチモン等の金属硫化物 ; Plastics include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyphenylene sulfide (PP S), poly force—bonate (PC), polypropylene (PP), polyimide (PI), rear Cetylcellulose (TAC), Syndiotactic polystyrene (SPS), Polyarylate (PAR); Aton (registered trademark of JSR), Zeonex (■ registered trademark of Nippon Zeon), Zeonor (registered trademark of Nippon Zeon), Cyclic polyolefin (COP) such as Abel (registered trademark of Mitsui Chemicals) and Topas (registered trademark of T icona); Polyester monosulfone (PES), Polyether imide (P, EI), Polysulfone (PSF) And polyamide (PA). As the conductive substrate (8) and the counter electrode (9), glass or plastic coated with a conductive metal oxide is preferable. Among them, conductive glass with a conductive layer made of tin dioxide doped with fluorine and conductive film with a conductive layer made of indium-tin composite oxide (ITO) have low electrical resistance and light transmission. It is particularly preferable because of its excellent properties and availability. The semiconductor fine particles used in the present invention are fine particles having a semiconductor characteristic with a primary particle size of about 1 to 5000 nm, preferably about 5 to 500 nm. For the purpose of improving the photoelectric conversion efficiency by reflection, semiconductor fine particles having different primary particle diameters may be mixed. Tubes and hollow fine particles may be used. Examples of the material of the semiconductor fine particles (2) include titanium oxide, tin oxide, zinc oxide, iron oxide, tungsten oxide, zirconium oxide, hafnium oxide, strontium oxide, indium oxide, cerium oxide, yttrium oxide, lanthanum oxide, Metal oxides such as vanadium oxide, niobium oxide, tantalum oxide, gallium oxide, nickel oxide, strontium titanate, barium titanate, potassium niobate and sodium tantalite; Metal halides such as silver iodide, silver bromide, copper iodide, copper bromide, etc .; zinc sulfide, titanium sulfide, indium sulfide, bismuth sulfide, cadmium sulfide, zirconium sulfide, tantalum sulfide, molybdenum sulfide, silver sulfide, Metal sulfides such as copper sulfide, tin sulfide, sulfurized tungsten, and antimony sulfide;
セレン化カ ドミウム、 セ.レン化ジルコニウム、 セレン化亜鉛、 セレン化チタン 、 セレン化インジウム、 セレン化タングステン、 セレン化モリブデン、 セレン 化ビスマス、 セレン化鉛等の金属セレン化物 ; Metal selenides such as cadmium selenide, zirconium selenide, zinc selenide, titanium selenide, indium selenide, tungsten selenide, molybdenum selenide, bismuth selenide, lead selenide;
テルル化カ ドミウム、 テルル化タングステン、 テルル化モリブデン、 テルル化 亜鉛、 テルル化ビスマス等の金属テルル化物 ; Metal tellurides such as cadmium telluride, tungsten telluride, molybdenum telluride, zinc telluride, bismuth telluride;
リン化亜鉛、 リン化ガリウム、 リン化インジウム、 リン化カ ドミウム.等の金属 リン化物 ; Metal phosphides such as zinc phosphide, gallium phosphide, indium phosphide, cadmium phosphide;
ガリウム砒素、' 銅一インジウム一セレン化物、 銅—インジウム一.硫化物、 シリ コン, ゲルマニウム等が挙げられる。 Examples include gallium arsenide, copper indium monoselenide, copper indium monosulfide, silicon, germanium, and the like.
さらに、 酸化亜鉛. Z酸化スズ、 酸化スズ 酸化チタンのような二種以上の混 合物であってもよい。  Further, it may be a mixture of two or more of zinc oxide, Z tin oxide, tin oxide, titanium oxide and the like.
中でも、 酸化チタン、 酸化スズ、 酸化亜鉛、 酸化鉄、 酸化タン、グステン、 酸 化ジルコニウム、 酸化ハフニウム、 酸化ストロンチウム、 酸化インジウム、 酸 化セリウム、 酸化イッ トリウム、 酸化ランタン、 酸化バナジウム、 酸化ニオブ 、 酸化タンタル、 酸化ガリウム、 豳化ニッケル、 チタン酸ストロンチウム、 チ タン酸バリウム、 ニオブ酸カリウム、.タンタル酸ナトリウム、 酸化亜鉛/酸化 . スズ、 酸化スズ 酸化チタン等の金属酸化物が、 比較的安価で入手しやすく、 光増感色素が吸着されやすいことから好ましく、 特に、 酸化チタンが好適であ る 半導体微粒子の表面に、 四塩化チタン水溶液を用いた化学メツキや三塩化チ タン水溶液を用いた電気化学的メツキ処理を行ってもよい。 このことにより、 半導体微粒子の表面積を増大させたり、 半導体微粒子近傍の純度を高めたり、 導体微粒子表面に存在する鉄等の不純物を覆い隠したり、 または、 半導体微 粒子の連結性、 結.合性を高めたりすることができる。  Among them, titanium oxide, tin oxide, zinc oxide, iron oxide, tan oxide, gusten, zirconium oxide, hafnium oxide, strontium oxide, indium oxide, cerium oxide, yttrium oxide, lanthanum oxide, vanadium oxide, niobium oxide, oxide Metal oxides such as tantalum, gallium oxide, nickel iodide, strontium titanate, barium titanate, potassium niobate, sodium tantalate, zinc oxide / oxide, tin, tin oxide, titanium oxide, etc. are available at relatively low prices It is preferable because it is easy to absorb and the photosensitizing dye is easily adsorbed. Particularly, titanium oxide is suitable. On the surface of the semiconductor fine particles, chemical plating using a titanium tetrachloride aqueous solution or electrochemical using a titanium trichloride aqueous solution. You may perform a target treatment. As a result, the surface area of the semiconductor fine particles is increased, the purity in the vicinity of the semiconductor fine particles is increased, impurities such as iron existing on the surface of the conductive fine particles are obscured, or the connectivity and integrity of the semiconductor fine particles. Can be increased.
半導体微粒子は多くの光増感色素を吸着することができるように表面積の大. きいものが好ましい。 このため、 半導体微粒子 (2 ) の層を基板上 ^塗布した 状態での表面積は、 投影面積に対して 1 0倍以上であることが好ましく、 さら に 1 0 0倍以上であることが好ましい。 この上限は、 通常、 1 ひ 0 0倍程度で ある。  The semiconductor fine particles preferably have a large surface area so that many photosensitizing dyes can be adsorbed. Therefore, the surface area of the semiconductor fine particle (2) layer applied on the substrate is preferably 10 times or more, more preferably 100 times or more the projected area. This upper limit is usually around 100 times.
半導体微粒子 (2 ) の層は、 半導体微粒子の単層でもよいが、 通常、 複数層 の半導体微粒子からなり、 粒径の異なる複数の半導体微粒子からなる層である 湿式光電気化学電池の場合、 通常、 導電性基板の上に半導体微粒子層を形成 させたのち、 該層の微粒子に光増感色素を吸着させる。  The layer of semiconductor fine particles (2) may be a single layer of semiconductor fine particles, but in the case of a wet photoelectrochemical cell, which is usually a layer composed of a plurality of semiconductor fine particles and a plurality of semiconductor fine particles having different particle diameters. After the semiconductor fine particle layer is formed on the conductive substrate, the photosensitizing dye is adsorbed on the fine particles of the layer.
導電性基板上に半導体微粒子層を形成する方法としては、 半導体微粒子をス プレー噴霧等で直接、 導電性基板上に薄膜として形成する方法 ; 導電性基板を 電極として電気的に半導体微粒子薄膜を析出させる方法 ; 半導体微粒子のスラ リーを導電性基板上に塗布した後、 乾燥、 硬化又は焼成することによって製造 する方法などが例示される。 半導体微粒子のスラリーを導電性基板上に塗布する方法についてさらに詳し く説明すると、 例えば、 ドクターブレード、 スキージ、 スピンコート、 デイツ プコートやスクリーン印刷等の手法が挙げられる。 これらの手法において、 ス ラリー中の半導体微粒子の分散状態における平均粒径は、 0 , 0 1 nm〜1 0 0 mであることが好ましい。 、 As a method of forming a semiconductor fine particle layer on a conductive substrate, a method of directly forming a semiconductor fine particle as a thin film on a conductive substrate by spray spraying or the like; electrically depositing a semiconductor fine particle thin film using the conductive substrate as an electrode Examples of the method include: a method in which a slurry of semiconductor fine particles is applied on a conductive substrate and then dried, cured, or baked. The method for applying the semiconductor fine particle slurry onto the conductive substrate will be described in more detail. Examples thereof include a doctor blade, squeegee, spin coating, date coating, and screen printing. In these methods, the average particle diameter in the dispersed state of the semiconductor fine particles in the slurry is preferably 0, 0 1 nm to 100 m. ,
スラリーを分散させる分散媒としては、 半導体微粒子を分散させ得るもので あれば特に限定されず、 水、 又はエタノール、 イソプロパノール、 tーブタノ. The dispersion medium for dispersing the slurry is not particularly limited as long as the semiconductor fine particles can be dispersed.Water, ethanol, isopropanol, t-butano.
―ルゃテルビネオール等のアルコール溶媒; ァセトン等のケトン溶媒等の有機 溶媒が用いられる。 これらの水や有機溶媒は混合物であってもよい。 分散液に は、 ポリエチレングリコール等のポリマー; T r i ,t o n— X等の界面活性剤-Alcohol solvents such as lujaterbineol; organic solvents such as ketone solvents such as aceton are used. These water and organic solvent may be a mixture. The dispersion includes a polymer such as polyethylene glycol; a surfactant such as T r i, t o n—X
;酢酸、 蟻酸、 硝酸や塩酸等の有機酸又は無機酸; ァセチルアセトン等のキレ ... 一ト剤を含んでいてもよい。 An organic acid or an inorganic acid such as acetic acid, formic acid, nitric acid or hydrochloric acid; and a cleansing agent such as acetylacetone.
半導体微粒子のスラリ一を塗布した導電性基板を焼成することにより、 半導 体微粒子層を.形成することが好ましい。 該焼成温度は、 通常、 導電.層または基 板の融点未満で、 焼成温度の上限は 1200 であり、 好ましくは 600 :以下であ る。 また、 焼成時間は、 通常、 1 0時間以内である。 導電性基板上の半導体微 粒子層の厚みは、 通常、 0. :!〜 2 0 0 であり、 好ましくは:!〜 5 0 である。 導電性基板上に比較的低温で半導体微粒子層を形成するその他の方法として は、 例えば、. 水熱処理を施してポーラスな半導体微粒子層を形成する Hydrothe rmal法 (実用化に向けた色素増感光電気化学電池、 第 2講 (箕浦秀樹) 第 6 3 ~ 6 5頁、 NT S社発行 ( 2 0 0 3 ) ) 、 分散された半導体粒子の分散液耷基 板に電着する泳動電着法 (T. Miyasaka et al . , C eni. Let t. , 1250 (2002)) 、 半 導体ペーストを基板に塗布、 乾燥後にプレスするプレス法 (実用化に向けた色 素増感光電気化学電池、 第 1 2講 (萬 雄彦) 第 3 1 2 - 3 1 3頁、 NT S社 発行 ( 2 0 0 3 ) ) 等.が挙げられる。 本発明に用いられる光増感色素は、 可視光領域および または赤外光領域 に吸収を持つものであり、 種々の金属錯体ゃ有機色素の一種または二種以上 を用いることができる。 光増感色素とじては、 その分子中に力ルポキシル基 、 ヒドロキシアルキル基、 ヒドロキシル S.、 スルホン基、 力'ルポキシアルキ ル基等の官能基を有する光増感色素が半導体への吸着が早い傾向があること から好ましく用いられる。 また、 光電変換効率や耐久性に優れているため、 金属錯体が好ましく用いられる。 金属錯体としては、 銅フタロシアニン、 チ タニルフタロシアニンなどの金属フタロシアニン、 クロロフィル、 へミン、 特開平 1 一 2 2 0 3 8 0号公報や特表平 5 - 5 0 4 0 2 3号公報に記載のル テニゥム、 オスミウム、 鉄、 亜鉛の錯体などを用いることができる。 ルテニウム錯体をさらに詳しく例示すれば、 c/s-ビス(イソチオシァネート) ビス(2, 2 '-ビビリジル- 4,4'-ジカルボキシレー卜)-ルテニウム(II) ビス-テ卜 ラブチルアンモニゥム、 ビス(ィソチオシァネート)ビス(2, 2 '-ビビリジ ル- 4, 4'-ジカルボキシレート) -ルテニウム(11)、 トリス (イソチオシァネート ) 一ルテニウム(II)- 2, 2' :6' , 2"-テ一ピリジン- 4, 4',4"-トリカルボン酸トリ スーテトラプチルアンモニゥム、 cis-ビス (イソチオシァネー卜) (2, 2'-ビ ピリジル -4, 4'-ジカルボキシレート) (2, 2 '-ビビリジル -4, 4'-ジノニル)ルテニ ゥム(I I)などが挙げられる。 有機色素としては、 例えば、 メタルフリーフタロシアニン、 シァニン系色 素、 メロシアニン系色素、 キサンテン系色素、 トリフエニルメタン色素、 ス クァリリウム系色素などが挙げられる。 : . It is preferable to form a semiconductor fine particle layer by firing a conductive substrate coated with a slurry of semiconductor fine particles. The firing temperature is usually lower than the melting point of the conductive layer or substrate, and the upper limit of the firing temperature is 1200, preferably 600: or less. The firing time is usually within 10 hours. The thickness of the semiconductor fine particle layer on the conductive substrate is usually from 0.:! To 2 0 0, preferably :! ~ 50. Other methods for forming a semiconductor fine particle layer on a conductive substrate at a relatively low temperature include, for example, a hydrothermal method in which a porous semiconductor fine particle layer is formed by hydrothermal treatment (dye-sensitized photoelectric for practical use). Chemical Battery, 2nd Lecture (Hideki Kajiura), pages 6 3 to 65, published by NTS (2 0 0 3)), Electrophoretic electrodeposition method for electrodeposition of dispersed semiconductor particles on a dispersion liquid substrate ( T. Miyasaka et al., Ceni. Let t., 1250 (2002)), applying a semiconductor paste to a substrate, pressing it after drying (a dye-sensitized photoelectrochemical cell for practical use, No. 1 2 lectures (Takehiko Tsuji) 3 1 2-3 1 3 pages, published by NTS (2 0 3)). The photosensitizing dye used in the present invention has absorption in the visible light region and / or infrared light region, and various metal complexes can be used as one or more organic dyes. For photosensitizing dyes, photosensitizing dyes having functional groups such as force lpoxyl group, hydroxyalkyl group, hydroxyl S., sulfone group, force lpoxyalkyl group in the molecule tend to be adsorbed to semiconductors quickly. It is preferably used because of its presence. In addition, a metal complex is preferably used because of excellent photoelectric conversion efficiency and durability. Examples of the metal complex include copper phthalocyanine, metal phthalocyanine such as titanyl phthalocyanine, chlorophyll, hemin, and those described in JP-A No. 1 2 2 0 3 80 and JP-A-5-5 0 4 0 2 3 Ruthenium, osmium, iron, zinc complex, etc. can be used. A more detailed example of a ruthenium complex is c / s-bis (isothiocyanate) bis (2,2'-bibilidyl-4,4'-dicarboxylate) -ruthenium (II) bis-tetrabutyl Ammonium, bis (isothiocyanate) bis (2,2'-bibilyl-4,4'-dicarboxylate) -ruthenium (11), tris (isothiocyanate) monoruthenium (II)- 2, 2 ': 6', 2 "-Te-pyridine-4,4 ', 4" -tricarboxylic acid tristetratetramethyl ammonium, cis-bis (isothiocyanate) (2, 2'-bipyridyl-4 , 4'-dicarboxylate) (2,2'-bibilidyl-4,4'-dinonyl) ruteni Um (II). Examples of organic dyes include metal-free phthalocyanine, cyanine dyes, merocyanine dyes, xanthene dyes, triphenylmethane dyes, squalium dyes, and the like. :.
シァニン系色素としては、 具体的には、 NK 1 1 94、 .NK 342 2 (い ずれも日本感光色素研究所製) などが例示される。  Specific examples of cyanine dyes include NK 1 1 94, .NK 342 2 (both manufactured by Nippon Photosensitivity Laboratories).
メロシアニン系色素としては、 具体的には、 NK 242 6、 NK 2 5 0 1 (いずれも日本感光色素研究所製) が挙げられる。  Specific examples of merocyanine dyes include NK242 6 and NK 2 5 0 1 (both manufactured by Nippon Photosensitivity Laboratories).
キサンテン系色素としては、 例えば、 ゥラニン、 ェォシン、 ローズべンガ ル、 ローダミン B、 ジブロムフルォレセインなどが挙げられる。  Examples of xanthene dyes include uranin, eosin, rose bengal, rhodamine B, and dibromofluorescein.
トリフエニルメタン色素としては、 例えば、 マラカイトグリーン、 クリスタ ルバィォレッ.卜が挙げられる  Examples of the triphenylmethane dye include malachite green and crystal violet.
クマリン系色素としては、 NKX— 267 7 (林原生物化学研究所製) (以 下の構造式参照) 等が挙げられる。  Examples of the coumarin dye include NKX-267 7 (produced by Hayashibara Biochemical Research Institute) (see the following structural formula).
インドリン系等の有機色素として、 D 149 (三菱製紙社製) (以下の構造 式参照) 等が挙げられる。'  Examples of indoline-based organic dyes include D 149 (manufactured by Mitsubishi Paper Industries) (see the following structural formula). '
Figure imgf000007_0001
Figure imgf000007_0001
(D 149) 導電性基板に積層された半導体微粒子への光増感色素の吸着方法としては、 例えば、 本発明の光増感色素を含む溶液中に、 よく乾燥した半導体微粒子層及 び導電性基板からなる積層体を数時間浸漬する方法が挙げられる。 光増感色素 の吸着は室温 (2 5で) で行ってもよいし、 加熱下に行ってもよいし、 光増感 色素を含む溶液を還流させながら行ってもよい。  (D149) Examples of the method of adsorbing the photosensitizing dye to the semiconductor fine particles laminated on the conductive substrate include a well-dried semiconductor fine particle layer and a conductive material in a solution containing the photosensitizing dye of the present invention. The method of immersing the laminated body which consists of a board | substrate for several hours is mentioned. Adsorption of the photosensitizing dye may be performed at room temperature (at 25), may be performed under heating, or may be performed while refluxing a solution containing the photosensitizing dye.
光増感色素の吸着方法としては、 導電性基板に半導体微粒子層を形成する前 に行っても、 半導体微粒子と光増感色素を同時に導電性基板に塗布してもよい が、 導電性基板に形成された半導体微粒子層に光増感色素を吸着させる方法が より好ましい。 半導体微粒子層を加熱処理する場合、 光増感色素吸着は加熱処 理後に行ゔことが好ましく、 加熱処理後、 半導体微粒子層の表面に水が吸着す 、る前に、 光増感色素を吸着させる方法が特に好ましい。' 半導体微粒子に付着していない光増感色素が浮遊することによる増感効果の 低減を抑制するため、 未吸着の光増感色素は洗浄によって除去することが好ま しい。 ■ 吸着する光増感色素は 1種類で よいし、 数種混合して用いてもよい。 用途 が光電気化学電池である場合、 太陽光などの照射光の光電変換の波長域をでき るだけ広くするように、 混合する光増感色素を選ぶことが好ましい。 また、 光 増感色素の半導体微粒子に対する吸着量は、 半導体微粒子 1 gに対して 0 . 0. 1〜:!ミリモルが好ましい。 このような色素量とすると、 半導体微粒子におけ る.増感効果が十分に得られ、 半導体微粒子に付着していない色素が浮遊するこ とによる増感効果の.低減を抑制する傾向にあることから好ましい。.. The photosensitizing dye can be adsorbed before the semiconductor fine particle layer is formed on the conductive substrate, or the semiconductor fine particles and the photosensitizing dye may be applied to the conductive substrate at the same time. There is a method of adsorbing a photosensitizing dye to the formed semiconductor fine particle layer. More preferred. When the semiconductor fine particle layer is heat-treated, it is preferable that the photosensitizing dye adsorption is performed after the heat treatment. After the heat treatment, the photosensitizing dye is adsorbed before water is adsorbed on the surface of the semiconductor fine particle layer. Particularly preferred is a method of making them. 'It is preferable to remove the unadsorbed photosensitizing dye by washing in order to suppress the reduction of the sensitizing effect due to floating of the photosensitizing dye not adhering to the semiconductor fine particles. ■ One type of photosensitizing dye can be adsorbed or a mixture of several types can be used. When the application is a photoelectrochemical cell, it is preferable to select a photosensitizing dye to be mixed so that the wavelength range of photoelectric conversion of irradiation light such as sunlight is as wide as possible. In addition, the adsorption amount of the photosensitizing dye to the semiconductor fine particles is 0.1. A millimolar is preferred. With such a dye amount, a sufficient sensitizing effect is obtained in the semiconductor fine particles, and there is a tendency to suppress a reduction in the sensitizing effect due to the floating of the dye not attached to the semiconductor fine particles. To preferred. ..
また、 半導体微粒子層 (2 ) に吸着される光増感色素は、 同一でも異なって いてもよい。 例えば、 第一層目を 3 0 0 n m〜' 5 0 0 n m.の光増,感色素を吸着 させ、 第二層目に 5 0 0 n m〜 7 0 0 n mの光増感色素を吸着させ、 第三層目 に 7 0 0〜 9 0 0 n mの光増感色素を吸着させる等の、 各層に、 吸収波長の異 なる光増感色素を吸着させてもよい。  The photosensitizing dye adsorbed on the semiconductor fine particle layer (2) may be the same or different. For example, the first layer adsorbs a photosensitizing dye of 300 nm to '500 nm, and the second layer adsorbs a photosensitizing dye of 500 nm to 700 nm. Alternatively, a photosensitizing dye having a different absorption wavelength may be adsorbed to each layer, for example, a photosensitizing dye having a wavelength of 700 to 90 nm is adsorbed to the third layer.
'  '
光増感色素同士が会合や凝集等の相互作用することを抑制する目的で、 無色 の化合物を共吸着させてもよい。 共吸着させ ¾疎水性化合物としては、 例えば 、 力ルポキシル基を有するステロイド化合物 (例えば、 ケノデォキシコール酸 ) 等が挙げられる。 また、.余分な色素の除去を促進する目的で、 色素を吸着さ せた後、 アミン類を用いて半導体微粒子の表面を処理してもよい。 好ましいァ ミン類としては、 例えば、 ピリジン、 4— t e r t —ブチルピリジンやポリビ 二ルビリジン等が挙げられる。 これらが液体の場合はそのまま用いてもよいし 、 固体の場合は有機溶媒に溶解して用いてもよい。 本発明の電荷移動層に含まれる電解質としては、 例えば、 1 2 と各種ヨウ化 物との組合せ、 B r 2 と各種の臭化物との組合せ、 フエロシアン酸塩—フェリ シアン酸塩の金属錯体の組合せ、 フエ口セン一フエリシニゥ厶イオンの金属錯 体の組合せ、 アルキルチオ一ルーアルキルジスルフィ ドのィォゥ化合物の組合 せ、 アルキルビオローゲンとその還元体の組合せ、 ポリヒドロキシベンゼン類 とその酸化体の組合せ等が挙げられる。 A colorless compound may be co-adsorbed for the purpose of suppressing interactions such as association and aggregation between photosensitizing dyes. Examples of the hydrophobic compound after co-adsorption include a steroid compound having a strong lpoxyl group (for example, chenodeoxycholic acid) and the like. For the purpose of promoting the removal of excess dye, the surface of the semiconductor fine particles may be treated with amines after adsorbing the dye. Preferred amines include, for example, pyridine, 4-tert-butylpyridine, polyvinyl pyridine and the like. When these are liquids, they may be used as they are, or when they are solids, they may be dissolved in an organic solvent. Examples of the electrolyte contained in the charge transfer layer of the present invention include combinations of 12 and various iodides, combinations of Br 2 and various bromides, and combinations of ferrocyanate-ferricyanate metal complexes. , Combinations of metal complexes of phenoxy and ferricinium ions, combinations of alkyl compounds of alkylthio-l-alkyldisulfides, combinations of alkylviologens and their reduced forms, combinations of polyhydroxybenzenes and their oxidants, etc. Can be mentioned.
ここで、 I 2 と組合せ得るョゥ化物としては、 例えば、 L i I、 N a I、 K I、 C s Iや C a I 2 等の金属ヨウ化物; 1—プロピル一 3—メチルイミダゾ リウムアイオダイ ド、 1—プロピル— 2, 3 —ジメチルイミダゾリゥムアイド ダイド等の 4級イミダゾリゥム化合物のヨウ素塩; 4級ピリジニゥム化合物の ヨウ素塩;テトラアルキルアンモニゥム化合物のヨウ素塩等が挙げられる。 Here, the ® © product that may be combined with I 2, for example, L i I, N a I , KI, C s I and C a I 2 of a metal such as iodides; 1-propyl one 3-methylimidazo Riumuai Examples include iodine salts of quaternary imidazolium compounds such as iodine, 1-propyl-2,3-dimethyldimethylimidazole, iodine salts of quaternary pyridinium compounds, iodine salts of tetraalkylammonium compounds, and the like.
B r 2 と組合せ得るヨウ化物としては、 例えば、 L i B r、 N a B r、 K B r、 C s B rや C a B r 2 等の金属臭化物;テトラアルキルアンモニゥムブロ マイドゃピリジニゥムブロマイド等の 4級アンモニゥム化合物の臭素塩等が挙 げられる。 The iodide may be combined with B r 2, for example, L i B r, N a B r, KB r, C s B r and C a B r 2, etc. of the metal bromide; tetraalkyl ammonium Niu beam blow amide Ya pyridinium Examples include bromine salts of quaternary ammonium compounds such as zinc bromide.
アルキルピオローゲンとしては、 例えば、 メチルビオローゲンクロリ ド、 へ キシルビオローゲンプロミド、 ベンジルビオローゲンテトラフルォロボレ一ト などが挙げられ、 ポリヒドロキシベンゼ、ン類としては、 例えば、 ハイド口キノ ンゃナフトハイド口キノン等が挙げられる。 Examples of the alkyl viologen include methyl viologen chloride, hexyl viologen promide, and benzyl viologen tetrafluoroborate. Examples of the polyhydroxybenzes and diols include, for example, hyde mouth quinone and naphthohyde mouth quinone.
. 電解質としては、 I 2 及びヨウ素化物の組み合わせであることが好ましく、 特に、 金属ヨウ化物、 4級イミダゾリゥム化合物のヨウ素塩や 4級ピリジニゥ ム化合物のヨウ素塩、 及びテトラアルキルアンモニクム化合物のヨウ素塩から なる群から選ばれる少なくとも 1種のヨウ化物と I 2 との組合せが好ましい。 本発明の光電気化学電池が湿式である場合、 電荷移動層には電解液が含まれ る。 電解液としては、 例えば、 水、 電解質を溶解する有機溶媒が挙げられる。 有機溶媒としては、 例えば、 ァセトニトリル、 メトギシァセトニトリルゃプ 口ピオ二トリル等の二トリル系溶媒;エチレン力一ポネ一トゃプロピレンカー ポネ一ト等のカーボネート系溶媒; ァープチロラクトン等のラク小ン系溶媒; N,, N—ジメチルホルムアミ ド等のアミド系溶媒 i 1—メチル— 3 —プロピル ィミダゾリゥムアイオダィドゃ 1—メチルー 3 —へキシルイミダゾリゥムアイ オダイ ド ; 1 —ェチル— 3 —メチルイミダゾリゥム—ビス (トリフルォロメ タンスルホン酸) イミ ド等のイオン性液体が挙げられる。.. 、 The electrolyte is preferably a combination of I 2 and an iodide, and in particular, a metal iodide, an iodine salt of a quaternary imidazolium compound, an iodine salt of a quaternary pyridinium compound, and an iodine salt of a tetraalkylammonium compound. A combination of at least one iodide selected from the group consisting of and I 2 is preferred. When the photoelectrochemical cell of the present invention is wet, the charge transfer layer contains an electrolyte. Examples of the electrolytic solution include water and an organic solvent that dissolves the electrolyte. Examples of the organic solvent include nitrile solvents such as acetonitrile and methotisacetonitrile pionitrile; carbonate solvents such as ethylene power and propylene carbonate; Lactone solvents such as lolactone; Amide solvents such as N ,, N-dimethylformamide i 1-Methyl-3 —propylimidazolium ioidaid 1-methyl-3 —hexylimidazole An ionic liquid such as mu-iodide; 1-ethyl-3-methylimidazolium-bis (trifluoromethanesulfonic acid) imide. ..,
電解 ¾は、 ポリアクリロニトリル、 ポリビニリデンフルオライ ド、 ポリ 4— ビニルピリジンや C h e m i s t r y L e t t e r s , 1 2 4 1 ( 1 9 9 8 ) に示される低分子ゲル化剤でゲル化されていてもよい。 本発明の光電気化学電池が乾式である場合、 電荷移動層には、 固体のホール 輸送材料などの固体電解層が用いられる。  The electrolysis ¾ may be gelled with a low molecular gelling agent shown in polyacrylonitrile, polyvinylidene fluoride, poly-4-vinylpyridine, or Chemistry Letters, 1 2 4 1 (1 9 9 8). . When the photoelectrochemical cell of the present invention is dry, a solid electrolytic layer such as a solid hole transport material is used for the charge transfer layer.
固体のホール輸送材料としては、 C u Iや C u S C N等の一価の銅を含む p 型無機半導体からなるものや、 S y n t h e t i c M e t l , 8 9 , 2 1 5 ( 1 9 .9 7 ) 及び N a t u r e , 3 9 5 , 5 8 3 ( 1 9 9 8 ) で示されるよう な芳香族ァミン類;ポリチォブェン及びその誘導体;ポリピロール及びその誘 導体;.ポリ 7 リン及びその誘導体;ポリ (ρ —フエ二レン) 及びその誘導体 ;ポリ (ρ —フエ二レンピニレン) 及びその誘導体等の導電性高分子からなる も、のなどが挙げられる。 本発明に用いられる封止剤は、 水酸基を含む樹脂を含有するものであり、 該 樹脂を封止剤として用いることにより、 電解液としてァセトニトリル等の揮発 性溶媒やヨウ素を用いた場合、 それらが特に高温で揮発しにくいため、 耐久性 が著しく向上する。  Solid hole transport materials include those made of p-type inorganic semiconductors containing monovalent copper such as Cu I and Cu SCN, and Synthetic M etl, 8 9, 2 1 5 (1 9. 9 7) And aromatic, amines such as those shown by Nature, 3 95, 5 8 3 (1 9 9 8); polythiophene and its derivatives; polypyrrole and its derivatives; poly 7 phosphorus and its derivatives; And (2) vinylene) and derivatives thereof; poly (ρ-phenylenepinylene) and derivatives thereof, and the like. The sealing agent used in the present invention contains a resin containing a hydroxyl group. By using the resin as a sealing agent, when a volatile solvent such as acetonitrile or iodine is used as an electrolytic solution, they are In particular, it is difficult to volatilize at high temperatures, so durability is significantly improved.
水酸基を含む榭脂としては、 取り扱いの容易さから熱可塑性樹脂が好ましい 水酸基を含む樹脂の具体例としては、 エチレン一酢酸ビニル共重合体の酢酸 エステルが加水分解されたエチレン一ビニルアルコール共重合体、 ポリ酢酸ビ ,ニルの酢酸エステルが一部加水分解された部分ケン化ポリピエルアルコール、 ポリ酢酸ビニルの酢酸エステルが約 9 8モル%以上加水分解された完全ケン化 ポリビニルアルコールなど、 樹脂の構造単位であるビニルエステルを加水分解 して得られる構造単位を含むものなどが挙げられる。  As the resin containing a hydroxyl group, a thermoplastic resin is preferable because of easy handling. As a specific example of a resin containing a hydroxyl group, an ethylene-vinyl alcohol copolymer obtained by hydrolyzing an acetate ester of an ethylene-vinyl acetate copolymer is used. Resin structure such as polyvinyl acetate, partially saponified polyvinyl alcohol partially hydrolyzed with vinyl acetate, and fully saponified polyvinyl alcohol with approximately 98 mol% or more of polyvinyl acetate hydrolyzed Examples thereof include those containing a structural unit obtained by hydrolysis of vinyl ester as a unit.
前記の水酸基を含む樹脂はフィルムとして用いることができ、 フィルムとし て用いる場合には、 当該フィルムを延伸処理して用いてもよい。 これらの中でも、 電熱プレス等による熱圧着による封止のし易さの観点から は、 エチレン一ビニルアルコール共重合体が好ましぐ用いられる。 The resin containing a hydroxyl group can be used as a film, and when used as a film, the film may be stretched. Among these, from the viewpoint of ease of sealing by thermocompression bonding using an electrothermal press, etc. Of these, ethylene-vinyl alcohol copolymer is preferably used.
エチレン—ビニルアルコール共重合体としては、 例えば、 クラレ社製エバー 、ル (登録商標) 、 日本合成化学社製ソァノール (登録商標) 、 ソアライ ト (登 録商標) などが挙げられる。 ェバールとしては、 EVAL RE S I N&F I LM カタログ (2002.6月発行) 中のいずれものグレードも使用可能であるが 、 例えば、 エチレン重合比の異なる L、 F, T、 J, H, E, E, Gグレード がいずれも使用できる。 また; これらめフィルムには滑剤が含まれていてもよ い。 .  Examples of the ethylene-vinyl alcohol copolymer include Kuraray's Ever, Lu (registered trademark), Nippon Synthetic Chemical's Soanol (registered trademark), Soarlite (registered trademark), and the like. Any grade in the EVAL RE SI N & F I LM catalog (issued in May 2006) can be used. For example, L, F, T, J, H, E, E, G with different ethylene polymerization ratios. Any grade can be used. Also; these films may contain a lubricant. .
また、 エチレン—ビニルアルコール共重合体、 部分ケン化ポリビニルアルコ —ル、 完全ケン化ポリビニルアルコールは、 ポリエチレンテレフダレート (P ET) 、 ポリアミ ド:(PA) 、 ポリエチレン (PE) 、 ポリプロピレン (P P ) 、 アルミニウム S i〇2膜等との多層構造を形成していてもよい。 In addition, ethylene-vinyl alcohol copolymer, partially saponified polyvinyl alcohol, fully saponified polyvinyl alcohol are polyethylene terephthalate (PET), polyamide: (PA), polyethylene (PE), polypropylene (PP) , they may form a multi-layered structure of aluminum S I_〇 2 film.
ポ,リビニルアルコールとレては、 例えば、 クラレ社製クラレポバ ル、 日本 、 合成化学社製ゴ一セノール、 .白本酢ビポバール社製 J—ポバール、'竜気化学ェ 業社製デンカポバール、 ュニチカ社製ュニチカポバール等が挙げられる。 ポバ ールには、 可塑剤が入っていてもよい。 ' . 、  For example, Kuraray's Kuraray Poval, Japan, Synthetic Chemical's Gosensenol, Shiramoto Vinegar Bipoval's J-Poval, 'Ryoke Chemical Company's Denka Poval, Examples include Unitika Poval manufactured by Unitica. The poval may contain a plasticizer. '.
これらの樹脂には、 導電性基板.(8) と対極 (9) の聞隔を一定に保っため -. •のスぺ一サ一 、 ァセトニ卜リル等揮発性溶媒やヨウ素の蒸散を更に抑制する ために、 S i 0 T i'〇2、 A 1 2 03 などの充填剤を混合されて てもよい „ また、 本発明の封止剤には、 ハイミラン (登録商標、 三井デュポンポリケミ カル製) 等のアイオノマー樹脂 ; ガラスフリッ ト ; S X 1 1 70 (S o l a r o n i x製) 等のホッ トメゾレ卜接着剤 ; Amo s i 1 4 ( S o 1 a r o n i x製) のような接着剤 ; B YNE L (デュポン製) のような無水物変性 LLDPE (直鎖状低密度ポリエチレンを無水マレイン酸などの酸無水物で変性したもの ) 、 エポキシ系接着剤を併用してもよい。 封止剤の形状としては、 例えば、 フィルム、 シートなどの封止される形状に 予め成形されたものや、 封止前には水を含んで液状であり、 封止時には乾燥す ' るものなどが挙げられ ¾。 取り扱いの容易さから、 フィルム、 シートなどの封 - 止される形状に予め成形されたものが好ましい。 In order to keep the distance between the conductive substrate (8) and the counter electrode (9) constant in these resins, the spacers of .. • further suppress the evaporation of volatile solvents such as acetonitrile and iodine. In order to achieve this, a filler such as S i 0 T i '0 2 or A 1 2 0 3 may be mixed. „In addition, the sealing agent of the present invention includes Hi-Milan (registered trademark, Mitsui DuPont Polychemi). Ionomer resins such as Calf); Glass frits; Hot mesole adhesives such as SX 1 1 70 (Solaronix); Adhesives such as Amo si 1 4 (So 1 aronix); B YNE L (DuPont) Anhydrous-modified LLDPE (made by modifying linear low density polyethylene with an acid anhydride such as maleic anhydride) or epoxy adhesive may be used in combination. For example, pre-molded shapes such as films and sheets, or water before sealing Comprise a liquid, to drying during sealing 'shall and the like ¾ ease of handling, film, sealing such sheets -. Those preformed in a shape to be sealed are preferred.
フィルムの厚みとしては、 通常、 1 m〜 1 mm程度のものが用いられる。 成型された封止剤を用いて封止する方法としては、 作用極と対極の間に封止 剤を挟みこみ、 電熱プレスにて貼り合わせる方法が挙げられる。 貼り合せ温度 は、 樹脂が溶融する以上の温度にて実施すればよく、 通常、 50〜300 の 間で実施される。  The thickness of the film is usually about 1 m to 1 mm. As a method for sealing using a molded sealant, a method in which a sealant is sandwiched between a working electrode and a counter electrode and bonded by an electric heating press can be mentioned. The bonding temperature may be at a temperature higher than the temperature at which the resin melts, and is usually between 50 and 300.
レーザー光等を用いて、 封止材部分を局所的に加熱溶融して貼り合せてもよ い。 色素が既に設置されたセルを封止する場合は、 色素が熱で劣化しない範 囲で加熱時間を調整すること好ましい。 本発明の光電気化学電池は, ァセトニトリル等の揮発性溶媒やヨウ素などの 電解質の揮発を防止し得る封止剤により封止されるため、 高温で保存しても、 電荷移動層に含まれる電解質や溶媒等の電荷移動層が失われず、 耐久性に優れ ている。 実施例 、 ■ The sealing material portion may be locally heated and melted and bonded using laser light or the like. When sealing a cell in which a dye is already installed, it is preferable to adjust the heating time within a range where the dye does not deteriorate with heat. Since the photoelectrochemical cell of the present invention is sealed with a volatile solvent such as acetonitrile or a sealing agent that can prevent the evaporation of electrolyte such as iodine, the electrolyte contained in the charge transfer layer even when stored at high temperature The charge transfer layer such as water and solvent is not lost and it has excellent durability. Examples, ■
以下に、 本発明を実施例を挙げて更に詳細に説明するが、 本発明がこれらの '実施例により限定されるものではない; tとは言うまでもない。 (実施例 1) 、 : .  The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples; needless to say t. (Example 1):
導電性基板である、 フッ素をドープした酸化スズ膜付き導電性ガラス (日本 板硝子製、 1 0 Ω/D) の導電性面に、 酸化チタン分散液である T i - N a n ■ o x i d e T (商品名、 S o l a r o n i x社製) をドクターブレ一ドを用. いて塗布後、 500でで焼成し、 ガラスを冷却して、 ¾電性基板に半導体微粒 子層を形成させた。 続いて、 -ビス(イソチオシァネート)ビス (2;2'-ビピリ ジル- 4, 4'-ジカルボキシレ一ト) -ルテニウム(II) ビス-テトラプチルアンモ二- ゥムの溶液 (濃度は 0. 0003モル/リットル、 溶媒は t一ブチルアルコー ル/ァセトニトリル = 1 /1の混合溶媒) に: 1 6時間浸漬し、. 溶液から取り出 したのち、 ァセトニ小リルで冼浄後、 自然乾燥させ、 導電性基板及び光増感色 素を吸着させた半導体微粒子層の積層体 (酸化チタン電極の面積は 7 cm2 ) を得た。 次に、 該層の周りに、 封止剤として 50 厚のエチレン—ビニルァ ルコール共重合樹脂 (エバ一ル (クラレ (株) の登録商標) F 1 0 1) フィ ルムを設置後、 フッ素ド一プ酸化スズ膜付きで、 白金蒸着済みの導電性ガラス に、 あらかじめドリルにより穴をあけたものを重ね合わせた。 電熱ブレス機に て熱圧着後、 あらかじめ開けておいた対極の穴から電解液 (溶媒はァセトニト リル;溶媒中のヨウ素濃度は 0. 0 5モル リットル、 同じくヨウ化リチウ ム濃度は 0. 1モル リッ トル、 同じく 4 - t—プチルピリジン濃度は 0... 5モル リットル、 同じく 1—プロピル一 2, 3—ジメチルイミダゾリゥム アイオダイド濃度は 0. 6モル/リットル) をセル内に注入した。 その後、 穴を封じるためエチレン一ビニルアルコール共重合樹脂 (ェバール (クラレ ( 株) の登録商標) F 1 0 1 ) フィルム及びガラス板を穴の上に設置後、 電熱 プレス機にて熱圧着し封止した光電気化学電池を得た。 The conductive surface of a conductive glass with a tin oxide film doped with fluorine (made by Nippon Sheet Glass Co., Ltd., 10 Ω / D) is a titanium oxide dispersion. Name, manufactured by Solaronix) was applied using a doctor blade, fired at 500, the glass was cooled, and a semiconductor fine particle layer was formed on a conductive substrate. Subsequently, a solution of -bis (isothiocyanate) bis (2; 2'-bipyridyl-4,4'-dicarboxylate) -ruthenium (II) bis-tetraptylammonium (concentration is 0 0003 mol / liter, the solvent is a mixed solvent of 1 butyl alcohol / acetonitrile = 1/1): 16 hours soaked, taken out from the solution, filtered with acetoni small rill, then air dried A laminate of a semiconductor fine particle layer adsorbing a conductive substrate and a photosensitized dye (the area of the titanium oxide electrode was 7 cm 2 ) was obtained. Next, a 50-thick ethylene-vinyl alcohol copolymer resin (EVAL (registered trademark of Kuraray Co., Ltd.) F 1 0 1) film was installed around the layer as a sealant, A conductive glass with a tin oxide film and pre-deposited with platinum was overlaid with a hole drilled beforehand. After thermocompression bonding with an electrothermal brace machine, the electrolyte solution is passed through a hole in the counter electrode previously opened (solvent is acetonitrile; iodine concentration in the solvent is 0.05 mol liter, and the concentration of lithium iodide is also 0.1 mol) A 4-liter tert-butylpyridine concentration of 0 ... 5 mol liters and a 1-propyl-1,3-dimethylimidazolium iodide concentration of 0.6 mol / liter) were injected into the cell. Then, ethylene-vinyl alcohol copolymer resin (Eval (registered trademark of Kuraray Co., Ltd.) F 1 0 1) was placed on the hole and sealed by thermocompression using an electric heat press to seal the hole. A stopped photoelectrochemical cell was obtained.
、このようにして作製した光電気化学電池について、 キセノン耐候性試験機 に入れ、 光照射し .(光量: 0.48W/m2 (340nm) 、 ブラックパネル温度: 8 3で、 湿度: 50%RH、 雨なし) 、 変換効率の経時変化を観察した。 変換効率 の測定は、 山下電装社製ソーラーシミュレーターを用いて測定した。 The photoelectrochemical cell produced in this way was put into a xenon weathering tester and irradiated with light. (Light quantity: 0.48W / m 2 (340nm), black panel temperature: 83, humidity: 50% RH , No rain), observed the change in conversion efficiency over time. The conversion efficiency was measured using a solar simulator manufactured by Yamashita Denso.
初期の効率を 1とした時の 3.50時間後の変換効率の保持率を表 1に示す。  Table 1 shows the retention of conversion efficiency after 3.50 hours when the initial efficiency is 1.
(比較例 1) (Comparative Example 1)
封止剤として、 無水物変性 LLDPEである B YNEL (登録商標、 デュポン社 製) を用いる以外は、 実施例 1と同様にして光電気化学電池を得た。 次いで、 光電変換効率の経時変化を実施例 1と同様にして測定した。 結果を表 1に示し た。 表 1
Figure imgf000011_0001
A photoelectrochemical cell was obtained in the same manner as in Example 1 except that B YNEL (registered trademark, manufactured by DuPont), which is an anhydride-modified LLDPE, was used as the sealant. Next, the change with time in photoelectric conversion efficiency was measured in the same manner as in Example 1. The results are shown in Table 1. table 1
Figure imgf000011_0001
(実施例 2) (Example 2)
ガラス板の周囲に、 封止剤として 50 厚のエチレン—ビニルアルコール 共重合樹脂 (ェバール (クラレ (株) の登録商標) F 1 0 1 ) フィルムを設 置後、 あらかじめドリルにより穴をあけたガラス板を重ね合わせた。 電熱プレ ス機にて熱圧着後、 あらかじめ開けておいた対極の穴から電解液 (溶媒はァセ トニトリル;溶媒中のヨウ素濃度は 0 . 0 5モルノリットル、 ョヴ化リチウ 5 ム濃度は 0 . 1モルノリッ トル、 4 一 t _ブチルどリジン濃度は 0 . 5モル Z.リットル、 1 一プロピル一 2, 3 —ジメチルイミダゾリゥムアイオダイド濃 度は 0 . 6'モル Zリットル) をセル内に注入した。 その後、 穴を封じるため エチレン一ビニルアルコール共重合樹脂. (ェバール (クラ,レ (株) の登録商標. ) F 1 0 1 ) フィルム及びガラス板を穴の上に設置後、 電熱プレス機に'て熱 10 圧着し封止した。 Around the glass plate, a 50-thick ethylene-vinyl alcohol sealant Copolymer resin (Eval (registered trademark of Kuraray Co., Ltd.) F 1 0 1) After the film was placed, a glass plate with holes drilled in advance was superposed. After thermocompression bonding with an electric heat press machine, the electrolyte solution (the solvent is acetonitrile, the iodine concentration in the solvent is 0.05 mol liters, the concentration of lithium niobate is 5 mol 0.1 mol noritol, 4 tert-butyl lysine concentration is 0.5 mol Z. liter, 1 propyl 1, 2, 3 — dimethylimidazolium iodide concentration is 0.6 'mol Z liter) Injected into. Then, to seal the hole, ethylene-vinyl alcohol copolymer resin. (Eval (registered trademark of Kura, Le Co., Ltd.)) F 1 0 1) After installing the film and glass plate on the hole, Then heat-pressed and sealed.
電解液を封入したガラス板を 8 5 t:のオーブンでエージングし、 その際のヨ- ウ素量の経時変化を 3 6 2 nmの吸光度で測定した。,初期の吸光度を 1とした時 の.吸光度の保持率を表 2に示す。 吸光度が大きい ^ど、 光電気化学電池に封入 • されたヨウ素の保持率が高いことを意味する。 . ' '  The glass plate encapsulating the electrolyte was aged in an oven at 85 t: and the time course of the amount of iodine was measured at an absorbance of 36 2 nm. Table 2 shows the absorbance retention when the initial absorbance is 1. Absorbance is high ^, which means that the iodine retained in the photoelectrochemical cell is high. ''
1 5  1 5
(実施例 3 ) ' . 、  (Example 3) '.
封止剤として 4 0 m厚のポリ ニルアルコール榭脂 (ポバール (クラレ .( . 株) の登録商標) V L— F ) を用いる以外は、 実施例 2と同様に実施した。  It was carried out in the same manner as in Example 2 except that 40-m thick polyvinyl alcohol resin (Poval (registered trademark of Kuraray Co., Ltd.) V L-F) was used as the sealant.
20 (比較例 2 ) 20 (Comparative Example 2)
封止剤として、 無水物変性 LLDPEである B Y N E L (登録商標、 デュポン社 製) を用いる以外は、 実施例 2と同様にして電解液を封入したガラス板を得た 。 次いで、 吸光度の経時変化を実施例 2と同様にして測定した。 結果を表 2に 示す。  A glass plate encapsulating an electrolyte solution was obtained in the same manner as in Example 2 except that BYNEL (registered trademark, manufactured by DuPont), which is an anhydride-modified LLDPE, was used as the sealant. Next, the change in absorbance over time was measured in the same manner as in Example 2. The results are shown in Table 2.
,25  ,twenty five
表 2
Figure imgf000012_0001
産業上の利用可能性
Table 2
Figure imgf000012_0001
Industrial applicability
. 本発明の光電気化学電池は、 従来の封止剤を用いた場合と比較して、 高温下 での使用や長期間の使用でもヨウ素などの電解質や揮発性溶媒の消失が著しく The photoelectrochemical cell of the present invention has a significant loss of electrolytes such as iodine and volatile solvents even when used at high temperatures or for long periods of time compared to the case of using a conventional sealant.
30 低減されることから、 耐久性に優れる。 このような優れた特性から、 太陽光に よる太陽電池、 トンネルや屋内での人工光による光電気化学電池に用いること ができる。 また、 本発明の光電気化学電池は、 光の照射を受けて電流が流れる ことから、 光センサーとして用いることができる。 30 Since it is reduced, it has excellent durability. Because of these excellent characteristics, it can be used for solar cells using sunlight, and photoelectrochemical cells using artificial light in tunnels and indoors. In addition, the photoelectrochemical cell of the present invention can be used as an optical sensor because current flows upon receiving light irradiation.
35 35

Claims

請 求 の 範 囲 The scope of the claims
1 . 導電性碁板、 光増感色素を吸着させた半導体微粒子、 電荷移動層及び対極 を含む積層体を、 封止剤で封止してなる光電気化学、電池において、 封止剤が水 酸基を含む樹脂を含有する光電気化学電池。.  1. In a photoelectrochemistry battery formed by sealing a conductive substrate, a semiconductor fine particle adsorbed with a photosensitizing dye, a charge transfer layer, and a counter electrode with a sealant, the sealant is water. A photoelectrochemical cell containing a resin containing an acid group. .
2 . 水酸基を含む樹脂が、 エチレン—ビニルアルコール共、重合体、 部分ケン化 ポリビ ルアルコール及び完全ゲン化されたポリビニルアルコールからなる群 から選ばれる少なくとも 1種の樹脂であるクレーム 1 ίこ記載の光電気化学電池 2. The resin according to claim 1, wherein the hydroxyl group-containing resin is at least one resin selected from the group consisting of ethylene-vinyl alcohol copolymer, polymer, partially saponified polyvinyl alcohol, and fully genated polyvinyl alcohol. Photoelectrochemical cell
3.. 導体微粒子が酸化チタンであるクレーム 1又は 2に記載の光電気化学電 池。 . , . ' · · ' · 3 .. The photoelectrochemical cell according to claim 1 or 2, wherein the conductive fine particles are titanium oxide. ...
4 . 電荷移動層が、 I 2 及びヨウ素化物の組み合わせであ.るクレーム:!〜 3の いずれかに記載の光電気化学電池。 · ノ、 . 4 charge transfer layer, Kumiawasedea Ru claims I 2 and iodide:.! Photoelectrochemical cell according to any one of 1-3. ·
5 . エチレン一ビニルアルコール共重合体、 部分ケン化ポリピニルアルコール 及び完全ケン化されたポリビニルアルコールからなる群から選ばれる少なくと ( も 1種の水酸基を含む樹脂を含有する光電気化学電池用封止剤。 5. For photoelectrochemical cells containing at least one resin selected from the group consisting of ethylene-vinyl alcohol copolymer, partially saponified polypinyl alcohol and fully saponified polyvinyl alcohol Sealant.
PCT/JP2006/321807 2005-10-31 2006-10-25 Photoelectrochemical cell WO2007052681A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-315890 2005-10-31
JP2005315890 2005-10-31

Publications (1)

Publication Number Publication Date
WO2007052681A1 true WO2007052681A1 (en) 2007-05-10

Family

ID=38005834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/321807 WO2007052681A1 (en) 2005-10-31 2006-10-25 Photoelectrochemical cell

Country Status (1)

Country Link
WO (1) WO2007052681A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093252A (en) * 2003-09-18 2005-04-07 Hitachi Maxell Ltd Photoelectric conversion element module
JP2005100875A (en) * 2003-09-26 2005-04-14 Hitachi Maxell Ltd Photoelectric conversion element module
JP2005158621A (en) * 2003-11-27 2005-06-16 Kyocera Corp Lamination type photoelectric converter
JP2005213470A (en) * 2004-02-02 2005-08-11 Nichiban Co Ltd Sealing material
JP2005243379A (en) * 2004-02-26 2005-09-08 Kyocera Corp Photoelectric conversion device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093252A (en) * 2003-09-18 2005-04-07 Hitachi Maxell Ltd Photoelectric conversion element module
JP2005100875A (en) * 2003-09-26 2005-04-14 Hitachi Maxell Ltd Photoelectric conversion element module
JP2005158621A (en) * 2003-11-27 2005-06-16 Kyocera Corp Lamination type photoelectric converter
JP2005213470A (en) * 2004-02-02 2005-08-11 Nichiban Co Ltd Sealing material
JP2005243379A (en) * 2004-02-26 2005-09-08 Kyocera Corp Photoelectric conversion device

Similar Documents

Publication Publication Date Title
US8933328B2 (en) Dye-sensitized solar cell module and method of producing the same
CN101595594B (en) Coloring matter-sensitized photoelectric conversion element, process for producing the coloring matter-sensitized photoelectric conversion element, electronic equipment, semiconductor electrode, and production method
US8314329B2 (en) Dye-sensitized solar cell module and method for manufacturing the same
CN100411195C (en) Photoelectric conversion device, electronic apparatus and electronic apparatus manufacturing method, metal film formation method and layer structure
CN100588027C (en) Dye-sensitized photoelectric convertor, its manufacturing method, electronic device, its manufacturing method and electronic apparatus
JP2007073505A (en) Photoelectric conversion element
CN102077410B (en) Dye-sensitized solar cell, method for manufacturing dye-sensitized solar cell, and dye-sensitized solar cell module
US20050067006A1 (en) Wire interconnects for fabricating interconnected photovoltaic cells
JP4887694B2 (en) PHOTOELECTRIC CONVERSION ELEMENT AND ITS MANUFACTURING METHOD, PHOTOELECTRIC CONVERSION ELEMENT MODULE, ELECTRONIC DEVICE, MOBILE BODY, POWER GENERATION SYSTEM, DISPLAY AND MANUFACTURING METHOD
JP2007149652A (en) Photoelectrochemical battery
JP5160045B2 (en) Photoelectric conversion element
WO2007072970A1 (en) Compound, photoelectric converter and photoelectrochemical cell
JP4377627B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
JP2008147154A (en) Photoelectrochemical cell
JP2002313444A (en) Photoelectric transducer, and method for manufacturing the same
JP5160051B2 (en) Photoelectric conversion element
WO2007052681A1 (en) Photoelectrochemical cell
JP2006004736A (en) Photoelectric transducer and colorant for photoelectric transducer
WO2005091425A1 (en) Dye sensitizing solar cell module and manufacturing method thereof
US20140130872A1 (en) Photoelectric-conversion device, electronic instrument and building
JP2006339074A (en) Manufacturing method for dye-sensitized solar cell
JP2014010997A (en) Electrolyte for electrochemical element, and dye-sensitized solar cell including the same
JP5131732B2 (en) Method for producing dye-adsorbing semiconductor electrode for dye-sensitized solar cell
JP5130775B2 (en) Photoelectrochemical cell
JP2008243618A (en) Photoelectric conversion element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06822736

Country of ref document: EP

Kind code of ref document: A1