WO2007052343A1 - Voltage-controlled oscillator, and radar system using the same - Google Patents

Voltage-controlled oscillator, and radar system using the same Download PDF

Info

Publication number
WO2007052343A1
WO2007052343A1 PCT/JP2005/020186 JP2005020186W WO2007052343A1 WO 2007052343 A1 WO2007052343 A1 WO 2007052343A1 JP 2005020186 W JP2005020186 W JP 2005020186W WO 2007052343 A1 WO2007052343 A1 WO 2007052343A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
control
temperature
control voltage
controlled oscillator
Prior art date
Application number
PCT/JP2005/020186
Other languages
French (fr)
Japanese (ja)
Inventor
Naoyuki Kurita
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to PCT/JP2005/020186 priority Critical patent/WO2007052343A1/en
Priority to JP2007542192A priority patent/JPWO2007052343A1/en
Publication of WO2007052343A1 publication Critical patent/WO2007052343A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal

Definitions

  • the present invention relates to a voltage controlled oscillator and a radar system using the voltage controlled oscillator, and more particularly to a radar system using a microphone mouth wave or a millimeter wave, which compensates for a temperature of an oscillation characteristic and is based on a change in temperature.
  • the present invention relates to a radar system that operates stably and a voltage-controlled oscillator suitable for use in the radar system.
  • a radar system that uses millimeter wave or microwave band radio waves is used as a radar system for on-vehicle short-range monitoring.
  • Applications such as sensors for pre-crash type airbags are conceivable and their application is expected.
  • This near-field surveillance radar system for use in automobiles needs to increase the distance 'relative speed, and needs to increase the oscillation frequency from the conventional 30 MHz to 60 MHz. Along with that, the fluctuation of the modulation band with temperature becomes a problem.
  • Patent Document 1 In the voltage-controlled oscillator used in the radar system, the following Patent Document 1 and Patent Document 2 are disclosed for the voltage-controlled oscillator that compensates the oscillation frequency and modulation band according to temperature.
  • Patent Document 1 includes a temperature drift compensation circuit for the control voltage at the linearity best point for the voltage controlled oscillator, and a temperature drift compensation circuit for the voltage controlled oscillator itself. A technique for performing temperature compensation for frequency is disclosed.
  • Patent Document 2 discloses a technique for performing temperature compensation of a modulation band in addition to an oscillation frequency.
  • the temperature compensation of the oscillation frequency is realized by inputting the control voltage input to the varactor diode connected to the resonance circuit via the voltage divider circuit composed of the thermistor and resistance element.
  • the temperature compensation of the modulation band is realized by applying a noise voltage of an active element that performs an oscillation operation via a voltage dividing circuit.
  • Patent Document 1 Japanese Patent Laid-Open No. 7-254818
  • Patent Document 2 Japanese Patent Laid-Open No. 11-55034
  • FIG. 17 is a configuration diagram of a radar system according to the prior art.
  • FIG. 18 is a graph showing the relationship between the time and oscillation frequency of a radar system according to the prior art.
  • the output signal from the voltage controlled oscillator 3 is divided into two, one of which is a transmission signal via an amplifier 20 Is input to the antenna.
  • the other signal is input to the mixer 21 as a local signal.
  • the signal reflected by the target is input to the RF terminal of the mixer 21 via the amplifier 20 as a reception signal of the receiving antenna force.
  • the frequency of the received signal changes due to the Doppler shift according to the moving speed of the target, and the mixer 21 outputs an intermediate frequency (IF) signal according to the difference between the frequency of the local signal and the RF signal.
  • IF intermediate frequency
  • the distance to the target can be obtained by modulating the frequency of the transmission signal as shown in FIG. 18 and using the time difference between the modulation frequencies of the transmission signal and the reception signal.
  • the control voltage 22 is input to the voltage controlled oscillation unit 3, and the output frequency is f according to the voltage value.
  • the oscillation frequency and the frequency modulation band f are configured to change to osc2.
  • the oscillation frequency and modulation band may fluctuate depending on the environmental temperature, and it must be compensated by some method.
  • FIG. 13 is a circuit diagram of a voltage controlled oscillator of a radar system according to the prior art.
  • Fig. 14 is a graph comparing the change in oscillation frequency before and after temperature compensation as control voltage and modulation characteristics of oscillation frequency.
  • Fig. 15 is a graph showing the relationship between temperature and oscillation frequency by comparing changes before and after temperature compensation.
  • FIG. 16 is a graph illustrating the modulation characteristics of a voltage-controlled oscillation unit that does not have a temperature compensation unit.
  • the temperature compensation method for the oscillation frequency of the voltage-controlled oscillator is divided by a thermistor 10 whose resistance value varies with temperature, and normal resistance elements lla and lib.
  • a circuit is used that constitutes a voltage circuit so that the control voltage V input to the varactor diode 5 of the voltage-controlled oscillator changes according to the temperature.
  • an element 8 that generates a negative resistance is connected to the gate terminal of an active element 6 that performs an oscillation operation, and a resonance circuit including a coupling line 9 and four resonators is connected to the source terminal.
  • the resonant frequency of the resonant circuit also changes in accordance with the change in its equivalent capacitance, and the frequency of the oscillation signal output via the matching circuit 7
  • the number can be changed.
  • the modulation characteristics of the voltage-controlled oscillator are expressed as shown in Fig. 14.
  • the horizontal axis in the figure is V input to the varactor diode 5 and takes a negative value with OV at the right end.
  • the vertical axis shows the oscillation frequency, and the modulation characteristics at low, normal, and high temperatures change as curves A, B, and C, respectively.
  • the present invention has been made to solve the above-described problems, and its purpose is millimeter waves,
  • the voltage control oscillator of a radar system that uses microwaves in the microwave band compensates for fluctuations in the oscillation frequency and modulation band due to temperature, and operates stably with little fluctuation in oscillation output and phase noise.
  • Another object of the present invention is to provide a voltage control oscillator that can be used.
  • a plurality of frequency control voltage generators to be input to the varactor diodes of the voltage controlled oscillator incorporated in the radar system are provided, and the control voltage from each generator is input to the calculator.
  • the added voltage to the varactor diode By inputting the added voltage to the varactor diode, a method for compensating for temperature fluctuations in both the oscillation frequency and the modulation band is provided.
  • one of the frequency control voltage generators is composed of a thermistor whose resistance changes with temperature, and changes the output voltage in accordance with the change in temperature.
  • One of the frequency control voltage generators is a constant power supply whose output voltage does not change with temperature.
  • these voltages are added by the calculation unit, and applied to the inductor diode so that the change in oscillation frequency is small even if there is a change in temperature according to the control voltage and temperature characteristics of the voltage controlled oscillation unit.
  • the fluctuation range of the applied voltage is set to a range where the temperature fluctuation of the modulation band is minimized.
  • FIG. 1 is a block diagram showing a functional configuration of a voltage controlled oscillator according to the present invention.
  • FIG. 2 is a circuit diagram showing a circuit configuration of the voltage controlled oscillator according to the first embodiment of the present invention.
  • FIG. 3 is a graph showing the temperature characteristics of the voltage ratio between the input voltage and the output voltage of the control voltage generator according to the first embodiment of the present invention.
  • FIG. 4 is a graph showing the temperature characteristics of the control voltage and the oscillation frequency of the voltage controlled oscillator according to the first embodiment of the present invention.
  • the voltage controlled oscillator inputs a voltage for controlling the frequency to the voltage controlled oscillator 3 and oscillates in accordance with this voltage value.
  • a signal with a frequency is output.
  • the frequency control voltage input to the voltage controlled oscillating unit 3 is generated from the arithmetic unit 2 and a plurality of control voltage generating units la, lb connected to the preceding stage.
  • the voltage V input to at least one of the control voltage generators la, lb, etc. is varied within a predetermined range in order to perform the modulation operation of the voltage controlled oscillator 3 m
  • the voltage controlled oscillator shown in FIG. 2 includes two control voltage generators la and control voltage generator lb as the control voltage generators shown in FIG. 1, of which the control voltage generator la is composed of a thermistor 10 and a resistor. It is composed of a voltage dividing circuit composed of the elements 11a and l ib.
  • the control voltage generator lb is configured only with a power supply for outputting a constant voltage.
  • the arithmetic unit 2 is composed of an inverting adder composed of an operational amplifier 12 and resistance elements Rl and R2. When R1 and R2 have the same resistance value, operation unit 2 functions as a unity inverting adder.
  • an element 8 that generates a negative resistance is connected to a gate terminal of an active element 6 that performs an oscillation operation, and a resonance line that includes a coupling line 9 and four resonators is connected to a source terminal.
  • the circuit is connected.
  • V input to the varactor diode 5 connected to the coupling line 9 is applied from the arithmetic unit 2 described above, and the equivalent capacitance of the varactor diode 5 is changed by changing V.
  • the resonance frequency of the resonance circuit also changes in accordance with the change in equivalent capacitance of the notch diode 5, and the frequency of the oscillation signal output via the matching circuit 7 is changed.
  • FIG. 2 a configuration in which the control voltage is applied to the power sword in which the control voltage is applied to the anode of the varactor may be used.
  • the NORTA diode 5 When a voltage that fluctuates in the positive range up to outl inl ml ctr is applied, the NORTA diode 5 has a V force S
  • the output voltage ratio from 1 is increased to about 0.8.
  • the varactor diode 5 has a value obtained by multiplying V by about 0.8 and V, and the sign is inverted.
  • a voltage in the range is applied, and the modulation band is f.
  • the modulation band is f.
  • the magnitude of the degree of fluctuation ⁇ ⁇ is also a range where the applied voltage range is dense at each temperature.
  • FIG. 5 is a circuit diagram showing a circuit configuration of the voltage controlled oscillator according to the second embodiment of the present invention.
  • FIG. 6 is a graph showing the temperature characteristics of the control voltage and the oscillation frequency of the voltage controlled oscillator according to the second embodiment of the present invention.
  • the example in which the oscillation frequency of the voltage-controlled oscillation unit decreases as the temperature increases and the slope of the modulation curve decreases is described.
  • the present invention can be applied by changing the circuit configuration regardless of the combination of the sign of the temperature coefficient of the slope of the groove.
  • the present embodiment is an example thereof, and is different from the first embodiment in the pattern of the oscillation frequency and the modulation curve of the voltage controlled oscillation unit. In this example, the case where the oscillation frequency of the voltage controlled oscillator increases with increasing temperature and the slope of the modulation curve increases is shown.
  • a voltage dividing circuit composed of the thermistor 10 and the resistance elements 11a and l ib is used in the first embodiment. Contrary to the circuit shown in Fig. 2, the voltage division ratio decreases with increasing temperature.
  • the fluctuation due to the temperature of the area can be reduced.
  • FIG. 7 is a circuit diagram showing a circuit configuration of the voltage controlled oscillator according to the third embodiment of the present invention.
  • FIG. 8 is a graph showing the temperature characteristics of the control voltage and the oscillation frequency of the voltage controlled oscillator according to the third embodiment of the present invention.
  • Embodiments 1 and 2 are a combination of a control voltage generator whose output voltage changes with temperature and a control voltage generator of a constant power source. However, both of the present embodiments depend on temperature. The voltage generated by the control voltage generator that changes the output voltage is input to the calculator 2. It is completed.
  • the two control voltage generators la and lb are both configured by a voltage dividing circuit force including thermistors 10 and 10a and resistance elements 11a to id.
  • the voltage V input to the control voltage generator la fluctuates within a certain range, and the control voltage inl
  • the voltage V input to the generator lb is fixed at a fixed value. 2 control voltage generators or in2
  • the output voltages V and Vc are input to the calculation unit, and the sign of the voltage obtained by adding both voltages outl out 2
  • the second control voltage generator lb to which a constant voltage Voffset is applied is passed through a voltage dividing circuit whose output voltage changes with temperature.
  • the calculation unit 2 is configured to be applied. According to this configuration, as shown in Fig. 8, V indicated by the solid line changes with temperature, so in addition to temperature compensation of the modulation band, oscillation out2
  • the temperature variation ⁇ of the frequency can be made smaller than in the first embodiment.
  • FIG. 9 is a circuit diagram showing a circuit configuration of a voltage controlled oscillator according to the fourth embodiment of the present invention.
  • FIG. 10 is a graph showing the temperature characteristics of the voltage ratio between the input voltage and the output voltage of the control voltage generator according to the fourth embodiment of the present invention.
  • FIG. 11 is a diagram showing the temperature characteristics of the control voltage and the oscillation frequency of the voltage controlled oscillator according to the fourth embodiment of the present invention.
  • Each of the above embodiments has a force that has two control voltage generators. This embodiment has more control voltage generators.
  • the circuit of the present embodiment includes three control voltage generation units la, lb, and lc. Both the control voltage generation unit la and the control voltage generation unit lb are a thermistor and a resistance element.
  • the control voltage generator lc is configured to output a constant V.
  • the temperature characteristic of the modulation band is maximized / minimized by appropriately adjusting the temperature characteristic of the voltage dividing ratio of the voltage dividing circuit of the control voltage generators la and lb of the present embodiment. Even in the case of holding, temperature compensation can be performed. Furthermore, by further expanding the circuit in FIG. 9 and providing more control voltage generators, it is possible to compensate for smaller variations in the modulation band due to temperature.
  • FIG. 12 is a circuit diagram showing a circuit configuration of a voltage controlled oscillator according to the fifth embodiment of the present invention.
  • the control voltage generator whose output voltage changes depending on the temperature is an example using a thermistor 10 and a voltage dividing circuit having a resistance element force. However, its electric resistance changes depending on the temperature. Any element other than the thermistor can be used as long as the element has the characteristics described above.
  • the control voltage generation unit la includes a voltage dividing circuit including a Schottky diode 13 and a resistance element 11a. Changes with temperature by applying input voltage V inl
  • the output voltage V reflecting the voltage division ratio to be converted is input to the calculation unit 2 and the first outl shown in FIG.
  • FIG. 1 is a block diagram showing a functional configuration of a voltage controlled oscillator according to the present invention.
  • FIG. 2 is a circuit diagram showing a circuit configuration of the voltage controlled oscillator according to the first embodiment of the present invention.
  • FIG. 3 is a graph showing a temperature characteristic of a voltage ratio between an input voltage and an output voltage of a control voltage generator according to the first embodiment of the present invention.
  • FIG. 4 shows the control voltage and oscillation frequency of the voltage controlled oscillator according to the first embodiment of the present invention. It is a figure which shows a temperature characteristic.
  • FIG. 5 is a circuit diagram showing a circuit configuration of a voltage controlled oscillator according to a second embodiment of the present invention.
  • FIG. 6 is a graph showing temperature characteristics of a control voltage and an oscillation frequency of a voltage controlled oscillator according to the second embodiment of the present invention.
  • FIG. 7 is a circuit diagram showing a circuit configuration of a voltage controlled oscillator according to a third embodiment of the present invention.
  • FIG. 8 is a diagram illustrating temperature characteristics of a control voltage and an oscillation frequency of a voltage controlled oscillator according to a third embodiment of the present invention.
  • FIG. 9 is a circuit diagram showing a circuit configuration of a voltage controlled oscillator according to a fourth embodiment of the present invention.
  • FIG. 10 is a diagram showing a temperature characteristic of a voltage ratio between an input voltage and an output voltage of a control voltage generation unit according to a fourth embodiment of the present invention.
  • FIG. 11 is a graph showing temperature characteristics of a control voltage and an oscillation frequency of a voltage controlled oscillator according to a fourth embodiment of the present invention.
  • FIG. 12 is a circuit diagram showing a circuit configuration of a voltage controlled oscillator according to a fifth embodiment of the present invention.
  • FIG. 13 is a circuit diagram of a voltage-controlled oscillator of a radar system according to the prior art.
  • FIG. 14 is a graph comparing the change in oscillation frequency before and after temperature compensation as the control voltage and modulation characteristics of oscillation frequency.
  • FIG. 15 is a graph showing the relationship between temperature and oscillation frequency by comparing changes before and after temperature compensation.
  • FIG. 16 is a graph illustrating the modulation characteristics of a voltage-controlled oscillation unit that does not have a temperature compensation unit.
  • FIG. 17 is a block diagram of a radar system according to the prior art.
  • FIG. 18 is a graph showing the relationship between time and oscillation frequency of a radar system according to the prior art.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)

Abstract

The temperature compensations of two characteristics of an oscillation frequency and a modulation band of an oscillator used in a radar system are realized exclusively with a frequency control voltage to be applied to an oscillation unit. A voltage-controlled oscillator is constituted to include a plurality of generation units of frequency-controlled voltages to be inputted to a voltage-controlled oscillation unit, to input control voltages from the individual generation units to an operation unit, and to input the voltage added by the operation unit to the voltage-controlled oscillation unit. Frequency-controlled voltage generation units are individually equipped with input voltage terminals and output voltage terminals, and a voltage dividing circuit is constituted to include elements such as thermisters having electric resistances varied with the temperature, and ordinary resistance elements.

Description

明 細 書  Specification
電圧制御発振器およびそれを用いたレーダシステム  Voltage controlled oscillator and radar system using the same
技術分野  Technical field
[0001] 本発明は、電圧制御発振器およびそれを用いたレーダシステムに係り、特にマイク 口波またはミリ波を利用するレーダシステムであって、発振特性の温度補償をして温 度の変化によらず安定して動作するレーダシステム、およびそれに用いて好適な電 圧制御発振器に関する。  The present invention relates to a voltage controlled oscillator and a radar system using the voltage controlled oscillator, and more particularly to a radar system using a microphone mouth wave or a millimeter wave, which compensates for a temperature of an oscillation characteristic and is based on a change in temperature. The present invention relates to a radar system that operates stably and a voltage-controlled oscillator suitable for use in the radar system.
背景技術  Background art
[0002] ミリ波、または、マイクロ波帯域の電波を利用するレーダシステムは、自動車搭載用 の近距離監視のためのレーダシステムとして、例えば、自動車搭載用の近距離監視 レーダシステムは、衝突予測やプリクラッシュ型エアバッグ用センサなどの用途が考 えられ、その応用が期待されている。  [0002] A radar system that uses millimeter wave or microwave band radio waves is used as a radar system for on-vehicle short-range monitoring. Applications such as sensors for pre-crash type airbags are conceivable and their application is expected.
[0003] この自動車搭載用の近距離監視レーダシステムは、距離'相対速度を高める必要 があり、発振周波数を従来の 30MHzから 60MHzから広げる必要がある。それに伴 つて、温度により変調帯域が変動することが問題になってくる。  [0003] This near-field surveillance radar system for use in automobiles needs to increase the distance 'relative speed, and needs to increase the oscillation frequency from the conventional 30 MHz to 60 MHz. Along with that, the fluctuation of the modulation band with temperature becomes a problem.
[0004] レーダシステムに用いられる電圧制御発振器において、温度により発振周波数と変 調帯域を補償する電圧制御発振器については、以下の特許文献 1と特許文献 2が開 示されている。  [0004] In the voltage-controlled oscillator used in the radar system, the following Patent Document 1 and Patent Document 2 are disclosed for the voltage-controlled oscillator that compensates the oscillation frequency and modulation band according to temperature.
[0005] 特許文献 1には、電圧制御発振部へのリニアリティ最良点における制御電圧の温 度ドリフト補償回路と、電圧制御発振部それ自身の温度ドリフト補償回路を設け、電 圧制御発振部の発振周波数に対する温度補償をおこなう技術が開示されている。  [0005] Patent Document 1 includes a temperature drift compensation circuit for the control voltage at the linearity best point for the voltage controlled oscillator, and a temperature drift compensation circuit for the voltage controlled oscillator itself. A technique for performing temperature compensation for frequency is disclosed.
[0006] また、特許文献 2には、発振周波数に加えて変調帯域の温度補償をおこなう技術 が開示されている。この電圧制御発振器では、発振周波数の温度補償を共振回路 に接続されたバラクタダイオードに入力される制御電圧を、サーミスタと抵抗素子によ り構成された分圧回路を経由して入力することにより実現し、変調帯域の温度補償は 、発振動作をおこなう能動素子のノ ィァス電圧を分圧回路を経由して印加することに より実現する。 [0007] 特許文献 1 :特開平 7— 254818号公報 [0006] Patent Document 2 discloses a technique for performing temperature compensation of a modulation band in addition to an oscillation frequency. In this voltage-controlled oscillator, the temperature compensation of the oscillation frequency is realized by inputting the control voltage input to the varactor diode connected to the resonance circuit via the voltage divider circuit composed of the thermistor and resistance element. The temperature compensation of the modulation band is realized by applying a noise voltage of an active element that performs an oscillation operation via a voltage dividing circuit. [0007] Patent Document 1: Japanese Patent Laid-Open No. 7-254818
特許文献 2:特開平 11― 55034号公報  Patent Document 2: Japanese Patent Laid-Open No. 11-55034
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] 先ず、図 17および図 18を用いて従来技術に係るレーダシステムの構成と動作につ いて説明する。 First, the configuration and operation of a radar system according to the prior art will be described using FIG. 17 and FIG.
図 17は、従来技術に係るレーダシステムの構成図である。  FIG. 17 is a configuration diagram of a radar system according to the prior art.
図 18は、従来技術に係るレーダシステムの時間と発振周波数の関係を示したダラ フである。  FIG. 18 is a graph showing the relationship between the time and oscillation frequency of a radar system according to the prior art.
[0009] ミリ波、またはマイクロ波帯域の電波を利用するレーダシステムは、図 17に示される ように、電圧制御発振部 3からの出力信号は 2分され、一方は増幅器 20を経由した 送信信号としてアンテナに入力される。他の一方の信号はローカル信号としてミクサ 21に入力される。そして、目標物で反射した信号は受信アンテナ力 の受信信号と して増幅器 20を経由してミクサ 21の RF端子に入力される。受信信号は目標物の移 動速度に応じたドップラーシフトによりその周波数が変化しており、ミクサ 21によって ローカル信号と RF信号の周波数の差に応じた中間周波数 (IF)信号が出力され、目 標物の移動速度を求めることができる。また、目標物までの距離は、送信信号の周波 数を図 18に示すように変調させ、送信信号と受信信号の変調周波数の時間差を利 用して求めることができる。電圧制御発振部 3には制御電圧 22が入力され、その電 圧値に応じて出力周波数が f  As shown in FIG. 17, in a radar system using millimeter wave or microwave band radio waves, the output signal from the voltage controlled oscillator 3 is divided into two, one of which is a transmission signal via an amplifier 20 Is input to the antenna. The other signal is input to the mixer 21 as a local signal. Then, the signal reflected by the target is input to the RF terminal of the mixer 21 via the amplifier 20 as a reception signal of the receiving antenna force. The frequency of the received signal changes due to the Doppler shift according to the moving speed of the target, and the mixer 21 outputs an intermediate frequency (IF) signal according to the difference between the frequency of the local signal and the RF signal. The moving speed of the object can be obtained. The distance to the target can be obtained by modulating the frequency of the transmission signal as shown in FIG. 18 and using the time difference between the modulation frequencies of the transmission signal and the reception signal. The control voltage 22 is input to the voltage controlled oscillation unit 3, and the output frequency is f according to the voltage value.
osci力 f  osci force f
osc2まで変化する構成となっている。 目標物の移 動速度と距離を安定して求めるためには、発振周波数と、周波数の変調帯域 f  It is configured to change to osc2. In order to stably determine the moving speed and distance of the target, the oscillation frequency and the frequency modulation band f
mの変 動を極力小さくする必要がある。し力しながら、環境温度により発振周波数や変調帯 域は変動する恐れがあり、何らかの方法により補償する必要がある。  It is necessary to minimize the variation of m. However, the oscillation frequency and modulation band may fluctuate depending on the environmental temperature, and it must be compensated by some method.
[0010] 次に、図 13ないし図 16を用いて従来技術に係るレーダシステムの電圧制御発振 部の温度補償技術について説明する。 [0010] Next, a temperature compensation technique of the voltage-controlled oscillation unit of the radar system according to the conventional technique will be described with reference to FIGS.
図 13は、従来技術に係るレーダシステムの電圧制御発振部の回路図である。 図 14は、発振周波数の制御電圧と変調特性として、発振周波数の温度補償前と温 度補償後の変化を対比したグラフである。 図 15は、温度補償前と温度補償後の変化を対比して、温度と発振周波数の関係を 示したグラフである。 FIG. 13 is a circuit diagram of a voltage controlled oscillator of a radar system according to the prior art. Fig. 14 is a graph comparing the change in oscillation frequency before and after temperature compensation as control voltage and modulation characteristics of oscillation frequency. Fig. 15 is a graph showing the relationship between temperature and oscillation frequency by comparing changes before and after temperature compensation.
図 16は、温度補償部を持たない電圧制御発振部の変調特性を説明したグラフであ る。  FIG. 16 is a graph illustrating the modulation characteristics of a voltage-controlled oscillation unit that does not have a temperature compensation unit.
[0011] 電圧制御発振部の発振周波数の温度補償の方法としては、図 13に示すように、温 度に応じて抵抗値が変化するサーミスタ 10と、通常の抵抗素子 l la、 l ibにより分圧 回路を構成し、温度に応じて電圧制御発振部のバラクタダイオード 5に入力される制 御電圧 V が変化するように構成した回路が用いられる。この例では発振動作をおこ なう能動素子 6のゲート端子に負性抵抗を発生させる素子 8が接続され、ソース端子 には結合線路 9と共振器 4カゝら構成される共振回路が接続される。結合線路 9に接続 されたバラクタダイオード 5に入力される V に応じて、その等価容量の変化に応じて 共振回路の共振周波数も変化し、整合回路 7を経由して出力される発振信号の周波 数を変化させることができる。電圧制御発振部の変調特性が、図 14のように表される とする。図の横軸はバラクタダイオード 5に入力される V であり、右端を OVとする負 の値をとる。縦軸は発振周波数を示し、低温、常温、高温における変調特性はそれ ぞれカーブ A、 B、 Cのように変化する。サーミスタ 10を含む分圧回路を使わずに一 定の V を印加すれば、発振周波数の温度による変化の大きさは Δ ί ,となるが、 上述の分圧回路を経由して V を印加すると、低温においてバラクタダイオード 5に 印加される電圧を小さくできるため、発振周波数の温度による変化量を Δ ί にまで 小さくすることができる。よって発振周波数の温度特性は、図 15に示すようになり、温 度補償が実現される。  [0011] As shown in Fig. 13, the temperature compensation method for the oscillation frequency of the voltage-controlled oscillator is divided by a thermistor 10 whose resistance value varies with temperature, and normal resistance elements lla and lib. A circuit is used that constitutes a voltage circuit so that the control voltage V input to the varactor diode 5 of the voltage-controlled oscillator changes according to the temperature. In this example, an element 8 that generates a negative resistance is connected to the gate terminal of an active element 6 that performs an oscillation operation, and a resonance circuit including a coupling line 9 and four resonators is connected to the source terminal. The Depending on the V input to the varactor diode 5 connected to the coupling line 9, the resonant frequency of the resonant circuit also changes in accordance with the change in its equivalent capacitance, and the frequency of the oscillation signal output via the matching circuit 7 The number can be changed. Assume that the modulation characteristics of the voltage-controlled oscillator are expressed as shown in Fig. 14. The horizontal axis in the figure is V input to the varactor diode 5 and takes a negative value with OV at the right end. The vertical axis shows the oscillation frequency, and the modulation characteristics at low, normal, and high temperatures change as curves A, B, and C, respectively. If a constant V is applied without using the voltage divider including the thermistor 10, the magnitude of the change in the oscillation frequency due to the temperature will be Δ ί, but if V is applied via the voltage divider described above, Since the voltage applied to the varactor diode 5 at a low temperature can be reduced, the variation of the oscillation frequency due to the temperature can be reduced to Δ ί. Therefore, the temperature characteristics of the oscillation frequency are as shown in Fig. 15, and temperature compensation is realized.
[0012] また、発振周波数に加えて変調帯域の温度補償をおこなうには、上記の特許文献 [0012] Further, in order to perform temperature compensation of the modulation band in addition to the oscillation frequency, the above-mentioned patent document
2に開示された方法が知られている。 The method disclosed in 2 is known.
[0013] この方法によれば、発振周波数と変調帯域の両者の温度補償が可能であるが、発 振動作を行なう能動素子のノィァス電圧を温度に応じて変化させる構成であるため、 発振出力や位相雑音などの性能が大きく変動し、発振器の動作が不安定になる可 能性があるという問題がある。 [0013] According to this method, temperature compensation of both the oscillation frequency and the modulation band is possible, but since the noise voltage of the active element that performs the oscillation operation is changed according to the temperature, the oscillation output and There is a problem that performance such as phase noise fluctuates greatly and the operation of the oscillator may become unstable.
[0014] 本発明は、上記問題点を解決するためになされたもので、その目的は、ミリ波、また はマイクロ波帯域の電波を利用するレーダシステムの電圧制御発振部にぉ 、て、温 度による発振周波数と変調帯域の変動を補償し、発振出力の変動や位相雑音が少 なく安定して動作しうる電圧制御発振部を提供することにある。 [0014] The present invention has been made to solve the above-described problems, and its purpose is millimeter waves, The voltage control oscillator of a radar system that uses microwaves in the microwave band compensates for fluctuations in the oscillation frequency and modulation band due to temperature, and operates stably with little fluctuation in oscillation output and phase noise. Another object of the present invention is to provide a voltage control oscillator that can be used.
課題を解決するための手段  Means for solving the problem
[0015] 本発明では、レーダシステムに組み込まれた電圧制御発振部のバラクタダイオード に入力する周波数制御電圧の発生部を複数備え、各発生部からの制御電圧を演算 部に入力し、演算部により加算された電圧をバラクタダイオードに入力することにより 、発振周波数と変調帯域の両者の温度変動を補償する方法を提供するものである。  [0015] In the present invention, a plurality of frequency control voltage generators to be input to the varactor diodes of the voltage controlled oscillator incorporated in the radar system are provided, and the control voltage from each generator is input to the calculator. By inputting the added voltage to the varactor diode, a method for compensating for temperature fluctuations in both the oscillation frequency and the modulation band is provided.
[0016] 例えば、その内の一つの周波数制御電圧の発生部は、温度により抵抗が変化する サーミスタで構成し、温度の変化に応じて、出力電圧を変化するようにする。また、そ の内の一つの周波数制御電圧の発生部は、温度よつても出力電圧が変化しない定 電源で構成する。  [0016] For example, one of the frequency control voltage generators is composed of a thermistor whose resistance changes with temperature, and changes the output voltage in accordance with the change in temperature. One of the frequency control voltage generators is a constant power supply whose output voltage does not change with temperature.
[0017] そして、それらの電圧を演算部で加算し、電圧制御発振部の制御電圧と温度特性 に従って、温度の変化があっても発振周波数の変化が少ないように、また、ノ ラクタ ダイオードに印加される電圧の変動範囲を、変調帯域の温度変動が最小となる範囲 に設定する。  [0017] Then, these voltages are added by the calculation unit, and applied to the inductor diode so that the change in oscillation frequency is small even if there is a change in temperature according to the control voltage and temperature characteristics of the voltage controlled oscillation unit. The fluctuation range of the applied voltage is set to a range where the temperature fluctuation of the modulation band is minimized.
発明の効果  The invention's effect
[0018] 本発明によれば、ミリ波、またはマイクロ波帯域の電波を利用するレーダシステムの 電圧制御発振部において、温度による発振周波数と変調帯域の変動を補償し、発振 出力の変動や位相雑音が少なく安定して動作しうる電圧制御発振器を提供すること ができる。  [0018] According to the present invention, in a voltage-controlled oscillation unit of a radar system using radio waves in the millimeter wave or microwave band, fluctuations in oscillation frequency and modulation band due to temperature are compensated, and fluctuations in oscillation output and phase noise are compensated. Thus, it is possible to provide a voltage-controlled oscillator that can operate stably with less.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0019] 以下、本発明に係る各実施形態を、図 1ないし図 12、および、図 16を用いて説明 する。 Hereinafter, embodiments according to the present invention will be described with reference to FIGS. 1 to 12 and FIG. 16.
実施例 1  Example 1
[0020] 以下、本発明に係る第一の実施形態を、図 1ないし図 4を用いて説明する。  Hereinafter, a first embodiment according to the present invention will be described with reference to FIGS. 1 to 4.
図 1は、本発明に係る電圧制御発振器の機能構成を示すブロック図である。 図 2は、本発明の第一の実施形態に係る電圧制御発振器の回路構成を示す回路 図である。 FIG. 1 is a block diagram showing a functional configuration of a voltage controlled oscillator according to the present invention. FIG. 2 is a circuit diagram showing a circuit configuration of the voltage controlled oscillator according to the first embodiment of the present invention.
図 3は、本発明の第一の実施形態に係る制御電圧発生部の入力電圧と出力電圧 の電圧比の温度特性を示す図である。  FIG. 3 is a graph showing the temperature characteristics of the voltage ratio between the input voltage and the output voltage of the control voltage generator according to the first embodiment of the present invention.
図 4は、本発明の第一の実施形態に係る電圧制御発振部の制御電圧と発振周波 数の温度特性を示す図である。  FIG. 4 is a graph showing the temperature characteristics of the control voltage and the oscillation frequency of the voltage controlled oscillator according to the first embodiment of the present invention.
[0021] 本発明の第一の実施形態に係る電圧制御発振器は、図 1に示されるように、電圧 制御発振部 3に周波数を制御するための電圧を入力し、この電圧値に応じた発振周 波数を持つ信号が出力される構成となっている。電圧制御発振部 3に入力される周 波数制御電圧は、演算部 2とその前段に接続された複数の制御電圧発生部 la, lb 等から生成される。そして制御電圧発生部 la, lb等のうち、少なくとも 1つに入力され る電圧 V は、電圧制御発振部 3を変調動作させるために所定の範囲内で変化させ m As shown in FIG. 1, the voltage controlled oscillator according to the first embodiment of the present invention inputs a voltage for controlling the frequency to the voltage controlled oscillator 3 and oscillates in accordance with this voltage value. A signal with a frequency is output. The frequency control voltage input to the voltage controlled oscillating unit 3 is generated from the arithmetic unit 2 and a plurality of control voltage generating units la, lb connected to the preceding stage. The voltage V input to at least one of the control voltage generators la, lb, etc. is varied within a predetermined range in order to perform the modulation operation of the voltage controlled oscillator 3 m
る。  The
[0022] この図 1に示した電圧制御発振器を、回路によって実現すると図 2に示されるように なる。図 2に示された電圧制御発振器では、図 1に示した制御電圧発生部として制御 電圧発生部 laと制御電圧発生部 lbの二つを備え、そのうち制御電圧発生部 laは、 サーミスタ 10と抵抗素子 11a, l ibから構成される分圧回路により構成される。そして 、制御電圧発生部 lbは、一定の電圧を出力するための電源のみ力 構成される。ま た、演算部 2は、オペアンプ 12と抵抗素子 Rl, R2からなる反転加算器で構成される 。 R1と R2が同じ抵抗値の場合、演算部 2は等倍反転加算器として機能する。電圧制 御発振部 3は、発振動作をおこなう能動素子 6のゲート端子に負性抵抗を発生させる 素子 8が接続され、ソース端子には、結合線路 9と共振器 4カゝら構成される共振回路 が接続される。結合線路 9に接続されたバラクタダイオード 5に入力される V は、上 記の演算部 2から印加され、 V の変化により、バラクタダイオード 5の等価容量を変 化させる。そして、ノ クタダイオード 5の等価容量の変化に応じて共振回路の共振 周波数も変化し、整合回路 7を経由して出力される発振信号の周波数を変化させる。 なお、図 2では、バラクタのアノードに制御電圧が印加されている力 力ソードに制御 電圧が印加される構成をとつてもよ!ヽ。 [0023] 次に、図 2に示した電圧制御発振器の詳細な動作を温度との関連で説明する。 When the voltage controlled oscillator shown in FIG. 1 is realized by a circuit, it is as shown in FIG. The voltage controlled oscillator shown in FIG. 2 includes two control voltage generators la and control voltage generator lb as the control voltage generators shown in FIG. 1, of which the control voltage generator la is composed of a thermistor 10 and a resistor. It is composed of a voltage dividing circuit composed of the elements 11a and l ib. The control voltage generator lb is configured only with a power supply for outputting a constant voltage. The arithmetic unit 2 is composed of an inverting adder composed of an operational amplifier 12 and resistance elements Rl and R2. When R1 and R2 have the same resistance value, operation unit 2 functions as a unity inverting adder. In the voltage controlled oscillation unit 3, an element 8 that generates a negative resistance is connected to a gate terminal of an active element 6 that performs an oscillation operation, and a resonance line that includes a coupling line 9 and four resonators is connected to a source terminal. The circuit is connected. V input to the varactor diode 5 connected to the coupling line 9 is applied from the arithmetic unit 2 described above, and the equivalent capacitance of the varactor diode 5 is changed by changing V. Then, the resonance frequency of the resonance circuit also changes in accordance with the change in equivalent capacitance of the notch diode 5, and the frequency of the oscillation signal output via the matching circuit 7 is changed. In FIG. 2, a configuration in which the control voltage is applied to the power sword in which the control voltage is applied to the anode of the varactor may be used. Next, a detailed operation of the voltage controlled oscillator shown in FIG. 2 will be described in relation to temperature.
[0024] 第一の制御電圧発生部 laへの入力電圧 V と出力電圧 V との比の温度特性が [0024] The temperature characteristic of the ratio of the input voltage V to the output voltage V to the first control voltage generator la is
inl outl  inl outl
、図 3のように示されるとする。そして、第二の制御電圧発生部 lbでは、一定の正の 電圧 V が発生しているとする。電圧制御発振部 3へ印加される制御電圧 V によ offset Ctrl る変調特性力 図 4に示すように低温、常温、高温においてそれぞれカーブ A、 B、 C のように変化する場合を考える。先ず、低温では第一の制御電圧発生部 laからの出 力電圧 V は、入力電圧 V の 0. 3倍程度の大きさである。よって V に 0Vから V  Suppose that it is shown in Figure 3. It is assumed that a constant positive voltage V is generated in the second control voltage generator lb. The modulation characteristic force offset Ctrl by the control voltage V applied to the voltage-controlled oscillator 3 Consider the case where the curve changes as shown in curves A, B, and C at low, normal, and high temperatures, respectively, as shown in Figure 4. First, at low temperatures, the output voltage V from the first control voltage generator la is about 0.3 times the input voltage V. Therefore, V is changed from 0V to V
outl inl ml ctr までの正の範囲で変動する電圧を印加した場合、ノ ラクタダイオード 5には V 力 S When a voltage that fluctuates in the positive range up to outl inl ml ctr is applied, the NORTA diode 5 has a V force S
12 ctrl2 約 0. 3倍された値と V が加算されて符号が反転したカーブ A上の矢印の範囲内 12 ctrl2 Approximately 0.3. Within the range of the arrow on curve A where V is added and the sign is inverted.
offset  offset
の電圧が印加される。このときの変調帯域は、 f となる。そして温度が上昇すると la  Is applied. The modulation band at this time is f. And when the temperature rises la
ml  ml
のからの出力電圧比は 0. 8程度にまで大きくなる。このときバラクタダイオード 5には 、 V が約 0. 8倍された値と V が加算されて符号が反転した、カーブ C上の矢印 ctri 2 offset  The output voltage ratio from 1 is increased to about 0.8. At this time, the varactor diode 5 has a value obtained by multiplying V by about 0.8 and V, and the sign is inverted.
の範囲内の電圧が印加され、変調帯域は f となる。この例では温度の上昇に伴って  A voltage in the range is applied, and the modulation band is f. In this example, as the temperature increases
m3  m3
変調カーブの傾きが小さくなるため、高温になるほど laの分圧比が大きくなる構成と することで、低温から高温までの変調帯域 f , f , f  Since the slope of the modulation curve is small, the partial pressure ratio of la increases as the temperature increases, so that the modulation band f, f, f from low to high
ml m2 m3をほぼ同じにすることができる ml m2 m3 can be almost the same
。これを図 16に示した、温度補償部を一切用いずに一定の負の電圧範囲 V から V . This is shown in Fig. 16, without any temperature compensation part.
ctrll ctrl2を印加した場合の変調特性と比較すると、変調カーブの温度による変化を反映し Compared to the modulation characteristics when ctrll ctrl2 is applied, changes in the modulation curve due to temperature are reflected.
、変調帯域 f , f , f が変動することがわかる。また、図 4に示した発振周波数の温 It can be seen that the modulation bands f 1, f 2, f vary. Also, the temperature of the oscillation frequency shown in Fig. 4
ml m2 m3  ml m2 m3
度変動の大きさ Δ ί も、印加電圧範囲が各温度の変調カーブが密になっている領  The magnitude of the degree of fluctuation Δ ί is also a range where the applied voltage range is dense at each temperature.
OSC  OSC
域であるため、図 16と比較して小さくすることができる。本実施形態において、一定 の電圧を印加する制御電圧発生部 lbを設けることにより、バラクタダイオード 5には 常に V よりも大きい電圧が印加されることになる。ノ クタダイオードに印加される offset  Because it is an area, it can be made smaller compared to FIG. In the present embodiment, by providing the control voltage generator lb for applying a constant voltage, a voltage higher than V is always applied to the varactor diode 5. Offset applied to the diode
電圧が小さくなるとその等価抵抗が大きくなり、電圧制御発振器の共振回路の損失 が大きくなる。よって、発振器を安定して動作させるためには、ノ クタダイオードへ の印加電圧が必要以上に小さくなることは避けるべきである。以上の理由により V  As the voltage decreases, the equivalent resistance increases and the loss of the resonant circuit of the voltage controlled oscillator increases. Therefore, in order to operate the oscillator stably, it should be avoided that the applied voltage to the diode diode becomes smaller than necessary. V for the above reasons
offset を印加することにより、発振器の動作が不安定になることを防止できる。かつ、 V  By applying offset, it is possible to prevent the operation of the oscillator from becoming unstable. And V
ofrset の値を調整することで、バラクタダイオードへの印加電圧の変動範囲を、変調帯域の 温度変動が最小となる範囲に設定することが可能となる。 実施例 2 By adjusting the value of ofrset, it is possible to set the fluctuation range of the voltage applied to the varactor diode to a range where the temperature fluctuation in the modulation band is minimized. Example 2
[0025] 以下、本発明に係る第二の実施形態を、図 5および図 6を用いて説明する。  Hereinafter, a second embodiment according to the present invention will be described with reference to FIG. 5 and FIG.
図 5は、本発明の第二の実施形態に係る電圧制御発振器の回路構成を示す回路 図である。  FIG. 5 is a circuit diagram showing a circuit configuration of the voltage controlled oscillator according to the second embodiment of the present invention.
図 6は、本発明の第二の実施形態に係る電圧制御発振部の制御電圧と発振周波 数の温度特性を示す図である。  FIG. 6 is a graph showing the temperature characteristics of the control voltage and the oscillation frequency of the voltage controlled oscillator according to the second embodiment of the present invention.
[0026] 第一の実施形態で説明したのは、電圧制御発振部の発振周波数が温度の上昇に 伴い低くなり、かつ、変調カーブの傾きが小さくなる例であるが、発振周波数と変調力 ーブの傾きの温度係数の符号の組み合わせに関わらず、回路の構成を変更すること により本発明は適用可能である。本実施形態は、その一例であり、第一の実施形態と は、電圧制御発振部の発振周波数と変調カーブのパターンが異なったものである。 この例では、電圧制御発振器の発振周波数が温度の上昇に伴い高くなり、かつ変調 カーブの傾きが大きくなる場合を示して ヽる。このような温度特性を持つ電圧制御発 振器の発振周波数と変調帯域の温度補償をおこなうには、サーミスタ 10と抵抗素子 11a, l ibから構成される分圧回路を、第一の実施形態の図 2に示した回路とは逆に 、その分圧比が温度の上昇に伴い減少する構成として、入力電圧 V に OVから V [0026] In the first embodiment, the example in which the oscillation frequency of the voltage-controlled oscillation unit decreases as the temperature increases and the slope of the modulation curve decreases is described. The present invention can be applied by changing the circuit configuration regardless of the combination of the sign of the temperature coefficient of the slope of the groove. The present embodiment is an example thereof, and is different from the first embodiment in the pattern of the oscillation frequency and the modulation curve of the voltage controlled oscillation unit. In this example, the case where the oscillation frequency of the voltage controlled oscillator increases with increasing temperature and the slope of the modulation curve increases is shown. In order to perform temperature compensation of the oscillation frequency and modulation band of the voltage controlled oscillator having such temperature characteristics, a voltage dividing circuit composed of the thermistor 10 and the resistance elements 11a and l ib is used in the first embodiment. Contrary to the circuit shown in Fig. 2, the voltage division ratio decreases with increasing temperature.
inl c までの負の電圧を印加する。そして V は図 6に示すように、図 3よりも大きい電 trl2 offset  Apply negative voltage up to inl c. And V is a larger trl2 offset than in Fig. 3, as shown in Fig. 6.
圧に設定して V に制御電圧を印加する構成とすることにより、発振周波数と変調帯
Figure imgf000009_0001
By setting the voltage to V and applying the control voltage to V, the oscillation frequency and modulation band
Figure imgf000009_0001
域の温度による変動を小さくすることができる。  The fluctuation due to the temperature of the area can be reduced.
実施例 3  Example 3
[0027] 以下、本発明に係る第三の実施形態を、図 7および図 8を用いて説明する。  Hereinafter, a third embodiment according to the present invention will be described with reference to FIG. 7 and FIG.
図 7は、本発明の第三の実施形態に係る電圧制御発振器の回路構成を示す回路 図である。  FIG. 7 is a circuit diagram showing a circuit configuration of the voltage controlled oscillator according to the third embodiment of the present invention.
図 8は、本発明の第三の実施形態に係る電圧制御発振部の制御電圧と発振周波 数の温度特性を示す図である。  FIG. 8 is a graph showing the temperature characteristics of the control voltage and the oscillation frequency of the voltage controlled oscillator according to the third embodiment of the present invention.
[0028] 実施形態 1および実施形態 2は、温度により出力電圧が変化する制御電圧発生部 と定電源の制御電圧発生部との組合わせであつたが、本実施形態は、共に温度によ り出力電圧が変化する制御電圧発生部の発生した電圧が演算部 2に入力される構 成である。 [0028] Embodiments 1 and 2 are a combination of a control voltage generator whose output voltage changes with temperature and a control voltage generator of a constant power source. However, both of the present embodiments depend on temperature. The voltage generated by the control voltage generator that changes the output voltage is input to the calculator 2. It is completed.
[0029] 本実施形態の回路は、図 7に示されるように、二つの制御電圧発生部 la, lbが共 にサーミスタ 10, 10aおよび抵抗素子 11aから l idからなる分圧回路力 構成され、 制御電圧発生部 laに入力される電圧 V はある所定の範囲内で変動し、制御電圧 inl  In the circuit of the present embodiment, as shown in FIG. 7, the two control voltage generators la and lb are both configured by a voltage dividing circuit force including thermistors 10 and 10a and resistance elements 11a to id. The voltage V input to the control voltage generator la fluctuates within a certain range, and the control voltage inl
発生部 lbに入力される電圧 V は一定の値に固定される。 2つの制御電圧発生部か in2  The voltage V input to the generator lb is fixed at a fixed value. 2 control voltage generators or in2
らの出力電圧 V および Vc が演算部に入力され、両電圧を加算した電圧の符号 outl out 2  The output voltages V and Vc are input to the calculation unit, and the sign of the voltage obtained by adding both voltages outl out 2
が反転されて電圧制御発振部 3のバラクタダイオード 5に印加される。この実施形態 では、図 4の第一の実施形態の回路と比較すると、一定の電圧 Voff setを印加した第 二の制御電圧発生部 lbとして、温度に伴い出力電圧が変化する分圧回路を経由し て、演算部 2に印加させる構成となっている。この構成によれば図 8に示したように、 実線で示した V が温度により変化するため、変調帯域の温度補償に加えて、発振 out2  Is inverted and applied to the varactor diode 5 of the voltage controlled oscillator 3. Compared with the circuit of the first embodiment of FIG. 4, in this embodiment, the second control voltage generator lb to which a constant voltage Voffset is applied is passed through a voltage dividing circuit whose output voltage changes with temperature. Thus, the calculation unit 2 is configured to be applied. According to this configuration, as shown in Fig. 8, V indicated by the solid line changes with temperature, so in addition to temperature compensation of the modulation band, oscillation out2
周波数の温度変動 Δί を、第一の実施形態よりもさらに小さくすることが可能になる 実施例 4  The temperature variation Δί of the frequency can be made smaller than in the first embodiment. Example 4
[0030] 以下、本発明に係る第四の実施形態を、図 9ないし図 11を用いて説明する。  Hereinafter, a fourth embodiment according to the present invention will be described with reference to FIGS. 9 to 11.
図 9は、本発明の第四の実施形態に係る電圧制御発振器の回路構成を示す回路 図である。  FIG. 9 is a circuit diagram showing a circuit configuration of a voltage controlled oscillator according to the fourth embodiment of the present invention.
図 10は、本発明の第四の実施形態に係る制御電圧発生部の入力電圧と出力電圧 の電圧比の温度特性を示す図である。  FIG. 10 is a graph showing the temperature characteristics of the voltage ratio between the input voltage and the output voltage of the control voltage generator according to the fourth embodiment of the present invention.
図 11は、本発明の第四の実施形態に係る電圧制御発振部の制御電圧と発振周波 数の温度特性を示す図である。  FIG. 11 is a diagram showing the temperature characteristics of the control voltage and the oscillation frequency of the voltage controlled oscillator according to the fourth embodiment of the present invention.
[0031] 以上の実施形態は、いずれも制御電圧発生部が二つであった力 本実施形態は、 それ以上の制御電圧発生部を持つものである。 Each of the above embodiments has a force that has two control voltage generators. This embodiment has more control voltage generators.
[0032] 本実施形態の回路は、図 9に示されるように、三つの制御電圧発生部 la, lb, lc を備え、制御電圧発生部 laと制御電圧発生部 lbは、共にサーミスタと抵抗素子から なる分圧回路から構成され、制御電圧発生部 lcは一定の V を出力する構成とな offset As shown in FIG. 9, the circuit of the present embodiment includes three control voltage generation units la, lb, and lc. Both the control voltage generation unit la and the control voltage generation unit lb are a thermistor and a resistance element. The control voltage generator lc is configured to output a constant V.
つている。制御電圧発生部 laおよび制御電圧発生部 lbの分圧回路の分圧比の温 度特性は、図 10に示すように互いに逆の傾きを持っており、両者の合成電圧 V + outl V は極小値を持つ特性となっている。このような温度特性を持つ制御電圧発生部 out2 It is. The temperature characteristics of the voltage division ratio of the voltage divider circuit of the control voltage generator la and the control voltage generator lb have opposite slopes as shown in Fig. 10, and the combined voltage V + outl V has a characteristic with a minimum value. Control voltage generator with such temperature characteristics out2
と、 V が加算された電圧を反転した電圧をバラクタダイオード 5に印加することによ offset  By applying a voltage obtained by inverting the voltage added with V to the varactor diode 5, offset
り、電圧制御発振部 3の変調特性の傾きが、図 11に示すように中間の温度において 大きぐ低温と高温で共に小さい場合に、変調帯域の温度補償をおこなうことができ る。  Thus, when the slope of the modulation characteristic of the voltage controlled oscillator 3 is small at both the low and high temperatures, which are large at intermediate temperatures, as shown in FIG. 11, the temperature compensation of the modulation band can be performed.
[0033] 以上説明したように、本実施形態の制御電圧発生部 la, lbの分圧回路の分圧比 の温度特性を適当に調整することにより、変調帯域の温度特性が極大点 ·極小点を 持つ場合においても、温度補償をおこななうことができる。また、図 9の回路をさらに 拡張し、制御電圧発生部をさらに多く備えることにより、温度によるより微小な変調帯 域の変動を補償することも可能になる。  [0033] As described above, the temperature characteristic of the modulation band is maximized / minimized by appropriately adjusting the temperature characteristic of the voltage dividing ratio of the voltage dividing circuit of the control voltage generators la and lb of the present embodiment. Even in the case of holding, temperature compensation can be performed. Furthermore, by further expanding the circuit in FIG. 9 and providing more control voltage generators, it is possible to compensate for smaller variations in the modulation band due to temperature.
実施例 5  Example 5
[0034] 以下、本発明に係る第五の実施形態を、図 12を用いて説明する。  Hereinafter, a fifth embodiment according to the present invention will be described with reference to FIG.
図 12は、本発明の第五の実施形態に係る電圧制御発振器の回路構成を示す回路 図である。  FIG. 12 is a circuit diagram showing a circuit configuration of a voltage controlled oscillator according to the fifth embodiment of the present invention.
[0035] 以上の実施形態は、いずれも温度により出力電圧が変化する制御電圧発生部は、 サーミスタ 10と抵抗素子力もなる分圧回路を用いる例であつたが、温度によりその電 気抵抗が変化する特性を備える素子であれば、サーミスタ以外の素子を用いることが できる。本実施形態では、制御電圧発生部 laは、ショットキーダイオード 13と抵抗素 子 11aからなる分圧回路を備える。入力電圧 V を印加することにより、温度により変 inl  In each of the above embodiments, the control voltage generator whose output voltage changes depending on the temperature is an example using a thermistor 10 and a voltage dividing circuit having a resistance element force. However, its electric resistance changes depending on the temperature. Any element other than the thermistor can be used as long as the element has the characteristics described above. In the present embodiment, the control voltage generation unit la includes a voltage dividing circuit including a Schottky diode 13 and a resistance element 11a. Changes with temperature by applying input voltage V inl
化する分圧比を反映した出力電圧 V が演算部 2に入力され、図 2に示した第一の outl  The output voltage V reflecting the voltage division ratio to be converted is input to the calculation unit 2 and the first outl shown in FIG.
実施形態の場合の回路と同じ効果を得ることができる。  The same effect as the circuit in the embodiment can be obtained.
図面の簡単な説明  Brief Description of Drawings
[0036] [図 1]本発明に係る電圧制御発振器の機能構成を示すブロック図である。 FIG. 1 is a block diagram showing a functional configuration of a voltage controlled oscillator according to the present invention.
[図 2]本発明の第一の実施形態に係る電圧制御発振器の回路構成を示す回路図で ある。  FIG. 2 is a circuit diagram showing a circuit configuration of the voltage controlled oscillator according to the first embodiment of the present invention.
[図 3]本発明の第一の実施形態に係る制御電圧発生部の入力電圧と出力電圧の電 圧比の温度特性を示す図である。  FIG. 3 is a graph showing a temperature characteristic of a voltage ratio between an input voltage and an output voltage of a control voltage generator according to the first embodiment of the present invention.
[図 4]本発明の第一の実施形態に係る電圧制御発振部の制御電圧と発振周波数の 温度特性を示す図である。 FIG. 4 shows the control voltage and oscillation frequency of the voltage controlled oscillator according to the first embodiment of the present invention. It is a figure which shows a temperature characteristic.
[図 5]本発明の第二の実施形態に係る電圧制御発振器の回路構成を示す回路図で ある。  FIG. 5 is a circuit diagram showing a circuit configuration of a voltage controlled oscillator according to a second embodiment of the present invention.
[図 6]本発明の第二の実施形態に係る電圧制御発振部の制御電圧と発振周波数の 温度特性を示す図である。  FIG. 6 is a graph showing temperature characteristics of a control voltage and an oscillation frequency of a voltage controlled oscillator according to the second embodiment of the present invention.
[図 7]本発明の第三の実施形態に係る電圧制御発振器の回路構成を示す回路図で ある。  FIG. 7 is a circuit diagram showing a circuit configuration of a voltage controlled oscillator according to a third embodiment of the present invention.
[図 8]本発明の第三の実施形態に係る電圧制御発振部の制御電圧と発振周波数の 温度特性を示す図である。  FIG. 8 is a diagram illustrating temperature characteristics of a control voltage and an oscillation frequency of a voltage controlled oscillator according to a third embodiment of the present invention.
[図 9]本発明の第四の実施形態に係る電圧制御発振器の回路構成を示す回路図で ある。  FIG. 9 is a circuit diagram showing a circuit configuration of a voltage controlled oscillator according to a fourth embodiment of the present invention.
[図 10]本発明の第四の実施形態に係る制御電圧発生部の入力電圧と出力電圧の電 圧比の温度特性を示す図である。  FIG. 10 is a diagram showing a temperature characteristic of a voltage ratio between an input voltage and an output voltage of a control voltage generation unit according to a fourth embodiment of the present invention.
[図 11]本発明の第四の実施形態に係る電圧制御発振部の制御電圧と発振周波数の 温度特性を示す図である。  FIG. 11 is a graph showing temperature characteristics of a control voltage and an oscillation frequency of a voltage controlled oscillator according to a fourth embodiment of the present invention.
[図 12]本発明の第五の実施形態に係る電圧制御発振器の回路構成を示す回路図 である。  FIG. 12 is a circuit diagram showing a circuit configuration of a voltage controlled oscillator according to a fifth embodiment of the present invention.
[図 13]従来技術に係るレーダシステムの電圧制御発振部の回路図である。  FIG. 13 is a circuit diagram of a voltage-controlled oscillator of a radar system according to the prior art.
[図 14]発振周波数の制御電圧と変調特性として、発振周波数の温度補償前と温度 補償後の変化を対比したグラフである。  FIG. 14 is a graph comparing the change in oscillation frequency before and after temperature compensation as the control voltage and modulation characteristics of oscillation frequency.
[図 15]温度補償前と温度補償後の変化を対比して、温度と発振周波数の関係を示し たグラフである。  FIG. 15 is a graph showing the relationship between temperature and oscillation frequency by comparing changes before and after temperature compensation.
[図 16]温度補償部を持たない電圧制御発振部の変調特性を説明したグラフである。  FIG. 16 is a graph illustrating the modulation characteristics of a voltage-controlled oscillation unit that does not have a temperature compensation unit.
[図 17]従来技術に係るレーダシステムの構成図である。 FIG. 17 is a block diagram of a radar system according to the prior art.
[図 18]従来技術に係るレーダシステムの時間と発振周波数の関係を示したグラフで ある。  FIG. 18 is a graph showing the relationship between time and oscillation frequency of a radar system according to the prior art.
符号の説明 Explanation of symbols
la, lb…制御電圧発生部、 2…演算部、 3…電圧制御発生部、 4…共振器、 5…バ ラクタダイオード、 6…能動素子 (FET)、 7…整合回路、 8…負性抵抗発生素子、 9〜 結合線路、 10…サーミスタ、 11a, l ib…抵抗素子、 12…オペアンプ、 13· ··ショット キーダイオード。 la, lb ... control voltage generator, 2 ... arithmetic unit, 3 ... voltage control generator, 4 ... resonator, 5 ... bar Ractor diode, 6 ... Active element (FET), 7 ... Matching circuit, 8 ... Negative resistance generating element, 9 ~ Coupling line, 10 ... Thermistor, 11a, l ib ... Resistance element, 12 ... Operational amplifier, 13 ... shot Key diode.

Claims

請求の範囲 The scope of the claims
[1] 入力電圧端子と出力電圧端子とを具備してなる二つ以上の制御電圧発生部と、 前記二つ以上の制御電圧発生部からの出力電圧を加算する演算部と、 制御電圧により発振周波数が変化する制御電圧入力端子を有する電圧制御発振 部とを具備して成り、  [1] Two or more control voltage generation units each including an input voltage terminal and an output voltage terminal, an arithmetic unit for adding output voltages from the two or more control voltage generation units, and oscillation by the control voltage A voltage-controlled oscillation unit having a control voltage input terminal whose frequency changes,
前記二つ以上の制御電圧発生部からの出力電圧を、前記演算部により演算した電 圧が、電圧制御発振部に入力されることを特徴とするレーダシステム。  A radar system, wherein a voltage obtained by calculating the output voltages from the two or more control voltage generation units by the calculation unit is input to a voltage control oscillation unit.
[2] 請求項 1において、  [2] In claim 1,
前記二つ以上の制御電圧発生部の内、少なくとも一つの制御電圧発生部の入力 端子に入力される電圧は、所定の範囲内で任意に変化することを特徴とするレーダ システム。  A radar system, wherein a voltage input to an input terminal of at least one of the two or more control voltage generators is arbitrarily changed within a predetermined range.
[3] 請求項 1において、 [3] In claim 1,
前記二つ以上の制御電圧発生部の内、少なくとも一つの制御電圧発生部は、 温度により電気抵抗が変化する素子と、抵抗素子を具備して成る分圧回路であつ て、その制御電圧発生部への入力電圧とその制御電圧発生部からの出力電圧との 比力 温度により変化することを特徴とするレーダシステム。  Of the two or more control voltage generators, at least one of the control voltage generators is a voltage dividing circuit including an element whose electrical resistance varies with temperature and a resistance element, and the control voltage generator A radar system characterized by a change in specific force between the input voltage to the output voltage and the output voltage from the control voltage generator.
[4] 請求項 1において、 [4] In claim 1,
前記演算部は、オペアンプと、そのオペアンプの二つ以上の入力端子に接続され た入力抵抗と、前記入力端子とそのオペアンプ出力端子とに接続された抵抗とを具 備してなる加算回路であることを特徴とするレーダシステム。  The arithmetic unit is an adder circuit including an operational amplifier, an input resistor connected to two or more input terminals of the operational amplifier, and a resistor connected to the input terminal and the operational amplifier output terminal. Radar system characterized by that.
[5] 請求項 1において、 [5] In claim 1,
前記電圧制御発振部に入力される制御電圧が、その電圧制御発振部の共振回路 に接続されたバラクタダイオードのアノード電極または力ソード電極に印加されること を特徴とするレーダシステム。  A radar system, wherein a control voltage input to the voltage controlled oscillator is applied to an anode electrode or a force sword electrode of a varactor diode connected to a resonance circuit of the voltage controlled oscillator.
[6] 請求項 3において、 [6] In claim 3,
前記温度により電気抵抗が変化する素子は、サーミスタであることを特徴とするレー ダシステム。  The radar system, wherein the element whose electrical resistance changes with temperature is a thermistor.
[7] 請求項 3において、 前記温度により電気抵抗が変化する素子は、ショットキーダイオードであることを特 徴とするレーダシステム。 [7] In claim 3, A radar system characterized in that the element whose electric resistance changes with temperature is a Schottky diode.
[8] 請求項 1において、  [8] In claim 1,
前記二つ以上の制御電圧発生部の内、一つの制御電圧発生部は、温度に関わら ず一定の電圧を発生する電圧源であって、  Of the two or more control voltage generators, one control voltage generator is a voltage source that generates a constant voltage regardless of temperature.
他の一つの制御電圧発生部は、温度によって変化する電圧を発生する電圧源であ つて、  The other control voltage generator is a voltage source that generates a voltage that varies with temperature.
前記演算部により加算した電圧が、前記電圧制御発振部の制御電圧として、前記 電圧制御発振部の特性に従い温度の変化に伴う発振周波数の変動が少なくなるよう に印加されることを特徴とするレーダシステム。  A radar characterized in that the voltage added by the arithmetic unit is applied as a control voltage of the voltage-controlled oscillator so that fluctuations in oscillation frequency due to temperature changes are reduced according to the characteristics of the voltage-controlled oscillator. system.
[9] 請求項 1において、 [9] In claim 1,
前記二つ以上の制御電圧発生部の内、一つの制御電圧発生部は、温度に関わら ず一定の電圧を発生する電圧源であって、  Of the two or more control voltage generators, one control voltage generator is a voltage source that generates a constant voltage regardless of temperature.
他の一つの制御電圧発生部は、温度によって変化する電圧を発生する電圧源であ つて、  The other control voltage generator is a voltage source that generates a voltage that varies with temperature.
前記演算部により加算した電圧が、前記電圧制御発振部の制御電圧として、前記 電圧制御発振部の特性に従い温度の変化に対して、変調帯域の変動が少なくなる ように印加されることを特徴とするレーダシステム。  The voltage added by the arithmetic unit is applied as the control voltage of the voltage controlled oscillator so that the variation of the modulation band is less with respect to the temperature change according to the characteristics of the voltage controlled oscillator. Radar system.
[10] 少なくとも二つ以上の制御電圧発生部と、 [10] at least two control voltage generators;
前記制御電圧発生部が発生させる電圧を加算して出力する演算部と、 前記演算部の出力を制御電圧とする電圧制御発振部とを具備して成り、 前記制御電圧発生部には、発生する電圧が温度によって変化する第一の制御電 圧発生部と、前記第一の制御電圧発生部とは別の第二の制御電圧発生部とが含ま れ、  A calculation unit that adds and outputs the voltage generated by the control voltage generation unit; and a voltage control oscillation unit that uses the output of the calculation unit as a control voltage. A first control voltage generation unit in which the voltage varies with temperature, and a second control voltage generation unit different from the first control voltage generation unit,
前記演算部は、前記第一の制御電圧発生部が発生させる電圧と前記第二の制御 電圧発生部が発生させる電圧とを加算して出力し、その出力電圧を前記電圧制御発 振部の制御電圧とすることを特徴とする電圧制御発振器。  The arithmetic unit adds and outputs the voltage generated by the first control voltage generator and the voltage generated by the second control voltage generator, and outputs the output voltage to the control of the voltage control oscillator. A voltage controlled oscillator characterized by being a voltage.
[11] 請求項 10において、 前記第一の制御電圧発生部は、サーミスタと抵抗が並列に接続して成る部分を有 することを特徴とする電圧制御発振器。 [11] In claim 10, The voltage-controlled oscillator according to claim 1, wherein the first control voltage generator has a portion in which a thermistor and a resistor are connected in parallel.
[12] 請求項 10において、  [12] In claim 10,
前記第一の制御電圧発生部は、ショットキーダイオードを具備して成ることを特徴と する電圧制御発振器。  The voltage-controlled oscillator, wherein the first control voltage generation unit includes a Schottky diode.
[13] 請求項 10において、 [13] In claim 10,
前記演算部は、前記第一の制御電圧発生部からの電圧と前記第二の制御電圧発 生部からの電圧を入力するオペアンプを具備して成ることを特徴とする電圧制御発 振器。  The voltage control oscillator is characterized in that the calculation unit includes an operational amplifier that inputs a voltage from the first control voltage generation unit and a voltage from the second control voltage generation unit.
[14] 請求項 10において、  [14] In claim 10,
前記第二の制御電圧発生部は、温度によって発生する電圧が変化しないことを特 徴とする電圧制御発振器。  The second control voltage generator is a voltage controlled oscillator characterized in that a voltage generated by temperature does not change.
[15] 請求項 10において、 [15] In claim 10,
全ての電圧制御発振部が、温度によって発生する電圧を変化させることを特徴とす る電圧制御発振器。  A voltage-controlled oscillator characterized in that all voltage-controlled oscillators change the voltage generated by temperature.
[16] 少なくとも二つ以上の制御電圧により発振周波数が変化する制御電圧発生部と、 前記制御電圧部の電圧の加算して出力する演算部と、  [16] A control voltage generator that changes the oscillation frequency by at least two or more control voltages, an arithmetic unit that adds and outputs the voltage of the control voltage unit,
前記演算部の出力を制御電圧とする電圧制御発振部とを具備して成り、 前記制御電圧発生部の内で、少なくとも一つは、温度によって発生する電圧を変 化させる第一の制御電圧発生部であって、  A voltage control oscillation unit that uses the output of the calculation unit as a control voltage, and at least one of the control voltage generation units generates a first control voltage that changes a voltage generated according to temperature. Part,
前記演算部の出力する前記電圧制御発振部の制御電圧は、前記電圧制御発振 部の温度の変化に伴う発振周波数の変動が少なくなるように調整することを特徴とす る電圧制御発振器。  A voltage-controlled oscillator characterized in that the control voltage of the voltage-controlled oscillator output from the arithmetic unit is adjusted so that fluctuations in the oscillation frequency associated with changes in the temperature of the voltage-controlled oscillator are reduced.
[17] 請求項 16において、 [17] In claim 16,
前記演算部により加算した電圧が、前記電圧制御発振部の制御電圧として、前記 電圧制御発振部の特性に従い温度の変化に対して、変調帯域の変動が少なくなる ように印加されることを特徴とする電圧制御発振器。  The voltage added by the arithmetic unit is applied as the control voltage of the voltage controlled oscillator so that the variation of the modulation band is less with respect to the temperature change according to the characteristics of the voltage controlled oscillator. A voltage controlled oscillator.
[18] 請求項 16において、 前記電圧制御発振部が、低温のときに発振周波数が大きぐ高温のときに発振周 波数が小さ!ヽことを特徴とする電圧制御発振器。 [18] In claim 16, A voltage-controlled oscillator, wherein the voltage-controlled oscillator has a high oscillation frequency when the temperature is low and a low oscillation frequency when the temperature is high.
[19] 請求項 16において、  [19] In claim 16,
前記電圧制御発振部が、低温のときに発振周波数力 、さぐ高温のときに発振周 波数が大き!ヽことを特徴とする電圧制御発振器。  A voltage-controlled oscillator, wherein the voltage-controlled oscillation unit has an oscillation frequency force when the temperature is low and a large oscillation frequency when the temperature is high.
[20] 請求項 16において、 [20] In claim 16,
前記二つ以上の制御電圧発生部の内で、  Among the two or more control voltage generators,
二つの温度によって発生する電圧を変化させる制御電圧発生部と、  A control voltage generator for changing the voltage generated by two temperatures;
一つの温度によって発生する電圧が変化しない制御電圧発生部とを具備してなり、 前記二つの温度によって発生する電圧を変化させる制御電圧発生部の出力電圧 の和が、常温の近傍にお!、て極小値または極大値の!/、ずれか一方を有することを特 徴とする電圧制御発振器。  A control voltage generator that does not change the voltage generated by one temperature, and the sum of the output voltages of the control voltage generator that changes the voltage generated by the two temperatures is in the vicinity of room temperature! A voltage-controlled oscillator characterized by having either a minimum value or a maximum value!
PCT/JP2005/020186 2005-11-02 2005-11-02 Voltage-controlled oscillator, and radar system using the same WO2007052343A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2005/020186 WO2007052343A1 (en) 2005-11-02 2005-11-02 Voltage-controlled oscillator, and radar system using the same
JP2007542192A JPWO2007052343A1 (en) 2005-11-02 2005-11-02 Voltage controlled oscillator and radar system using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/020186 WO2007052343A1 (en) 2005-11-02 2005-11-02 Voltage-controlled oscillator, and radar system using the same

Publications (1)

Publication Number Publication Date
WO2007052343A1 true WO2007052343A1 (en) 2007-05-10

Family

ID=38005507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/020186 WO2007052343A1 (en) 2005-11-02 2005-11-02 Voltage-controlled oscillator, and radar system using the same

Country Status (2)

Country Link
JP (1) JPWO2007052343A1 (en)
WO (1) WO2007052343A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190067975A (en) * 2017-12-08 2019-06-18 (주)코러싱 Microwave sensor having microstrip structure oscillator
WO2019187153A1 (en) 2018-03-30 2019-10-03 本田技研工業株式会社 Energy management device, hydrogen utilization system, program, and energy management method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012211855A (en) * 2011-03-31 2012-11-01 Furukawa Electric Co Ltd:The Oscillator and onboard radar device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0584880U (en) * 1992-04-17 1993-11-16 日本無線株式会社 Linearizer for temperature compensation
JPH07221640A (en) * 1994-02-07 1995-08-18 Mitsubishi Electric Corp Frequency synthesizer
JPH07254818A (en) * 1994-03-15 1995-10-03 Toshiba Corp Voltage controlled oscillator
JPH08146125A (en) * 1994-11-21 1996-06-07 Fujitsu Ltd Fm-cw radar
JPH1155034A (en) * 1997-08-06 1999-02-26 Nec Corp Voltage controlled oscillator
JP2001320242A (en) * 2000-05-08 2001-11-16 Mitsubishi Electric Corp Amplifier
JP2002168945A (en) * 2000-12-05 2002-06-14 Tokimec Jido Kenki:Kk Instrument for measuring relative distance
JP2005295014A (en) * 2004-03-31 2005-10-20 Seiko Epson Corp Method of compensating frequency- temperature characteristics of piezoelectric oscillator, temperature-compensated oscillator, and electronic apparatus using same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0584880U (en) * 1992-04-17 1993-11-16 日本無線株式会社 Linearizer for temperature compensation
JPH07221640A (en) * 1994-02-07 1995-08-18 Mitsubishi Electric Corp Frequency synthesizer
JPH07254818A (en) * 1994-03-15 1995-10-03 Toshiba Corp Voltage controlled oscillator
JPH08146125A (en) * 1994-11-21 1996-06-07 Fujitsu Ltd Fm-cw radar
JPH1155034A (en) * 1997-08-06 1999-02-26 Nec Corp Voltage controlled oscillator
JP2001320242A (en) * 2000-05-08 2001-11-16 Mitsubishi Electric Corp Amplifier
JP2002168945A (en) * 2000-12-05 2002-06-14 Tokimec Jido Kenki:Kk Instrument for measuring relative distance
JP2005295014A (en) * 2004-03-31 2005-10-20 Seiko Epson Corp Method of compensating frequency- temperature characteristics of piezoelectric oscillator, temperature-compensated oscillator, and electronic apparatus using same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190067975A (en) * 2017-12-08 2019-06-18 (주)코러싱 Microwave sensor having microstrip structure oscillator
KR102069280B1 (en) * 2017-12-08 2020-01-22 (주)코러싱 Microwave sensor having microstrip structure oscillator
WO2019187153A1 (en) 2018-03-30 2019-10-03 本田技研工業株式会社 Energy management device, hydrogen utilization system, program, and energy management method

Also Published As

Publication number Publication date
JPWO2007052343A1 (en) 2009-04-30

Similar Documents

Publication Publication Date Title
US7012476B2 (en) Voltage-controlled oscillator, clock converter, and electronic device
CN101361007B (en) Modulation generating circuit, transmitting and receiving module and radar installation
US20060202772A1 (en) Temperature-compensated piezoelectric oscillator
US7911285B2 (en) Reference frequency control circuit
JP4745102B2 (en) Reference current control circuit, crystal oscillator control IC with temperature compensation function, crystal oscillator and mobile phone
US20170005617A1 (en) System and Method for a Voltage Controlled Oscillator
US20180013384A1 (en) Temperature-compensated crystal oscillator based on analog circuit
US7205858B2 (en) Temperature compensated piezoelectric oscillator and electronic apparatus comprising it
WO2007052343A1 (en) Voltage-controlled oscillator, and radar system using the same
US7236063B2 (en) Broadband modulation PLL, and modulation factor adjustment method thereof
US11496164B2 (en) Efficient multi-band transmitter
US7570125B2 (en) Crystal oscillator
JP4062135B2 (en) High frequency oscillation device, radio device and radar
US20050225400A1 (en) Voltage-controlled oscillator and quadrature modulator
CN106843356B (en) Use the system and method for oscillator of secondary temperature-compensating
US6600381B2 (en) Microwave voltage-controlled-oscillator
CN102611389A (en) Modulation signal generation circuit, sending and receiving module and radar device
CN104242863A (en) Signal generation circuit, signal generation apparatus, method for manufacturing signal generation apparatus, electronic apparatus, and moving object
JP5633066B2 (en) Microwave oscillator using integrated circuit technology
CN219761001U (en) Frequency source
JP2005064663A (en) Voltage controlled oscillator and pll frequency synthesizer modulation circuit using same
JP2003198250A (en) Oscillator circuit and electronic apparatus using the same
JP2002223169A (en) Wireless unit and oscillated frequency correction method
JPH07154272A (en) Transmitter
JPH01176112A (en) Surface acoustic wave resonator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007542192

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05800063

Country of ref document: EP

Kind code of ref document: A1