WO2007051412A1 - Procede de mise en oeuvre de commande de puissance du canal de commande partage a haut debit et canal d’informations partage a haut debit - Google Patents

Procede de mise en oeuvre de commande de puissance du canal de commande partage a haut debit et canal d’informations partage a haut debit Download PDF

Info

Publication number
WO2007051412A1
WO2007051412A1 PCT/CN2006/002929 CN2006002929W WO2007051412A1 WO 2007051412 A1 WO2007051412 A1 WO 2007051412A1 CN 2006002929 W CN2006002929 W CN 2006002929W WO 2007051412 A1 WO2007051412 A1 WO 2007051412A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
power control
speed shared
high speed
node
Prior art date
Application number
PCT/CN2006/002929
Other languages
English (en)
French (fr)
Inventor
Zijiang Ma
Zhifeng Ma
Yincheng Zhang
Original Assignee
Zte Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zte Corporation filed Critical Zte Corporation
Priority to US12/092,005 priority Critical patent/US8743761B2/en
Priority to EP06805130.9A priority patent/EP1944879B1/en
Publication of WO2007051412A1 publication Critical patent/WO2007051412A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/08Closed loop power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/20TPC being performed according to specific parameters using error rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/143Downlink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/241TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account channel quality metrics, e.g. SIR, SNR, CIR, Eb/lo
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/248TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters where transmission power control commands are generated based on a path parameter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
    • H04W52/286TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission during data packet transmission, e.g. high speed packet access [HSPA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/12Outer and inner loops

Definitions

  • the present invention relates to the field of mobile communications, and more particularly to a method for implementing power control of a High Speed Shared Control Channel (HS-SCCH) and a High Speed Shared Information Channel (HS-SICH) in a Time Division Code Division Multiple Access (TD-CDMA) system.
  • HS-SCCH High Speed Shared Control Channel
  • H-SICH High Speed Shared Information Channel
  • TD-CDMA Time Division Code Division Multiple Access
  • the High Speed Downlink Packet Access (HSDPA) technology is a technology for providing high-speed downlink data services for multiple users, and is suitable for services such as multimedia and Internet.
  • HSDPA introduces a new transport channel: HS-DSCH (High Speed Downlink Shared Channel), which shares downlink code resources and power resources for time division multiplexing. This structure is suitable for bursty packet data services.
  • the downlink physical channel HS-SCCH High Speed Shared Control Channel
  • HS-SCCH High Speed Shared Control Channel
  • the user equipment By reading the information on the HS-SCCH, the user equipment (UE, User Equipment) can find the HS-DSCH resource configured for the UE according to the physical layer information such as the code channel, the time slot, and the modulation mode, and the UE passes the UE.
  • the HS-SICH (High Speed Shared Information Channel) channel is transmitted to the Node B (Node B) to feed back channel quality information (CQI, Channel Quality Indicator) and block decoding information (Ack/Nack) of the HS-DSCH channel.
  • CQI Channel Quality Indicator
  • Ack/Nack block decoding information
  • the HS-SCCH channel and the HS-SICH channel allocated by the Node B to the UE are paired.
  • the Node B may allocate 1 to 4 HS-SCCHs for the UE.
  • the physical channel correspondingly, also allocates 1 to 4 HS-SICH physical channels for the UE.
  • All HS-SCCHs allocated for one UE are referred to as one HS-SCCH set, and correspondingly there is also a corresponding HS-SICH set.
  • the UE may only use one of the set at a TTI (Transmit Time Interval) time.
  • TTI Transmit Time Interval
  • TDD systems include both HCR TDD and LCR TDD systems.
  • HCR TDD is TDD with high chip rate, and the chip rate is 3.84Mcps;
  • LCR TDD is low chip rate TDD, code The chip rate is 1.28 Mcps, which is TD-SCDMA (Time Division Code Division Multiple Access).
  • the HS-SICH sent by the UE to the Node B and the HS-SCCH sent by the corresponding Node B to the UE require power control. Whether it is the power control of the HS-SICH completed by the UE or the power control of the HS-SCCH performed by the Node B, including open loop power control and closed loop power control.
  • the closed-loop power control process of HS-SICH is the same, but the configuration parameters are different; the calculation method of open-loop power control of HS-SICH is different; the open-loop and closed-loop power control processes of HS-SCCH are the same , are all implemented by Node B.
  • the open loop power control procedure is applied to the power value of the initial transmission of the HS-SICH by the UE and the power value of the initial transmission of the HS-SCCH by the Node B, and then, when the UE receives the subsequent HS-SCCH, and the Node B receives the HS of the subsequent feedback.
  • the SICH uses closed-loop power control and adjusts the closed-loop transmit power using the TPC (Transmit Power Control) parameters carried on the HS-SCCH and HS-SICH.
  • the HS-SICH initial transmit power calculated by the UE is used for open loop power control.
  • the principles of the open-loop power control of the HS-SICH of the two TDD systems are the same, and the calculation formulas are different, as follows:
  • the formula for the UE to calculate the initial transmit power of the HS-SICH is:
  • PHS-SICH Transmit power value (dBm);
  • PRXHS-SICH The HS-SICH received power received by the UE is expected, and the upper layer notifies the UE by using the information element "downlink HS-PDSCH message" in the RRC protocol ("Downlink HS-PDSCH Information");
  • LPCCPCH Measurement compensation value of the UE, the UE can read the information element "Primary CCPCH Tx Power" in the system message block 5 or 6, or notify the UE from the upper layer through the information unit "Uplink DPCH Power Control info" in the C protocol. ;
  • the formula for the UE to calculate the initial transmit power of the HS-SICH is:
  • PHS-SICH LPCCPCH+(la)L 0 + I BTS + SIR TA RGET+ HS-SICH Constant Value
  • I BTS interference signal power at the base station receiver
  • SIRTARGET target signal to noise ratio (dB)
  • the upper layer notifies the UE through the information unit "HS-SICH Power Control Info" in the RRC protocol;
  • HS-SICH Constant value The upper layer is assigned by the information element "HS-SICH Constant value" in the RRC protocol.
  • the implementation method of the power control of the HS-SCCH implemented by the Node B is not accurately given, for example: How does the Node B calculate and generate the TPC for adjusting the uplink HS-SICH closed-loop power control, the TPC parameter is not specified. It is carried on the HS-SCCH and sent to the UE.
  • the technical problem to be solved by the present invention is to provide a method for a Node B to carry a transmission power control parameter in a high-speed shared control channel, calculate and generate a TPC parameter for adjusting an uplink HS-SICH closed-loop power control, and further provide a TPC parameter.
  • the high-speed shared control channel and the high-speed shared information channel power control implementation method perform power control on the high-speed shared control channel that the Node B sends to the user equipment, and the high-speed shared information channel that the user equipment sends to the Node B.
  • the present invention provides a method for a Node B to carry a transmission power control parameter in a high-speed shared control channel, and is used in a high-speed downlink packet access technology in a time division code division multiple access system, including the following steps: Node B generates a high-speed shared information channel. The target value of the signal to noise ratio; Node B measures the signal to noise ratio of the received high speed shared information channel to obtain an actual measured value;
  • the Node B calculates the "transmission power control", the parameter, and carries it on the high-speed shared control channel according to the target value and the actual measured value of the signal-to-noise ratio of the high-speed shared information channel.
  • the target value of the signal to noise ratio of the high speed shared information channel is based on channel quality information fed back on the high speed shared information channel, or data block decoding information, or modulation mode information of the high speed physical downlink shared channel, or the information. The combination of the generated.
  • the step of calculating the "transmit power control" parameter according to the target value and the actual value of the signal to noise ratio, the node B includes:
  • the present invention further provides a power control implementation method for a high-speed shared control channel, which is used in a high-speed downlink packet access technology of a time division code division multiple access system to perform power control on a high-speed shared control channel that a Node B sends to a user equipment. Including the following steps:
  • the network side configures parameters related to power control for the Node B through high layer signaling, including a "maximum high speed shared control channel power value" parameter;
  • Node B sets an initial power of the high-speed shared control channel according to the parameter “maximum high-speed shared control channel power value” for open-loop power control;
  • Node B adjusts the closed-loop transmit power based on the "transmission power control" parameter carried in the channel.
  • the method further includes:
  • the Node B calculates the "transmission power control" parameter based on the target value of the signal-to-noise ratio of the autonomously generated high-speed shared information channel and the actual measured value of the signal-to-noise ratio of the obtained high-speed shared information channel, and carries it in high-speed sharing. On the control channel.
  • the “maximum high-speed shared control channel power value” parameter is configured by the network side through the "physical shared channel reconfiguration process" in the "node B application part” protocol.
  • the Node B adjusts the closed loop according to the "transmission power control" parameter carried in the channel.
  • the radio power step is performed according to the "transmission power control" parameter carried in the high speed shared information channel.
  • the step of adjusting the closed loop transmission power by the Node B according to the "transmission power control" parameter carried in the channel is performed according to the "transmission power control" parameter carried in the dedicated physical channel.
  • the target value of the signal to noise ratio of the high speed shared information channel is based on channel quality information fed back on the high speed shared information channel, or data block decoding information, or modulation mode information of the high speed physical downlink shared channel, or the information. The combination of the generated.
  • the step of calculating the "transmit power control" parameter by the node B according to the target value and the actual value of the signal to noise ratio including:
  • the present invention further provides a method for implementing power control of a high speed shared information channel, which is used in a high speed downlink packet access technology of a time division code division multiple access system to perform power control on a high speed shared information channel transmitted by a user equipment to a Node B. , including the following steps:
  • the network side configures parameters related to power control for the user equipment by using the high layer signaling, including parameters for calculating the initial transmit power.
  • the user equipment calculates the initial transmit power of the high speed shared information channel for the open loop power according to the configured parameters.
  • the user equipment adjusts the closed loop power control of the high speed shared information channel according to the "transmission power control" parameter carried on the high speed shared control channel.
  • the method further includes the following steps:
  • the network side configures parameters related to power control for the user equipment through high layer signaling, including a parameter of a "block error rate target value of the high speed shared control channel";
  • the user equipment uses the "block rate target value of the high speed shared control channel" parameter configured by the upper layer as the target value;
  • the user equipment measures the block error rate of the received high-speed shared control channel, and obtains the actual value of the "high-speed shared control channel error block rate";
  • the user equipment calculates "transmission power control" information according to the target value and the actual value, and carries the information on the high speed shared information channel.
  • the network side configures a parameter step related to power control for the user equipment by using the high layer signaling, and configures a set of power control related parameters for the entire high speed shared information channel set of the user equipment.
  • the network side configures parameters related to the power control for the user equipment by using the high layer signaling, and is configured by using the “radio resource control, the information unit in the protocol, the high speed shared control channel information”.
  • Node B can be calculated to adjust the uplink HS-SICH closed-loop control.
  • the TPC parameters are transmitted to the UE on the HS-SCCH, and further power control is performed on the high-speed shared control channel and the high-speed shared information channel.
  • FIG. 1 is a flow chart of power control for transmitting a HS-SICH to a UE according to an embodiment of the present invention
  • FIG. 2 is a flow chart showing power control for transmitting a HS-SCCH to a Node B according to an embodiment of the present invention.
  • the power control process in the embodiment of the present invention includes the power control of the HS-SICH performed by the UE and the power control of the HS-SCCH performed by the Node B, and is divided into open loop power control and closed loop power control.
  • the UE calculates the initial transmit power according to a series of parameters configured by the upper layer, and completes the open loop power control. According to the TPC (transmission power control) command carried by the HS-SCCH, the closed loop transmit power is adjusted to complete the closed loop power control.
  • TPC transmission power control
  • Node B takes the "HS-SCCH maximum power value" of the high-level configuration as the reference, and independently sets the initial transmit power of the HS-SCCH to complete the open-loop power control.
  • the closed-loop power control can be used in various ways. Method: The closed-loop transmit power can be adjusted according to the TPC command carried by the HS-SICH, or other methods, such as: adjusting the closed-loop transmit power by using the power value on the DPCH (dedicated physical channel).
  • the method for the UE to generate the TPC parameter is: the UE uses the "high-speed shared control channel error rate target value (HS-SCCH BLE Target)" as the target value, and the "high-speed shared control channel” according to the multiple measurements.
  • Block error rate actual value, generate “transmit power control TPC” parameter;
  • the method for generating the TPC parameters by the Node B is as follows:
  • the Node B uses its own “HS-SICH S (HS-SICH Signal Noise Rate)" as the target value, and according to the measured "high-speed shared information"
  • the signal-to-noise ratio of the channel is the actual value, producing a TPC.
  • the parameters related to the power control are configured by the network side for the UE and the Node B respectively, that is, the network side configures parameters related to the power control for the UE through the high layer signaling, where the high layer signaling refers to: RRC (Radio Resource Control, Radio Resource Control) information element in the protocol "HS-SCCH Info", ;
  • the configuration method of the parameters related to power control is unified configuration for the entire HS-SICH set, instead of being configured separately for each HS-SICH;
  • the parameters related to the power control configuration may include: "HS-SICH Power Control Info” for HC TDD, "PRX HS - S I C H” for LCR TDD and “TPC step size”” (TPC step), "Ack-Nack Power Offset” (acknowledgement and negative acknowledgement Power Offset) for both TDDs and "BLER target” (BLock ERror) Target, target value of the block error rate, etc.
  • the network side configures parameters related to power control for the Node B through the high layer signaling, where the high layer signaling refers to: "Physical shared channel reconfiguration request, message in the NBAP (Node B Application Part) protocol.
  • the information unit in the "Maximum High Speed Shared Control Channel Power Value” (“Maximum HS-SCCH Power”).
  • Part I Power control of HS-SICH completed on the UE side As shown in FIG. 1, a power control flowchart for transmitting an HS-SICH to a UE according to an embodiment of the present invention.
  • Step 101 First, determine whether the UE receives the HS-SCCH? If no, then it ends, if yes, then proceeds to step 102;
  • Step 102 Next, it is determined whether the UE searches for the first time to match the identity of the UE.
  • the HS-SICH is transmitted for the first time. If yes, the process proceeds to step 103, and the open loop power control is adopted. If not, the process proceeds to step 105, where closed loop power control is adopted;
  • Step 103 The UE adopts open loop power control.
  • Step 104 The UE reads the related information unit "Primary CCPCH Tx Power" in the system broadcast message, and reads other information units configured by the upper layer, such as "Downlink HS-PDSCH Information", “HS-SICH Power Control Info”, HS-SICH Constant value”, etc., calculates the initial transmit power of the HS-SICH for open-loop power control, wherein the calculation formulas for HCR TDD and LCR TDD are different, and the specific calculation method can refer to the related inner valley in the background art.
  • Step 105 The UE receives the subsequent HS-SCCH and uses the closed loop power control to send the HS-SICH.
  • Step 107 The UE calculates according to the HS-SCCH BLER target value of the high-level configuration and the actual measurement of the HS-SCCH BLER multiple times! TC, and carried on the HS-SICH physical channel.
  • the UE After the UE receives the HS-SCCH after being separated for a period of time, it is equivalent to receiving the HS-SCCH for the first time, and the UE adopts open loop power control, and returns to step 101.
  • FIG. 2 a power control flowchart for transmitting a HS-SCCH to a Node B according to an embodiment of the present invention.
  • Step 201 First, determine whether the Node B sends the HS-SCCH? If no, then it ends, if yes, then proceeds to step 202; Step 202: Next, it is determined whether the Node B sends the HS-SCCH for the first time. If yes, the process proceeds to step 203, where open loop power control is adopted, and if not, the process proceeds to step 205, where closed loop power control is adopted;
  • Step 203 Node B adopts open loop power control.
  • Step 204 The Node B automatically sets the initial power of the HS-SCCH by referring to the "HS-SCCH maximum power value" configured in the "physical shared channel reconfiguration process".
  • Step 205 After receiving the HS-SICH sent by the UE, the Node B adopts closed loop power control.
  • Step 207 The Node B independently generates the target value of the signal-to-noise ratio of the HS-SICH according to various information, such as: the channel quality fed back on the HS-SICH, the modulation mode of the HS-PDSCH, and the like, and according to the HS-SICH letter.
  • the actual measured value of the noise ratio produces a TPC parameter that is carried on the HS-SCCH.
  • the method of generating TPC is also generated by comparing the target value with the actual measured value.
  • resending the HS-SCCH is equivalent to transmitting the HS-SCCH for the first time, using open loop power control, and returning to step 201.
  • the implementation of the initial power of the HS-SCCH is configured with the relevant parameters for the HS-SICH with respect to the upper layer (the upper layer configures parameters for the UE, and the UE uniquely calculates according to the fixed formula according to the parameter.
  • the initial value the parameters configured by the upper layer for the HS-SCCH
  • Node B only uses this as a reference.
  • the method for the Node B to calculate the initial power of the HS-SCCH is as follows: The Node B uses the maximum power of the HS-SCCH provided by the upper layer as a reference (the upper layer cannot provide the initial value because it is a shared channel), according to the use of the HSDPA resource.
  • the power control information of the dedicated physical channel may also be referred to, and the initial transmission power of the HS-SCCH is generated by itself, and the initial transmission power generated by the Node B is generated.
  • the power maximum of the HS-SCCH configured in the upper layer cannot be exceeded.
  • step 207 specifically, the following steps can be implemented:
  • Node B generates a high speed shared information channel based on channel information related to the signal to noise ratio The target value of the signal to noise ratio;
  • Node B measures the signal to noise ratio of the received high speed shared information channel to obtain the actual measured value
  • Node B calculates a "transmission power control TPC" parameter according to the target value of the signal-to-noise ratio of the high-speed shared information channel and the actual measured value, and carries it on the high-speed shared control channel.
  • the Node B is based on a modulation mode of the HS-PDSCH (High Speed Physical Downlink Shared Channel) (when the modulation mode is high, a higher signal to noise ratio target value is required), and the channel quality according to the HS-SICH feedback (CQI channel quality indication, this value is higher, indicating that the current channel is wider, HS-SICH can provide a higher signal-to-noise ratio), and the data block decoding information according to the HS-SICH feedback (when the coding accuracy is higher)
  • the HS-PDSCH data transmission accuracy is high; the number of data retransmissions is small, the HS-SICH can provide a high signal-to-noise ratio), or consider these factors separately or comprehensively, and the Node B calculates the appropriate HS-SICH by itself.
  • the target value of the signal to noise ratio when the HS-PDSCH data transmission accuracy is high; the number of data retransmissions is small, the HS-SICH can provide a high signal-to-noi
  • step (3) when the measured actual value of the signal-to-noise ratio is greater than the target value, the actual signal quality of the HS-SICH is high, and the TPC is set to "DOWN" (downward); when the actual value is smaller than the target value, The actual 'signal quality' of HS-SICH is low and TPC is set to "UP" (up).
  • Part III Process of configuring parameters related to power control at a high level
  • the upper layer (RNC, radio network controller) sends high-level signaling to the UE, and configures parameters related to the power control of the HS-SCCH and the HS-SICH.
  • the configured parameters include related parameters used by the UE to calculate the initial transmit power of the HS-SCCH;
  • the configured parameters further include related parameters for the UE to calculate the TPC, where the TPC is carried on the HS-SICH, and is used by the Node B to adjust the downlink HS-SCCH;
  • the configured parameters should be uniformly configured for the entire HS-SICH set of the UE, rather than for each HS-SICH of the UE.
  • the HS-SICH set corresponds to the HS-SCCH set, and the parameters related to the power control are configured in the same level as the HS-SCCH set, that is, the same level as the HS-SICH set, so this configuration method is adopted.
  • the relevant parameters can be implemented for the overall configuration of the entire HS-SICH set, as shown in italics.
  • BLERB (-3.15.M bv step LoslOmS-SCCH of 0.05) BLER ciualitv target).
  • the UE shall use the BLER tarset signalled in the first occurrence of the HS-SCCH Set Confis ration.
  • the UE shall use the BLER tarset sisnalled in the first occurrence of the HS-SCCH Set Coniisuration.
  • HS-SCCH per HS-SICH configuration information unit
  • the maxHS-SCCHs are the maximum number of HS-SCCH sets allocated by a Node B to a UE in a cell.
  • the power control of the high speed shared control channel and the high speed shared information channel is realized by the cooperation of the above three parts.
  • INDUSTRIAL APPLICABILITY A high-speed shared control channel and a high-speed shared information channel power control implementation method of the present invention can be used to cause a Node B to calculate a TPC parameter for adjusting an uplink HS-SICH closed-loop control and carry it in an HS- The SCCH is transmitted to the UE, and further power control of the high speed shared control channel and the high speed shared information channel is implemented.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

高速共享控制信道和高速共享信息信道功率控制实现方法
技术领域
本发明涉及移动通讯领域, 尤其涉及时分码分多址( TD-CDMA ) 系统 中, 一种高速共享控制信道(HS-SCCH )和高速共享信息信道(HS-SICH ) 的功率控制的实现方法。 背景技术
高速下行分组接入(HSDPA, High Speed Downlink Packet Access )技 术,是一种针对多用户提供高速下行数据业务的技术,适合于多媒体、Intemet 等大量下载信息的业务。 HSDPA引入了一种新的传输信道: 高速下行共享 信道(HS-DSCH, High Speed Downlink Shared Channel ) , 用户共享下行码 资源和功率资源, 进行时分复用。 这种结构适用于突发性分组数据业务。 下 行物理信道 HS-SCCH ( High Speed Shared Control Channel ) 用于承载 HS-DSCH上用来解码的物理层控制信令。 通过读取 HS-SCCH上的信息, 用户设备(UE, User Equipment )可以根据其指定的码道、 时隙、 调制方式 等物理层信息找到为该 UE 配置的 HS-DSCH 资源, 同时, UE通过发送 HS-SICH ( High Speed Shared Information Channel )信道到节点 B ( Node B ) 反馈该 HS-DSCH信道的信道质量信息(CQI, Channel Quality Indicator )和 数据块解码信息 (Ack/Nack )等。
根据 3GPP ( 3rd Generation Partnership Project , 第三代合作组织)协议, Node B分配给 UE的 HS-SCCH信道和 HS-SICH信道是成对出现的, Node B 为 UE可能分配 1 ~ 4条 HS-SCCH物理信道,对应的,也为该 UE分配有 1 ~ 4条 HS-SICH物理信道。为一个 UE分配的所有 HS-SCCH称为一个 HS-SCCH 集, 相应的也有一个对应的 HS-SICH集, UE在一个 TTI ( Transmit Time Interval, 发送时间间隔)时刻, 只可能使用该集合中一个 HS-SCCH和一个 对应的 HS-SICH。
TDD系统包括 HCR TDD和 LCR TDD两种系统。 HCR TDD是高码片 数率的 TDD, 码片数率为 3.84Mcps; LCR TDD是低码片数率的 TDD, 码 片数率为 1.28Mcps,就是 TD-SCDMA ( Time Division Code Division Multiple Access ) 。 在这两种 TDD系统中, UE发送到 Node B的 HS-SICH, 和对应 的 Node B发送到 UE的 HS-SCCH都需要进行功率控制。 不论是 UE完成的 HS-SICH的功率控制, 还是由 Node B完成的 HS-SCCH的功率控制, 包括 开环功率控制和闭环功率控制。
在这两种 TDD系统中, HS-SICH的闭环功率控制过程相同, 但配置的 参数不同; HS-SICH的开环功率控制的计算方法不同; HS-SCCH的开环和 闭环功率控制过程都相同, 都是由 Node B自主实现。
开环功率控制过程应用于 UE初始发送 HS-SICH的功率值和 Node B初 始发送 HS-SCCH的功率值, 随后, 当 UE接收到后续的 HS-SCCH,和 Node B接收到后续反馈的 HS-SICH, 都采用闭环功率控制, 采用 HS-SCCH和 HS-SICH上承载的 TPC ( Transmit Power Control, 发送功率控制)参数调整 闭环发送功率。
UE计算的 HS-SICH初始发射功率用于开环功率控制。根据 3GPP协议, 两种 TDD系统的 HS-SICH的开环功率控制的原理相同, 计算公式不同, 具 体如下:
在 LCR TDD系统中, UE计算 HS-SICH的初始发射功率的公式为:
PHS-SICH = PRXHS-SICH + LPCCPCH
其中,
PHS-SICH: 发射功率值(dBm ) ;
PRXHS-SICH: 期望 UE接收到的 HS-SICH接收功率, 高层通过 RRC协议 中的信息单元"下行 HS-PDSCH消息,, ( "Downlink HS-PDSCH Information" ) 通知 UE;
LPCCPCH: UE的测量补偿值, UE可以读取系统消息块 5或 6中的信 息单元 "Primary CCPCH Tx Power"中获得,或者从高层通过 C协议中的信 息单元" Uplink DPCH Power Control info"通知 UE;
在 HCR TDD系统中, UE计算 HS-SICH的初始发射功率的公式为:
PHS-SICH = LPCCPCH+(l-a)L0 + IBTS + SIRTARGET+ HS-SICH Constant value
其中:
L0: 路径损耗的长期平均值;
a: 权重参数;
IBTS: 基站接收机处的干扰信号功率;
SIRTARGET: 目标信噪比 (dB ) , 高层通过 RRC 协议中的信息单元 "HS-SICH Power Control Info" 通知 UE;
HS-SICH Constant value: 高层通过 RRC协议中的信息单元 "HS-SICH Constant value" 赋值。
然而,在 3GPP协议中, 没有准确给出 Node B实现 HS-SCCH的功率控 制的实现方法, 例如: 没有指明 Node B 如何计算并产生用于调整上行 HS-SICH闭环功控的 TPC, 该 TPC参数是承载在 HS-SCCH上并发送到 UE 的。
此外, 虽然在 3GPP协议中, 给出了 UE计算 HS-SICH的初始发射功率 的方法, 但其中有的参数是为整个 HS-SCCH集和 HS-SICH集统一配置的, 而有的参数则是为了这个 HS-SCCH集和 HS-SICH集中的每个 HS-SCCH和 每个 HS-SICH单独配置, 这就造成了对与功率控制的相关参数的配置不准 确。
发明内容
本发明所要解决的技术问题在于提供一种节点 B在高速共享控制信道 中承载发送功率控制参数的方法, 计算并产生用于调整上行 HS-SICH闭环 功控的 TPC参数, 并且进而就此提供一种高速共享控制信道和高速共享信 息信道功率控制实现方法, 对节点 B发送到用户设备的高速共享控制信道, 以及用户设备发送到节点 B的高速共享信息信道进行功率控制。
本发明提供一种节点 B在高速共享控制信道中承载发送功率控制参数 的方法,用于时分码分多址系统中的高速下行分组接入技术,包括如下步驟: 节点 B生成高速共享信息信道的信噪比的目标值; 节点 B对接收到的高速共享信息信道的信噪比进行测量,获得实际测量 值;
节点 B才艮据所述高速共享信息信道的信噪比的目标值与实际测量值,计 算出 "发送功率控制,, 参数, 并将其承载在高速共享控制信道上。
其中, 所述高速共享信息信道的信噪比的目标值, 是根据高速共享信息 信道上反馈的信道质量信息、或数据块解码信息、或高速物理下行共享信道 的调制模式信息、 或所述信息的组合而生成的。
其中, 所述节点 B根据信噪比的目标值与实际值, 计算出 "发送功率控 制" 参数的步骤, 包括:
当实际值大于目标值时, 将 "发送功率控制" 参数设置为 "DOWN" ; 当实际值小于目标值时, 将 "发送功率控制" 参数设置为 "UP" 。
本发明进一步还提供一种高速共享控制信道的功率控制实现方法,用于 时分码分多址系统的高速下行分组接入技术中, 对节点 B发送到用户设备 的高速共享控制信道进行功率控制, 包括如下步骤:
网络侧通过高层信令为节点 B配置与功率控制有关的参数, 包括 "最大 高速共享控制信道功率值" 参数;
节点 B根据所述 "最大高速共享控制信道功率值"参数,设置高速共享 控制信道的初始功率, 用于开环功率控制;
节点 B根据信道中承载的 "发送功率控制" 参数, 调整闭环发射功率。 所述方法进一步包括:
节点 B根据自主生成的高速共享信息信道的信噪比的目标值,以及测量 获得的高速共享信息信道的信噪比的实际测量值, 计算 "发送功率控制"参 数, 并将其承载在高速共享控制信道上。
其中, 所述 "最大高速共享控制信道功率值" 参数, 是网络侧通过 "节 点 B应用部分" 协议中的 "物理共享信道重配置过程" 进行配置的。
其中, 所述节点 B根据信道中承载的 "发送功率控制"参数调整闭环发 射功率步骤, 是根据高速共享信息信道中承载的 "发送功率控制"参数进行 的。
其中, 所述节点 B根据信道中承载的 "发送功率控制"参数调整闭环发 射功率步骤, 是根据专用物理信道中承载的 "发送功率控制" 参数进行的。
其中, 所述高速共享信息信道的信噪比的目标值, 是根据高速共享信息 信道上反馈的信道质量信息、或数据块解码信息、或高速物理下行共享信道 的调制模式信息、 或所述信息的组合而生成的。 所述节点 B根据信噪比的 目标值与实际值, 计算出 "发送功率控制" 参数的步骤, 包括:
当实际值大于目标值时, 将 "发送功率控制" 参数设置为 "DOWN" ; 当实际值小于目标值时, 将 "发送功率控制" 参数设置为 "UP" 。
本发明进一步还提供一种高速共享信息信道的功率控制的实现方法,用 于时分码分多址系统的高速下行分组接入技术中,对用户设备发送到节点 B 的高速共享信息信道进行功率控制, 包括如下步骤:
网络侧通过高层信令为用户设备配置与功率控制有关的参数,包括用于 计算初始发射功率的参数; 用户设备根据所迷配置的参数,计算高速共享信息信道的初始发射功率 用于开环功率控制;
用户设备根据高速共享控制信道上承载的 "发送功率控制" 参数, 调整 高速共享信息信道的闭环功率控制。
所述方 ^进一步包括如下步骤:
网络侧通过高层信令为用户设备配置与功率控制有关的参数, 包括 "高 速共享控制信道的误块率目标值" 参数;
用户设备将高层配置的 "高速共享控制信道的误块率目标值"参数作为 目标值;
用户设备对接收到的高速共享控制信道的误块率进行测量, 获得 "高速 共享控制信道误块率" 实际值; 用户设备根据所述目标值与实际值, 计算出 "发送功率控制"信息, 并 将该信息承载在高速共享信息信道上。
其中,所述网络侧通过高层信令为用户设备配置与功率控制有关的参数 步驟,是为该用户设备的整个高速共享信息信道集配置一套与功率控制相关 的参数。
其中, 所述网络侧通过高层信令为用户设备配置与功率控制有关的参 数, 是通过 "无线资源控制,, 协议中的信息单元 "高速共享控制信道信'息" 进行配置的。
利用本发明, 可以使节点 B计算出用于调整上行 HS-SICH闭环控制的
TPC参数, 并将其承载在 HS-SCCH上发送到 UE, 并进而实现对高速共享 控制信道和高速共享信息信道的功率控制。 附图概迷
图 1为根据本发明的实施例对 UE发送 HS-SICH的功率控制流程图; 图 2为根据本发明的实施例对 Node B发送 HS-SCCH的功率控制流程 图。 本发明的较佳实施方式
本发明实施例所述的功率控制过程,包括 UE完成的 HS-SICH的功率控 制和 Node B完成的 HS-SCCH的功率控制, 分为开环功率控制和闭环功率 控制。
本发明的基本思路是:
UE根据高层配置的一系列参数, 计算初始发射功率, 并完成开环功率 控制; 根据 HS-SCCH承载的 TPC (发送功率控制)命令, 调整闭环发射功 率, 完成闭环功率控制。
Node B 以高层配置的 "HS-SCCH 最大功率值" 为参考, 自主设置 HS-SCCH初始发射功率, 完成开环功率控制; 闭环功率控制可以采用多种 方法: 既可以根据 HS-SICH承载的 TPC命令, 调整闭环发射功率, 也可以 采用其它方式, 如: 采用伴随 DPCH (专用物理信道)上的功率值, 调整闭 环发射功率。
其中, UE产生 TPC参数的方法是: UE以高层配置的 "高速共享控制 信道的误块率目标值( HS-SCCH BLE Target ) " 为目标值, 根据多次测量 得到的 "高速共享控制信道的误块率" 实际值, 产生 "发送功率控制 TPC" 参数;
Node B产生 TPC参数的方法是: Node B以自己产生的 "高速共享信息 信道的信噪比(HS-SICH S , HS-SICH Signal Noise Rate ) " 为目标值, 根 据测量得到的 "高速共享信息信道的信噪比" 为实际值, 产生 TPC。
与功率控制相关的参数, 由网络侧为 UE和 Node B分别配置, 即: 网络侧通过高层信令为 UE配置与功率控制相关的参数, 其中, 高层信令是指: RRC (无线资源控制, Radio Resource Control )协议中 的信息单元 "高速共享控制信道信息(HS-SCCH Info ),, ;
与功率控制相关的参数的配置方法是为整个 HS-SICH集统一配置, 而 不是为每个 HS-SICH单独配置;
配置的与功率控制相关的参数, 据不同实施情况, 可以包括: 用于 HC TDD的 "HS-SICH Power Control Info" ,用于 LCR TDD的 "PRXHS-SICH" 和 "TPC step size" ( TPC 步长) , 用于两种 TDD 的 "Ack-Nack Power Offset"(acknowledgement and negative acknowledgement Power Offset, (相 对于期望接收功率的确认和否定功率偏移) 和" BLER target" ( BLock ERror target, 误块率的目标值)等。
网络侧通过高层信令为 Node B配置与功率控制相关的参数, 其中, 高层信令是指: NBAP (节点 B应用部分, Node B Application Part )协 议中的 "物理共享信道重配置请求,, 消息中的信息单元 "最大高速共享控制 信道的功率值" ( "Maximum HS-SCCH Power" ) 。
下面结合附图, 分三个部分对本发明的实施例进行说明。
第一部分: UE侧完成的 HS-SICH的功率控制 如图 1所示,为根据本发明的实施例对 UE发送 HS-SICH的功率控制流 程图。
步骤 101: 首先判断 UE是否接收到 HS-SCCH? 如果否, 则结束, 如果 是, 则进入步驟 102;
步驟 102: 接着判断 UE是否是第一次搜索到与自身 UE标识相符的
HS-SCCH后, 第一次发射 HS-SICH, 如果是, 则进入步骤 103, 采用开环 功率控制, 如果否, 则进入步骤 105, 采用闭环功率控制;
步骤 103: UE采用开环功率控制;
步骤 104: UE读取系统广播消息中的相关信息单元 "Primary CCPCH Tx Power" , 并读取高层配置的其它信息单元, 如" Downlink HS-PDSCH Information"、 "HS-SICH Power Control Info" 、 "HS-SICH Constant value" 等,计算 HS-SICH初始发射功率,用于开环功率控制,其中,对于 HCR TDD 和 LCR TDD的计算公式各不相同, 具体计算方法可参考背景技术中相关内 谷,
步骤 105: UE接收到随后的 HS-SCCH,采用闭环功率控制发送 HS-SICH; 步骤 106: 在闭环功率控制中, UE采用 HS-SCCH上承载的 TPC, 调整 HS-SICH的闭环发射功率;
步驟 107: UE根据高层配置的 HS-SCCH BLER 目标值和多次测量 HS-SCCH BLER实际值, 计算! TC, 并承载在 HS-SICH物理信道上。
当 UE间隔了一段时间后, 又接收到 HS-SCCH后, 等同于第一次接收 到 HS-SCCH, UE采用开环功率控制, 回到步骤 101。
第二部分: Node B完成的 HS-SCCH的功率控制
如图 2所示, 为根据本发明的实施例对 Node B发送 HS-SCCH的功率 控制流程图。
步驟 201: 首先判断 Node B是否发送 HS-SCCH? 如果否, 则结束, 如 果是, 则进入步驟 202; 步骤 202: 接着判断 Node B是否是第一次发送 HS-SCCH, 如果是, 则 进入步骤 203, 采用开环功率控制, 如果否, 则进入步骤 205, 采用闭环功 率控制;
步骤 203: Node B采用开环功率控制;
步骤 204: Node B以 "物理共享信道重配置过程" 中配置的 "HS-SCCH 最大功率值" 为参考, 自主设置 HS-SCCH的初始功率;
步骤 205: Node B接收到 UE发送的 HS-SICH后, 采用闭环功率控制; 步骤 206: Node B根据 HS-SICH上承载的 TPC参数, 调整 HS-SCCH 的闭环发射功率, Node B也可以采用其它方法, 如采用伴随 DPCH的 TPC 参数, 来调整 HS-SCCH的闭环发射功率;
步骤 207: Node B根据诸多信息, 如: HS-SICH上反馈的信道质量, HS-PDSCH的调制模式等, Node B自主产生 HS-SICH的信噪比的目标值, 并根据 HS-SICH的信噪比的实际测量值,产生 TPC参数,承载在 HS-SCCH 上。
产生 TPC的方法也是通过目标值和实际测量值比较产生。
当 Node B间隔了一段时间后, 重新发送 HS-SCCH, 等同于第一次发送 HS-SCCH, 采用开环功率控制, 回到步驟 201。
其中, 对于步骤 204, 需要说明的是, HS-SCCH 的初始功率的实现, 相对于高层为 HS-SICH配置了相关参数(高层为 UE配置了参数, UE根据 固定的公式, 根据参数唯一地计算出初始值) , 高层给 HS-SCCH配置的参 数, Node B仅用此为参考。 具体来说, Node B计算 HS-SCCH的初始功率 的方法为: Node B以高层提供的 HS-SCCH的功率最大值为参考(高层无法 提供初始值, 因为是共享信道) , 根据 HSDPA资源的使用情况, 根据用户 设备的业务需求,根据网络的资源分配信息, 也可以参考专用物理信道的功 率控制信息,等综合因素,由自身产生 HS-SCCH初始发射功率,而且, Node B产生的初始发射功率不能超过高层配置的 HS-SCCH的功率最大值。
对于步骤 207, 具体来说, 可以通过如下步骤实现:
( 1 )节点 B根据与信噪比有关的信道信息, 生成高速共享信息信道的 信噪比的目标值;
( 2 )节点 B对接收到的高速共享信息信道的信噪比进行测量, 获得实 际测量值;
( 3 ) 节点 B根据所述高速共享信息信道的信噪比的目标值与实际测量 值,计算出 "发送功率控制 TPC"参数,并将其承载在高速共享控制信道上。
其中, 所述步骤(1 ) , 节点 B根据 HS-PDSCH (高速物理下行共享信 道)的调制模式(调制模式高时,需要较高的信噪比目标值),根据 HS-SICH 反馈的信道质量(CQI信道质量指示, 该值较高, 说明目前的信道廣量较 好, HS-SICH可以提供较高的信噪比) , 根据 HS-SICH反馈的数据块解码 信息 (当编码准确率较高时, 说明 HS-PDSCH的数据发送准确率高; 数据 重传次数少, HS-SICH可以提供较高的信噪比), 或单独或综合考虑这些因 素, 节点 B自己计算出合适的 HS-SICH信噪比的目标值。
所述步骤( 3 ),当测量得到的信噪比实际值大于目标值时,说明 HS-SICH 的实际信号质量高, TPC设置为 "DOWN" (下调); 当实际值小于目标值 时, 说明 HS-SICH的实际'信号质量低, TPC设置为 "UP" (上调) 。
第三部分: 高层配置功率控制的相关参数的过程
通过 RRC协议, 高层(RNC, 无线网络控制器)发送高层信令到 UE, 配置 HS-SCCH和 HS-SICH的功率控制的相关参数。
( 1 )配置的参数包括用于 UE计算 HS-SCCH初始发射功率的相关参数;
( 2 )配置的参数还包括用于 UE计算 TPC的相关参数, 该 TPC承载在 HS-SICH上, 用于 Node B调整下行 HS-SCCH;
( 3 ) 配置的参数应该为该 UE的整个 HS-SICH集统一配置, 而不是为 该 UE的每个 HS-SICH单独配置。
在下表中, HS-SICH集和 HS-SCCH集对应, 与功率控制相关的参数的 配置与 HS-SCCH集的层次相同,也就是与 HS-SICH集的层次相同, 所以采 用这种配置方法, 可以实现相关参数为整个 HS-SICH集统一配置, 如斜体 字所示。 HS-SCCH Info表
Information Element Need Multi Type and Semantics
(信息单元) description
(必要性) reference
(多条)
(类型和参考) (注释)
CHOICE mode
(选择模式)
>FDD
...
>TDD
»CHOICE TDD MP
option ( TDD模式选
择)
»>3.84 Mcps ( HCR
TDD )
»» Ack-Nack MR Integer ί-7..8 bv
Power Offset step of 1)
»» HS-SICH MP HS - SICH Power
Power Control Infof高 Control Info
速共享信息信道的功 10.3.6.36b
率控制信息)
»»BLER tarset MP Real Simalled value is (BLERB 标值) (-3.15.M bv step LoslOmS-SCCH of 0.05) BLER ciualitv target).
The UE shall use the BLER tarset signalled in the first occurrence of the HS-SCCH Set Confis ration.
...
»»HS-SCCH Set MP l to
Configuration <maxHS-SC
( HS-SCCH集的配 CHs>
置)
… ··· ··· 每条 HS-SCCH的配 置信息单元
»»>HS-SICH
configuration
( HS-SICH的配置)
• ' · 对应于每条
HS-SCCH, 每条 HS-SICH的配置信息 单元
»>1.28 Mcps ( LCR
TDD ) »» Ack-Nack MP Integer (-7..8 bv
Power Offset step of 1)
»»PRXHS-SICH( ML Integer dBm. Desired Dower 期望 υΕ接收到的 level for HS-SICH.
C-120..-58 bv
HS-SICH接收功率) step of 1)
»»TPC step MP Integer
size(TPC步长、 0. 2, 3)
»»BLER target Mt Real Sisn lled value is (BLER, 目标值) LoslOfHS-SCCH
(-3.15..0 bv step
of 0.05) BLER aualitv target).
The UE shall use the BLER tarset sisnalled in the first occurrence of the HS-SCCH Set Coniisuration.
»»HS-SCCH Set MP l to
Configuration <maxHS-SC
CHs>
··· 每条 HS-SCCH的配 置信息单元
»»>HS-SICH
configuration
对应于每条 . HS-SCCH, 每奈 HS-SICH的配置信息 单元
其中, maxHS-SCCHs, 是指在一个小区中, Node B为一个 UE分配的 HS-SCCH集中的最大数目。
根据本发明的实施例, 通过上述三个部分的配合, 实现了对高速共享控 制信道和高速共享信息信道的功率控制。 工业实用性 应用本发明的一种高速共享控制信道和高速共享信息信道功率控制的 实现方法, 可以使节点 B计算出用于调整上行 HS-SICH闭环控制的 TPC参 数, 并将其承载在 HS-SCCH上发送到 UE, 并进而实现对高速共享控制信 道和高速共享信息信道的功率控制。

Claims

权 利 要 求 书
1、 一种节点 B在高速共享控制信道中承载发送功率控制参数的方法, 用于时分码分多址系统中的高速下行分組接入技术,其特征在于, 包括如下 步骤:
节点 B生成高速共享信息信道的信噪比的目标值;
节点 B对接收到的高速共享信息信道的信噪比进行测量,获得实际测量 值;
节点 B根据所述高速共享信息信道的信噪比的目标值与实际测量值,计 算出 "发送功率控制 TPC" 参数, 并将其承载在高速共享控制信道上。
2、 如权利要求 1所述的方法, 其特征在于, 所述高速共享信息信道的 信噪比的目标值,是根据高速共享信息信道上反馈的信道质量信息、或数据 块解码信息、或高速物理下行共享信道的调制模式信息、或所述信息的组合 而生成的。
3、 如权利要求 1所述的方法, 其特征在于, 所述节点 B根据信噪比的 目标值与实际值, 计算出 "发送功率控制 TPC" 参数的步骤, 包括:
当实际值大于目标值时,将 "发送功率控制 TPC"参数设置为 "DOWN"; 当实际值小于目标值时, 将 "发送功率控制 TPC" 参数设置为 "UP" 。
4、 一种高速共享控制信道的功率控制实现方法, 用于时分码分多址系 统的高速下行分组接入技术中, 对节点 B发送到用户设备的高速共享控制 信道进行功率控制, 其特征在于, 包括如下步骤:
网络侧通过高层信令为节点 B配置与功率控制有关的参数, 包括 "最大 高速共享控制信道功率值" 参数;
节点 B根据所述 "最大高速共享控制信道功率值"参数,设置高速共享 控制信道的初始功率, 用于开环功率控制;
节点 B根据信道中承载的 "发送功率控制" 参数, 调整闭环发射功率。
5、 如权利要求 4所迷的方法, 其特征在于, 所述方法进一步包括: 节点 B根据自主生成的高速共享信息信道的信噪比的目标值,以及测量 获得的高速共享信息信道的信噪比的实际测量值, 计算 "发送功率控制"参 数, 并将其承载在高速共享控制信道上。
6、 如权利要求 4所述的方法, 其特征在于, 所述 "最大高速共享控制 信道功率值" 参数, 是网络侧通过 "节点 B应用部分" 协议中的 "物理共 享信道重配置过程" 进行配置的。
7、 如权利要求 4所述的方法, 其特征在于, 所述节点 B根据信道中承 载的 "发送功率控制"参数调整闭环发射功率步骤, 是根据高速共享信息信 道中承载的 "发送功率控制" 参数进行的。
8、 如权利要求 4所述的方法, 其特征在于, 所述节点 B根据信道中承 载的 "发送功率控制"参数调整闭环发射功率步骤, 是根据专用物理信道中 承载的 "发送功率控制" 参数进行的。
9、 如权利要求 5所述的方法, 其特征在于, 所述高速共享信息信道的 信噪比的目标值,是根据高速共享信息信道上反馈的信道质量信息、或数据 块解码信息、或高速物理下行共享信道的调制模式信息、或所述信息的组合 而生成的。
10、如权利要求 5所述的方法, 其特征在于, 所述节点 B根据信噪比的 目标值与实际值, 计算出 "发送功率控制" 参数的步骤, 包括:
当实际值大于目标值时, 将 "发送功率控制" 参数设置为 "DOWN" ; 当实际值小于目标值时, 将 "发送功率控制" 参数设置为 "UP" 。
11、一种高速共享信息信道的功率控制的实现方法, 用于时分码分多址 系统的高速下行分组接入技术中, 对用户设备发送到节点 B 的高速共享信 息信道进行功率控制, 其特征在于, 包括如下步驟:
网絡侧通过高层信令为用户设备配置与功率控制有关的参数,包括用于 计算初始发射功率的参数;
用户设备根据所述配置的参数,计算高速共享信息信道的初始发射功率 用于开环功率控制;
用户设备根据高速共享控制信道上承载的 "发送功率控制"参数, 调整 高速共享信息信道的闭环功率控制。
12、 如权利要求 11所述的方法, 其特征在于, 进一步包括如下步骤: 网絡侧通过高层信令为用户设备配置与功率控制有关的参数, 包括 "高 速共享控制信道的误块率目标值" 参数;
用户设备将高层配置的 "高速共享控制信道的误块率目标值"参数作为 目标值;
用户设备对接收到的高速共享控制信道的误块率进行测量, 获得 "高速 共享控制信道误块率" 实际值;
用户设备根据所述目标值与实际值, 计算出 "发送功率控制"信息, 并 将该信息承载在高速共享信息信道上。
13、 如权利要求 11或 12所述的方法, 其特征在于, 所述网络侧通过高 层信令为用户设备配置与功率控制有关的参数步驟,是为该用户设备的整个 高速共享信息信道集配置一套与功率控制相关的参数。
14、 如权利要求 11或 12所述的方法, 其特征在于, 所述网络侧通过高 层信令为用户设备配置与功率控制有关的参数, 是通过 "无线资源控制"协 议中的信息单元 "高速共享控制信道信息" 进行配置的。
PCT/CN2006/002929 2005-11-02 2006-11-01 Procede de mise en oeuvre de commande de puissance du canal de commande partage a haut debit et canal d’informations partage a haut debit WO2007051412A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/092,005 US8743761B2 (en) 2005-11-02 2006-11-01 Implement method for power control of the high speed shared control channel and the high speed shared information channel
EP06805130.9A EP1944879B1 (en) 2005-11-02 2006-11-01 Implement method for power control of the high speed shared control channel and the high speed shared information channel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200510117337.1 2005-11-02
CNB2005101173371A CN100373806C (zh) 2005-11-02 2005-11-02 高速共享控制信道和高速共享信息信道功率控制实现方法

Publications (1)

Publication Number Publication Date
WO2007051412A1 true WO2007051412A1 (fr) 2007-05-10

Family

ID=36605711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2006/002929 WO2007051412A1 (fr) 2005-11-02 2006-11-01 Procede de mise en oeuvre de commande de puissance du canal de commande partage a haut debit et canal d’informations partage a haut debit

Country Status (4)

Country Link
US (1) US8743761B2 (zh)
EP (1) EP1944879B1 (zh)
CN (1) CN100373806C (zh)
WO (1) WO2007051412A1 (zh)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100544228C (zh) * 2006-04-30 2009-09-23 中兴通讯股份有限公司 一种节点b高速共享信息信道功率控制参数的配置方法
CN101064538B (zh) * 2006-04-30 2011-04-20 中兴通讯股份有限公司 一种时分同步码分多址通讯系统的功率控制方法
CN101114851B (zh) 2006-07-24 2010-10-20 大唐移动通信设备有限公司 一种hsdpa的功率控制方法及装置
CN101128038B (zh) * 2006-08-15 2011-04-06 大唐移动通信设备有限公司 高速下行分组接入中共享控制信道的联合控制方法和装置
CN1937441B (zh) * 2006-09-29 2011-08-10 华为技术有限公司 功率控制方法
CN101192858B (zh) * 2006-11-23 2011-07-27 鼎桥通信技术有限公司 在下行高速数据传输系统中实现功率控制的方法和装置
CN101242203B (zh) * 2007-02-07 2012-01-11 电信科学技术研究院 一种实现控制信道功率控制的方法及装置
US7986959B2 (en) 2007-02-14 2011-07-26 Qualcomm Incorporated Preamble based uplink power control for LTE
CN101325435B (zh) * 2007-06-11 2012-06-13 中兴通讯股份有限公司 一种高速共享指示信道功率的控制方法
CN101351010B (zh) * 2007-07-18 2011-08-10 中兴通讯股份有限公司 一种高速上行分组接入系统中的功率测量方法及装置
CN101384069B (zh) * 2007-09-05 2011-12-14 电信科学技术研究院 功率控制参数配置方法及相关装置
CN101442795B (zh) * 2007-11-19 2012-06-06 中兴通讯股份有限公司 上行控制信道的功率控制方法
CN101552628B (zh) * 2008-04-01 2012-09-26 电信科学技术研究院 一种控制共享控制信道的发射功率的方法及装置
CN101291162B (zh) * 2008-06-24 2012-03-07 中兴通讯股份有限公司 实现下行高速共享控制信道功率控制的方法及装置
CN101656558B (zh) * 2008-08-20 2013-06-12 电信科学技术研究院 控制信道的功率控制方法及装置
CN101668337B (zh) * 2008-09-04 2012-05-23 中兴通讯股份有限公司 一种高速共享信息信道的配置方法
EP2324584B1 (en) * 2008-09-11 2012-08-29 Telefonaktiebolaget L M Ericsson (PUBL) Selection of tramsmission mode
CN101754339B (zh) * 2008-12-19 2012-02-01 电信科学技术研究院 高速共享指示信道的功率控制方法和装置
ES2356211B1 (es) * 2009-02-26 2012-02-15 Vodafone España, S.A.U. Procedimiento para ajustar de forma dinámica el número de canales hs-scch a usar en una celda.
US8861487B2 (en) * 2010-03-31 2014-10-14 Qualcomm Incorporated Facilitating open loop power control in TD-SCDMA multi-carrier systems
CN101841843B (zh) * 2010-04-15 2013-03-27 新邮通信设备有限公司 连续性分组连接技术的下行传输方法、装置和系统
CN102238710B (zh) * 2010-04-29 2016-03-30 中兴通讯股份有限公司 一种上行闭环功率控制方法、基站和无线网络控制器
KR20110139078A (ko) * 2010-06-22 2011-12-28 삼성전자주식회사 이동통신 시스템에서 역방향 전송 출력을 결정하는 방법 및 장치
CN102457365B (zh) * 2010-10-22 2014-12-10 鼎桥通信技术有限公司 信道质量指示信息生成方法及系统
CN102780877B (zh) * 2012-07-06 2015-11-25 中国联合网络通信集团有限公司 视频数据发送方法及设备
US9319997B2 (en) * 2012-09-18 2016-04-19 Qualcomm Incorporated Apparatus, method, and system for uplink power control in a heterogeneous wireless communication network
US9668277B2 (en) * 2013-03-13 2017-05-30 Qualcomm Incorporated Adaptive clock rate for high speed data communications
US10694473B2 (en) 2015-12-01 2020-06-23 Rajant Corporation System and method for controlling dynamic transmit power in a mesh network
CN108811059B (zh) * 2017-05-05 2021-08-31 华为技术有限公司 配置参数的方法及装置
WO2020024257A1 (zh) * 2018-08-03 2020-02-06 北京小米移动软件有限公司 参数集获取方法及装置
US11082951B2 (en) 2018-09-28 2021-08-03 At&T Intellectual Property I, L.P. Dynamically controlled UE output as a function of duty cycle and proximity sensor information

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1430430A (zh) * 2001-12-30 2003-07-16 华为技术有限公司 高速数据接入系统中的信道功率控制方法
CN1449204A (zh) * 2002-03-29 2003-10-15 上海贝尔有限公司 一种基于阵列天线移动通信系统的信噪比测量方法
CN1479541A (zh) * 2003-07-25 2004-03-03 大唐移动通信设备有限公司 一种时分双工码分多址(tdd cdma)系统功率控制方法和装置
US20050143121A1 (en) * 2003-12-29 2005-06-30 Samsung Electronics Co., Ltd. Method and apparatus for adaptive open-loop power control in mobile communication system using TDD

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3960799B2 (ja) * 1999-05-26 2007-08-15 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 無線通信システムにおける閉ループ電力制御
US7266103B2 (en) * 2001-10-25 2007-09-04 Qualcomm Incorporated Controlling forward link traffic channel power
CN100454799C (zh) * 2002-10-16 2009-01-21 华为技术有限公司 一种用于码分多址通信系统的功率控制方法
CN1522075A (zh) * 2003-02-11 2004-08-18 北京三星通信技术研究有限公司 Nb tdd cdma移动通信系统端到端直接通信的功率控制的方法
WO2005069504A1 (en) * 2003-12-22 2005-07-28 Nokia Corporation Method, device and system with signal quality target for radio frequency power control in cellular systems
JP3800222B2 (ja) * 2004-02-19 2006-07-26 日本電気株式会社 送信電力制御のための目標値制御システム及びその方法並びに基地局及び携帯通信端末
SE0402321D0 (sv) * 2004-09-23 2004-09-23 Ericsson Telefon Ab L M Method in a communication system
US7657277B2 (en) * 2004-09-24 2010-02-02 Qualcomm Incorporated Method and system for power control in a communication system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1430430A (zh) * 2001-12-30 2003-07-16 华为技术有限公司 高速数据接入系统中的信道功率控制方法
CN1449204A (zh) * 2002-03-29 2003-10-15 上海贝尔有限公司 一种基于阵列天线移动通信系统的信噪比测量方法
CN1479541A (zh) * 2003-07-25 2004-03-03 大唐移动通信设备有限公司 一种时分双工码分多址(tdd cdma)系统功率控制方法和装置
US20050143121A1 (en) * 2003-12-29 2005-06-30 Samsung Electronics Co., Ltd. Method and apparatus for adaptive open-loop power control in mobile communication system using TDD

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1944879A4 *

Also Published As

Publication number Publication date
EP1944879B1 (en) 2016-05-04
CN100373806C (zh) 2008-03-05
EP1944879A1 (en) 2008-07-16
CN1750428A (zh) 2006-03-22
US8743761B2 (en) 2014-06-03
EP1944879A4 (en) 2012-10-24
US20080285522A1 (en) 2008-11-20

Similar Documents

Publication Publication Date Title
WO2007051412A1 (fr) Procede de mise en oeuvre de commande de puissance du canal de commande partage a haut debit et canal d’informations partage a haut debit
KR101350667B1 (ko) 전력 제어 방법 및 장치
EP2215743B1 (en) Dpcch and hs-dpcch control at low grants for e-dch
KR101049633B1 (ko) 무선 통신 시스템용 전력 제어 방법 및 장치
JP4982520B2 (ja) 高速schを利用する通信システムの電力制御
EP2223438B1 (en) Outer loop power control for e-dch
US7343172B2 (en) HSDPA CQI, ACK, NACK power offset known in node B and in SRNC
EP2110977A2 (en) Uplink control channel transmission method and apparatus therefor
WO2007098675A1 (fr) Procédé de mise à jour du paramètre de commande de puissance et de la puissance de transmission du canal d&#39;informations de partage à vitesse élevée
JPWO2015005325A1 (ja) 端末装置、基地局装置、通信方法、および集積回路
JP2010518711A (ja) 制御チャネルにおける電力制御方法及び電力制御装置
JP4343247B2 (ja) 送信電力制御方法、移動局、固定局および通信システム
US20130023300A1 (en) Base station and transfer control method
EP2223439B1 (en) Method for selecting reference e-tfci based on requested service
WO2006089476A1 (fr) Méthode de contrôle de puissance dans un canal partagé de contrôle haute vitesse

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 12092005

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006805130

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2006805130

Country of ref document: EP