WO2007050162A1 - Biofouling control - Google Patents

Biofouling control Download PDF

Info

Publication number
WO2007050162A1
WO2007050162A1 PCT/US2006/028811 US2006028811W WO2007050162A1 WO 2007050162 A1 WO2007050162 A1 WO 2007050162A1 US 2006028811 W US2006028811 W US 2006028811W WO 2007050162 A1 WO2007050162 A1 WO 2007050162A1
Authority
WO
WIPO (PCT)
Prior art keywords
providing
chlorine
chlorine oxidant
bromide
oxidant
Prior art date
Application number
PCT/US2006/028811
Other languages
French (fr)
Inventor
Robert L. Wetegrove
Andrew J. Cooper
Steven R. Hatch
Original Assignee
Nalco Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nalco Company filed Critical Nalco Company
Priority to MX2008005317A priority Critical patent/MX2008005317A/en
Priority to CA2627359A priority patent/CA2627359C/en
Priority to EP06788405A priority patent/EP1940225A4/en
Priority to JP2008537693A priority patent/JP4676002B2/en
Priority to AU2006306703A priority patent/AU2006306703B2/en
Publication of WO2007050162A1 publication Critical patent/WO2007050162A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/76Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/76Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens
    • C02F1/766Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens by means of halogens other than chlorine or of halogenated compounds containing halogen other than chlorine
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • C02F2103/023Water in cooling circuits
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/20Prevention of biofouling

Definitions

  • This invention is in the field of industrial water systems. Specifically, this invention optimizes the use of halogen biocides in industrial water systems.
  • Fouling in industrial water systems occurs even in industrial water systems treated with the best water treatment programs currently available.
  • the water system is negatively impacted by contamination including deposition of air-borne, water- borne and water-formed contaminants, process leaks, and other factors. If fouling is allowed to progress, the system can suffer from decreased operational efficiency, premature equipment failure, and increased health-related risks associated with microbial fouling.
  • Fouling can also occur due to microbial contamination.
  • Sources of microbial contamination in industrial water systems are numerous and may include, but are not limited to, air-borne contamination, water make-up, process leaks, and improperly cleaned equipment. These microorganisms can establish microbial communities on any wetable or semi-wetable surface of the water system. More than 99% of the microbes present in the water process may be present on system surfaces.
  • oxidizing biocides in biofouling control methods are well established.
  • Common oxidizing biocides such as chlorine and bromine are effective biofouling control agents so long as they are maintained at effective concentrations in the water. Unless the concentrations of the biocides are effectively monitored, improper levels result in undesired microbial growth, scaling, corrosion, environmental impact, and increased cost that limit industrial applicability.
  • Bromine use in biofouling control usually occurs through addition of sodium bromide to the water system with an oxidizing agent such as chlorine gas or sodium hypochlorite.
  • an oxidizing agent such as chlorine gas or sodium hypochlorite.
  • hypobromous acid which may require less biocide feed to maintain overall cleanliness than a comparable system operating on chlorine alone.
  • many of the same compounds and conditions that reduce chlorine effectiveness also reduce bromine effectiveness.
  • U.S. 6,110,387 (hereinafter the '387 patent) entitled "SULFAMATE
  • Control of biofouling in industrial water systems comprises: (a) providing at least one or more means to independently monitor and control chlorine oxidant; (b) comparing the monitored concentration identified in step (a) to a pre-determined concentration range according to the system to be treated; (c) adding chlorine oxidant at a rate and in an amount sufficient to maintain the determined biocidal effective range and, (d) adding stabilizer and halide ion source in amounts and rates sufficient to realize halogen levels sufficient to effect fouling control in said body of water.
  • the method controls microorganisms in industrial water systems by concurrent monitoring and flexible dosing of chlorine oxidant in the presence of a bromide ion source and sodium sulfamate at concentrations sufficient to provide free and stabilized halogen biocide.
  • a bromide ion source and sodium sulfamate at concentrations sufficient to provide free and stabilized halogen biocide.
  • free and stabilized halogens include free chlorine, free bromine, chlorosulfamates, and bromosulfamates.
  • Halide Ion Source includes the bromide ion sources ammonium bromide [ammonium bromide 38%, CAS 12124-97], sodium bromide [sodium bromide, CAS 7647-15-6], lithium bromide [lithium bromide, CAS 7550-35-8], calcium bromide [calcium bromide, CAS 7789-41-5], potassium bromide [potassium bromide, CAS 7758-02-3], bromine chloride [bromine chloride CAS 13863-41-7], bromine [bromine CAS 7726-95-6], BCDMH [3-Bromo-l-chloro-5,5-dimethylhydantoin, CAS 126-06- 7], DBDMH [l,3-Dibromo-5,5-dimethylhydantoin CAS 77-48-5], DBNPA [2,2- Dibromo-3-nitrilopropionamide CAS 10222-01-2], Bronopol [2-B
  • Chlorine Oxidant means chlorine (Cl 2 ) [chlorine, CAS 7782-50-5], hypochlorous acid (HOCl), [hypochlorous acid, CAS 7790-92-3] or hypochlorite ion, (OCl) [hypochlorite, CAS 14380-61-1].
  • Chlorine Oxidant Source means a substance or mixture of substances releasing, generating, or yielding Chlorine Oxidant. Examples include gaseous or liquid chlorine sources, sodium hypochlorite [sodium hypochlorite, CAS 7681-52-9], calcium hypochlorite [calcium hypochlorite, CAS 7778-54-3], dichloro-isocyanurate [1,3-Dichloroisocyanuric Acid, CAS 2782-57-2], trichloro-isocyanurate , chlorosulfamate [chlorosulfamic acid, CAS 7778-42-9], BCDMH, dichloro-hydantoin [l,3-dichloro-5,5-dimethylhydantoin, CAS 118-52-5], or electrolytic chlorine generators.
  • sodium hypochlorite sodium hypochlorite
  • calcium hypochlorite calcium hypochlorite
  • dichloro-isocyanurate [
  • Halogen Stabilizer includes sulfamic acid [Sulfamic acid, CAS 5329-14-6], sodium sulfamate [Sodium Sulfamate, CAS 13845-18-6], potassium sulfamate [Potassium Sulfamate, CAS 13823-50-2], saccharine [saccharin CAS 81-07-2], benzene sulfonamide [benzenesulfonamide, CAS 98-10-2], urea [urea CAS 57-13-6], ammonia [ammonia CAS 7664-41-7], thiourea [thiourea, CAS 62-56-6], creatinine [creatinine CAS 60-27-5], cyanuric acids [e.g.
  • alkyl hydantoins e.g. 2,4-Imidazolidinedione, CAS 461-72-3
  • monoethanolamine l-amino-2-hydroxyethane CAS 141-43-5
  • diethanolamine 2,2'- dihydroxydiethylamine CAS 111-42-2
  • organic sulfonamides e.g.
  • Stabilized Halogen includes chlorosulfamate [chlorosulfamate CAS 17172- 27-9], dichlorosulfamate [dichlorosulfamate CAS 17085-87-9], bromosulfamate [bromosulfamate CAS 134509-56-1], dibromosulfamate, bromochlorosulfamate, and the bromo- and chloro- derivatives of the listed halogen stabilizers.
  • Residual Oxidant is Halogen capable of reacting with DPD [N, N-diethyl-p- phenylenediamine CAS 93-05-0] reagent "Chlorine Dose” is the amount of chlorine oxidant applied to the water system
  • Stabilizer Dose is the amount of halogen stabilizer applied to the water system
  • Stabilized Bromine is bromosulfamate, dibromosulfamate, bromochlorosulfamate, and the brominated derivatives of the defined halogen stabilizers.
  • Biocidal Effective Range is the concentration of oxidant required to mitigate pests in a treated water system.
  • Biofouling is undesirable sessile or planktonic organisms in a water system.
  • Halogen Stabilizers are defined herein to include, but not limited to, sulfamic acid, sodium sulfamate, potassium sulfamate, saccharine, benzene sulfonamide, urea, ammonia, thiourea, creatinine, cyanuric acids, alkyl hydantoins, mono ethanolamine, diethanolamine, organic sulfonamides, biuret, organic sulfamates, and melamine.
  • Exemplified halogen stabilizers include sulfamic acid or a water-soluble sulfamate salt.
  • water-soluble sulfamate salts include but are not limited to sodium sulfamate or potassium sulfamate.
  • the stabilizer concentration range is from about 0.01 to about 100 mg per liter. Illustrative ranges are about 0.1 to about 50 and about 1 to about 10 mg per liter.
  • the bromide ion source is a water-soluble bromide salt.
  • water-soluble bromide salts that may be used include sodium bromide, potassium bromide, calcium bromide, zinc bromide, ammonium bromide, lithium bromide, bromine chloride, bromine, BCDMH, DBDMH, DBNPA, Bronopol and the like.
  • a water- soluble bromide salt is an alkali metal bromide or an alkaline earth bromide. Typically the alkali metal bromide includes the water-soluble bromide salt is sodium bromide.
  • the bromide concentration range is from 0.1 to 1000 mg per liter. An illustrative range is about 30 to about 100 and about 1 to about 3 mg per liter. Ratio of Stabilizer to Bromide Ion
  • the ratio of stabilizer to bromide ion is chosen to provide effective biofouling control while avoiding over-stabilization. This means a molar ratio of about 1 mole stabilizer to about 0.01 through about 100 moles of bromide ion. Illustrative molar ratios are about 1 mole stabilizer to about 1 through about 10 moles bromide ion. Inclusive in this range is a molar ratio in the range of about 1 mole stabilizer to about 1 through about 3 moles bromide ion.
  • the chlorine dose and residual oxidant concentration will vary based on demand and the residual required to control biofouling. Residual oxidant concentrations should range from about 10 mg per liter to 0 mg per liter. Illustrative residual oxidant concentrations range from about 5 to about 0.1 mg per liter. A further illustrative range for residual oxidant concentrations range from about 2 mg per liter to about 0.2 mg per liter.
  • Halogen oxidant monitoring methods include DPD, amperometric titration, FACS, Oxidation Reduction Potential (ORP), and the like.
  • Halide monitoring methods include ion chromatography, ion-selective electrodes, and various wet chemical methods known to those skilled in the art.
  • 30% sodium bromide and 10% sodium sulfamate solution replaced the former sodium bromide product.
  • the 30% bromide and 10% sodium sulfamate solution was dosed directly to the cooling water system to maintain bromide and sulfamate concentrations in the cooling water of approximately 0.3 mg/L and 0.1 mg/L, respectively.
  • Dosage of the bromide and sulfamate solution was controlled by a Nalco TRASAR ® (Nalco Company, Naperville, IL) product controller.
  • Sodium hypochlorite was added directly to the water system as needed to maintain a 0.1 mg/L residual oxidant, controlled using a Hach CL 17 chlorine analyzer.
  • total aerobic bacteria, anaerobic bacteria, fungi, and other microbes were measured using culture and microscopic analysis of water samples collected twice per week. Bromide and sulfamate concentrations from water samples were also measured twice per week using ion chromatography.
  • Bacterial counts were maintained at or below 10,000 CFU/ml during the test period. Fungi and anaerobic bacteria including, sulfate-reducing bacteria, were maintained below detection ( ⁇ 10 CFU/ml). Algae growth was controlled as assessed by visual inspection of sunlit areas.
  • the improved process and biofouling system which incorporated sodium bromide and sodium sulfamate to maintain 0.3 mg/L bromide and 0.1 mg/L sulfamate in the cooling water system, illustrated that the bromide concentration in the water system was reduced by up to 99% while maintaining satisfactory control of biofouling.
  • Sodium hypochlorite was dosed and controlled independently from the sodium bromide or sodium sulfamate dosing.
  • chlorine oxidant dose was controlled using an oxidation-reduction potential (ORP) meter at a 500 millivolt set point (GLI International, Milwaukee, WI).
  • ORP oxidation-reduction potential
  • Sodium hypochlorite product consumption was measured by determining the use rate of a sodium hypochlorite product of known chlorine concentration.
  • Sodium bromide and sodium sulfamate solution dosing was controlled by a Nalco TRASAR ® (Nalco Company, Naperville, IL) product controller to maintain approximately 3 mg/L bromide and 1 mg/L sulfamate in the water system.
  • Table 1 shows chlorine oxidant consumption for each treatment strategy.
  • Chlorine oxidant consumption is expressed as mg of chlorine oxidant dosed per liter of cooling water blowdown.
  • the addition of sodium bromide to the cooling water system reduced chlorine oxidant consumption 36%.
  • the addition of sodium bromide and sodium sulfamate to the cooling water system reduced chlorine oxidant consumption an additional 18% (total of 54% reduction) compared to the 'sodium bromide alone.
  • Copper corrosion rates in the treated water system were measured using a Nalco NCMlOO Corrosion Monitor (Nalco Company, Naperville, IL). Using only sodium hypochlorite for treatment, copper corrosion rates ranged from 0.15 to 0.28 mpy (mils per year). When sodium bromide and sodium sulfamate were added to this water system under independent dosing control, copper corrosion rates decreased to the range of 0.00 to 0.01 mpy.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Pest Control & Pesticides (AREA)
  • Inorganic Chemistry (AREA)
  • Agronomy & Crop Science (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

A system and method for stabilizing bromine in an industrial water system by monitoring and flexible dosing of chlorine oxidant and halide ion stabilizer residual levels. The system comprises chlorine oxidant, and a halide ion source with a halogen stabilizer.

Description

BIOFOULING CONTROL
FIELD OF THE INVENTION
This invention is in the field of industrial water systems. Specifically, this invention optimizes the use of halogen biocides in industrial water systems.
BACKGROUND OF THE INVENTION
Fouling in industrial water systems occurs even in industrial water systems treated with the best water treatment programs currently available. When fouling occurs, the water system is negatively impacted by contamination including deposition of air-borne, water- borne and water-formed contaminants, process leaks, and other factors. If fouling is allowed to progress, the system can suffer from decreased operational efficiency, premature equipment failure, and increased health-related risks associated with microbial fouling.
Fouling can also occur due to microbial contamination. Sources of microbial contamination in industrial water systems are numerous and may include, but are not limited to, air-borne contamination, water make-up, process leaks, and improperly cleaned equipment. These microorganisms can establish microbial communities on any wetable or semi-wetable surface of the water system. More than 99% of the microbes present in the water process may be present on system surfaces.
The use of oxidizing biocides in biofouling control methods is well established. Common oxidizing biocides such as chlorine and bromine are effective biofouling control agents so long as they are maintained at effective concentrations in the water. Unless the concentrations of the biocides are effectively monitored, improper levels result in undesired microbial growth, scaling, corrosion, environmental impact, and increased cost that limit industrial applicability.
Developments in industrial water treatment incorporating higher pH values and corrosion inhibitors have driven interest in biocide systems other than chlorine.
Bromine use in biofouling control usually occurs through addition of sodium bromide to the water system with an oxidizing agent such as chlorine gas or sodium hypochlorite. The result of this approach is the generation of hypobromous acid, which may require less biocide feed to maintain overall cleanliness than a comparable system operating on chlorine alone. However, many of the same compounds and conditions that reduce chlorine effectiveness also reduce bromine effectiveness. U.S. 6,110,387 (hereinafter the '387 patent) entitled "SULFAMATE
STABILIZATION OF A BROMINE BIOCIDE IN WATER" to Albemarle Corporation attempted to demonstrate the importance of manipulating the order of addition of active components to the water to be treated. Essentially, the '387 patent discloses effective biocidal activity is achieved by introducing sulfamate and water- soluble bromide to the system before the chlorine oxidant is added. Uncertainty of improved biocidal performance, cost-effectiveness, actual stabilization, and effects on the environment limit its application in biocidal control.
US 6,478,972 entitled "Method of Controlling Microbial Fouling" to Acculab Co. discloses the use of hypobromous acid, HOBr, formed by the reaction between an aqueous solution of alkali or alkaline earth metal hypochlorite and a bromide ion source. The applicants describe aqueous hypochlorite solution, water-soluble bromide ion source, with sulfamate ion source as stabilizer as an improved anti-fouling system.
Despite ongoing research, an efficient strategy for feeding effective doses of bromide and stabilizer to water systems being treated with chlorine has not previously been described. Thus, the multiple problems in devising an efficient biofouling control system remain.
SUMMARY OF THE INVENTION
Effective and economical biofouling control is provided by the novel use of chlorine oxidant, a halide ion source, and a stabilizer characterized by independently controlled dosing of chlorine and bromide mixed with halogen stabilizer. The system is exemplified by the combined use of sodium sulfamate, bromide ion, and chlorine oxidant in the method described below.
Control of biofouling in industrial water systems comprises: (a) providing at least one or more means to independently monitor and control chlorine oxidant; (b) comparing the monitored concentration identified in step (a) to a pre-determined concentration range according to the system to be treated; (c) adding chlorine oxidant at a rate and in an amount sufficient to maintain the determined biocidal effective range and, (d) adding stabilizer and halide ion source in amounts and rates sufficient to realize halogen levels sufficient to effect fouling control in said body of water.
The method controls microorganisms in industrial water systems by concurrent monitoring and flexible dosing of chlorine oxidant in the presence of a bromide ion source and sodium sulfamate at concentrations sufficient to provide free and stabilized halogen biocide. Such free and stabilized halogens include free chlorine, free bromine, chlorosulfamates, and bromosulfamates.
DETAILED DESCRIPTION OF THE INVENTION
Definitions
As used herein, the terms identified below are meant to designate the following:
"Halide Ion Source" includes the bromide ion sources ammonium bromide [ammonium bromide 38%, CAS 12124-97], sodium bromide [sodium bromide, CAS 7647-15-6], lithium bromide [lithium bromide, CAS 7550-35-8], calcium bromide [calcium bromide, CAS 7789-41-5], potassium bromide [potassium bromide, CAS 7758-02-3], bromine chloride [bromine chloride CAS 13863-41-7], bromine [bromine CAS 7726-95-6], BCDMH [3-Bromo-l-chloro-5,5-dimethylhydantoin, CAS 126-06- 7], DBDMH [l,3-Dibromo-5,5-dimethylhydantoin CAS 77-48-5], DBNPA [2,2- Dibromo-3-nitrilopropionamide CAS 10222-01-2], Bronopol [2-Bromo-2- nitropropane-l,3-diol, CAS 52-51-7], and other effective bromide sources known to those skilled in the art.
"Chlorine Oxidant" means chlorine (Cl2) [chlorine, CAS 7782-50-5], hypochlorous acid (HOCl), [hypochlorous acid, CAS 7790-92-3] or hypochlorite ion, (OCl) [hypochlorite, CAS 14380-61-1].
"Chlorine Oxidant Source" means a substance or mixture of substances releasing, generating, or yielding Chlorine Oxidant. Examples include gaseous or liquid chlorine sources, sodium hypochlorite [sodium hypochlorite, CAS 7681-52-9], calcium hypochlorite [calcium hypochlorite, CAS 7778-54-3], dichloro-isocyanurate [1,3-Dichloroisocyanuric Acid, CAS 2782-57-2], trichloro-isocyanurate , chlorosulfamate [chlorosulfamic acid, CAS 7778-42-9], BCDMH, dichloro-hydantoin [l,3-dichloro-5,5-dimethylhydantoin, CAS 118-52-5], or electrolytic chlorine generators.
"Halogen Stabilizer" includes sulfamic acid [Sulfamic acid, CAS 5329-14-6], sodium sulfamate [Sodium Sulfamate, CAS 13845-18-6], potassium sulfamate [Potassium Sulfamate, CAS 13823-50-2], saccharine [saccharin CAS 81-07-2], benzene sulfonamide [benzenesulfonamide, CAS 98-10-2], urea [urea CAS 57-13-6], ammonia [ammonia CAS 7664-41-7], thiourea [thiourea, CAS 62-56-6], creatinine [creatinine CAS 60-27-5], cyanuric acids [e.g. l,3,5-triazine-2,4,6(lH,3H,5H)-trione, CAS 108-80-5], alkyl hydantoins [e.g. 2,4-Imidazolidinedione, CAS 461-72-3], monoethanolamine [l-amino-2-hydroxyethane CAS 141-43-5], diethanolamine [2,2'- dihydroxydiethylamine CAS 111-42-2], organic sulfonamides [e.g. sulfanilamide CAS 63-74-1], biuret [imidodicarbonicdiamide CAS 108-19-0], organic sulfamates, and melamine [l,3,5-triazine-2,4,6(lH,3H,5H)triimine CAS 108-78-1]
"Stabilized Halogen" includes chlorosulfamate [chlorosulfamate CAS 17172- 27-9], dichlorosulfamate [dichlorosulfamate CAS 17085-87-9], bromosulfamate [bromosulfamate CAS 134509-56-1], dibromosulfamate, bromochlorosulfamate, and the bromo- and chloro- derivatives of the listed halogen stabilizers.
"Residual Oxidant" is Halogen capable of reacting with DPD [N, N-diethyl-p- phenylenediamine CAS 93-05-0] reagent "Chlorine Dose" is the amount of chlorine oxidant applied to the water system
"Stabilizer Dose" is the amount of halogen stabilizer applied to the water system
" Stabilized Bromine" is bromosulfamate, dibromosulfamate, bromochlorosulfamate, and the brominated derivatives of the defined halogen stabilizers.
"Biocidal Effective Range" is the concentration of oxidant required to mitigate pests in a treated water system.
"Biofouling" is undesirable sessile or planktonic organisms in a water system.
THE INVENTION
Halogen Stabilizer Halogen Stabilizers are defined herein to include, but not limited to, sulfamic acid, sodium sulfamate, potassium sulfamate, saccharine, benzene sulfonamide, urea, ammonia, thiourea, creatinine, cyanuric acids, alkyl hydantoins, mono ethanolamine, diethanolamine, organic sulfonamides, biuret, organic sulfamates, and melamine. Exemplified halogen stabilizers include sulfamic acid or a water-soluble sulfamate salt. Examples of water-soluble sulfamate salts include but are not limited to sodium sulfamate or potassium sulfamate. The stabilizer concentration range is from about 0.01 to about 100 mg per liter. Illustrative ranges are about 0.1 to about 50 and about 1 to about 10 mg per liter.
Bromide ion Source
The bromide ion source is a water-soluble bromide salt. Examples of water- soluble bromide salts that may be used include sodium bromide, potassium bromide, calcium bromide, zinc bromide, ammonium bromide, lithium bromide, bromine chloride, bromine, BCDMH, DBDMH, DBNPA, Bronopol and the like. A water- soluble bromide salt is an alkali metal bromide or an alkaline earth bromide. Typically the alkali metal bromide includes the water-soluble bromide salt is sodium bromide. The bromide concentration range is from 0.1 to 1000 mg per liter. An illustrative range is about 30 to about 100 and about 1 to about 3 mg per liter. Ratio of Stabilizer to Bromide Ion
The ratio of stabilizer to bromide ion is chosen to provide effective biofouling control while avoiding over-stabilization. This means a molar ratio of about 1 mole stabilizer to about 0.01 through about 100 moles of bromide ion. Illustrative molar ratios are about 1 mole stabilizer to about 1 through about 10 moles bromide ion. Inclusive in this range is a molar ratio in the range of about 1 mole stabilizer to about 1 through about 3 moles bromide ion.
Chlorine Oxidant
The chlorine dose and residual oxidant concentration will vary based on demand and the residual required to control biofouling. Residual oxidant concentrations should range from about 10 mg per liter to 0 mg per liter. Illustrative residual oxidant concentrations range from about 5 to about 0.1 mg per liter. A further illustrative range for residual oxidant concentrations range from about 2 mg per liter to about 0.2 mg per liter.
Monitoring Methods
Halogen oxidant monitoring methods include DPD, amperometric titration, FACS, Oxidation Reduction Potential (ORP), and the like. Halide monitoring methods include ion chromatography, ion-selective electrodes, and various wet chemical methods known to those skilled in the art.
EXAMPLES Comparative Example 1 A 27,000-gallon open recirculating cooling water system (pH 8.8) operating on a commercial building used a combination of sodium hypochlorite and sodium bromide as a biocide program. The chlorine oxidant and bromide were blended at a 4:1 Cl2:Br molar ratio just prior to dosing into the cooling system. The chlorine oxidant and bromide combination was dosed to the cooling water system to maintain approximately 0.1 mg/L residual oxidant, controlled using a Hach CL17 chlorine analyzer (Hach Company, Loveland, CO).
Although microbial control was acceptable using this program, bromide concentrations in the cooling system water were not cost-effective on the low chlorine demand and low chlorine dose required for biofouling control in this water system. To improve the biocide treatment efficiency of this cooling water system, a
30% sodium bromide and 10% sodium sulfamate solution replaced the former sodium bromide product. The 30% bromide and 10% sodium sulfamate solution was dosed directly to the cooling water system to maintain bromide and sulfamate concentrations in the cooling water of approximately 0.3 mg/L and 0.1 mg/L, respectively. Dosage of the bromide and sulfamate solution was controlled by a Nalco TRASAR® (Nalco Company, Naperville, IL) product controller. Sodium hypochlorite was added directly to the water system as needed to maintain a 0.1 mg/L residual oxidant, controlled using a Hach CL 17 chlorine analyzer.
To measure the biofouling control performance of the new product and dosing method, total aerobic bacteria, anaerobic bacteria, fungi, and other microbes were measured using culture and microscopic analysis of water samples collected twice per week. Bromide and sulfamate concentrations from water samples were also measured twice per week using ion chromatography.
Bacterial counts were maintained at or below 10,000 CFU/ml during the test period. Fungi and anaerobic bacteria including, sulfate-reducing bacteria, were maintained below detection (<10 CFU/ml). Algae growth was controlled as assessed by visual inspection of sunlit areas.
The improved process and biofouling system, which incorporated sodium bromide and sodium sulfamate to maintain 0.3 mg/L bromide and 0.1 mg/L sulfamate in the cooling water system, illustrated that the bromide concentration in the water system was reduced by up to 99% while maintaining satisfactory control of biofouling.
Example 2
Controlled tests were also performed to determine the effect of sodium bromide and sodium sulfamate solutions on chlorine oxidant consumption, oxidant-induced corrosion, and oxidation-reduction control in chlorinated cooling water systems.
A 50-liter pilot cooling water system (pH 7.5) was treated with three different halogen oxidant methods:
1. sodium hypochlorite (NaOCl) only
2. NaOCl and sodium bromide (NaBr) 3. NaOCl and NaBr plus sodium sulfamate
Sodium hypochlorite was dosed and controlled independently from the sodium bromide or sodium sulfamate dosing.
In each case, chlorine oxidant dose was controlled using an oxidation-reduction potential (ORP) meter at a 500 millivolt set point (GLI International, Milwaukee, WI). Sodium hypochlorite product consumption was measured by determining the use rate of a sodium hypochlorite product of known chlorine concentration. Sodium bromide and sodium sulfamate solution dosing was controlled by a Nalco TRASAR® (Nalco Company, Naperville, IL) product controller to maintain approximately 3 mg/L bromide and 1 mg/L sulfamate in the water system. Table 1 shows chlorine oxidant consumption for each treatment strategy.
Chlorine oxidant consumption is expressed as mg of chlorine oxidant dosed per liter of cooling water blowdown. The addition of sodium bromide to the cooling water system reduced chlorine oxidant consumption 36%. The addition of sodium bromide and sodium sulfamate to the cooling water system reduced chlorine oxidant consumption an additional 18% (total of 54% reduction) compared to the 'sodium bromide alone.
Table 1
Figure imgf000010_0001
Copper corrosion rates in the treated water system were measured using a Nalco NCMlOO Corrosion Monitor (Nalco Company, Naperville, IL). Using only sodium hypochlorite for treatment, copper corrosion rates ranged from 0.15 to 0.28 mpy (mils per year). When sodium bromide and sodium sulfamate were added to this water system under independent dosing control, copper corrosion rates decreased to the range of 0.00 to 0.01 mpy.
"Although the invention has been described in detail in the foregoing for the purpose of illustration, it is to be understood that such detail is solely for that purpose and that variations can be made therein by those skilled in the art without departing from the spirit and scope of the invention except as except as it may be limited by the claims."

Claims

WHAT IS CLAIMED IS:
1. A biofouling control system comprising: (a) a first composition comprising Chlorine Oxidant; and; (b) a second composition comprising a Halide Ion Source and a Halogen
Stabilizer, with the proviso that the halide ion is not chloride; wherein the system provides an economic method of biofouling control in industrial water by independent dosing of the first composition and the second composition.
2. The system of claim 1, wherein the halide ion source is bromide.
3. A method for control of biofouling in industrial water comprising the steps of:
(a) providing at least one or more methods of monitoring the chlorine oxidant concentration; (b) providing a chlorine oxidant source
(c) providing a mixture of halogen stabilizer and halide ion source;
(d) adding chlorine oxidant source identified in step (b) at a rate and in an amount sufficient to achieve the concentration range and;
(e) independently adding composition (c) in an amount sufficient to achieve the halogen stabilizer concentration range.
4. A method for control of biofouling in industrial water comprising the steps of:
(a) providing at least one or more methods of monitoring the chlorine oxidant concentration; (b) providing at least one or more methods of monitoring the halogen stabilizer concentration;
(c) providing a chlorine oxidant source
(d) providing a mixture of halogen stabilizer and halide ion source;
(e) comparing the monitored concentrations identified in steps (a) and (b) to pre-determined concentration ranges according to the system to be treated;
(f) adding chlorine oxidant source identified in step (c) at a rate and in an amount sufficient to achieve the concentration range and; (g) independently adding composition (d) in an amount sufficient to achieve the halogen stabilizer concentration range.
5. A method for control of biofouling in industrial water comprising the steps of: (a) providing at least one or more methods of monitoring the chlorine oxidant concentration;
(b) providing chlorine oxidant source
(c) providing a mixture of halogen stabilizer and halide ion source;
(d) adding chlorine oxidant (b) at a' rate and in an amount sufficient to achieve the biocidal effective range and;
(d) independently adding composition (c) to achieve a molar ratio of chlorine oxidant to halide ion source.
6. A method for control of biofouling in industrial water comprising the steps of: (a) providing at least one or more methods of monitoring the chlorine oxidant concentration;
(b) providing at least one or more methods of monitoring the halogen stabilizer concentration;
(c) providing chlorine oxidant source (d) providing a mixture of halogen stabilizer and halide ion source;
(e) adding chlorine oxidant (c) at a rate and in an amount sufficient to achieve the biocidal effective range and;
(f) independently adding composition (d) to achieve a molar ratio of chlorine oxidant to halide ion source.
PCT/US2006/028811 2005-10-27 2006-07-25 Biofouling control WO2007050162A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
MX2008005317A MX2008005317A (en) 2005-10-27 2006-07-25 Biofouling control.
CA2627359A CA2627359C (en) 2005-10-27 2006-07-25 Control of biofouling in an industrial water system
EP06788405A EP1940225A4 (en) 2005-10-27 2006-07-25 Biofouling control
JP2008537693A JP4676002B2 (en) 2005-10-27 2006-07-25 Biofouling control
AU2006306703A AU2006306703B2 (en) 2005-10-27 2006-07-25 Biofouling control

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/259,790 2005-10-27
US11/259,790 US20070098817A1 (en) 2005-10-27 2005-10-27 Biofouling control

Publications (1)

Publication Number Publication Date
WO2007050162A1 true WO2007050162A1 (en) 2007-05-03

Family

ID=37968101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2006/028811 WO2007050162A1 (en) 2005-10-27 2006-07-25 Biofouling control

Country Status (9)

Country Link
US (2) US20070098817A1 (en)
EP (1) EP1940225A4 (en)
JP (1) JP4676002B2 (en)
AU (1) AU2006306703B2 (en)
CA (1) CA2627359C (en)
MX (1) MX2008005317A (en)
TW (1) TWI413618B (en)
WO (1) WO2007050162A1 (en)
ZA (1) ZA200804367B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009084163A (en) * 2007-09-27 2009-04-23 Kurita Water Ind Ltd Bactericidal/algicidal method
JP2009195822A (en) * 2008-02-21 2009-09-03 Kurita Water Ind Ltd Method for sterilizing water system
KR20100057847A (en) * 2007-09-27 2010-06-01 쿠리타 고교 가부시키가이샤 Bactericidal/algicidal method
WO2016054730A1 (en) * 2014-10-07 2016-04-14 Trican Well Service, Ltd. Long term dual biocide and hydrogen sulfide remediation

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070098817A1 (en) * 2005-10-27 2007-05-03 Wetegrove Robert L Biofouling control
DE102007031113A1 (en) * 2007-06-29 2009-01-02 Christ Water Technology Ag Treatment of water with hypobromite solution
WO2010143183A2 (en) * 2009-06-08 2010-12-16 Bromine Compounds Ltd. Stabilized and activated bromine solutions as a biocide and as an antifouling agent
US9265259B2 (en) * 2011-10-21 2016-02-23 Nalco Company Use of sulfamic acid or its salts as stabilizers especially in combination with ammonium salt and/or ammine for bleach or other halogen containing biocides in the paper area
CN103061206A (en) * 2011-10-21 2013-04-24 纳尔科公司 Application of composition of sulfamic acid or salts thereof and ammonium salt and/or amine or other biocides containing halogens in papermaking field
JP5941390B2 (en) * 2012-10-04 2016-06-29 栗田工業株式会社 Industrial antibacterial methods
WO2016094591A1 (en) 2014-12-09 2016-06-16 Miox Corporation Methods for the direct electrolytic production of stable, high concentration aqueous halosulfamate or halosulfonamide solutions
ES2923899T3 (en) * 2015-10-06 2022-10-03 De Nora Holdings Us Inc Electrolytic production of halogen-based disinfectant solutions from water containing halides and ammonia

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6669904B1 (en) * 1999-03-31 2003-12-30 Ondeo Nalco Company Stabilized bromine solutions, method of making and uses thereof for biofouling control

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4818413A (en) * 1987-08-05 1989-04-04 Nalco Chemical Company Biocide water treatment having reduced copper corrosion
US6409926B1 (en) * 1999-03-02 2002-06-25 United States Filter Corporation Air and water purification using continuous breakpoint halogenation and peroxygenation
US6270722B1 (en) * 1999-03-31 2001-08-07 Nalco Chemical Company Stabilized bromine solutions, method of manufacture and uses thereof for biofouling control
US6110387A (en) * 1999-04-22 2000-08-29 Albemarle Corporation Sulfamate stabilization of a bromine biocide in water
KR100339129B1 (en) * 1999-12-13 2002-05-31 심상희 A method of controlling microorganism using hypobromite of alkali metal or alkali earth metals and a control system therefor
JP2004077169A (en) * 2002-08-12 2004-03-11 Ebara Corp Method for calculating residual substance in liquid, treatment method using the same, and medicine injection control apparatus
KR100524148B1 (en) * 2003-08-14 2005-10-27 애큐랩주식회사 A Method of Controlling Microbial Fouling in Aqueous System
EP1778592B1 (en) * 2004-07-07 2013-07-31 Disney Enterprises, Inc. Process control oxidation
US20070098817A1 (en) * 2005-10-27 2007-05-03 Wetegrove Robert L Biofouling control

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6669904B1 (en) * 1999-03-31 2003-12-30 Ondeo Nalco Company Stabilized bromine solutions, method of making and uses thereof for biofouling control

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009084163A (en) * 2007-09-27 2009-04-23 Kurita Water Ind Ltd Bactericidal/algicidal method
KR20100057847A (en) * 2007-09-27 2010-06-01 쿠리타 고교 가부시키가이샤 Bactericidal/algicidal method
EP2196092A1 (en) * 2007-09-27 2010-06-16 Kurita Water Industries Ltd. Bactericidal/algicidal method
EP2196092A4 (en) * 2007-09-27 2012-01-25 Kurita Water Ind Ltd Bactericidal/algicidal method
KR101706548B1 (en) 2007-09-27 2017-02-14 쿠리타 고교 가부시키가이샤 Bactericidal/algicidal method
US10421676B2 (en) 2007-09-27 2019-09-24 Kurita Water Industries Ltd. Bactericidal/algicidal method
JP2009195822A (en) * 2008-02-21 2009-09-03 Kurita Water Ind Ltd Method for sterilizing water system
WO2016054730A1 (en) * 2014-10-07 2016-04-14 Trican Well Service, Ltd. Long term dual biocide and hydrogen sulfide remediation

Also Published As

Publication number Publication date
ZA200804367B (en) 2009-04-29
MX2008005317A (en) 2008-10-02
CA2627359C (en) 2015-12-08
TW200716492A (en) 2007-05-01
AU2006306703A1 (en) 2007-05-03
JP2009513337A (en) 2009-04-02
CA2627359A1 (en) 2007-05-03
US20080279964A1 (en) 2008-11-13
EP1940225A4 (en) 2012-01-18
AU2006306703B2 (en) 2012-05-31
US20070098817A1 (en) 2007-05-03
JP4676002B2 (en) 2011-04-27
EP1940225A1 (en) 2008-07-09
TWI413618B (en) 2013-11-01
US8741157B2 (en) 2014-06-03

Similar Documents

Publication Publication Date Title
AU2006306703B2 (en) Biofouling control
CA2263266C (en) A process to manufacture stabilized alkali or alkaline earth metal hypobromite and uses thereof in water treatment to control microbial fouling
JP4705044B2 (en) Biocides and equipment
EP0827486B1 (en) Stabilized alkali or alkaline earth metal hypobromite and process for its production
EP2196092B1 (en) Bactericidal/algicidal method
NO340906B1 (en) Composition and method of antimicrobial effect in water systems
EP0378659B1 (en) Method for the control of biofouling in recirculating water systems
JP5665524B2 (en) Water treatment method for suppressing microbial damage in water
CN101296621A (en) A synergistic biocide and process for controlling growth of microorganisms
WO2001020996A1 (en) Biocidal applications of concentrated aqueous bromine chloride solutions
US20160157486A1 (en) Compositions of dibromomalonamide and their use as biocides
WO2006103314A1 (en) Electrochemical method for preparing microbiocidal solutions
AU2010200677B2 (en) A process to manufacture stabilized alkali or alkaline earth metal hypobromite and uses thereof in water treatment to control microbial fouling
IL176814A (en) Biocide formed from a hypochlorite oxidant and an ammonium salt and method of use thereof for controlling biofilm growth

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006788405

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006306703

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2008537693

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/a/2008/005317

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2627359

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2006306703

Country of ref document: AU

Date of ref document: 20060725

Kind code of ref document: A