WO2007049488A1 - Composition for coating ceramics - Google Patents

Composition for coating ceramics Download PDF

Info

Publication number
WO2007049488A1
WO2007049488A1 PCT/JP2006/320730 JP2006320730W WO2007049488A1 WO 2007049488 A1 WO2007049488 A1 WO 2007049488A1 JP 2006320730 W JP2006320730 W JP 2006320730W WO 2007049488 A1 WO2007049488 A1 WO 2007049488A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
coating
epoxy
acrylic resin
coupling agent
Prior art date
Application number
PCT/JP2006/320730
Other languages
French (fr)
Japanese (ja)
Inventor
Takehiko Nakagami
Atsushi Hozaki
Kayo Yokoyama
Takaharu Bandoh
Takashi Ogita
Original Assignee
Matsui Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsui Chemical Co., Ltd. filed Critical Matsui Chemical Co., Ltd.
Priority to JP2007542326A priority Critical patent/JPWO2007049488A1/en
Publication of WO2007049488A1 publication Critical patent/WO2007049488A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic

Definitions

  • the present invention relates to a coating composition capable of forming a crosslinked cured film exhibiting excellent adhesion, hardness, chemical resistance and boiling resistance on the surface of ceramics such as glass and ceramics by irradiation with active energy rays. .
  • a coating composition used for coating of ceramic products such as glass that is, for coating and printing, it is required to have strong adhesion to the ceramic substrate.
  • General-purpose ceramic coating compositions such as ceramic inks, are baked at a high temperature of around 600 ° C after printing or coating on a substrate, and the ink pattern, display, or coating is fused to the ceramic surface. In addition, it provides a strong adhesion to the substrate.
  • a large amount of energy is required for the baking process, production efficiency is low from the viewpoint of the work environment, installation of a drying furnace and installation of volatile component treatment equipment are required. It has disadvantages such as high costs and high costs.
  • certain ceramic coating compositions contain heavy metals such as lead, cadmium, chromium, and manganese as glass component fusion agents, and require organic volatile components (VOC) as solvents. It is also desirable from an environmental point of view!
  • an ultraviolet (UV) curable coating composition is cured in a short time by irradiating active energy rays such as ultraviolet rays, so that a baking process at a high temperature can be omitted.
  • UV curable coating compositions can be prepared with little or no VOC or other non-aqueous solvents, which is desirable from an environmental, work efficiency, and capital investment perspective. It can be said that.
  • UV curable coating compositions are applied to ceramic product coatings or decorations, it is difficult to achieve adhesion that is equivalent to or acceptable as a ceramic coating composition that requires baking. Met.
  • JP-A-2-289611 discloses a photocrosslinking composition
  • a photocrosslinking composition comprising an acrylic resin having an alicyclic epoxy group and a photocationic polymerization initiator as essential components.
  • this composition has higher curability than the conventional light-power thione composition, its interaction with the ceramic substrate (adhesion) is weak, so that it is made of ceramics such as moisture resistance and boiling resistance.
  • the properties required in the environment where the product is used are inferior, and in some cases, the substrate film also has problems such as peeling of the coating.
  • the object of the present invention is to have excellent adhesion to the ceramic surface, which is remarkably higher in curability than the above conventional coating composition, and excellent in hardness, chemical resistance and boiling resistance.
  • An object of the present invention is to provide a ceramic coating composition capable of forming a crosslinked cured film.
  • an acrylic resin having a cation polymerizable functional group at the terminal, Z, or side chain in constructing a ceramic coating composition As a result of intensive studies based on the above problems, the present inventors have found that an acrylic resin having a cation polymerizable functional group at the terminal, Z, or side chain in constructing a ceramic coating composition.
  • the inventors In order to develop the present invention, the inventors have found that the above-mentioned object can be achieved by blending a coupling agent with a composition containing a coagulant and a photothion polymerization initiator having an acid generation function by irradiation with active energy rays. It came.
  • the present invention generates (A) an acrylic resin having a cationic polymerizable functional group at the terminal and Z or side chain, (B) a coupling agent, and (C) an acid upon irradiation with active energy rays.
  • the present invention relates to a ceramic coating composition containing a functional light thione polymerization initiator.
  • the coupling agent (B) a point force silane coupling agent that improves the affinity with the ceramic substrate is preferred, and a point force polymerization that further strengthens the adhesion.
  • Those having functional functional groups may be more specific acrylic resin (A) or ceramic groups.
  • Point power excellent in affinity with the material Particularly preferred is one having an epoxy group and z or oxetal group.
  • the cationic polymerizable functional group possessed by the acrylic resin (A) also includes an epoxy group and
  • Preferred is Z or an oxetanyl group.
  • the weight average molecular weight of the acrylic resin (A) is preferably 1,000-100,000 because it is excellent in coating (coating and printing) workability! /. .
  • the cationic polymerizable functional group equivalent of the acrylic resin (A) is 100 to 1,500 from the point of rapid curing!
  • the ceramic coating composition of the present invention is a coating composition that is cured by causing a cationic polymerization reaction upon irradiation with active energy rays, and (A) a cationically polymerizable functional group at the terminal and Z or side chain. And (B) a coupling agent, and (C) a photothion polymerization initiator having a function of generating an acid upon irradiation with active energy rays.
  • the acrylic resin (A) is a polymer or copolymer having an acrylic structural unit and having at least one cationic polymerizable group in the molecule.
  • the cationically polymerizable functional group may be any functional group capable of causing cationic polymerization, such as an epoxy group (including glycidyl group), an oxetal group, a vinyl ether group, and a probe ether group.
  • examples thereof include cyclic carbonate groups such as bicycloorthoesters and spiroorthocarbonates.
  • the epoxy group, oxetal group, butyl ether group, etc. which have a high cationic polymerization reaction rate, are preferred, and the epoxy group and oxetanyl group are preferred because of their good affinity with ceramic substrates.
  • the acrylic resin (A) may contain two or more of these functional groups in one molecule, or two or more different acrylic resins having different cationic polymerizable functional groups may be used in combination.
  • a method for introducing a cationically polymerizable functional group into acrylic resin a conventionally known method, for example, a method of polymerizing or copolymerizing a monomer having a cationic polymerizable functional group (polymerization reaction method), a method of introducing a compound having a cationic polymerizable functional group into a part of an acrylic polymer by post-reaction (polymer reaction) Law).
  • a cationic polymerizable group-containing polymerizable unsaturated monomer (hereinafter referred to as “cation polymerizable unsaturated monomer”) can be polymerized alone, or, if necessary, a cationic polymerizable unsaturated monomer.
  • Other polymerizable unsaturated monomers (hereinafter referred to as “other unsaturated monomers”) that can be copolymerized with cation polymerizable unsaturated monomers are copolymerized.
  • the cationic polymerizable unsaturated monomer is required to be an acrylic monomer.
  • at least one of the cationic polymerizable unsaturated monomer or the other unsaturated monomer is used. May be an acrylic monomer.
  • acrylic monomer examples include, for example, 3, 4 epoxycyclohexenoremethinoleatalylate, 3, 4 epoxycyclohexenoremethymethacrylate, 3,4-epoxy.
  • Oxetal group-containing acrylates such as (3-ethylyl-3-oxeta-lmethoxymethyl) benzylmetatalylate; 2-biloxetyl acrylate, 2-bi-loxychetyl methacrylate, 4-vinyloxybutyl attaly 4-vinyloxybutyl methacrylate, 2-methyl-4-bi-hydroxybutyl acrylate, 2-methyl-4-bi-butyl butyl methacrylate, 4-bi-oxymethylcyclohexyl methyl acrylate, 2- (2 , 1-Loxyethoxy) ethyl atylate, 2- (2, -Bi-oxyethoxy) ethyl metatalylate, 4 Vinyloxymethylcyclohexyl methyl metatalylate, 4-vinyloxymethyl benzyl acrylate , 4-bi-roxymethylbenzyl metatalylate, 4-bi-roxybenzyl acrylate, 4-bi-roxy Buty
  • This cation polymerizable functional group-containing acrylic monomer may be polymerized alone or in combination of two or more. Further, the following cationic polymerizable functional group-containing non-acrylic monomer and Z or a cationic polymerizable functional group described later may be copolymerized with one or more of acrylic monomers and non-acrylic monomers. .
  • non-acrylic monomer among the cationic polymerizable unsaturated monomers include, for example, 2-aryloxymethyloxysilane, 2- (4-arylphenyloxymethyl) oxysilane, 2- (4-arylcyclohexylmethoxy).
  • butyl ether group-containing monomers such as 1 bul-4 bis-loxymethylcyclohexane.
  • 2- (4 butylphenoxymethyl) oxysilane and 4 butyl 1-cyclohexene 1,2-epoxide are preferably used from the viewpoint of rapid curing.
  • non-acrylic monomers are preferably copolymerized with acrylic monomers that are not used in homopolymerization.
  • the obtained acrylic resin (A) is appropriately copolymerized as required according to the intended performance and the like.
  • the cationically polymerizable unsaturated monomer is a non-acrylic monomer, it is necessary to copolymerize the acrylic monomer.
  • acrylic monomer having no cationically polymerizable functional group include, for example, methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, n—, is o or tert butyl Atalylate, n-, iso or tert Butyl metatalylate, Hexyl Atalylate, Hexyl Metatalylate, Octyl Atalylate, Octyl Metatalylate, Lauryl Atalylate, Lauryl Metatalylate, Stearyl Atalylate, Stearyl Metatalylate C1-C24 alkyl esters of acrylic acid or methacrylic acid; Benzylic esters of acrylic acid or methacrylic acid such as benzyl atylate and benzyl metatalylate; Phenoxetyl acrylate, Phenoxetyl metatalylate Such C7-12 phenoxyalkyl esters of acrylic acid
  • oloctinoremethacrylate methyl methacrylate is particularly suitable because of its high glass transition temperature and good heat resistance.
  • non-acrylic monomers having no cationically polymerizable functional group include, for example, a, ⁇ -ethylenically unsaturated carboxylic acids such as maleic acid, itaconic acid, and crotonic acid; acrylamide, methacrylamide, and methyl Acrylamide or methacrylamide or derivatives thereof such as acrylamide, ⁇ ethylmethacrylamide, diacetoneacrylamide, ⁇ -methylolacrylamide, ⁇ -methylolmethacrylamide, ⁇ -methoxymethylacrylamide, ⁇ -butoxymethylacrylamide; styrene, butyltoluene, ⁇ -Aromatic butyl monomers such as methyl styrene; butyl propionate, butyl acetate, talari-tolyl, meta-tali-tolyl, burbivalate, beroba monomer (trade name: branched chemicals manufactured by Shell Chemical Co., Ltd.) (Buly
  • the acrylic resin (A) is a solution polymerization of a cationically polymerizable unsaturated monomer and, if necessary, a monomer component having other unsaturated monomer power, for example, in the presence or absence of a radical polymerization initiator. It can be obtained by (co) polymerization by a known polymerization method such as bulk polymerization, emulsion polymerization or suspension polymerization.
  • Acrylic resin having a cationically polymerizable functional group at a specific end and Z or side chain
  • a homopolymer such as 3,4-epoxycyclohexenoremethinoremethacrylate (ECMMA), glycidylmethacrylate HGMA), 3-ethyl-3-oxeta-methylmethacrylate HOXE MA), etc .
  • ECMMAZGMA copolymer ECMMA / OXEMA copolymer Copolymer, GMAZOXEMA copolymer, ECMMAZ methyl methacrylate (MMA) copolymer, ECMMAZMMAZn-butyl acrylate (n-BA) copolymer, ECMMA / MMAZ lauryl acrylate (LA) copolymer, ECMMAZMMAZ cyclohexylene Tacrylate (CMMA) copolymer, ECMMAZMMAZ2-hydroxyethyl methacrylate (HEMA) copolymer, ECMMAZMMAZ methoxydiethylene glycolanolate methacrylate (MDEMA) copo
  • MMAZMDEMA copolymer ECMMAZGMAZMMAZIBXMA copolymer, E
  • the ability to include a copolymer containing one or more cationically polymerizable unsaturated monomers such as a polymer is not limited to these.
  • acrylic resin (A) containing two or more different cationically polymerizable groups in one molecule examples include, for example, bullcyclohexene dioxide, limonene dioxide, 3, 4-epoxycyclohexyl methyl acrylate or 3 , 4-Epoxycyclohexylmethyl methacrylate and other alicyclic epoxy group-containing ethylenically unsaturated monomers and glycidyl acrylate Containing an alicyclic epoxy group and a glycidyl group obtained by polymerizing a glycidyl group-containing ethylenically unsaturated monomer such as glycidyl methacrylate and other polymerizable unsaturated monomers as necessary.
  • a polymer etc. can be mention
  • the cation polymerizable functional group equivalent is preferably 100 or more, more preferably 200 or more from the viewpoint of relaxation of the shrinkage of the cation-cured coating film, and fast curing. From the viewpoint of safety, it is preferably 1,500 or less, more preferably 1,000 or less.
  • the acrylic resin (A) plays a role of a binder, and the coating property of the composition, the affinity with the ceramic substrate, and the cationic curing property.
  • the weight average molecular weight of acrylic resin (A) should be 1,000 or more, especially 2,000 or more, and 100,000 or less, especially 50,000 or less. It is.
  • the coupling agent which is component (B) of the composition of the present invention increases the affinity of the acrylic resin (A) to the ceramic substrate, and further provides strong adhesion between the ceramic substrate and the cationic coating. Can be expressed.
  • the coupling agent (B) used in the present invention may be any compound that fulfills these functions.
  • the coupling agent include conventionally known organometallic compounds, such as silane cups.
  • examples thereof include a ring agent, a titanium coupling agent, an aluminum coupling agent, and a zirconium coupling agent.
  • silane coupling agents are preferred because they are particularly effective in improving adhesion to ceramic substrates.
  • the silane coupling agent is preferably one having two or more different reactive groups in one molecule.
  • One of the preferred reactive groups is a hydrolyzable alkoxysilane group that can be chemically bonded to the ceramic substrate by hydrolysis after the hydrolysis, and the other is a reactive group that can be chemically bonded to the hardened film.
  • a hydrolyzable alkoxysilane group that can be chemically bonded to the ceramic substrate by hydrolysis after the hydrolysis
  • the other is a reactive group that can be chemically bonded to the hardened film.
  • an amino group, a vinyl group, a hydroxyl group, an isocyanate group, a mercapto group, an alitaroyl group, a methacryloyl group, an oxetanyl group, an alicyclic or aliphatic chain epoxy group, a butyl ether group, etc. an amino group, a vinyl group, a hydroxyl group, an isocyanate group, a mercapto
  • Hydrolyzable silane coupling agents such as oxetal group-containing alkoxysilanes, alicyclic epoxy group-containing alkoxysilanes, aliphatic epoxy group-containing alkoxysilanes, butyl ether group-containing alkoxysilanes, and partial hydrolysates thereof.
  • the compatibility with the acrylic resin (A) is good, and the chemical resin reacts with the acrylic resin (A) when irradiated with active energy rays.
  • a silane coupling agent containing a cationically polymerizable group such as an oxetal group or an epoxy group is preferable because it has a strong adhesion to a ceramic substrate containing glass.
  • silane coupling agent containing a cationically polymerizable group examples include those represented by the formula (1):
  • R 1 is a cation polymerizable group such as an oxetal group, an alicyclic epoxy group or an aliphatic epoxy group
  • X is a monovalent hydrocarbon group which may be substituted with a halogen atom
  • R 2 is Examples thereof include an alkyl group having 1 to 4 carbon atoms, p is 0 or 1), an alkoxysilane containing at least one cationic polymerizable group, and partial hydrolysates thereof.
  • X in the formula (1) is, for example, an alkyl group having about 1 to 12 carbon atoms such as methyl, ethyl, propyl, butyl, amyl, hexyl, octyl, decyl, dodecyl; alkenyl groups such as bur and allyl ; Aryl groups such as phenyl, tolyl and xylyl; aralkyl groups such as 13 phenyl, ⁇ -phenylpropyl; halogen atoms such as fluorine and chlorine such as ⁇ -chloropropyl, 3, 3, 3-trifluoropropyl; And substituted hydrocarbon groups.
  • alkyl group having about 1 to 12 carbon atoms such as methyl, ethyl, propyl, butyl, amyl, hexyl, octyl, decyl, dodecyl
  • alkenyl groups such as bur and allyl
  • Aryl groups such
  • methyl is preferred because of its high hydrolyzability in the sol-gel reaction.
  • R 1 include an oxetal group, an alicyclic epoxy group, an aliphatic epoxy group, and a benzyl ether group. Among them, an alicyclic epoxy group, an aliphatic epoxy group, and particularly an alicyclic epoxy group. However, point power with good cationic polymerizability is also suitable.
  • R 2 include alkyl groups having about 1 to 4 carbon atoms such as methyl, ethyl, propyl, and butyl. Among them, methyl is preferable because of its high hydrolyzability in the sol-gel reaction.
  • is 0 or 1
  • 0 is a point power with high sol-gel reactivity.
  • Specific examples of the cationically polymerizable group-containing alkoxysilane represented by the formula (1) include 3-glycidoxypropyldimethylmethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropylene.
  • Epoxy group-containing silane coupling agent 3 (3-ethyl 3-methoxy-propyl) dimethyldimethyl Sisilane, 3- (3-Ethyl-3-oxeta-methoxy) propylmethyldimethoxysilane, 3- (3-Ethyl-3-oxeta-methoxy) propylethyldimethoxysilane, 3- (3-Ethyl-3-oxeta-methoxy) Propylpropyldimethoxysilane, 3— (3-Ethyl-3-oxeta-lmethoxy) propylphenyldimethoxysilane, 3 -— (3-Ethyl-3-oxeta-lmethoxy) propyl cyclohexyldimethoxysilane, 3-— (3 —Ethyl 3-oxeta-lmethoxy) propyltrimethoxysilane, 3— (3-Ethyl-1-oxe
  • silane coupling agent represented by the formula (1) two or more kinds of cationically polymerizable group-containing alkoxysilanes or partial hydrolysates thereof may be used in combination without impairing performance.
  • a coupling agent other than the cationically polymerizable group-containing alkoxysilane may be used in combination.
  • silane coupling agents other than cationically polymerizable group-containing alkoxysilanes include N-3- (aminoethyl) 3-aminopropyltriethoxysilane and N-3- (aminoethyl) 3-amino.
  • coupling agents other than silane coupling agents for example, isopropyl triisostearoyl titanate, isopropyl tridodecyl benzene sulfo titanate, isopropyl tri (dioctyl pyrophosphate) titanate, tetraisopropyl bis (diotyl phosphate) Phyto) titanate, tetraoctylbis (ditridecylphosphite) titanate, tetra (2,2-diallyloxymethyl 1-butyl) monobis (ditridecylphosphite) titanate, bis (dioctylpyrophosphate) alkoxy acetate titanate, bis (di-O Chi le pyrophosphate) titanate coupling agents such as ethylene titanate; aluminum - ⁇ beam isopropylate, mono sec - butoxy aluminum diisopropylate, aluminum se c-butylate
  • the blending amount of the coupling agent (B) is 1 part by mass or more with respect to 100 parts by mass of the acrylic resin (A). Above, preferably 5 parts by mass or more, more preferably 10 parts by mass or more, and 100 parts by mass or less, preferably 50 parts by mass or less, more preferably 30 parts by mass or less. If the amount of the coupling agent (B) is too small, the adhesion to the ceramic substrate tends to be lowered, and if too much, the cationic polymerization reactivity (curability) tends to be lowered.
  • the photoactive thione polymerization initiator (C) used in the present invention is an acid generated by irradiation with an active energy ray.
  • a cationically polymerizable component that is generated and contained in the coating composition such as the above talyl resin (A), a coupling agent having a cationically polymerizable functional group, or a cationically polymerizable compound (D) described later.
  • One or more compounds that act on the cationically polymerizable functional group for example, epoxy group or oxetanyl group
  • active energy rays include ultraviolet rays, electron beams, and radiation (j8 rays, ⁇ rays).
  • a light-powered thione polymerization initiator in general, sulfo-um salt, iodine salt, meta-octane compound, benzoin tosylate, etc. are known, and many compounds Is commercially available. In the present invention, such a commercially available photopower thione polymerization initiator can be used.
  • the compounding amount of the light-power thione polymerization initiator (C) is 0.1 parts by mass or more, preferably 1 with respect to 100 parts by mass of the cationically polymerizable component contained in the coating composition of the present invention.
  • the amount is preferably not less than 3 parts by mass, more preferably not less than 3 parts by mass, not more than 20 parts by mass, preferably not more than 15 parts by mass, and more preferably not more than 10 parts by mass. If the photopower thione polymerization initiator (C) is too small, the polymerization will not start or the polymerization rate tends to be slow, and if it is too large, it tends to precipitate (separate) from the composition.
  • the ceramic coating composition of the present invention in addition to the essential components (A), ( ⁇ ) and (C), other than the above ( ⁇ ) to ( ⁇ ), if necessary.
  • a cationically polymerizable compound (D) other than the above (A) to (B) may be added for the purpose of adjusting the viscosity of the coating composition and improving the physical properties of the cured coating film.
  • the other cationically polymerizable compound (D) include the following compounds (D1), (D2), (D3), (D4), (D5) and the like.
  • An epoxy compound having one or more epoxy groups in one molecule and having an epoxy equivalent of 70 to 5,000, preferably 80 to 3,000 can be used suitably.
  • the viscosity of the coating composition can be adjusted, so that the coating property can be improved, and the hardness of the coating film can be further increased by cationic polymerization. .
  • the epoxy group of this epoxy compound (D1) may be an alicyclic epoxy group having a cyclohexene oxide or cyclopentene oxide structure; an aliphatic epoxy group such as a glycidyl group may be shifted 1 Both epoxy groups may be mixed in the molecule! /.
  • Examples of the epoxy compound containing an alicyclic epoxy group include dicyclopentadiene dioxide, (3,4 epoxycyclohexyl) methyl-3,4-epoxycyclohexanecarboxylate, bis ( 2,3 epoxycyclopentyl) ether, bis (3,4-epoxycyclohexylmethyl) adipate, bis (3,4-epoxy-6-methylcyclohexylmethyl) adipate, (3,4 epoxy-6-methylcyclohexyl) methyl-3 4 Epoxy-6-methylcyclohexanecarboxylate, bis (3,4-epoxycyclohexylmethyl) acetal, bis (3,4-epoxycyclohexyl) ether of ethylene glycol, 3,4-epoxycyclohexane of ethylene glycol carboxylic acid
  • Epolide GT300 Trifunctional alicyclic epoxy resin manufactured by Daicel Chemical Industries, Ltd., trade
  • Examples of the epoxy compound containing an aliphatic epoxy group include ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, and 1,4 butanediol diglycidyl.
  • Ether neopentyl glycol diglycidyl ether, 1,6 hexanediol diglycidyl ether, glycerin diglycidyl ether, diglycerin tetraglycidinoate ethere, trimethylololepropane triglycidino ether, spiroglycol diglycidyl ether 2, 6 Diglycidyl ether, Sonorbitonore Polyglycidino oleate, Triglycidino lysocyanurate, Bisphenol A Jill ether, butadiene dioxide, diglycidyl phthalate, bis-phenol type epoxy ⁇ , epsilon - force Purorataton modified bisphenol type epoxy ⁇ , phenol novolak type epoxy ⁇ , cresol one novolac-type epoxy ⁇ Nadogaa up It is done.
  • the viscosity of the coating composition can be adjusted, so that the coating property can be improved, and the hardness of the coating film can be further increased by cationic polymerization. Can be increased.
  • the viscosity of the coating composition can be adjusted, so that the coating property can be improved, and the hardness of the coating film can be further increased by cationic polymerization. Can be increased.
  • a compound containing at least one oxetane ring represented by 0— in the molecule and examples thereof include compounds represented by the following formulas (D4-1) to (D4-4).
  • R 3 is an alkyl group having 1 to 6 carbon atoms
  • R 4 may be substituted with a hydrogen atom or a hydroxyl group, or may be substituted with an alkyl group having 1 to 6 carbon atoms or a hydroxyl group
  • R 3 is the same as formula (D4-1); R 5 is an alkylene group having 1 to 6 carbon atoms, a cycloalkylene group, a phenylene group, a xylylene group, or a polyalkylene group having 4 to 30 carbon atoms
  • R or the same as in formula (D4-1); is a hydrogen atom or methyl).
  • Representative examples of the oxetane compound represented by the above formula (D4-1) include 3-ethyl-3-methoxymethyloxetane, 3-ethyl-3-ethoxymethyloxetane, 3-ethyl-3- Butoxymethyloxetane, 3-Ethyl-3-hexyloxymethyloxetane, 3-Methyl 3-Hydroxymethyloxetane, 3-Ethyl 3-Hydroxymethyloxetane, 3-Ethyl-3 aralkyloxymethyl Xetane, 3-ethyl-3- (2, -hydroxichetil) oxymethyloxetane, 3-ethyl-3- (2'-hydroxy 3'-phenoxypropyl) oxymethyloxetane, 3-ethyl-3- (2, -hydroxy-3 , Monobutoxypropyl) oxymethyloxetane, 3 ethyl 3—
  • oxetane compound represented by the formula (D4-2) a compound in which V and both R 3 in the formula (D4-2) are both methyl or ethyl Can give.
  • R 3 are ethyl
  • R 5 is methylene, ethylene. , Propylene, butylene, cyclohexylene, phenylene, xylylene, poly (ethyleneoxy), poly (propyleneoxy), and the like.
  • oxetane compound represented by the formula (D4-4) 3-methyl-3-oxeta-methylmethyl acrylate, 3-methyl-3-oxeta-methyl methacrylate, 3 Examples include ethyl 3-oxetanyl methyl atallylate, 3-ethyl 3-oxetanyl methyl methacrylate, and the like.
  • the viscosity of the coating composition can be adjusted, so that the coating property can be improved, and the hardness of the coating film can be improved by cationic polymerization. It can be further increased.
  • epoxy compounds (D1) and oxetane compounds (D4) are suitable, and among them epoxy compounds (D1), especially alicyclic compounds.
  • a compound having an epoxy group is suitable for point strength with good coating properties such as high viscosity and curability with high compatibility and dispersibility with acrylic resin (A).
  • the component having cationic polymerizability may consist only of acrylic resin (A).
  • the sensitizer is blended for the purpose of further improving the cationic polymerization reactivity (curability) by active energy rays such as ultraviolet rays.
  • active energy rays such as ultraviolet rays.
  • Specific examples include pyrene, perylene, atalidine orange, thixanthone, 2-chlorothiaxanthone, benzoflavine, 9, 10 bis (2-ethylhexyloxy) anthracene, 9, 10 bis (n— Dodecyloxy) anthracene, 2 ethyl 9, 10-jetoxyanthracene, and the like.
  • the blending amount of the sensitizer is 100 parts by mass with respect to 100 parts by mass of the acrylic resin (A) (when the cationic polymerizable compound (D) is used in combination) (A) and (D)) Usually, it is used within the range of 10 parts by mass or less, preferably 5 parts by mass or less.
  • a silane coupling agent having a cationic polymerizable functional group such as an epoxy group or a oxetal group
  • the coupling agent (B) has an acrylic resin (A) and a cationic polymerizable functional group.
  • Total of silane coupling agent (B) (when using cation-polymerizable compound (D) in combination, total of (A), (B) and (D)) 10 parts by mass or less, preferably 100 parts by mass Is used within the range of 5 parts by mass or less. If the amount is too large, precipitation (separation) from the composition may occur.
  • the soot component may be blended for the purpose of adjusting the viscosity of the composition and improving the physical properties and adhesion of the resulting cured product.
  • acrylic resins other than the acrylic resin (A) having cationic polymerization properties include, for example, acrylic resins other than the acrylic resin (A) having cationic polymerization properties, polyester resins, rosin-modified phenol resins, rosin-modified alkyd resins, and ketone resins.
  • the blending amount is within a range not inhibiting the cationic polymerization reactivity (curability) of the composition.
  • the pigment may be a colored pigment or an extender pigment. None of these are particularly limited, and pigments commonly used in the coating and printing fields can be used.
  • coloring pigments examples include white pigments such as titanium white and zinc white; blue pigments such as cyanine blue and indanthrene blue; green pigments such as cyanine green and patina; organic reds such as azo and quinacridone Inorganic red pigments such as Bengala; organic yellow pigments such as benzimidazoline, isoindolinone, isoindoline, and quinophthalone; inorganic yellow pigments such as titanium yellow and yellow lead; carbon black, graphite, pine smoke Black pigments such as; aluminum powder, copper powder, nickel powder, acid-titanium-coated my powder, iron oxide-coated my powder, Examples include glitter pigments such as glitter graphite.
  • extender pigments include titanium oxide, silicon oxide, calcium carbonate, calcium sulfate, barium sulfate, and alumina white.
  • the pigment is preferably a neutral or acidic pigment because it does not inhibit the cationic polymerization reaction. Even if the pigment surface is treated neutral or acidic.
  • a solvent is basically unnecessary, but an appropriate amount may be used in some cases in order to adjust the viscosity of the composition and improve coating properties.
  • the ceramic coating composition of the present invention may be in the form of a printing ink or a coating for coating.
  • a method for preparing the coating composition a conventional method for preparing a UV curable coating composition can be applied. For example, it can be prepared by mixing each component, heating as necessary (for example, about 50 ° C), and stirring with a stirrer such as a dissolver, for example, for about 30 minutes. .
  • disperser such as bead mill or attritor is used to mix acrylic resin (A) with pigment and other components as required, for example, known pigment dispersant.
  • a ceramic coating composition in which the pigment is dispersed can be obtained by mixing the obtained pigment dispersion with the remaining components as necessary.
  • Ceramic substrate to which the ceramic coating composition of the present invention is applied examples include glass, ceramics, porcelain, cement, and the like, and the form is not particularly limited. Containers, decorative objects, decorative figurines , Vases, windows, tiles and more.
  • the method for coating or printing the ceramic coating composition of the present invention is not particularly limited, for example, roller coating, brush coating, roll coating coating, bar coating coating, dipping coating, spray coating, electrostatic coating, silk printing. , Offset printing, gravure printing, etc. can be selected and used as appropriate.
  • the coating film may be cured by applying an active energy ray at 0 to: LOO ° C, for example, room temperature after coating.
  • the active energy ray to be used is not particularly limited, and examples thereof include an ultraviolet ray, an electron beam, and radiation (j8 ray, X ray).
  • the energy source of the active energy line is not particularly limited.
  • a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, a metal halide lamp, a gallium lamp, an electrodeless lamp, a xenon lamp examples thereof include ultraviolet lamps such as a xymer lamp, scanning type and non-scanning type electron beam irradiation apparatuses.
  • An active energy ray irradiation device that can irradiate the surface of a three-dimensional object as uniformly as possible is preferable. The irradiation conditions can be changed as appropriate according to the type and thickness of the coated ceramic coating composition. Good.
  • the irradiation amount of the active energy ray necessary for curing the coating film is lower limit of 100 mj / cm 2 in the case of ultraviolet rays, and lower limit of 1 in the case of an electron beam whose upper limit is preferably 10,000 mj / cm 2.
  • preheating may be performed before irradiation with active energy rays, or heating may be performed after irradiation with active energy rays.
  • the preheating is preferably performed under a condition of 30 to: LOO ° C from the viewpoint of improving the wettability with respect to the ceramic substrate.
  • post-heating after the irradiation can reduce the amount of unreacted substances in the coating film, and can reduce the distortion of the coating film caused by the curing of the coating film by irradiation with active energy rays.
  • follow-up heating may improve the hardness and adhesion of the coating film. The follow-up heating is preferably performed at an ambient temperature of 100 to 250 ° C for 1 to 30 minutes.
  • the film obtained by curing using the coating composition of the present invention is excellent in hardness, chemical resistance and boiling resistance, and has a particularly improved adhesion to the ceramic substrate.
  • the cation polymerizable functional group (epoxy group and oxetal group) equivalent the theoretical value in which the composition specific power of the monomer as a raw material was also calculated was described.
  • the cation polymerizable functional group (epoxy group and oxetal group) equivalent is determined by the method described in JIS K-7236. This is done by dissolving the sample in 10 mL of chloroform, adding 20 mL of acetic anhydride and 10 mL of 20% tetraethylammonium bromide acetic acid solution, and using a potentiometric titrator, 0.1 mol ZL perchlorate standard solution. It is the calculation method which titrates with.
  • a polymerization apparatus that can be heated and cooled, 300 parts of deionized water and 0.5 parts of polyvinyl alcohol (80% of the degree of polymerization, 1,700 degree of polymerization) are covered, and the polybulu alcohol is completely dissolved. Until stirred. Add 25 parts of glycidyl methacrylate (GMA), 75 parts of methyl methacrylate (MMA), 1.0 part of 2,2, -azobisisobutyric-tolyl, and 0.5 part of n-dodecyl mercaptan. The temperature was raised to 80 ° C. and held at this temperature for 1 hour, and then heated to 90 ° C. and kept at this temperature for 1 hour to complete the polymerization of the monomer.
  • GMA glycidyl methacrylate
  • MMA methyl methacrylate
  • 2,2, -azobisisobutyric-tolyl 1.0 part of 2,2, -azobisisobutyric-tolyl
  • the obtained aqueous suspension was filtered through a filter cloth having a mesh size of 10 ⁇ m, and the filtrate was washed and dried in an electric oven at 50 ° C. under reduced pressure to obtain a cationic polymerizable functional group equivalent weight of 540 (theoretical value).
  • Granular epoxy group-containing acrylic resin (al). The weight average molecular weight of the obtained acrylic resin was 10,000.
  • a commercially available hard glass plate (100 ⁇ 150 ⁇ 2 mm) was washed with methanol and then dried in an oven at 80 ° C.
  • the ceramic coating composition obtained in Example 1 was applied to the surface of this hard glass plate by bar coater coating so that the film thickness was 10 m.
  • the coated glass plate was irradiated with ultraviolet rays using a condensing metal halide lamp (160W / cm) (distance to the coated glass plate 11cm; energy dose 100mJ / cm 2 and 500mJ / cm 2 ) Cured to obtain a test coated plate.
  • C The borders of the cells are slightly peeled off and adhered! /, The number of cells is 90Z100 or more.
  • D The borders of the squares peeled and adhered! /, The number of squares is 80-89Z100
  • F The number of cells in close contact is less than 30Z100.
  • Lead hardness The pencil pulling force test specified in JIS K-5400 8.4.2 (hand force method) is performed, and the evaluation is performed by the tear method. From a practical aspect, 3H or higher is desired.
  • test coating After immersing the test coating in hot water at 90 ° C for 5, 15, and 30 minutes, remove the test coating from the hot water, dry with a waste cloth, and remove the adhesive coating on the coating surface 1 minute later. Adhere and peel off instantly to visually evaluate the adhesion and the appearance of the cured coating.
  • the evaluation is based on the following criteria. A practical surface strength of C or higher is desired.
  • the surface condition of the coated surface is visually evaluated. Evaluation is performed according to the following criteria. A practical surface strength of B or higher is desired.
  • the coating surface is smooth.
  • Example 2 For various acrylic resins using GMA as an acrylic monomer containing a cationically polymerizable functional group, the same operation as in Example 1 was carried out except that the components shown in Table 2 were used! ⁇ Each ceramic coating composition I got a thing.
  • the acrylic resin (al5) used in Comparative Example 1 is an acrylic resin having no cationic polymerizable functional group.
  • Each ceramic coating composition was obtained in the same manner as in Example 1 except that the components shown in Table 3 were used for various acrylic resins having different weight average molecular weights (Mw).
  • Example 9 ECMMA (Example 9) and OX as acrylic monomers containing cationically polymerizable functional groups
  • EMA Example 10
  • the other cationically polymerizable compounds (dl-4) and (dl-5) used in Comparative Example 2 are Dow liquid epoxy resin DER331 and Dow solid epoxy resin DER661 (manufactured by Dow Chemical Co., Ltd.).
  • Product name which is an epoxy resin mainly composed of bisphenol A epoxy resin.
  • Example 2 As in Example 1, except that 3- (3-ethyl-3-oxycetalmethoxy) propyltrimethoxysilane (b2) was used in place of the coupling agent (bl) as a coupling agent and the components shown in Table 5 were used. By performing the above operations, each ceramic coating composition was obtained.
  • coupling agent bl 3-glycidoxypropyltrimethoxysilane
  • B coupling agent
  • syracure as a cationic polymerization initiator
  • This ceramic coating composition was subjected to the same test as in Example 1 (test temperature 20 ° C). However, the test coating plate was produced by the following method.
  • a commercially available hard glass plate (100 ⁇ 150 ⁇ 2 mm) was washed with methanol and then dried in an oven at 80 ° C. After coating the ceramic coating composition obtained in Example 14 on the surface of this hard glass plate with a bar coater to a dry film thickness of 10 m, the solvent was dried in an oven at 100 ° C for 1 minute. . Condensation type metalo, ride lamp (160W / cm) is used V, and ultraviolet rays are applied to the coated glass plate (distance to the painted glass plate 1 lcm; energy dose power SlOOmJ / cm 2 and 500mJ / cm 2 ) The coating film was cured to obtain a test coated plate.
  • Example 14 The same operation as in Example 14 was carried out except that the components shown in Table 6 were used, and each ceramic coating composition was obtained.
  • Example 14 For each ceramic coating, the same operation as in Example 14 was performed except that the acrylic resin containing cationically polymerizable functional groups shown in Table 7 was used as the acrylic resin (A) and the components shown in Table 7 were used. A composition was obtained.
  • Acrylic rosin (al6) used in Comparative Example 6 is a cationic polymerizable compound. It is an acrylic resin that has no active groups.
  • the other cationically polymerizable compounds (dl-4) and (dl-5) used in Comparative Example 7 are Dow liquid epoxy resin DER331 and Dow solid epoxy resin DER661 (manufactured by Dow Chemical Co., Ltd.). (Trade name) and epoxy resin mainly composed of bisphenol A epoxy resin.
  • the ceramic coating composition of the present invention has high curability, and the coating obtained by curing the composition is bonded to the ceramic substrate by forming a chemical bond.
  • the coating itself has excellent hardness, chemical resistance and boiling resistance, it is possible to provide a cured film having high practicality in an environment where ceramic products are used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Paints Or Removers (AREA)

Abstract

Disclosed is a composition for coating ceramics which has remarkably higher curability than conventional coating compositions and is capable of forming a crosslinking-cured coating film which has excellent hardness, chemical resistance and boiling resistance, while being excellent in adhesion to a ceramic surface. Specifically disclosed is a composition for coating ceramics which contains (A) an acrylic resin having a cationically polymerizable functional group at an end and/or in a side chain, (B) a coupling agent, and (C) a cationic photopolymerization initiator having a function of generating an acid when irradiated with an active energy ray.

Description

明 細 書  Specification
セラミックス被覆用組成物  Ceramic coating composition
技術分野  Technical field
[0001] 本発明は、活性エネルギー線照射により、ガラス、陶磁器などのセラミックス表面に 優れた密着性、硬度、耐薬品性および耐煮沸性を発現する架橋硬化被膜を形成し 得る被覆用組成物に関する。  TECHNICAL FIELD [0001] The present invention relates to a coating composition capable of forming a crosslinked cured film exhibiting excellent adhesion, hardness, chemical resistance and boiling resistance on the surface of ceramics such as glass and ceramics by irradiation with active energy rays. .
背景技術  Background art
[0002] ガラスなどのセラミックス製品の被覆、すなわちコーティングや印刷などに用いる被 覆用組成物としては、基材であるセラミックスとの強固な密着性が要求されるため、専 用の被覆用組成物が用いられている。セラミックス用インキなどの汎用のセラミックス 被覆用組成物は、基材に印刷または被覆後に 600°C前後の高温で焼付け処理を行 い、インキの模様や表示または被膜をセラミックス表面に融着させることで、基材に対 し強固な密着を付与している。し力しながら、この方法では、焼付け工程に多量のェ ネルギーを必要とすること、作業環境の点から生産効率が低いこと、乾燥炉の設置場 所の確保や揮発成分の処理設備の設置にコストが掛かり高コスト化に繋がるなどの 欠点を有する。また、ある種のセラミックス被覆用組成物は、ガラス成分の融着剤とし て鉛、カドミウム、クロム、マンガンなどの重金属が含まれていたり、溶剤などとして有 機揮発性成分 (VOC)を必要としたりすることから、環境の観点からも望ましくな!/、。  [0002] As a coating composition used for coating of ceramic products such as glass, that is, for coating and printing, it is required to have strong adhesion to the ceramic substrate. Is used. General-purpose ceramic coating compositions, such as ceramic inks, are baked at a high temperature of around 600 ° C after printing or coating on a substrate, and the ink pattern, display, or coating is fused to the ceramic surface. In addition, it provides a strong adhesion to the substrate. However, with this method, a large amount of energy is required for the baking process, production efficiency is low from the viewpoint of the work environment, installation of a drying furnace and installation of volatile component treatment equipment are required. It has disadvantages such as high costs and high costs. Also, certain ceramic coating compositions contain heavy metals such as lead, cadmium, chromium, and manganese as glass component fusion agents, and require organic volatile components (VOC) as solvents. It is also desirable from an environmental point of view!
[0003] 一般に紫外線 (UV)硬化型被覆用組成物は、紫外線等の活性エネルギー線を照 射することで短時間にて硬化するため、高温での焼付け工程を省くことが可能である 。さらに、 UV硬化型被覆用組成物は、 VOCやその他の非水系溶剤をほとんどまた は全く含ませることなく調製することが可能なため、環境面、作業効率面および設備 投資面などの観点から望ましいものといえる。しかしながら、 UV硬化型被覆用組成 物をセラミックス製品の被覆または装飾に適用した場合、焼付けを必要とするセラミツ タス被覆用組成物と同等または製品として許容可能な範囲内の密着性を得ることが 困難であった。  [0003] In general, an ultraviolet (UV) curable coating composition is cured in a short time by irradiating active energy rays such as ultraviolet rays, so that a baking process at a high temperature can be omitted. Furthermore, UV curable coating compositions can be prepared with little or no VOC or other non-aqueous solvents, which is desirable from an environmental, work efficiency, and capital investment perspective. It can be said that. However, when UV curable coating compositions are applied to ceramic product coatings or decorations, it is difficult to achieve adhesion that is equivalent to or acceptable as a ceramic coating composition that requires baking. Met.
[0004] セラミックス基材との密着性を改善する方法として、ビスフエノール Aエポキシ榭脂を 主成分とする塗料に、有機官能性シラン、陽イオン光重合開始剤およびフッ素化表 面活性剤を配合した UV硬化型組成物が提案されて 、る(特表 2000— 507281号 公報)。し力しながら、この組成物は UV硬化速度が極端に遅いために、前処理として 基材を加温したり、光照射後に加温し後硬化したりすることが必要であるなど、 UV硬 化で最大のメリットである高速ィ匕による被覆 (特に、多色印刷機使用時)が困難である などの課題を有する。 [0004] As a method for improving the adhesion to a ceramic substrate, bisphenol A epoxy resin is used. There has been proposed a UV curable composition in which an organic functional silane, a cationic photopolymerization initiator, and a fluorinated surface active agent are blended in a paint as a main component (Japanese Patent Publication No. 2000-507281). However, because this composition has an extremely slow UV curing rate, it is necessary to heat the substrate as a pretreatment, or to heat and cure after light irradiation. The problem is that it is difficult to coat with high-speed coating, especially when using a multi-color printing machine, which is the greatest merit of the system.
[0005] また特開平 2— 289611号公報には、脂環式エポキシ基を有するアクリル榭脂と光 カチオン重合開始剤とを必須成分とする光架橋組成物が開示されて ヽる。しかしな がら、この組成物では、従来の光力チオン組成物より硬化性が高いものの、セラミック ス基材との相互作用 (密着力)が弱いために、耐湿性、耐煮沸性など、セラミックス製 品が使用される環境において要求される特性に劣り、場合によっては基材カも被膜 が剥離するなどの課題を有する。  [0005] Further, JP-A-2-289611 discloses a photocrosslinking composition comprising an acrylic resin having an alicyclic epoxy group and a photocationic polymerization initiator as essential components. However, although this composition has higher curability than the conventional light-power thione composition, its interaction with the ceramic substrate (adhesion) is weak, so that it is made of ceramics such as moisture resistance and boiling resistance. The properties required in the environment where the product is used are inferior, and in some cases, the substrate film also has problems such as peeling of the coating.
発明の開示  Disclosure of the invention
[0006] 本発明の目的は、上記従来の被覆用組成物よりも著しく硬化性が高ぐセラミックス 表面に対して優れた密着性を有し、硬度、耐薬品性、耐煮沸性にも優れた架橋硬化 被膜を形成し得るセラミックス被覆用組成物を提供することにある。  [0006] The object of the present invention is to have excellent adhesion to the ceramic surface, which is remarkably higher in curability than the above conventional coating composition, and excellent in hardness, chemical resistance and boiling resistance. An object of the present invention is to provide a ceramic coating composition capable of forming a crosslinked cured film.
[0007] 本発明者らは、先の課題を踏まえたうえで鋭意検討した結果、セラミックス被覆用組 成物を構成するにあたり、末端および Zまたは側鎖にカチオン重合性官能基を有す るアクリル榭脂と活性エネルギー線照射により酸発生機能を有する光力チオン重合 開始剤とを含む組成物に、カップリング剤を配合することによって上記目的が達成さ れることを見出し、本発明を開発するに至った。  [0007] As a result of intensive studies based on the above problems, the present inventors have found that an acrylic resin having a cation polymerizable functional group at the terminal, Z, or side chain in constructing a ceramic coating composition. In order to develop the present invention, the inventors have found that the above-mentioned object can be achieved by blending a coupling agent with a composition containing a coagulant and a photothion polymerization initiator having an acid generation function by irradiation with active energy rays. It came.
[0008] すなわち本発明は、(A)末端および Zまたは側鎖にカチオン重合性官能基を有す るアクリル榭脂、 (B)カップリング剤および (C)活性エネルギー線照射により酸を発生 する機能を有する光力チオン重合開始剤を含有するセラミックス被覆用組成物に関 する。  That is, the present invention generates (A) an acrylic resin having a cationic polymerizable functional group at the terminal and Z or side chain, (B) a coupling agent, and (C) an acid upon irradiation with active energy rays. The present invention relates to a ceramic coating composition containing a functional light thione polymerization initiator.
[0009] 前記カップリング剤 (B)としては、セラミックス基材との親和性を向上させる点力 シ ランカップリング剤が好ましぐまた密着性をより一層強固なものにする点力 カチォ ン重合性官能基を有しているものが、さらに特定のアクリル榭脂 (A)やセラミックス基 材との親和性に優れている点力 特にエポキシ基および zまたはォキセタ-ル基を 有しているものが好ましい。 [0009] As the coupling agent (B), a point force silane coupling agent that improves the affinity with the ceramic substrate is preferred, and a point force polymerization that further strengthens the adhesion. Those having functional functional groups may be more specific acrylic resin (A) or ceramic groups. Point power excellent in affinity with the material Particularly preferred is one having an epoxy group and z or oxetal group.
[0010] 前記アクリル榭脂 (A)が有するカチオン重合性官能基としても、エポキシ基および [0010] The cationic polymerizable functional group possessed by the acrylic resin (A) also includes an epoxy group and
Zまたはォキセタニル基であることが好まし 、。 Preferred is Z or an oxetanyl group.
[0011] また前記アクリル榭脂(A)の重量平均分子量としては、 1, 000-100, 000である ことが、被覆 (塗工や印刷)作業性に優れて!/、ることから好ま 、。  [0011] Further, the weight average molecular weight of the acrylic resin (A) is preferably 1,000-100,000 because it is excellent in coating (coating and printing) workability! /. .
[0012] またさらに、前記アクリル榭脂 (A)のカチオン重合性官能基当量は、速硬化性の点 力ら 100〜1, 500であること力好まし!/ヽ。  [0012] Further, it is preferable that the cationic polymerizable functional group equivalent of the acrylic resin (A) is 100 to 1,500 from the point of rapid curing!
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0013] 本発明のセラミックス被覆用組成物は、活性エネルギー線照射によってカチオン重 合反応を起こして硬化する被覆用塗料組成物であり、 (A)末端および Zまたは側鎖 にカチオン重合性官能基を有するアクリル榭脂、 (B)カップリング剤および (C)活性 エネルギー線照射により酸を発生する機能を有する光力チオン重合開始剤を含有す ることを特徴とする。  [0013] The ceramic coating composition of the present invention is a coating composition that is cured by causing a cationic polymerization reaction upon irradiation with active energy rays, and (A) a cationically polymerizable functional group at the terminal and Z or side chain. And (B) a coupling agent, and (C) a photothion polymerization initiator having a function of generating an acid upon irradiation with active energy rays.
[0014] 以下、各成分について具体的に説明する。  [0014] Each component will be specifically described below.
[0015] (A)末端および Zまたは側鎖にカチオン重合性官能基を有するアクリル榭脂  [0015] (A) Acrylic resin having a cation polymerizable functional group at its terminal and Z or side chain
アクリル榭脂 (A)は、アクリル系の構造単位を有し、かつ分子中にカチオン重合性 基を少なくとも 1個有する重合体または共重合体である。  The acrylic resin (A) is a polymer or copolymer having an acrylic structural unit and having at least one cationic polymerizable group in the molecule.
[0016] カチオン重合性官能基としては、カチオン重合を起こす能力を有する官能基であ ればよぐたとえばエポキシ基 (グリシジル基も含む)、ォキセタ-ル基、ビニルエーテ ル基、プロべ-ルエーテル基のほ力、ビシクロオルソエステル、スピロオルソカーボネ ートなどの環状カーボネート基などがあげられる。これらのうち、カチオン重合反応速 度が高い点力 エポキシ基、ォキセタ-ル基、ビュルエーテル基などが好ましぐさら にセラミックス基材との親和性が良好な点からエポキシ基、ォキセタニル基が好まし い。アクリル榭脂 (A)はこれらの官能基を 1分子中に 2種以上含んでいてもよいし、異 なるカチオン重合性官能基を有する 2種以上の異なるアクリル榭脂を併用してもよい  [0016] The cationically polymerizable functional group may be any functional group capable of causing cationic polymerization, such as an epoxy group (including glycidyl group), an oxetal group, a vinyl ether group, and a probe ether group. Examples thereof include cyclic carbonate groups such as bicycloorthoesters and spiroorthocarbonates. Of these, the epoxy group, oxetal group, butyl ether group, etc., which have a high cationic polymerization reaction rate, are preferred, and the epoxy group and oxetanyl group are preferred because of their good affinity with ceramic substrates. Good. The acrylic resin (A) may contain two or more of these functional groups in one molecule, or two or more different acrylic resins having different cationic polymerizable functional groups may be used in combination.
[0017] カチオン重合性官能基をアクリル榭脂に導入する方法としては、従来公知の方法、 たとえばカチオン重合性官能基を有するモノマーを重合または共重合する方法 (重 合反応法)、アクリル重合体の一部にカチオン重合性官能基を有する化合物を後反 応で導入する方法 (高分子反応法)などが採用できる。 [0017] As a method for introducing a cationically polymerizable functional group into acrylic resin, a conventionally known method, For example, a method of polymerizing or copolymerizing a monomer having a cationic polymerizable functional group (polymerization reaction method), a method of introducing a compound having a cationic polymerizable functional group into a part of an acrylic polymer by post-reaction (polymer reaction) Law).
[0018] 重合反応法では、カチオン重合性基含有重合性不飽和モノマー(以下、「カチオン 重合性不飽和モノマー」という)を単独で重合する力、または必要に応じて、カチオン 重合性不飽和モノマーと共重合可能なその他の重合性不飽和モノマー(以下、「他 の不飽和モノマー」と 、う)をカチオン重合性不飽和モノマーと共重合する。  In the polymerization reaction method, a cationic polymerizable group-containing polymerizable unsaturated monomer (hereinafter referred to as “cation polymerizable unsaturated monomer”) can be polymerized alone, or, if necessary, a cationic polymerizable unsaturated monomer. Other polymerizable unsaturated monomers (hereinafter referred to as “other unsaturated monomers”) that can be copolymerized with cation polymerizable unsaturated monomers are copolymerized.
[0019] 単独重合体の場合、カチオン重合性不飽和モノマーはアクリル系のモノマーである ことが必要である力 共重合体の場合は、少なくともカチオン重合性不飽和モノマー か他の不飽和モノマーの一方がアクリルモノマーであればよい。  [0019] In the case of a homopolymer, the cationic polymerizable unsaturated monomer is required to be an acrylic monomer. In the case of a copolymer, at least one of the cationic polymerizable unsaturated monomer or the other unsaturated monomer is used. May be an acrylic monomer.
[0020] カチオン重合性不飽和モノマーのうちアクリルモノマーの代表例としては、たとえば 3, 4 エポキシシクロへキシノレメチノレアタリレート、 3, 4 エポキシシクロへキシノレメ チルメタタリレート、 3,4—エポキシシクロへキシルメチル化ポリ力プロラタトンのアタリ レート、 3,4—エポキシシクロへキシルメチル化ポリ力プロラタトンのメタタリレート、 2,3 エポキシシクロペンテニノレアタリレート、 2,3 エポキシシクロペンテ二ノレメタクリレ ート、グリシジルアタリレート、グリシジルメタタリレート、メチルダリシジルアタリレート、メ チルダリシジルメタタリレート、 2- (1,2 エポキシ一 4,7—メタノペルヒドロインデン一 5 (6)—ィル)ォキシェチルアタリレート、 2- (1,2 エポキシ一 4,7—メタノペルヒドロ インデン一 5 (6)—ィル)ォキシェチルメタタリレート、 5,6—エポキシ一 4,7—メタノぺ ルヒドロインデン一 2—ィル一アタリレート、 5,6 エポキシ一 4,7—メタノペルヒドロイ ンデン 2—ィルーメタタリレート、 1,2 エポキシ 4,7—メタノペルヒドロインデンー 5—ィル一アタリレート、 1,2 エポキシ一 4,7—メタノペルヒドロインデン一 5—ィル一 メタタリレートなどのエポキシ基含有アタリレート類; 3—メチルー 3—ォキセタ-ルメチ ルアタリレート、 3—メチルー 3—ォキセタ-ルメチルメタタリレート、 3—ェチルー 3— ォキセタ-ルメチルアタリレート、 3—ェチルー 3—ォキセタ-ルメチルメタタリレート、 2- (3—ェチルー 3—ォキセタ -ルメトキシ)ェチルアタリレート、 2- (3—ェチルー 3 ーォキセタ -ルメトキシ)ェチルメタタリレート、 4一(3—ェチルー 3—ォキセタ-ルメト キシ)ブチルアタリレート、 4一(3—ェチルー 3—ォキセタ -ルメトキシ)ブチルメタタリ レート、 4— —ェチル—3—ォキセタ -ルメトキシメチル)ベンジルアタリレート、 4—[0020] Among the cationically polymerizable unsaturated monomers, representative examples of the acrylic monomer include, for example, 3, 4 epoxycyclohexenoremethinoleatalylate, 3, 4 epoxycyclohexenoremethymethacrylate, 3,4-epoxy. Cyclohexylmethylated poly-strength prolatataton attalate, 3,4-epoxycyclohexylmethylated polystreptathrate metatalylate, 2,3 Epoxycyclopentenino rare talylate, 2,3 Epoxycyclopentenoylmethacrylate, Glycidyl talylate , Glycidyl metatalylate, methyl daricidyl atylate, methyl daricidyl metatalylate, 2- (1,2 epoxy-1,4,7-methanoperhydroindene-5 (6) -yl) oxetyl atari 2- (1,2 epoxy 4,7—methanoperhydro indene 5 (6) —yl Oxetyl metatalylate, 5,6—Epoxy 1,4,7-Methanopel hydroindene 1—Yel 1 atylate, 5,6 Epoxy 1,4—Methanoperhydroindene 2—Yelume Epoxy group-containing talis such as tartrate, 1,2 epoxy 4,7-methanoperhydroindene 5-yl acrylate, 1,2 epoxy 4,7-methanoperhydroindene -1-5-methacrylate 3—Methyl-3-oxetal methyl acrylate, 3-methyl-3-oxetal methyl methacrylate, 3-ethyl 3-ethyl etherate, 3-ethyl 3-methyl ether Talylate, 2- (3-Ethyl-3-oxeta-lmethoxy) ethyl atylate, 2- (3-Ethyl-3-oxeta-lmethoxy) ethyl metatalylate, 4- (3-Ethyl 3-oxy) Data - Rumeto carboxymethyl) butyl Atari rate, 4 i (3 Echiru 3 Okiseta - Rumetokishi) Buchirumetatari 4——Ethyl-3-oxeta-lmethoxymethyl) benzyl acrylate, 4—
(3—ェチルー 3—ォキセタ -ルメトキシメチル)ベンジルメタタリレートなどのォキセタ -ル基含有アタリレート類; 2—ビ-ロキシェチルアタリレート、 2—ビ-ロキシェチルメ タクリレート、 4ービニロキシブチルアタリレート、 4ービニロキシブチルメタタリレート、 2 ーメチルー 4ービ-ロキシブチルアタリレート、 2—メチルー 4ービ-ロキシブチルメタ タリレート、 4 ビ-ロキシメチルシクロへキシルメチルアタリレート、 2- (2,一ビ -ロキ シエトキシ)ェチルアタリレート、 2—(2,ービ-ロキシエトキシ)ェチルメタアタリレート 、 4 ビニロキシメチルシクロへキシルメチルメタタリレート、 4ービニロキシメチルベン ジルアタリレート、 4ービ-ロキシメチルベンジルメタタリレート、 4ービ-ロキシベンジ ルアタリレート、 4ービ-ロキシベンジルメタタリレート、アクリル酸ポリエチレングリコー ルモノビュルエーテル、メタクリル酸ポリエチレングリコールモノビュルエーテル、ァク リル酸ポリプロピレングリコールモノビュルエーテル、メタクリル酸ポリプロピレングリコ ールモノビュルエーテルなどのビュルエーテル基含有アタリレート類などがあげられ る。これらのうち、 3, 4—エポキシシクロへキシルメチルアタリレート、 3, 4 エポキシ シクロへキシルメチルメタタリレート、グリシジルアタリレート、グリシジルメタタリレートがOxetal group-containing acrylates such as (3-ethylyl-3-oxeta-lmethoxymethyl) benzylmetatalylate; 2-biloxetyl acrylate, 2-bi-loxychetyl methacrylate, 4-vinyloxybutyl attaly 4-vinyloxybutyl methacrylate, 2-methyl-4-bi-hydroxybutyl acrylate, 2-methyl-4-bi-butyl butyl methacrylate, 4-bi-oxymethylcyclohexyl methyl acrylate, 2- (2 , 1-Loxyethoxy) ethyl atylate, 2- (2, -Bi-oxyethoxy) ethyl metatalylate, 4 Vinyloxymethylcyclohexyl methyl metatalylate, 4-vinyloxymethyl benzyl acrylate , 4-bi-roxymethylbenzyl metatalylate, 4-bi-roxybenzyl acrylate, 4-bi-roxy Butyl ether group-containing acrylates such as benzyl methacrylate, polyethylene glycol monobutyl ether, polyethylene glycol monobutyl methacrylate, polypropylene glycol monobutyl ether, and polypropylene glycol monobutyl methacrylate Can be raised. Of these, 3,4-epoxycyclohexylmethyl attalate, 3,4 epoxy cyclohexylmethyl methacrylate, glycidyl acrylate, and glycidyl methacrylate.
、速硬化性の点から好適に使用される。このカチオン重合性官能基含有アクリルモノ マーは単独で重合してもよいし、 2種以上を共重合してもよい。さらに後述するつぎの カチオン重合性官能基含有非アクリルモノマーおよび Zまたは後述するカチオン重 合性官能基を有さな 、アクリルモノマーや非アクリルモノマーの 1種または 2種以上と 共重合してもよい。 It is preferably used from the viewpoint of fast curability. This cation polymerizable functional group-containing acrylic monomer may be polymerized alone or in combination of two or more. Further, the following cationic polymerizable functional group-containing non-acrylic monomer and Z or a cationic polymerizable functional group described later may be copolymerized with one or more of acrylic monomers and non-acrylic monomers. .
カチオン重合性不飽和モノマーのうち非アクリルモノマーの代表例としては、たとえ ば 2 ァリロキシメチルォキシラン、 2—(4ーァリルフエノキシメチル)ォキシラン、 2— ( 4—ァリルシクロへキシルメトキシメチル)ォキシラン、 2- (4-ビ-ロキシフエノキシメ チル)ォキシラン、 2- (4-ビュルフエノキシメチル)ォキシラン、 4 -ビュル 1 シク 口へキセン 1, 2 エポキシド、 3, 4 エポキシ 1ーブテン、 1, 2 エポキシ 5— へキセン、 1, 2 エポキシ 7 オタテン、 1, 2 エポキシ 9ーデセンなどのェポ キシ基含有モノマー; 3—ァリロキシメチルー 3—ェチルォキセタン、 3—(4ーァリルフ エノキシメチル) 3—ェチルォキセタン、 3— (4—ァリルシクロへキシルメトキシメチ ル) 3—ェチルォキセタン、 3—ェチルー 3—(4 ビ-ロキシフエノキシメチル)ォキ セタン、 3—ェチル 3— (4—ビュルフエノキシメチル)ォキセタン、 3— (3—ブテ-口 キシメチル)ー3—ェチルォキセタン、 3—ェチルー 3—(5—へキセ-口キシメチル) ォキセタンなどのォキセタ-ル基含有モノマー; 1ービ-ルー 4ービ-ロキシベンゼンTypical examples of the non-acrylic monomer among the cationic polymerizable unsaturated monomers include, for example, 2-aryloxymethyloxysilane, 2- (4-arylphenyloxymethyl) oxysilane, 2- (4-arylcyclohexylmethoxy). Methyl) oxylan, 2- (4-bioxyphenoxymethyl) oxylan, 2- (4-Buhlphenoxymethyl) oxylan, 4-Buhl 1 Dioxyhexene 1, 2 Epoxide, 3, 4 Epoxy 1 Epoxy group-containing monomers such as butene, 1,2 epoxy 5—hexene, 1,2 epoxy 7 otaten, 1,2 epoxy 9-decene; 3-alkyloxymethyl-3-ethyloxetane, 3- (4-arylphenoloxymethyl) 3-Ethyloxetane, 3- (4-Arylcyclohexylmethoxymethyl) 3) -Ethyloxetane, 3-Ethyloxan 3- (4 Bi-Roxyphenoxymethyl) oxetane, 3-Ethyl 3 -— (4-Bulfenoxymethyl) oxetane, 3 -— (3-But-Mouth Oxetal group-containing monomers such as xylmethyl) -3-ethyloxycetane, 3-ethyl-3- (5-hexoxymethyl) oxetane; 1-bi-l- 4-loxybenzene
、 1 ビュル— 4 ビ-ロキシメチルシクロへキサンなどのビュルエーテル基含有モノ マーなどがあげられる。これらのうち、 2—(4 ビュルフエノキシメチル)ォキシラン、 4 ビュル 1ーシクロへキセン 1, 2—エポキシドが、速硬化性の点から好適に使用さ れる。なお、これら非アクリルモノマーは、単独重合で使用するのではなぐアクリルモ ノマーと共重合させることが好まし 、。 And butyl ether group-containing monomers such as 1 bul-4 bis-loxymethylcyclohexane. Of these, 2- (4 butylphenoxymethyl) oxysilane and 4 butyl 1-cyclohexene 1,2-epoxide are preferably used from the viewpoint of rapid curing. These non-acrylic monomers are preferably copolymerized with acrylic monomers that are not used in homopolymerization.
[0022] カチオン重合性不飽和モノマーと共重合可能な他の不飽和モノマーとしては、得ら れるアクリル榭脂 (A)が目的とする性能などに応じ、必要に応じて適宜共重合される 。ただし、カチオン重合性不飽和モノマーが非アクリルモノマーの場合はアクリルモノ マーを共重合する必要がある。  [0022] As the other unsaturated monomer copolymerizable with the cationically polymerizable unsaturated monomer, the obtained acrylic resin (A) is appropriately copolymerized as required according to the intended performance and the like. However, when the cationically polymerizable unsaturated monomer is a non-acrylic monomer, it is necessary to copolymerize the acrylic monomer.
[0023] カチオン重合性官能基を有さないアクリルモノマーの代表例としては、たとえばメチ ルアタリレート、メチルメタタリレート、ェチルアタリレート、ェチルメタタリレート、 n—, is o または tert ブチルアタリレート、 n—, iso または tert ブチルメタタリレート、 へキシルアタリレート、へキシルメタタリレート、ォクチルアタリレート、ォクチルメタタリ レート、ラウリルアタリレート、ラウリルメタタリレート、ステアリルアタリレート、ステアリル メタタリレートなどのアクリル酸またはメタクリル酸の炭素数 1〜24のアルキルエステル 類;ベンジルアタリレート、ベンジルメタアタリレートなどのアクリル酸またはメタクリル酸 のべンジルエステル類;フエノキシェチルアタリレート、フエノキシェチルメタタリレート などのアクリル酸またはメタクリル酸の炭素数 7〜 12のフエノキシアルキルエステル類 ;シクロへキシルアタリレート、シクロへキシルメタタリレートなどのアクリル酸またはメタ クリル酸の炭素数 6〜24のシクロアルキルエステル類; 2 ヒドロキシェチルアタリレー ト、 2—ヒドロキシェチノレメタタリレート、 2—ヒドロキシプロピルアタリレート、 2—ヒドロキ シプロピルメタタリレート、 4ーヒドロキシブチルアタリレート、 4ーヒドロキシブチルメタク リレートなどのアクリル酸またはメタクリル酸の炭素数 1〜8のヒドロキシアルキルエステ ル類;メトキシ一ジエチレングリコールアタリレート、メトキシ一ジエチレングリコールメタ タリレート、エトキシージエチレングリコールアタリレート、エトキシージエチレングリコー ルメタタリレート、メトキシ一ポリエチレングリコールアタリレート、メトキシ一ポリエチレン グリコールメタタリレート、エトキシーポリエチレングリコールアタリレート、エトキシーポ リエチレングリコールメタタリレートなどのアクリル酸またはメタクリル酸のエチレングリコ ール鎖数が 1〜10で炭素数 1〜8のアルコキシポリエチレングリコールエステル類;メ トキシージプロピレングリコールアタリレート、メトキシージプロピレングリコールメタタリ レート、エトキシージプロピレングリコールアタリレート、エトキシージプロピレングリコー ルメタタリレート、メトキシ一ポリプロピレングリコールアタリレート、メトキシ一ポリプロピ レングリコールメタタリレート、エトキシーポリプロピレングリコールアタリレート、エトキシ ポリプロピレングリコールメタタリレートなどのアクリル酸またはメタクリル酸のプロピ レングリコール鎖数が 1〜10で炭素数 1〜8のアルコキシポリプロピレングリコールェ ステル類;フエノキシ ジエチレングリコールアタリレート、フエノキシージエチレングリ コーノレメタタリレート、ノニルフエノーノレージエチレングリコーノレアタリレート、ノニノレフエ ノーノレージエチレングリコーノレメタタリレート、クレゾ一ノレージエチレングリコーノレアタリ レート、クレゾ一ノレージエチレングリコーノレメタタリレート、フエノキシ ポリエチレングリ コールアタリレート、フエノキシ ポリエチレングリコールメタタリレート、ノ-ルフエノー ノレ ポリエチレングリコーノレアタリレート、ノニルフエノーノレ ポリエチレングリコーノレメ タクリレート、クレゾ一ノレ ポリエチレングリコーノレアタリレート、クレゾ一ノレ ポリェチ レングリコールメタタリレートなどのアクリル酸またはメタクリル酸のエチレングリコール 鎖数が 1〜10で炭素数 6〜16のァリールォキシポリエチレングリコールエステル類; フエノキシージプロピレングリコールアタリレート、フエノキシージプロピレングリコール メタタリレート、ノニルフエノーノレージプロピレングリコーノレアタリレート、ノニルフエノー ノレージプロピレングリコーノレメタタリレート、クレゾ一ノレージプロピレングリコーノレアタリ レート、クレゾ一ノレージプロピレングリコーノレメタタリレート、フエノキシ ポリプロピレン グリコールアタリレート、フエノキシ ポリプロピレングリコールメタタリレート、ノニルフエ ノール ポリプロピレングリコールアタリレート、ノ-ルフエノールーポリプロピレングリ コーノレメタタリレート、クレゾ一ノレ ポリプロピレングリコーノレアタリレート、クレゾ一ノレ ポリプロピレングリコールメタタリレートなどのアクリル酸またはメタクリル酸のプロピレン グリコール鎖数が 1〜10で炭素数 6〜16のァリールォキシポリプロピレングリコール エステル類;アクリル酸、メタクリル酸などの 1種または 2種以上があげられる。その他 、イソボル-ルアタリレート、イソボル-ルメタタリレート、テトラヒドロフルヒルアタリレー ト、テトラヒドロフルヒルメタタリレート、トリフルォロェチルアタリレート、トリフルォロェチ ノレメタリレート、パーフノレォロォクチノレアタリレート、パーフノレォロォクチノレメタタリレー トなどがあげられる。これらのモノマーのうち、メチルメタタリレートが、ガラス転移温度 が高ぐ耐熱性が良好な点力も特に好適である。 [0023] Representative examples of the acrylic monomer having no cationically polymerizable functional group include, for example, methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, n—, is o or tert butyl Atalylate, n-, iso or tert Butyl metatalylate, Hexyl Atalylate, Hexyl Metatalylate, Octyl Atalylate, Octyl Metatalylate, Lauryl Atalylate, Lauryl Metatalylate, Stearyl Atalylate, Stearyl Metatalylate C1-C24 alkyl esters of acrylic acid or methacrylic acid; Benzylic esters of acrylic acid or methacrylic acid such as benzyl atylate and benzyl metatalylate; Phenoxetyl acrylate, Phenoxetyl metatalylate Such C7-12 phenoxyalkyl esters of acrylic acid or methacrylic acid; C6-24 cycloalkyl esters of acrylic acid or methacrylic acid such as cyclohexyl acrylate and cyclohexyl methacrylate 2 hydroxyethyl acrylate, 2-hydroxy ethynole methacrylate, 2-hydroxypropyl acrylate, 2-hydroxypropyl methacrylate, 4-hydroxybutyl acrylate, 4-hydroxybutyl methacrylate C1-C8 hydroxyalkyl esters of acrylic acid or methacrylic acid; methoxy-diethylene glycol acrylate, methoxy-diethylene glycol meta Acrylic or methacrylic acid such as talylate, ethoxydiethylene glycol acrylate, ethoxydiethylene glycol methacrylate, methoxy-polyethylene glycol acrylate, methoxy-polyethylene glycol methacrylate, ethoxy polyethylene glycol acrylate, ethoxypolyethylene glycol methacrylate Alkoxypolyethylene glycol esters having 1 to 10 carbon atoms and 1 to 8 carbon atoms of ethylene glycol chain of acid; methoxydipropylene glycol acrylate, methoxydipropylene glycol methacrylate, ethoxydipropylene glycol acrylate, ethoxydi Propylene glycol methacrylate, methoxy monopolypropylene glycol acrylate, methoxy monopolypropyl Alkyl polypropylene glycol esters with 1 to 10 carbon atoms and 1 to 8 carbon atoms in propylene glycol chains of acrylic acid or methacrylic acid such as pyrene glycol metatalylate, ethoxy-polypropylene glycol acrylate, ethoxy polypropylene glycol metatalylate, etc. Phenoxy diethylene glycol acrylate, phenoxy diethylene glycolate methanolate, nonylphenol ethylene ethylene glycolate tallate, noninophenol ethylene glycolate methanolate, crezo monoethylene ethylene glycolate talate, crezo monotale Ethylene glycol nolemethacrylate, phenoxy polyethylene glycol acrylate, phenoxy polyethylene glycol methacrylate Number of ethylene glycol chains of acrylic or methacrylic acid, such as norenoethylene polyethylene glycolenotalylate, nonylphenolene polyethylene glycolenolemethacrylate, cresol monolere polyethylene glycolenore talate, crezo monoreethylene glycol methacrylate 1-10 and C6-C16 aryloxypolyethylene glycol esters; phenoxydipropylene glycol acrylate, phenoxydipropylene glycol metatalylate, nonylphenolate propyleneglycolanolate tallate, nonylphenolate propyleneglycol Noremetatalylate, Cresole Norepropylene Glycol Nore Tarate, Creso Monourere Propylene Glycol Nore Metatalate , Phenoxy Polypropylene Glycol Atallate, Phenoxy Polypropylene Glycol Metatalylate, Nonyl Phenol Polypropylene Glycol Atylate, Norphenol-Polypropylene Glycole Methanolate, Creso Monore Polypropylene Glyconore Taleate, Creso Monore Polypropylene Glycol Metatalylate Propylene of acrylic acid or methacrylic acid such as Examples thereof include aryloxypolypropylene glycol esters having 1 to 10 glycol chains and 6 to 16 carbon atoms; one or more of acrylic acid, methacrylic acid and the like. Others: isobornyl acrylate, isobutyl methacrylate, tetrahydrofluol thiolate, tetrahydro fluorethyl methacrylate, trifluoroethyl acrylate, trifluoroethyl noremetallate, perfunoreoctinorealate, perfnore For example, oloctinoremethacrylate. Of these monomers, methyl methacrylate is particularly suitable because of its high glass transition temperature and good heat resistance.
[0024] カチオン重合性官能基を有さない非アクリルモノマーの代表例としては、たとえば マレイン酸、ィタコン酸、クロトン酸などの a , β エチレン性不飽和カルボン酸類;ァ クリルアミド、メタクリルアミド、 Ν メチルアクリルアミド、 Ν ェチルメタクリルアミド、ジ アセトンアクリルアミド、 Ν—メチロールアクリルアミド、 Ν—メチロールメタクリルアミド、 Ν—メトキシメチルアクリルアミド、 Ν—ブトキシメチルアクリルアミドなどのアクリルアミド もしくはメタクリルアミドまたはこれらの誘導体;スチレン、ビュルトルエン、 α—メチル スチレンなどの芳香族ビュルモノマー;プロピオン酸ビュル、酢酸ビュル、アタリ口-ト リル、メタタリ口-トリル、ビュルビバレート、べォバモノマー(商品名:シェル化学社製 の分岐脂肪酸のビュルエステル)、サイラプレーン FM0711、サイラプレーン FM07 21、サイラプレーン FM0725 (以上、いずれもチッソ (株)製の末端にメタクリロイル基 を有するポリジメチルシロキサンマクロモノマー。商品名)などのビュルモノマーの 1種 または 2種以上をあげることができる。これらのモノマーのうち、スチレンが、ガラス転 移温度が高ぐ耐熱性が良好な点力 特に好適である。 [0024] Representative examples of non-acrylic monomers having no cationically polymerizable functional group include, for example, a, β-ethylenically unsaturated carboxylic acids such as maleic acid, itaconic acid, and crotonic acid; acrylamide, methacrylamide, and methyl Acrylamide or methacrylamide or derivatives thereof such as acrylamide, Νethylmethacrylamide, diacetoneacrylamide, Ν-methylolacrylamide, Ν-methylolmethacrylamide, Ν-methoxymethylacrylamide, Ν-butoxymethylacrylamide; styrene, butyltoluene, α -Aromatic butyl monomers such as methyl styrene; butyl propionate, butyl acetate, talari-tolyl, meta-tali-tolyl, burbivalate, beroba monomer (trade name: branched chemicals manufactured by Shell Chemical Co., Ltd.) (Bulyl ester of fatty acid), Silaplane FM0711, Silaplane FM0721, Silaplane FM0725 (all of which are polydimethylsiloxane macromonomers having a methacryloyl group at the end, manufactured by Chisso Corporation). One or more can be listed. Of these monomers, styrene is particularly suitable because of its high glass transition temperature and good heat resistance.
[0025] アクリル榭脂 (A)は、カチオン重合性不飽和モノマー、さらに必要に応じて他の不 飽和モノマー力もなるモノマー成分を、たとえばラジカル重合開始剤の存在下または 不存在下に、溶液重合、塊状重合、乳化重合、懸濁重合などのそれ自体公知の重 合方法にて (共)重合することにより得ることができる。  [0025] The acrylic resin (A) is a solution polymerization of a cationically polymerizable unsaturated monomer and, if necessary, a monomer component having other unsaturated monomer power, for example, in the presence or absence of a radical polymerization initiator. It can be obtained by (co) polymerization by a known polymerization method such as bulk polymerization, emulsion polymerization or suspension polymerization.
[0026] 具体的な末端および Zまたは側鎖にカチオン重合性官能基を有するアクリル榭脂  [0026] Acrylic resin having a cationically polymerizable functional group at a specific end and Z or side chain
(A)としては、 3, 4—エポキシシクロへキシノレメチノレメタタリレート(ECMMA)、グリシ ジルメタクリレー HGMA)、 3—ェチルー 3—ォキセタ -ルメチルメタクリレー HOXE MA)などの単独重合体; ECMMAZGMA共重合体、 ECMMA/OXEMA共重 合体、 GMAZOXEMA共重合体、 ECMMAZメチルメタタリレート(MMA)共重合 体、 ECMMAZMMAZn—ブチルアタリレート(n—BA)共重合体、 ECMMA/ MMAZラウリルアタリレート(LA)共重合体、 ECMMAZMMAZシクロへキシルメ タクリレート(CMMA)共重合体、 ECMMAZMMAZ2—ヒドロキシェチルメタタリ レート(HEMA)共重合体、 ECMMAZMMAZメトキシージエチレングリコーノレメタ タリレート(MDEMA)共重合体、 ECMMAZMMAZイソボル-ルメタタリレート(I BXMA)共重合体、 ECMMAZMMAZスチレン(St)共重合体、 ECMMA/St 共重合体、 ECMMAZStZn— BA共重合体、 ECMMAZStZLA共重合体、 EC MMAZStZCMMA共重合体、 ECMMAZStZHEMA共重合体、 ECMMA/ StZMDEMA共重合体、 ECMMAZStZlBXMA共重合体、 GMA/MMA/L A共重合体、 GMAZMMAZCMMA共重合体、 GMAZMMAZHEMA共重合 体、 GMAZMMAZMDEMA共重合体、 GMAZMMAZIBXMA共重合体、 GAs (A), a homopolymer such as 3,4-epoxycyclohexenoremethinoremethacrylate (ECMMA), glycidylmethacrylate HGMA), 3-ethyl-3-oxeta-methylmethacrylate HOXE MA), etc .; ECMMAZGMA copolymer, ECMMA / OXEMA copolymer Copolymer, GMAZOXEMA copolymer, ECMMAZ methyl methacrylate (MMA) copolymer, ECMMAZMMAZn-butyl acrylate (n-BA) copolymer, ECMMA / MMAZ lauryl acrylate (LA) copolymer, ECMMAZMMAZ cyclohexylene Tacrylate (CMMA) copolymer, ECMMAZMMAZ2-hydroxyethyl methacrylate (HEMA) copolymer, ECMMAZMMAZ methoxydiethylene glycolanolate methacrylate (MDEMA) copolymer, ECMMAZMMAZ isopropanol methacrylate (I BXMA) copolymer Copolymer, ECMMAZMMAZ Styrene (St) Copolymer, ECMMA / St Copolymer, ECMMAZStZn— BA Copolymer, ECMMAZStZLA Copolymer, EC MMAZStZCMMA Copolymer, ECMMAZStZHEMA Copolymer, ECMMA / StZMDEMA Copolymer, ECMMAZStZlBXMA Copolymer Polymer, GMA / MMA / LA copolymer, GMAZMMAZCMMA copolymer, GMAZMMAZHEMA copolymer, GMAZMMAZMDEMA copolymer, GMAZMMAZIBXMA copolymer, G
MAZMMAZSt共重合体、 GMAZSt共重合体、 GMAZStZn— BA共重合体 、 GMAZStZLA共重合体、 GMAZStZCMMA共重合体、 GMA/St/HEM A共重合体、 GMAZStZMDEMA共重合体、 GMAZStZlBXMA共重合体、 E CMMAZGMAZMMAZLA共重合体、 ECMMA/GMA/MMA/CMMA 共重合体、 ECMMAZGMAZMMAZHEMA共重合体、 ECMMA/GMA/MAZMMAZSt copolymer, GMAZSt copolymer, GMAZStZn— BA copolymer, GMAZStZLA copolymer, GMAZStZCMMA copolymer, GMA / St / HEM A copolymer, GMAZStZMDEMA copolymer, GMAZStZlBXMA copolymer, E CMMAZGMAZMMAZLA copolymer Polymer, ECMMA / GMA / MMA / CMMA copolymer, ECMMAZGMAZMMAZHEMA copolymer, ECMMA / GMA /
MMAZMDEMA共重合体、 ECMMAZGMAZMMAZIBXMA共重合体、 EMMAZMDEMA copolymer, ECMMAZGMAZMMAZIBXMA copolymer, E
CMMAZGMAZMMAZSt共重合体、 ECMMAZGMAZSt共重合体、 ECM MAZGMAZStZn— BA共重合体、 ECMMAZGMAZStZLA共重合体、 EC MMAZGMAZStZCMMA共重合体、 ECMMAZGMAZStZHEMA共重 合体、 ECMMAZGMAZSt,MDEMA共重合体、 ECMMA/GMA/St/IB XMA共重合体などの 1種または 2種以上のカチオン重合性不飽和モノマーを含む 共重合体があげられる力 これらに限定されるものではない。 CMMAZGMAZMMAZSt copolymer, ECMMAZGMAZSt copolymer, ECM MAZGMAZStZn— BA copolymer, ECMMAZGMAZStZLA copolymer, EC MMAZGMAZStZCMMA copolymer, ECMMAZGMAZStZHEMA copolymer, ECMMAZGMAZSt, MDEMA copolymer, ECMMA / GMA / St / The ability to include a copolymer containing one or more cationically polymerizable unsaturated monomers such as a polymer is not limited to these.
また、 1分子中に異なるカチオン重合性基を 2個以上含有するアクリル榭脂 (A)とし ては、たとえばビュルシクロへキセンジオキサイド、リモネンジオキサイド、 3, 4ーェポ キシシクロへキシルメチルアタリレートまたは 3, 4—エポキシシクロへキシルメチルメタ タリレートなどの脂環式エポキシ基含有エチレン性不飽和モノマーとグリシジルアタリ レートまたはグリシジルメタタリレートなどのグリシジル基含有エチレン性不飽和モノマ 一と、必要に応じて、その他の重合性不飽和モノマーとを重合してなる脂環式ェポキ シ基とグリシジル基とを含有する重合体などをあげることができる。 Examples of the acrylic resin (A) containing two or more different cationically polymerizable groups in one molecule include, for example, bullcyclohexene dioxide, limonene dioxide, 3, 4-epoxycyclohexyl methyl acrylate or 3 , 4-Epoxycyclohexylmethyl methacrylate and other alicyclic epoxy group-containing ethylenically unsaturated monomers and glycidyl acrylate Containing an alicyclic epoxy group and a glycidyl group obtained by polymerizing a glycidyl group-containing ethylenically unsaturated monomer such as glycidyl methacrylate and other polymerizable unsaturated monomers as necessary. A polymer etc. can be mention | raise | lifted.
[0028] アクリル榭脂 (A)にお 、て、カチオン重合性官能基当量は、 100以上、カチオン硬 化被膜の収縮緩和の観点から、さらには 200以上であることが好ましぐまた速硬化 性の観点から 1, 500以下、さらには 1, 000以下であることが好ましい。  [0028] In the acrylic resin (A), the cation polymerizable functional group equivalent is preferably 100 or more, more preferably 200 or more from the viewpoint of relaxation of the shrinkage of the cation-cured coating film, and fast curing. From the viewpoint of safety, it is preferably 1,500 or less, more preferably 1,000 or less.
[0029] 本発明の被覆用組成物にお!ヽてアクリル榭脂 (A)はバインダーの役割を果たすも のであり、また組成物の塗工性やセラミックス基材との親和性、カチオン硬化性などを 良好にするためには、アクリル榭脂 (A)の重量平均分子量が 1, 000以上、特に 2, 0 00以上であり、 100, 000以下、特に 50, 000以下であること力 S好適である。  [0029] In the coating composition of the present invention, the acrylic resin (A) plays a role of a binder, and the coating property of the composition, the affinity with the ceramic substrate, and the cationic curing property. For example, the weight average molecular weight of acrylic resin (A) should be 1,000 or more, especially 2,000 or more, and 100,000 or less, especially 50,000 or less. It is.
[0030] (B)カップリング剤  [0030] (B) Coupling agent
本発明の組成物の(B)成分であるカップリング剤は、アクリル榭脂 (A)のセラミック ス基材への親和性を高め、さらにセラミックス基材とカチオン被膜間とで強固な密着 性を発現することができる。  The coupling agent which is component (B) of the composition of the present invention increases the affinity of the acrylic resin (A) to the ceramic substrate, and further provides strong adhesion between the ceramic substrate and the cationic coating. Can be expressed.
[0031] 本発明で使用するカップリング剤 (B)としては、これらの機能を果たすィ匕合物であ ればよいが、カップリング剤として従来公知の有機金属化合物があげられ、たとえば シランカップリング剤、チタンカップリング剤、アルミニウムカップリング剤、ジルコユウ ムカップリング剤などをあげることができる。なかでもセラミックス基材との密着性を高 める効果が特に優れて 、る点から、シランカップリング剤が好ま 、。  [0031] The coupling agent (B) used in the present invention may be any compound that fulfills these functions. Examples of the coupling agent include conventionally known organometallic compounds, such as silane cups. Examples thereof include a ring agent, a titanium coupling agent, an aluminum coupling agent, and a zirconium coupling agent. Of these, silane coupling agents are preferred because they are particularly effective in improving adhesion to ceramic substrates.
[0032] シランカップリング剤としては、 1分子中に 2個以上の異なる反応性基を有している ものが好ましい。好ましい反応性基の 1つは加水分解後、脱アルコール反応によりセ ラミックス基材と化学結合し得る加水分解性アルコキシシラン基であり、もう 1つは硬 化被膜と化学結合し得る反応性基 (たとえばアミノ基、ビニル基、水酸基、イソシァネ ート基、メルカプト基、アタリロイル基、メタクリロイル基、ォキセタニル基、脂環式また は脂肪族鎖状エポキシ基、ビュルエーテル基など)である。  [0032] The silane coupling agent is preferably one having two or more different reactive groups in one molecule. One of the preferred reactive groups is a hydrolyzable alkoxysilane group that can be chemically bonded to the ceramic substrate by hydrolysis after the hydrolysis, and the other is a reactive group that can be chemically bonded to the hardened film. (For example, an amino group, a vinyl group, a hydroxyl group, an isocyanate group, a mercapto group, an alitaroyl group, a methacryloyl group, an oxetanyl group, an alicyclic or aliphatic chain epoxy group, a butyl ether group, etc.).
[0033] 具体的には、たとえばアミノ基含有アルコキシシラン、ビュル基含有アルコキシシラ ン、水酸基含有アルコキシシラン、イソシァネート基含有アルコキシシラン、メルカプト 基含有アルコキシシラン、アタリロイル基またはメタクリロイル基含有アルコキシシラン 、ォキセタ-ル基含有アルコキシシラン、脂環式エポキシ基含有アルコキシシラン、 脂肪族エポキシ基含有アルコキシシラン、ビュルエーテル基含有アルコキシシラン、 およびこれらの部分加水分解物などの加水分解性シランカップリング剤があげられる[0033] Specifically, for example, an amino group-containing alkoxysilane, a bur group-containing alkoxysilane, a hydroxyl group-containing alkoxysilane, an isocyanate group-containing alkoxysilane, a mercapto group-containing alkoxysilane, an taliloyl group or a methacryloyl group-containing alkoxysilane. Hydrolyzable silane coupling agents such as oxetal group-containing alkoxysilanes, alicyclic epoxy group-containing alkoxysilanes, aliphatic epoxy group-containing alkoxysilanes, butyl ether group-containing alkoxysilanes, and partial hydrolysates thereof. can give
。これらのカップリング剤は、 2つ以上を同時に使用するものであってもよい。 . Two or more of these coupling agents may be used simultaneously.
[0034] これらの加水分解性シランカップリング剤のうち、アクリル榭脂 (A)との相溶性が良 好であることや、活性エネルギー線照射時においてアクリル榭脂 (A)と化学結合反 応性を有し、ガラスを含むセラミックス基材に対し強固な密着性を形成することから、 特にォキセタ-ル基、エポキシ基などのカチオン重合性基を含有するシランカツプリ ング剤が好ましい。 [0034] Among these hydrolyzable silane coupling agents, the compatibility with the acrylic resin (A) is good, and the chemical resin reacts with the acrylic resin (A) when irradiated with active energy rays. In particular, a silane coupling agent containing a cationically polymerizable group such as an oxetal group or an epoxy group is preferable because it has a strong adhesion to a ceramic substrate containing glass.
[0035] カチオン重合性基を含有するシランカップリング剤としては、例えば式(1):  [0035] Examples of the silane coupling agent containing a cationically polymerizable group include those represented by the formula (1):
R'SiX (OR2) (1) R'SiX (OR 2 ) (1)
P 3-p  P 3-p
(式中、 R1はォキセタ-ル基、脂環式エポキシ基、脂肪族エポキシ基などのカチオン 重合性基、 Xはハロゲン原子で置換されていてもよい 1価の炭化水素基、 R2は炭素 数 1〜4のアルキル基、 pは 0または 1)で表されるカチオン重合性基を少なくとも 1個 含有するアルコキシシラン、およびこれらの部分加水分解物があげられる。 (Wherein R 1 is a cation polymerizable group such as an oxetal group, an alicyclic epoxy group or an aliphatic epoxy group, X is a monovalent hydrocarbon group which may be substituted with a halogen atom, and R 2 is Examples thereof include an alkyl group having 1 to 4 carbon atoms, p is 0 or 1), an alkoxysilane containing at least one cationic polymerizable group, and partial hydrolysates thereof.
[0036] 式(1)の Xとしては、たとえばメチル、ェチル、プロピル、ブチル、ァミル、へキシル、 ォクチル、デシル、ドデシルなどの炭素数 1〜12程度のアルキル基;ビュル、ァリルな どのアルケニル基;フエニル、トリル、キシリルなどのァリール基; 13 フエ-ルェチル 、 β—フエ-ルプロピルなどのァラルキル基; γ—クロ口プロピル、 3, 3, 3—トリフル ォロプロピルなどのフッ素や塩素などのハロゲン原子で置換された炭化水素基など があげられる。なかでもメチルがゾルーゲル反応における加水分解性が高 ヽ点から 好ましい。 R1としては、ォキセタ-ル基、脂環式エポキシ基、脂肪族エポキシ基、ビ- ルエーテル基などが例示され、なかでも脂環式エポキシ基や脂肪族エポキシ基、特 に脂環式エポキシ基がカチオン重合性が良好な点力も好適である。 R2としては、たと えばメチル、ェチル、プロピル、ブチルなどの炭素数 1〜4程度のアルキル基などが あげられ、なかでもメチルがゾルーゲル反応における加水分解性が高 ヽ点から好適 である。また、 ρは 0または 1であり、なかでも 0がゾルーゲル反応性が高い点力 好適 である。 式(1)で表されるカチオン重合性基含有アルコキシシランの具体例としては、たとえ ば 3—グリシドキシプロピルジメチルメトキシシラン、 3—グリシドキシプロピルメチルジ メトキシシラン、 3—グリシドキシプロピノレエチノレジメトキシシラン、 3—グリシドキシプロ ピルプロピルジメトキシシラン、 3—グリシドキシプロピルフエ二ルジメトキシシラン、 3— キシシラン、 3 グリシドキシプロピノレトリエトキシシラン、 3 グリシドキシプロピルトリプ ロポキシシラン、 4ーグリシドキシブチルトリメトキシシラン、 5—グリシドキシへキシルト リエトキシシラン、 2— (3, 4 エポキシシクロへキシノレ)ェチノレジメチノレメトキシシラン、 2—(3, 4 エポキシシクロへキシノレ)ェチノレメチノレジメトキシシラン、 2— (3, 4 ェポ キシシクロへキシノレ)ェチノレエチノレジメトキシシラン、 2— (3, 4 エポキシシクロへキシ ノレ)ェチノレプロピノレジメトキシシラン、 2—(3, 4 エポキシシクロへキシノレ)ェチノレフエ ニノレジメトキシシラン、 2— (3, 4 エポキシシクロへキシノレ)ェチノレシクロへキシノレジメ トキシシラン、 2— (3, 4 エポキシシクロへキシノレ)ェチノレトリメトキシシラン、 2— (3, 4 エポキシシクロへキシノレ)ェチノレトリエトキシシラン、 2— (3, 4 エポキシシクロへキ シル)ェチルトリプロポキシシラン、 3— (3, 4—エポキシシクロへキシル)プロピルトリメト キシシラン、 4 (3, 4—エポキシシクロへキシノレ)ブチノレトリメトキシシランなどのェポ キシ基含有シランカップリング剤; 3一(3—ェチルー 3—ォキセタ -ルメトキシ)プロピ ルジメチルメトキシシラン、 3—(3—ェチルー 3—ォキセタ -ルメトキシ)プロピルメチ ルジメトキシシラン、 3- (3—ェチル—3—ォキセタ -ルメトキシ)プロピルェチルジメ トキシシラン、 3—(3—ェチルー 3—ォキセタ -ルメトキシ)プロピルプロピルジメトキシ シラン、 3— (3—ェチル 3—ォキセタ -ルメトキシ)プロピルフエ-ルジメトキシシラ ン、 3— (3—ェチル—3—ォキセタ -ルメトキシ)プロビルシクロへキシルジメトキシシ ラン、 3— (3—ェチル 3—ォキセタ -ルメトキシ)プロピルトリメトキシシラン、 3— (3 —ェチル一 3—ォキセタ -ルメトキシ)プロピルトリエトキシシラン、 3— (3—ェチル一 3—ォキセタニルメトキシ)プロピルトリプロポキシシラン、 4— (3—ェチル—3—ォキ セタニルメトキシ)ブチルトリメトキシシラン、 5— (3—ェチル 3—ォキセタニルメトキ シ)へキシルトリエトキシシランなどのォキセタ-ル基含有シランカップリング剤; 3—ビ 二ロキシプロピルジメチルメトキシシラン、 3—ビニロキシプロピルメチルジメトキシシラ ン、 3—ビニロキシプロピルェチルジメトキシシラン、 3—ビニロキシプロピルプロピル ジメトキシシラン、 3—ビニロキシプロピルフエ二ルジメトキシシラン、 3—ビニロキシプ 口ピノレシクロへキシノレジメトキシシラン、 3—ビニロキシプロピルトリメトキシシラン、 3— ビニロキシプロピルトリエトキシシラン、 3—ビニロキシプロピルトリプロポキシシラン、 4 ビニロキシブチルトリメトキシシラン、 5—ビニロキシへキシルトリエトキシシランなど のビュルエーテル基含有シランカップリング剤;これらの部分加水分解物などがあげ られる。なかでも、 3 グリシドキシプロピルトリメトキシシランや 2— (3, 4 エポキシシ クロへキシル)ェチルメトキシシラン、またはその部分加水分解物力 カチオン重合性[0036] X in the formula (1) is, for example, an alkyl group having about 1 to 12 carbon atoms such as methyl, ethyl, propyl, butyl, amyl, hexyl, octyl, decyl, dodecyl; alkenyl groups such as bur and allyl ; Aryl groups such as phenyl, tolyl and xylyl; aralkyl groups such as 13 phenyl, β-phenylpropyl; halogen atoms such as fluorine and chlorine such as γ-chloropropyl, 3, 3, 3-trifluoropropyl; And substituted hydrocarbon groups. Of these, methyl is preferred because of its high hydrolyzability in the sol-gel reaction. Examples of R 1 include an oxetal group, an alicyclic epoxy group, an aliphatic epoxy group, and a benzyl ether group. Among them, an alicyclic epoxy group, an aliphatic epoxy group, and particularly an alicyclic epoxy group. However, point power with good cationic polymerizability is also suitable. Examples of R 2 include alkyl groups having about 1 to 4 carbon atoms such as methyl, ethyl, propyl, and butyl. Among them, methyl is preferable because of its high hydrolyzability in the sol-gel reaction. In addition, ρ is 0 or 1, and among them, 0 is a point power with high sol-gel reactivity. Specific examples of the cationically polymerizable group-containing alkoxysilane represented by the formula (1) include 3-glycidoxypropyldimethylmethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropylene. Norethinoresin methoxysilane, 3-glycidoxypropylpropyldimethoxysilane, 3-glycidoxypropylphenyldimethoxysilane, 3-xysilane, 3 glycidoxypropinoletriethoxysilane, 3 glycidoxypropyltripropoxysilane, 4- Glycidoxybutyltrimethoxysilane, 5-glycidoxyhexyltriethoxysilane, 2- (3, 4 epoxycyclohexenole) ethinoresin methinole methoxysilane, 2-((3, 4 epoxycyclohexenole) ethynole Methinoresimethoxysilane, 2— (3, 4 Epoxy Chlorohexenole) ethinoreethinoresimethoxymethoxysilane, 2- (3,4 epoxy cyclohexylenole) ethenorepropinoresimethoxymethoxysilane, 2- (3,4 epoxycyclohexenole) ethenolefe ninoresimethoxysilane, 2- (3, 4 epoxycyclohexenole) ethynolecyclohexinoresin methoxysilane, 2-— (3, 4 epoxycyclohexenole) ethynoletrimethoxysilane, 2-— (3,4 epoxy cyclohexylenore) ethinoretriethoxysilane, 2— (3,4 epoxycyclohexyl) ethyltripropoxysilane, 3- (3,4-epoxycyclohexyl) propyltrimethoxysilane, 4 (3,4-epoxycyclohexyleno) butynoletrimethoxysilane, etc. Epoxy group-containing silane coupling agent; 3 (3-ethyl 3-methoxy-propyl) dimethyldimethyl Sisilane, 3- (3-Ethyl-3-oxeta-methoxy) propylmethyldimethoxysilane, 3- (3-Ethyl-3-oxeta-methoxy) propylethyldimethoxysilane, 3- (3-Ethyl-3-oxeta-methoxy) Propylpropyldimethoxysilane, 3— (3-Ethyl-3-oxeta-lmethoxy) propylphenyldimethoxysilane, 3 -— (3-Ethyl-3-oxeta-lmethoxy) propyl cyclohexyldimethoxysilane, 3-— (3 —Ethyl 3-oxeta-lmethoxy) propyltrimethoxysilane, 3— (3-Ethyl-1-oxeta-lmethoxy) propyltriethoxysilane, 3 -— (3-Ethyl-3-oxetanylmethoxy) propyltripropoxysilane, 4— (3-Ethyl-3-Oxetanylmethoxy) butyltrimethoxysilane, 5 -— (3-Ethyl 3-Oxetanylmethoxy) Hexyl group-containing silane coupling agents such as hexyltriethoxysilane; 3-Binyloxypropyldimethylmethoxysilane, 3-Vinyloxypropylmethyldimethoxysila 3-vinyloxypropylethyldimethoxysilane, 3-vinyloxypropylpropyl dimethoxysilane, 3-vinyloxypropylphenyldimethoxysilane, 3-vinyloxypropyl pinolecyclohexenoresimethoxysilane, 3-vinyloxypropyltrimethoxy Bulether group-containing silane coupling agents such as silane, 3-vinyloxypropyltriethoxysilane, 3-vinyloxypropyltripropoxysilane, 4-vinyloxybutyltrimethoxysilane, 5-vinyloxyhexyltriethoxysilane; Examples include hydrolysates. Among them, 3 glycidoxypropyltrimethoxysilane, 2- (3,4 epoxy cyclohexyl) ethylmethoxysilane, or its partial hydrolyzate power Cationic polymerization
、ゾル ゲル反応性が良好な点カゝら好適である。 In view of good sol-gel reactivity, it is preferable.
[0038] また、式(1)で表されるシランカップリング剤として、 2種類以上のカチオン重合性基 含有アルコキシシランまたはその部分加水分解物を併用してもよぐ性能を損なわな い範囲でカチオン重合性基含有アルコキシシラン以外のカップリング剤を併用しても よい。 [0038] Further, as the silane coupling agent represented by the formula (1), two or more kinds of cationically polymerizable group-containing alkoxysilanes or partial hydrolysates thereof may be used in combination without impairing performance. A coupling agent other than the cationically polymerizable group-containing alkoxysilane may be used in combination.
[0039] カチオン重合性基含有アルコキシシラン以外のシランカップリング剤としては、たと えば N— 3— (アミノエチル) 3—ァミノプロピルトリエトキシシラン、 N— 3— (アミノエ チル) 3—ァミノプロピルトリメトキシシラン、 3—ァミノプロピルトリエトキシシラン、 3 —ァミノプロピルトリメトキシシラン、 3—ァミノプロピルメチルジェトキシシラン、 3—アミ ノプロピルメチルジメトキシシラン、 3 ァミノプロピルフエ二ルジェトキシシラン、 2 ァ ミノ一 1—メチルェチルトリエトキシシラン、 N—メチル 3 ァミノプロピルトリエトキシ シラン、 N フエニル一 3—ァミノプロピルトリエトキシシラン、 N ブチル 3—ァミノ プロピルメチルジェトキシシラン、 3—ウレイドプロピルトリメトキシシラン、 3—メルカプ トプロピルトリメトキシシラン、 3—メルカプトプロピルトリエトキシシラン、 3—イソシアナ ートプロピルトリメトキシシラン、 3—イソシアナ一トプロピルトリエトキシシラン、ビュルト リメトキシシラン、ビュルトリエトキシシラン、 3—メタクリロキシプロピルトリメトキシシラン 、 3—メタクリロキシプロピルトリエトキシシラン、 3—アタリロキシプロピルトリメトキシシラ ン、 3—アタリロキシプロピルトリエトキシシラン、 N ポリオキシエチレンプロピルトリメト キシシラン、 N ポリオキシエチレンプロピルトリエトキシシラン、 N ポリオキシプロピ レンプロピルトリメトキシシラン、 N ポリオキシプロピレンプロピルトリエトキシシラン、 3 —ヒドロキシプロピルトリメトキシシラン、 3—ヒドロキシプロピルトリエトキシシラン、 4— ヒドロキシブチルトリメトキシシラン、 4—ヒドロキシブチルトリエトキシシラン、 3—フエノ キシプロピルトリメトキシシラン、 3—フエノキシプロピルトリエトキシシランなどがあげら れる。 [0039] Examples of silane coupling agents other than cationically polymerizable group-containing alkoxysilanes include N-3- (aminoethyl) 3-aminopropyltriethoxysilane and N-3- (aminoethyl) 3-amino. Propyltrimethoxysilane, 3-Aminopropyltriethoxysilane, 3-Aminopropyltrimethoxysilane, 3-Aminopropylmethyljetoxysilane, 3-Aminopropylmethyldimethoxysilane, 3-Aminopropylphenyljetoxy Silane, 2-amino-1-methylethyltriethoxysilane, N-methyl-3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltriethoxysilane, N-butyl 3-aminopropylmethylethoxysilane, 3 —Ureidopropyltrimethoxysilane, 3-mercaptopropyltrimethoate Sisilane, 3-mercaptopropyltriethoxysilane, 3-isocyanatopropyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane, butyltrimethoxysilane, butyltriethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3 —Methacryloxypropyltriethoxysilane, 3-Atalyloxypropyltrimethoxysilane, 3-Atalyloxypropyltriethoxysilane, N Polyoxyethylenepropyltrimethoxysilane, N Polyoxyethylenepropyltriethoxysilane, N Polyoxypropylene Propyltrimethoxysilane, N Polyoxypropylenepropyltriethoxysilane, 3 —Hydroxypropyltrimethoxysilane, 3-hydroxypropyltriethoxysilane, 4-hydroxybutyltrimethoxysilane, 4-hydroxybutyltriethoxysilane, 3-phenoxypropyltrimethoxysilane, 3-phenoxypropyltriethoxysilane, etc. Is given.
[0040] また、シランカップリング剤以外のカップリング剤としては、たとえばイソプロピルトリイ ソステアロイルチタネート、イソプロピルトリドデシルベンゼンスルホ-ルチタネート、ィ ソプロピルトリ(ジォクチルピロホスフェート)チタネート、テトライソプロピルビス(ジオタ チルホスファイト)チタネート、テトラオクチルビス(ジトリデシルホスフアイト)チタネート 、テトラ(2, 2—ジァリルォキシメチル 1—ブチル)一ビス(ジトリデシルホスフアイト) チタネート、ビス(ジォクチルピロホスフェート) ォキシアセテートチタネート、ビス(ジ ォクチルピロホスフェート)エチレンチタネートなどのチタンカップリング剤;アルミ-ゥ ムイソプロピレート、モノ sec—ブトキシアルミニウムジイソプロピレート、アルミニウム se cーブチレート、アルミニウムェチレート、ァセトアルコキシアルミニウムジイソプロピレ ート、ェチルァセトアセテートアルミニウムジイソプロピレート、アルミニウムトリス(ェチ ルァセトアセテート)、アルキルァセトアセテートアルミニウムジイソプロピレート、アルミ -ゥムモノセチルァセトネートビス(ェチルァセトアセテート)、アルミニウムトリス(ァセ チルァセトネート)、環状アルミニウムオキサイドイソプロピレートなどのアルミニウム力 ップリング剤;テトラプロピルジルコネート、テトラブチルジルコネート、テトラキス(ァセ チルァセトネート)ジルコニウム、モノブトキシトリス(ァセチルァセトネート)ジルコユウ ム、ジブトキシビス(ァセチノレアセトネート)ジノレコニゥム、トリブトキシァセチノレアセトネ ートジルコニウム、テトラ(ェチノレアセチノレアセテート)ジノレコ-ゥム、モノブトキシトリス (ェチノレアセチノレアセテート)ジノレコ-ゥム、ジブトキシビス(ェチノレアセチノレアセテー ト)ジルコニウム、テトラキス(ェチルラタトネート)ジルコニウム、ビス(ビスァセチルァセ トネート)ビス(ェチルァセチルァセトネート)ジルコニウム、モノァセチルァセトネートト リス(ェチルァセチルァセトネート)ジルコニウム、モノブトキシモノァセチルァセトネー トビス(ェチルァセチルァセトネート)ジルコニウムなどのジルコニウムカップリング剤が 例示できる。 [0040] As coupling agents other than silane coupling agents, for example, isopropyl triisostearoyl titanate, isopropyl tridodecyl benzene sulfo titanate, isopropyl tri (dioctyl pyrophosphate) titanate, tetraisopropyl bis (diotyl phosphate) Phyto) titanate, tetraoctylbis (ditridecylphosphite) titanate, tetra (2,2-diallyloxymethyl 1-butyl) monobis (ditridecylphosphite) titanate, bis (dioctylpyrophosphate) alkoxy acetate titanate, bis (di-O Chi le pyrophosphate) titanate coupling agents such as ethylene titanate; aluminum - © beam isopropylate, mono sec - butoxy aluminum diisopropylate, aluminum se c-butylate, aluminum ethylate, acetate alkoxy aluminum diisopropylate, ethyl acetate acetate aluminum diisopropylate, aluminum tris (ethyl acetate acetate), alkyl acetate acetate aluminum diisopropylate, aluminum- Aluminum coupling agents such as um monocetylacetonate bis (ethylacetoacetate), aluminum tris (acetylacetonate), cyclic aluminum oxide isopropylate; tetrapropylzirconate, tetrabutylzirconate, tetrakis (acetylacetonate) ) Zirconium, monobutoxy tris (acetyl acetonate) zirconium, dibutoxy bis (acetinoreacetonate) dinoleconium, tributoxyse Noreacetonate zirconium, tetra (ethenoreacetinoleacetate) dinorecum, monobutoxytris (ethenoreacetinoleacetate) dinorecoum, dibutoxybis (ethenoreacetinoreacetate) zirconium, tetrakis (ethyl) Ratatonate) Zirconium, Bis (bisacetylacetonate) Bis (ethylacetylacetonate) Zirconium, Monoacetylacetonate Tris (Ethylacetylacetonate) Zirconium, Monobutoxy monoacetylethylate bis (Ethylacetyl acetate) Zirconium coupling agents such as zirconium can be exemplified.
[0041] カップリング剤 (B)の配合量は、アクリル榭脂 (A) 100質量部に対して 1質量部以 上、好ましくは 5質量部以上、さらに好ましくは 10質量部以上であり、また 100質量部 以下、好ましくは 50質量部以下、さらに好ましくは 30質量部以下が好適である。カツ プリング剤 (B)が少なすぎるとセラミックス基材との密着性が低下する傾向にあり、ま た多すぎるとカチオン重合反応性 (硬化性)が低下する傾向にある。 [0041] The blending amount of the coupling agent (B) is 1 part by mass or more with respect to 100 parts by mass of the acrylic resin (A). Above, preferably 5 parts by mass or more, more preferably 10 parts by mass or more, and 100 parts by mass or less, preferably 50 parts by mass or less, more preferably 30 parts by mass or less. If the amount of the coupling agent (B) is too small, the adhesion to the ceramic substrate tends to be lowered, and if too much, the cationic polymerization reactivity (curability) tends to be lowered.
[0042] (C)活性エネルギー線照射により酸を発生する機能を有する光力チオン重合開始剤 本発明にお ヽて使用する光力チオン重合開始剤 (C)は、活性エネルギー線照射 によって酸を発生し、被覆用組成物中に含まれるカチオン重合性の成分 (上記アタリ ル榭脂 (A)、カチオン重合性官能基を有するカップリング剤、または後述するカチォ ン重合性化合物(D)など)のカチオン重合性官能基 (たとえばエポキシ基ゃォキセタ ニル基など)に作用してカチオン重合を開始させる化合物の 1種または 2種以上であ る。活性エネルギー線としては、紫外線、電子線、放射線( j8線、 γ線)などが例示で きる。 [0042] (C) Photoactive thione polymerization initiator having a function of generating an acid upon irradiation with an active energy ray The photoactive thione polymerization initiator (C) used in the present invention is an acid generated by irradiation with an active energy ray. A cationically polymerizable component that is generated and contained in the coating composition (such as the above talyl resin (A), a coupling agent having a cationically polymerizable functional group, or a cationically polymerizable compound (D) described later). One or more compounds that act on the cationically polymerizable functional group (for example, epoxy group or oxetanyl group) to initiate cationic polymerization. Examples of active energy rays include ultraviolet rays, electron beams, and radiation (j8 rays, γ rays).
[0043] こうした光力チオン重合開始剤 (C)としては、一般的には、スルホ -ゥム塩、ョードニ ゥム塩、メタ口セン化合物、ベンゾイントシレートなどが知られており、多くの化合物が 市販されている。本発明ではそうした市販の光力チオン重合開始剤を使用することが できる。  [0043] As such a light-powered thione polymerization initiator (C), in general, sulfo-um salt, iodine salt, meta-octane compound, benzoin tosylate, etc. are known, and many compounds Is commercially available. In the present invention, such a commercially available photopower thione polymerization initiator can be used.
[0044] 市販品としては、たとえばサイラキュア UVI— 6970、サイラキュア UVI— 6974、サ イラキュア UVI— 6990 (以上、いずれも米国ユニオンカーバイト社製。商品名);ィル ガキュア 264 (チバガイギ一社製。商品名); CIT— 1682 (日本曹達 (株)製。商品名 )などを代表例としてあげることができる。  [0044] Commercially available products include, for example, Cyracure UVI-6970, Cyracure UVI-6974, Cyracure UVI-6990 (all of which are manufactured by Union Carbite, Inc., US trade name); Irgacure 264 (manufactured by Ciba Geigy Co., Ltd.). CIT-1682 (manufactured by Nippon Soda Co., Ltd., trade name) can be given as a representative example.
[0045] 光力チオン重合開始剤 (C)の配合量は、本発明の被覆用組成物に含まれるカチォ ン重合性の成分 100質量部に対して、 0. 1質量部以上、好ましくは 1質量部以上、さ らに好ましくは 3質量部以上、また 20質量部以下、好ましくは 15質量部以下、さらに 好ましくは 10質量部以下が好適である。光力チオン重合開始剤 (C)が少なすぎると 重合が開始されないか重合速度が遅くなる傾向にあり、また多すぎると組成物中から 析出 (分離)する傾向にある。  [0045] The compounding amount of the light-power thione polymerization initiator (C) is 0.1 parts by mass or more, preferably 1 with respect to 100 parts by mass of the cationically polymerizable component contained in the coating composition of the present invention. The amount is preferably not less than 3 parts by mass, more preferably not less than 3 parts by mass, not more than 20 parts by mass, preferably not more than 15 parts by mass, and more preferably not more than 10 parts by mass. If the photopower thione polymerization initiator (C) is too small, the polymerization will not start or the polymerization rate tends to be slow, and if it is too large, it tends to precipitate (separate) from the composition.
[0046] 本発明のセラミックス被覆用組成物には、必須成分である上記 (A)、 (Β)および (C )成分以外に、必要に応じて、上記 (Α)〜(Β)以外の他のカチオン重合性ィ匕合物、 増感剤、カチオン重合性を有さない成分、意匠性を向上させるための着色顔料、体 質顔料などの顔料類、顔料分散剤、流動性調整剤、塗装作業性を改善するための 消泡剤、レべリング剤、光安定剤、酸化防止剤、ワックス、溶剤などを配合してもよい [0046] In the ceramic coating composition of the present invention, in addition to the essential components (A), (Β) and (C), other than the above (Α) to (Β), if necessary. A cationically polymerizable compound of Sensitizers, non-cationic polymerizable components, colored pigments to improve design, pigments such as extender pigments, pigment dispersants, fluidity modifiers, antifoaming to improve paint workability Agents, leveling agents, light stabilizers, antioxidants, waxes, solvents, etc.
[0047] 以下、これらの任意成分のうちのいくつかの成分について具体的に説明する。 [0047] Hereinafter, some of these optional components will be specifically described.
[0048] (D)前記 (A)〜(B)以外の他のカチオン重合性化合物  [0048] (D) Other cationically polymerizable compounds other than the above (A) to (B)
本発明において、必要に応じて、被覆用組成物の粘度調整や硬化塗膜の物性を 改善することを目的に、前記 (A)〜(B)以外の他のカチオン重合性化合物(D)を併 用することができる。他のカチオン重合性ィ匕合物(D)としては、たとえばつぎの(D1) 、(D2)、(D3)、(D4)、(D5)などの化合物をあげることができる。  In the present invention, if necessary, a cationically polymerizable compound (D) other than the above (A) to (B) may be added for the purpose of adjusting the viscosity of the coating composition and improving the physical properties of the cured coating film. Can be used together. Examples of the other cationically polymerizable compound (D) include the following compounds (D1), (D2), (D3), (D4), (D5) and the like.
[0049] (D1)エポキシ化合物(上記アクリル榭脂 (A)およびカップリング剤 (B)以外)  [0049] (D1) Epoxy compound (other than acrylic resin (A) and coupling agent (B))
1分子中にエポキシ基を 1個以上有するエポキシィ匕合物であり、エポキシ当量 70〜 5, 000、好ましくは 80〜3, 000のものを好適に使用すること力 Sできる。  An epoxy compound having one or more epoxy groups in one molecule and having an epoxy equivalent of 70 to 5,000, preferably 80 to 3,000 can be used suitably.
[0050] エポキシ化合物 (D1)を配合することにより、被覆用組成物の粘度を調整できるの で塗工性を向上させることができ、またカチオン重合して塗膜の硬度をさらに高める ことができる。  [0050] By blending the epoxy compound (D1), the viscosity of the coating composition can be adjusted, so that the coating property can be improved, and the hardness of the coating film can be further increased by cationic polymerization. .
[0051] このエポキシ化合物(D1)のエポキシ基は、シクロへキセンオキサイドまたはシクロ ペンテンオキサイド構造などを有する脂環式エポキシ基;グリシジル基などの脂肪族 エポキシ基の 、ずれであってもよぐ 1分子中に両者のエポキシ基が混在して!/、ても よい。  [0051] The epoxy group of this epoxy compound (D1) may be an alicyclic epoxy group having a cyclohexene oxide or cyclopentene oxide structure; an aliphatic epoxy group such as a glycidyl group may be shifted 1 Both epoxy groups may be mixed in the molecule! /.
[0052] 脂環式エポキシ基を含有するエポキシィ匕合物としては、たとえばジシクロペンタジェ ンジオキサイド、 (3, 4 エポキシシクロへキシル)メチルー 3, 4—エポキシシクロへキ サンカルボキシレート、ビス(2, 3 エポキシシクロペンチル)エーテル、ビス(3, 4— エポキシシクロへキシルメチル)アジペート、ビス(3, 4—エポキシー6—メチルシクロ へキシルメチル)アジペート、 (3, 4 エポキシー6—メチルシクロへキシル)メチルー 3, 4 エポキシー6—メチルシクロへキサンカルボキシレート、ビス(3, 4—エポキシ シクロへキシルメチル)ァセタール、エチレングリコールのビス(3, 4—エポキシシクロ へキシル)エーテル、エチレングリコールの 3, 4—エポキシシクロへキサンカルボン酸 ジエステルなどのほか、市販品としてはェポリード GT300 (ダイセル化学工業 (株)製 の 3官能脂環式エポキシ榭脂。商品名)、ェポリード GT400 (ダイセルィ匕学工業 (株) 製の 4官能脂環式エポキシ榭脂。商品名)、 EHPE (ダイセルィ匕学工業 (株)製の多 官能脂環式エポキシ榭脂。商品名)などがあげられる。 [0052] Examples of the epoxy compound containing an alicyclic epoxy group include dicyclopentadiene dioxide, (3,4 epoxycyclohexyl) methyl-3,4-epoxycyclohexanecarboxylate, bis ( 2,3 epoxycyclopentyl) ether, bis (3,4-epoxycyclohexylmethyl) adipate, bis (3,4-epoxy-6-methylcyclohexylmethyl) adipate, (3,4 epoxy-6-methylcyclohexyl) methyl-3 4 Epoxy-6-methylcyclohexanecarboxylate, bis (3,4-epoxycyclohexylmethyl) acetal, bis (3,4-epoxycyclohexyl) ether of ethylene glycol, 3,4-epoxycyclohexane of ethylene glycol carboxylic acid In addition to diesters, commercially available products such as Epolide GT300 (Trifunctional alicyclic epoxy resin manufactured by Daicel Chemical Industries, Ltd., trade name) and Epolide GT400 (Tetrafunctional alicyclic manufactured by Daicel Chemical Industries, Ltd.) Epoxy resin (trade name), EHPE (polyfunctional alicyclic epoxy resin manufactured by Daicel Chemical Industries, Ltd., trade name), and the like.
[0053] 脂肪族エポキシ基を含有するエポキシィ匕合物としては、たとえばエチレングリコー ルジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ポリエチレング リコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、 1, 4 ブタンジオールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエー テル、 1, 6 へキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテ ノレ、ジグリセリンテトラグリシジノレエーテノレ、トリメチローノレプロパントリグリシジノレエーテ ル、スピログリコールジグリシジルエーテル、 2, 6 ジグリシジルフエ-ルエーテル、ソ ノレビトーノレポリグリシジノレエーテノレ、トリグリシジノレイソシァヌレート、ビスフエノーノレ A ジグリシジルエーテル、ブタジエンジオキサイド、フタル酸ジグリシジルエステル、ビス フエノール型エポキシ榭脂、 ε—力プロラタトン変性ビスフエノール型エポキシ榭脂、 フエノールノボラック型エポキシ榭脂、クレゾ一ルノボラック型エポキシ榭脂などがあ げられる。 [0053] Examples of the epoxy compound containing an aliphatic epoxy group include ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, and 1,4 butanediol diglycidyl. Ether, neopentyl glycol diglycidyl ether, 1,6 hexanediol diglycidyl ether, glycerin diglycidyl ether, diglycerin tetraglycidinoate ethere, trimethylololepropane triglycidino ether, spiroglycol diglycidyl ether 2, 6 Diglycidyl ether, Sonorbitonore Polyglycidino oleate, Triglycidino lysocyanurate, Bisphenol A Jill ether, butadiene dioxide, diglycidyl phthalate, bis-phenol type epoxy榭脂, epsilon - force Purorataton modified bisphenol type epoxy榭脂, phenol novolak type epoxy榭脂, cresol one novolac-type epoxy榭脂Nadogaa up It is done.
[0054] (D2)ビシクロオルソエステル化合物  [0054] (D2) Bicycloorthoester compound
たとえば 1—フエ-ル一 4 ェチル 2, 6, 7 トリオキサビシクロ一 [2, 2, 2]—ォ クタン、 1—ェチル 4 ヒドロキシメチル一 2, 6, 7 トリオキサビシクロ一 [2, 2, 2] オクタンなどをあげることができる。  For example, 1-phenyl 4-ethyl 2, 6, 7 trioxabicyclo [2, 2, 2] -octane, 1-ethyl 4-hydroxymethyl 1, 6, 6, trioxabicyclo [2, 2, 2] Can give octane.
[0055] ビシクロオルソエステルイ匕合物(D2)を配合することにより、被覆用組成物の粘度を 調整できるので塗工性を向上させることができ、またカチオン重合して塗膜の硬度を さらに高めることができる。 [0055] By blending the bicycloorthoester compound (D2), the viscosity of the coating composition can be adjusted, so that the coating property can be improved, and the hardness of the coating film can be further increased by cationic polymerization. Can be increased.
[0056] (D3)スピロオルソカーボネート化合物 [0056] (D3) Spiro orthocarbonate compound
たとえば 1, 5, 7, 11ーテトラオキサスピロ [5, 5]—ゥンデカン、 3, 9ージベンジ ルー 1, 5, 7, 11—テトラオキサスピロ一 [5, 5]—ゥンデカン、 1, 4, 6 トリオキサス ピロ一 [4, 4]ーノナン、 2—メチノレー 1, 4, 6 トリオキサスピロ一 [4, 4]ーノナン、 1 For example, 1, 5, 7, 11-tetraoxaspiro [5, 5] -undecane, 3, 9-dibenz leu 1, 5, 7, 11-tetraoxaspiro [5, 5] -undecane, 1, 4, 6 Trioxaspirone [4, 4] -nonane, 2-methynole 1, 4, 6 Trioxaspirone [4, 4] -nonane, 1
, 4, 6—トリオキサスピロ一 [4, 5]—デカンなどをあげることができる。 [0057] スピロオルソカーボネートイ匕合物(D3)を配合することにより、被覆用組成物の粘度 を調整できるので塗工性を向上させることができ、またカチオン重合して塗膜の硬度 をさらに高めることができる。 , 4, 6-trioxaspiro [4, 5] -decane. [0057] By blending the spiro orthocarbonate compound (D3), the viscosity of the coating composition can be adjusted, so that the coating property can be improved, and the hardness of the coating film can be further increased by cationic polymerization. Can be increased.
[0058] (D4)ォキセタン化合物  [0058] (D4) Oxetane compound
式 (D4) :  Formula (D4):
[0059] [化 1]  [0059] [Chemical 1]
0— で表されるォキセタン環を分子中に少なくとも 1個含有する化合物であり、たとえばつ ぎの式 (D4— 1)〜(D4— 4)で示される化合物などをあげることができる。  A compound containing at least one oxetane ring represented by 0— in the molecule, and examples thereof include compounds represented by the following formulas (D4-1) to (D4-4).
式(D4— 1):  Formula (D4-1):
[0060] [化 2]
Figure imgf000019_0001
[0060] [Chemical 2]
Figure imgf000019_0001
(式中、 R3は炭素数 1〜6のアルキル基; R4は水素原子、水酸基で置換されていても ょ 、炭素数 1〜6のアルキル基、水酸基で置換されて 、てもよ 、炭素数 2〜10のアル コキシアルキル基、水酸基で置換されていてもよい炭素数 7〜12のァリール基、水酸 基で置換されて 、てもよ 、炭素数 7〜 12のァラルキル基、または水酸基で置換され て!、てもよ 、炭素数 7〜 12のァリールォキシアルキル基)で示されるォキセタン化合 物。 (In the formula, R 3 is an alkyl group having 1 to 6 carbon atoms; R 4 may be substituted with a hydrogen atom or a hydroxyl group, or may be substituted with an alkyl group having 1 to 6 carbon atoms or a hydroxyl group; An alkoxyalkyl group having 2 to 10 carbon atoms, an aryl group having 7 to 12 carbon atoms which may be substituted with a hydroxyl group, an aralkyl group having 7 to 12 carbon atoms, or a hydroxyl group which may be substituted with a hydroxyl group Or an oxetane compound represented by 7-7 carbon aryloxyalkyl group.
式(D4— 2):  Formula (D4-2):
[0061] [化 3]
Figure imgf000019_0002
[0061] [Chemical 3]
Figure imgf000019_0002
(式中、 R3は式 (D4—1)と同じ)で示されるォキセタン化合物。 式(D4— 3) (Wherein R 3 is the same as in formula (D4-1)). Formula (D4-3)
[0062] [化 4] [0062] [Chemical 4]
( D 4 - 3 }(D 4-3}
Figure imgf000020_0001
Figure imgf000020_0001
(式中、 R3は式(D4— 1)と同じ; R5は炭素数 1〜6のアルキレン基、シクロアルキレン 基、フエ-レン基、キシリレン基、または炭素数 4〜30のポリアルキレンォキシ基)で 示されるォキセタンィ匕合物。 (Wherein R 3 is the same as formula (D4-1); R 5 is an alkylene group having 1 to 6 carbon atoms, a cycloalkylene group, a phenylene group, a xylylene group, or a polyalkylene group having 4 to 30 carbon atoms) An oxetane compound represented by
式(D4— 4):  Formula (D4-4):
[0063] [化 5] [0063] [Chemical 5]
Figure imgf000020_0002
Figure imgf000020_0002
3  Three
(式中、 R ま式 (D4—1)と同じ; は水素原子またはメチル)で示されるォキセタンィ匕 合物。  (Wherein R or the same as in formula (D4-1); is a hydrogen atom or methyl).
[0064] 前記式 (D4— 1)で表されるォキセタンィ匕合物の代表例としては、 3 ェチルー 3— メトキシメチルォキセタン、 3—ェチルー 3—エトキシメチルォキセタン、 3—ェチルー 3—ブトキシメチルォキセタン、 3—ェチルー 3—へキシルォキシメチルォキセタン、 3 メチル 3—ヒドロキシメチルォキセタン、 3—ェチル 3—ヒドロキシメチルォキセ タン、 3 ェチルー 3 ァリルォキシメチルォキセタン、 3 ェチルー 3—(2,ーヒドロ キシェチル)ォキシメチルォキセタン、 3 ェチルー 3— (2'ーヒドロキシ 3'—フエノ キシプロピル)ォキシメチルォキセタン、 3 ェチルー 3—(2,ーヒドロキシー3, 一ブト キシプロピル)ォキシメチルォキセタン、 3 ェチルー 3— [2'—(2 "—エトキシェチル )ォキシメチル]ォキセタン、 3 ェチルー 3— (2' ブトキシェチル)ォキシメチルォ キセタン、 3—ェチルー 3—べンジルォキシメチルォキセタン、 3—ェチルー 3—(4 tert ブチルベンジルォキシメチル)ォキセタンなどをあげることができる。  [0064] Representative examples of the oxetane compound represented by the above formula (D4-1) include 3-ethyl-3-methoxymethyloxetane, 3-ethyl-3-ethoxymethyloxetane, 3-ethyl-3- Butoxymethyloxetane, 3-Ethyl-3-hexyloxymethyloxetane, 3-Methyl 3-Hydroxymethyloxetane, 3-Ethyl 3-Hydroxymethyloxetane, 3-Ethyl-3 aralkyloxymethyl Xetane, 3-ethyl-3- (2, -hydroxichetil) oxymethyloxetane, 3-ethyl-3- (2'-hydroxy 3'-phenoxypropyl) oxymethyloxetane, 3-ethyl-3- (2, -hydroxy-3 , Monobutoxypropyl) oxymethyloxetane, 3 ethyl 3— [2 '— (2 “-ethoxyethyl) oxymethyl] oxetane, 3 ethyl 3— (2 ′ butoxych ) Okishimechiruo Kisetan, 3- Echiru 3 base Nji Ruo carboxymethyl O xenon Tan, 3- Echiru 3- (4 tert-butylbenzyl O carboxymethyl) Okisetan and the like.
[0065] 前記式 (D4— 2)で表されるォキセタンィ匕合物の代表例としては、式 (D4— 2)にお V、て、両方の R3が 、ずれもメチルまたはェチルである化合物をあげることができる。 [0066] 前記式 (D4— 3)で表されるォキセタンィ匕合物の代表例としては、式 (D4— 3)にお いて、両方の R3がいずれもェチルで、 R5がメチレン、エチレン、プロピレン、ブチレン 、シクロへキシレン、フエ二レン、キシリレン、ポリ(エチレンォキシ)、ポリ(プロピレンォ キシ)である化合物などをあげることができる。 [0065] As a typical example of the oxetane compound represented by the formula (D4-2), a compound in which V and both R 3 in the formula (D4-2) are both methyl or ethyl Can give. [0066] As a typical example of the oxetane compound represented by the formula (D4-3), in the formula (D4-3), both R 3 are ethyl, R 5 is methylene, ethylene. , Propylene, butylene, cyclohexylene, phenylene, xylylene, poly (ethyleneoxy), poly (propyleneoxy), and the like.
[0067] 前記式 (D4— 4)で表されるォキセタンィ匕合物の代表例としては、 3—メチルー 3— ォキセタ-ルメチルアタリレート、 3—メチルー 3—ォキセタ-ルメチルメタタリレート、 3 ェチル 3—ォキセタニルメチルアタリレート、 3—ェチル 3—ォキセタニルメチ ルメタタリレートなどをあげることができる。  [0067] As representative examples of the oxetane compound represented by the formula (D4-4), 3-methyl-3-oxeta-methylmethyl acrylate, 3-methyl-3-oxeta-methyl methacrylate, 3 Examples include ethyl 3-oxetanyl methyl atallylate, 3-ethyl 3-oxetanyl methyl methacrylate, and the like.
[0068] (D5)プロべ-ルエーテル化合物  [0068] (D5) Probe ether compound
たとえば 1一(2—プロべ-口キシ一 1—プロべ-口キシメチノレエトキシ)プロペン、 1 一(2, 2 ビスプロべ-口キシメチルブトキシ)プロペン、 1ーメチルー 3—(1 メチル —1—プロべ-口キシェチル) 7—ォキサ一ビシクロ [4. 1. 0]ヘプタンなどをあげる ことができる。  For example, 1- (2-probe-mouth xymethylenoethoxy) propene, 1- (2,2 bis-probe-methyl-butoxy) propene, 1-methyl-3- (1 methyl—1 -Probe-Kuchichtil) 7-Oxabicyclo [4. 1. 0] heptane.
[0069] プロべ-ルエーテルィ匕合物(D5)を配合することにより、被覆用組成物の粘度を調 整できるので塗工性を向上させることができ、またカチオン重合して塗膜の硬度をさ らに高めることができる。  [0069] By blending the probe ether compound (D5), the viscosity of the coating composition can be adjusted, so that the coating property can be improved, and the hardness of the coating film can be improved by cationic polymerization. It can be further increased.
[0070] これらのカチオン重合性ィ匕合物(D)としては、エポキシ化合物 (D1)、ォキセタンィ匕 合物(D4)が好適であり、なかでもエポキシィ匕合物(D1)、特に脂環式エポキシ基を 有する化合物が、アクリル榭脂 (A)との相溶性や分散性が高ぐ粘性や硬化性が調 整しやす 、点など塗膜性能が良好な点力 適して 、る。  [0070] As these cationically polymerizable compounds (D), epoxy compounds (D1) and oxetane compounds (D4) are suitable, and among them epoxy compounds (D1), especially alicyclic compounds. A compound having an epoxy group is suitable for point strength with good coating properties such as high viscosity and curability with high compatibility and dispersibility with acrylic resin (A).
[0071] 本発明の組成物において、カチオン重合性をもつ成分はアクリル榭脂 (A)のみか らなっていてもよいが、他のカチオン重合性ィ匕合物(D)を配合する場合は、通常、ァ クリル樹脂 (A) Z他のカチオン重合性ィ匕合物(D)の配合比(質量)力 10Z90〜90 ZlO、好ましくは 20Ζ80〜80Ζ20の範囲内にあることが、粘性や硬化性を調整し やすい点で好適である。  [0071] In the composition of the present invention, the component having cationic polymerizability may consist only of acrylic resin (A). However, when other cationically polymerizable compound (D) is blended, In general, acrylic resin (A) Z Other cation polymerizable compound (D) compounding ratio (mass) force 10Z90 ~ 90 ZlO, preferably in the range of 20 ~ 80 ~ 80 ~ 20 It is suitable because it is easy to adjust the properties.
[0072] (Ε)増感剤  [0072] (ii) Sensitizer
増感剤は、紫外線などの活性エネルギー線によるカチオン重合反応性 (硬化性)を さらに向上させる目的で配合されるものである。 [0073] 具体例としては、たとえばピレン、ペリレン、アタリジンオレンジ、チォキサントン、 2- クロ口チォキサントン、ベンゾフラビン、 9, 10 ビス一(2 ェチルへキシルォキシ)ァ ントラセン、 9, 10 ビス一(n—ドデシルォキシ)アントラセン、 2 ェチル 9, 10- ジェトキシアントラセンなどをあげることができる。 The sensitizer is blended for the purpose of further improving the cationic polymerization reactivity (curability) by active energy rays such as ultraviolet rays. [0073] Specific examples include pyrene, perylene, atalidine orange, thixanthone, 2-chlorothiaxanthone, benzoflavine, 9, 10 bis (2-ethylhexyloxy) anthracene, 9, 10 bis (n— Dodecyloxy) anthracene, 2 ethyl 9, 10-jetoxyanthracene, and the like.
[0074] 増感剤の配合量は、アクリル榭脂 (A) (カチオン重合性ィ匕合物 (D)を併用する場合 は (A)と (D)の合計) 100質量部に対して、通常 10質量部以下、好ましくは 5質量部 以下の範囲内で使用される。また、カップリング剤(B)にエポキシ基ゃォキセタ-ル 基などのカチオン重合性官能基を有するシランカップリング剤を使用する場合、ァク リル榭脂 (A)とカチオン重合性官能基を有するシランカップリング剤 (B)の合計 (カチ オン重合性化合物 (D)を併用する場合は (A)と (B)と (D)の合計) 100質量部に対 して 10質量部以下、好ましくは 5質量部以下の範囲内で使用される。多すぎると、組 成物中からの析出(分離)などを生じることがある。  [0074] The blending amount of the sensitizer is 100 parts by mass with respect to 100 parts by mass of the acrylic resin (A) (when the cationic polymerizable compound (D) is used in combination) (A) and (D)) Usually, it is used within the range of 10 parts by mass or less, preferably 5 parts by mass or less. In addition, when a silane coupling agent having a cationic polymerizable functional group such as an epoxy group or a oxetal group is used as the coupling agent (B), the coupling agent (B) has an acrylic resin (A) and a cationic polymerizable functional group. Total of silane coupling agent (B) (when using cation-polymerizable compound (D) in combination, total of (A), (B) and (D)) 10 parts by mass or less, preferably 100 parts by mass Is used within the range of 5 parts by mass or less. If the amount is too large, precipitation (separation) from the composition may occur.
[0075] (F)カチオン重合性を有さない成分 [0075] (F) Component having no cationic polymerizability
Figure imgf000022_0001
ヽ成分は、組成物の粘度調整や得られる硬化物の物性や 密着性の改良などを目的として配合してもよ 、。
Figure imgf000022_0001
The soot component may be blended for the purpose of adjusting the viscosity of the composition and improving the physical properties and adhesion of the resulting cured product.
[0076] 具体例としては、たとえばカチオン重合性を有する前記アクリル榭脂 (A)以外のァ クリル樹脂、ポリエステル榭脂、ロジン変性フエノール榭脂、ロジン変性アルキッド榭 脂、ケトン樹脂などがあげられ、その配合量は組成物のカチオン重合反応性 (硬化性 )を阻害しない範囲内である。  Specific examples include, for example, acrylic resins other than the acrylic resin (A) having cationic polymerization properties, polyester resins, rosin-modified phenol resins, rosin-modified alkyd resins, and ketone resins. The blending amount is within a range not inhibiting the cationic polymerization reactivity (curability) of the composition.
[0077] (G)顔料  [0077] (G) Pigment
顔料は着色顔料であっても体質顔料であってもよい。いずれも特に限定されず、塗 料や印刷分野で通常使用される顔料が使用できる。  The pigment may be a colored pigment or an extender pigment. None of these are particularly limited, and pigments commonly used in the coating and printing fields can be used.
[0078] 着色顔料としては、たとえばチタン白、亜鉛華などの白色顔料;シァニンブルー、ィ ンダスレンブルーなどの青色顔料;シァニングリーン、緑青などの緑色顔料;ァゾ系や キナクリドン系などの有機赤色顔料;ベンガラなどの無機赤色顔料;ベンツイミダゾリ ン系、イソインドリノン系、イソインドリン系、キノフタロン系などの有機黄色顔料;チタン イェロー、黄鉛などの無機黄色顔料;カーボンブラック、黒鉛、松煙などの黒色顔料; アルミニウム粉、銅粉、ニッケル粉、酸ィ匕チタン被覆マイ力粉、酸化鉄被覆マイ力粉、 光輝性グラフアイトなどの光輝性顔料などがあげられる。 [0078] Examples of the coloring pigment include white pigments such as titanium white and zinc white; blue pigments such as cyanine blue and indanthrene blue; green pigments such as cyanine green and patina; organic reds such as azo and quinacridone Inorganic red pigments such as Bengala; organic yellow pigments such as benzimidazoline, isoindolinone, isoindoline, and quinophthalone; inorganic yellow pigments such as titanium yellow and yellow lead; carbon black, graphite, pine smoke Black pigments such as; aluminum powder, copper powder, nickel powder, acid-titanium-coated my powder, iron oxide-coated my powder, Examples include glitter pigments such as glitter graphite.
[0079] 体質顔料としては、酸化チタン、酸化ケィ素、炭酸カルシウム、硫酸カルシウム、硫 酸バリウム、アルミナホワイトなどが例示できる。  [0079] Examples of extender pigments include titanium oxide, silicon oxide, calcium carbonate, calcium sulfate, barium sulfate, and alumina white.
[0080] 顔料としては、中性または酸性の顔料であることがカチオン重合反応を阻害しない 点から好適である。顔料表面が中性または酸性に処理されたものであってもょ 、。  [0080] The pigment is preferably a neutral or acidic pigment because it does not inhibit the cationic polymerization reaction. Even if the pigment surface is treated neutral or acidic.
[0081] 本発明のセラミックス被覆用組成物では基本的に溶剤は不要であるが、組成物の 粘度調整や塗工性を向上させるために、場合によっては適量使用してもよい。  [0081] In the ceramic coating composition of the present invention, a solvent is basically unnecessary, but an appropriate amount may be used in some cases in order to adjust the viscosity of the composition and improve coating properties.
[0082] 本発明のセラミックス被覆用組成物は印刷用インキの形態でも、コーティング用塗 料の形態でもよい。被覆用組成物の調製方法としては、従来の UV硬化型被覆用組 成物の調製方法が適用できる。たとえば、各成分を混合し、必要に応じて加温し (た とえば 50°C程度)、ディソルバーなどの攪拌機にて均一になるまで、たとえば 30分間 程度攪拌することにより調製することができる。また、顔料 (着色、体質)を分散する場 合においては、アクリル榭脂 (A)と顔料と必要に応じてその他の成分、たとえば既知 の顔料分散剤とをビーズミル、アトライターなどの分散機を用いて分散混合することが できる。得られた顔料分散物を、必要に応じて、残りの成分と混合することによって、 顔料が分散されたセラミックス被覆用組成物を得ることができる。  [0082] The ceramic coating composition of the present invention may be in the form of a printing ink or a coating for coating. As a method for preparing the coating composition, a conventional method for preparing a UV curable coating composition can be applied. For example, it can be prepared by mixing each component, heating as necessary (for example, about 50 ° C), and stirring with a stirrer such as a dissolver, for example, for about 30 minutes. . In the case of dispersing pigment (coloring, constitution), disperser such as bead mill or attritor is used to mix acrylic resin (A) with pigment and other components as required, for example, known pigment dispersant. Can be used for dispersion mixing. A ceramic coating composition in which the pigment is dispersed can be obtained by mixing the obtained pigment dispersion with the remaining components as necessary.
[0083] 本発明のセラミックス被覆用組成物が塗布されるセラミックス基材としては、ガラス、 陶器、磁器、セメントなどがあげられ、形態としては特に限定されず、容器、装飾物、 装飾用小立像、花瓶、窓、タイルなどが含まれる。  [0083] Examples of the ceramic substrate to which the ceramic coating composition of the present invention is applied include glass, ceramics, porcelain, cement, and the like, and the form is not particularly limited. Containers, decorative objects, decorative figurines , Vases, windows, tiles and more.
[0084] 本発明のセラミックス被覆用組成物の塗装または印刷方法については特に制限は なぐたとえばローラー塗装、刷毛塗り、ロールコート塗装、バーコート塗装、ディツビ ング塗装、スプレー塗装、静電塗装、シルク印刷、オフセット印刷、グラビア印刷など の方法の中力 適宜選択して用いることができる。  [0084] The method for coating or printing the ceramic coating composition of the present invention is not particularly limited, for example, roller coating, brush coating, roll coating coating, bar coating coating, dipping coating, spray coating, electrostatic coating, silk printing. , Offset printing, gravure printing, etc. can be selected and used as appropriate.
[0085] 塗膜の硬化は、塗装後、 0〜: LOO°C、たとえば室温にぉ 、て活性エネルギー線を 照射すればよい。使用する活性エネルギー線としては特に限定されず、たとえば紫 外線、電子線、放射線( j8線、 Ί線)などをあげることができる。また、活性エネルギ 一線のエネルギー源としても特に限定されず、たとえば低圧水銀灯、中圧水銀灯、 高圧水銀灯、メタルノヽライドランプ、ガリウムランプ、無電極ランプ、キセノンランプ、ェ キシマランプなどの紫外線ランプ、走査型、非走査型の電子線照射装置などがあげ られる。活性エネルギー線照射装置としては立体的な被塗物表面に極力均一に照 射できるものが好ましぐ照射条件は塗装されたセラミックス被覆用組成物の種類や 膜厚などに応じて適宜変更すればよい。 [0085] The coating film may be cured by applying an active energy ray at 0 to: LOO ° C, for example, room temperature after coating. The active energy ray to be used is not particularly limited, and examples thereof include an ultraviolet ray, an electron beam, and radiation (j8 ray, X ray). Also, the energy source of the active energy line is not particularly limited. For example, a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, a metal halide lamp, a gallium lamp, an electrodeless lamp, a xenon lamp, Examples thereof include ultraviolet lamps such as a xymer lamp, scanning type and non-scanning type electron beam irradiation apparatuses. An active energy ray irradiation device that can irradiate the surface of a three-dimensional object as uniformly as possible is preferable. The irradiation conditions can be changed as appropriate according to the type and thickness of the coated ceramic coating composition. Good.
[0086] 塗膜を硬化させるために必要な活性エネルギー線の照射量としては、紫外線の場 合は下限 100mj/cm2、上限 10000mj/cm2が好ましぐ電子線の場合は、下限 1[0086] The irradiation amount of the active energy ray necessary for curing the coating film is lower limit of 100 mj / cm 2 in the case of ultraviolet rays, and lower limit of 1 in the case of an electron beam whose upper limit is preferably 10,000 mj / cm 2.
Mrad、上限 50Mradが好ましい。 Mrad, with an upper limit of 50 Mrad being preferred.
[0087] また、必要に応じて活性エネルギー線を照射する前に予備加熱を行ったり、活性ェ ネルギ一線を照射したのちに後追 、加熱を行ったりしてもょ 、。 [0087] Further, if necessary, preheating may be performed before irradiation with active energy rays, or heating may be performed after irradiation with active energy rays.
[0088] 予備加熱は 30〜: LOO°Cという条件で行うことが、セラミックス基材に対する濡れ性を 向上させる点で好ましい。 [0088] The preheating is preferably performed under a condition of 30 to: LOO ° C from the viewpoint of improving the wettability with respect to the ceramic substrate.
[0089] また、照射後に後追い加熱することによって塗膜中の未反応物量の低減、および 活性エネルギー線照射による塗膜の硬化によって生じた塗膜の歪みの緩和を行うこ とができる。そのほか、後追い加熱によって塗膜の硬度や密着性が向上する場合も ある。後追い加熱は、通常、 100〜250°Cの雰囲気温度で 1〜30分間行うことが好ま しい。 [0089] Further, post-heating after the irradiation can reduce the amount of unreacted substances in the coating film, and can reduce the distortion of the coating film caused by the curing of the coating film by irradiation with active energy rays. In addition, follow-up heating may improve the hardness and adhesion of the coating film. The follow-up heating is preferably performed at an ambient temperature of 100 to 250 ° C for 1 to 30 minutes.
[0090] 本発明の被覆用組成物を用い硬化させて得られる被膜は、硬度、耐薬品性および 耐煮沸性に優れており、し力もセラミックス基材との密着性が特に向上したものである  [0090] The film obtained by curing using the coating composition of the present invention is excellent in hardness, chemical resistance and boiling resistance, and has a particularly improved adhesion to the ceramic substrate.
実施例 Example
[0091] 以下に実施例をあげて本発明を詳細に説明するが、本発明はこれらの実施例のみ に限定されるものでない。なお、以下の実施例において、部および%はそれぞれ質 量部、質量%を意味する。また、重量平均分子量およびカチオン重合性官能基 (ェ ポキシ基およびォキセタ-ル基)当量はつぎの方法で算出した。  [0091] The present invention will be described in detail below with reference to examples, but the present invention is not limited to these examples. In the following examples, parts and% mean mass parts and mass%, respectively. The weight average molecular weight and the cationic polymerizable functional group (epoxy group and oxetal group) equivalent were calculated by the following methods.
[0092] (1)重量平均分子量  [0092] (1) Weight average molecular weight
装置:東ソー (株)製の HLC -8220  Equipment: HLC-8220 manufactured by Tosoh Corporation
検出器: HLC— 8220内蔵 RI*UV— 8220  Detector: HLC-8220 built-in RI * UV-8220
測定条件:溶離液 クロ口ホルム、 40°C 使用カラム: TSK GEL SUPER AW3000 X 1 + 2500 X 3 Measurement conditions: eluent black mouth form, 40 ° C Column used: TSK GEL SUPER AW3000 X 1 + 2500 X 3
標準物質:ポリスチレン  Standard material: polystyrene
[0093] (2)カチオン重合性官能基当量  [0093] (2) Cationic polymerizable functional group equivalent
カチオン重合性官能基 (エポキシ基およびォキセタ-ル基)当量は、原料である単 量体の組成比力も算出した理論値を記載した。また、一般にカチオン重合性官能基 (エポキシ基およびォキセタ-ル基)当量は、 JIS K— 7236に記載の方法で行われ る。これは、試料をクロ口ホルム 10mLに溶解し、無水酢酸 20mL、 20%の臭化テトラ ェチルアンモ -ゥム酢酸溶液 10mLをそれぞれ加えて、電位差滴定装置を用いて 0 . ImolZL過塩素酸酢酸標準液で滴定する算出方法である。  For the cation polymerizable functional group (epoxy group and oxetal group) equivalent, the theoretical value in which the composition specific power of the monomer as a raw material was also calculated was described. In general, the cation polymerizable functional group (epoxy group and oxetal group) equivalent is determined by the method described in JIS K-7236. This is done by dissolving the sample in 10 mL of chloroform, adding 20 mL of acetic anhydride and 10 mL of 20% tetraethylammonium bromide acetic acid solution, and using a potentiometric titrator, 0.1 mol ZL perchlorate standard solution. It is the calculation method which titrates with.
[0094] 製造例 (カチオン重合性官能基を有するアクリル榭脂 (A)の製造)  Production Example (Production of Acrylic Resin (A) Having Cationic Polymerizable Functional Group)
加温および冷却が可能な重合装置中に、脱イオン水 300部、ポリビニルアルコール (ケンィ匕度 80%、重合度 1, 700) 0. 5部をカ卩え、ポリビュルアルコールが完全に溶解 するまで攪拌した。これに、グリシジルメタタリレート (GMA) 25部、メチルメタクリレー ト(MMA) 75部、 2, 2,—ァゾビスイソブチ口-トリル 1. 0部、 n—ドデシルメルカプタ ン 0. 5部をカ卩え、 80°Cに昇温し、この温度で 1時間保持した後、 90°Cに昇温し、この 温度で 1時間保持して単量体の重合を終了させた。得られた水性懸濁液を目開き 10 μ mの濾布にて濾過後、濾過物を洗浄し、減圧下、 50°Cの電気オーブンで乾燥し、 カチオン重合性官能基当量 540 (理論値)の粒状のエポキシ基含有アクリル榭脂 (al )を得た。得られたアクリル榭脂の重量平均分子量は 10, 000であった。  In a polymerization apparatus that can be heated and cooled, 300 parts of deionized water and 0.5 parts of polyvinyl alcohol (80% of the degree of polymerization, 1,700 degree of polymerization) are covered, and the polybulu alcohol is completely dissolved. Until stirred. Add 25 parts of glycidyl methacrylate (GMA), 75 parts of methyl methacrylate (MMA), 1.0 part of 2,2, -azobisisobutyric-tolyl, and 0.5 part of n-dodecyl mercaptan. The temperature was raised to 80 ° C. and held at this temperature for 1 hour, and then heated to 90 ° C. and kept at this temperature for 1 hour to complete the polymerization of the monomer. The obtained aqueous suspension was filtered through a filter cloth having a mesh size of 10 μm, and the filtrate was washed and dried in an electric oven at 50 ° C. under reduced pressure to obtain a cationic polymerizable functional group equivalent weight of 540 (theoretical value). ) Granular epoxy group-containing acrylic resin (al). The weight average molecular weight of the obtained acrylic resin was 10,000.
[0095] 以下、表 1に示すアクリル榭脂 (A)を用いて検討を行った。なお、表 1中の ECMM Aは 3, 4—エポキシシクロへキシルメチルメタタリレートを意味し、 OXEMAは 3—ェ チル一 3—ォキセタ-ルメチルメタタリレート、 Stはスチレンを意味する。また、アタリ ル榭脂番号 a 15、 a 16はカチオン重合性官能基を有しな 、比較用のアクリル榭脂で ある。表 1における各成分の量は、質量部による表示である。  [0095] In the following, examination was performed using the acrylic resin (A) shown in Table 1. In Table 1, ECMM A means 3,4-epoxycyclohexylmethyl metatalylate, OXEMA means 3-ethyl-1-oxomethyl methyl methacrylate, and St means styrene. Atalyl resin numbers a15 and a16 are comparative acrylic resin having no cationically polymerizable functional group. The amount of each component in Table 1 is expressed in parts by mass.
[0096] [表 1] 表 1 [0096] [Table 1] table 1
Figure imgf000026_0001
Figure imgf000026_0001
実施例 1 Example 1
他のカチオン重合性化合物(D)として 3, 4—エポキシシクロへキシルー 3, 4—ェ ポキシシクロへキサンカルボキシレート (カチオン重合性ィ匕合物 dl - 1) 25部、前記 式 (D4— 1)において R3がェチル、 R4が水素原子である化合物 (カチオン重合性ィ匕 合物 dl— 2) 5部、 1, 4 ビス〔(3 ェチル 3—ォキセタ -ル)メトキシ〕ベンゼン(力 チオン重合性ィ匕合物 dl— 3) 10部を使用し、これらにアクリル榭脂 (A)としてェポキ シ基含有アクリル榭脂(al) 40部を配合し、 60°Cに保持して 5時間攪拌してアクリル 榭脂溶液を得た。得られた溶液 80部を 25°Cまで冷却後、これにカップリング剤(B)と 合開始剤(C)としてサイラキュア UVI— 6992 (ユニオンカーバイド社製。商品名。力 チオン重合開始剤 cl) 8部、 BYK— 022 (BYKケミ社製のポリダリコール中の疎水性 固体と消泡性ポリシロキサンの混合物。商品名) 2部を配合し、 25°Cに保持して 10分 間攪拌し、本発明のセラミック被覆用組成物を得た。 As other cationically polymerizable compound (D), 3,4-epoxycyclohexylene 3,4-epoxycyclohexanecarboxylate (cationic polymerizable compound dl-1) 25 parts, the above formula (D4-1) In which R 3 is ethyl and R 4 is a hydrogen atom (cation-polymerizable compound dl—2) 5 parts 1,4 bis [(3 ethyl 3-oxetal) methoxy] benzene (force thione polymerization) Dl— 3) Use 10 parts of this compound, mix 40 parts of epoxy group-containing acrylic resin (al) as acrylic resin (A), and maintain at 60 ° C for 5 hours. As a result, an acrylic resin solution was obtained. After 80 parts of the resulting solution was cooled to 25 ° C, the coupling agent (B) and Cycure UVI—6992 (trade name, force thione polymerization initiator cl) 8 parts, BYK—022 (hydrophobic solid and antifoaming poly in polydarlicol made by BYK Chemie) as initiator (C) A mixture of siloxanes (trade name) 2 parts was blended and kept at 25 ° C and stirred for 10 minutes to obtain a ceramic coating composition of the present invention.
[0098] このセラミック被覆用組成物について、つぎの試験を行った。結果を表 2に示す。  [0098] This ceramic coating composition was subjected to the following test. The results are shown in Table 2.
[0099] (1)試験塗板の作製  [0099] (1) Preparation of test coating plate
市販の硬質ガラス板(100 X 150 X 2mm)をメタノールで洗浄した後、オーブンで 8 0°Cにて乾燥した。この硬質ガラス板の表面に実施例 1で得たセラミック被覆用組成 物をバーコータ塗装にて、膜厚 10 mとなるように塗装した。ついで集光型メタルノヽ ライドランプ(160W/cm)を用いて紫外線を塗装ガラス板に照射し (塗装ガラス板と の距離 11cm;エネルギー線量が 100mJ/cm2および 500mJ/cm2)、塗膜を硬化させ 、試験塗板を得た。 A commercially available hard glass plate (100 × 150 × 2 mm) was washed with methanol and then dried in an oven at 80 ° C. The ceramic coating composition obtained in Example 1 was applied to the surface of this hard glass plate by bar coater coating so that the film thickness was 10 m. Next, the coated glass plate was irradiated with ultraviolet rays using a condensing metal halide lamp (160W / cm) (distance to the coated glass plate 11cm; energy dose 100mJ / cm 2 and 500mJ / cm 2 ) Cured to obtain a test coated plate.
[0100] 得られた各試験塗板につ!、てつぎの特性を調べた。なお、試験はすべて 20°Cに おいて行った。結果を表 2〜5に示す。  [0100] The following characteristics were examined for each of the obtained test coated plates. All tests were conducted at 20 ° C. The results are shown in Tables 2-5.
[0101] (2)試験方法 [0101] (2) Test method
JIS K- 5400 8. 5. 2 (碁盤目テープ法)に準じて、試験塗板表面の硬化塗膜に 1. Omm四方のマス目をナイフで切れ目を入れて 100個作製し、その表面に粘着テ 一プを貼着し、瞬時に剥がした後のマス目の状態を以下の基準によって評価する。 実用面力 C以上が望まれる。 In accordance with JIS K-5400 8.5.2 (cross-cut tape method), apply 100 Omm squares to the cured coating on the surface of the test coating plate using a knife and adhere to the surface. After applying the tape and peeling it off instantaneously, the condition of the squares is evaluated according to the following criteria. A practical surface strength of C or higher is desired.
A:剥離は全く認められな!、。  A: No peeling at all!
B:マス目のフチが僅かに剥離する。  B: The border of the grid is slightly peeled off.
C:マス目のフチが僅かに剥離し、密着して!/、るマス目の数が 90Z100以上である。 D:マス目のフチが剥離し、密着して!/、るマス目の数が 80〜89Z100である  C: The borders of the cells are slightly peeled off and adhered! /, The number of cells is 90Z100 or more. D: The borders of the squares peeled and adhered! /, The number of squares is 80-89Z100
E:マス目のフチが剥離し、密着して!/、るマス目の数が、 30〜79ZlOOである。  E: The borders of the squares peeled and adhered! / The number of squares is 30 to 79 ZlOO.
F :密着しているマス目の数力 30Z100未満である。  F: The number of cells in close contact is less than 30Z100.
[0102] 鉛肇硬度: JIS K- 5400 8. 4. 2 (手力き法)に規定する鉛筆引つ力き試験を行い、評価は 破れ法で行う。実用面から、 3H以上が望まれる。 [0102] Lead hardness: The pencil pulling force test specified in JIS K-5400 8.4.2 (hand force method) is performed, and the evaluation is performed by the tear method. From a practical aspect, 3H or higher is desired.
[0103] 表面硬化性: [0103] Surface curability:
紫外線を照射してから 30秒後と 1分後それぞれの硬化塗膜表面を、人指し指で押 し付け、塗膜表面状態をつぎの基準にて評価する。実用面力 C以上が望まれる。 A:照射 30秒後にお 、ても、塗面に変化が認められな!/、。  30 seconds and 1 minute after UV irradiation, press the surface of the cured coating film with your index finger, and evaluate the coating surface condition according to the following criteria. A practical surface strength of C or higher is desired. A: Even after 30 seconds of irradiation, there is no change in the paint surface! /.
B :照射 1分後において、塗面に変化が認められない。  B: After 1 minute of irradiation, no change is observed on the painted surface.
C :照射 1分後において、塗面に僅かに指紋の跡が認められるが、指に塗剤が転移し ない。  C: After 1 minute of irradiation, a slight trace of fingerprints is observed on the paint surface, but the paint does not transfer to the fingers.
D :照射 1分後において、塗面に著しく指紋の跡が認められ、指に塗剤が僅かに転移 する。  D: After 1 minute of irradiation, a marked trace of fingerprints is observed on the coated surface, and the coating material is slightly transferred to the finger.
E :照射 1分後において、塗面が脱落し、指に塗剤が著しく転移する。  E: The coating surface falls off after 1 minute of irradiation, and the coating material transfers significantly to the finger.
[0104] 耐煮沸件: [0104] Boiling resistance:
試験塗板を 90°Cの熱水中に 5、 15、及び 30分間それぞれ浸漬した後に熱水中か ら試験塗板を取り出し、ウェスにて乾拭き後、取り出し 1分後に塗膜表面に粘着テー プを貼着し、瞬時に剥がして密着性と硬化塗膜の外観を目視にて評価する。評価は つぎの基準にて行う。実用面力も C以上が望まれる。  After immersing the test coating in hot water at 90 ° C for 5, 15, and 30 minutes, remove the test coating from the hot water, dry with a waste cloth, and remove the adhesive coating on the coating surface 1 minute later. Adhere and peel off instantly to visually evaluate the adhesion and the appearance of the cured coating. The evaluation is based on the following criteria. A practical surface strength of C or higher is desired.
A:熱水に 30分間浸漬しても全く変化が認められな 、。  A: Even if it is immersed in hot water for 30 minutes, no change is observed.
B:熱水に 15分間浸漬しても全く変化が認められな 、。  B: No change even when immersed in hot water for 15 minutes.
C :熱水に 5分間浸漬しても全く変化が認められない。  C: No change is observed even when immersed in hot water for 5 minutes.
D :熱水に 5分間浸漬しても塗膜に平滑性とツヤ感はあるが、僅かに水泡が認められ 、密着性試験後、水泡のあった部分が剥離 (残存面積、 90%以上)する。  D: Even if immersed in hot water for 5 minutes, the coating film has smoothness and gloss, but slight water bubbles are observed, and after the adhesion test, the part with water bubbles peels off (residual area, 90% or more) To do.
E :熱水に 5分間浸漬しても塗膜に平滑性とツヤ感はあるが、水泡が著しく認められ、 密着性試験後、剥離 (残存面積、 30〜90%)が認められる。  E: Even if immersed in hot water for 5 minutes, the coating film is smooth and glossy, but water bubbles are remarkably observed, and peeling (remaining area, 30 to 90%) is observed after the adhesion test.
F :熱水に 5分間浸漬後、塗膜の平滑性もしくはツヤ感がなくなる。もしくは、密着性試 験後、残存面積が 30%未満になる。  F: After dipping in hot water for 5 minutes, the smoothness or glossiness of the coating disappears. Or, after the adhesion test, the remaining area will be less than 30%.
[0105] 耐溶剤件: [0105] Solvent resistance:
試験塗板の硬化塗膜表面をメチルェチルケトンを含浸させた綿棒で軽くこすり(往 復させる)、塗膜表面のツヤ感をつぎの基準にて評価する。実用面から B以上が望ま れる。 Lightly rub the cured coating surface of the test coating with a cotton swab impregnated with methyl ethyl ketone. The glossiness of the coating surface is evaluated according to the following criteria. B or higher is desired for practical use.
A: 30往復しても塗面のツヤ感に変化が認められない。  A: Even after 30 reciprocations, there is no change in the gloss of the coated surface.
B: 30往復しても塗面のツヤ感に変化がほとんど認められな 、。  B: Even after 30 reciprocations, there is almost no change in the gloss of the coated surface.
C: 30往復では塗面のツヤ感に変化がかなり認められるが、 10往復ではツヤ感に変 化がほとんど認められない。  C: There is a considerable change in the gloss of the coated surface at 30 round trips, but there is almost no change in the gloss at 10 round trips.
D : 10往復では塗面のツヤ感に変化がかなり認められる力 3往復ではツヤ感に変化 がほとんど認められない。  D: Force with a significant change in the gloss of the coated surface after 10 reciprocations. There is almost no change in the gloss with 3 reciprocations.
E : 1往復で塗面のツヤ感に変化がかなり認められる。  E: A significant change in the gloss of the coated surface is observed in one round trip.
[0106] レべリング件: [0106] Leveling:
各セラミック被覆用組成物をバーコータで塗装した後の、塗面の表面状態を目視で 評価する。評価はつぎの基準にて行う。実用面力 B以上が望まれる。  After coating each ceramic coating composition with a bar coater, the surface condition of the coated surface is visually evaluated. Evaluation is performed according to the following criteria. A practical surface strength of B or higher is desired.
A:塗面が平滑である。  A: The coating surface is smooth.
B :バーコータで塗装した跡が僅かに残る。  B: Traces painted with a bar coater remain slightly.
C :バーコータで塗装した跡がはっきりと残る。  C: Marks painted with a bar coater remain clearly.
D:バーコータで塗装できな 、。  D: Cannot be painted with a bar coater.
[0107] 実施例 2〜5および比較例 1 [0107] Examples 2 to 5 and Comparative Example 1
カチオン重合性官能基含有アクリルモノマーとして GMAを使用した各種アクリル榭 脂につ ヽて表 2に示す成分を使用した以外は実施例 1と同様の操作を行!ヽ、各セラミ ック被覆用組成物を得た。比較例 1で用いたアクリル榭脂(al5)はカチオン重合性官 能基を有さな ヽアクリル榭脂である。  For various acrylic resins using GMA as an acrylic monomer containing a cationically polymerizable functional group, the same operation as in Example 1 was carried out except that the components shown in Table 2 were used! ヽ Each ceramic coating composition I got a thing. The acrylic resin (al5) used in Comparative Example 1 is an acrylic resin having no cationic polymerizable functional group.
[0108] これらのセラミック被覆用組成物について、実施例 1と同じ試験を行った。結果を表[0108] These ceramic coating compositions were subjected to the same tests as in Example 1. Table the results
2に示す。 Shown in 2.
[0109] [表 2]
Figure imgf000030_0001
[0109] [Table 2]
Figure imgf000030_0001
表 2の結果から、 GMAに対し耐熱性の咼ぃ MMAやスチレンを共重合させることで 、実施例 5の GMA単独重合体 (a8)の塗膜特性をほとんど低下させることなく耐煮沸 性や鉛筆硬度が向上することがわかる。また、比較例 1で用いたカチオン重合性官 能基を有さないアクリル榭脂 (al5)では、塗膜特性が全体的に著しく低下する。 From the results shown in Table 2, the heat resistance of GMA is copolymerized with MMA or styrene, and boiling resistance is hardly lowered with almost no deterioration of the coating properties of the GMA homopolymer (a8) of Example 5. It can be seen that the properties and pencil hardness are improved. In addition, the acrylic resin (al5) having no cationically polymerizable functional group used in Comparative Example 1 significantly deteriorates the coating properties as a whole.
[0111] 実施例 6〜8 [0111] Examples 6-8
重量平均分子量 (Mw)の異なる各種アクリル榭脂につ ヽて表 3に示す成分を使用 した以外は実施例 1と同様の操作を行 ヽ、各セラミック被覆用組成物を得た。  Each ceramic coating composition was obtained in the same manner as in Example 1 except that the components shown in Table 3 were used for various acrylic resins having different weight average molecular weights (Mw).
[0112] これらのセラミック被覆用組成物について、実施例 1と同じ試験を行った。結果を表[0112] These ceramic coating compositions were subjected to the same tests as in Example 1. Table the results
3に示す。参考のため、表 3には実施例 2と 4の結果も併記してある。 Shown in 3. For reference, Table 3 also shows the results of Examples 2 and 4.
[0113] [表 3] [0113] [Table 3]
Figure imgf000032_0001
Figure imgf000032_0001
[0114] 表 3の結果から、重量平均分子量 2000〜50000において、優れた塗膜特性を発 現していることがわ力る。  [0114] From the results shown in Table 3, it is evident that excellent coating properties are expressed at a weight average molecular weight of 2000 to 50000.
[0115] 実施例 9〜10および比較例 2 [0115] Examples 9 to 10 and Comparative Example 2
カチオン重合性官能基含有アクリルモノマーとして ECMMA (実施例 9)および OX EMA (実施例 10)を使用した各種アクリル榭脂につ ヽて表 4に示す成分を使用した 以外は実施例 1と同様の操作を行い、各セラミック被覆用組成物を得た。比較例 2で 用いた他のカチオン重合性ィ匕合物(dl— 4)および (dl— 5)はそれぞれダウ液状ェ ポキシ榭脂 DER331およびダウ固体エポキシ榭脂 DER661 (ダウ'ケミカル社製。商 品名)であり、ビスフエノール Aエポキシ榭脂を主成分とするエポキシ榭脂である。 ECMMA (Example 9) and OX as acrylic monomers containing cationically polymerizable functional groups For each acrylic resin using EMA (Example 10), the same operations as in Example 1 were carried out except that the components shown in Table 4 were used to obtain respective ceramic coating compositions. The other cationically polymerizable compounds (dl-4) and (dl-5) used in Comparative Example 2 are Dow liquid epoxy resin DER331 and Dow solid epoxy resin DER661 (manufactured by Dow Chemical Co., Ltd.). Product name), which is an epoxy resin mainly composed of bisphenol A epoxy resin.
[0116] これらのセラミック被覆用組成物について、実施例 1と同じ試験を行った。結果を表 4に示す。参考のため、表 4には実施例 1、 2、 5および比較例 1の結果も併記してある [0116] These ceramic coating compositions were subjected to the same tests as in Example 1. The results are shown in Table 4. For reference, Table 4 also includes the results of Examples 1, 2, and 5 and Comparative Example 1.
[0117] [表 4] [0117] [Table 4]
Figure imgf000034_0001
Figure imgf000034_0001
表 4の結果から、カチオン重合性不飽和モノマーの単独重合体、特にエポキシ基 含有アクリル樹脂 (a8)および (al 1)は、低光量( 100mj/cm2)にお!/、ても表面硬化 性が高ぐ多色印刷機やインクジ ット使用時など速乾性が必要とされる分野で有用 であることがわかる。また、比較例 1や 2など、カチオン重合性官能基を有さないアタリ ル榭脂 (al5)およびビスフエノール Aエポキシ榭脂を主成分に用いた場合には、表 面硬化性が低い。 From the results shown in Table 4, homopolymers of cationically polymerizable unsaturated monomers, especially the epoxy group-containing acrylic resins (a8) and (al 1), are surface-cured even at low light (100 mj / cm 2 )! This proves useful in fields where quick drying is required, such as when using multi-color printers and ink jets. In addition, when talyl resin (al5) and bisphenol A epoxy resin having no cationically polymerizable functional group are used as the main components, such as Comparative Examples 1 and 2, the surface curability is low.
[0119] 実施例 11〜13および比較例 3〜5  [0119] Examples 11 to 13 and Comparative Examples 3 to 5
カップリング剤としてカップリング剤 (bl)に代えて 3—(3—ェチルー 3—ォキセタ- ルメトキシ)プロピルトリメトキシシラン (b2)を用い、表 5に示す成分を使用した以外は 実施例 1と同様の操作を行 ヽ、各セラミック被覆用組成物を得た。  As in Example 1, except that 3- (3-ethyl-3-oxycetalmethoxy) propyltrimethoxysilane (b2) was used in place of the coupling agent (bl) as a coupling agent and the components shown in Table 5 were used. By performing the above operations, each ceramic coating composition was obtained.
[0120] これらのセラミック被覆用組成物について、実施例 1と同じ試験を行った。結果を表 5に示す。参考のため、表 5には実施例 2、 4、 5の結果も併記してある。  [0120] These ceramic coating compositions were subjected to the same tests as in Example 1. The results are shown in Table 5. For reference, Table 5 also shows the results of Examples 2, 4, and 5.
[0121] [表 5] [0121] [Table 5]
Figure imgf000036_0001
Figure imgf000036_0001
表 5の結果から、カチオン重合性官能基 (エポキシ基、ォキセタ-ル基)を有する力 ップリング剤を使用することで、密着性が向上し耐煮沸性を発現することがわかる。 [0123] 実施例 14 From the results in Table 5, it can be seen that the use of a force coupling agent having a cationic polymerizable functional group (epoxy group, oxetal group) improves adhesion and exhibits boiling resistance. [0123] Example 14
トルエンとメチルェチルケトンの比率力 S4対 iの混合溶剤(トルエン Zメチルェチルケ トン =4Zl) 70部に、エポキシ基含有アクリル榭脂(a8) 70部を配合し、 50°Cに保持 して 3時間攪拌してアクリル榭脂溶液を得た。得られた溶液 140部を 25°Cまで冷却 後、これにカップリング剤 (B)として 3—グリシドキシプロピルトリメトキシシラン (カツプリ ング剤 bl) 20部、カチオン重合開始剤(C)としてサイラキュア UVI— 6992 (カチオン 重合開始剤 cl) 8部、 BYK— 022 (BYKケミ社製。ポリダリコール中の疎水性固体と 消泡性ポリシロキサンの混合物) 2部を配合し、 25°Cに保持して 10分間攪拌し、本発 明のセラミック被覆用組成物を得た。  Ratio of toluene and methylethylketone 70 parts of S4 to i mixed solvent (toluene Z methylethylketone = 4Zl) and 70 parts of epoxy group-containing acrylic resin (a8), and kept at 50 ° C 3 The mixture was stirred for a time to obtain an acrylic resin solution. After 140 parts of the resulting solution were cooled to 25 ° C, 20 parts of 3-glycidoxypropyltrimethoxysilane (coupling agent bl) as a coupling agent (B) and syracure as a cationic polymerization initiator (C) were added thereto. UVI—6992 (cationic polymerization initiator cl) 8 parts, BYK—022 (BYK Chemi Co., Ltd. Mixture of hydrophobic solid and antifoaming polysiloxane in polydalicol) 2 parts and keep at 25 ° C The mixture was stirred for 10 minutes to obtain the ceramic coating composition of the present invention.
[0124] このセラミック被覆用組成物について、実施例 1と同じ試験を行った (試験温度 20 °C) o結果を表 6に示す。ただし、試験塗板はつぎの方法で作製した。  [0124] This ceramic coating composition was subjected to the same test as in Example 1 (test temperature 20 ° C). However, the test coating plate was produced by the following method.
[0125] (試験塗板の作製)  [0125] (Preparation of test coating)
市販の硬質ガラス板(100 X 150 X 2mm)をメタノールで洗浄した後、オーブンで 8 0°Cにて乾燥した。この硬質ガラス板の表面に実施例 14で得たセラミック被覆用組成 物をバーコータ塗装にて、乾燥膜厚 10 mとなるように塗装した後、オーブン 100°C にて 1分間溶剤を乾燥させた。つ!、で集光型メタルノ、ライドランプ(160W/cm)を用 V、て紫外線を塗装ガラス板に照射し (塗装ガラス板との距離 1 lcm;エネルギー線量 力 SlOOmJ/cm2および 500mJ/cm2)、塗膜を硬化させ、試験塗板を得た。 A commercially available hard glass plate (100 × 150 × 2 mm) was washed with methanol and then dried in an oven at 80 ° C. After coating the ceramic coating composition obtained in Example 14 on the surface of this hard glass plate with a bar coater to a dry film thickness of 10 m, the solvent was dried in an oven at 100 ° C for 1 minute. . Condensation type metalo, ride lamp (160W / cm) is used V, and ultraviolet rays are applied to the coated glass plate (distance to the painted glass plate 1 lcm; energy dose power SlOOmJ / cm 2 and 500mJ / cm 2 ) The coating film was cured to obtain a test coated plate.
[0126] 実施例 15〜16  [0126] Examples 15 to 16
表 6に示す成分を使用した以外は実施例 14と同様の操作を行 ヽ、各セラミック被覆 用組成物を得た。  The same operation as in Example 14 was carried out except that the components shown in Table 6 were used, and each ceramic coating composition was obtained.
[0127] これらのセラミック被覆用組成物について、実施例 1と同じ試験を行った。結果を表 [0127] These ceramic coating compositions were subjected to the same tests as in Example 1. Table the results
6に示す。 Shown in 6.
[0128] [表 6]
Figure imgf000038_0001
[0128] [Table 6]
Figure imgf000038_0001
[0129] 表 6の結果から、重量平均分子量 2000〜50000において優れた塗膜特性を発現 していることがわ力る。  [0129] From the results in Table 6, it is evident that excellent coating properties are expressed at a weight average molecular weight of 2000 to 50000.
[0130] 実施例 17〜21および比較例 6〜7  [0130] Examples 17 to 21 and Comparative Examples 6 to 7
アクリル榭脂 (A)として表 7に示すカチオン重合性官能基含有アクリル榭脂を使用 し、また表 7に示す成分を使用した以外は実施例 14と同様の操作を行い、各セラミツ ク被覆用組成物を得た。比較例 6で用いたアクリル榭脂(al6)はカチオン重合性官 能基を有さないアクリル榭脂である。また、比較例 7で用いた他のカチオン重合性ィ匕 合物(dl— 4)および (dl - 5)はそれぞれダウ液状エポキシ榭脂 DER331およびダ ゥ固体エポキシ榭脂 DER661 (ダウ'ケミカル社製。商品名)であり、ビスフエノール A エポキシ榭脂を主成分とするエポキシ榭脂である。 For each ceramic coating, the same operation as in Example 14 was performed except that the acrylic resin containing cationically polymerizable functional groups shown in Table 7 was used as the acrylic resin (A) and the components shown in Table 7 were used. A composition was obtained. Acrylic rosin (al6) used in Comparative Example 6 is a cationic polymerizable compound. It is an acrylic resin that has no active groups. The other cationically polymerizable compounds (dl-4) and (dl-5) used in Comparative Example 7 are Dow liquid epoxy resin DER331 and Dow solid epoxy resin DER661 (manufactured by Dow Chemical Co., Ltd.). (Trade name) and epoxy resin mainly composed of bisphenol A epoxy resin.
[0131] これらのセラミック被覆用組成物について、実施例 1と同じ試験を行った。結果を表 7に示す。  [0131] These ceramic coating compositions were tested in the same manner as in Example 1. The results are shown in Table 7.
[0132] [表 7] [0132] [Table 7]
Figure imgf000040_0001
Figure imgf000040_0001
表 7の結果から、カチオン重合性不飽和モノマーの単独重合体、特にエポキシ基 含有アクリル榭脂(a9)および (al 2)は、低光量(lOOmjZcm2)においても表面硬化 性が高ぐ多色印刷機やインクジ ット使用時など速乾性が必要とされる分野で有用 であることがわかる。また、比較例 6や 7など、カチオン重合性官能基を有さないアタリ ル榭脂 (al6)およびビスフエノール Aエポキシ榭脂を主成分に用いた場合には、表 面硬化性が低い。 Based on the results in Table 7, homopolymers of cationically polymerizable unsaturated monomers, especially epoxy group-containing acrylic resins (a9) and (al 2 ), are surface cured even at low light levels (lOOmjZcm 2 ). This proves useful in fields where quick drying is required, such as when using multi-color printers and ink jets. In addition, when talyl resin (al6) and bisphenol A epoxy resin having no cationically polymerizable functional group are used as the main components, such as Comparative Examples 6 and 7, surface curability is low.
[0134] 実施例 22〜23および比較例 8〜9  [0134] Examples 22 to 23 and Comparative Examples 8 to 9
カップリング剤としてカップリング剤 (bl)に代えて 3—(3—ェチルー 3—ォキセタ- ルメトキシ)プロピルトリメトキシシラン (b2)を用い、表 8に示す成分を使用した以外は 実施例 14と同様の操作を行 、、各セラミック被覆用組成物を得た。  Similar to Example 14 except that 3- (3-ethyl-3-oxycetalmethoxy) propyltrimethoxysilane (b2) was used in place of the coupling agent (bl) as a coupling agent, and the components shown in Table 8 were used. The ceramic coating compositions were obtained by performing the above operations.
[0135] これらのセラミック被覆用組成物について、実施例 1と同じ試験を行った。結果を表 8に示す。参考のため、表 8には実施例 17および 19の結果も併記してある。  [0135] These ceramic coating compositions were tested in the same manner as in Example 1. The results are shown in Table 8. For reference, Table 8 also shows the results of Examples 17 and 19.
[0136] [表 8] [0136] [Table 8]
表 8 Table 8
Figure imgf000042_0001
Figure imgf000042_0001
[0137] 表 8の結果から、カチオン重合性官能基 (エポキシ基、ォキセタ-ル基)を有する力 ップリング剤を使用することで密着性が向上し、耐煮沸性を発現することがわかる。 産業上の利用可能性 [0137] From the results in Table 8, it can be seen that the use of a force coupling agent having a cationic polymerizable functional group (epoxy group, oxetal group) improves the adhesion and expresses boiling resistance. Industrial applicability
[0138] 本発明のセラミックス被覆用組成物は、硬化性が高ぐかつ、この組成物を硬化し 得られる被膜は、セラミックス基材との間でィ匕学結合を生じて接着していることから優 れた密着性を有し、しかも被膜自体も硬度、耐薬品性および耐煮沸性に優れている のでセラミックス製品が使用される環境において実用性の高い硬化被膜を提供する ことができる。 [0138] The ceramic coating composition of the present invention has high curability, and the coating obtained by curing the composition is bonded to the ceramic substrate by forming a chemical bond. In addition, since the coating itself has excellent hardness, chemical resistance and boiling resistance, it is possible to provide a cured film having high practicality in an environment where ceramic products are used.

Claims

請求の範囲 The scope of the claims
[1] (A)末端および Zまたは側鎖にカチオン重合性官能基を有するアクリル榭脂、 (B) カップリング剤および (C)活性エネルギー線照射により酸を発生する機能を有する光 カチオン重合開始剤を含有するセラミックス被覆用組成物。  [1] (A) Acrylic resin having cationic polymerizable functional groups at the terminal and Z or side chain, (B) Coupling agent, and (C) Photocation polymerization having a function of generating an acid upon irradiation with active energy rays A ceramic coating composition containing an agent.
[2] 前記カップリング剤 (B)力 シランカップリング剤である請求の範囲第 1項記載のセ ラミックス被覆用組成物。 [2] The composition for coating ceramic according to claim 1, wherein the coupling agent (B) is a silane coupling agent.
[3] 前記カップリング剤 (B)が、カチオン重合性官能基を含有する請求の範囲第 1項ま たは第 2項記載のセラミックス被覆用組成物。 [3] The ceramic coating composition according to claim 1 or 2, wherein the coupling agent (B) contains a cationically polymerizable functional group.
[4] 前記アクリル榭脂 (A)が有するカチオン重合性官能基が、エポキシ基および Zまた はォキセタ-ル基である請求の範囲第 1項〜第 3項のいずれかに記載のセラミックス 被覆用組成物。 [4] The ceramic coating according to any one of claims 1 to 3, wherein the cationic polymerizable functional group of the acrylic resin (A) is an epoxy group and a Z or oxetal group. Composition.
[5] 前記カップリング剤 (B)が有するカチオン重合性官能基が、エポキシ基および Zま たはォキセタ-ル基である請求の範囲第 3項または第 4項記載のセラミックス被覆用 組成物。  [5] The ceramic coating composition according to claim 3 or 4, wherein the cationically polymerizable functional group of the coupling agent (B) is an epoxy group and a Z or oxetal group.
[6] 前記アクリル榭脂 (A)の重量平均分子量が、 1, 000-100, 000である請求の範 囲第 1項〜第 5項のいずれかに記載のセラミックス被覆用組成物。  [6] The ceramic coating composition according to any one of [1] to [5], wherein the acrylic resin (A) has a weight average molecular weight of 1,000-100,000.
[7] 前記アクリル榭脂 (A)のカチオン重合性官能基当量が、 100〜1, 500である請求 の範囲第 1項〜第 6項のいずれかに記載のセラミックス被覆用組成物。  [7] The ceramic coating composition according to any one of [1] to [6] above, wherein the acrylic resin (A) has a cationic polymerizable functional group equivalent of 100 to 1,500.
PCT/JP2006/320730 2005-10-24 2006-10-18 Composition for coating ceramics WO2007049488A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007542326A JPWO2007049488A1 (en) 2005-10-24 2006-10-18 Ceramic coating composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-308815 2005-10-24
JP2005308815 2005-10-24

Publications (1)

Publication Number Publication Date
WO2007049488A1 true WO2007049488A1 (en) 2007-05-03

Family

ID=37967601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/320730 WO2007049488A1 (en) 2005-10-24 2006-10-18 Composition for coating ceramics

Country Status (2)

Country Link
JP (1) JPWO2007049488A1 (en)
WO (1) WO2007049488A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012133156A (en) * 2010-12-22 2012-07-12 Nippon Shokubai Co Ltd Optical film
JP2013203805A (en) * 2012-03-27 2013-10-07 Nippon Synthetic Chem Ind Co Ltd:The Active energy ray-curable resin composition, and coating agent using the same, and laminate
WO2021085407A1 (en) * 2019-10-29 2021-05-06 三井化学株式会社 Ink-jet application type composition for wiring-line protection, method for producing semiconductor device using same, and semiconductor device
JP7198403B1 (en) 2022-04-25 2023-01-04 東洋インキScホールディングス株式会社 Active energy ray-curable ink composition and printed matter

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02289611A (en) * 1989-02-09 1990-11-29 Kansai Paint Co Ltd Photo-setting resin composition
JPH04236212A (en) * 1991-01-17 1992-08-25 Nippon Kayaku Co Ltd Resin composition, resin composition for protective film of color filter and cured product thereof
JPH06256684A (en) * 1993-03-02 1994-09-13 Japan Synthetic Rubber Co Ltd Alkali-developable liquid photoresist composition for forming circuit board
JPH0952938A (en) * 1995-08-09 1997-02-25 Japan Synthetic Rubber Co Ltd Curable composition
JPH10232494A (en) * 1997-02-20 1998-09-02 Nippon Kayaku Co Ltd Resist resin composition and its cured body
JP2005344050A (en) * 2004-06-04 2005-12-15 Nippon Kayaku Co Ltd Photo-curable low refractive index resin composition and its coating film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02289611A (en) * 1989-02-09 1990-11-29 Kansai Paint Co Ltd Photo-setting resin composition
JPH04236212A (en) * 1991-01-17 1992-08-25 Nippon Kayaku Co Ltd Resin composition, resin composition for protective film of color filter and cured product thereof
JPH06256684A (en) * 1993-03-02 1994-09-13 Japan Synthetic Rubber Co Ltd Alkali-developable liquid photoresist composition for forming circuit board
JPH0952938A (en) * 1995-08-09 1997-02-25 Japan Synthetic Rubber Co Ltd Curable composition
JPH10232494A (en) * 1997-02-20 1998-09-02 Nippon Kayaku Co Ltd Resist resin composition and its cured body
JP2005344050A (en) * 2004-06-04 2005-12-15 Nippon Kayaku Co Ltd Photo-curable low refractive index resin composition and its coating film

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012133156A (en) * 2010-12-22 2012-07-12 Nippon Shokubai Co Ltd Optical film
JP2013203805A (en) * 2012-03-27 2013-10-07 Nippon Synthetic Chem Ind Co Ltd:The Active energy ray-curable resin composition, and coating agent using the same, and laminate
WO2021085407A1 (en) * 2019-10-29 2021-05-06 三井化学株式会社 Ink-jet application type composition for wiring-line protection, method for producing semiconductor device using same, and semiconductor device
JPWO2021085407A1 (en) * 2019-10-29 2021-05-06
JP7198403B1 (en) 2022-04-25 2023-01-04 東洋インキScホールディングス株式会社 Active energy ray-curable ink composition and printed matter
WO2023210311A1 (en) * 2022-04-25 2023-11-02 東洋インキScホールディングス株式会社 Actinic ray curable ink composition and printed matter
JP2023161230A (en) * 2022-04-25 2023-11-07 東洋インキScホールディングス株式会社 Active energy ray curable ink composition and printed material

Also Published As

Publication number Publication date
JPWO2007049488A1 (en) 2009-04-30

Similar Documents

Publication Publication Date Title
CN105324407B (en) Active energy ray-curable composition
JP2886853B1 (en) Cationic polymerizable coating composition
US6114440A (en) Silicone resin-containing emulsion composition, method for making same, and article having a cured film of same
EP3000785B1 (en) Porous metal oxide particles, production method thereof and application thereof
CN110171176A (en) The manufacturing method of resin film, stacked film, optical component, display member, front panel and stacked film
CA2665915A1 (en) Radiation curable inks
TWI357431B (en) Composition for active energy ray curable coating
CN101589121A (en) Hardcoat composition
CN107001583A (en) Light and hot curing resin composition, solidfied material and laminate
TWI568808B (en) Photocationically curable inkjet ink, method for manufacturing photocationically curable inkjet ink, printed object, and method for manufacturing printed object
JPH11152441A (en) Ultraviolet-curing composition for coating can
JP3712960B2 (en) UV curable coating composition
WO2007049488A1 (en) Composition for coating ceramics
JP6545482B2 (en) Photo- or thermosetting resin composition, cured product and laminate
JP5670533B1 (en) Thermosetting resin composition, cured product thereof, and display member using the same
TWI585138B (en) A thermosetting resin composition, a hardened product thereof, and a display member using the same
CN105408435A (en) Active energy-ray-curable resin composition for coating organic or inorganic substrate
TWI606101B (en) Coating composition and method of manufacturing the same
CN110546207A (en) Transparent resin composition, transparent coating film and transparent resin-coated glass substrate
JP4795570B2 (en) UV-curable can coating composition and method for producing coated metal can
JP6639898B2 (en) Transfer film
JP2000086970A (en) Colored composition having cationic polymerizability
JP2000086756A (en) Production of cationically polymerizable resin composition
JP2021138947A (en) Resin composition, cured film, and resin-coated glass substrate
JP7198403B1 (en) Active energy ray-curable ink composition and printed matter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007542326

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06821924

Country of ref document: EP

Kind code of ref document: A1