WO2007046408A1 - Plotting device and plotting method - Google Patents

Plotting device and plotting method Download PDF

Info

Publication number
WO2007046408A1
WO2007046408A1 PCT/JP2006/320728 JP2006320728W WO2007046408A1 WO 2007046408 A1 WO2007046408 A1 WO 2007046408A1 JP 2006320728 W JP2006320728 W JP 2006320728W WO 2007046408 A1 WO2007046408 A1 WO 2007046408A1
Authority
WO
WIPO (PCT)
Prior art keywords
stage
data
head
amount
positional deviation
Prior art date
Application number
PCT/JP2006/320728
Other languages
French (fr)
Japanese (ja)
Inventor
Daisuke Nakaya
Mitsuru Mushano
Original Assignee
Fujifilm Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corporation filed Critical Fujifilm Corporation
Publication of WO2007046408A1 publication Critical patent/WO2007046408A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70775Position control, e.g. interferometers or encoders for determining the stage position
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70283Mask effects on the imaging process
    • G03F7/70291Addressable masks, e.g. spatial light modulators [SLMs], digital micro-mirror devices [DMDs] or liquid crystal display [LCD] patterning devices
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/70508Data handling in all parts of the microlithographic apparatus, e.g. handling pattern data for addressable masks or data transfer to or from different components within the exposure apparatus

Definitions

  • the present invention relates to a drawing apparatus and a drawing method that include a stage and a drawing head arranged so as to be relatively movable, and draw on a recording medium supported by the drawing head.
  • This type of exposure apparatus includes a spatial light modulation element in which a large number of pixel units that modulate irradiated light according to control signals are arranged in a two-dimensional manner, a light source that irradiates light to the spatial light modulation element, and And an imaging optical system that forms an image of light modulated by a spatial light modulator on a photosensitive material, and is widely used for recording a predetermined pattern on a printed wiring board or a substrate of a flat panel display. Used.
  • an LCD Liquid Crystal Display Element
  • a DMD Digital Micromirror Device
  • the DMD is a mirror device that is two-dimensionally arranged on a semiconductor substrate such as a number of rectangular micromirror force silicons that change the angle of the reflecting surface in accordance with a control signal.
  • the relative position of the DMD with respect to the exposure surface may be temporarily shifted due to the influence of disturbances such as vibration transmitted to the exposure apparatus. For example, density unevenness and exposure position deviation may occur. And the quality of the exposed image may be deteriorated.
  • Patent Document 1 Japanese Patent Laid-Open No. 11-327657
  • Patent Document 2 JP-A-2004-319899
  • Patent Document 1 has a problem that the cost of the vibration isolator becomes very high when the exposure apparatus becomes large and heavy.
  • Patent Document 2 is a force that detects a movement error of the stage in real time and changes a pattern displayed on the transmissive liquid crystal display element so as to cancel the error.
  • the above-mentioned Patent Document 2 specifically describes how to change the pattern so as to cancel the stage movement error. Therefore, this technique is applied to an apparatus for drawing an image on a recording medium by drawing a drawing point by a plurality of drawing elements while relatively moving a stage on which the recording medium is placed and a drawing head having a plurality of drawing elements. Even if applied, deterioration of image quality due to occurrence of abnormalities such as vibrations may not be effectively suppressed.
  • the present invention has been made to solve the above-described problems, and provides a drawing apparatus and a drawing method capable of suppressing deterioration in image quality due to occurrence of abnormality such as vibration without causing an increase in cost.
  • the purpose is to do.
  • the drawing apparatus provides the plurality of drawing elements while relatively moving a drawing head having a stage on which a recording medium is placed and a plurality of drawing elements in a predetermined scanning direction.
  • the storage component that stores the input image data, and the positional deviation amount between the stage and the drawing head are detected in real time.
  • Misalignment detection The drawing component data corresponding to the drawing point sequence to be drawn by the drawing element is extracted for each drawing element by taking out a predetermined number of data from the output component and the drawing position force predetermined for each drawing element from the image data.
  • a drawing point data generation component to be generated; and a correction component that corrects the extraction position in real time with a correction amount corresponding to the detected positional deviation amount.
  • the drawing apparatus draws drawing points by a plurality of drawing elements while relatively moving a drawing head having a stage on which a recording medium is placed and a plurality of drawing elements in a predetermined scanning direction.
  • a drawing head can be an exposure head equipped with a spatial light modulator or a liquid droplet ejection head that ejects liquid droplets.
  • the misregistration amount detection component renders the misregistration amount between the stage and the drawing head in real time, ie, draws an image on a recording medium by relatively moving the stage and the drawing head in the scanning direction. Detect during.
  • the drawing point data generation component corresponds to the drawing point sequence to be drawn by the drawing element by taking out the image data force stored in the storage component from the data of the extraction position force predetermined constant determined for each drawing element.
  • Drawing point data is generated for each drawing element.
  • a drawing point sequence is drawn by each drawing element based on the drawing point data generated for each drawing element, and an image is formed on the recording medium.
  • the correction component moves the take-out position in real time with a correction amount corresponding to the position shift amount detected by the position shift amount detection component, that is, the stage and the drawing head relatively move in the scanning direction! Corrections are made sequentially during the process.
  • the image processing apparatus may further include a storage control component that stores the input image data in the storage component. As a result, when the drawing point data is generated, the image data can be continuously read from the storage component, and the drawing point data can be generated at high speed.
  • the positional deviation amount detection component detects a positional deviation amount between the stage and the drawing head in a first direction and a positional deviation amount in a second direction orthogonal to the first direction. Can do. In this case, the extraction position can be corrected with the same correction amount for each drawing element.
  • a correction table data storage component that stores correction table data indicating a correspondence relationship between the positional deviation amount and the correction amount is further provided, and the correction component is detected based on the correction table data. A correction amount corresponding to the amount of misalignment can be obtained.
  • the misregistration amount detection component further detects a misregistration amount in the rotation direction of the stage and the drawing head, and the correction table data storage component includes the correspondence relationship for each drawing element. Correction table data indicating that may be stored. Thereby, it is possible to correct the positional deviation of the drawing point with higher accuracy.
  • the drawing method provides the plurality of drawing elements while relatively moving a drawing head having a stage on which a recording medium is placed and a plurality of drawing elements in a predetermined scanning direction.
  • a drawing point By drawing a drawing point, the amount of positional deviation between the stage and the drawing head is detected in real time in accordance with a drawing method for drawing an image on the recording medium.
  • Predetermined extraction position force Stores a predetermined number of data from the image data stored in the component, thereby generating and detecting drawing point data corresponding to the drawing point sequence to be drawn by the drawing element for each drawing element.
  • the extraction position is corrected in real time with a correction amount corresponding to the amount of positional deviation.
  • the positional deviation amount between the stage and the drawing head is detected, and this position is not detected. Since the extraction position when generating the drawing point data is changed according to the amount, it is possible to suppress the deterioration of the image quality due to the position of the drawing point being shifted due to the occurrence of an abnormality such as vibration. In addition, a device that realizes this method without the need to provide a special device for correcting the amount of displacement can be configured at low cost.
  • FIG. 1 is a perspective view showing an appearance of an exposure apparatus according to an embodiment of the present invention.
  • FIG. 2 is a perspective view showing a configuration of a scanner of the exposure apparatus.
  • FIG. 3A is a plan view showing an exposed area formed on a photosensitive material.
  • FIG. 3B is a diagram showing an arrangement of exposure areas by each exposure head.
  • FIG. 4 is a perspective view showing a schematic configuration of an exposure head of the exposure apparatus.
  • FIG. 5 is a partially enlarged view showing a configuration of a digital micromirror device (DMD).
  • DMD digital micromirror device
  • FIG. 6A is an explanatory diagram for explaining the operation of DMD.
  • FIG. 6B is an explanatory diagram for explaining the operation of the DMD.
  • FIGS. 7A and 7B are plan views showing the arrangement of exposure beams and scanning lines in a case where the DMD is not inclined (FIG. 7A) and in a case where the DMD is inclined (FIG. 7B).
  • FIGS. 7A and 7B are plan views showing the arrangement of the exposure beams and the scanning lines in the case where the DMD is not inclined (FIG. 7A) and in the case where the DMD is inclined (FIG. 7B).
  • FIG. 8A is a perspective view showing a configuration of a fiber array light source.
  • FIG. 8B is a front view showing the arrangement of light emitting points in the laser emission part of the fiber array light source.
  • FIG. 9 is a block diagram of a control system of the exposure apparatus.
  • FIG. 10 is a perspective view showing a configuration of a position measurement unit.
  • FIG. 11 is a schematic diagram for explaining the relationship between the address space in the image data storage unit and the image data stored in the image data storage unit as seen from the power of the storage control unit.
  • FIG. 12A is a diagram for explaining a method for creating frame data.
  • FIG. 12B is a diagram for explaining a method for creating frame data.
  • FIG. 12C is a diagram for explaining a method for creating frame data.
  • FIG. 12D is a diagram for explaining a method for creating frame data.
  • FIG. 12E is a diagram for explaining a method for creating frame data.
  • FIG. 12F is a diagram for explaining a method for creating frame data.
  • FIG. 12G is a diagram for explaining a method for creating frame data.
  • FIG. 12H is a diagram for explaining a method for creating frame data.
  • FIG. 5 is a schematic diagram for explaining a relationship with frame data stored in a frame data storage unit.
  • FIG. 14 is a diagram schematically showing the positional relationship between image data stored in an image data storage unit and drawing points.
  • FIG. 15 is a block diagram of a control system of an exposure apparatus according to a modification.
  • the exposure apparatus includes a flat plate-like moving stage 152 that holds a sheet-like photosensitive material 150 on the surface thereof.
  • Two guides 158 extending along the stage moving direction STM are installed on the upper surface of the thick plate-shaped installation table 156 supported by the four legs 154.
  • the moving stage 152 is arranged so that its longitudinal direction faces the stage moving direction, and is supported by a guide 158 so as to be reciprocally movable.
  • this exposure apparatus is provided with a stage drive unit 15 (see FIG. 9), which will be described later, that drives a moving stage 152 as a sub-scanning component along a guide 158.
  • a gate 160 is provided at the center of the installation table 156 so as to straddle the moving path of the moving stage 152. Each end of the gate 160 is fixed to both side surfaces of the installation table 156.
  • a scanner 162 is provided on one side of the gate 160, and a plurality of (for example, two) sensors 164 for detecting the front and rear ends of the photosensitive material 150 are provided on the other side.
  • a scanner 162 and a sensor 164 are each attached to the gate 160 to move the moving step. It is fixedly arranged above the moving path of the page 152.
  • the scanner 162 and the sensor 164 are connected to a control unit (not shown) that controls them.
  • the scanner 162 includes a plurality of (for example, 14) exposure heads 166 arranged in a matrix of m rows and n columns (eg, 3 rows and 5 columns). Yes. In this example, four exposure heads 166 are arranged in the third row in relation to the width of the photosensitive material 150. It should be noted that the individual exposure heads arranged in the m-th row and the n-th column are denoted as exposure head 16 6.
  • An exposure area 168 by the exposure head 166 has a rectangular shape with a short side in the sub-scanning direction SS. Therefore, as the moving stage 152 moves, a strip-shaped exposed area 170 is formed in the photosensitive material 150 for each exposure head 166. Note that the exposure area by the individual exposure heads arranged in the m-th row and the n-th column is expressed as an exposure area 168.
  • each of the exposure heads 166 in each row arranged in a line so that the strip-shaped exposed regions 170 are arranged without gaps in the direction orthogonal to the sub-scanning direction
  • These are arranged at predetermined intervals in the arrangement direction (natural number times the long side of the exposure area, twice in this example). Therefore, the exposure between exposure area 168 and exposure area 168 in the first row
  • the speed of one constant low-speed scan in the sub-scan direction is 40 mmZs, for example.
  • the exposure head 166 As shown in FIGS. 4 and 5, the exposure head 166
  • ll to 166 are incident light beams mn
  • a digital micromirror device (DMD) 50 manufactured by Texas Instruments Inc. is provided.
  • the DMD 50 is connected to a later-described DMD dryer 13 (see FIG. 9) having a data processing unit and a mirror drive control unit.
  • the data processing unit of the DMD driver 13 generates a control signal for driving and controlling each micromirror in the region to be controlled by the DMD 50 for each exposure head 166 based on the input image data.
  • the mirror drive control unit controls the angle of the reflection surface of each micromirror of the DMD 50 for each exposure head 166 based on the control signal generated by the data processing unit. The control of the angle of the reflecting surface will be described later.
  • a fiber array light source having a laser emitting portion in which the emitting end portion (light emitting point) of the optical fiber is arranged in a line along the direction corresponding to the long side direction of the exposure area 168 66, a lens system 67 for correcting the laser light emitted from the fiber array light source 66 and collecting it on the DMD, and a mirror 69 for reflecting the laser light transmitted through the lens system 67 toward the DMD 50 are arranged in this order. Yes.
  • the lens system 67 includes a condensing lens that condenses laser light as illumination light emitted from the fiber array light source 66, and a rod-shaped optical integrator (hereinafter referred to as a rod integrator) inserted in the optical path of the light that has passed through the condensing lens. ) And an imaging lens placed on the mirror 69 side in front of this rod integrator.
  • the condensing lens, the rod integrator, and the imaging lens cause the laser light emitted from the fiber array light source 66 to enter the DMD 50 as a light beam that is close to parallel light and has a uniform beam cross-sectional intensity.
  • the laser light emitted from the lens system 67 is reflected by the mirror 69 and irradiated to the DMD 50 via a TIR (total reflection) prism.
  • an image forming optical system 51 for forming an image of the laser light reflected by the DMD 50 on the photosensitive material 150 is disposed.
  • the imaging optical system 51 includes a plurality of imaging lenses for enlarging and projecting an image, and a large number of microlenses corresponding to each pixel of the DMD 50 are arranged two-dimensionally between the plurality of imaging lenses. It is possible to configure by inserting a microlens array.
  • the DMD 50 has a large number of mirrors (for example, 1024 ⁇ 768) on the SRAM cell (memory cell) 60 (FIGS. 6A and 6B).
  • (Micromirror) 62 is a mirror device in which 62 is arranged in a lattice pattern. In each pixel, a rectangular micromirror 62 supported by a support is provided at the top, and a material having high reflectivity such as aluminum is deposited on the surface of the micromirror 62. The reflectivity of the micro mirror 62 is 90% or more, and the arrangement pitch is 13.7 m as an example in both the vertical and horizontal directions.
  • Directly below the micromirror 62 is a silicon gate CMOS SRAM cell 60 manufactured on a normal semiconductor memory manufacturing line via a support including a hinge and a yoke, and the entire structure is monolithic. Has been.
  • FIG. 6A shows a state tilted to + ⁇ degrees when the micromirror 62 is on
  • FIG. 6B shows a state tilted to ⁇ degrees when the micromirror 62 is off. Therefore, by controlling the tilt of the micromirror 62 in each pixel of the DMD 50 according to the image signal as shown in FIG. 5, the laser light incident on the DMD 50 is reflected in the tilt direction of each micromirror 62. .
  • FIG. 5 shows an example of a state in which a part of the DMD 50 is enlarged and the micromirror 62 is controlled to + ⁇ degrees or ⁇ degrees.
  • the on / off control of each micromirror 62 is performed by the DMD driver 13 connected to the DMD 50.
  • a light absorber is disposed in the direction in which the laser light reflected by the microphone mirror 62 in the off state travels.
  • the DMD 50 is arranged with a slight inclination so that the short side forms a predetermined angle (for example, 0.1 ° to 5 °) with the sub-scanning direction! /.
  • Fig. 7 (b) shows the scanning trajectory of the reflected light image (exposure beam) 53 by each micromirror when the DMD 50 is not tilted
  • Fig. 7 (b) shows the scanning trajectory of the exposure beam 53 when the DMD 50 is tilted.
  • DMD50 a number of micromirrors 62 are arranged in the longitudinal direction (for example, 1024) Micromirror array force A number of ⁇ 1_ (for example, 756 yarns) in the short direction is arranged Figure 7B
  • ⁇ 1_ for example, 756 yarns
  • the scan width w in the absence is substantially the same.
  • the same scanning line is overlaid and exposed (multiple exposure) by different micromirror arrays.
  • variations in exposure position are averaged, and high-definition exposure can be realized.
  • joints between a plurality of exposure heads arranged in the main scanning direction can be connected without any step by controlling a very small amount of exposure position.
  • the fiber array light source 66 includes a plurality of (for example, 14) laser modules 64, and one end of a multimode optical fiber 40 is coupled to each laser module 64.
  • the other end of the multimode optical fiber 40 is coupled with an optical fiber 31 having the same core diameter as the multimode optical fiber 40 and a cladding diameter smaller than the multimode optical fiber 40.
  • the laser emitting portion 68 constituted by the end portion of the optical fiber 31 is sandwiched and fixed between two support plates 65 having a flat surface.
  • a transparent protective plate such as glass be disposed on the light emitting end face of the optical fiber 31 for protection.
  • the light exit end face of the optical fiber 31 is easy to collect dust and easily deteriorate because of its high light density, but by arranging the protective plate as described above, it prevents dust from adhering to the end face and delays deterioration. be able to.
  • the laser module 64 is constituted by a combined laser light source (fiber light source).
  • the combined laser light source includes a plurality of chip-like lateral multimode or single mode GaN semiconductor lasers arrayed and fixed on a heat block, and a collimator lens provided corresponding to each of the GaN semiconductor lasers. It is composed of one condenser lens and one multimode optical fiber 40. Further, instead of a plurality of collimator lenses, a collimator lens array in which these lenses are integrated can also be used.
  • the control unit 10 that controls the entire exposure apparatus receives the image data output unit 70 that outputs the image data to be exposed and the image data output from the image data output unit 70, and The received image data is stored in the image data storage unit 71.
  • the storage control unit 72 and the image data stored in the image data storage unit 71 are subjected to rotation processing or matrix transposition processing and stored in the frame data storage unit 73.
  • a frame data creation unit 74 that creates and outputs frame data based on the image data stored in the data storage unit 73, and a D based on the frame data output from the frame data creation unit 74.
  • DMD driver 13 that outputs a control signal to MD50
  • LD driver 14 that controls the drive of laser module 64
  • stage drive unit 15 that controls the movement of moving stage 152
  • stage position measuring unit 20 that measures the position of moving stage 152
  • a memory 76 in which correction table data indicating a correspondence relationship between the read position of the image data and the positional deviation amount calculated by the positional deviation amount calculation unit 75 is stored in advance is connected.
  • a broken line arrow from the exposure head 166 to the moving stage 152 represents exposure.
  • the storage control unit 72 and the frame data creation unit 74 each store a program for executing a predetermined procedure, and the control unit 10 controls the operation of the apparatus according to the procedure of the program.
  • the predetermined procedure executed by each program will be described in detail later.
  • any device can be used as long as the stored data can be read sequentially in the direction in which the addresses are continuous, for example, using DRAM. May be. Further, a storage component from which stored data is read out by so-called burst transfer may be used. Large data such as image data is usually stored on inexpensive DRAM, and as a result, it has a demerit that it is slower than random access.
  • the stage position measurement unit 20 is provided to obtain the position and displacement amount of the moving stage 152 (position displacement amount of the moving stage 152 with respect to the exposure head 166). As shown in FIG. 10, the stage position measuring unit 20 includes an X direction position measuring unit 42 that measures the position of the moving stage 152 in the X direction, and a Y direction position that measures the position of the moving stage 152 in the Y direction. A measurement unit 44 and a Z direction position measurement unit 46 that measures the position of the moving stage 152 in the Z direction are provided.
  • the X-direction position measurement unit 42 emits a laser beam to the side mirror 26 installed on the side surface of the moving stage 152 extending in the moving direction, and the side mirror 26, and detects the reflected light to detect the side mirror 26.
  • an X-direction laser length measurement unit 21 that measures the distance to the [0051]
  • the Y-direction position measurement unit 44 emits laser light to the cube mirrors 27 and 28 installed on the side surfaces of the moving stage 152 extending in a direction orthogonal to the moving direction, and the reflected light from the cube mirror 27.
  • the heel direction position measurement unit 46 is a surface facing the exposure head 166 of the moving stage 152 and is disposed on a portion of the surface where the photosensitive material 150 is not adsorbed.
  • the laser beam is emitted to the top mirror 29 and the reflected light is detected, and the laser beam is emitted to the top mirror 30 and the reflected light is detected.
  • a second laser direction laser length measuring unit 25 for measuring the distance to the upper surface mirror 30.
  • only one X-direction laser length measuring unit 21 may be provided, and the length of the side mirror 26 may be set to a length sufficient for obtaining the amount of displacement during exposure.
  • the top mirrors 29 and 30 for measuring the position in the eyelid direction can also have a sufficient length for obtaining the amount of displacement during exposure.
  • laser light is emitted from the X-direction laser length measurement unit 21 to the side mirror 26, and the first and second direction laser length measurement units 22 and 23 respectively transmit cube cubes 27. , 28, and laser light is emitted from the first ⁇ direction laser length measurement unit 24 and the second ⁇ direction laser length measurement unit 25 to the upper surface mirrors 29 and 30, respectively.
  • the laser light emitted from the X-direction laser length measuring unit 21 is reflected by the side mirror 26, and the reflected light is detected by the X-direction laser length measuring unit 21 to measure the distance to the side mirror 26. Is done. Also emitted from the first and second longitudinal laser length measuring units 22, 23 The laser light is reflected by the cube mirrors 27 and 28, and the reflected lights are detected by the first and second Y-direction laser length measuring units 22 and 23, respectively, and the distances to the cube mirrors 27 and 28 are measured. .
  • the laser beams emitted from the first and second Z-direction laser length measuring units 24 and 25 are reflected by the upper surface mirrors 29 and 30, and the reflected light is reflected in the first and second Z-direction laser length measuring units, respectively.
  • the distances to the top mirrors 29 and 30 detected by the units 24 and 25 are measured.
  • the position information XI of the movement stage 152 in the X direction is obtained, and based on the measurement result of the Y-direction position measurement unit 44, the movement stage 152 Position information Yl and Y2 in the Y direction are obtained, and based on the measurement result of the Z direction position measurement unit 46, the position information Zl and Z2 in the Z direction of the moving stage 152 are obtained.
  • the stage drive unit 15 moves the moving stage 152 along the Y direction.
  • This exposure apparatus is provided with a linear encoder that outputs a pulse signal as the moving stage 152 moves, and detects position information and scanning speed of the moving stage 152 based on the pulse signal from the linear encoder. is doing.
  • the stage drive unit 15 can move the moving stage 152 at a constant speed based on the pulse signal of linear encoder.
  • the stage position measurement unit 20 performs position measurement for each predetermined number of pulses, and outputs the measurement result (position information) to the position deviation amount calculation unit 75.
  • the misregistration amount calculation unit 75 uses the X direction of the moving stage 152 relative to the exposure head 166 and the X direction and Y direction of the moving stage 152 measured by the stage position measuring unit 20. The positional deviation amounts Xa and Ya in the Y direction and the rotation angle ⁇ on the XY plane of the moving stage 152 are obtained.
  • the positional deviation amount Xa in the X direction of the moving stage 152 relative to the exposure head 166, the positional deviation amount Ya in the Y direction, and the positional information XI, Y1 acquired by the stage position measuring unit 20 and the moving stage 152 are ideal Reference position information when moving to (reference position information) It can be obtained by calculating the difference between XO and YO.
  • the positional deviation amount Ya in the Y direction may be obtained by calculating the difference between the position information Y1 or Y2 and the reference position information YO, or the average value of the position information Yl and ⁇ 2 and the reference position information. Calculate the difference from ⁇ You may ask for.
  • the reference position YO in the Y direction which is the moving direction of the moving stage 152, is determined according to the current position of the moving stage 152. Therefore, for example, when the movement stage 152 starts to move with the origin position force, the reference position information YO in the Y direction at the current position can be obtained from the elapsed time of the current force and the movement speed of the movement stage 152. Monkey.
  • image data output unit 70 such as a computer
  • image data corresponding to an image to be exposed on the photosensitive material 150 is created, and the image data is output to the exposure apparatus.
  • the image data is received by the storage controller 72 of the exposure apparatus.
  • circles 1 to 8 shown in FIGS. 12A to 12H schematically show DMD micromirrors.
  • the storage control unit 72 corresponds to a plurality of drawing points drawn side by side in the direction AD where the addresses in the image data storage unit 71 continue and the scanning direction SD of the DMD 50.
  • the image data storage unit 71 stores the drawing point data forming the image data so that the arrangement direction in which the plurality of drawing point data to be stored matches.
  • FIG. 11 is a schematic diagram for explaining the relationship between the address space in the image data storage unit 71 and the image data stored in the image data storage unit 71 as viewed from the storage control unit 72.
  • the storage control unit 72 converts the vector data into bitmap data, and then stores the drawing point data as described above. Do.
  • the drawing point data stored in the image data storage unit 71 is read out by the frame data creation unit 74.
  • the frame data creating unit 74 sequentially reads the drawing point data stored in the image data storage unit 71 by a predetermined number of pixels in the direction in which the addresses are continuous, and FIG.
  • MR1 mirror 1
  • MR8 mirror 8
  • the method of reading the drawing point data stored in the image data storage unit 71 is not necessarily limited to the method of reading one drawing point data once.
  • the drawing point data is sampled while sampling at a predetermined pitch.
  • one drawing point data may be read several times, or the drawing point data may be thinned and read.
  • the resolution of the image data can be converted by reading as described above.
  • the frame data creation unit 74 stores each drawing point data of the drawing point data group of each micromirror acquired as described above in the frame data storage unit 73.
  • the frame data creation unit 74 matches the direction in which the addresses in the frame data storage unit 73 are continuous with the arrangement direction in which drawing point data belonging to the same frame data is stored.
  • the drawing point data is stored in the frame data storage unit 73 as described above.
  • black circled numbers arranged in the direction in which the addresses are continuous represent a mirror, and numbers arranged in a direction orthogonal to the direction in which the addresses are continuous represent a frame.
  • FIG. 13 is a schematic diagram for explaining the relationship between the address space in the frame data storage unit 73 and the frame data stored in the frame data storage unit 73 as viewed from the frame data creation unit 74. is there.
  • the frame data creation unit 74 can substantially reduce the image data stored in the image data storage unit 71. This means that 90-degree rotation processing or matrix transposition processing has been performed.
  • the frame data creation unit 74 has the address of the drawing point data stored in the frame data storage unit 73.
  • Each frame data 1 to 15 is sequentially read out in the continuous direction and is sequentially output to the DMD driver 13, and the DMD driver 13 generates a control signal corresponding to the input frame data.
  • the frame data as described above is generated for each DMD 50 of each exposure head 166.
  • a control signal for each exposure head 166 is generated as described above, and a stage drive control signal is output from the control unit 10 to the stage drive unit 15, and the stage drive unit 15 outputs the stage drive control signal. Accordingly, the moving stage 152 is moved along the guide 158 in the stage moving direction at a desired speed.
  • a control signal is output from the DMD driver 13 to the DMD 50 of each exposure head 166. The drawing of each exposure head 166 is started.
  • the photosensitive material 150 moves at a constant speed together with the moving stage 152, the photosensitive material 150 is scanned in the direction opposite to the stage moving direction by the scanner 162, and a strip-shaped exposed region 70 is formed for each exposure head 166. It is formed.
  • the displacement amounts Xa and Ya and the rotation angle ⁇ calculated by the displacement amount calculation unit 75 are input to the control unit 10 in real time at predetermined time intervals.
  • the control unit 10 determines that the positional deviation of the moving stage 152 has occurred, and indicates this.
  • the information is output to the frame data creation unit 74.
  • the frame data creation unit 74 reads the drawing point data from the normal reading positions indicated by circles 1 to 8 in FIGS. 12A to 12H. .
  • any one of the displacement amounts Xa, Ya and the rotation angle ⁇ is not “0”, it is determined that the displacement of the moving stage 152 has occurred, and the image data storage unit 71 Information on the amount of correction for correcting the readout position in the X and Y directions when the stored drawing point data is read out is output to the frame data creation unit 74.
  • the read position correction amounts in the X direction and the Y direction corresponding to the positional deviation amounts Xa and Ya and the rotation angle 0 are obtained to obtain the frame data. Output to the creation unit 74.
  • the memory 76 stores the X-direction readout position correction amount ⁇ and the ⁇ -direction readout position correction amount ⁇ and the positional deviation amount for each drawing point when the frame data creation unit 74 creates the frame data.
  • Correction table data indicating the correspondence between Xa, Ya and rotation angle ⁇ is stored in advance.
  • the reading position correction amount Xp in the X direction and the reading position correction amount Yp in the Y direction are the normal reading position when the image data force stored in the image data storage unit 71 reads the drawing point data, That is, the distance between the reading position when the moving stage 152 is not displaced and the corrected reading position is represented by the number of pixels.
  • FIG. 14 schematically shows the relationship between the image data 71 A (image represented by) stored in the image data storage unit 71 and the drawing point 80 corresponding to the micromirror of the exposure head 166.
  • the right direction is the positive direction in the X direction
  • the downward direction is the positive direction in the Y direction
  • the opposite directions are the negative directions.
  • the positional deviation amount Xa, Ya of the moving stage 152 relative to the exposure head 166 is one pixel in the positive direction
  • the positional deviation amount of the drawing point 80 relative to the moving stage 152 is reversed.
  • the image finally formed on the photosensitive material 150 is the X direction and It will be shifted by 11 pixels in the Y direction. Therefore, in this case, the reading position in the X direction and the Y direction when reading the drawing point data of each drawing point 80 from the image data 71A is shifted by one pixel for the normal reading position force.
  • the position of the image formed on the material 150 can be corrected to a normal position.
  • the image data 71 A force stored in the image data storage unit 71 is also normal in the X and Y directions when the drawing point data of each drawing point 80 is read out.
  • the reading position is corrected so that the drawing point data of each drawing point 80 is also read out at positions (Xt-1, Yt-1) that are shifted by one pixel in the X and Y directions from the reading position (Xt, Yt). To do.
  • the correction table data includes, for each drawing point that can eliminate the positional deviation of the image for various combinations of the positional deviation amounts Xa, Ya and the rotation angle ⁇ of the moving stage 152.
  • Reading position correction amounts Xp and Yp are set respectively.
  • the reading position correction amount is the same at each drawing point 80. It is also possible to use correction table data with the angle ⁇ data omitted.
  • the moving stage 152 is moved by the stage driving unit 15. After returning to the origin on the most upstream side of the gate 160 along the guide 158 and installing a new photosensitive material 150, it moves again at a constant speed from the upstream side of the gate 160 to the downstream side along the guide 158. To do.
  • the amount of displacement of the moving stage 152 is detected in real time, and the position of the drawing point data read from the image data 71A is corrected according to the amount of displacement, so that the moving stage 152 is moved to the moving stage 152 by vibration or the like. Even when the positional deviation occurs, it is possible to suppress the deterioration of the image quality. In addition, since only the drawing point data reading position is changed, an apparatus that requires special hardware for correction can be configured at low cost.
  • the displacement of the moving stage 152 is detected is described as 1S.
  • the present invention is not limited to this, and the displacement of the exposure head 166 may be detected.
  • the exposure apparatus described above may further include a compression processing unit 72 ⁇ in the storage control unit 72 and a decompression processing unit 74 ⁇ in the frame data creation unit 74 as shown in FIG. Then, with respect to the image data received by the storage control unit 72, V is compressed in the arrangement direction for a plurality of drawing point data corresponding to a plurality of drawing points drawn side by side in the scanning direction.
  • the arrangement direction in which the compressed drawing point data subjected to the compression processing is stored is the same as the direction in which the addresses of the image data storage unit 71 continue.
  • the compressed drawing point data may be stored in the image data storage unit 71.
  • the frame data creation unit 74 sequentially reads the compressed drawing point data from the image data storage unit 71 in the direction in which the addresses are continuous, and the read data is read out.
  • the decompression processing unit 74A performs decompression processing on the compressed drawing point data
  • the decompressed rendering point data before compression is stored in the frame data storage unit 73 in the same manner as described above. It may be.
  • the processing after the drawing point data is stored in the frame data storage unit 73 is the same as described above.
  • the compressed drawing point data is stored in the image data storage unit 71.
  • the drawing point data is described above.
  • the image data is stored in the image data storage unit 71.
  • the drawing point data stored in the direction in which the addresses in the image data storage unit 71 are consecutively compressed is subjected to compression processing. It may be stored in the image data storage unit 71 again.
  • run-length compression processing can be used as the compression processing.
  • a memory having the same force in which the image data storage unit 71 and the frame data storage unit 73 are provided separately may be used.
  • the exposure apparatus provided with the DMD as the spatial light modulation element has been described.
  • a transmissive spatial light modulation element is used. You can also GLV (Grating Light Valve) may also be used.
  • drawing point forming unit of the present invention is not limited to a spatial light modulation element, and a plurality of light emitting elements arranged may be used.
  • a so-called flat bed type exposure apparatus has been described as an example.
  • a so-called outer drum type exposure apparatus having a drum around which a photosensitive material is wound may be used.
  • the photosensitive material 150 to be exposed in the above embodiment may be a printed circuit board or a display filter.
  • the shape of the photosensitive material 150 may be a sheet shape or a long shape (flexible substrate or the like).
  • drawing method and apparatus in the present invention are applied to a printer such as an ink jet method.
  • This can also be applied to drawing control.
  • the drawing point by ink ejection can be controlled by the same method as in the present invention.
  • the drawing element in the present invention can be considered by replacing it with an element that strikes a drawing point by ejecting ink or the like.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Ink Jet (AREA)

Abstract

Disclosed is a plotting device for relatively moving a stage on which a recording medium is placed and a plotting head having a plurality of plotting elements in a predetermined scan direction and causing the plotting elements to plot plotting points so as to plot an image on the recording medium. The plotting device detects a positional difference amount between the stage and the plotting head in real time and extracts a predetermined number of data pieces counted from an extraction position predetermined for each of the plotting elements from the image data, so as to generate plotting point data corresponding to plotting point sequence to be plotted by the plotting elements for each of the plotting elements and correct the extraction position with a correction amount corresponding to the detected positional difference amount in real time.

Description

明 細 書  Specification
描画装置及び描画方法  Drawing apparatus and drawing method
技術分野  Technical field
[0001] 本発明は、相対移動可能に配置されたステージ及び描画ヘッドを備え、当該描画 ヘッドによってステージに支持された記録媒体に描画する描画装置及び描画方法に 関する。  The present invention relates to a drawing apparatus and a drawing method that include a stage and a drawing head arranged so as to be relatively movable, and draw on a recording medium supported by the drawing head.
背景技術  Background art
[0002] 従来、空間光変調素子で変調された光を結像光学系に通し、この光による像を感 光材料上に結像して該感光材料を露光する露光装置が知られて!/、る。この種の露光 装置は、照射された光を各々制御信号に応じて変調する多数の画素部が 2次元状 に配列された空間光変調素子と、この空間光変調素子に光を照射する光源と、空間 光変調素子により変調された光による像を感光材料上に結像する結像光学系とを備 え、プリント配線板やフラットパネルディスプレイの基板等に所定のパターンを記録す るために広く用いられて 、る。  Conventionally, there has been known an exposure apparatus that exposes a light-sensitive material by passing light modulated by a spatial light modulator through an imaging optical system and forming an image of the light on a light-sensitive material! / This type of exposure apparatus includes a spatial light modulation element in which a large number of pixel units that modulate irradiated light according to control signals are arranged in a two-dimensional manner, a light source that irradiates light to the spatial light modulation element, and And an imaging optical system that forms an image of light modulated by a spatial light modulator on a photosensitive material, and is widely used for recording a predetermined pattern on a printed wiring board or a substrate of a flat panel display. Used.
[0003] この種の露光装置にぉ 、て、上記空間光変調素子として、例えば LCD (液晶表示 素子)や DMD (デジタル ·マイクロミラー ·デバイス)等が用いられる。なお、 DMDは、 制御信号に応じて反射面の角度を変化させる多数の矩形のマイクロミラー力 シリコ ン等の半導体基板上に 2次元状に配列されたミラーデバイスである。  In this type of exposure apparatus, for example, an LCD (Liquid Crystal Display Element), a DMD (Digital Micromirror Device), or the like is used as the spatial light modulation element. The DMD is a mirror device that is two-dimensionally arranged on a semiconductor substrate such as a number of rectangular micromirror force silicons that change the angle of the reflecting surface in accordance with a control signal.
[0004] このような露光装置を用いて基板上に所定の配線パターンなどを露光する際には、 基板上の所望の位置に所望の配線パターンなどを露光する必要があり、高精度な位 置合わせが必要となってくる。  [0004] When a predetermined wiring pattern or the like is exposed on a substrate using such an exposure apparatus, it is necessary to expose the desired wiring pattern or the like at a desired position on the substrate. Matching is necessary.
[0005] しかしながら、例えば、設置環境力 露光装置に伝わる振動等の外乱の影響によつ て、露光面に対する DMDの相対的な位置が一時的にずれる場合があり、濃度むら や露光位置ずれが生じ、露光画像の品質が劣化することがある。  However, for example, the relative position of the DMD with respect to the exposure surface may be temporarily shifted due to the influence of disturbances such as vibration transmitted to the exposure apparatus. For example, density unevenness and exposure position deviation may occur. And the quality of the exposed image may be deteriorated.
[0006] そこで、この問題を解決するため、 DMDの設置された露光ヘッドおよび基板を載 置するステージをアクティブ型もしくはパッシブ型の除振装置の上に設置する方法が 提案されている (例えば、特許文献 1参照)。 [0007] また、透過型液晶表示素子に所望のパターンを表示させ、これをステージ上の感 光性基板上に露光すると共に、レーザ干渉計等を用いてステージの移動誤差をリア ルタイムで検出し、透過型液晶表示素子に表示させるパターンを変更することにより ステージの移動誤差をリアルタイムで修正する方法が提案されている(例えば、特許 文献 2参照)。 [0006] Therefore, in order to solve this problem, a method has been proposed in which an exposure head having a DMD and a stage on which a substrate is placed are placed on an active or passive vibration isolator (for example, (See Patent Document 1). [0007] In addition, a desired pattern is displayed on the transmissive liquid crystal display element, and this is exposed on a photosensitive substrate on the stage, and the movement error of the stage is detected in real time using a laser interferometer or the like. There has been proposed a method for correcting a stage movement error in real time by changing a pattern displayed on a transmissive liquid crystal display element (see, for example, Patent Document 2).
特許文献 1:特開平 11― 327657号公報  Patent Document 1: Japanese Patent Laid-Open No. 11-327657
特許文献 2 :特開 2004— 319899号公報  Patent Document 2: JP-A-2004-319899
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] し力しながら、上記特許文献 1記載の方法では、露光装置が大型になり重量が重く なると、除振装置のコストが非常に高くなる、という問題がある。  [0008] However, the method described in Patent Document 1 has a problem that the cost of the vibration isolator becomes very high when the exposure apparatus becomes large and heavy.
[0009] また、上記特許文献 2に記載された技術は、ステージの移動誤差をリアルタイムで 検出して、この誤差を相殺するように透過型液晶表示素子に表示させるパターンを 変更するものである力 上記特許文献 2には、パターンをどのように変更してステージ の移動誤差を相殺するように補正するのかにつ 、ては具体的に記載されて 、な 、。 従って、記録媒体が載置されたステージ及び複数の描画素子を有する描画ヘッドを 相対移動させながら、複数の描画素子により描画点を描画させることにより記録媒体 上に画像を描画する装置にこの技術を適用したとしても、振動等の異常発生による 画像品質の劣化を効果的に抑制することができるとは限らない。  In addition, the technique described in Patent Document 2 described above is a force that detects a movement error of the stage in real time and changes a pattern displayed on the transmissive liquid crystal display element so as to cancel the error. The above-mentioned Patent Document 2 specifically describes how to change the pattern so as to cancel the stage movement error. Therefore, this technique is applied to an apparatus for drawing an image on a recording medium by drawing a drawing point by a plurality of drawing elements while relatively moving a stage on which the recording medium is placed and a drawing head having a plurality of drawing elements. Even if applied, deterioration of image quality due to occurrence of abnormalities such as vibrations may not be effectively suppressed.
[0010] 本発明は上記問題点を解決するためになされたものであり、コストアップを招くこと なぐ振動等の異常発生による画像品質の劣化を抑制することができる描画装置及 び描画方法を提供することを目的とする。  The present invention has been made to solve the above-described problems, and provides a drawing apparatus and a drawing method capable of suppressing deterioration in image quality due to occurrence of abnormality such as vibration without causing an increase in cost. The purpose is to do.
課題を解決するための手段  Means for solving the problem
[0011] 本発明の第一の態様の描画装置は、記録媒体が載置されたステージ及び複数の 描画素子を有する描画ヘッドを予め定めた走査方向に相対移動させながら、前記複 数の描画素子により描画点を描画させることにより、前記記録媒体上に画像を描画 する描画装置において、入力された画像データを記憶する記憶コンポーネントと、前 記ステージと前記描画ヘッドとの位置ずれ量をリアルタイムで検出する位置ずれ量検 出コンポーネントと、前記描画素子毎に予め定めた取り出し位置力 所定数のデータ を前記画像データから取り出すことにより、前記描画素子に描画させるべき描画点列 に対応した描画点データを前記描画素子毎に生成する描画点データ生成コンポ一 ネントと、検出した位置ずれ量に応じた補正量で前記取り出し位置をリアルタイムで 補正する補正コンポーネントと、を備える。 [0011] The drawing apparatus according to the first aspect of the present invention provides the plurality of drawing elements while relatively moving a drawing head having a stage on which a recording medium is placed and a plurality of drawing elements in a predetermined scanning direction. In the drawing apparatus that draws an image on the recording medium by drawing a drawing point, the storage component that stores the input image data, and the positional deviation amount between the stage and the drawing head are detected in real time. Misalignment detection The drawing component data corresponding to the drawing point sequence to be drawn by the drawing element is extracted for each drawing element by taking out a predetermined number of data from the output component and the drawing position force predetermined for each drawing element from the image data. A drawing point data generation component to be generated; and a correction component that corrects the extraction position in real time with a correction amount corresponding to the detected positional deviation amount.
[0012] この発明に係る描画装置は、記録媒体が載置されたステージ及び複数の描画素子 を有する描画ヘッドを予め定めた走査方向に相対移動させながら、複数の描画素子 により描画点を描画させることにより、記録媒体上に画像を描画する。なお、例えば、 前記描画ヘッドは、空間光変調素子を備えた露光ヘッド、または液滴を吐出する液 滴吐出ヘッドとすることができる。  The drawing apparatus according to the present invention draws drawing points by a plurality of drawing elements while relatively moving a drawing head having a stage on which a recording medium is placed and a plurality of drawing elements in a predetermined scanning direction. Thus, an image is drawn on the recording medium. For example, the drawing head can be an exposure head equipped with a spatial light modulator or a liquid droplet ejection head that ejects liquid droplets.
[0013] 位置ずれ量検出コンポーネントは、ステージと描画ヘッドとの位置ずれ量をリアルタ ィムで、すなわちステージ及び描画ヘッドを走査方向に相対移動させて記録媒体上 に画像を描画して ヽる最中に検出する。  [0013] The misregistration amount detection component renders the misregistration amount between the stage and the drawing head in real time, ie, draws an image on a recording medium by relatively moving the stage and the drawing head in the scanning direction. Detect during.
[0014] 描画点データ生成コンポーネントは、描画素子毎に予め定めた取り出し位置力 所 定数のデータを記憶コンポーネントに記憶された画像データ力 取り出すことにより、 描画素子に描画させるべき描画点列に対応した描画点データを描画素子毎に生成 する。この描画素子毎に生成した描画点データに基づいて各描画素子により描画点 列が描画され、画像が記録媒体上に形成される。  [0014] The drawing point data generation component corresponds to the drawing point sequence to be drawn by the drawing element by taking out the image data force stored in the storage component from the data of the extraction position force predetermined constant determined for each drawing element. Drawing point data is generated for each drawing element. A drawing point sequence is drawn by each drawing element based on the drawing point data generated for each drawing element, and an image is formed on the recording medium.
[0015] ここで、振動等によってステージと描画ヘッドとに位置ずれが生じると、記録装置上 に形成された画像の位置がずれ、画像が劣化する原因となる。  [0015] Here, if a position shift occurs between the stage and the drawing head due to vibration or the like, the position of the image formed on the recording apparatus is shifted, which causes the image to deteriorate.
[0016] このため、補正コンポーネントは、位置ずれ量検出コンポーネントで検出した位置 ずれ量に応じた補正量で取り出し位置をリアルタイムで、すなわちステージ及び描画 ヘッドが走査方向に相対移動して!/、る最中に逐次補正する。  [0016] Therefore, the correction component moves the take-out position in real time with a correction amount corresponding to the position shift amount detected by the position shift amount detection component, that is, the stage and the drawing head relatively move in the scanning direction! Corrections are made sequentially during the process.
[0017] このように、ステージと描画ヘッドとの位置ずれ量を検出して、この位置ずれ量に応 じて、描画点データを生成する際の取り出し位置を変更するので、振動等の異常発 生により描画点の位置がずれて画像の品質が劣化するのを抑制することができる。ま た、位置ずれ量を補正するための特別な装置を設ける必要がなぐ装置を安価に構 成することができる。 [0018] なお、前記記憶コンポーネントのアドレスが連続する方向と前記走査方向に時系列 に並んで描画される各描画点に対応する前記描画点データが格納される配列方向 とが一致するように、前記入力された画像データを前記記憶コンポーネントに格納す る格納制御コンポーネントをさらに備えた構成としてもよい。これにより、描画点デー タを生成する際に記憶コンポーネントから画像データを連続的に読み出すことができ 、描画点データを高速に生成することができる。 [0017] In this way, the amount of positional deviation between the stage and the drawing head is detected, and the extraction position for generating the drawing point data is changed according to the amount of positional deviation. It is possible to prevent the quality of the image from deteriorating due to the raw drawing point being displaced. In addition, a device that does not require a special device for correcting the amount of misalignment can be configured at low cost. [0018] It should be noted that the direction in which the addresses of the storage components are continuous and the arrangement direction in which the drawing point data corresponding to the respective drawing points drawn in time series in the scanning direction match are matched. The image processing apparatus may further include a storage control component that stores the input image data in the storage component. As a result, when the drawing point data is generated, the image data can be continuously read from the storage component, and the drawing point data can be generated at high speed.
[0019] また、前記位置ずれ量検出コンポーネントは、前記ステージと前記描画ヘッドとの 第 1の方向における位置ずれ量及び前記第 1の方向と直交する第 2の方向における 位置ずれ量を検出することができる。この場合、各描画素子について、同じ補正量で 取り出し位置を補正することができる。  [0019] Further, the positional deviation amount detection component detects a positional deviation amount between the stage and the drawing head in a first direction and a positional deviation amount in a second direction orthogonal to the first direction. Can do. In this case, the extraction position can be corrected with the same correction amount for each drawing element.
[0020] また、前記位置ずれ量と前記補正量との対応関係を示す補正テーブルデータを記 憶する補正テーブルデータ記憶コンポーネントをさらに備え、前記補正コンポーネン トは、前記補正テーブルデータに基づいて、検出した位置ずれ量に対応する補正量 を求めることができる。  [0020] Further, a correction table data storage component that stores correction table data indicating a correspondence relationship between the positional deviation amount and the correction amount is further provided, and the correction component is detected based on the correction table data. A correction amount corresponding to the amount of misalignment can be obtained.
[0021] また、前記位置ずれ量検出コンポーネントは、前記ステージと前記描画ヘッドとの 回転方向における位置ずれ量をさらに検出し、前記補正テーブルデータ記憶コンポ 一ネントは、前記描画素子毎の前記対応関係を示す補正テーブルデータを記憶す るようにしてもよい。これにより、さらに精度良く描画点の位置ずれを補正することがで きる。  [0021] Further, the misregistration amount detection component further detects a misregistration amount in the rotation direction of the stage and the drawing head, and the correction table data storage component includes the correspondence relationship for each drawing element. Correction table data indicating that may be stored. Thereby, it is possible to correct the positional deviation of the drawing point with higher accuracy.
[0022] 本発明の第二の態様の描画方法は、記録媒体が載置されたステージ及び複数の 描画素子を有する描画ヘッドを予め定めた走査方向に相対移動させながら、前記複 数の描画素子により描画点を描画させることにより、前記記録媒体上に画像を描画 する描画方法にぉ 、て、前記ステージと前記描画ヘッドとの位置ずれ量をリアルタイ ムで検出し、前記描画素子毎に予め定めた取り出し位置力 所定数のデータを記憶 コンポーネントに記憶された画像データから取り出すことにより、前記描画素子に描 画させるべき描画点列に対応した描画点データを前記描画素子毎に生成し、検出し た位置ずれ量に応じた補正量で前記取り出し位置をリアルタイムで補正する。  [0022] The drawing method according to the second aspect of the present invention provides the plurality of drawing elements while relatively moving a drawing head having a stage on which a recording medium is placed and a plurality of drawing elements in a predetermined scanning direction. By drawing a drawing point, the amount of positional deviation between the stage and the drawing head is detected in real time in accordance with a drawing method for drawing an image on the recording medium. Predetermined extraction position force Stores a predetermined number of data from the image data stored in the component, thereby generating and detecting drawing point data corresponding to the drawing point sequence to be drawn by the drawing element for each drawing element. The extraction position is corrected in real time with a correction amount corresponding to the amount of positional deviation.
[0023] この発明によれば、ステージと描画ヘッドとの位置ずれ量を検出して、この位置ず れ量に応じて、描画点データを生成する際の取り出し位置を変更するので、振動等 の異常発生により描画点の位置がずれて画像の品質が劣化するのを抑制することが できる。また、位置ずれ量を補正するための特別な装置を設ける必要がなぐこの方 法を実現する装置を安価に構成することができる。 [0023] According to the present invention, the positional deviation amount between the stage and the drawing head is detected, and this position is not detected. Since the extraction position when generating the drawing point data is changed according to the amount, it is possible to suppress the deterioration of the image quality due to the position of the drawing point being shifted due to the occurrence of an abnormality such as vibration. In addition, a device that realizes this method without the need to provide a special device for correcting the amount of displacement can be configured at low cost.
発明の効果  The invention's effect
[0024] 本発明によれば、コストアップを招くことなぐ振動等の異常発生による画像品質の 劣化を抑制することができる、という効果を有する。  [0024] According to the present invention, there is an effect that it is possible to suppress degradation of image quality due to occurrence of an abnormality such as vibration without causing an increase in cost.
図面の簡単な説明  Brief Description of Drawings
[0025] [図 1]本発明の実施の形態の露光装置の外観を示す斜視図である。  FIG. 1 is a perspective view showing an appearance of an exposure apparatus according to an embodiment of the present invention.
[図 2]露光装置のスキャナの構成を示す斜視図である。  FIG. 2 is a perspective view showing a configuration of a scanner of the exposure apparatus.
[図 3A]感光材料に形成される露光済み領域を示す平面図である。  FIG. 3A is a plan view showing an exposed area formed on a photosensitive material.
[図 3B]各露光ヘッドによる露光エリアの配列を示す図である。  FIG. 3B is a diagram showing an arrangement of exposure areas by each exposure head.
[図 4]露光装置の露光ヘッドの概略構成を示す斜視図である。  FIG. 4 is a perspective view showing a schematic configuration of an exposure head of the exposure apparatus.
[図 5]デジタルマイクロミラーデバイス (DMD)の構成を示す部分拡大図である。  FIG. 5 is a partially enlarged view showing a configuration of a digital micromirror device (DMD).
[図 6A]DMDの動作を説明するための説明図である。  FIG. 6A is an explanatory diagram for explaining the operation of DMD.
[図 6B]DMDの動作を説明するための説明図である。  FIG. 6B is an explanatory diagram for explaining the operation of the DMD.
[図 7A]図 7Aおよび図 7Bは、 DMDを傾斜配置しない場合(図 7A)と傾斜配置する 場合(図 7B)とで、露光ビームの配置および走査線を比較して示す平面図である。  [FIG. 7A] FIGS. 7A and 7B are plan views showing the arrangement of exposure beams and scanning lines in a case where the DMD is not inclined (FIG. 7A) and in a case where the DMD is inclined (FIG. 7B).
[図 7B]図 7Aおよび図 7Bは、 DMDを傾斜配置しない場合(図 7A)と傾斜配置する 場合(図 7B)とで、露光ビームの配置および走査線を比較して示す平面図である。  [FIG. 7B] FIGS. 7A and 7B are plan views showing the arrangement of the exposure beams and the scanning lines in the case where the DMD is not inclined (FIG. 7A) and in the case where the DMD is inclined (FIG. 7B).
[図 8A]ファイバアレイ光源の構成を示す斜視図である。  FIG. 8A is a perspective view showing a configuration of a fiber array light source.
[図 8B]ファイバアレイ光源のレーザ出射部における発光点の配列を示す正面図であ る。  FIG. 8B is a front view showing the arrangement of light emitting points in the laser emission part of the fiber array light source.
[図 9]露光装置の制御系のブロック図である。  FIG. 9 is a block diagram of a control system of the exposure apparatus.
[図 10]位置測定部の構成を示す斜視図である。  FIG. 10 is a perspective view showing a configuration of a position measurement unit.
[図 11]格納制御部力 見た画像データ記憶部におけるアドレス空間と、画像データ 記憶部に格納される画像データとの関係を説明するため模式図である。  FIG. 11 is a schematic diagram for explaining the relationship between the address space in the image data storage unit and the image data stored in the image data storage unit as seen from the power of the storage control unit.
[図 12A]フレームデータの作成方法を説明するための図である。 [図 12B]フレームデータの作成方法を説明するための図である。 FIG. 12A is a diagram for explaining a method for creating frame data. FIG. 12B is a diagram for explaining a method for creating frame data.
[図 12C]フレームデータの作成方法を説明するための図である。  FIG. 12C is a diagram for explaining a method for creating frame data.
[図 12D]フレームデータの作成方法を説明するための図である。  FIG. 12D is a diagram for explaining a method for creating frame data.
[図 12E]フレームデータの作成方法を説明するための図である。  FIG. 12E is a diagram for explaining a method for creating frame data.
[図 12F]フレームデータの作成方法を説明するための図である。  FIG. 12F is a diagram for explaining a method for creating frame data.
[図 12G]フレームデータの作成方法を説明するための図である。  FIG. 12G is a diagram for explaining a method for creating frame data.
[図 12H]フレームデータの作成方法を説明するための図である。  FIG. 12H is a diagram for explaining a method for creating frame data.
[図 13]フレームデータ作成部力 見たフレームデータ記憶部におけるアドレス空間と [Figure 13] The power of the frame data creation unit
、フレームデータ記憶部に格納されるフレームデータとの関係を説明するための模式 図である。 FIG. 5 is a schematic diagram for explaining a relationship with frame data stored in a frame data storage unit.
[図 14]画像データ記憶部に記憶された画像データと描画点との位置関係を模式的 に表した図である。  FIG. 14 is a diagram schematically showing the positional relationship between image data stored in an image data storage unit and drawing points.
[図 15]変形例に係る露光装置の制御系のブロック図である。  FIG. 15 is a block diagram of a control system of an exposure apparatus according to a modification.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0026] 以下、図面を参照して本発明の実施の形態に係る露光装置について説明する。  Hereinafter, an exposure apparatus according to an embodiment of the present invention will be described with reference to the drawings.
[0027] (露光装置の構成)  [0027] (Configuration of exposure apparatus)
この露光装置は、図 1に示すように、シート状の感光材料 150を表面に吸着して保 持する平板状の移動ステージ 152を備えている。 4本の脚部 154に支持された厚い 板状の設置台 156の上面には、ステージ移動方向 STMに沿って延びた 2本のガイ ド 158が設置されている。移動ステージ 152は、その長手方向がステージ移動方向 を向くように配置されると共に、ガイド 158によって往復移動可能に支持されている。 なお、この露光装置には、副走査コンポーネントとしての移動ステージ 152をガイド 1 58に沿って駆動する後述のステージ駆動部 15 (図 9参照)が設けられている。  As shown in FIG. 1, the exposure apparatus includes a flat plate-like moving stage 152 that holds a sheet-like photosensitive material 150 on the surface thereof. Two guides 158 extending along the stage moving direction STM are installed on the upper surface of the thick plate-shaped installation table 156 supported by the four legs 154. The moving stage 152 is arranged so that its longitudinal direction faces the stage moving direction, and is supported by a guide 158 so as to be reciprocally movable. Note that this exposure apparatus is provided with a stage drive unit 15 (see FIG. 9), which will be described later, that drives a moving stage 152 as a sub-scanning component along a guide 158.
[0028] 設置台 156の中央部には、移動ステージ 152の移動経路を跨ぐようにゲート 160が 設けられている。ゲート 160の端部の各々は、設置台 156の両側面に固定されてい る。このゲート 160を挟んで一方の側にはスキャナ 162が設けられ、他方の側には感 光材料 150の先端および後端を検知する複数 (例えば 2個)のセンサ 164が設けられ ている。スキャナ 162およびセンサ 164はゲート 160に各々取り付けられて、移動ステ ージ 152の移動経路の上方に固定配置されている。なお、スキャナ 162およびセン サ 164は、これらを制御する図示しな!ヽ制御部に接続されて!ヽる。 A gate 160 is provided at the center of the installation table 156 so as to straddle the moving path of the moving stage 152. Each end of the gate 160 is fixed to both side surfaces of the installation table 156. A scanner 162 is provided on one side of the gate 160, and a plurality of (for example, two) sensors 164 for detecting the front and rear ends of the photosensitive material 150 are provided on the other side. A scanner 162 and a sensor 164 are each attached to the gate 160 to move the moving step. It is fixedly arranged above the moving path of the page 152. The scanner 162 and the sensor 164 are connected to a control unit (not shown) that controls them.
[0029] スキャナ 162は、図 2および図 3Bに示すように、 m行 n列(例えば 3行 5列)の略マト リックス状に配列された複数 (例えば 14個)の露光ヘッド 166を備えている。この例で は、感光材料 150の幅との関係で、 3行目には 4個の露光ヘッド 166を配置してある 。なお、 m行目の n列目に配列された個々の露光ヘッドを示す場合は、露光ヘッド 16 6 と表記する。 As shown in FIGS. 2 and 3B, the scanner 162 includes a plurality of (for example, 14) exposure heads 166 arranged in a matrix of m rows and n columns (eg, 3 rows and 5 columns). Yes. In this example, four exposure heads 166 are arranged in the third row in relation to the width of the photosensitive material 150. It should be noted that the individual exposure heads arranged in the m-th row and the n-th column are denoted as exposure head 16 6.
mn  mn
[0030] 露光ヘッド 166による露光エリア 168は、副走査方向 SSを短辺とする矩形状である 。従って、移動ステージ 152の移動に伴い、感光材料 150には露光ヘッド 166毎に 帯状の露光済み領域 170が形成される。なお、 m行目の n列目に配列された個々の 露光ヘッドによる露光エリアを示す場合は、露光エリア 168 と表記する。  An exposure area 168 by the exposure head 166 has a rectangular shape with a short side in the sub-scanning direction SS. Therefore, as the moving stage 152 moves, a strip-shaped exposed area 170 is formed in the photosensitive material 150 for each exposure head 166. Note that the exposure area by the individual exposure heads arranged in the m-th row and the n-th column is expressed as an exposure area 168.
mn  mn
[0031] また、図 3Aおよび図 3Bに示すように、帯状の露光済み領域 170が副走査方向と 直交する方向に隙間無く並ぶように、ライン状に配列された各行の露光ヘッド 166の 各々は、配列方向に所定間隔 (露光エリアの長辺の自然数倍、本例では 2倍)ずらし て配置されている。このため、 1行目の露光エリア 168 と露光エリア 168 との間の露  In addition, as shown in FIGS. 3A and 3B, each of the exposure heads 166 in each row arranged in a line so that the strip-shaped exposed regions 170 are arranged without gaps in the direction orthogonal to the sub-scanning direction These are arranged at predetermined intervals in the arrangement direction (natural number times the long side of the exposure area, twice in this example). Therefore, the exposure between exposure area 168 and exposure area 168 in the first row
11 12 光できない部分は、 2行目の露光エリア 168 と 3行目の露光エリア 168 とにより露光  11 12 Unlit areas are exposed by exposure area 168 in the second row and exposure area 168 in the third row.
21 31 することができる。なお、図 3Aにおいて、副走査方向における一回の定低速走査の 速度は例えば 40mmZsであってょ ヽ。  21 31 can. In FIG. 3A, the speed of one constant low-speed scan in the sub-scan direction is 40 mmZs, for example.
[0032] 図 4および図 5に示すように、露光ヘッド 166 As shown in FIGS. 4 and 5, the exposure head 166
ll〜166 の各々は、入射された光ビ mn  ll to 166 are incident light beams mn
ームを画像データに応じて各画素毎に変調する空間光変調素子として、米国テキサ ス 'インスツルメンッ社製のデジタル ·マイクロミラ一'デバイス (DMD) 50を備えて!/ヽ る。この DMD50は、データ処理部とミラー駆動制御部とを備えた後述の DMDドライ ノ 13 (図 9参照)に接続されている。この DMDドライバ 13のデータ処理部では、入力 された画像データに基づいて、各露光ヘッド 166毎に DMD50の制御すべき領域内 の各マイクロミラーを駆動制御する制御信号を生成する。また、ミラー駆動制御部で は、データ処理部で生成した制御信号に基づいて、各露光ヘッド 166毎に DMD50 の各マイクロミラーの反射面の角度を制御する。なお、反射面の角度の制御につい ては後述する。 [0033] DMD50の光入射側には、光ファイバの出射端部 (発光点)が露光エリア 168の長 辺方向と対応する方向に沿って一列に配列されたレーザ出射部を備えたファイバァ レイ光源 66、ファイバアレイ光源 66から出射されたレーザ光を補正して DMD上に集 光させるレンズ系 67、このレンズ系 67を透過したレーザ光を DMD50に向けて反射 するミラー 69がこの順に配置されている。レンズ系 67は、ファイバアレイ光源 66から 出射した照明光としてのレーザ光を集光する集光レンズ、集光レンズを通過した光の 光路に挿入されたロッド状オプティカルインテグレータ(以下、ロッドインテグレータと いう)、このロッドインテグレータの前方のミラー 69側に配置された結像レンズから構 成されている。集光レンズ、ロッドインテグレータおよび結像レンズは、ファイバアレイ 光源 66から出射したレーザ光を、平行光に近くかつビーム断面内強度が均一化され た光束として DMD50に入射させる。 As a spatial light modulation element that modulates the image for each pixel in accordance with image data, a digital micromirror device (DMD) 50 manufactured by Texas Instruments Inc. is provided. The DMD 50 is connected to a later-described DMD dryer 13 (see FIG. 9) having a data processing unit and a mirror drive control unit. The data processing unit of the DMD driver 13 generates a control signal for driving and controlling each micromirror in the region to be controlled by the DMD 50 for each exposure head 166 based on the input image data. Further, the mirror drive control unit controls the angle of the reflection surface of each micromirror of the DMD 50 for each exposure head 166 based on the control signal generated by the data processing unit. The control of the angle of the reflecting surface will be described later. [0033] On the light incident side of the DMD 50, a fiber array light source having a laser emitting portion in which the emitting end portion (light emitting point) of the optical fiber is arranged in a line along the direction corresponding to the long side direction of the exposure area 168 66, a lens system 67 for correcting the laser light emitted from the fiber array light source 66 and collecting it on the DMD, and a mirror 69 for reflecting the laser light transmitted through the lens system 67 toward the DMD 50 are arranged in this order. Yes. The lens system 67 includes a condensing lens that condenses laser light as illumination light emitted from the fiber array light source 66, and a rod-shaped optical integrator (hereinafter referred to as a rod integrator) inserted in the optical path of the light that has passed through the condensing lens. ) And an imaging lens placed on the mirror 69 side in front of this rod integrator. The condensing lens, the rod integrator, and the imaging lens cause the laser light emitted from the fiber array light source 66 to enter the DMD 50 as a light beam that is close to parallel light and has a uniform beam cross-sectional intensity.
[0034] レンズ系 67から出射したレーザ光はミラー 69で反射し、 TIR (全反射)プリズムを介 して DMD50に照射される。  The laser light emitted from the lens system 67 is reflected by the mirror 69 and irradiated to the DMD 50 via a TIR (total reflection) prism.
[0035] また DMD50の光反射側には、 DMD50で反射されたレーザ光を、感光材料 150 上に結像する結像光学系 51が配置されている。この結像光学系 51は、像を拡大投 影するための複数の結像レンズを備え、これら複数の結像レンズの間に DMD50の 各画素に対応する多数のマイクロレンズが 2次元状に配列されたマイクロレンズァレ ィを挿入して構成することができる。  Further, on the light reflection side of the DMD 50, an image forming optical system 51 for forming an image of the laser light reflected by the DMD 50 on the photosensitive material 150 is disposed. The imaging optical system 51 includes a plurality of imaging lenses for enlarging and projecting an image, and a large number of microlenses corresponding to each pixel of the DMD 50 are arranged two-dimensionally between the plurality of imaging lenses. It is possible to configure by inserting a microlens array.
[0036] DMD50は図 5に示すように、 SRAMセル (メモリセル) 60 (図 6A、図 6B)上に、各 々画素(ピクセル)を構成する多数 (例えば 1024個 X 768個)の微小ミラー(マイクロ ミラー) 62が格子状に配列されてなるミラーデバイスである。各ピクセルにおいて、最 上部には支柱に支えられた矩形のマイクロミラー 62が設けられており、マイクロミラー 62の表面にはアルミニウム等の反射率の高い材料が蒸着されている。なお、マイクロ ミラー 62の反射率は 90%以上であり、その配列ピッチは縦方向、横方向とも一例とし て 13. 7 mである。また、マイクロミラー 62の直下には、ヒンジおよびヨークを含む支 柱を介して通常の半導体メモリの製造ラインで製造されるシリコンゲートの CMOSの SRAMセル 60が配置されており、全体はモノリシックに構成されている。  As shown in FIG. 5, the DMD 50 has a large number of mirrors (for example, 1024 × 768) on the SRAM cell (memory cell) 60 (FIGS. 6A and 6B). (Micromirror) 62 is a mirror device in which 62 is arranged in a lattice pattern. In each pixel, a rectangular micromirror 62 supported by a support is provided at the top, and a material having high reflectivity such as aluminum is deposited on the surface of the micromirror 62. The reflectivity of the micro mirror 62 is 90% or more, and the arrangement pitch is 13.7 m as an example in both the vertical and horizontal directions. Directly below the micromirror 62 is a silicon gate CMOS SRAM cell 60 manufactured on a normal semiconductor memory manufacturing line via a support including a hinge and a yoke, and the entire structure is monolithic. Has been.
[0037] DMD50の SRAMセル 60にデジタル信号が書き込まれると、支柱に支えられたマ イク口ミラー 62が、対角線を中心として DMD50が配置された基板側に対して ±ひ度 (例えば ± 12度)の範囲で傾けられる。図 6Aは、マイクロミラー 62がオン状態である + α度に傾いた状態を示し、図 6Βは、マイクロミラー 62がオフ状態である α度に 傾いた状態を示す。したがって、画像信号に応じて、 DMD50の各ピクセルにおける マイクロミラー 62の傾きを、図 5に示すように制御することによって、 DMD50に入射 したレーザ光はそれぞれのマイクロミラー 62の傾き方向へ反射される。 [0037] When a digital signal is written to the SRAM cell 60 of the DMD 50, the matrix supported by the column is supported. The mouth mirror 62 is tilted in a range of ± degrees (for example, ± 12 degrees) with respect to the substrate side on which the DMD 50 is disposed with the diagonal line as the center. FIG. 6A shows a state tilted to + α degrees when the micromirror 62 is on, and FIG. 6B shows a state tilted to α degrees when the micromirror 62 is off. Therefore, by controlling the tilt of the micromirror 62 in each pixel of the DMD 50 according to the image signal as shown in FIG. 5, the laser light incident on the DMD 50 is reflected in the tilt direction of each micromirror 62. .
[0038] なお図 5には、 DMD50の一部を拡大し、マイクロミラー 62が + α度又は α度に 制御されている状態の一例を示す。それぞれのマイクロミラー 62のオンオフ制御は、 DMD50に接続された前記 DMDドライバ 13によって行われる。また、オフ状態のマ イク口ミラー 62で反射したレーザ光が進行する方向には、光吸収体が配置されてい る。 FIG. 5 shows an example of a state in which a part of the DMD 50 is enlarged and the micromirror 62 is controlled to + α degrees or α degrees. The on / off control of each micromirror 62 is performed by the DMD driver 13 connected to the DMD 50. In addition, a light absorber is disposed in the direction in which the laser light reflected by the microphone mirror 62 in the off state travels.
[0039] また、 DMD50は、その短辺が副走査方向と所定角度(例えば、 0. 1° 〜5° )を 成すように僅かに傾斜させて配置するのが好まし!/、。図 7Αは DMD50を傾斜させな い場合の各マイクロミラーによる反射光像 (露光ビーム) 53の走査軌跡を示し、図 7Β は DMD50を傾斜させた場合の露光ビーム 53の走査軌跡を示している。  [0039] In addition, it is preferable that the DMD 50 is arranged with a slight inclination so that the short side forms a predetermined angle (for example, 0.1 ° to 5 °) with the sub-scanning direction! /. Fig. 7 (b) shows the scanning trajectory of the reflected light image (exposure beam) 53 by each micromirror when the DMD 50 is not tilted, and Fig. 7 (b) shows the scanning trajectory of the exposure beam 53 when the DMD 50 is tilted.
[0040] DMD50には、長手方向にマイクロミラー 62が多数個(例えば 1024個)配列された マイクロミラー列力 短手方向に多数^ 1_ (例えば 756糸且)配列されている力 図 7Bに 示すように、 DMD50を傾斜させることにより、各マイクロミラー 62による露光ビーム 5 3の走査軌跡(走査線)のピッチ P 1S DMD50を傾斜させない場合の走査線のピッ  [0040] In DMD50, a number of micromirrors 62 are arranged in the longitudinal direction (for example, 1024) Micromirror array force A number of ^ 1_ (for example, 756 yarns) in the short direction is arranged Figure 7B Thus, by tilting the DMD 50, the pitch P 1S of the scanning trajectory (scan line) of the exposure beam 53 by each micromirror 62 P 1S scan line pitch when the DMD 50 is not tilted.
2  2
チ Pより狭くなり、解像度を大幅に向上させることができる。一方、 DMD50の傾斜角 H It becomes narrower than P, and the resolution can be greatly improved. Meanwhile, the inclination angle of DMD50
1 1
は微小であるので、 DMD50を傾斜させた場合の走査幅 Wと、 DMD50を傾斜させ  Is very small, so scan width W when DMD50 is tilted and DMD50 tilt
2  2
ない場合の走査幅 wとは略同一である。  The scan width w in the absence is substantially the same.
1  1
[0041] また、異なるマイクロミラー列により同じ走査線上が重ねて露光(多重露光)されるこ とになる。このように、多重露光されることで、露光位置のばらつきが平均化され、高 精細な露光を実現することができる。また、主走査方向に配列された複数の露光へッ ドの間のつなぎ目を微少量の露光位置制御により段差無くつなぐことができる。  In addition, the same scanning line is overlaid and exposed (multiple exposure) by different micromirror arrays. Thus, by performing multiple exposure, variations in exposure position are averaged, and high-definition exposure can be realized. Further, joints between a plurality of exposure heads arranged in the main scanning direction can be connected without any step by controlling a very small amount of exposure position.
[0042] なお、 DMD50を傾斜させる代わりに、各マイクロミラー列を副走査方向と直交する 方向に所定間隔ずらして千鳥状に配置しても、同様の効果を得ることができる。 [0043] ファイバアレイ光源 66は図 8Aに示すように、複数(例えば 14個)のレーザモジユー ル 64を備えており、各レーザモジュール 64には、マルチモード光ファイバ 40の一端 が結合されている。マルチモード光ファイノく 40の他端には、コア径がマルチモード光 ファイバ 40と同一で且つクラッド径がマルチモード光ファイバ 40より小さい光ファイバ 31が結合されている。図 8Bに詳しく示すように、光ファイバ 31のマルチモード光ファ ィバ 40と反対側の端部は副走査方向と直交する主走査方向に沿って 7個並べられ、 それが 2列に配列されて(1列目: Rl、 2列目: R2)レーザ出射部 68が構成されてい る。 [0042] It should be noted that the same effect can be obtained by arranging the micromirror rows in a staggered manner by shifting them by a predetermined interval in a direction orthogonal to the sub-scanning direction instead of inclining the DMD 50. As shown in FIG. 8A, the fiber array light source 66 includes a plurality of (for example, 14) laser modules 64, and one end of a multimode optical fiber 40 is coupled to each laser module 64. The other end of the multimode optical fiber 40 is coupled with an optical fiber 31 having the same core diameter as the multimode optical fiber 40 and a cladding diameter smaller than the multimode optical fiber 40. As shown in detail in FIG. 8B, seven ends of the optical fiber 31 opposite to the multimode optical fiber 40 are arranged along the main scanning direction orthogonal to the sub-scanning direction, and they are arranged in two rows. (First row: Rl, second row: R2) The laser emitting section 68 is configured.
[0044] 光ファイバ 31の端部で構成されるレーザ出射部 68は、図 8Bに示すように、表面が 平坦な 2枚の支持板 65に挟み込まれて固定されている。また、光ファイバ 31の光出 射端面には、その保護のために、ガラス等の透明な保護板が配置されるのが望まし い。光ファイバ 31の光出射端面は、光密度が高いため集塵し易く劣化し易いが、上 述のような保護板を配置することにより、端面への塵埃の付着を防止し、また劣化を 遅らせることができる。  [0044] As shown in FIG. 8B, the laser emitting portion 68 constituted by the end portion of the optical fiber 31 is sandwiched and fixed between two support plates 65 having a flat surface. In addition, it is desirable that a transparent protective plate such as glass be disposed on the light emitting end face of the optical fiber 31 for protection. The light exit end face of the optical fiber 31 is easy to collect dust and easily deteriorate because of its high light density, but by arranging the protective plate as described above, it prevents dust from adhering to the end face and delays deterioration. be able to.
[0045] レーザモジュール 64は、合波レーザ光源(ファイバ光源)によって構成されて 、る。  [0045] The laser module 64 is constituted by a combined laser light source (fiber light source).
この合波レーザ光源は、ヒートブロック上に配列固定された複数のチップ状の横マル チモード又はシングルモードの GaN系半導体レーザと、この GaN系半導体レーザの 各々に対応して設けられたコリメータレンズと、 1つの集光レンズと、 1本のマルチモー ド光ファイバ 40とから構成されている。また、複数のコリメータレンズに代えて、それら のレンズが一体化されてなるコリメータレンズアレイを用いることもできる。  The combined laser light source includes a plurality of chip-like lateral multimode or single mode GaN semiconductor lasers arrayed and fixed on a heat block, and a collimator lens provided corresponding to each of the GaN semiconductor lasers. It is composed of one condenser lens and one multimode optical fiber 40. Further, instead of a plurality of collimator lenses, a collimator lens array in which these lenses are integrated can also be used.
[0046] 次に、図 9を参照して、本例の露光装置における電気的な構成について説明する。  Next, the electrical configuration of the exposure apparatus of this example will be described with reference to FIG.
図 9に示されるように露光装置全体を制御する制御部 10には、露光すべき画像デー タを出力する画像データ出力部 70、画像データ出力部 70から出力された画像デー タを受け付け、その受け付けた画像データを画像データ記憶部 71に格納する格納 制御部 72、画像データ記憶部 71に格納された画像データに回転処理もしくは行列 の転置処理を施してフレームデータ記憶部 73に格納し、フレームデータ記憶部 73に 格納された画像データに基づいてフレームデータを作成して出力するフレームデー タ作成部 74、フレームデータ作成部 74から出力されたフレームデータに基づいて D MD50に制御信号を出力する DMDドライバ 13、レーザモジュール 64の駆動を制御 する LDドライバ 14、及び移動ステージ 152の移動を制御するステージ駆動部 15、 移動ステージ 152の位置を測定するステージ位置測定部 20、及びステージ位置測 定部 20の測定結果に基づいて露光ヘッド 166に対する移動ステージ 152の位置ず れ量等を演算する位置ずれ量演算部 75、及びフレームデータ作成部 74でフレーム データを作成する際の画像データの読み出し位置と位置ずれ量演算部 75で演算し た位置ずれ量との対応関係を示す補正テーブルデータが予め記憶されたメモリ 76 が接続されている。露光ヘッド 166から移動ステージ 152への破線矢印は露光を表 す。 As shown in FIG. 9, the control unit 10 that controls the entire exposure apparatus receives the image data output unit 70 that outputs the image data to be exposed and the image data output from the image data output unit 70, and The received image data is stored in the image data storage unit 71. The storage control unit 72 and the image data stored in the image data storage unit 71 are subjected to rotation processing or matrix transposition processing and stored in the frame data storage unit 73. A frame data creation unit 74 that creates and outputs frame data based on the image data stored in the data storage unit 73, and a D based on the frame data output from the frame data creation unit 74. DMD driver 13 that outputs a control signal to MD50, LD driver 14 that controls the drive of laser module 64, stage drive unit 15 that controls the movement of moving stage 152, and stage position measuring unit 20 that measures the position of moving stage 152 When the frame data is created by the misalignment amount computing unit 75 and the frame data creating unit 74 that computes the displacement amount of the moving stage 152 with respect to the exposure head 166 based on the measurement result of the stage position measuring unit 20. A memory 76 in which correction table data indicating a correspondence relationship between the read position of the image data and the positional deviation amount calculated by the positional deviation amount calculation unit 75 is stored in advance is connected. A broken line arrow from the exposure head 166 to the moving stage 152 represents exposure.
[0047] なお、格納制御部 72およびフレームデータ作成部 74には、所定の手順を実行させ るプログラムがそれぞれ格納されており、そのプログラムの手順に従って制御部 10が 装置の動作を制御する。各プログラムが実行させる所定の手順については、後で詳 述する。  [0047] It should be noted that the storage control unit 72 and the frame data creation unit 74 each store a program for executing a predetermined procedure, and the control unit 10 controls the operation of the apparatus according to the procedure of the program. The predetermined procedure executed by each program will be described in detail later.
[0048] 画像データ記憶部 71およびフレームデータ記憶部 73としては、例えば、 DRAMを 用いることができる力 格納されたデータがアドレスが連続する方向に順次読み出さ れうるものであれば如何なるものを使用してもよい。また、格納されたデータがいわゆ るバースト転送により読み出される記憶コンポーネントを利用するようにしてもよい。な お、画像データのようなサイズの大きなデータは安価な DRAM上に記憶するのが通 常であり、その結果ランダムアクセスに対して低速であるというデメリットがある。  [0048] As the image data storage unit 71 and the frame data storage unit 73, any device can be used as long as the stored data can be read sequentially in the direction in which the addresses are continuous, for example, using DRAM. May be. Further, a storage component from which stored data is read out by so-called burst transfer may be used. Large data such as image data is usually stored on inexpensive DRAM, and as a result, it has a demerit that it is slower than random access.
[0049] ステージ位置測定部 20は、移動ステージ 152の位置および変位量(露光ヘッド 16 6に対する移動ステージ 152の位置ずれ量)を求めるために設けられている。図 10に 示すように、ステージ位置測定部 20は、 X方向についての移動ステージ 152の位置 を測定する X方向位置測定部 42と、 Y方向についての移動ステージ 152の位置を測 定する Y方向位置測定部 44と、 Z方向についての移動ステージ 152の位置を測定す る Z方向位置測定部 46とを備えている。  The stage position measurement unit 20 is provided to obtain the position and displacement amount of the moving stage 152 (position displacement amount of the moving stage 152 with respect to the exposure head 166). As shown in FIG. 10, the stage position measuring unit 20 includes an X direction position measuring unit 42 that measures the position of the moving stage 152 in the X direction, and a Y direction position that measures the position of the moving stage 152 in the Y direction. A measurement unit 44 and a Z direction position measurement unit 46 that measures the position of the moving stage 152 in the Z direction are provided.
[0050] X方向位置測定部 42は、移動ステージ 152のその移動方向に延びる側面に設置 された側面ミラー 26と、側面ミラー 26にレーザ光を射出するとともにその反射光を検 出して側面ミラー 26までの距離を測定する X方向レーザ測長部 21とを備えている。 [0051] Y方向位置測定部 44は、移動ステージ 152のその移動方向に直交する方向に延 びる側面に設置されたキューブミラー 27, 28と、キューブミラー 27にレーザ光を射出 するとともにその反射光を検出してキューブミラー 27までの距離を測定する第 1の Υ 方向レーザ測長部 22と、キューブミラー 28にレーザ光を射出するとともにその反射 光を検出してキューブミラー 28までの距離を測定する第 2の Υ方向レーザ測長部 23 とを備えている。 [0050] The X-direction position measurement unit 42 emits a laser beam to the side mirror 26 installed on the side surface of the moving stage 152 extending in the moving direction, and the side mirror 26, and detects the reflected light to detect the side mirror 26. And an X-direction laser length measurement unit 21 that measures the distance to the [0051] The Y-direction position measurement unit 44 emits laser light to the cube mirrors 27 and 28 installed on the side surfaces of the moving stage 152 extending in a direction orthogonal to the moving direction, and the reflected light from the cube mirror 27. Measures the distance to the cube mirror 27 by detecting the first 方向 direction laser length measurement unit 22 and the laser beam is emitted to the cube mirror 28 and the reflected light is detected to measure the distance to the cube mirror 28 And a second saddle direction laser length measuring unit 23.
[0052] Ζ方向位置測定部 46は、移動ステージ 152の露光ヘッド 166に対向する面であつ て、その面の感光材料 150が吸着されない部分に設置された上面ミラー 29, 30と、 上面ミラー 29にレーザ光を射出するとともにその反射光を検出して上面ミラー 29まで の距離を測定する第 1の Ζ方向レーザ測長部 24と、上面ミラー 30にレーザ光を射出 するとともにその反射光を検出して上面ミラー 30までの距離を測定する第 2の Ζ方向 レーザ測長部 25とを備えて 、る。  The heel direction position measurement unit 46 is a surface facing the exposure head 166 of the moving stage 152 and is disposed on a portion of the surface where the photosensitive material 150 is not adsorbed. The laser beam is emitted to the top mirror 29 and the reflected light is detected, and the laser beam is emitted to the top mirror 30 and the reflected light is detected. And a second laser direction laser length measuring unit 25 for measuring the distance to the upper surface mirror 30.
[0053] なお、図 10においては、 X方向レーザ測長部 21は 1つしか設けられていないが、 実際には、露光中における移動ステージ 152の X方向にっ 、ての変位量を求めるた めに十分な数の X方向レーザ測長部 21が設けられているものとする。  In FIG. 10, only one X-direction laser length measuring unit 21 is provided, but actually, the displacement amount of the moving stage 152 in the X direction during the exposure was obtained. For this purpose, it is assumed that a sufficient number of X direction laser length measuring units 21 are provided.
[0054] また、 X方向レーザ測長部 21を 1つだけ設け、側面ミラー 26の長さを露光中の変位 量を求めるために十分な長さとすることもできる。  [0054] Furthermore, only one X-direction laser length measuring unit 21 may be provided, and the length of the side mirror 26 may be set to a length sufficient for obtaining the amount of displacement during exposure.
[0055] また、 Ζ方向の位置を測定するための上面ミラー 29、 30も、露光中の変位量を求め るために十分な長さとすることができる。  [0055] Further, the top mirrors 29 and 30 for measuring the position in the eyelid direction can also have a sufficient length for obtaining the amount of displacement during exposure.
[0056] 以下、露光ヘッド 166に対する移動ステージ 152の位置ずれ量 (変位量)の測定方 法について具体的に説明する。  Hereinafter, a method for measuring the amount of displacement (displacement) of the moving stage 152 with respect to the exposure head 166 will be specifically described.
[0057] まず、 X方向レーザ測長部 21から側面ミラー 26にレーザ光が射出され、第 1の Υ方 向レーザ測長部 22と第 2の Υ方向レーザ測長部 23からそれぞれキューブミラー 27, 28にレーザ光が射出され、第 1の Ζ方向レーザ測長部 24と第 2の Ζ方向レーザ測長 部 25とからそれぞれ上面ミラー 29, 30にレーザ光が射出される。  [0057] First, laser light is emitted from the X-direction laser length measurement unit 21 to the side mirror 26, and the first and second direction laser length measurement units 22 and 23 respectively transmit cube cubes 27. , 28, and laser light is emitted from the first Ζ direction laser length measurement unit 24 and the second Ζ direction laser length measurement unit 25 to the upper surface mirrors 29 and 30, respectively.
[0058] そして、 X方向レーザ測長部 21から射出されたレーザ光は側面ミラー 26により反射 され、その反射光が X方向レーザ測長部 21により検出されて側面ミラー 26までの距 離が測定される。また、第 1および第 2の Υ方向レーザ測長部 22, 23から射出された レーザ光はキューブミラー 27, 28により反射され、その反射光がそれぞれ第 1および 第 2の Y方向レーザ測長部 22, 23により検出されてキューブミラー 27, 28までの距 離がそれぞれ測定される。同様に、第 1および第 2の Z方向レーザ測長部 24, 25から 射出されたレーザ光は上面ミラー 29, 30により反射され、その反射光がそれぞれ第 1および第 2の Z方向レーザ測長部 24, 25により検出されて上面ミラー 29, 30までの 距離がそれぞれ測定される。 [0058] The laser light emitted from the X-direction laser length measuring unit 21 is reflected by the side mirror 26, and the reflected light is detected by the X-direction laser length measuring unit 21 to measure the distance to the side mirror 26. Is done. Also emitted from the first and second longitudinal laser length measuring units 22, 23 The laser light is reflected by the cube mirrors 27 and 28, and the reflected lights are detected by the first and second Y-direction laser length measuring units 22 and 23, respectively, and the distances to the cube mirrors 27 and 28 are measured. . Similarly, the laser beams emitted from the first and second Z-direction laser length measuring units 24 and 25 are reflected by the upper surface mirrors 29 and 30, and the reflected light is reflected in the first and second Z-direction laser length measuring units, respectively. The distances to the top mirrors 29 and 30 detected by the units 24 and 25 are measured.
[0059] そして、 X方向位置測定部 42の測定結果に基づいて移動ステージ 152の X方向に ついての位置情報 XIが求められ、 Y方向位置測定部 44の測定結果に基づいて移 動ステージ 152の Y方向についての位置情報 Yl, Y2が求められ、 Z方向位置測定 部 46の測定結果に基づ 、て移動ステージ 152の Z方向にっ 、ての位置情報 Zl, Z 2がそれぞれ求められる。  [0059] Based on the measurement result of the X-direction position measurement unit 42, the position information XI of the movement stage 152 in the X direction is obtained, and based on the measurement result of the Y-direction position measurement unit 44, the movement stage 152 Position information Yl and Y2 in the Y direction are obtained, and based on the measurement result of the Z direction position measurement unit 46, the position information Zl and Z2 in the Z direction of the moving stage 152 are obtained.
[0060] ステージ駆動部 15は、 Y方向に沿って移動ステージ 152を移動させる。この露光装 置には、移動ステージ 152の移動にともなってパルス信号を出力するリニアェンコ一 ダが設けられており、リニアエンコーダからのパルス信号に基づいて移動ステージ 15 2の位置情報及び走査速度を検出している。ステージ駆動部 15ではリニアェンコ一 ダカものパルス信号に基づいて移動ステージ 152を一定速度で移動させることがで きる。なお、ステージ位置測定部 20は、予め定められたパルス数毎に位置測定を行 V、、位置ずれ量演算部 75に測定結果 (位置情報)を出力する。  The stage drive unit 15 moves the moving stage 152 along the Y direction. This exposure apparatus is provided with a linear encoder that outputs a pulse signal as the moving stage 152 moves, and detects position information and scanning speed of the moving stage 152 based on the pulse signal from the linear encoder. is doing. The stage drive unit 15 can move the moving stage 152 at a constant speed based on the pulse signal of linear encoder. The stage position measurement unit 20 performs position measurement for each predetermined number of pulses, and outputs the measurement result (position information) to the position deviation amount calculation unit 75.
[0061] 位置ずれ量演算部 75は、ステージ位置測定部 20で測定された移動ステージ 152 の X、 Y方向のそれぞれの位置情報に基づいて、露光ヘッド 166に対する移動ステ ージ 152の X方向及び Y方向における位置ずれ量 Xa, Ya、移動ステージ 152の X— Y平面上における回転角度 Θを求める。  The misregistration amount calculation unit 75 uses the X direction of the moving stage 152 relative to the exposure head 166 and the X direction and Y direction of the moving stage 152 measured by the stage position measuring unit 20. The positional deviation amounts Xa and Ya in the Y direction and the rotation angle Θ on the XY plane of the moving stage 152 are obtained.
[0062] 露光ヘッド 166に対する移動ステージ 152の X方向における位置ずれ量 Xa、 Y方 向における位置ずれ量 Yaは、ステージ位置測定部 20により取得した位置情報 XI, Y1と、移動ステージ 152が理想的に移動した場合の基準となる位置情報 (基準位置 情報) XO、 YOとの差を演算することで求めることができる。なお、 Y方向における位置 ずれ量 Yaは、位置情報 Y1又は Y2と、基準位置情報 YOとの差を演算することで求 めてもよいし、位置情報 Yl、 Υ2の平均値と、基準位置情報 ΥΟとの差を演算すること で求めてもよい。なお、移動ステージ 152の移動方向である Y方向における基準位 置 YOは、移動ステージ 152の現在位置に応じて定められる。従って、例えば移動ス テージ 152が原点位置力も移動を開始した場合、その時点力もの経過時間と移動ス テージ 152の移動速度とから、現在位置における Y方向の基準位置情報 YOを求め ることがでさる。 [0062] The positional deviation amount Xa in the X direction of the moving stage 152 relative to the exposure head 166, the positional deviation amount Ya in the Y direction, and the positional information XI, Y1 acquired by the stage position measuring unit 20 and the moving stage 152 are ideal Reference position information when moving to (reference position information) It can be obtained by calculating the difference between XO and YO. The positional deviation amount Ya in the Y direction may be obtained by calculating the difference between the position information Y1 or Y2 and the reference position information YO, or the average value of the position information Yl and Υ2 and the reference position information. Calculate the difference from ΥΟ You may ask for. Note that the reference position YO in the Y direction, which is the moving direction of the moving stage 152, is determined according to the current position of the moving stage 152. Therefore, for example, when the movement stage 152 starts to move with the origin position force, the reference position information YO in the Y direction at the current position can be obtained from the elapsed time of the current force and the movement speed of the movement stage 152. Monkey.
[0063] また、位置情報 Yl、 Υ2の差分を求め、これと第 1の Υ方向レーザ測長部 22と第 2 の Υ方向レーザ測長部 23との距離(固定値)とから、 Χ—Υ平面上における移動ステ ージ 152の回転角度 Θを求める。  [0063] Further, the difference between the position information Yl and Υ2 is obtained, and from this and the distance (fixed value) between the first Υ direction laser length measurement unit 22 and the second Υ direction laser length measurement unit 23, Χ-回 転 Find the rotation angle Θ of the moving stage 152 on the plane.
[0064] このようにして求めた位置ずれ量 Xa、 Ya、回転角度 Θは、制御部 10に出力される  [0064] The positional shift amounts Xa, Ya and the rotation angle Θ obtained in this way are output to the control unit 10.
[0065] (露光装置の動作) (Operation of exposure apparatus)
以下、この露光装置の露光動作について説明する。  The exposure operation of this exposure apparatus will be described below.
[0066] まず、コンピュータなどの画像データ出力部 70において、感光材料 150に露光す べき画像に応じた画像データが作成され、その画像データが本露光装置に出力され る。そして、上記画像データは本露光装置の格納制御部 72において受け付けられる  First, in an image data output unit 70 such as a computer, image data corresponding to an image to be exposed on the photosensitive material 150 is created, and the image data is output to the exposure apparatus. The image data is received by the storage controller 72 of the exposure apparatus.
[0067] ここで、例えば図 11に示すような数字の「2」を露光面上に描画する場合におけるフ レームデータの作成方法について説明する。なお、図 12A〜図 12Hに示す丸 1〜 丸 8は、 DMDのマイクロミラーを模式的に示したものである。 Here, for example, a method of creating frame data when the number “2” as shown in FIG. 11 is drawn on the exposure surface will be described. Note that circles 1 to 8 shown in FIGS. 12A to 12H schematically show DMD micromirrors.
[0068] まず、格納制御部 72は、図 11に示すように、画像データ記憶部 71におけるァドレ スが連続する方向 ADと、 DMD50の走査方向 SDに並んで描画される複数の描画 点に対応する複数の描画点データが格納される配列方向とがー致するように上記画 像データを形成する描画点データを画像データ記憶部 71に格納する。なお、図 11 は、格納制御部 72から見た画像データ記憶部 71におけるアドレス空間と、画像デー タ記憶部 71に格納される画像データとの関係を説明するため模式図である。また、 画像データ出力部 70から出力された画像データがベクトルデータである場合には、 格納制御部 72は、そのベクトルデータをビットマップデータに変換した後、上記のよう に描画点データの格納を行う。 [0069] そして、上記のようにして全ての描画点データが画像データ記憶部 71に格納され た後、その画像データ記憶部 71に格納された描画点データがフレームデータ作成 部 74により読み出される。このとき、フレームデータ作成部 74は、図 12A〜図 12H に示すように、画像データ記憶部 71に格納された描画点データを、アドレスが連続 する方向に所定画素数分順次読み出し、図 12A〜図 12Hの右側に「ミラー 1 (MR1 )」〜「ミラー 8 (MR8)」で示したように各マイクロミラーの描画点データ群を取得する 。なお、図 12A〜図 12Hに示す白四角と斜線四角の描画点に対応する描画点デー タは OFFデータ「0」であり、黒四角の描画点に対応する描画点データは ONデータ「 1」である。また、斜線四角部分の範囲は、描画面上に描画される画像の実質的な範 囲を示すものであり、描画点データとしては白四角と同じ「0」である。 First, as shown in FIG. 11, the storage control unit 72 corresponds to a plurality of drawing points drawn side by side in the direction AD where the addresses in the image data storage unit 71 continue and the scanning direction SD of the DMD 50. The image data storage unit 71 stores the drawing point data forming the image data so that the arrangement direction in which the plurality of drawing point data to be stored matches. FIG. 11 is a schematic diagram for explaining the relationship between the address space in the image data storage unit 71 and the image data stored in the image data storage unit 71 as viewed from the storage control unit 72. When the image data output from the image data output unit 70 is vector data, the storage control unit 72 converts the vector data into bitmap data, and then stores the drawing point data as described above. Do. [0069] After all the drawing point data is stored in the image data storage unit 71 as described above, the drawing point data stored in the image data storage unit 71 is read out by the frame data creation unit 74. At this time, as shown in FIGS. 12A to 12H, the frame data creating unit 74 sequentially reads the drawing point data stored in the image data storage unit 71 by a predetermined number of pixels in the direction in which the addresses are continuous, and FIG. As shown by “mirror 1 (MR1)” to “mirror 8 (MR8)” on the right side of FIG. 12H, a drawing point data group of each micromirror is acquired. The drawing point data corresponding to the white and hatched square drawing points shown in FIGS. 12A to 12H is OFF data “0”, and the drawing point data corresponding to the black square drawing points is ON data “1”. It is. Further, the range of the hatched square portion indicates a substantial range of the image drawn on the drawing surface, and the drawing point data is “0”, which is the same as the white square.
[0070] また、画像データ記憶部 71に格納された描画点データを読み出す方法としては、 必ずしも、 1つの描画点データを 1回読み出す方法に限らず、例えば、所定のピッチ でサンプリングしながら描画点データを読み出すことによって、 1つの描画点データを 複数回ずつ読み出したり、もしくは、描画点データを間引いて読み出したりしてもよい 。上記のようにして読み出すことにより画像データの解像度変換が可能である。  [0070] The method of reading the drawing point data stored in the image data storage unit 71 is not necessarily limited to the method of reading one drawing point data once. For example, the drawing point data is sampled while sampling at a predetermined pitch. By reading the data, one drawing point data may be read several times, or the drawing point data may be thinned and read. The resolution of the image data can be converted by reading as described above.
[0071] そして、フレームデータ作成部 74は、上記のようにして取得した各マイクロミラーの 描画点データ群の各描画点データをフレームデータ記憶部 73に格納する。このとき 、フレームデータ作成部 74は、図 13に示すように、フレームデータ記憶部 73におけ るアドレスが連続する方向と、同じフレームデータに属する描画点データが格納され る配列方向とがー致するように描画点データをフレームデータ記憶部 73に格納する 。図 13において、アドレスが連続する方向に並ぶ黒丸数字はミラーを表し、アドレス が連続する方向に直交する方向に並ぶ数字はフレームを表す。  [0071] Then, the frame data creation unit 74 stores each drawing point data of the drawing point data group of each micromirror acquired as described above in the frame data storage unit 73. At this time, as shown in FIG. 13, the frame data creation unit 74 matches the direction in which the addresses in the frame data storage unit 73 are continuous with the arrangement direction in which drawing point data belonging to the same frame data is stored. The drawing point data is stored in the frame data storage unit 73 as described above. In FIG. 13, black circled numbers arranged in the direction in which the addresses are continuous represent a mirror, and numbers arranged in a direction orthogonal to the direction in which the addresses are continuous represent a frame.
[0072] なお、図 13は、フレームデータ作成部 74から見たフレームデータ記憶部 73におけ るアドレス空間と、フレームデータ記憶部 73に格納されるフレームデータとの関係を 説明するため模式図である。なお、上記のように各マイクロミラーの描画点データ群 をフレームデータ記憶部 73に格納することによって、フレームデータ作成部 74は、 画像データ記憶部 71に記憶された画像データに対して実質的に 90度の回転処理も しくは行列の転置処理を施したことになる。 [0073] そして、上記のように各マイクロミラーの描画点データをフレームデータ記憶部 73に 格納した後、フレームデータ作成部 74は、フレームデータ記憶部 73に記憶された描 画点データをアドレスが連続する方向に順次読み出して各フレームデータ 1〜15を 作成し、順次 DMDドライバ 13に出力し、 DMDドライバ 13は入力されたフレームデ ータに応じた制御信号を生成する。なお、上記のようなフレームデータは各露光へッ ド 166の DMD50毎に生成される。 FIG. 13 is a schematic diagram for explaining the relationship between the address space in the frame data storage unit 73 and the frame data stored in the frame data storage unit 73 as viewed from the frame data creation unit 74. is there. By storing the drawing point data group of each micromirror in the frame data storage unit 73 as described above, the frame data creation unit 74 can substantially reduce the image data stored in the image data storage unit 71. This means that 90-degree rotation processing or matrix transposition processing has been performed. Then, after storing the drawing point data of each micromirror in the frame data storage unit 73 as described above, the frame data creation unit 74 has the address of the drawing point data stored in the frame data storage unit 73. Each frame data 1 to 15 is sequentially read out in the continuous direction and is sequentially output to the DMD driver 13, and the DMD driver 13 generates a control signal corresponding to the input frame data. The frame data as described above is generated for each DMD 50 of each exposure head 166.
[0074] そして、上記のようにして各露光ヘッド 166の制御信号が生成されるとともに、制御 部 10からステージ駆動部 15にステージ駆動制御信号が出力され、ステージ駆動部 15はステージ駆動制御信号に応じて移動ステージ 152をガイド 158に沿ってステー ジ移動方向へ所望の速度で移動させる。そして、移動ステージ 152がゲート 160の 下を通過する際、ゲート 160に取り付けられたセンサ 164により感光材料 150の先端 が検出されると、 DMDドライバ 13から各露光ヘッド 166の DMD50に制御信号が出 力され、各露光ヘッド 166の描画が開始される。  [0074] Then, a control signal for each exposure head 166 is generated as described above, and a stage drive control signal is output from the control unit 10 to the stage drive unit 15, and the stage drive unit 15 outputs the stage drive control signal. Accordingly, the moving stage 152 is moved along the guide 158 in the stage moving direction at a desired speed. When the moving stage 152 passes under the gate 160 and the front end of the photosensitive material 150 is detected by the sensor 164 attached to the gate 160, a control signal is output from the DMD driver 13 to the DMD 50 of each exposure head 166. The drawing of each exposure head 166 is started.
[0075] そして、感光材料 150が移動ステージ 152とともに一定速度で移動し、感光材料 1 50がスキャナ 162によりステージ移動方向と反対の方向に走査され、露光ヘッド 166 毎に帯状の露光済み領域 70が形成される。  Then, the photosensitive material 150 moves at a constant speed together with the moving stage 152, the photosensitive material 150 is scanned in the direction opposite to the stage moving direction by the scanner 162, and a strip-shaped exposed region 70 is formed for each exposure head 166. It is formed.
[0076] ここで、露光ヘッド 166による露光中は、位置ずれ量演算部 75によって演算された 位置ずれ量 Xa、 Ya、回転角度 Θが制御部 10に所定時間毎にリアルタイムで入力さ れる。  Here, during the exposure by the exposure head 166, the displacement amounts Xa and Ya and the rotation angle Θ calculated by the displacement amount calculation unit 75 are input to the control unit 10 in real time at predetermined time intervals.
[0077] 制御部 10は、位置ずれ量 Xa、 Ya、回転角度 Θの全てが' 0'である場合は、移動ス テージ 152の位置ずれが生じて 、な 、と判断し、その旨を示す情報をフレームデー タ作成部 74に出力する。これにより、フレームデータ作成部 74は、画像データ記憶 部 71に格納された描画点データを読み出す際、図 12A〜図 12Hの丸 1〜丸 8で示 す通常の読み出し位置から描画点データを読み出す。  [0077] When all of the positional deviation amounts Xa, Ya and the rotation angle Θ are '0', the control unit 10 determines that the positional deviation of the moving stage 152 has occurred, and indicates this. The information is output to the frame data creation unit 74. As a result, when reading the drawing point data stored in the image data storage unit 71, the frame data creation unit 74 reads the drawing point data from the normal reading positions indicated by circles 1 to 8 in FIGS. 12A to 12H. .
[0078] 一方、位置ずれ量 Xa、 Ya、回転角度 Θの何れかが' 0'でない場合には、移動ステ ージ 152の位置ずれが生じて 、ると判断し、画像データ記憶部 71に格納された描画 点データを読み出す際の、 X方向及び Y方向の読み出し位置を補正する補正量の 情報をフレームデータ作成部 74に出力する。 [0079] 具体的には、メモリ 76に記憶されたテーブルデータを参照して、位置ずれ量 Xa、 Y a、回転角度 0に対応する X方向及び Y方向の読み出し位置補正量を求めてフレー ムデータ作成部 74に出力する。 On the other hand, if any one of the displacement amounts Xa, Ya and the rotation angle Θ is not “0”, it is determined that the displacement of the moving stage 152 has occurred, and the image data storage unit 71 Information on the amount of correction for correcting the readout position in the X and Y directions when the stored drawing point data is read out is output to the frame data creation unit 74. [0079] Specifically, referring to the table data stored in the memory 76, the read position correction amounts in the X direction and the Y direction corresponding to the positional deviation amounts Xa and Ya and the rotation angle 0 are obtained to obtain the frame data. Output to the creation unit 74.
[0080] メモリ 76には、フレームデータ作成部 74でフレームデータを作成する際の描画点 毎の画像データの X方向の読み出し位置補正量 Χρ及び Υ方向の読み出し位置補正 量 Υρと、位置ずれ量 Xa、 Ya、回転角度 Θとの対応関係を示す補正テーブルデータ が予め記憶されている。  [0080] The memory 76 stores the X-direction readout position correction amount Χρ and the Υ-direction readout position correction amount Υρ and the positional deviation amount for each drawing point when the frame data creation unit 74 creates the frame data. Correction table data indicating the correspondence between Xa, Ya and rotation angle Θ is stored in advance.
[0081] ここで、 X方向の読み出し位置補正量 Xp、 Y方向の読み出し位置補正量 Ypは、画 像データ記憶部 71に記憶された画像データ力も描画点データを読み出す際の通常 の読み出し位置、すなわち移動ステージ 152の位置ずれがない場合における読み 出し位置と、補正後の読み出し位置と、の距離を画素数で表したものである。  [0081] Here, the reading position correction amount Xp in the X direction and the reading position correction amount Yp in the Y direction are the normal reading position when the image data force stored in the image data storage unit 71 reads the drawing point data, That is, the distance between the reading position when the moving stage 152 is not displaced and the corrected reading position is represented by the number of pixels.
[0082] 以下、図 14を参照して、移動ステージ 152の位置ずれ量 Xa、 Yaが、ともに正の方 向に 1画素分であった場合の読み出し位置の補正量にっ 、て説明する。  Hereinafter, with reference to FIG. 14, the correction amount of the readout position when the positional deviation amounts Xa and Ya of the moving stage 152 are both one pixel in the positive direction will be described.
[0083] 図 14には、画像データ記憶部 71に格納される画像データ 71A (で表される画像) と、露光ヘッド 166のマイクロミラーに相当する描画点 80との関係を模式的に表した 。なお、同図において右方向が X方向における正の方向、下方向が Y方向における 正の方向であり、それぞれの反対方向が負の方向であるものとする。  FIG. 14 schematically shows the relationship between the image data 71 A (image represented by) stored in the image data storage unit 71 and the drawing point 80 corresponding to the micromirror of the exposure head 166. . In the figure, the right direction is the positive direction in the X direction, the downward direction is the positive direction in the Y direction, and the opposite directions are the negative directions.
[0084] 露光ヘッド 166に対する移動ステージ 152の位置ずれ量 Xa、Yaが、ともに正の方 向に 1画素分であった場合には、移動ステージ 152に対する描画点 80の位置ずれ 量は、逆に 1画素分となり、画像データ 71Aから各描画点 80の描画点データを読 み出す際に、そのまま通常の読み出し位置力 読み出した場合、最終的に感光材料 150上に形成される画像は X方向及び Y方向ともに一 1画素分ずれてしまうことにな る。従って、この場合は、画像データ 71Aから各描画点 80の描画点データを読み出 す際の X方向及び Y方向の読み出し位置を、通常の読み出し位置力もそれぞれ— 1 画素分ずらしてやることにより、感光材料 150上に形成される画像の位置を正常な位 置に補正することができる。  [0084] When the positional deviation amount Xa, Ya of the moving stage 152 relative to the exposure head 166 is one pixel in the positive direction, the positional deviation amount of the drawing point 80 relative to the moving stage 152 is reversed. When reading the drawing point data of each drawing point 80 from the image data 71A and reading the normal reading position force as it is, the image finally formed on the photosensitive material 150 is the X direction and It will be shifted by 11 pixels in the Y direction. Therefore, in this case, the reading position in the X direction and the Y direction when reading the drawing point data of each drawing point 80 from the image data 71A is shifted by one pixel for the normal reading position force. The position of the image formed on the material 150 can be corrected to a normal position.
[0085] すなわち、図 14に示すように、画像データ記憶部 71に記憶された画像データ 71 A 力も各描画点 80の描画点データを読み出す際の X方向及び Y方向における通常の 読み出し位置 (Xt、 Yt)から、 X方向及び Y方向にそれぞれ— 1画素分ずれた位置( Xt— 1、 Yt—1)力も各描画点 80の描画点データを読み出すように、読み出し位置を 補正する。 That is, as shown in FIG. 14, the image data 71 A force stored in the image data storage unit 71 is also normal in the X and Y directions when the drawing point data of each drawing point 80 is read out. The reading position is corrected so that the drawing point data of each drawing point 80 is also read out at positions (Xt-1, Yt-1) that are shifted by one pixel in the X and Y directions from the reading position (Xt, Yt). To do.
[0086] 従って、補正テーブルデータには、移動ステージ 152の位置ずれ量 Xa、 Ya、回転 角度 Θの様々な組み合わせに対して、その分の画像の位置ずれを解消することがで きる描画点毎の読み出し位置補正量 Xp、 Ypが各々設定される。なお、回転角度 Θ のずれについて補正する必要がなぐ X方向及び Υ方向のみについて読み出し位置 を補正する場合には、読み出し位置補正量は各描画点 80で同一となるので、補正 テーブルデータは、回転角度 Θのデータを省略した補正テーブルデータとしてもよ い。  Therefore, the correction table data includes, for each drawing point that can eliminate the positional deviation of the image for various combinations of the positional deviation amounts Xa, Ya and the rotation angle Θ of the moving stage 152. Reading position correction amounts Xp and Yp are set respectively. When the reading position is corrected only in the X direction and the Υ direction, which does not require correction for the shift of the rotation angle Θ, the reading position correction amount is the same at each drawing point 80. It is also possible to use correction table data with the angle Θ data omitted.
[0087] そして、上記のようにして、スキャナ 162による感光材料 150の走査が終了し、セン サ 164で感光材料 150の後端が検出されると、移動ステージ 152は、ステージ駆動 部 15により、ガイド 158に沿ってゲート 160の最上流側にある原点に復帰し、新たな 感光材料 150が設置された後、再度、ガイド 158に沿ってゲート 160の上流側から下 流側に一定速度で移動する。  Then, as described above, when the scanning of the photosensitive material 150 by the scanner 162 is completed and the rear end of the photosensitive material 150 is detected by the sensor 164, the moving stage 152 is moved by the stage driving unit 15. After returning to the origin on the most upstream side of the gate 160 along the guide 158 and installing a new photosensitive material 150, it moves again at a constant speed from the upstream side of the gate 160 to the downstream side along the guide 158. To do.
[0088] このように、リアルタイムで移動ステージ 152の位置ずれ量を検出し、その位置ずれ 量に応じて画像データ 71Aから読み出す描画点データの位置を補正するので、振 動等によって移動ステージ 152に位置ずれが発生した場合でも、画像品質が劣化す るのを抑制することができる。また、描画点データの読み出し位置を変更するだけな ので、補正用の特別なハードウェアが必要なぐ装置を安価に構成することができる。  In this way, the amount of displacement of the moving stage 152 is detected in real time, and the position of the drawing point data read from the image data 71A is corrected according to the amount of displacement, so that the moving stage 152 is moved to the moving stage 152 by vibration or the like. Even when the positional deviation occurs, it is possible to suppress the deterioration of the image quality. In addition, since only the drawing point data reading position is changed, an apparatus that requires special hardware for correction can be configured at low cost.
[0089] なお、上記では、移動ステージ 152の位置ずれを検出する場合について説明した 1S これに限らず、露光ヘッド 166の位置ずれを検出するようにしてもよい。  Note that, in the above description, the case where the displacement of the moving stage 152 is detected is described as 1S. The present invention is not limited to this, and the displacement of the exposure head 166 may be detected.
[0090] また、上記の露光装置に、さらに、図 15に示すように格納制御部 72に圧縮処理部 72Αを、フレームデータ作成部 74に解凍処理部 74Αを備えるようにしてもよい。そし て、格納制御部 72により受け付けられた画像データについて、走査方向に並んで描 画される複数の描画点に対応する複数の描画点データに対してその配列方向につ V、て圧縮処理を施し、その圧縮処理の施された圧縮処理済描画点データが格納さ れる配列方向と、画像データ記憶部 71のアドレスが連続する方向とが同じになるよう に画像データ記憶部 71に圧縮処理済描画点データを格納するようにしてもよ ヽ。そ して、フレームデータを作成する際には、フレームデータ作成部 74により、上記圧縮 処理済描画点データを画像データ記憶部 71からアドレスが連続する方向に順次読 み出し、その読み出された圧縮処理済描画点データについて解凍処理部 74Aによ つて解凍処理を施した後、その解凍処理の施された圧縮前の描画点データを、上記 と同様にしてフレームデータ記憶部 73に格納するようにしてもよい。フレームデータ 記憶部 73に描画点データを格納した後の処理については上記と同様である。 Further, the exposure apparatus described above may further include a compression processing unit 72 に in the storage control unit 72 and a decompression processing unit 74 に in the frame data creation unit 74 as shown in FIG. Then, with respect to the image data received by the storage control unit 72, V is compressed in the arrangement direction for a plurality of drawing point data corresponding to a plurality of drawing points drawn side by side in the scanning direction. The arrangement direction in which the compressed drawing point data subjected to the compression processing is stored is the same as the direction in which the addresses of the image data storage unit 71 continue. Alternatively, the compressed drawing point data may be stored in the image data storage unit 71. When creating the frame data, the frame data creation unit 74 sequentially reads the compressed drawing point data from the image data storage unit 71 in the direction in which the addresses are continuous, and the read data is read out. After the decompression processing unit 74A performs decompression processing on the compressed drawing point data, the decompressed rendering point data before compression is stored in the frame data storage unit 73 in the same manner as described above. It may be. The processing after the drawing point data is stored in the frame data storage unit 73 is the same as described above.
[0091] また、上記説明においては、描画点データに圧縮処理を施した後、圧縮処理済描 画点データを画像データ記憶部 71に記憶するようにしたが、ー且描画点データを上 記と同様にして画像データ記憶部 71に記憶し、その後、画像データ記憶部 71のアド レスが連続した方向に格納された描画点データに対して圧縮処理を施し、その圧縮 処理済描画点データを画像データ記憶部 71に再び格納するようにしてもょ ヽ。  In the above description, after the drawing point data is subjected to compression processing, the compressed drawing point data is stored in the image data storage unit 71. However, the drawing point data is described above. In the same manner as described above, the image data is stored in the image data storage unit 71. Thereafter, the drawing point data stored in the direction in which the addresses in the image data storage unit 71 are consecutively compressed is subjected to compression processing. It may be stored in the image data storage unit 71 again.
[0092] また、描画点データとして 2値データを用いる場合には、上記圧縮処理としてランレ ングス圧縮処理を利用することができる。  [0092] When binary data is used as the drawing point data, run-length compression processing can be used as the compression processing.
[0093] また、上記実施形態では、画像データ記憶部 71とフレームデータ記憶部 73とを別 個に設けるようにした力 同じメモリなどを利用するようにしてもよい。  In the above embodiment, a memory having the same force in which the image data storage unit 71 and the frame data storage unit 73 are provided separately may be used.
[0094] また、上記実施形態では、空間光変調素子として DMDを備えた露光装置にっ 、 て説明したが、このような反射型空間光変調素子の他に、透過型空間光変調素子を 使用することもできる。また、 GLV (Grating Light Valve)を使用してもよい。  Further, in the above embodiment, the exposure apparatus provided with the DMD as the spatial light modulation element has been described. However, in addition to such a reflective spatial light modulation element, a transmissive spatial light modulation element is used. You can also GLV (Grating Light Valve) may also be used.
[0095] また、本発明の描画点形成部としては、空間光変調素子に限らず、発光素子が多 数配列されたものを利用するようにしてもょ 、。  In addition, the drawing point forming unit of the present invention is not limited to a spatial light modulation element, and a plurality of light emitting elements arranged may be used.
[0096] また、上記実施形態では、いわゆるフラットベッドタイプの露光装置を例に挙げたが 、感光材料が巻きつけられるドラムを有する、いわゆるアウタードラムタイプの露光装 置としてもよい。  In the above-described embodiment, a so-called flat bed type exposure apparatus has been described as an example. However, a so-called outer drum type exposure apparatus having a drum around which a photosensitive material is wound may be used.
[0097] また、上記実施形態の露光対象である感光材料 150は、プリント基板や、ディスプ レイ用のフィルタであってもよい。また、感光材料 150の形状は、シート状のものであ つても、長尺状のもの(フレキシブル基板など)であってもよ 、。  In addition, the photosensitive material 150 to be exposed in the above embodiment may be a printed circuit board or a display filter. Further, the shape of the photosensitive material 150 may be a sheet shape or a long shape (flexible substrate or the like).
[0098] また、本発明における描画方法および装置は、インクジェット方式などのプリンタに おける描画制御にも適用することができる。たとえば、インクの吐出による描画点を、 本発明と同様の方法で制御することができる。つまり、本発明における描画素子を、 インクの吐出などによって描画点を打つ素子に置き換えて考慮することができる。 Further, the drawing method and apparatus in the present invention are applied to a printer such as an ink jet method. This can also be applied to drawing control. For example, the drawing point by ink ejection can be controlled by the same method as in the present invention. In other words, the drawing element in the present invention can be considered by replacing it with an element that strikes a drawing point by ejecting ink or the like.

Claims

請求の範囲 The scope of the claims
[1] 記録媒体が載置されたステージ及び複数の描画素子を有する描画ヘッドを予め定 めた走査方向に相対移動させながら、前記複数の描画素子により描画点を描画させ ることにより、前記記録媒体上に画像を描画する描画装置であって、  [1] The recording point is drawn by drawing the drawing points by the drawing elements while relatively moving a drawing head having a stage on which the recording medium is placed and the drawing elements in a predetermined scanning direction. A drawing device for drawing an image on a medium,
入力された画像データを記憶する記憶コンポーネントと、  A storage component for storing input image data;
前記ステージと前記描画ヘッドとの位置ずれ量をリアルタイムで検出する位置ずれ 量検出コンポーネントと、  A displacement amount detection component for detecting in real time a displacement amount between the stage and the drawing head;
前記描画素子毎に予め定めた取り出し位置から所定数のデータを前記画像データ 力 取り出すことにより、前記描画素子に描画させるべき描画点列に対応した描画点 データを前記描画素子毎に生成する描画点データ生成コンポーネントと、  A drawing point that generates drawing point data corresponding to a drawing point sequence to be drawn by the drawing element for each drawing element by taking out a predetermined number of data from a predetermined extraction position for each drawing element. A data generation component;
検出した位置ずれ量に応じた補正量で前記取り出し位置をリアルタイムで補正する 補正コンポーネントと、  A correction component for correcting the take-out position in real time with a correction amount corresponding to the detected positional deviation amount;
を備える描画装置。  A drawing apparatus comprising:
[2] 前記記憶コンポーネントのアドレスが連続する方向と、前記走査方向に時系列に並 んで描画される各描画点に対応する前記描画点データが格納される配列方向と、が 一致するように、前記入力された画像データを前記記憶コンポーネントに格納する格 納制御コンポーネントをさらに備える、請求項 1記載の描画装置。  [2] The direction in which the addresses of the storage components are continuous and the arrangement direction in which the drawing point data corresponding to the respective drawing points drawn in time series in the scanning direction match are matched. The drawing apparatus according to claim 1, further comprising a storage control component that stores the input image data in the storage component.
[3] 前記位置ずれ量検出コンポーネントは、前記ステージと前記描画ヘッドとの第 1の 方向における位置ずれ量及び前記第 1の方向と直交する第 2の方向における位置ず れ量の少なくとも一方を検出する、請求項 1又は請求項 2記載の描画装置。  [3] The positional deviation amount detection component detects at least one of a positional deviation amount between the stage and the drawing head in a first direction and a positional deviation amount in a second direction orthogonal to the first direction. The drawing apparatus according to claim 1 or 2.
[4] 前記位置ずれ量と前記補正量との対応関係を示す補正テーブルデータを記憶す る補正テーブルデータ記憶コンポーネントをさらに備え、  [4] A correction table data storage component that stores correction table data indicating a correspondence relationship between the positional deviation amount and the correction amount,
前記補正コンポーネントは、前記補正テーブルデータに基づいて、検出した位置 ずれ量に対応する補正量を求める、請求項 1乃至請求項 3の何れか 1項に記載の描 画装置。  4. The drawing device according to claim 1, wherein the correction component obtains a correction amount corresponding to the detected positional deviation amount based on the correction table data.
[5] 前記位置ずれ量検出コンポーネントは、前記ステージと前記描画ヘッドとの回転方 向における位置ずれ量を検出し、  [5] The misregistration amount detection component detects a misregistration amount in the rotation direction of the stage and the drawing head,
前記補正テーブルデータ記憶コンポーネントは、前記描画素子毎の前記対応関係 を示す補正テーブルデータを記憶する、請求項 4記載の描画装置。 The correction table data storage component is the correspondence relationship for each drawing element. The drawing apparatus according to claim 4, wherein correction table data indicative of
[6] 前記描画ヘッドは、空間光変調素子を備えた露光ヘッド、および液滴を吐出する液 滴吐出ヘッドの少なくとも一方である、請求項 1乃至請求項 5の何れか 1項に記載の 描画装置。 [6] The drawing according to any one of claims 1 to 5, wherein the drawing head is at least one of an exposure head provided with a spatial light modulator and a liquid droplet ejection head that ejects liquid droplets. apparatus.
[7] 記録媒体が載置されたステージ及び複数の描画素子を有する描画ヘッドを予め定 めた走査方向に相対移動させながら、前記複数の描画素子により描画点を描画させ ることにより、前記記録媒体上に画像を描画する描画方法であって、  [7] The recording point is drawn by drawing the drawing points with the plurality of drawing elements while relatively moving a drawing head having a stage on which the recording medium is placed and a plurality of drawing elements in a predetermined scanning direction. A drawing method for drawing an image on a medium,
前記ステージと前記描画ヘッドとの位置ずれ量をリアルタイムで検出し、 前記描画素子毎に予め定めた取り出し位置力 所定数のデータを記憶コンポーネ ントに記憶された画像データから取り出すことにより、前記描画素子に描画させるべき 描画点列に対応した描画点データを前記描画素子毎に生成し、  The drawing element is detected by detecting the amount of positional deviation between the stage and the drawing head in real time, and taking out a predetermined number of data for each drawing element from image data stored in a storage component. Generate drawing point data corresponding to the drawing point sequence to be drawn for each drawing element,
検出した位置ずれ量に応じた補正量で前記取り出し位置をリアルタイムで補正する 描画方法,  A drawing method for correcting the take-out position in real time with a correction amount corresponding to the detected displacement amount,
PCT/JP2006/320728 2005-10-20 2006-10-18 Plotting device and plotting method WO2007046408A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005305602A JP4606992B2 (en) 2005-10-20 2005-10-20 Drawing apparatus and drawing method
JP2005-305602 2005-10-20

Publications (1)

Publication Number Publication Date
WO2007046408A1 true WO2007046408A1 (en) 2007-04-26

Family

ID=37962501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/320728 WO2007046408A1 (en) 2005-10-20 2006-10-18 Plotting device and plotting method

Country Status (3)

Country Link
JP (1) JP4606992B2 (en)
TW (1) TW200720854A (en)
WO (1) WO2007046408A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102778819A (en) * 2012-07-31 2012-11-14 中国科学院长春光学精密机械与物理研究所 Exposure frame data generation method used for dot-matrix maskless photoetching

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010060990A (en) * 2008-09-05 2010-03-18 Hitachi High-Technologies Corp Exposure device, exposure method, and method for manufacturing display panel substrate
JP5336301B2 (en) * 2009-08-24 2013-11-06 大日本スクリーン製造株式会社 Pattern drawing method, pattern drawing apparatus, and drawing data generation method
KR20230113395A (en) 2021-03-09 2023-07-28 가부시키가이샤 스크린 홀딩스 Exposure method and exposure apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001168003A (en) * 1999-12-06 2001-06-22 Olympus Optical Co Ltd Aligner
JP2001175002A (en) * 1999-12-14 2001-06-29 Olympus Optical Co Ltd Exposure device
JP2005283896A (en) * 2004-03-29 2005-10-13 Fuji Photo Film Co Ltd Exposure apparatus
JP2005283893A (en) * 2004-03-29 2005-10-13 Fuji Photo Film Co Ltd Calibration method of exposing device, and exposing device
WO2006118134A1 (en) * 2005-04-28 2006-11-09 Fujifilm Corporation Drawing apparatus and drawing method
WO2006118133A1 (en) * 2005-04-28 2006-11-09 Fujifilm Corporation Work position information acquisition method and device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007013612A1 (en) * 2005-07-29 2007-02-01 Fujifilm Corporation Plotting method and device
JP2007058207A (en) * 2005-07-29 2007-03-08 Fujifilm Corp Plotting method and device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001168003A (en) * 1999-12-06 2001-06-22 Olympus Optical Co Ltd Aligner
JP2001175002A (en) * 1999-12-14 2001-06-29 Olympus Optical Co Ltd Exposure device
JP2005283896A (en) * 2004-03-29 2005-10-13 Fuji Photo Film Co Ltd Exposure apparatus
JP2005283893A (en) * 2004-03-29 2005-10-13 Fuji Photo Film Co Ltd Calibration method of exposing device, and exposing device
WO2006118134A1 (en) * 2005-04-28 2006-11-09 Fujifilm Corporation Drawing apparatus and drawing method
WO2006118133A1 (en) * 2005-04-28 2006-11-09 Fujifilm Corporation Work position information acquisition method and device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102778819A (en) * 2012-07-31 2012-11-14 中国科学院长春光学精密机械与物理研究所 Exposure frame data generation method used for dot-matrix maskless photoetching

Also Published As

Publication number Publication date
JP2007114468A (en) 2007-05-10
JP4606992B2 (en) 2011-01-05
TW200720854A (en) 2007-06-01

Similar Documents

Publication Publication Date Title
JP4150250B2 (en) Drawing head, drawing apparatus and drawing method
JP4823581B2 (en) Drawing apparatus and drawing method
KR100752588B1 (en) Lithography method and lithography device
JP4315694B2 (en) Drawing head unit, drawing apparatus and drawing method
WO2006134922A1 (en) Exposure device
KR20060049397A (en) Drawing apparatus and drawing method
KR101067729B1 (en) Frame data creation device, creation method, creation program, storage medium containing the program, and plotting device
US7339602B2 (en) Image-drawing device and image-drawing method
JP4273030B2 (en) Exposure apparatus calibration method and exposure apparatus
JP4606992B2 (en) Drawing apparatus and drawing method
JP2006030966A (en) Image drawing method and apparatus
KR101204732B1 (en) Image drawing apparatus and method
WO2007020890A1 (en) Plotting device, exposure device, and plotting method
US20070291348A1 (en) Tracing Method and Apparatus
JP2004212471A (en) Plotting head, plotting system, and plotting method
JP2005294373A (en) Multi-beam exposing apparatus
KR101343906B1 (en) Plotting device and plotting method
JP2005202226A (en) Method and apparatus for detecting sensitivity of photosensitive material, and exposure correction method
JP2006113412A (en) Drawing method and apparatus
US20100188646A1 (en) Drawing method and drawing apparatus
JP2008076590A (en) Method and device for measuring drawing position
JP2005138594A (en) Plotting head, plotting head driving method and plotting unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06811946

Country of ref document: EP

Kind code of ref document: A1