WO2007046249A1 - Polyelectrolyte fuel cell - Google Patents

Polyelectrolyte fuel cell Download PDF

Info

Publication number
WO2007046249A1
WO2007046249A1 PCT/JP2006/320049 JP2006320049W WO2007046249A1 WO 2007046249 A1 WO2007046249 A1 WO 2007046249A1 JP 2006320049 W JP2006320049 W JP 2006320049W WO 2007046249 A1 WO2007046249 A1 WO 2007046249A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat transfer
transfer medium
supply
cylindrical member
fuel cell
Prior art date
Application number
PCT/JP2006/320049
Other languages
French (fr)
Japanese (ja)
Inventor
Shinsuke Takeguchi
Hiroki Kusakabe
Yoichiro Tsuji
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Publication of WO2007046249A1 publication Critical patent/WO2007046249A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/002Shape, form of a fuel cell
    • H01M8/004Cylindrical, tubular or wound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0263Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant having meandering or serpentine paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present invention relates to a polymer electrolyte fuel cell.
  • the present invention relates to a polymer electrolyte fuel cell having a so-called inner-moulded stack as a main body in which a hole for heat transfer medium is formed at the peripheral edge of an anode separator and a force-saw separator.
  • a polymer electrolyte fuel cell (hereinafter referred to as PEFC!) Has MEA (Membrane-Electro de-Assembly) and each main surface of MEA contains hydrogen.
  • PEFC polymer electrolyte fuel cell
  • MEA Membrane-Electro de-Assembly
  • This is a device that generates electric power and heat by exposing the anode gas and a power sword gas containing oxygen such as air to electrochemical reaction between the anode gas and the power sword gas.
  • a PEFC generally has a stack formed by stacking cells.
  • the cell is composed of a MEA sandwiched between a pair of flat separators, specifically an anode separator and a force sword separator.
  • the MEA is composed of a polymer electrolyte membrane and a pair of electrodes formed by laminating both sides of the polymer electrolyte membrane, and electrode surfaces are formed on both main surfaces of the MEA.
  • the separator is made of a conductive material such as resin or metal containing conductive carbon, and is in contact with the electrode surface of the MEA and takes part of the electric circuit.
  • the electrochemical reaction in the cell is an exothermic reaction, it is necessary to cool the cell so that the inner surface of the cell reaches the catalyst activation temperature during the PEFC operation. Also, during PEFC start-up operation, it is necessary to preheat the cell so that the inner surface of the cell is at the catalyst activation temperature. In addition, appropriate temperature control is required during PEFC operation. That is, when the cell is not sufficiently cooled, the temperature of the MEA rises and water is evaporated from the polymer electrolyte membrane.
  • a heat transfer medium flow path is formed between the stacked cells of the PEFC stack, the heat transfer medium flows between the stacked cells, and the heat transfer medium flows.
  • Heat medium power It is configured to circulate inside and outside the S stack.
  • the separator has good heat conductivity! The material is used.
  • a so-called internal hold type stack is used as a stack of PEFC.
  • the internal hold type stack is formed by integrating a pair of heat transfer medium supply manifolds that communicate with both ends of the heat transfer medium flow path between the cells.
  • a pair of heat transfer medium hold-holes penetrating in the thickness direction of each separator is formed at the peripheral portions of the anode separator and the force sword separator, and heat transfer is performed on the outer surfaces of the anode separator and the force sword separator.
  • a flow path groove of the medium flow path is formed, and the heat transfer medium flow path groove is formed so as to connect the edge of the pair of heat transfer medium manifold holes.
  • a flat plate-shaped heat transfer member having a pair of heat transfer medium manifold holes and having a built-in heat transfer medium flow path connecting the pair of heat transfer medium manifold hold holes is arranged between the cells. It is installed. In the stack assembly state, these merge holes are connected to form a pair of heat transfer medium markers extending in the cell stacking direction.
  • the heat transfer medium supplied to the stack from the end of one heat transfer medium manifold (supply-side heat transfer medium manifold) passes through the supply-side heat transfer medium manifold. Then, it branches into each heat transfer medium flow path and circulates toward the other heat transfer medium manifold (discharge-side heat transfer medium merge).
  • Patent Document 2 proposes a PEFC in which a heat insulator is disposed on the inner periphery of a heat transfer medium holder.
  • Patent Document 3 proposes a PEFC in which a cylindrical penetrating material is disposed in a hold. This makes it possible to supply fluid equally to each cell.
  • Patent Document 1 Japanese Patent Laid-Open No. 8-130028
  • Patent Document 2 JP-A-2005-209526
  • Patent Document 3 Japanese Patent Laid-Open No. 2002-252021
  • PEFC has different effects of outside air temperature depending on the installation form, and there is a possibility that the temperature distribution of PEFC will be different.
  • PEFCs mounted on mobile devices such as automobiles may not have sufficient insulation around the PEFC, and the degree of influence of outside air temperature may vary depending on the location or direction of PEFC installation.
  • the temperature distribution of the PEFC will differ depending on the installation form. Need arises. In this case, changes in the PEFC structure will lead to a cost increase in PEFC production.
  • the PEFC of Patent Document 2 has a structure in which the end of the heat transfer medium flow channel is located inside the heat insulator, and therefore, the flow distribution of the heat transfer medium in the cell stacking direction cannot be adjusted. I can't. Further, in Patent Document 2, [Claim 6], paragraphs [0023] and [Fig. 4] show the cross section of the heat insulator. PEFCs have been proposed that reduce the volume of the heat transfer medium with a small flow rate. However, the flow rate of the heat transfer medium can be made uniform by changing the cross-sectional area of the heat insulator, but the flow distribution of the heat transfer medium cannot be adjusted more than that.
  • the PEFC of Patent Document 3 has a structure in which the flow of fluid is made uniform by a gap between the cylindrical penetrating material and the peripheral wall of the cylinder. Heat exchange with the wall surface cannot be suppressed. Also, it is not intended to obtain the desired flow rate distribution of the heat transfer medium in the cell stacking direction.
  • the present invention has been made to solve the above-described problems, suppresses heat exchange between the heat transfer medium and the heat transfer medium medium wall surface, and heat transfer in the cell stacking direction.
  • An object of the present invention is to provide a polymer electrolyte fuel cell in which the flow rate distribution of the medium can be easily adjusted.
  • the PEFC of the first aspect of the present invention that solves the above problem has a cell laminate in which cells are formed by sandwiching MEA between a pair of plate-like separators, and the cell laminate has A supply-side heat transfer medium manifold and a discharge-side heat transfer medium manifold extending through the cell in the stacking direction are formed, and a starting end is connected to the supply-side heat transfer medium manifold, and a termination is A polymer electrolyte fuel cell in which a heat transfer medium flow path is formed at a junction between adjacent cells connected to the discharge-side heat transfer medium manifold,
  • At least one of the supply-side heat transfer medium manifold and the discharge-side heat transfer medium manifold is disposed so as to extend in the stacking direction in any one of the heat transfer medium manifolds. Having a cylindrical member made of a functional material,
  • the heat transfer medium manifold is divided into a cylindrical member inner region and a cylindrical member outer region, and the cylindrical member has a penetrating portion that communicates the cylindrical member inner region and the cylindrical member outer region. It is continuously formed in the stacking direction.
  • the size of the through portion increases as the cylindrical member moves away from a supply end to which the heat transfer medium is supplied. If comprised in this way, the nonuniformity of the flow volume of the heat-transfer medium in the lamination direction of a cell can be suppressed.
  • the size of the through portion is reduced as the cylindrical member moves away from a supply end to which the heat transfer medium is supplied.
  • the heat transfer medium flow rate on the supply end side of the stack can be increased. In other words, it is suitable in the PEFC installation mode in which the supply end side is further cooled by the outside air.
  • the size of the through portion increases as the cylindrical member moves away from the central portion in the stacking direction.
  • the heat transfer medium flow rate at both ends of the stack can be increased.
  • it is suitable for the installation form of PEFC in which both ends of the stack are further cooled by the outside air.
  • the size of the through portion is reduced as the cylindrical member moves away from the central portion in the stacking direction.
  • the heat transfer medium flow rate at the center of the stack can be increased. In other words, it is suitable for PEFC installations where the heat insulation around the stack is sufficient and the heat of the stack is not released to the surroundings.
  • the through-portion is a plurality of through-holes formed continuously in the stacking direction, and the distribution density of the through-holes and the size of the through-holes At least one of them should change continuously.
  • the through hole is sparse.
  • the heat transfer medium flowing out from the cylindrical member inner region to the outer region of the cylindrical member and the discharge side heat transfer medium manifold in the supply side heat transfer medium manifold depending on the density or the size, and the side cylindrical member from the outer region of the cylindrical member The flow rate distribution in the stacking direction of at least one cell of the heat transfer medium flowing into the inner region can be adjusted.
  • the through portion may be a crack extending in the stacking direction, and the size of the crack may be continuously changed in the stacking direction.
  • the cylindrical member may be engaged with a wall surface of the heat transfer medium holder.
  • the cylindrical member can be prevented from rotating or moving in the heat transfer medium manifold due to some cause such as stress due to the heat transfer medium. It is possible to suppress the deviation of the positional relationship between the beginning or end of the road and the penetrating part.
  • the heat insulating material is preferably resin, glass, rubber, or ceramics. If comprised in this way, it can be set as the cylinder member excellent in electrical insulation, heat insulation, and environmental resistance.
  • the cylindrical member includes a cylindrical member in which the surface of a metal cylindrical body is coated with resin, glass, rubber or ceramics.
  • the PEFC of the present invention suppresses heat exchange between the heat transfer medium and the heat transfer medium holder wall surface, and easily adjusts the flow distribution of the heat transfer medium in the cell stacking direction. If you can!
  • FIG. 1 is a partially exploded perspective view showing a laminated structure of PEFC cells according to the first embodiment of the present invention.
  • FIG. 2 is an exploded perspective view showing a laminated structure between cells of the stack of FIG.
  • FIG. 3 is an exploded perspective view showing a structure of an end portion of the stack of FIG. 1.
  • FIG. 4 is a perspective view of a supply side cylinder member or a discharge side cylinder member.
  • FIG. 5 is a view as seen from the direction of the arrow V in FIG.
  • FIG. 6 is a perspective view of the supply-side cylinder member or the discharge-side cylinder member of Modification 1.
  • FIG. 7 is a perspective view of the supply-side cylinder member or the discharge-side cylinder member of Modification 2.
  • FIG. 8 is a perspective view of the supply-side cylinder member or the discharge-side cylinder member of Modification 3.
  • FIG. 9 is a perspective view of the supply-side cylinder member or the discharge-side cylinder member of Modification 4.
  • FIG. 10 is a perspective view of the supply-side cylinder member or the discharge-side cylinder member of Modification 5.
  • FIG. 11 is a perspective view of a supply-side cylinder member or a discharge-side cylinder member of Modification 6.
  • FIG. 12 is a perspective view of the supply-side cylinder member or the discharge-side cylinder member of Modification 7.
  • FIG. 13 is a perspective view of a supply-side cylinder member or a discharge-side cylinder member of Modification 9.
  • FIG. 14 is a cross-sectional view on the outer surface side of the anode separator of the stack of Modification 9.
  • FIG. 15 is a perspective view showing the marker and the cylindrical member used in the simulation analysis.
  • FIG. 16 is a diagram showing the results of simulation analysis.
  • FIG. 15 is a perspective view showing the hold and the cylindrical member used for the simulation analysis.
  • the analysis mold 201 has a total length of 280 mm, and 27 heat transfer medium flow passage holes 203 for analysis are formed at equal intervals in the extending direction. .
  • a cylindrical member 202 for analysis is disposed along the wall surface of the manifold 201.
  • the cylindrical member 202 has a crack 202A having a width of 8 mm extending in the extending direction.
  • the crack 202A is formed facing the heat transfer medium flow path hole 203.
  • the wall thickness of the cylindrical member 202 is 1. Omm.
  • the heat transfer medium was water, and the heat transfer medium was supplied at a flow rate of 2. llZmin toward one end of the malle 201 and the other end. It is assumed that the temperature of the heat transfer medium is 60 ° C, the wall temperature of the malleable 201 is 63 ° C, and the material of the cylindrical member 202 is epoxy resin. The thermal conductivity was 0.19 WZmK. Under these conditions, the temperature T of the heat transfer medium flowing out from the heat transfer medium passage hole 203 at a distance X from the heat transfer medium supply end was analyzed. As a comparative example, analysis was also performed under the same conditions with the analysis cylinder member 202 removed.
  • FIG. 16 is a diagram showing the results of simulation analysis. As shown in FIG. 16, the temperature without the cylindrical member 202 was higher than that with the cylindrical member 202. That is, it has been found that heat exchange between the heat transfer medium in the holder 201 and the wall surface of the holder 201 is suppressed.
  • FIG. 1 is a partially exploded perspective view showing a laminated structure of PEFC cells according to the first embodiment of the present invention.
  • the PEFC main body includes a cell laminate 99 in which 100 rectangular flat-plate cells 10 are laminated to form a rectangular parallelepiped shape.
  • the cell 10 is configured by sandwiching the MEA member 7 between a pair of flat plate-like anode separator 9A and cathode separator 9C (both are collectively referred to as a separator).
  • Supply side anode gas marker hold holes 121, 221 are formed at the peripheral portions of the separators 9A and 9C and the MEA member 7 to form the supply side anode gas marker hold 921 connected to the cell stack 99, respectively.
  • 321 and exhaust side anode gas marker holes 92E forming the exhaust side anode gas marker 92E are drilled so as to penetrate the main surface.
  • supply-side force sword gas hold holes 131, 231 and 331 that form supply-side force sword gas hold 931 and discharge-side force sword gas hold 93E that are connected to each other in cell stack 99 are formed.
  • Discharge side force sword gas hold hole 13E, 23E, 33E forces are drilled through the main surface.
  • supply-side heat transfer medium marker holes 141, 241, 341, which form supply-side heat transfer medium marker 941, and Exhaust side heat transfer medium marker holes 14E, 24E, 34E forming the discharge side heat transfer medium marker 94E are drilled so as to penetrate through their main surfaces.
  • the MEA member 7 is configured by sandwiching a polymer electrolyte membrane extending around the periphery of the MEA 5 between a pair of fluororubber gaskets 6. Therefore, MEA 5 is exposed on both sides of the central opening of gasket 6. Also, it penetrates through the gasket 6, supply side anode gas holder hole 121, discharge side anode gas marker hold hole 12 E, supply side force sword gas hold hole 131, discharge side force sword gas hold hole 13 E, supply side heat transfer medium The mulch hole 141 and the discharge side heat transfer medium mer hold hole 14E are formed.
  • MEA 5 is mainly composed of a polymer electrolyte membrane composed of an ion exchange membrane that selectively permeates hydrogen ions, and a carbon powder carrying a platinum group metal catalyst formed so as to sandwich the polymer electrolyte membrane.
  • These catalyst layer and gas diffusion layer constitute an electrode. That is, the MEA 5 is composed of a polymer electrolyte membrane and a pair of electrodes, an anode electrode and a force sword electrode, which are laminated at the center of both main surfaces thereof. An electrode surface is formed on the surface.
  • polymer electrolyte membrane a commercially available product of perfluorosulfonic acid (Nafionl 12 (registered trademark) membrane manufactured by DuPont) is used.
  • the catalyst layer is produced as follows.
  • a catalyst body 50 wt% is Pt
  • Ketjen Black Ketjen Black EC, Ketjen Black International Co., Ltd., particle size 30 nm
  • This catalyst body was mixed with 33 parts by mass (polymer dry mass) of perfluorocarbon sulfonic acid ionomer (5 mass 0 / oNafion dispersion manufactured by Aldrich, USA).
  • the resulting mixture is formed into a catalyst layer having a thickness of about 10-20 / ⁇ ⁇ .
  • the gas diffusion layer has a porous structure so as to have both air permeability and electronic conductivity.
  • the gas diffusion layer is produced as follows.
  • the base material is a carbon woven fabric having a diameter of 20 to 70 ⁇ m of 80% or more of the pores.
  • GF-20-E manufactured by Nippon Carbon Co., Ltd. can be used as the base material.
  • a pure water / surfactant mixed solution Prepare a PTFE dispersion by dispersing polytetrafluoroethylene (PTFE). The substrate is immersed in this PTFE dispersion.
  • the base material soaked in the dispersion is passed through a far-infrared drying oven and baked at 300 ° C for 60 minutes.
  • the density of the water-repellent resin (PT FE) on the surface of the substrate after firing is about 1. OmgZcm 2 .
  • carbon black is dispersed in a solution in which pure water and a surfactant are mixed to prepare a carbon black dispersion. Add PTFE and water to this carbon black dispersion and knead for about 3 hours to prepare the coating material for the coating layer.
  • the coating material for the coat layer is applied to the base material after baking as described above using a coating machine.
  • the coated substrate is baked at 300 ° C for 2 hours using a hot air dryer to form a gas diffusion layer.
  • the density of the water-repellent resin (PTFE) contained in this gas diffusion layer is about 0.8 mg / cm 2 .
  • the surfactant those commercially available under the trade name Triton X-100 can be used.
  • carbon black can be dispersed in the solution by using a planetary mixer for about 3 hours.
  • gas diffusion layer and catalyst layer obtained as described above can be joined to both surfaces of the central portion of the polymer electrolyte membrane by hot pressing to produce MEA5.
  • Anode separator 9A and force sword separator 9C are made of a conductive material.
  • each of the separators 9A and 9C is a graphite plate impregnated with phenol resin, and has a flat plate shape of 150 mm square and 3 mm thickness.
  • a flat MEA contact surface 20 is formed at a position where the MEA member 7 contacts the MEA 5.
  • the MEA contact surface 20 is formed with a step on the inner surface of the anode separator 9A so as to contact one main surface of the MEA 5 when the MEA member 7 and the anode separator 9A are joined.
  • a planar MEA contact surface 30 is formed on the inner surface of the force sword separator 9C at a position in contact with the other main surface of the MEA 5.
  • the MEA contact surface 30 is formed with a step on the inner surface of the force sword separator 9C so as to contact the other main surface of the MEA 5 when the MEA member 7 and the force sword separator 9C are joined. Accordingly, in the cell 10, the anode separator 9A and the force sword separator 9C are joined to the MEA 5 with the MEA 5 sandwiched from the front and back, and the separators 9A and 9C are made of a conductive material. The generated electrical energy can be taken out via separators 9A and 9C.
  • an anode gas flow channel 21 is formed on the inner surface of the anode separator 9A so as to connect the supply-side anode gas marker hold hole 221 and the discharge-side anode gas marker hold hole 22E.
  • the anode gas channel groove 21 is formed over substantially the entire MEA contact surface 20.
  • the anode gas flow path groove 21 has a single groove force having a width of 2. Omm and a depth of 1. Omm.
  • a force sword gas passage groove 31 is formed on the inner surface of the force sword separator 9C so as to connect between the supply side force sword gas hold hole 331 and the discharge side force sword gas hold hole 33E. ing.
  • the force sword gas flow channel 31 is formed over substantially the entire MEA contact surface 30.
  • the force sword gas passage groove 31 has three grooves having a width of 2. Omm and a depth of 1. Om in parallel.
  • FIG. 2 is an exploded perspective view showing a stacked structure between cells of the stack of FIG.
  • heat transfer is performed on the outer surface of the anode separator 9A so as to connect the supply-side heat transfer medium manifold hole 241 and the discharge-side heat transfer medium mall hold hole 24E.
  • a medium flow path groove (heat transfer medium flow path) 26 is formed.
  • the heat transfer medium flow channel groove 26 is formed so as to meander around the entire back surface of the MEA contact surface 20.
  • the outer surface of the force sword separator 9C is connected to the heat transfer medium flow channel groove (by connecting the supply side heat transfer medium manifold hole 341 and the discharge side heat transfer medium manifold hole 34E).
  • a heat transfer medium flow path) 36 is formed.
  • the heat transfer medium flow path groove 36 is formed so as to meander the entire back surface of the MEA contact surface 30.
  • the heat transfer medium flow channel 26 and the heat transfer medium flow channel 36 are formed to be joined. That is, the flow path shapes of the heat transfer medium flow channel 26 and the heat transfer medium flow channel 36 are formed so as to be plane-symmetric with each other.
  • the heat transfer medium flow paths 26 and 36 are adjacent to each other so that the start end is connected to the supply-side heat transfer medium manifold 941 and the end is connected to the discharge-side heat transfer medium manifold 94E. It is formed at the junction between cells 10.
  • the heat transfer medium flow channel grooves 26, 36 are configured by two parallel grooves having a width of 2. Omm and a depth of 1. Omm.
  • the anode gas flow channel 21, the force sword gas flow channel 31, and the heat transfer medium flow channel 26, 36 are each composed of a straight portion extending in the horizontal direction and a turn portion connecting the adjacent straight portions.
  • the number of parallel grooves and the number of turn portions are not limited to each other, and can be set as appropriate without departing from the effects of the present invention.
  • FIG. 3 is an exploded perspective view showing the structure of the end portion of the stack of FIG.
  • the stack 100 is configured by arranging a pair of end members on the outermost layers at both ends of the cell stack 99 in which the cells 10 are stacked. That is, a current collector plate, an insulating plate, and an end plate having the same shape as the cell 10 are laminated on the outermost layers at both ends of the cell 10.
  • the power collector plate, insulation plate, and end plate are formed with 4 holes and 55, 65, 75 force is formed! In FIG. 3, only one end where the current collector plate 50, the insulating plate 60, and the end plate 70 are disposed is shown.
  • the stack 100 constitutes the main body of the PEFC. Although not shown, the stack 100 is connected to an anode gas and power sword gas supply and discharge system, an electrical output system, and a heat transfer medium circulation system including a heat transfer medium cooling system or an exhaust heat utilization system.
  • a fuel cell system is configured.
  • the current collector plate is made of a conductive material such as copper metal, and terminals 55 are formed respectively. And one current collector plate 50 is formed with a through hole penetrating the main surface. Specifically, the force sword separator 9CE that contacts the current collector plate 50, that is, the force sword separator 9CE constituting one end face of the stacked cells 10 communicates with the supply side heat transfer medium marker hole 3 41.
  • the insulating plate and the end plate also have an electrically insulating material force.
  • One insulating plate 60 has a supply-side anode gas circulation hole 621 and a discharge-side anode gas circulation hole 62E communicating with the circulation holes 521, 52E, 531, 53E, 541, 54E formed in the current collector plate 50, respectively.
  • Supply side force A sword gas flow hole 631, a discharge side force sword gas flow hole 63E, a supply side heat transfer medium flow hole 641 and a discharge side heat transfer medium flow hole 64E are formed.
  • One end plate 70 is formed on the insulating plate 60.
  • a supply-side heat transfer medium flow hole 741 and a discharge-side heat transfer medium flow hole 74E are formed.
  • the end holes 70 on the outer side of the end plate 70 are respectively fitted with nose and nore 83 forces ⁇ in the flow holes 721, 72E, 731, 73E, 741, 74E.
  • the nozzle 83 is a connection member with external piping.
  • the other current collecting plate, insulating plate, and end plate have the same configuration as the current collecting plate 50, insulating plate 60, and end plate 70 except that these flow holes are not formed.
  • anode gas, power sword gas, and heat transfer medium are respectively supplied to the supply side circulation holes 521, 621, 721, 531, 631, 731, 541, 641, 741 and the supply side manifold.
  • outlet side manifold 92E, 93E and 94E join together to form a flow path from the discharge side hold 92E, 93E, 94E to the discharge side circulation holes 52E, 62E, 72E, 53E, 63E, 73E, 54E, 64E, 74E.
  • the pair of end members are fastened by the fastening member.
  • the bolt 80 1S is bored through 11, 25, 35, 55, 65, 75 and penetrates both ends of the stack 100.
  • a washer 81 and a nut 82 are attached to both ends of the bolt 80, and a pair of end plates 70 and 71 are fastened by a bolt 80, a washer 81 and a nut 82.
  • it is fastened with a force of lOkgf / cm 2 per separator area.
  • the heat transfer medium flow channel 36 is not formed on the outer surface of the force sword separator 9CE constituting one end face of the stacked cells 10. Further, although not shown, the heat transfer medium flow channel 36 is not formed on the outer surface of the anode separator constituting the other end face.
  • the structure of the supply-side heat transfer medium holder 941 and the discharge-side heat transfer medium holder 94E (hereinafter, both are collectively referred to as the heat transfer medium holder), which is a feature of the present invention, is described. Detailed description.
  • the supply side heat transfer medium manifold 941 has a supply side cylindrical member ( (Cylinder) 411 and discharge-side heat transfer medium manifold 94E are respectively inserted with discharge-side cylinder members (cylinders) 41E (hereinafter, both are collectively referred to as cylinder members as appropriate).
  • FIG. 4 is a perspective view of the supply side cylinder member or the discharge side cylinder member.
  • the arrow 50 indicates the direction in which the current collector plate 50 exists. The same applies to FIGS. 6 to 13 below.
  • the cylindrical members 411 and 41E are cylindrical members having shapes or sizes that fit into the heat transfer medium holders 941 and 94E, respectively, and at least one end is a non-covered end portion 44. It has a length equivalent to the layer length.
  • the cylindrical members 411 and 41E have shapes that are fitted into the heat transfer medium holders 941 and 94E. Here, it is a flat cylindrical member having a thickness of 1. Omm with rounded corners, and is made of epoxy resin. Although not shown, the other ends of the cylindrical members 411 and 41E may be covered or uncovered.
  • the manufacturing cost of the cylindrical members 411 and 41E can be saved, and if it is covered, the heat transfer medium hold 941 and 94E between the current collector plate and the cylindrical members 4 II and 41E at the other end It is possible to prevent the heat transfer medium from flowing out to the heat sink, or to suppress unnecessary heat exchange between the current collector plate and the heat transfer medium.
  • the resin for example, polyphenylene sulfide (PPS), poly vinylidene, polyether imide, polyether ether ketone, polyethylene terephthalate (PET), polyamide imide, polyimide, polyamide, At least one selected from the group consisting of polybenzoimidazole, polyethylene and polytetrafluoroethylene (PTFE) can be used.
  • PPS polyphenylene sulfide
  • PET polyethylene terephthalate
  • polyamide imide polyimide
  • polyamide At least one selected from the group consisting of polybenzoimidazole, polyethylene and polytetrafluoroethylene (PTFE)
  • PTFE polytetrafluoroethylene
  • the polyethylene ultrahigh molecular weight polyethylene is preferred.
  • the thermal conductivity WZ (m′K) of each material is 10 to 150 of the resin-containing carbon that is preferably used as the material of the separators 9A and 9C, while the epoxy ⁇ MA 0.19, PPSi 0.08 to 0.29, Polyetheroleimide, ⁇ MA, 0.07, ⁇ Thermal conductivity WZ (m ⁇ K) of ⁇ ma 0.24, polyimide ⁇ ma 0.10 to 0, 18, polyethylene 0.33, PTFEO.25, which is 1/10 of the thermal conductivity of the separator It becomes the following!
  • Examples of rubbers include nitrile rubber (NBR), hydrogenated hydrogen-tolyl rubber (HNBR), fluorine rubber (FKM), ethylene propylene rubber (EPDM), butinole rubber (IIR), chloroprene rubber (CR), chloro At least one selected from the group consisting of sulfone polyethylene (CSM) can be used.
  • NBR nitrile rubber
  • HNBR hydrogenated hydrogen-tolyl rubber
  • FKM fluorine rubber
  • EPDM ethylene propylene rubber
  • IIR butinole rubber
  • CR chloroprene rubber
  • CSM chloro At least one selected from the group consisting of sulfone polyethylene (CSM) can be used.
  • These thermal conductivities WZ (m'K) are 0.25 for NBR, 0.36 for EPDM, 0.13 for IIRi, 0.19 for CRi, 0.11 for CSMi, and 0.11 for CSMi. The number of rates is less than one-tenth.
  • a material suitable for the cylindrical members 411 and 41E can be selected based on the thermal conductivity.
  • the heat transfer medium is heated by the wall surface of the supply-side heat transfer medium manifold 941 during the operation of the stack 100. Therefore, if the thickness of the cylindrical member 4 II is insufficient, the temperature rise of the heat medium will eventually increase.
  • the heat transfer medium is cooled by the wall surface of the discharge side heat transfer medium manifold 94E during the operation of the stack 100. Therefore, if the thickness of the tubular member 41E is insufficient, the temperature drop width of the heat medium will increase as a result.
  • the temperature difference between the inner and outer surfaces of the cylindrical members 411 and 41E during the operation is greater than the temperature difference when the cylindrical members 411 and 41E are not provided.
  • the thickness of members 411 and 41E can be calculated.
  • the thermal conductivity 15 WZm'K of the resin-containing carbon that is the material of the separators 9A and 9C, and the shortest distance 20 mm between the supply side heat transfer medium hold hole 141 and the MEA 5 is 20 mm. Under the conditions, the temperature difference between the MEA 5 and the MEA 5 during the operation is about 1 ° C.
  • the thickness of 0.25mm or more is calculated by using Fourier's law.
  • the material of the cylindrical members 411 and 41E has a thermal conductivity of 5% or less of the thermal conductivity of the material of the separators 9A and 9C. is there [0070]
  • a plurality of holes (penetrating portions) 42 are formed side by side in the extending direction of the cylindrical members 411 and 41E on the peripheral walls of the cylindrical members 411 and 41E.
  • the holes 42 are formed at equal intervals, corresponding to the number of junctions between adjacent separators 10, that is, 99, and the size is 1.5 mm in width and 3. Om in length.
  • the cylindrical members 411 and 41E are arranged such that the non-cover end portion 44 is located on the current collector plate 50 side.
  • the non-cover end portion 44 only needs to be close to the current collector plate 50. Therefore, even if both are in contact, a gap may be formed between them.
  • FIG. 5 is an arrow view as seen from the direction V in FIG.
  • the cylindrical members 411 and 41E have spaces (with respect to the heat transfer medium manifolds 941 and 94E, respectively, such that the non-covered end portion 44 is positioned on the current collector plate 50 side. Cylinder member outer region) 95 I and 95E are formed and inserted. That is, the cylindrical members 411 and 41E are arranged to extend in the stacking direction of the cells 10 in a part of the heat transfer medium molds 941 and 94E. Further, the heat transfer medium manifolds 941 and 94E are configured to be divided into areas inside the cylindrical members 411 and 41E and areas 951 and 95E outside the cylinder members.
  • the heat transfer medium holders 941 and 94E have a flat cross section in the extending direction, the long diameter is longer than the cylindrical members 411 and 41E, and the short diameter is the cylindrical member 411, like the cylindrical members 411 and 41E. 41E is long enough to be inserted.
  • a clearance may be provided between the short diameter of the cylindrical members 4 II and 41 E and the short diameter of the heat transfer medium molds 941 and 94 E.
  • the heat transfer medium holders 941 and 94E are formed by stacking dozens of separators 9A and 9C. Therefore, the heat transfer medium manifold holds due to the dimensional tolerance of the separators 9A and 9C and the positional deviation during stacking.
  • the wall surfaces of 941 and 94E often have irregularities.
  • the cylindrical members 411 and 41E are provided in the heat transfer medium holders 941 and 94E. 41E can be inserted smoothly.
  • the start end and the end of the heat transfer medium flow channel groove 26 are either in the major axis direction on the hole walls of the supply side heat transfer medium manifold hole 241 and the discharge side heat transfer medium manifold hole 24E. (Fig. 5 shows the positions on both sides).
  • the cylindrical members 411 and 41E are portions where the start end and the end of the heat transfer medium flow channel 26 are not formed (in FIG. ) In contact with the heat transfer medium manifolds 941 and 94E, and the holes 42 are arranged so as to face the start and end of the heat transfer medium flow channel 26.
  • spaces 951 and 95E are formed between the start and end of the heat transfer medium flow channel grooves 26 and 36 and the holes 42 of the cylindrical members 411 and 41E. That is, the inner regions of the tubular members 411 and 41E, the spaces 951 and 95E, and the heat transfer medium flow channel grooves 26 and 36 can be communicated with each other.
  • the start ends or end points of the heat transfer medium flow channel grooves 26 and 36 having the number of junctions between the adjacent separators 10 are arranged in parallel at equal intervals. Is formed.
  • the holes 42 of the cylindrical members 411 and 41E are formed at positions close to the start ends or the end ends of the heat transfer medium flow channel grooves 26 and 36, respectively.
  • an external pipe is connected to the nozzle 83, and anode gas, power sword gas, and a heat transfer medium are supplied to the stack 100.
  • the anode gas is supplied from the outside to the supply-side anode gas holder 921 through the nozzle 83 and the supply-side anode gas circulation holes 721, 621, 521.
  • the force sword gas is also supplied to the supply side force sword gas hold 931 via the nozzle 83 and the supply side force sword gas circulation holes 731, 631, 531.
  • the heat transfer medium is supplied into the supply side cylindrical member 4 II via the external force nozzle 83 and the supply side heat transfer medium flow holes 741, 641, 541.
  • water is used as the heat transfer medium.
  • the heat transfer medium is not limited to water as long as it has excellent chemical stability, fluidity and heat transfer characteristics.
  • silicon oil may be used.
  • the heat transfer medium is supplied to the stack 100 at a flow rate of 4 liters Z at a temperature of 70 ° C.
  • hydrogen gas is used for the anode gas and air is used for the power sword gas.
  • the anode gas and power sword gas are each moistened to a dew point of 70 ° C and supplied to the stack 100 at a temperature of 70 ° C.
  • the anode gas has an anode gas utilization rate, that is, the proportion of hydrogen supplied to the electrochemical reaction in the supplied hydrogen is 70%
  • the power sword gas has a power sword gas utilization rate, that is, the oxygen to be supplied in the electrochemical reaction.
  • Each was supplied to the stack 100 at a flow rate such that the proportion of supplied oxygen was 40%. It is.
  • the force sword gas in the supply-side force sword gas manifold 931 branches to the force sword gas flow path 31 of the cathode separator 9C, and flows through the cell 10, so that excess cathode gas and The reaction product flows out to the discharge side force sword gas hold 93E.
  • the anode gas in the supply side anode gas holder 921 branches to the anode gas flow path 21 of the anode separator 9A and flows through the cell 10, and the surplus anode gas is sent to the discharge side anode gas holder 92E. And leaked.
  • the heat transfer medium in the supply-side cylindrical member 411 passes through the hole 42 and flows into the space 951, and each heat transfer between the space 951 and the neighboring cells 10 is performed. It flows separately into the medium flow channel grooves 26 and 36, cools the outer surfaces of the separators 9A and 9C, in other words, is heated by the separators 9A and 9C, and flows out into the space 95E. As a result, the heat transfer medium flows through the supply side cylindrical member 411 without directly contacting the wall surface of the supply side heat transfer medium holder 941, and flows out of the hole 42 of the supply side cylindrical member 411. The heat medium flows into the nearby heat transfer medium channel grooves 26 and 36.
  • the heat transfer medium in the space 95E flows into the discharge side cylinder member 41E from the hole 42 of the discharge side cylinder member 41E.
  • the anode gas in the discharge-side anode gas manifold 92E is discharged to the outside via the discharge-side anode gas circulation holes 52E, 62E, 72E and the nozzle 83.
  • the power sword gas in the discharge side force sword gas hold 93E is discharged to the outside through the discharge side force sword gas circulation holes 53E, 63E, 73E and the nozzle 83.
  • the heat transfer medium in the discharge side tubular member 41E is discharged to the outside through the discharge side heat transfer medium circulation holes 54E, 64E, 74E, and the nozzle 83.
  • the above operation is continued while the temperature of the stack (temperature distribution) is in a thermally steady state (for example 24) while generating the power generation output (for example, the power generation output having a current density of 0.3 AZcm 2 ). If continued, the temperature in the vicinity of the other current collector plate of the supply side heat transfer medium holder 941 is compared to the temperature under the same operating conditions in the stack without the conventional supply side cylindrical member 411. (For example, about several degrees C lower).
  • the temperature difference between the vicinity of one of the current collector plates 50 and the vicinity of the other current collector plate of the discharge side heat transfer medium holder 94E is similar to that in the stack without the conventional discharge side cylindrical member 41E.
  • the temperature is lower than the operating temperature (for example, it is about 1 to 2 ° C lower).
  • the operation as described above is continued for a predetermined time (for example, 6 hours), and every predetermined time (for example, 10%).
  • a predetermined time for example, 6 hours
  • every predetermined time for example, 10%.
  • the standard deviation of the sampled voltage is less varied (eg, several mV) than the standard deviation under similar operating conditions in the stack without the conventional supply side cylinder 411. The degree of variation will be small).
  • the decrease in the average voltage per cell is the same as that in the stack without the conventional supply side tubular member 411. Smaller than the decrease in average voltage per cell under operating conditions (for example, about several mV).
  • the structure of the heat transfer medium holders 941 and 94E which is a feature of the present invention, allows the heat transfer medium in the heat transfer medium holders 941 and 94E to be separated from the separators 9A and 9C. Heat exchange can be suppressed.
  • the present invention also relates to a heat transfer medium that flows from the inner region of the supply-side cylindrical member 411 to the outer region 951 of the cylindrical member in the supply-side heat transfer medium marker 941, and a cylinder in the discharge-side heat transfer medium marker 94E.
  • the force distribution in the stacking direction of at least one of the cells 10 of the heat transfer medium flowing into the inner region of the discharge side tubular member 41E can also be adjusted by the number or size of the through portions 42. That is, according to the present invention, the flow of the heat transfer medium in the stacking direction of the cells 10 is changed by replacing the tubular members 411 and 41E. The quantity distribution can be easily adjusted.
  • the cylindrical members 411 and 41E are arranged so as to be sandwiched between the wall surfaces of the heat transfer medium holders 94I and 94E, respectively. That is, the cylindrical members 411 and 41E are substantially fixed in the heat transfer medium manifolds 941 and 94E by frictional resistance with the wall surfaces of the heat transfer medium manifolds 941 and 94E. As a result, the cylindrical members 411 and 41E can be prevented from rotating or moving in the heat transfer medium holders 941 and 94E due to some cause such as stress caused by the heat transfer medium. Therefore, it is possible to suppress a shift in the positional relationship between the heat transfer medium flow channel grooves 26 and 36 and the hole 42.
  • cylindrical members 411 and 41E can be configured as in the following modifications.
  • this invention is not limited to the following modifications.
  • FIG. 6 is a perspective view of a supply-side cylinder member or a discharge-side cylinder member of Modification 1.
  • the cylindrical members 411 and 41E are formed so as to be gradually shortened as the distance between the holes 42 formed side by side in the extending direction is increased. That is, the size of the penetrating portion increases as the distance from the supply end to which the heat transfer medium is supplied. As a result, the influence of the pressure loss generated in the cylindrical members 411 and 41E is reduced, and the non-uniform flow rate of the heat transfer medium in the extending direction of the cylindrical members 411 and 41E, that is, the stacking direction of the cells 10 is suppressed. be able to.
  • the non-covered end portion 44 is disposed on the current collector plate 50 side, and the heat transfer medium is introduced from the heat transfer medium flow hole 541 of the current collector plate 50.
  • the pressure in the discharge-side cylinder member 41E increases, and the flow rate of the heat transfer medium flowing into the same hole area force decreases.
  • the unevenness of the inflow flow rate of the heat transfer medium is suppressed by increasing the density of the holes 42 in which the nonuniformity is generated. It should be noted that the number and size of the holes 42 are formed so that the heat transfer medium can flow in and out in accordance with the design of the supply and discharge pressure and flow rate of the heat transfer medium.
  • FIG. 7 is a perspective view of the supply-side cylinder member of Modification 2 and the discharge-side cylinder member.
  • the cylindrical members 411 and 41E are formed such that the distance between the holes 42 becomes shorter than the distance between the holes 42 in the central part as approaching both ends. As a result, the heat transfer medium flow rate at both ends of the cylindrical members 411 and 41E can be increased. This modification is suitable for a PEFC installation configuration in which both ends of the stack are cooled by outside air.
  • FIG. 8 is a perspective view of the supply-side cylinder member of Modification 3 and the discharge-side cylinder member.
  • the cylindrical members 411 and 41E are formed such that the distance between the holes 42 becomes longer than the distance between the holes 42 in the central part as it approaches both ends. As a result, the heat transfer medium flow rate in the central part of the cylindrical members 411 and 41E can be increased.
  • the PEFC is installed in such a way that the cooling effect at the center is insufficient, in other words, the insulation around the stack is sufficient and the heat dissipated around the stack is small. Ni! / Is suitable.
  • FIG. 9 is a perspective view of the supply-side cylinder member of Modification 4 and the discharge-side cylinder member.
  • the cylindrical members 411 and 41E are formed with cracks (penetrating portions) 43 so as to connect both ends of the cylindrical members 411 and 41E in place of the holes 42 formed side by side in the extending direction. That is, the cylinder members 411 and 41E have a C-shaped cross section. Thereby, the cylindrical member 411, 41E can be produced more simply than the formation of the hole 42. [0102] [Variation 5]
  • FIG. 10 is a perspective view of a supply-side cylinder member or a discharge-side cylinder member of Modification 5.
  • the cylindrical members 411 and 41E are formed such that the size of the crack 43 gradually increases as the non-lid end 44 side force increases. As a result, the effect of pressure loss generated in the cylindrical members 411 and 41E is reduced as in the first modification, so that the extending direction of the cylindrical members 411 and 41E, i.e., this modified example is the stacking direction of the cells 10. It is possible to suppress unevenness in the flow rate of the heat transfer medium.
  • FIG. 11 is a perspective view of a supply-side cylinder member or a discharge-side cylinder member of Modification 6.
  • the cylindrical members 411 and 41E are formed such that the size of the crack 43 is smaller than that of the central portion as it approaches the both end portions. As a result, the heat transfer medium flow rate in the central part of the cylindrical members 411 and 41E can be increased.
  • This modification is an installation configuration in which the cooling effect in the central part is insufficient, in other words, the PEFC has a sufficient heat insulation around the stack and less heat is dissipated around the stack. It is suitable for the installation mode.
  • FIG. 12 is a perspective view of a supply-side cylinder member or a discharge-side cylinder member of Modification 7.
  • the cylindrical members 411 and 41E are formed so that the size of the crack 43 gradually decreases as the non-lid end 44 side force increases. Thereby, the heat transfer medium flow rate on the supply end side of the cylindrical members 411 and 41E can be increased.
  • This modification is suitable for the installation form of PEFC in which the supply end side is further cooled by the outside air.
  • FIG. 13 is a perspective view of a supply-side cylinder member or a discharge-side cylinder member of Modification 8.
  • FIG. 14 is a cross-sectional view on the outer surface side of the anode separator of the stack of this modification.
  • cylindrical members 411 and 41E are configured to engage with the irregularities of the wall surfaces of the heat transfer medium molds 941 and 94E, respectively.
  • convex portions 96 extending in the cell 10 stacking direction are formed on part of the wall surfaces of the heat transfer medium holders 941 and 94E.
  • the concave portions 45 having a shape that engages with the convex portions 96 are also formed on the peripheral walls of the cylindrical members 411 and 41E. It is formed by stretching in the stretching direction. Thereby, the cylindrical members 411 and 41E are more securely fixed in the heat transfer medium markers 941 and 94E, respectively.
  • a concave portion may be formed on a part of the wall surface of the heat transfer medium holders 941 and 94E, and a convex portion may be formed on the peripheral wall of the cylindrical members 4II and 41E.
  • the cylindrical members 411 and 41E have the holes 42 formed and the sizes of the cracks 43 adjusted.
  • the flow rate of the heat transfer medium in the extending direction of the cylindrical members 411 and 41E that is, the stacking direction of the cells 10 can be easily adjusted.
  • the flow rate of the heat transfer medium in the stacking direction of the cells 10 can also be adjusted by adjusting the size of the holes 42. Therefore, by selecting and using the cylindrical members 4 II and 41E in FIGS. 6, 7, 8, 8, 10, 11, and 12 according to the stack installation mode, the stacking of the cells 10 can be performed. The flow distribution of the heat transfer medium in the direction can be optimized.
  • the cylindrical members 411 and 41E that can easily adjust the flow distribution of the heat transfer medium in the stacking direction of the cells 10 are particularly effective for stacks having a high output density for electric vehicles.
  • a stack with a high output density generates a large amount of heat because it is operated with a large number of layers and a large current density.
  • PEFCs mounted on mobile devices such as automobiles may have a large difference in the effect of outside air on the stack depending on the stack installation position and installation direction. That is, the optimum flow distribution of the heat transfer medium that suppresses the temperature deviation in the stacking direction of the cells 10 varies depending on the stack installation position and installation direction. Therefore, the present invention that can easily adjust the flow distribution of the heat transfer medium by exchanging the cylindrical members 411 and 41E is extremely effective.
  • the supply-side heat transfer medium holder 941 includes the supply-side cylindrical member. 411 is disposed, and a discharge side tubular member 41E is disposed on the discharge side heat transfer medium holder 94E.
  • the effect of the present invention can be obtained only by arranging the cylindrical member in any one of the heat transfer medium holders.
  • the heat transfer medium flow channel grooves 26, 36 are formed on the outer surfaces of all the separators 9A, 9C except for both ends. That is, the heat transfer medium flow channel grooves 26 and 36 are formed between the cells 10.
  • the heat transfer medium flow channel grooves 26 and 36 may be formed on the outer surfaces of the separators 9A and 9C every two to three cells. That is, the heat transfer medium flow channel grooves 26 and 36 may be formed between the two to three cells 10.
  • the heat transfer medium flow channel grooves 26 and 36 are formed on the outer surfaces of the separators 9A and 9C.
  • the heat transfer medium flow channel groove 26 and the heat transfer medium The medium channel groove 36 is formed to be joined.
  • the heat transfer medium channel grooves 26 and 36 may be formed only in one of the separators 9A and 9C.
  • the heat transfer medium channel grooves are formed on the outer surfaces of the force sword separator 9CE (see Fig. 3) and the anode separator (not shown) at both ends of the stack.
  • a heat transfer medium flow channel may be formed on the outer surfaces of the force sword separator and the anode separator at both ends of the stack.
  • the cross-sectional shape of the heat transfer medium holders 941 and 94E is not limited to the horizontally long flat shape as in the first embodiment, but the heat transfer medium holders 941 and 94E may be heat transfer. Since the cylindrical members 411 and 41E can be disposed so as to be sandwiched between the wall surfaces of the medium holders 941 and 94E, the present invention can be implemented.
  • the separators 9A and 9C may be made of a force metal made of a resin containing carbon.
  • the current collector plate 50, the insulating plate 60, and the end plate 70 are provided with the supply-side flow holes 521, 621, 721, 531, 631, 731, 541, 641, 741, and Discharge-side circulation Deposition 52E, 62E, 72E, 53E, 63E, 73E, 54E, 64E, 74E force ⁇ Formed!
  • the PEFC using the stack 100 of the above embodiment is a home cogeneration system, a motorcycle, an electric vehicle, a hybrid electric vehicle, a home electric appliance, a portable computer device, a mobile phone, a portable acoustic device, a portable device.
  • a home cogeneration system a motorcycle, an electric vehicle, a hybrid electric vehicle, a home electric appliance, a portable computer device, a mobile phone, a portable acoustic device, a portable device.
  • Used in PEFC systems such as portable electrical devices such as information terminals.
  • the present invention is useful as a PEFC that can suppress heat exchange between the heat transfer medium and the heat transfer medium manifold wall surface and can easily adjust the flow distribution of the heat transfer medium in the cell stacking direction. It is.

Abstract

A polyelectrolyte fuel cell which is formed with a supply-side heat transfer medium manifold (94I) and a discharge-side heat transfer medium manifold (94E) that extend through cells in the laminated direction of the cells, and is formed with heat transfer medium flow paths (26, 36) at joint potions between adjacent cells so that their starting ends are connected with the supply-side heat transfer medium manifold (94I) and their terminating ends are connected with the discharge-side heat transfer medium manifold (94E), wherein tubular members (41I, 41E) consisting of a heat-insulating material are disposed in at least either one heat transfer medium manifold of the supply-side heat transfer medium manifold (94I) and the discharge-side heat transfer medium manifold (94E) so as to extend in the laminated direction, the heat transfer medium manifold is formed by being partitioned into an in-tubular member region and an out-tubular member region (95I, 95E), and a penetration portion (42) for allowing the in-tubular member region and an out-tubular member region (95I, 95E) to communicate is formed continuously in the laminated direction in the tubular members (41I, 41E).

Description

明 細 書  Specification
高分子電解質形燃料電池  Polymer electrolyte fuel cell
技術分野  Technical field
[0001] 本発明は、高分子電解質形燃料電池に関する。特に、アノードセパレータ及び力ソ ードセパレータの周縁部に伝熱媒体用マ-ホールド孔が形成されている、いわゆる 内部マ-ホールド型スタックを本体とする高分子電解質形燃料電池に関する。  [0001] The present invention relates to a polymer electrolyte fuel cell. In particular, the present invention relates to a polymer electrolyte fuel cell having a so-called inner-moulded stack as a main body in which a hole for heat transfer medium is formed at the peripheral edge of an anode separator and a force-saw separator.
背景技術  Background art
[0002] 高分子電解質形燃料電池(以下、 PEFCと!ヽぅ)は、 MEA (Membrane -Electro de -Assembly:電解質膜 電極接合体)を有し、 MEAの両側主面それぞれを水 素を含有するアノードガスと空気など酸素を含有する力ソードガスとに曝露して、ァノ ードガスと力ソードガスとを電気化学的に反応させることにより、電力と熱とを発生させ る装置である。  [0002] A polymer electrolyte fuel cell (hereinafter referred to as PEFC!) Has MEA (Membrane-Electro de-Assembly) and each main surface of MEA contains hydrogen. This is a device that generates electric power and heat by exposing the anode gas and a power sword gas containing oxygen such as air to electrochemical reaction between the anode gas and the power sword gas.
[0003] PEFCは、一般的にはセルを積層させて構成されているスタックを本体としている。  [0003] A PEFC generally has a stack formed by stacking cells.
セルは、 MEAを一対の平板状のセパレータ、具体的にはアノードセパレータ及び力 ソードセパレータで挟んで構成されている。 MEAは、 MEAは高分子電解質膜とそ の両面に積層して構成された一対の電極とを有して構成されており、 MEAの両主面 には電極面が形成されている。また、セパレータは、電導性カーボンを含む榭脂、金 属等の導電材料で構成され、 MEAの電極面に当接して電気回路の一部を担ってい る。  The cell is composed of a MEA sandwiched between a pair of flat separators, specifically an anode separator and a force sword separator. The MEA is composed of a polymer electrolyte membrane and a pair of electrodes formed by laminating both sides of the polymer electrolyte membrane, and electrode surfaces are formed on both main surfaces of the MEA. The separator is made of a conductive material such as resin or metal containing conductive carbon, and is in contact with the electrode surface of the MEA and takes part of the electric circuit.
[0004] ここで、セルにおける電気化学反応は発熱反応であるので、 PEFC運転動作中に セル内面が触媒活性温度になるようにセルを冷却する必要がある。また、 PEFC起動 動作時には、セル内面が触媒活性温度になるようにセルを予熱する必要がある。カロ えて、 PEFC運転動作時には適切な温度管理を要する。すなわち、セルの冷却が不 十分な場合、 MEAの温度が上昇して高分子電解質膜から水分が蒸発する。その結 果、高分子電解質膜の劣化が促進されてセルスタックの耐久性が低下したり、高分 子電解質膜の電気抵抗が増大してセルの電気出力が低下したりすることが知られて いる。一方、セルスタックを必要以上に冷却した場合、ガス流路を流れる反応ガス中 の水分が結露し、反応ガス中に含まれる液体状態の水の量が増加する。液体状態の 水は、セパレータ板のガス流路に表面張力によって液滴として付着する。この液滴の 量が甚だし ヽ場合は、ガス流路内に付着した水がガス流路を塞 、でガスの流れを阻 害し、フラッデイングを起こす。その結果、電極の反応面積が減少し、電気出力が不 安定ィ匕する等 PEFCの性能を低下させることが知られている。 [0004] Here, since the electrochemical reaction in the cell is an exothermic reaction, it is necessary to cool the cell so that the inner surface of the cell reaches the catalyst activation temperature during the PEFC operation. Also, during PEFC start-up operation, it is necessary to preheat the cell so that the inner surface of the cell is at the catalyst activation temperature. In addition, appropriate temperature control is required during PEFC operation. That is, when the cell is not sufficiently cooled, the temperature of the MEA rises and water is evaporated from the polymer electrolyte membrane. As a result, it is known that the deterioration of the polymer electrolyte membrane is promoted and the durability of the cell stack is lowered, or the electric resistance of the polymer electrolyte membrane is increased and the electric output of the cell is lowered. Yes. On the other hand, if the cell stack is cooled more than necessary, the reaction gas flowing in the gas flow path As a result, water in the liquid state is condensed, and the amount of liquid water contained in the reaction gas increases. Liquid water adheres as droplets to the gas flow path of the separator plate due to surface tension. When the amount of droplets is large, water adhering to the gas flow path blocks the gas flow path, obstructing the gas flow and causing flooding. As a result, it is known that the performance area of the PEFC is lowered, for example, the reaction area of the electrode decreases and the electric output becomes unstable.
[0005] さらに、セルにおいて発生する電気化学反応熱を外部において有効利用すること、 すなわち PEFCを中心とした熱電併給システムを構成することによって、 PEFCの熱 効率を向上させることができる。 [0005] Furthermore, by effectively utilizing the heat of electrochemical reaction generated in the cell outside, that is, by configuring a combined heat and power system centering on PEFC, the thermal efficiency of PEFC can be improved.
[0006] これらの理由から、一般的に PEFCのスタックの積層されたセル同士の間に、伝熱 媒体流路が形成され、積層されるセルの積層間を伝熱媒体が流通し、かつ伝熱媒体 力 Sスタックの内外を流通するように構成されている。そして、セパレータには伝熱性の 良!、材料が用いられて 、る。 [0006] For these reasons, generally, a heat transfer medium flow path is formed between the stacked cells of the PEFC stack, the heat transfer medium flows between the stacked cells, and the heat transfer medium flows. Heat medium power It is configured to circulate inside and outside the S stack. And the separator has good heat conductivity! The material is used.
[0007] ここで、一般的に、 PEFCのスタックは、いわゆる内部マ-ホールド型スタックが用い られている。内部マ-ホールド型スタックは、各セル間の伝熱媒体流路の両端それぞ れに連通する一対の伝熱媒体供給マ-ホールドが一体化されて構成されて 、る。す なわち、アノードセパレータおよび力ソードセパレータの周縁部においてそれぞれの セパレータの厚さ方向に貫通する一対の伝熱媒体マ-ホールド孔が形成され、ァノ ードセパレータおよび力ソードセパレータの外面には伝熱媒体流路の流路溝が形成 され、該伝熱媒体流路溝は一対の伝熱媒体マ二ホールド孔の孔縁を結ぶように形成 されている。あるいは、一対の伝熱媒体マ二ホールド孔を有し、かつ該一対の伝熱媒 体マ二ホールド孔間を結ぶ伝熱媒体流路が内蔵された平板状の伝熱部材がセル間 に配設されている。そして、スタック組立状態において、これらマ-ホールド孔が連結 して、セルの積層方向に延伸する一対の伝熱媒体マ-ホールドが形成されている。 このような構成によって、一方の伝熱媒体マ二ホールド (供給側伝熱媒体マ二ホール ド)の端部からスタックに供給された伝熱媒体は、供給側伝熱媒体マ二ホールドを流 通し、各伝熱媒体流路に分岐して、他方の伝熱媒体マ二ホールド (排出側伝熱媒体 マ-ホールド)へ向けて流通する。 [0007] Here, generally, a so-called internal hold type stack is used as a stack of PEFC. The internal hold type stack is formed by integrating a pair of heat transfer medium supply manifolds that communicate with both ends of the heat transfer medium flow path between the cells. In other words, a pair of heat transfer medium hold-holes penetrating in the thickness direction of each separator is formed at the peripheral portions of the anode separator and the force sword separator, and heat transfer is performed on the outer surfaces of the anode separator and the force sword separator. A flow path groove of the medium flow path is formed, and the heat transfer medium flow path groove is formed so as to connect the edge of the pair of heat transfer medium manifold holes. Alternatively, a flat plate-shaped heat transfer member having a pair of heat transfer medium manifold holes and having a built-in heat transfer medium flow path connecting the pair of heat transfer medium manifold hold holes is arranged between the cells. It is installed. In the stack assembly state, these merge holes are connected to form a pair of heat transfer medium markers extending in the cell stacking direction. With this configuration, the heat transfer medium supplied to the stack from the end of one heat transfer medium manifold (supply-side heat transfer medium manifold) passes through the supply-side heat transfer medium manifold. Then, it branches into each heat transfer medium flow path and circulates toward the other heat transfer medium manifold (discharge-side heat transfer medium merge).
[0008] このような内部マ-ホールド型スタックの場合、セルの積層方向においてセル内部 の温度分布の不均一状態が生じてしまい、スタック全体に亘る適切な温度管理が困 難となり、 PEFCの性能低下を招来していた。 [0008] In the case of such an internal hold-type stack, the inside of the cell in the cell stacking direction As a result, the temperature distribution across the stack became difficult, making it difficult to manage the temperature appropriately throughout the stack, leading to a decline in PEFC performance.
[0009] 上述のセルの積層方向におけるスタックの温度不均一の問題を解決することを意 図した検討としては、例えば、スタックの端部と中央部との温度不均一に着目して、集 電板ゃ絶縁板などのスタックの両端の熱放射率の低減を行う構成を採用することによ つて、スタック両端の温度低下を抑制し、セルの積層方向の温度不均一を改善するこ とを意図した燃料電池が提案されている。(例えば、特許文献 1参照)。  [0009] As an examination intended to solve the above-described problem of temperature non-uniformity of the stack in the cell stacking direction, for example, focusing on the temperature non-uniformity between the end and the center of the stack, By adopting a configuration that reduces the thermal emissivity at both ends of the stack, such as a plate insulating plate, it is intended to suppress temperature drop at both ends of the stack and improve temperature non-uniformity in the cell stacking direction. A fuel cell has been proposed. (For example, see Patent Document 1).
[0010] また、特許文献 2には、伝熱媒体マ-ホールドの内周に断熱体を配設する PEFC が提案されている。  [0010] Further, Patent Document 2 proposes a PEFC in which a heat insulator is disposed on the inner periphery of a heat transfer medium holder.
[0011] 他方で、特許文献 3には、マ-ホールドに円柱状貫通材を配設する PEFCが提案 されて 、る。これによつてマ-ホールド力 各セルに均等に流体を供給することがで きるとしている。  [0011] On the other hand, Patent Document 3 proposes a PEFC in which a cylindrical penetrating material is disposed in a hold. This makes it possible to supply fluid equally to each cell.
特許文献 1:特開平 8 - 130028号公報  Patent Document 1: Japanese Patent Laid-Open No. 8-130028
特許文献 2:特開 2005 - 209526号公報  Patent Document 2: JP-A-2005-209526
特許文献 3 :特開 2002— 252021号公報  Patent Document 3: Japanese Patent Laid-Open No. 2002-252021
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0012] ところで、 PEFCは設置形態によっては外気温の影響が異なり、 PEFCの温度分布 が異なるというおそれがある。例えば、自動車等移動装置に搭載される PEFCは、 P EFC周囲の断熱が十分に確保できず、 PEFCの設置位置あるいは設置方向に応じ て外気温の影響の程度が異なってくる場合がありうる。すなわち、同じ設計の PEFC であっても、設置形態によって PEFCの温度分布が異なることになるので、設置形態 に応じて PEFCの温度偏差が小さくなるように伝熱媒体の流量分布を調整する設計 変更の必要が生じてくる。この場合、 PEFCの構造物の変更は PEFC製造のコストア ップにつながってしまう。  [0012] By the way, PEFC has different effects of outside air temperature depending on the installation form, and there is a possibility that the temperature distribution of PEFC will be different. For example, PEFCs mounted on mobile devices such as automobiles may not have sufficient insulation around the PEFC, and the degree of influence of outside air temperature may vary depending on the location or direction of PEFC installation. In other words, even if PEFCs have the same design, the temperature distribution of the PEFC will differ depending on the installation form. Need arises. In this case, changes in the PEFC structure will lead to a cost increase in PEFC production.
[0013] なお、特許文献 2の PEFCでは、伝熱媒体流路溝の端部が断熱体内側に位置する 構造であるので、セルの積層方向における伝熱媒体の流量分布を調整することはで きない。また、特許文献 2の [請求項 6]、段落 [0023]及び [図 4]には断熱体の断面 積を伝熱媒体の流量が少な 、部分では小さくする PEFCが提案されて 、る。しかし、 断熱体の断面積の変化によっては、伝熱媒体の流速を均一化することはできるが、 それ以上に伝熱媒体の流量分布を調整することはできない。すなわち、断熱体の断 面積を変化させると、断熱体内の圧力及び流速を変化させることができるが、断熱体 力 伝熱媒体流路に流出する伝熱媒体の流量分布を調整することは容易でない。セ ルの積層方向における所望の伝熱媒体の流量分布を得ることは困難である。 [0013] It should be noted that the PEFC of Patent Document 2 has a structure in which the end of the heat transfer medium flow channel is located inside the heat insulator, and therefore, the flow distribution of the heat transfer medium in the cell stacking direction cannot be adjusted. I can't. Further, in Patent Document 2, [Claim 6], paragraphs [0023] and [Fig. 4] show the cross section of the heat insulator. PEFCs have been proposed that reduce the volume of the heat transfer medium with a small flow rate. However, the flow rate of the heat transfer medium can be made uniform by changing the cross-sectional area of the heat insulator, but the flow distribution of the heat transfer medium cannot be adjusted more than that. That is, if the cross-sectional area of the heat insulator is changed, the pressure and flow velocity in the heat insulator can be changed, but it is not easy to adjust the flow distribution of the heat transfer medium flowing into the heat transfer medium flow path. . It is difficult to obtain a desired heat transfer medium flow rate distribution in the cell stacking direction.
[0014] また、特許文献 3の PEFCでは、円柱状貫通材とマ-ホールド周壁との間の間隙に よって、流体の流れを均一化する構造であり、伝熱媒体と伝熱媒体マ二ホールド壁 面との熱交換を抑制することができない。また、セルの積層方向における所望の伝熱 媒体の流量分布を得るものではな 、。  [0014] The PEFC of Patent Document 3 has a structure in which the flow of fluid is made uniform by a gap between the cylindrical penetrating material and the peripheral wall of the cylinder. Heat exchange with the wall surface cannot be suppressed. Also, it is not intended to obtain the desired flow rate distribution of the heat transfer medium in the cell stacking direction.
[0015] 本発明は、上記のような課題を解決するためになされたもので、伝熱媒体と伝熱媒 体マ-ホールド壁面との熱交換を抑制し、かつセルの積層方向における伝熱媒体の 流量分布を容易に調整することができる高分子電解質形燃料電池を提供することを 目的としている。  [0015] The present invention has been made to solve the above-described problems, suppresses heat exchange between the heat transfer medium and the heat transfer medium medium wall surface, and heat transfer in the cell stacking direction. An object of the present invention is to provide a polymer electrolyte fuel cell in which the flow rate distribution of the medium can be easily adjusted.
課題を解決するための手段  Means for solving the problem
[0016] 上記課題を解決すベぐ第 1の本発明の PEFCは、 MEAを一対の板状のセパレー タで挟んでなるセルが積層されたセル積層体を有し、該セル積層体には前記セルの 積層方向に貫通して延伸する供給側伝熱媒体マ二ホールド及び排出側伝熱媒体マ 二ホールドが形成され、かつ始端が前記供給側伝熱媒体マ-ホールドに接続され、 終端が前記排出側伝熱媒体マ二ホールドに接続されるようにして隣接する前記セル 同士の接合部に伝熱媒体流路が形成されている、高分子電解質形燃料電池であつ て、 [0016] The PEFC of the first aspect of the present invention that solves the above problem has a cell laminate in which cells are formed by sandwiching MEA between a pair of plate-like separators, and the cell laminate has A supply-side heat transfer medium manifold and a discharge-side heat transfer medium manifold extending through the cell in the stacking direction are formed, and a starting end is connected to the supply-side heat transfer medium manifold, and a termination is A polymer electrolyte fuel cell in which a heat transfer medium flow path is formed at a junction between adjacent cells connected to the discharge-side heat transfer medium manifold,
前記供給側伝熱媒体マ二ホールドおよび前記排出側伝熱媒体マ二ホールドの少 なくとも 、ずれかの伝熱媒体マ二ホールド内に前記積層方向に延伸するように配設 されている、断熱性材料カゝらなる筒部材を有し、  At least one of the supply-side heat transfer medium manifold and the discharge-side heat transfer medium manifold is disposed so as to extend in the stacking direction in any one of the heat transfer medium manifolds. Having a cylindrical member made of a functional material,
前記伝熱媒体マ二ホールドは筒部材内領域と筒部材外領域とに区画して構成され 前記筒部材には、前記筒部材内領域と前記筒部材外領域とを連通する貫通部が 前記積層方向に連続的に形成されて 、る。 The heat transfer medium manifold is divided into a cylindrical member inner region and a cylindrical member outer region, and the cylindrical member has a penetrating portion that communicates the cylindrical member inner region and the cylindrical member outer region. It is continuously formed in the stacking direction.
[0017] このように構成すると、伝熱媒体と供給側伝熱媒体マ二ホールドおよび排出側伝熱 媒体マ-ホールドの少なくとも 、ずれかの壁面との熱交換を抑制することができる。ま た、供給側伝熱媒体マ二ホールドにお!、て筒部材内領域力も筒部材外領域へ流出 する伝熱媒体および排出側伝熱媒体マ二ホールドにおいて筒部材外領域力 側筒 部材内領域へ流入する伝熱媒体の少なくとも ヽずれかのセルの積層方向における 流量分布を貫通部の数あるいは大きさによって調整することができるので、筒部材の 交換によって、セルの積層方向における伝熱媒体の流量分布を容易に調整すること ができる。  [0017] With this configuration, it is possible to suppress heat exchange between at least one of the wall surfaces of the heat transfer medium, the supply side heat transfer medium manifold, and the discharge side heat transfer medium manifold. In addition, in the supply side heat transfer medium manifold, the region force in the tubular member also flows out to the region outside the tube member, and in the discharge side heat transfer medium manifold, the region force outside the cylinder member in the side tube member Since the flow distribution in the stacking direction of at least one of the heat transfer media flowing into the region can be adjusted by the number or size of the through portions, the heat transfer medium in the stacking direction of the cells can be obtained by replacing the cylindrical member. The flow distribution of the can be easily adjusted.
[0018] 第 2の本発明の PEFCは、前記筒部材は、前記伝熱媒体が供給される供給端から 遠ざかるに従い、前記貫通部の大きさが増加しているとよい。このように構成すると、 セルの積層方向における伝熱媒体の流量の不均一を抑制することができる。  [0018] In the PEFC of the second aspect of the present invention, it is preferable that the size of the through portion increases as the cylindrical member moves away from a supply end to which the heat transfer medium is supplied. If comprised in this way, the nonuniformity of the flow volume of the heat-transfer medium in the lamination direction of a cell can be suppressed.
[0019] 第 3の本発明の PEFCは、前記筒部材は、前記伝熱媒体が供給される供給端から 遠ざかるに従い、前記貫通部の大きさが減少しているとよい。このように構成すると、 スタックの供給端側における伝熱媒体流量を増やすことができる。すなわち、外気に よって供給端側がより冷却されるような PEFCの設置形態において好適である。  [0019] In the PEFC of the third aspect of the present invention, it is preferable that the size of the through portion is reduced as the cylindrical member moves away from a supply end to which the heat transfer medium is supplied. With this configuration, the heat transfer medium flow rate on the supply end side of the stack can be increased. In other words, it is suitable in the PEFC installation mode in which the supply end side is further cooled by the outside air.
[0020] 第 4の本発明の PEFCは、前記筒部材は、前記積層方向中央部から遠ざかるに従 い、前記貫通部の大きさが増加しているとよい。このように構成すると、スタックの両端 における伝熱媒体流量を増やすことができる。すなわち、外気によってスタックの両 端がより冷却されるような PEFCの設置形態において好適である。  [0020] In the PEFC of the fourth aspect of the present invention, it is preferable that the size of the through portion increases as the cylindrical member moves away from the central portion in the stacking direction. With this configuration, the heat transfer medium flow rate at both ends of the stack can be increased. In other words, it is suitable for the installation form of PEFC in which both ends of the stack are further cooled by the outside air.
[0021] 第 5の本発明の PEFCは、前記筒部材は、前記積層方向中央部から遠ざかるに従 い、前記貫通部の大きさが減少しているとよい。このように構成すると、スタックの中央 部における伝熱媒体流量を増やすことができる。すなわち、スタック周囲の断熱が十 分であり、スタックの熱の周囲への放熱が少ないような PEFCの設置形態において好 適である。  In the PEFC of the fifth aspect of the present invention, it is preferable that the size of the through portion is reduced as the cylindrical member moves away from the central portion in the stacking direction. With this configuration, the heat transfer medium flow rate at the center of the stack can be increased. In other words, it is suitable for PEFC installations where the heat insulation around the stack is sufficient and the heat of the stack is not released to the surroundings.
[0022] 第 6の本発明の PEFCは、前記貫通部は、前記積層方向に連続して形成されてい る複数の貫通孔であって、前記貫通孔の分布密度及び前記貫通孔の大きさのうち少 なくともいずれかが連続的に変化しているとよい。このように構成すると、貫通孔の疎 密あるいは大小によって、供給側伝熱媒体マ-ホールドにお 、て筒部材内領域から 筒部材外領域へ流出する伝熱媒体および排出側伝熱媒体マ二ホールドにおいて筒 部材外領域から側筒部材内領域へ流入する伝熱媒体の少なくともいずれかのセル の積層方向における流量分布を調整することができる。 [0022] In the PEFC of the sixth aspect of the present invention, the through-portion is a plurality of through-holes formed continuously in the stacking direction, and the distribution density of the through-holes and the size of the through-holes At least one of them should change continuously. With this configuration, the through hole is sparse. The heat transfer medium flowing out from the cylindrical member inner region to the outer region of the cylindrical member and the discharge side heat transfer medium manifold in the supply side heat transfer medium manifold depending on the density or the size, and the side cylindrical member from the outer region of the cylindrical member The flow rate distribution in the stacking direction of at least one cell of the heat transfer medium flowing into the inner region can be adjusted.
[0023] 第 7の本発明の PEFCは、前記貫通部は、前記積層方向に延びる割れ目であって 、前記積層方向において前記割れ目の大きさが連続的に変化しているとよい。このよ うに構成すると、割れ目の形状によって、供給側伝熱媒体マ二ホールドにおいて筒 部材内領域から筒部材外領域へ流出する伝熱媒体および排出側伝熱媒体マニホ 一ルドにおいて筒部材外領域から側筒部材内領域へ流入する伝熱媒体の少なくとも V、ずれかのセルの積層方向における流量分布を調整することができる。  [0023] In the PEFC of the seventh aspect of the present invention, the through portion may be a crack extending in the stacking direction, and the size of the crack may be continuously changed in the stacking direction. With this configuration, depending on the shape of the crack, the heat transfer medium flowing from the cylindrical member inner region to the cylindrical member outer region in the supply side heat transfer medium manifold and the discharge side heat transfer medium manifold from the cylindrical member outer region in the supply side heat transfer medium manifold. It is possible to adjust the flow rate distribution in the stacking direction of at least V of the heat transfer medium flowing into the side cylinder member inner region, or any of the cells.
[0024] 第 8の本発明の PEFCは、前記筒部材は、前記伝熱媒体マ-ホールドの壁面に係 合しているとよい。このように構成すると、伝熱媒体による応力等なんらかの原因によ つて筒部材が伝熱媒体マ二ホールド内を回転したり、移動したりすることを抑制するこ とができるので、伝熱媒体流路の始端あるいは終端と貫通部との位置関係のずれを 抑帘 Uすることができる。  [0024] In the PEFC of the eighth aspect of the present invention, the cylindrical member may be engaged with a wall surface of the heat transfer medium holder. With this configuration, the cylindrical member can be prevented from rotating or moving in the heat transfer medium manifold due to some cause such as stress due to the heat transfer medium. It is possible to suppress the deviation of the positional relationship between the beginning or end of the road and the penetrating part.
[0025] 第 9の本発明は、前記断熱性材料は、榭脂、ガラス、ゴムまたはセラミックスであると よい。このように構成すると、電気絶縁性、断熱性及び耐環境性に優れた筒部材とす ることができる。ここで、前記筒部材には、金属製の筒体の表面が榭脂、ガラス、ゴム 又はセラミックスで被覆された筒部材も含まれる。  [0025] In the ninth aspect of the present invention, the heat insulating material is preferably resin, glass, rubber, or ceramics. If comprised in this way, it can be set as the cylinder member excellent in electrical insulation, heat insulation, and environmental resistance. Here, the cylindrical member includes a cylindrical member in which the surface of a metal cylindrical body is coated with resin, glass, rubber or ceramics.
[0026] 本発明の上記目的、他の目的、特徴、及び利点は、添付図面参照の下、以下の好 適な実施態様の詳細な説明から明らかにされる。  The above object, other objects, features, and advantages of the present invention will become apparent from the following detailed description of the preferred embodiments with reference to the accompanying drawings.
発明の効果  The invention's effect
[0027] 以上のように、本発明の PEFCは、伝熱媒体と伝熱媒体マ-ホールド壁面との熱交 換を抑制し、かつセルの積層方向における伝熱媒体の流量分布を容易に調整する ことができると!/、う効果を奏する。  [0027] As described above, the PEFC of the present invention suppresses heat exchange between the heat transfer medium and the heat transfer medium holder wall surface, and easily adjusts the flow distribution of the heat transfer medium in the cell stacking direction. If you can!
図面の簡単な説明  Brief Description of Drawings
[0028] [図 1]図 1は、本発明の第 1実施形態の PEFCのセルの積層構造を示す部分分解斜 視図である。 [図 2]図 2は、図 1のスタックのセル間の積層構造を示す分解斜視図である。 FIG. 1 is a partially exploded perspective view showing a laminated structure of PEFC cells according to the first embodiment of the present invention. FIG. 2 is an exploded perspective view showing a laminated structure between cells of the stack of FIG.
[図 3]図 3は、図 1のスタックの端部の構造を示す分解斜視図である。 FIG. 3 is an exploded perspective view showing a structure of an end portion of the stack of FIG. 1.
[図 4]図 4は、供給側筒部材あるいは排出側筒部材の斜視図である。 FIG. 4 is a perspective view of a supply side cylinder member or a discharge side cylinder member.
[図 5]図 5は、図 2の V方向からみた矢視図である。 [FIG. 5] FIG. 5 is a view as seen from the direction of the arrow V in FIG.
圆 6]図 6は、変形例 1の供給側筒部材あるいは排出側筒部材の斜視図である。 圆 7]図 7は、変形例 2の供給側筒部材あるいは排出側筒部材の斜視図である。 圆 8]図 8は、変形例 3の供給側筒部材あるいは排出側筒部材の斜視図である。 圆 9]図 9は、変形例 4の供給側筒部材あるいは排出側筒部材の斜視図である。 圆 10]図 10は、変形例 5の供給側筒部材あるいは排出側筒部材の斜視図である。 圆 11]図 11は、変形例 6の供給側筒部材あるいは排出側筒部材の斜視図である。 圆 12]図 12は、変形例 7の供給側筒部材あるいは排出側筒部材の斜視図である。 圆 13]図 13は、変形例 9の供給側筒部材あるいは排出側筒部材の斜視図である。 6] FIG. 6 is a perspective view of the supply-side cylinder member or the discharge-side cylinder member of Modification 1. 7] FIG. 7 is a perspective view of the supply-side cylinder member or the discharge-side cylinder member of Modification 2. 8] FIG. 8 is a perspective view of the supply-side cylinder member or the discharge-side cylinder member of Modification 3. 9] FIG. 9 is a perspective view of the supply-side cylinder member or the discharge-side cylinder member of Modification 4. FIG. 10 is a perspective view of the supply-side cylinder member or the discharge-side cylinder member of Modification 5.圆 11] FIG. 11 is a perspective view of a supply-side cylinder member or a discharge-side cylinder member of Modification 6.圆 12] FIG. 12 is a perspective view of the supply-side cylinder member or the discharge-side cylinder member of Modification 7.圆 13] FIG. 13 is a perspective view of a supply-side cylinder member or a discharge-side cylinder member of Modification 9.
[図 14]図 14は、変形例 9のスタックのアノードセパレータの外面側における断面図で ある。 FIG. 14 is a cross-sectional view on the outer surface side of the anode separator of the stack of Modification 9.
圆 15]図 15は、模擬解析に用いたマ-ホールドと筒部材とを示す斜視図である。 [15] FIG. 15 is a perspective view showing the marker and the cylindrical member used in the simulation analysis.
[図 16]図 16は、模擬解析の結果を示す図である。 FIG. 16 is a diagram showing the results of simulation analysis.
符号の説明 Explanation of symbols
5 膜 電極接合体 (MEA)  5 Membrane electrode assembly (MEA)
6 ガスケット  6 Gasket
7 MEA部材  7 MEA material
9A アノードセパレータ  9A anode separator
9C、 9CE 力ソードセパレータ  9C, 9CE force sword separator
10 セル  10 cells
121、 221、 321 供給側アノードガスマ-ホールド孔  121, 221, 321 Supply side anode gas hold hole
12E、 22E、 32E 排出側アノードガスマ-ホールド孔  12E, 22E, 32E Discharge side anode gas hold hole
131、 231、 331 供給側力ソードガスマ-ホールド孔  131, 231, 331 Supply side force sword gas hold hole
13E、 23E、 33E 排出側力ソードガスマ-ホールド孔  13E, 23E, 33E Discharge side sword gas hold hole
141、 241、 341 供給側伝熱媒体マ二ホールド孔 E、 24E、 34E 排出側伝熱媒体マ-ホールド孔, 25, 35、 55, 65, 75 ボノレ卜孑し 141, 241, 341 Supply side heat transfer medium manifold hole E, 24E, 34E Exhaust side heat transfer medium hold hole, 25, 35, 55, 65, 75 Bonore
、 30 MEA当接面 30 MEA contact surface
アノードガス流路溝  Anode gas channel groove
力ソードガス流路溝  Force sword gas flow channel
、 36 伝熱媒体流路溝36 Heat transfer medium flow channel
1 供給側筒部材1 Supply side cylinder
E 排出側筒部材 E Discharge side tube member
 Hole
割れ目  Crack
無蓋端部  Open end
凹部  Recess
、 51 集電板 51 collector plate
、 61 絶縁板 61 insulation plate
、 71 エンドプレート71 End plate
1、 621、 721 供給側アノードガス流通孔E、 62E、 72E 排出側アノードガス流通孔1、 631、 731 供給側力ソードガス流通孔E、 63E、 73E 排出側力ソードガス流通孔1、 641, 741 供給側伝熱媒体流通孔1, 621, 721 Supply side anode gas flow hole E, 62E, 72E Discharge side anode gas flow hole 1, 631, 731 Supply side force sword gas flow hole E, 63E, 73E Discharge side force sword gas flow hole 1, 641, 741 Supply Side heat transfer medium flow hole
E、 64E, 74E 排出側伝熱媒体流通孔 端子 E, 64E, 74E Discharge side heat transfer medium flow hole Terminal
ボノレト  Bonoleto
座金  Washer
ナット  Nut
ノズル nozzle
1 供給側アノードガスマ二ホールド1 Supply side anode gas manifold hold
E 排出側アノードガスマ-ホールド 931 供給側力ソードガスマ-ホールド E Discharge side anode gas hold 931 Supply side sword gas hold
93E 排出側力ソードガスマ-ホールド  93E Discharge side sword gas hold
941 供給側伝熱媒体マ二ホールド  941 Supply side heat transfer medium manifold
94E 排出側伝熱媒体マ二ホールド  94E Exhaust heat transfer medium manifold
951 空間  951 Space
95E 空間  95E space
96 凸部  96 Convex
99 セル積層体  99 cell laminate
100 スタック  100 stacks
201 マ二ホールド  201 Manihold
202 筒部材  202 Tube member
202A 割れ目  202A crack
203 伝熱媒体流路孔  203 Heat transfer medium channel hole
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0030] 以下、本発明の実施の形態について図面を参照しながら説明を行う。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0031] (第 1実施形態) [0031] (First embodiment)
まず第 1実施形態を着想する背景となった模擬解析を説明する。模擬解析では、マ 二ホールド内での断熱性の筒体の有無によって伝熱媒体温度の分布がどのように変 化するかを解析した。  First, the simulation analysis that became the background for the first embodiment will be described. In the simulation analysis, we analyzed how the temperature distribution of the heat transfer medium changes depending on the presence or absence of a heat insulating cylinder in the manifold.
[0032] 図 15は、模擬解析に用いたマ-ホールドと筒部材とを示す斜視図である。  FIG. 15 is a perspective view showing the hold and the cylindrical member used for the simulation analysis.
[0033] 図 15に示すように、解析用のマ-ホールド 201は全長が 280mmであって、延伸方 向に等間隔で 27個の解析用の伝熱媒体流路孔 203が形成されている。また、マ- ホールド 201の壁面に沿って、解析用の筒部材 202が配設されている。筒部材 202 は延伸方向に 8mm幅の割れ目 202Aが延びて 、る。割れ目 202Aは伝熱媒体流路 孔 203に面して形成されている。筒部材 202の肉厚は 1. Ommとしている。 As shown in FIG. 15, the analysis mold 201 has a total length of 280 mm, and 27 heat transfer medium flow passage holes 203 for analysis are formed at equal intervals in the extending direction. . A cylindrical member 202 for analysis is disposed along the wall surface of the manifold 201. The cylindrical member 202 has a crack 202A having a width of 8 mm extending in the extending direction. The crack 202A is formed facing the heat transfer medium flow path hole 203. The wall thickness of the cylindrical member 202 is 1. Omm.
[0034] 解析の設定条件としては、伝熱媒体は水とし、マ-ホールド 201の一端力 他端に 向けて伝熱媒体を流量 2. llZminで供給することとした。また、伝熱媒体の温度 60 °C、マ-ホールド 201の壁面温度 63°C、筒部材 202の材質はエポキシ榭脂を想定し て熱伝導率 0. 19WZmKとした。これらの条件の下、伝熱媒体供給端からの距離 X の位置の伝熱媒体流路孔 203から流出する伝熱媒体の温度 Tを解析した。また比較 例として、解析用筒部材 202を排除した状態での同条件での解析も行った。 [0034] As a setting condition for the analysis, the heat transfer medium was water, and the heat transfer medium was supplied at a flow rate of 2. llZmin toward one end of the malle 201 and the other end. It is assumed that the temperature of the heat transfer medium is 60 ° C, the wall temperature of the malleable 201 is 63 ° C, and the material of the cylindrical member 202 is epoxy resin. The thermal conductivity was 0.19 WZmK. Under these conditions, the temperature T of the heat transfer medium flowing out from the heat transfer medium passage hole 203 at a distance X from the heat transfer medium supply end was analyzed. As a comparative example, analysis was also performed under the same conditions with the analysis cylinder member 202 removed.
[0035] 図 16は、模擬解析の結果を示す図である。図 16に示すように、筒部材 202がない 場合の方が筒部材 202がある場合よりも高い温度となった。すなわち、マ-ホールド 201内の伝熱媒体とマ-ホールド 201壁面との熱交換が抑制されていることがわかつ た。 FIG. 16 is a diagram showing the results of simulation analysis. As shown in FIG. 16, the temperature without the cylindrical member 202 was higher than that with the cylindrical member 202. That is, it has been found that heat exchange between the heat transfer medium in the holder 201 and the wall surface of the holder 201 is suppressed.
[0036] また、双方とも、伝熱媒体供給端から離れるほど温度上昇が大きくなる傾向が確認 された。し力しながら、筒部材 202がある場合の方力 筒部材 202がない場合よりも 温度偏差が抑制されることがわ力つた。また、貫通部である割れ目 202Aの形状ゃ大 きさによって、マ-ホールド 201延伸方向における伝熱媒体の温度偏差をさらに抑制 することができるものと考えるに至った。  [0036] In addition, it was confirmed that the temperature increases with increasing distance from the heat transfer medium supply end. However, it was found that the temperature deviation is suppressed more than when the cylindrical member 202 is not provided. Further, it has been considered that the temperature deviation of the heat transfer medium in the direction of stretching the mold 201 can be further suppressed depending on the size of the crack 202A which is the penetrating portion.
[0037] 図 1は、本発明の第 1実施形態の PEFCのセルの積層構造を示す部分分解斜視図 である。  FIG. 1 is a partially exploded perspective view showing a laminated structure of PEFC cells according to the first embodiment of the present invention.
[0038] 図 1〖こ示すよう〖こ、 PEFCの本体には、矩形平板状のセル 10が 100体積層された セル積層体 99が、直方体状を形成して構成されて!ヽる。  [0038] As shown in FIG. 1, the PEFC main body includes a cell laminate 99 in which 100 rectangular flat-plate cells 10 are laminated to form a rectangular parallelepiped shape.
[0039] また、セル 10は、 MEA部材 7を一対の平板状のアノードセパレータ 9A及びカソー ドセパレータ 9C (両者をセパレータと総称する)で挟んで構成されて 、る。  [0039] Further, the cell 10 is configured by sandwiching the MEA member 7 between a pair of flat plate-like anode separator 9A and cathode separator 9C (both are collectively referred to as a separator).
[0040] また、セパレータ 9A, 9C及び MEA部材 7の周縁部には、それぞれセル積層体 99 にお 、て連なって、供給側アノードガスマ-ホールド 921を形成する供給側アノード ガスマ-ホールド孔 121、 221、 321、および排出側アノードガスマ-ホールド 92Eを 形成する排出側アノードガスマ-ホールド孔 12E、 22E、 32E力 その主面を貫通す るようにして穿たれている。また、同様にして、それぞれセル積層体 99において連な つて、供給側力ソードガスマ-ホールド 931を形成する供給側力ソードガスマ-ホール ド孔 131、 231、 331、および排出側力ソードガスマ-ホールド 93Eを形成する排出側 力ソードガスマ-ホールド孔 13E、 23E、 33E力 その主面を貫通するようにして穿た れている。さらに、同様にして、それぞれセル積層体 99において、供給側伝熱媒体 マ-ホールド 941を形成する供給側伝熱媒体マ-ホールド孔 141、 241、 341、および 排出側伝熱媒体マ-ホールド 94Eを形成する排出側伝熱媒体マ-ホールド孔 14E 、 24E、 34E力 その主面を貫通するようにして穿たれている。 [0040] Supply side anode gas marker hold holes 121, 221 are formed at the peripheral portions of the separators 9A and 9C and the MEA member 7 to form the supply side anode gas marker hold 921 connected to the cell stack 99, respectively. 321 and exhaust side anode gas marker holes 92E forming the exhaust side anode gas marker 92E are drilled so as to penetrate the main surface. Similarly, supply-side force sword gas hold holes 131, 231 and 331 that form supply-side force sword gas hold 931 and discharge-side force sword gas hold 93E that are connected to each other in cell stack 99 are formed. Discharge side force sword gas hold hole 13E, 23E, 33E forces are drilled through the main surface. Further, similarly, in each of the cell laminates 99, supply-side heat transfer medium marker holes 141, 241, 341, which form supply-side heat transfer medium marker 941, and Exhaust side heat transfer medium marker holes 14E, 24E, 34E forming the discharge side heat transfer medium marker 94E are drilled so as to penetrate through their main surfaces.
[0041] MEA部材 7は、 MEA5の周縁に延在する高分子電解膜が一対のフッ素ゴム製の ガスケット 6で挟まれて構成されている。したがって、ガスケット 6の中央開口部の両面 には MEA5が露出している。また、ガスケット 6を貫通して供給側アノードガスマ-ホ 一ルド孔 121、排出側アノードガスマ-ホールド孔 12E、供給側力ソードガスマ-ホー ルド孔 131、排出側力ソードガスマ-ホールド孔 13E、供給側伝熱媒体マ-ホールド 孔 141、排出側伝熱媒体マ-ホールド孔 14Eが穿たれて 、る。  [0041] The MEA member 7 is configured by sandwiching a polymer electrolyte membrane extending around the periphery of the MEA 5 between a pair of fluororubber gaskets 6. Therefore, MEA 5 is exposed on both sides of the central opening of gasket 6. Also, it penetrates through the gasket 6, supply side anode gas holder hole 121, discharge side anode gas marker hold hole 12 E, supply side force sword gas hold hole 131, discharge side force sword gas hold hole 13 E, supply side heat transfer medium The mulch hole 141 and the discharge side heat transfer medium mer hold hole 14E are formed.
[0042] MEA5は、水素イオンを選択的に透過するイオン交換膜からなる高分子電解質膜 と、高分子電解質膜を挟むように形成された、白金族金属触媒を担持したカーボン 粉末を主成分とする一対のアノード側触媒層及び力ソード側触媒層と、この一対の触 媒層の外面に配設された一対のアノード側ガス拡散層及び力ソード側ガス拡散層と を備えて構成されている。これら触媒層とガス拡散層とが電極を構成する。すなわち 、 MEA5は、高分子電解質膜と、その両主面の中央部に積層して構成された一対の 電極、アノード電極および力ソード電極とを有して構成されており、 MEA5の両主面 には電極面が構成されて 、る。  [0042] MEA 5 is mainly composed of a polymer electrolyte membrane composed of an ion exchange membrane that selectively permeates hydrogen ions, and a carbon powder carrying a platinum group metal catalyst formed so as to sandwich the polymer electrolyte membrane. A pair of anode side catalyst layers and force sword side catalyst layers, and a pair of anode side gas diffusion layers and force sword side gas diffusion layers disposed on the outer surfaces of the pair of catalyst layers. . These catalyst layer and gas diffusion layer constitute an electrode. That is, the MEA 5 is composed of a polymer electrolyte membrane and a pair of electrodes, an anode electrode and a force sword electrode, which are laminated at the center of both main surfaces thereof. An electrode surface is formed on the surface.
[0043] ここで、高分子電解質膜には、パーフルォロスルホン酸の市販品(デュポン (株)製 の Nafionl 12 (登録商標)膜)が用いられて 、る。  Here, as the polymer electrolyte membrane, a commercially available product of perfluorosulfonic acid (Nafionl 12 (registered trademark) membrane manufactured by DuPont) is used.
[0044] 触媒層は以下のようにして作製される。炭素粉末であるケッチェンブラック(ケッチェ ンブラックインターナショナル (株)製の Ketjen Black EC、粒径 30nm)に白金を 担持させて触媒体 (50wt%が Pt)を用意する。そして、この触媒体を 66質量部として 、パーフルォロカーボンスルホン酸アイオノマー(米国 Aldrich社製の 5質量0 /oNafio n分散液)を 33質量部 (高分子乾燥質量)として混合し、得られた混合物を成形して 厚さ 10〜20 /ζ πι程度の触媒層とする。 [0044] The catalyst layer is produced as follows. A catalyst body (50 wt% is Pt) is prepared by supporting platinum on Ketjen Black (Ketjen Black EC, Ketjen Black International Co., Ltd., particle size 30 nm), which is carbon powder. Then, 66 parts by mass of this catalyst body was mixed with 33 parts by mass (polymer dry mass) of perfluorocarbon sulfonic acid ionomer (5 mass 0 / oNafion dispersion manufactured by Aldrich, USA). The resulting mixture is formed into a catalyst layer having a thickness of about 10-20 / ζ πι.
[0045] また、ガス拡散層は、通気性と電子伝導性を併せ持つように多孔質構造を有して!/ヽ る。例えば、ガス拡散層は以下のようにして作製される。細孔の 80%以上の径が 20 〜70 μ mであるカーボン織布を基材とする。例えば、日本カーボン (株)製 GF— 20 —Eを基材に用いることができる。次に、純水と界面活性剤とを混ぜ合わせた溶液に ポリテトラフルォロエチレン(PTFE)を分散させて PTFE分散液を用意する。この PT FE分散液に基材を浸潰させる。そして、分散液に浸潰された基材を遠赤外線乾燥 炉に通し、 300°Cで 60分間焼成する。焼成後の基材表面における撥水性榭脂(PT FE)の密度は 1. OmgZcm2前後となる。次に、純水と界面活性剤を混ぜ合わせた 溶液にカーボンブラックを分散させて、カーボンブラック分散液を用意する。このカー ボンブラック分散液に PTFEと水を加え、 3時間程度混練して、コート層用塗料を用 意する。このコート層用塗料を、上述のように焼成後の基材に、塗工機を用いて塗工 する。塗工された基材を、熱風乾燥機を用いて 300°Cで 2時間焼成して、ガス拡散層 とする。このガス拡散層に含まれる撥水性榭脂(PTFE)の密度は 0. 8mg/cm2程 度となる。なお、界面活性剤としては、トリトン (Triton) X— 100の商品名で市販され ているものを用いることができる。また、溶液中のカーボンブラックの分散においては 、ブラネタリーミキサーを 3時間程度用いてカーボンブラックを溶液中に分散させるこ とがでさる。 [0045] Further, the gas diffusion layer has a porous structure so as to have both air permeability and electronic conductivity. For example, the gas diffusion layer is produced as follows. The base material is a carbon woven fabric having a diameter of 20 to 70 μm of 80% or more of the pores. For example, GF-20-E manufactured by Nippon Carbon Co., Ltd. can be used as the base material. Next, a pure water / surfactant mixed solution Prepare a PTFE dispersion by dispersing polytetrafluoroethylene (PTFE). The substrate is immersed in this PTFE dispersion. The base material soaked in the dispersion is passed through a far-infrared drying oven and baked at 300 ° C for 60 minutes. The density of the water-repellent resin (PT FE) on the surface of the substrate after firing is about 1. OmgZcm 2 . Next, carbon black is dispersed in a solution in which pure water and a surfactant are mixed to prepare a carbon black dispersion. Add PTFE and water to this carbon black dispersion and knead for about 3 hours to prepare the coating material for the coating layer. The coating material for the coat layer is applied to the base material after baking as described above using a coating machine. The coated substrate is baked at 300 ° C for 2 hours using a hot air dryer to form a gas diffusion layer. The density of the water-repellent resin (PTFE) contained in this gas diffusion layer is about 0.8 mg / cm 2 . As the surfactant, those commercially available under the trade name Triton X-100 can be used. In addition, carbon black can be dispersed in the solution by using a planetary mixer for about 3 hours.
[0046] 上述のようにして得られるガス拡散層と触媒層とを、高分子電解質膜の中央部の両 面にホットプレスにより接合して、 MEA5を作製することができる。  [0046] The gas diffusion layer and catalyst layer obtained as described above can be joined to both surfaces of the central portion of the polymer electrolyte membrane by hot pressing to produce MEA5.
[0047] アノードセパレータ 9Aおよび力ソードセパレータ 9C (以下、両者をセパレータと総 称する)は、導電性材料で構成されている。ここでは、セパレータ 9A, 9Cは、いずれ もフエノール榭脂を含浸させた黒鉛板カゝらなり、 150mm角、厚さが 3mmの平板状で ある。アノードセパレータ 9Aの内面には MEA部材 7の MEA5に当接する位置に平 面状の MEA当接面 20が形成されている。 MEA当接面 20は、 MEA部材 7とァノー ドセパレータ 9Aとの接合時に、 MEA5の一方の主面と当接するようにアノードセパレ ータ 9Aの内面に段差を有して形成されている。力ソードセパレータ 9Cも同様にして 、力ソードセパレータ 9Cの内面には MEA5の他方の主面に当接する位置に平面状 の MEA当接面 30が形成されている。 MEA当接面 30は、 MEA部材 7と力ソードセ パレータ 9Cとの接合時に、 MEA5の他方の主面と当接するように力ソードセパレー タ 9Cの内面に段差を有して形成されている。これによつて、セル 10においては、ァノ ードセパレータ 9Aおよび力ソードセパレータ 9Cは MEA5を表裏から挟むようにして MEA5に接合し、かつセパレータ 9A、 9Cは導電性材料からなるので、 MEA5にお いて発生した電気エネルギーをセパレータ 9A、 9Cを経由して外部へ取り出すことが できる。 [0047] Anode separator 9A and force sword separator 9C (hereinafter, both are collectively referred to as a separator) are made of a conductive material. Here, each of the separators 9A and 9C is a graphite plate impregnated with phenol resin, and has a flat plate shape of 150 mm square and 3 mm thickness. On the inner surface of the anode separator 9A, a flat MEA contact surface 20 is formed at a position where the MEA member 7 contacts the MEA 5. The MEA contact surface 20 is formed with a step on the inner surface of the anode separator 9A so as to contact one main surface of the MEA 5 when the MEA member 7 and the anode separator 9A are joined. Similarly, in the force sword separator 9C, a planar MEA contact surface 30 is formed on the inner surface of the force sword separator 9C at a position in contact with the other main surface of the MEA 5. The MEA contact surface 30 is formed with a step on the inner surface of the force sword separator 9C so as to contact the other main surface of the MEA 5 when the MEA member 7 and the force sword separator 9C are joined. Accordingly, in the cell 10, the anode separator 9A and the force sword separator 9C are joined to the MEA 5 with the MEA 5 sandwiched from the front and back, and the separators 9A and 9C are made of a conductive material. The generated electrical energy can be taken out via separators 9A and 9C.
[0048] また、アノードセパレータ 9Aの内面には、供給側アノードガスマ-ホールド孔 221と 排出側アノードガスマ-ホールド孔 22Eとの間を結ぶようにしてアノードガス流路溝 2 1が形成されている。アノードガス流路溝 21は、 MEA当接面 20の略全面に亘つて形 成されている。ここでは、アノードガス流路溝 21は、幅 2. Omm、深さ 1. Ommの 1本 の溝力 構成されている。  [0048] Also, an anode gas flow channel 21 is formed on the inner surface of the anode separator 9A so as to connect the supply-side anode gas marker hold hole 221 and the discharge-side anode gas marker hold hole 22E. The anode gas channel groove 21 is formed over substantially the entire MEA contact surface 20. Here, the anode gas flow path groove 21 has a single groove force having a width of 2. Omm and a depth of 1. Omm.
[0049] 同様にして、力ソードセパレータ 9Cの内面には、供給側力ソードガスマ-ホールド 孔 331と排出側力ソードガスマ-ホールド孔 33Eとの間を結ぶようにして力ソードガス 流路溝 31が形成されている。力ソードガス流路溝 31は、 MEA当接面 30の略全面に 亘つて形成されている。ここでは、力ソードガス流路溝 31は、幅 2. Omm、深さ 1. Om mの溝が 3本並行して構成されて!、る。  Similarly, a force sword gas passage groove 31 is formed on the inner surface of the force sword separator 9C so as to connect between the supply side force sword gas hold hole 331 and the discharge side force sword gas hold hole 33E. ing. The force sword gas flow channel 31 is formed over substantially the entire MEA contact surface 30. Here, the force sword gas passage groove 31 has three grooves having a width of 2. Omm and a depth of 1. Om in parallel.
[0050] 図 2は、図 1のスタックのセル間の積層構造を示す分解斜視図である。  FIG. 2 is an exploded perspective view showing a stacked structure between cells of the stack of FIG.
[0051] 図 2に示すように、アノードセパレータ 9Aの外面には、供給側伝熱媒体マ-ホール ド孔 241と排出側伝熱媒体マ-ホールド孔 24Eとの間を結ぶようにして伝熱媒体流路 溝 (伝熱媒体流路) 26が形成されている。伝熱媒体流路溝 26は、 MEA当接面 20の 背部を略全面に亘つて蛇行するように形成されている。同様にして、力ソードセパレ ータ 9Cの外面には、供給側伝熱媒体マ二ホールド孔 341と排出側伝熱媒体マニホ 一ルド孔 34Eとの間を結ぶようにして伝熱媒体流路溝 (伝熱媒体流路) 36が形成さ れている。伝熱媒体流路溝 36は、 MEA当接面 30の背部を略全面に亘つて蛇行す るように形成されている。また、セル積層体 99においては、伝熱媒体流路溝 26と伝 熱媒体流路溝 36とが接合するように形成されている。すなわち伝熱媒体流路溝 26 および伝熱媒体流路溝 36の流路形状は、互いに面対称となるように形成されて!、る 。これによつて、伝熱媒体流路 26, 36は、始端が供給側伝熱媒体マ二ホールド 941 に接続され、終端が排出側伝熱媒体マ-ホールド 94Eに接続されるようにして隣接 するセル 10同士の接合部に形成される。  [0051] As shown in FIG. 2, heat transfer is performed on the outer surface of the anode separator 9A so as to connect the supply-side heat transfer medium manifold hole 241 and the discharge-side heat transfer medium mall hold hole 24E. A medium flow path groove (heat transfer medium flow path) 26 is formed. The heat transfer medium flow channel groove 26 is formed so as to meander around the entire back surface of the MEA contact surface 20. Similarly, the outer surface of the force sword separator 9C is connected to the heat transfer medium flow channel groove (by connecting the supply side heat transfer medium manifold hole 341 and the discharge side heat transfer medium manifold hole 34E). A heat transfer medium flow path) 36 is formed. The heat transfer medium flow path groove 36 is formed so as to meander the entire back surface of the MEA contact surface 30. In the cell laminate 99, the heat transfer medium flow channel 26 and the heat transfer medium flow channel 36 are formed to be joined. That is, the flow path shapes of the heat transfer medium flow channel 26 and the heat transfer medium flow channel 36 are formed so as to be plane-symmetric with each other. As a result, the heat transfer medium flow paths 26 and 36 are adjacent to each other so that the start end is connected to the supply-side heat transfer medium manifold 941 and the end is connected to the discharge-side heat transfer medium manifold 94E. It is formed at the junction between cells 10.
[0052] ここでは、伝熱媒体流路溝 26, 36は、幅 2. Omm、深さ 1. Ommの溝が 2本並行し て構成されている。 [0053] なお、アノードガス流路溝 21、力ソードガス流路溝 31、および伝熱媒体流路溝 26, 36は、それぞれ水平方向に伸びる直線部と隣接する直線部をつなぐターン部とから 構成されているが、並行する溝の数およびターン部の数はそれぞれ限定されるもの ではなぐ本発明の効果を損なわない範囲で適宜設定することが可能である。 [0052] Here, the heat transfer medium flow channel grooves 26, 36 are configured by two parallel grooves having a width of 2. Omm and a depth of 1. Omm. [0053] The anode gas flow channel 21, the force sword gas flow channel 31, and the heat transfer medium flow channel 26, 36 are each composed of a straight portion extending in the horizontal direction and a turn portion connecting the adjacent straight portions. However, the number of parallel grooves and the number of turn portions are not limited to each other, and can be set as appropriate without departing from the effects of the present invention.
[0054] 図 3は、図 1のスタックの端部の構造を示す分解斜視図である。 FIG. 3 is an exploded perspective view showing the structure of the end portion of the stack of FIG.
[0055] スタック 100は、セル 10が積層されたセル積層体 99の両端の最外層に一対の端部 材が配設されて構成されている。すなわち、セル 10の両端の最外層には、セル 10と 同形の平面を有する集電板,絶縁板,エンドプレートが積層されている。集電板、絶 縁板,エンドプレートの 4隅に ίまボノレト孑し 55, 65, 75力形成されて!/、る。図 3にお!/ヽ ては、集電板 50,絶縁板 60,エンドプレート 70が配設されている一端部のみを示す The stack 100 is configured by arranging a pair of end members on the outermost layers at both ends of the cell stack 99 in which the cells 10 are stacked. That is, a current collector plate, an insulating plate, and an end plate having the same shape as the cell 10 are laminated on the outermost layers at both ends of the cell 10. The power collector plate, insulation plate, and end plate are formed with 4 holes and 55, 65, 75 force is formed! In FIG. 3, only one end where the current collector plate 50, the insulating plate 60, and the end plate 70 are disposed is shown.
[0056] ここで、スタック 100は、 PEFCの本体を構成する。そして、図示しないが、このスタ ック 100にアノードガス及び力ソードガスの供給及び排出システム、電気出力系統、 ならびに伝熱媒体の冷却システムあるいは排熱利用システムを備える伝熱媒体循環 システムが接続され、燃料電池システムが構成される。 [0056] Here, the stack 100 constitutes the main body of the PEFC. Although not shown, the stack 100 is connected to an anode gas and power sword gas supply and discharge system, an electrical output system, and a heat transfer medium circulation system including a heat transfer medium cooling system or an exhaust heat utilization system. A fuel cell system is configured.
[0057] 集電板は銅金属等導電性材料からなり、それぞれ端子 55が形成されている。そし て、一方の集電板 50には、その主面を貫通する流通孔が形成されている。具体的に は、集電板 50に当接する力ソードセパレータ 9CE、すなわち、積層されたセル 10の 一方の端面を構成する力ソードセパレータ 9CEの供給側伝熱媒体マ-ホールド孔 3 41に連通する供給側伝熱媒体流通孔 541、排出側伝熱媒体マ二ホールド孔 34Eに 連通する排出側伝熱媒体流通孔 54E、供給側アノードガスマ二ホールド孔 321に連 通する供給側アノードガス流通孔 521、排出側アノードガスマ-ホールド孔 32Eに連 通する排出側アノードガス流通孔 52E、供給側力ソードガスマ-ホールド孔 331に連 通する供給側力ソードガス流通孔 531、および排出側力ソードガスマ-ホールド孔 33 Eに連通する排出側力ソードガス流通孔 53Eが形成されている。  [0057] The current collector plate is made of a conductive material such as copper metal, and terminals 55 are formed respectively. And one current collector plate 50 is formed with a through hole penetrating the main surface. Specifically, the force sword separator 9CE that contacts the current collector plate 50, that is, the force sword separator 9CE constituting one end face of the stacked cells 10 communicates with the supply side heat transfer medium marker hole 3 41. Supply side heat transfer medium flow hole 541, discharge side heat transfer medium circulation hole 54E communicating with discharge side heat transfer medium manifold hole 34E, supply side anode gas circulation hole 521 communicating with supply side anode gas manifold hold hole 321, To the discharge side anode gas flow hole 52E communicating with the discharge side anode gas marker hold hole 32E, the supply side force sword gas flow hole 531 communicating with the supply side force sword gas hold hole 331, and the discharge side force sword gas hold hole 33E A discharge-side force sword gas circulation hole 53E that is in communication is formed.
[0058] 絶縁板およびエンドプレートは電気絶縁性材料力もなる。そして、一方の絶縁板 60 には、集電板 50に形成された流通孔 521, 52E, 531, 53E, 541, 54Eにそれぞれ 連通する供給側アノードガス流通孔 621、排出側アノードガス流通孔 62E、供給側力 ソードガス流通孔 631、排出側力ソードガス流通孔 63E、供給側伝熱媒体流通孔 641 、および排出側伝熱媒体流通孔 64Eが形成され、一方のエンドプレート 70には、絶 縁板 60に形成された流通孔 621, 62E, 631, 63E, 641, 64Eにそれぞれ連通する 供給側アノードガス流通孔 721、排出側アノードガス流通孔 72E、供給側力ソードガ ス流通孔 731、排出側力ソードガス流通孔 73E、供給側伝熱媒体流通孔 741、および 排出側伝熱媒体流通孔 74Eが形成されている。そして、エンドプレート 70外面側の 流通孔 721, 72E, 731, 73E, 741, 74Eにはそれぞれノス、ノレ 83力 ^装着されている。 ノズル 83は、外部の配管との接続部材である。また、図示しないが、他方の集電板, 絶縁板,およびエンドプレートはこれら流通孔が形成されていない点を除いて、集電 板 50,絶縁板 60,エンドプレート 70と同じ構成である。これによつて、スタック 100内 には、アノードガス、力ソードガスおよび伝熱媒体それぞれが、供給側流通孔 521、 6 21、 721、 531、 631、 731、 541、 641、 741および供給側マ二ホールド 921, 931, 941 を経て、供給側マ-ホールド 921, 931, 941からセル 10あるいはセル 10の間の流路 溝 21, 31, 26, 36に分流して、 出側マ二ホーノレド 92E, 93E, 94Eで合流して、 排出側マ-ホールド 92E, 93E, 94Eから排出側流通孔 52E、 62E、 72E、 53E、 6 3E、 73E、 54E、 64E、 74Eに至る流路が形成される。 [0058] The insulating plate and the end plate also have an electrically insulating material force. One insulating plate 60 has a supply-side anode gas circulation hole 621 and a discharge-side anode gas circulation hole 62E communicating with the circulation holes 521, 52E, 531, 53E, 541, 54E formed in the current collector plate 50, respectively. Supply side force A sword gas flow hole 631, a discharge side force sword gas flow hole 63E, a supply side heat transfer medium flow hole 641 and a discharge side heat transfer medium flow hole 64E are formed. One end plate 70 is formed on the insulating plate 60. Supply side anode gas flow hole 721, discharge side anode gas flow hole 72E, supply side force sword gas flow hole 731, discharge side force sword gas flow hole 73E A supply-side heat transfer medium flow hole 741 and a discharge-side heat transfer medium flow hole 74E are formed. The end holes 70 on the outer side of the end plate 70 are respectively fitted with nose and nore 83 forces ^ in the flow holes 721, 72E, 731, 73E, 741, 74E. The nozzle 83 is a connection member with external piping. Although not shown, the other current collecting plate, insulating plate, and end plate have the same configuration as the current collecting plate 50, insulating plate 60, and end plate 70 except that these flow holes are not formed. Thus, in the stack 100, anode gas, power sword gas, and heat transfer medium are respectively supplied to the supply side circulation holes 521, 621, 721, 531, 631, 731, 541, 641, 741 and the supply side manifold. After holding 921, 931, 941 and diverting to the channel groove 21, 31, 26, 36 between supply side hold 921, 931, 941 and cell 10 or cell 10, outlet side manifold 92E, 93E and 94E join together to form a flow path from the discharge side hold 92E, 93E, 94E to the discharge side circulation holes 52E, 62E, 72E, 53E, 63E, 73E, 54E, 64E, 74E.
[0059] そして、締結部材によって、一対の端部材間が締結されている。ここでは、ボルト 80 1S ボノレ卜孑し 11、 25, 35、 55, 65, 75に挿通されて、スタック 100の両端 を貫通し ている。そして、ボルト 80の両端に座金 81とナット 82が装着されて、一対のエンドプ レート 70, 71間がボルト 80と座金 81とナット 82とによって締結されて構成されている 。ここでは、セパレータの面積当たり lOkgf /cm2の力で締結されている。 [0059] The pair of end members are fastened by the fastening member. Here, the bolt 80 1S is bored through 11, 25, 35, 55, 65, 75 and penetrates both ends of the stack 100. A washer 81 and a nut 82 are attached to both ends of the bolt 80, and a pair of end plates 70 and 71 are fastened by a bolt 80, a washer 81 and a nut 82. Here, it is fastened with a force of lOkgf / cm 2 per separator area.
[0060] なお、積層されたセル 10の一方の端面を構成する力ソードセパレータ 9CEの外面 には伝熱媒体流路溝 36は形成されていない。また、図示しないが、他方の端面を構 成するアノードセパレータの外面にも伝熱媒体流路溝 36は形成されていない。  [0060] Note that the heat transfer medium flow channel 36 is not formed on the outer surface of the force sword separator 9CE constituting one end face of the stacked cells 10. Further, although not shown, the heat transfer medium flow channel 36 is not formed on the outer surface of the anode separator constituting the other end face.
[0061] ここで、本発明の特徴である供給側伝熱媒体マ-ホールド 941および排出側伝熱 媒体マ-ホールド 94E (以下適宜、両者を伝熱媒体マ-ホールドと総称する)の構造 を詳述する。  [0061] Here, the structure of the supply-side heat transfer medium holder 941 and the discharge-side heat transfer medium holder 94E (hereinafter, both are collectively referred to as the heat transfer medium holder), which is a feature of the present invention, is described. Detailed description.
[0062] 図 1乃至図 3に示すように、供給側伝熱媒体マ二ホールド 941には供給側筒部材( 筒体) 411、排出側伝熱媒体マ二ホールド 94Eには排出側筒部材 (筒体) 41Eがそれ ぞれ、挿入されている(以下適宜、両者を筒部材と総称する)。 As shown in FIGS. 1 to 3, the supply side heat transfer medium manifold 941 has a supply side cylindrical member ( (Cylinder) 411 and discharge-side heat transfer medium manifold 94E are respectively inserted with discharge-side cylinder members (cylinders) 41E (hereinafter, both are collectively referred to as cylinder members as appropriate).
[0063] 図 4は、供給側筒部材あるいは排出側筒部材の斜視図である。図中、矢印 50は、 集電板 50が存在する方向を指す。以下、図 6乃至図 13についても同じ。  FIG. 4 is a perspective view of the supply side cylinder member or the discharge side cylinder member. In the figure, the arrow 50 indicates the direction in which the current collector plate 50 exists. The same applies to FIGS. 6 to 13 below.
[0064] 筒部材 411、 41Eは、それぞれ伝熱媒体マ-ホールド 941、 94Eに嵌り込む形状あ るいは大きさの、少なくとも一端が無蓋端部 44である筒部材であって、セル 10の積 層長さと同等の長さを有している。筒部材 411、 41Eは、伝熱媒体マ-ホールド 941、 94Eに嵌挿される形状を有している。ここでは、角部が丸められている肉厚 1. Omm の扁平状の筒部材であって、エポキシ榭脂から構成されている。なお、図示しないが 、筒部材 411, 41Eの他端は、有蓋であっても無蓋であっても構わない。無蓋とすると 筒部材 411、 41Eの製作コストを節約することができ、有蓋とすると、他端における集 電板と筒部材 4 II、 41Eとの間力 の伝熱媒体マ-ホールド 941、 94E内への伝熱媒 体の流出を防止することができ、あるいは集電板と伝熱媒体との無用な熱交換を抑 ff¾することができる。  [0064] The cylindrical members 411 and 41E are cylindrical members having shapes or sizes that fit into the heat transfer medium holders 941 and 94E, respectively, and at least one end is a non-covered end portion 44. It has a length equivalent to the layer length. The cylindrical members 411 and 41E have shapes that are fitted into the heat transfer medium holders 941 and 94E. Here, it is a flat cylindrical member having a thickness of 1. Omm with rounded corners, and is made of epoxy resin. Although not shown, the other ends of the cylindrical members 411 and 41E may be covered or uncovered. If it is not covered, the manufacturing cost of the cylindrical members 411 and 41E can be saved, and if it is covered, the heat transfer medium hold 941 and 94E between the current collector plate and the cylindrical members 4 II and 41E at the other end It is possible to prevent the heat transfer medium from flowing out to the heat sink, or to suppress unnecessary heat exchange between the current collector plate and the heat transfer medium.
[0065] 筒部材 411、 41Eには、化学的に安定していて、より熱伝導性が低い材料を用いる と効果的である。例えば、榭脂またはガラス、ゴムまたはセラミックスを用いることがで きる。また、その他、十分な断熱性及び電気絶縁性が確保できる材質であればよい。 例えば、金属製の筒体の表面を榭脂、ガラス、ゴム又はセラミックスで被覆したものを 用いることちでさる。  [0065] It is effective to use a material that is chemically stable and has lower thermal conductivity for the cylindrical members 411 and 41E. For example, resin or glass, rubber or ceramics can be used. In addition, any material that can ensure sufficient heat insulation and electrical insulation may be used. For example, it is possible to use a metal cylinder whose surface is covered with resin, glass, rubber or ceramics.
[0066] さらに詳しくは、榭脂としては、例えばポリフエ-レンサルファイド (PPS)、ポリフツイ匕 ビニリデン、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリエチレンテレフタレ ート(PET)、ポリアミドイミド、ポリイミド、ポリアミド、ポリべンゾイミダゾール、ポリエチレ ンおよびポリテトラフルォロエチレン (PTFE)からなる群より選択される少なくとも 1種 を用いることができる。 PTFEを用いる場合は、強化のためにマイ力を充填材として用 いてもよぐポリイミドは高純度のものが好ましい。ポリエチレンとしては超高分子量ポ リエチレンが好ましい。ここで、各材料の熱伝導率 WZ (m'K)は、セパレータ 9A、 9 Cの材料として好適に用いられている榭脂含有カーボンが 10乃至 150であるのに対 し、エポキシ榭月旨 ίま 0. 19、 PPSiま 0. 08乃至 0. 29、ポリエーテノレイミド、 ίま、 0. 07、 Ρ ΕΤίま 0. 24、ポリイミド ίま 0. 10乃至 0, 18、ポリエチレン 0. 33、 PTFEO. 25の熱伝 導率 WZ (m · K)であり、セパレータの熱伝導率の数十分の 1以下となって!/、る。 [0066] More specifically, as the resin, for example, polyphenylene sulfide (PPS), poly vinylidene, polyether imide, polyether ether ketone, polyethylene terephthalate (PET), polyamide imide, polyimide, polyamide, At least one selected from the group consisting of polybenzoimidazole, polyethylene and polytetrafluoroethylene (PTFE) can be used. When PTFE is used, it is preferable to use a high-purity polyimide that can use My power as a filler for reinforcement. As the polyethylene, ultrahigh molecular weight polyethylene is preferred. Here, the thermal conductivity WZ (m′K) of each material is 10 to 150 of the resin-containing carbon that is preferably used as the material of the separators 9A and 9C, while the epoxy ίMA 0.19, PPSi 0.08 to 0.29, Polyetheroleimide, ίMA, 0.07, Ρ Thermal conductivity WZ (m · K) of ΕΤίma 0.24, polyimide ίma 0.10 to 0, 18, polyethylene 0.33, PTFEO.25, which is 1/10 of the thermal conductivity of the separator It becomes the following!
[0067] ゴムとしては、例えば、二トリルゴム(NBR)、水素添カ卩-トリルゴム(HNBR)、フッ素 ゴム(FKM)、エチレンプロピレンゴム(EPDM)、ブチノレゴム(IIR)、クロロプレンゴム (CR)、クロロスルホンィ匕ポリエチレン (CSM)からなる群より選択される少なくとも 1種 を用いることができる。これらの熱伝導率 WZ (m'K)は、 NBRは 0. 25、 EPDMは 0 . 36、IIRiま 0. 13、CRiま 0. 19、 CSMiま 0. 11であり、セノ レータの熱伝導率の数 十分の 1以下となっている。  [0067] Examples of rubbers include nitrile rubber (NBR), hydrogenated hydrogen-tolyl rubber (HNBR), fluorine rubber (FKM), ethylene propylene rubber (EPDM), butinole rubber (IIR), chloroprene rubber (CR), chloro At least one selected from the group consisting of sulfone polyethylene (CSM) can be used. These thermal conductivities WZ (m'K) are 0.25 for NBR, 0.36 for EPDM, 0.13 for IIRi, 0.19 for CRi, 0.11 for CSMi, and 0.11 for CSMi. The number of rates is less than one-tenth.
[0068] また、熱伝導率によって筒部材 411、 41Eに好適な材料を選定することができる。す なわち、スタック 100の運転動作時の供給側伝熱媒体マ-ホールド 941の壁面によつ て伝熱媒体は加熱される。したがって、筒部材 4 IIの肉厚が不十分であると、結果的 に熱媒体の温度上昇幅が大きくなつてしまうことになる。同様にして、スタック 100の 運転動作時の排出側伝熱媒体マ二ホールド 94Eの壁面によって伝熱媒体は冷却さ れる。したがって、筒部材 41Eの肉厚が不十分であると、結果的に熱媒体の温度下 降幅が大きくなつてしまうことになる。そこで、材料の熱伝導率によって、運転動作中 における筒部材 411、 41Eの周壁内外面間の温度差が筒部材 411、 41Eを配設しな い場合の温度差以上となるのに必要な筒部材 411、 41Eの肉厚を算出することがで きる。例えば、本実施形態のスタック 100においては、セパレータ 9A、 9Cの材料であ る榭脂含有カーボンの熱伝導率 15WZm'K、供給側伝熱媒体マ-ホールド孔 141 と MEA5との最短距離 20mmの条件下、運転動作中における MEA5との温度差は 、筒部材 411, 41Eを配設しない場合の排出側伝熱媒体マ-ホールド 94E内と MEA 5との温度差は 1°C程度である。これに対し、熱伝導率 0. 19WZm'Kのエポキシ榭 脂からなる筒部材 411、 41Eを配設すると、筒部材 411、 41E内と MEA5との温度差 力 Sl°C以上となるようにするには、フーリエの法則を用いて計算すると、 0. 25mm以 上の肉厚を要するものと算出される。  [0068] In addition, a material suitable for the cylindrical members 411 and 41E can be selected based on the thermal conductivity. In other words, the heat transfer medium is heated by the wall surface of the supply-side heat transfer medium manifold 941 during the operation of the stack 100. Therefore, if the thickness of the cylindrical member 4 II is insufficient, the temperature rise of the heat medium will eventually increase. Similarly, the heat transfer medium is cooled by the wall surface of the discharge side heat transfer medium manifold 94E during the operation of the stack 100. Therefore, if the thickness of the tubular member 41E is insufficient, the temperature drop width of the heat medium will increase as a result. Therefore, depending on the thermal conductivity of the material, the temperature difference between the inner and outer surfaces of the cylindrical members 411 and 41E during the operation is greater than the temperature difference when the cylindrical members 411 and 41E are not provided. The thickness of members 411 and 41E can be calculated. For example, in the stack 100 of this embodiment, the thermal conductivity 15 WZm'K of the resin-containing carbon that is the material of the separators 9A and 9C, and the shortest distance 20 mm between the supply side heat transfer medium hold hole 141 and the MEA 5 is 20 mm. Under the conditions, the temperature difference between the MEA 5 and the MEA 5 during the operation is about 1 ° C. between the MEA 5 and the exhaust side heat transfer medium holder 94E when the cylindrical members 411 and 41E are not provided. On the other hand, when the cylindrical members 411 and 41E made of epoxy resin having a thermal conductivity of 0.19 WZm'K are provided, the temperature differential force between the cylindrical members 411 and 41E and the MEA 5 is more than Sl ° C. Therefore, the thickness of 0.25mm or more is calculated by using Fourier's law.
[0069] 以上から、本発明の作用効果をより確実に得る観点から、筒部材 411、 41Eの材料 は熱伝導率がセパレータ 9A、 9Cの材料の熱伝導率の 5%以下であると好適である [0070] また、筒部材 411、 41Eの周壁には筒部材 411、 41Eの延伸方向に複数の孔(貫通 部) 42が並んで形成されている。ここでは、孔 42は等間隔に、隣接するセパレータ 1 0同士の接合数相当、すなわち 99個形成され、その大きさは横 1. 5mm,縦 3. Om mである。 [0069] From the above, from the viewpoint of more reliably obtaining the operational effects of the present invention, it is preferable that the material of the cylindrical members 411 and 41E has a thermal conductivity of 5% or less of the thermal conductivity of the material of the separators 9A and 9C. is there [0070] In addition, a plurality of holes (penetrating portions) 42 are formed side by side in the extending direction of the cylindrical members 411 and 41E on the peripheral walls of the cylindrical members 411 and 41E. Here, the holes 42 are formed at equal intervals, corresponding to the number of junctions between adjacent separators 10, that is, 99, and the size is 1.5 mm in width and 3. Om in length.
[0071] 図 3に示すように、筒部材 411、 41Eは、無蓋端部 44が集電板 50側に位置するよう にして配設されている。無蓋端部 44は集電板 50に近接していればよい。したがって 、両者が接触していても、両者間に隙間が形成されていてもよい。  As shown in FIG. 3, the cylindrical members 411 and 41E are arranged such that the non-cover end portion 44 is located on the current collector plate 50 side. The non-cover end portion 44 only needs to be close to the current collector plate 50. Therefore, even if both are in contact, a gap may be formed between them.
[0072] 図 5は、図 2の V方向からみた矢視図である。  FIG. 5 is an arrow view as seen from the direction V in FIG.
[0073] 図 5に示すように、筒部材 411、 41Eは、無蓋端部 44が集電板 50側に位置するよう にして、それぞれ伝熱媒体マ二ホールド 941、 94Eとの間に空間(筒部材外領域) 95 I, 95Eを形成して挿入されている。つまり、筒部材 411、 41Eは、伝熱媒体マ-ホー ルド 941、 94E内の一部にセル 10の積層方向に延伸するように配設されている。また 、伝熱媒体マ二ホールド 941、 94Eは筒部材 411、 41E内領域と筒部材外領域 951, 95Eとに区画して構成されている。  [0073] As shown in FIG. 5, the cylindrical members 411 and 41E have spaces (with respect to the heat transfer medium manifolds 941 and 94E, respectively, such that the non-covered end portion 44 is positioned on the current collector plate 50 side. Cylinder member outer region) 95 I and 95E are formed and inserted. That is, the cylindrical members 411 and 41E are arranged to extend in the stacking direction of the cells 10 in a part of the heat transfer medium molds 941 and 94E. Further, the heat transfer medium manifolds 941 and 94E are configured to be divided into areas inside the cylindrical members 411 and 41E and areas 951 and 95E outside the cylinder members.
[0074] また、伝熱媒体マ-ホールド 941、 94Eは、筒部材 411、 41Eと同様、延伸方向断面 が扁平状であって長径は筒部材 411、 41Eよりも長く、短径は筒部材 411、 41Eが挿 入できる程度の長さになっている。ここで、筒部材 4 II、 41Eの短径と伝熱媒体マ-ホ 一ルド 941、 94Eの短径との間にはクリアランスを設けるとよい。伝熱媒体マ-ホール ド 941、 94Eは、数十枚のセパレータ 9A、 9Cを積層して形成されるので、セパレータ 9A、 9Cの寸法公差や積層時の位置ずれによって、伝熱媒体マ二ホールド 941、 94 Eの壁面には凹凸が生じることが多い。したがって、筒部材 411、 41Eと伝熱媒体マ- ホールド 941、 94Eの壁面との間にこれらの影響を回避できる程度のクリアランスを有 すると、伝熱媒体マ-ホールド 941、 94Eに筒部材 411、 41Eを円滑に挿入すること ができる。  [0074] Further, the heat transfer medium holders 941 and 94E have a flat cross section in the extending direction, the long diameter is longer than the cylindrical members 411 and 41E, and the short diameter is the cylindrical member 411, like the cylindrical members 411 and 41E. 41E is long enough to be inserted. Here, a clearance may be provided between the short diameter of the cylindrical members 4 II and 41 E and the short diameter of the heat transfer medium molds 941 and 94 E. The heat transfer medium holders 941 and 94E are formed by stacking dozens of separators 9A and 9C. Therefore, the heat transfer medium manifold holds due to the dimensional tolerance of the separators 9A and 9C and the positional deviation during stacking. The wall surfaces of 941 and 94E often have irregularities. Therefore, if there is a clearance between the cylindrical members 411 and 41E and the wall surfaces of the heat transfer medium holders 941 and 94E to avoid these effects, the cylindrical members 411 and 94E are provided in the heat transfer medium holders 941 and 94E. 41E can be inserted smoothly.
[0075] さらに、伝熱媒体流路溝 26の始端及び終端は、供給側伝熱媒体マ二ホールド孔 2 41および排出側伝熱媒体マ-ホールド孔 24Eの孔壁において長径方向のどちらか 一方に寄って形成されている(図 5では両脇寄りの位置)。そして、筒部材 411、 41E は、伝熱媒体流路溝 26の始端及び終端が形成されていない部分 (図 5では中央寄り の位置)において伝熱媒体マ二ホールド 941、 94Eに接し、かつ孔 42が、伝熱媒体 流路溝 26の始端及び終端に向くようにして配設されている。これによつて、伝熱媒体 流路溝 26, 36の始端及び終端並びに筒部材 411、 41Eの孔 42との間に空間 951, 9 5Eが形成される。つまり、筒部材 411、 41E内領域と空間 951, 95Eと伝熱媒体流路 溝 26, 36とを連通させることができる。 [0075] Further, the start end and the end of the heat transfer medium flow channel groove 26 are either in the major axis direction on the hole walls of the supply side heat transfer medium manifold hole 241 and the discharge side heat transfer medium manifold hole 24E. (Fig. 5 shows the positions on both sides). The cylindrical members 411 and 41E are portions where the start end and the end of the heat transfer medium flow channel 26 are not formed (in FIG. ) In contact with the heat transfer medium manifolds 941 and 94E, and the holes 42 are arranged so as to face the start and end of the heat transfer medium flow channel 26. As a result, spaces 951 and 95E are formed between the start and end of the heat transfer medium flow channel grooves 26 and 36 and the holes 42 of the cylindrical members 411 and 41E. That is, the inner regions of the tubular members 411 and 41E, the spaces 951 and 95E, and the heat transfer medium flow channel grooves 26 and 36 can be communicated with each other.
[0076] ここで、それぞれ伝熱媒体マ-ホールド 941、 94Eの壁面には、隣接するセパレー タ 10同士の接合数の伝熱媒体流路溝 26, 36の始端あるいは終端が等間隔に並列 して形成されている。そして、筒部材 411、 41Eの孔 42は、それぞれ伝熱媒体流路溝 26, 36の始端あるいは終端に近接する位置に形成されている。これによつて、孔 42 と伝熱媒体流路溝 26, 36との間の伝熱媒体の移動距離を最短化することができるの で、セパレータ 9A, 9Cと伝熱媒体との熱交換をより抑制することができる。  [0076] Here, on the wall surfaces of the heat transfer medium holders 941 and 94E, the start ends or end points of the heat transfer medium flow channel grooves 26 and 36 having the number of junctions between the adjacent separators 10 are arranged in parallel at equal intervals. Is formed. The holes 42 of the cylindrical members 411 and 41E are formed at positions close to the start ends or the end ends of the heat transfer medium flow channel grooves 26 and 36, respectively. As a result, the moving distance of the heat transfer medium between the hole 42 and the heat transfer medium flow channel grooves 26 and 36 can be minimized, so that heat exchange between the separators 9A and 9C and the heat transfer medium can be achieved. It can be suppressed more.
[0077] 次に、以上のように構成されたスタック 100の運転動作を説明する。  Next, the operation of the stack 100 configured as described above will be described.
[0078] 図 3に示すように、ノズル 83に外部の配管が接続されて、スタック 100にアノードガ ス、力ソードガスおよび伝熱媒体が供給される。  As shown in FIG. 3, an external pipe is connected to the nozzle 83, and anode gas, power sword gas, and a heat transfer medium are supplied to the stack 100.
[0079] アノードガスは、外部からノズル 83、供給側アノードガス流通孔 721、 621、 521を経 由して、供給側アノードガスマ-ホールド 921に供給される。同様にして、力ソードガス は、外部力もノズル 83、供給側力ソードガス流通孔 731、 631、 531を経由して、供給 側力ソードガスマ-ホールド 931に供給される。伝熱媒体は、外部力 ノズル 83、供 給側伝熱媒体流通孔 741、 641、 541を経由して、供給側筒部材 4 II内に供給される 。ここでは、伝熱媒体には水を用いている。ただし、伝熱媒体は化学的安定性、流動 性および伝熱特性に優れていればよいので、水に限られない。例えばシリコンオイル であってもよい。また、ここでは、伝熱媒体は、温度 70°Cの状態で 4リットル Z分の流 量でスタック 100に供給される。また、アノードガスには水素ガス、力ソードガスは空気 を用いて ヽる。アノードガスおよび力ソードガスはそれぞれ露点が 70°Cとなるようにカロ 湿され、温度 70°Cの状態でスタック 100に供給される。また、アノードガスはアノード ガス利用率、すなわち供給される水素のうち電気化学反応に供された水素の割合が 70%、力ソードガスは力ソードガス利用率、すなわち供給される酸素のうち電気化学 反応に供された酸素の割合が 40%となるような流量でそれぞれスタック 100に供給さ れている。 [0079] The anode gas is supplied from the outside to the supply-side anode gas holder 921 through the nozzle 83 and the supply-side anode gas circulation holes 721, 621, 521. Similarly, the force sword gas is also supplied to the supply side force sword gas hold 931 via the nozzle 83 and the supply side force sword gas circulation holes 731, 631, 531. The heat transfer medium is supplied into the supply side cylindrical member 4 II via the external force nozzle 83 and the supply side heat transfer medium flow holes 741, 641, 541. Here, water is used as the heat transfer medium. However, the heat transfer medium is not limited to water as long as it has excellent chemical stability, fluidity and heat transfer characteristics. For example, silicon oil may be used. Here, the heat transfer medium is supplied to the stack 100 at a flow rate of 4 liters Z at a temperature of 70 ° C. Also, hydrogen gas is used for the anode gas and air is used for the power sword gas. The anode gas and power sword gas are each moistened to a dew point of 70 ° C and supplied to the stack 100 at a temperature of 70 ° C. In addition, the anode gas has an anode gas utilization rate, that is, the proportion of hydrogen supplied to the electrochemical reaction in the supplied hydrogen is 70%, and the power sword gas has a power sword gas utilization rate, that is, the oxygen to be supplied in the electrochemical reaction. Each was supplied to the stack 100 at a flow rate such that the proportion of supplied oxygen was 40%. It is.
[0080] 図 1に示すように、供給側力ソードガスマ二ホールド 931内の力ソードガスは、カソー ドセパレータ 9Cの力ソードガス流路 31に分岐して、セル 10を流通して、余剰のカソ ードガスおよび反応生成物は、排出側力ソードガスマ-ホールド 93Eへと流出する。 同様にして、供給側アノードガスマ-ホールド 921内のアノードガスは、アノードセパ レータ 9Aのアノードガス流路 21に分岐して、セル 10を流通して、余剰のアノードガス は、排出側アノードガスマ-ホールド 92Eへと流出する。  [0080] As shown in FIG. 1, the force sword gas in the supply-side force sword gas manifold 931 branches to the force sword gas flow path 31 of the cathode separator 9C, and flows through the cell 10, so that excess cathode gas and The reaction product flows out to the discharge side force sword gas hold 93E. Similarly, the anode gas in the supply side anode gas holder 921 branches to the anode gas flow path 21 of the anode separator 9A and flows through the cell 10, and the surplus anode gas is sent to the discharge side anode gas holder 92E. And leaked.
[0081] 図 2および図 5に示すように、供給側筒部材 411内の伝熱媒体は、孔 42を通過して 空間 951へと流通し、空間 951から近傍のセル 10間の各伝熱媒体流路溝 26, 36に 分かれて流入し、セパレータ 9A、 9Cの外面を冷却して、換言すれば、セパレータ 9 A、 9Cによって加熱されて、空間 95Eへと流出する。これによつて、伝熱媒体は、供 給側伝熱媒体マ-ホールド 941の壁面とは直接接することなく供給側筒部材 411の 中を流れ、供給側筒部材 411の孔 42から流出した伝熱媒体は近傍の伝熱媒体流路 溝 26, 36へと流通する。その結果、供給側伝熱媒体マ-ホールド 941の壁面からの 伝熱媒体への加熱は供給側筒部材 411によって抑制されるので、セル 10の積層方 向における伝熱媒体流路 26, 36に流入する伝熱媒体の温度変化を抑制することが できる。  As shown in FIGS. 2 and 5, the heat transfer medium in the supply-side cylindrical member 411 passes through the hole 42 and flows into the space 951, and each heat transfer between the space 951 and the neighboring cells 10 is performed. It flows separately into the medium flow channel grooves 26 and 36, cools the outer surfaces of the separators 9A and 9C, in other words, is heated by the separators 9A and 9C, and flows out into the space 95E. As a result, the heat transfer medium flows through the supply side cylindrical member 411 without directly contacting the wall surface of the supply side heat transfer medium holder 941, and flows out of the hole 42 of the supply side cylindrical member 411. The heat medium flows into the nearby heat transfer medium channel grooves 26 and 36. As a result, heating to the heat transfer medium from the wall surface of the supply-side heat transfer medium holder 941 is suppressed by the supply-side cylindrical member 411, so that the heat transfer medium flow paths 26 and 36 in the stacking direction of the cells 10 The temperature change of the inflowing heat transfer medium can be suppressed.
[0082] 空間 95Eの伝熱媒体は、排出側筒部材 41Eの孔 42から排出側筒部材 41E内に 流入する。  [0082] The heat transfer medium in the space 95E flows into the discharge side cylinder member 41E from the hole 42 of the discharge side cylinder member 41E.
[0083] そして、図 3に示すように、排出側アノードガスマ-ホールド 92E内のアノードガスは 、排出側アノードガス流通孔 52E、 62E、 72E、ノズル 83を経由して外部へと排出さ れる。同様にして、排出側力ソードガスマ-ホールド 93E内の力ソードガスは、排出側 力ソードガス流通孔 53E、 63E、 73E、ノズル 83を経由して外部へと排出される。排 出側筒部材 41E内の伝熱媒体は、排出側伝熱媒体流通孔 54E、 64E、 74E、ノズ ル 83を経由して外部へと排出される。これによつて、排出側伝熱媒体マ-ホールド 9 4Eの壁面力 の外部への伝熱媒体の放熱は排出側筒部材 41Eによって抑制される ので、セル 10の積層方向における伝熱媒体流路 26, 36から流出する伝熱媒体の温 度変化を抑制することができる。 [0084] 外部に排出された伝熱媒体は、図示しない熱交換器で外部の伝熱媒体と熱交換し て冷却された後、再び供給側伝熱媒体マ-ホールド 941の供給側筒部材 4 II内に供 給される。 As shown in FIG. 3, the anode gas in the discharge-side anode gas manifold 92E is discharged to the outside via the discharge-side anode gas circulation holes 52E, 62E, 72E and the nozzle 83. Similarly, the power sword gas in the discharge side force sword gas hold 93E is discharged to the outside through the discharge side force sword gas circulation holes 53E, 63E, 73E and the nozzle 83. The heat transfer medium in the discharge side tubular member 41E is discharged to the outside through the discharge side heat transfer medium circulation holes 54E, 64E, 74E, and the nozzle 83. As a result, since the heat radiation of the heat transfer medium to the outside due to the wall force of the discharge side heat transfer medium holder 94E is suppressed by the discharge side cylindrical member 41E, the heat transfer medium flow path in the stacking direction of the cells 10 The temperature change of the heat transfer medium flowing out from 26 and 36 can be suppressed. [0084] The heat transfer medium discharged to the outside is cooled by exchanging heat with an external heat transfer medium using a heat exchanger (not shown), and then supplied again to the supply side cylindrical member 4 of the supply side heat transfer medium holder 941. Supplied in II.
[0085] 上記のような運転動作を、発電出力(例えば、電流密度 0. 3AZcm2の発電出力) をさせながら、スタックの温度 (温度分布)が熱的に定常状態となる間継続 (例えば 24 時間継続)継続すると、供給側伝熱媒体マ-ホールド 941の他方の集電板近傍の温 度は、従来の供給側筒部材 411がない場合のスタックにおける同様の運転条件にお ける温度に比べて低くなる(例えば、数 °C程度低くなる)。 [0085] The above operation is continued while the temperature of the stack (temperature distribution) is in a thermally steady state (for example 24) while generating the power generation output (for example, the power generation output having a current density of 0.3 AZcm 2 ). If continued, the temperature in the vicinity of the other current collector plate of the supply side heat transfer medium holder 941 is compared to the temperature under the same operating conditions in the stack without the conventional supply side cylindrical member 411. (For example, about several degrees C lower).
[0086] また、排出側伝熱媒体マ-ホールド 94Eの一方の集電板 50近傍と他方の集電板 近傍との温度差は、従来の排出側筒部材 41Eがない場合のスタックにおける同様の 運転条件における温度に比べて低くなる(例えば、 1〜2°C程度低くなる)。  [0086] In addition, the temperature difference between the vicinity of one of the current collector plates 50 and the vicinity of the other current collector plate of the discharge side heat transfer medium holder 94E is similar to that in the stack without the conventional discharge side cylindrical member 41E. The temperature is lower than the operating temperature (for example, it is about 1 to 2 ° C lower).
[0087] また、力ソードガス利用率を下げて維持 (例えば 20%に下げて維持)しながら、上記 のような運転動作を所定の時間(例えば 6時間)運転継続し、所定時間毎 (例えば 10 秒毎)に電圧をサンプリングすると、サンプルされた電圧の標準偏差は、従来の供給 側筒部材 411がない場合のスタックにおける同様の運転条件における標準偏差に比 ベてバラツキが小さくなる(例えば数 mV程度バラツキが小さくなる)。  [0087] Further, while the power sword gas utilization rate is lowered and maintained (for example, maintained at 20%), the operation as described above is continued for a predetermined time (for example, 6 hours), and every predetermined time (for example, 10%). When the voltage is sampled every second), the standard deviation of the sampled voltage is less varied (eg, several mV) than the standard deviation under similar operating conditions in the stack without the conventional supply side cylinder 411. The degree of variation will be small).
[0088] さらに、上記のような運転動作を、更に長い時間(例えば 1000時間)継続すると、セ ル当たり平均電圧の低下は、従来の供給側筒部材 411がない場合のスタックにおけ る同様の運転条件におけるセル当たり平均電圧の低下に比べて小さくなる(例えば 数 mV程度小さくなる)。  [0088] Further, when the above operation is continued for a longer time (for example, 1000 hours), the decrease in the average voltage per cell is the same as that in the stack without the conventional supply side tubular member 411. Smaller than the decrease in average voltage per cell under operating conditions (for example, about several mV).
[0089] 以上のように、本発明の特徴である伝熱媒体マ-ホールド 941、 94Eの構造によつ て、伝熱媒体マ-ホールド 941、 94E内の伝熱媒体とセパレータ 9A、 9Cとの熱交換 を抑制することができる。また、本発明は、供給側伝熱媒体マ-ホールド 941におい て供給側筒部材 411内領域から筒部材外領域 951へ流出する伝熱媒体、および排 出側伝熱媒体マ-ホールド 94Eにおいて筒部材外領域 95E力も排出側筒部材 41E 内領域へ流入する伝熱媒体の少なくともいずれかのセル 10の積層方向における流 量分布を貫通部 42の数あるいは大きさによって調整することができる。つまり、本発 明は筒部材 411、 41Eの交換によって、セル 10の積層方向における伝熱媒体の流 量分布を容易に調整することができる。 [0089] As described above, the structure of the heat transfer medium holders 941 and 94E, which is a feature of the present invention, allows the heat transfer medium in the heat transfer medium holders 941 and 94E to be separated from the separators 9A and 9C. Heat exchange can be suppressed. The present invention also relates to a heat transfer medium that flows from the inner region of the supply-side cylindrical member 411 to the outer region 951 of the cylindrical member in the supply-side heat transfer medium marker 941, and a cylinder in the discharge-side heat transfer medium marker 94E. The force distribution in the stacking direction of at least one of the cells 10 of the heat transfer medium flowing into the inner region of the discharge side tubular member 41E can also be adjusted by the number or size of the through portions 42. That is, according to the present invention, the flow of the heat transfer medium in the stacking direction of the cells 10 is changed by replacing the tubular members 411 and 41E. The quantity distribution can be easily adjusted.
[0090] さらに詳しくは、供給側伝熱媒体マ-ホールド 941内の伝熱媒体とセパレータ 9A、 9Cとの熱交換が抑制されるので、セル 10の積層方向におけるセル内部の温度分布 の不均一状態が抑制され、スタック全体に亘る適切な温度管理が容易となり、 MEA 5内の高分子電解質膜の乾燥による劣化、および MEA5におけるフラッデイングの 発生によると思われる PEFCの性能低下を抑制することができる。  [0090] More specifically, since heat exchange between the heat transfer medium in the supply-side heat transfer medium holder 941 and the separators 9A and 9C is suppressed, the temperature distribution inside the cell in the stacking direction of the cells 10 is not uniform. Suppressing the condition, facilitating appropriate temperature control throughout the stack, and suppressing degradation of the polymer electrolyte membrane in the MEA 5 due to drying and the performance degradation of the PEFC, which seems to be caused by flooding in the MEA 5. it can.
[0091] また、コージェネレーションシステムのように伝熱媒体の保有熱の有効利用による P EFCシステムにお!/、ては、排出側伝熱媒体マ二ホールド 94E内の伝熱媒体とセパレ ータ 9A、 9Cとの熱交換が抑制されるので、伝熱媒体の保有熱のセパレータ 9A、 9C 力も外部への放熱が抑制され、 PEFCシステムの熱効率の向上を図ることができる。  [0091] Also, in a PEFC system that effectively uses the heat stored in the heat transfer medium, such as a cogeneration system! /, The heat transfer medium and separator in the discharge side heat transfer medium manifold 94E Because heat exchange with 9A and 9C is suppressed, the heat of the heat transfer medium possessed by the separators 9A and 9C is also prevented from radiating to the outside, and the thermal efficiency of the PEFC system can be improved.
[0092] ここで、図 5に示すように、筒部材 411、 41Eは、それぞれ伝熱媒体マ-ホールド 94 I、 94Eの壁面に挟まれるようにして配設されている。すなわち、筒部材 411、 41Eは 伝熱媒体マ二ホールド 941、 94Eの壁面との摩擦抵抗によって伝熱媒体マ二ホール ド 941、 94E内に実質的に固定されている。これによつて、伝熱媒体による応力等な んらかの原因によって筒部材 411、 41Eが伝熱媒体マ-ホールド 941、 94E内を回転 したり、移動したりすることを抑制することができるので、伝熱媒体流路溝 26, 36と孔 42との位置関係のずれを抑制することができる。  Here, as shown in FIG. 5, the cylindrical members 411 and 41E are arranged so as to be sandwiched between the wall surfaces of the heat transfer medium holders 94I and 94E, respectively. That is, the cylindrical members 411 and 41E are substantially fixed in the heat transfer medium manifolds 941 and 94E by frictional resistance with the wall surfaces of the heat transfer medium manifolds 941 and 94E. As a result, the cylindrical members 411 and 41E can be prevented from rotating or moving in the heat transfer medium holders 941 and 94E due to some cause such as stress caused by the heat transfer medium. Therefore, it is possible to suppress a shift in the positional relationship between the heat transfer medium flow channel grooves 26 and 36 and the hole 42.
[0093] 次に、筒部材 411、 41Eは、以下の変形例のように構成することができる。なお、本 発明は以下の変形例に限定されるものではない。  Next, the cylindrical members 411 and 41E can be configured as in the following modifications. In addition, this invention is not limited to the following modifications.
[0094] [変形例 1]  [0094] [Variation 1]
図 6は、変形例 1の供給側筒部材あるいは排出側筒部材の斜視図である。  FIG. 6 is a perspective view of a supply-side cylinder member or a discharge-side cylinder member of Modification 1.
[0095] 筒部材 411、 41Eは延伸方向に並んで形成される孔 42の間隔力 無蓋端部 44側 力 遠くなるに従い徐々に短くなるように形成されている。すなわち、伝熱媒体が供 給される供給端から遠ざかるに従い、貫通部の大きさが増加している。これによつて、 筒部材 411、 41E内で生じた圧力損失の影響を軽減して、筒部材 411、 41Eの延伸 方向、すなわちセル 10の積層方向における伝熱媒体の流量の不均一を抑制するこ とができる。より詳細には、供給側筒部材 411においては、無蓋端部 44は集電板 50 側に配設されて、集電板 50の伝熱媒体流通孔 541から伝熱媒体が導入される。した がって、集電板 50から遠くなるに従い、供給側筒部材 411内の伝熱媒体の圧力が低 くなり、同じ孔面積力 流出する伝熱媒体流量は小さくなり不均一が生じる。しかし、 孔 42の密度が増えることによって、伝熱媒体の流出流量の不均一が抑制される。ま た、排出側筒部材 41Eにおいては、同様にして、集電板 50側力も遠くなるに従い、 排出側筒部材 41E内の圧力が高くなり、同じ孔面積力 流入する伝熱媒体流量は小 さくなり不均一が生じる力 孔 42の密度が増えることによって、伝熱媒体の流入流量 の不均一が抑制される。なお、孔 42の数および大きさは、伝熱媒体の供給および排 出の圧力および流量の設計に応じて伝熱媒体の流出入が好適になるように形成され ている。 [0095] The cylindrical members 411 and 41E are formed so as to be gradually shortened as the distance between the holes 42 formed side by side in the extending direction is increased. That is, the size of the penetrating portion increases as the distance from the supply end to which the heat transfer medium is supplied. As a result, the influence of the pressure loss generated in the cylindrical members 411 and 41E is reduced, and the non-uniform flow rate of the heat transfer medium in the extending direction of the cylindrical members 411 and 41E, that is, the stacking direction of the cells 10 is suppressed. be able to. More specifically, in the supply-side cylinder member 411, the non-covered end portion 44 is disposed on the current collector plate 50 side, and the heat transfer medium is introduced from the heat transfer medium flow hole 541 of the current collector plate 50. did Accordingly, as the distance from the current collector plate 50 increases, the pressure of the heat transfer medium in the supply-side cylindrical member 411 decreases, and the flow rate of the heat transfer medium flowing out the same hole area force decreases and nonuniformity occurs. However, by increasing the density of the holes 42, unevenness in the outflow rate of the heat transfer medium is suppressed. Similarly, in the discharge-side cylinder member 41E, as the force on the current collector plate 50 increases, the pressure in the discharge-side cylinder member 41E increases, and the flow rate of the heat transfer medium flowing into the same hole area force decreases. The unevenness of the inflow flow rate of the heat transfer medium is suppressed by increasing the density of the holes 42 in which the nonuniformity is generated. It should be noted that the number and size of the holes 42 are formed so that the heat transfer medium can flow in and out in accordance with the design of the supply and discharge pressure and flow rate of the heat transfer medium.
[0096] [変形例 2]  [0096] [Variation 2]
図 7は、変形例 2の供給側筒部材ある 、は排出側筒部材の斜視図である。  FIG. 7 is a perspective view of the supply-side cylinder member of Modification 2 and the discharge-side cylinder member.
[0097] 筒部材 411、 41Eは、両端部に近づくに従い孔 42の間隔が中央部の孔 42の間隔 に比べて短くなるように形成されている。これによつて、筒部材 411、 41E両端部にお ける伝熱媒体流量を増やすことができる。本変形例は、外気によってスタックの両端 力 り冷却されるような PEFCの設置形態において好適である。  The cylindrical members 411 and 41E are formed such that the distance between the holes 42 becomes shorter than the distance between the holes 42 in the central part as approaching both ends. As a result, the heat transfer medium flow rate at both ends of the cylindrical members 411 and 41E can be increased. This modification is suitable for a PEFC installation configuration in which both ends of the stack are cooled by outside air.
[0098] [変形例 3]  [0098] [Modification 3]
図 8は、変形例 3の供給側筒部材ある 、は排出側筒部材の斜視図である。  FIG. 8 is a perspective view of the supply-side cylinder member of Modification 3 and the discharge-side cylinder member.
[0099] 筒部材 411、 41Eは、両端部に近づくに従い孔 42の間隔が中央部の孔 42の間隔 に比べて長くなるように形成されている。これによつて、筒部材 411、 41E中央部にお ける伝熱媒体流量を増やすことができる。本変形例は、中央部の冷却効果が不十分 となるような設置形態、換言すればスタック周囲の断熱が十分でありスタックの熱の周 囲への放熱が少な 、ような PEFCの設置形態、にお!/、て好適である。  The cylindrical members 411 and 41E are formed such that the distance between the holes 42 becomes longer than the distance between the holes 42 in the central part as it approaches both ends. As a result, the heat transfer medium flow rate in the central part of the cylindrical members 411 and 41E can be increased. In this modification, the PEFC is installed in such a way that the cooling effect at the center is insufficient, in other words, the insulation around the stack is sufficient and the heat dissipated around the stack is small. Ni! / Is suitable.
[0100] [変形例 4]  [0100] [Variation 4]
図 9は、変形例 4の供給側筒部材ある 、は排出側筒部材の斜視図である。  FIG. 9 is a perspective view of the supply-side cylinder member of Modification 4 and the discharge-side cylinder member.
[0101] 筒部材 411、 41Eは延伸方向に並んで形成される孔 42に替わって、筒部材 411、 4 1Eの両端間を結ぶようにして割れ目(貫通部) 43が形成されている。すなわち筒部 材 411、 41Eは C字状の断面を有する。これによつて、孔 42形成よりもより簡便に筒部 材 411、 41Eを作製することができる。 [0102] [変形例 5] [0101] The cylindrical members 411 and 41E are formed with cracks (penetrating portions) 43 so as to connect both ends of the cylindrical members 411 and 41E in place of the holes 42 formed side by side in the extending direction. That is, the cylinder members 411 and 41E have a C-shaped cross section. Thereby, the cylindrical member 411, 41E can be produced more simply than the formation of the hole 42. [0102] [Variation 5]
図 10は、変形例 5の供給側筒部材あるいは排出側筒部材の斜視図である。  FIG. 10 is a perspective view of a supply-side cylinder member or a discharge-side cylinder member of Modification 5.
[0103] 筒部材 411、 41Eは、割れ目 43の大きさが、無蓋端部 44側力も遠くなるに従い徐 々に大きくなるように形成されている。これによつて、変形例 1と同様に筒部材 411、 4 1E内で生じた圧力損失の影響を軽減して、筒部材 411、 41Eの延伸方向、すなわち 、本変形例はセル 10の積層方向における伝熱媒体の流量の不均一を抑制すること ができる。  [0103] The cylindrical members 411 and 41E are formed such that the size of the crack 43 gradually increases as the non-lid end 44 side force increases. As a result, the effect of pressure loss generated in the cylindrical members 411 and 41E is reduced as in the first modification, so that the extending direction of the cylindrical members 411 and 41E, i.e., this modified example is the stacking direction of the cells 10. It is possible to suppress unevenness in the flow rate of the heat transfer medium.
[0104] [変形例 6]  [Modification 6]
図 11は、変形例 6の供給側筒部材あるいは排出側筒部材の斜視図である。  FIG. 11 is a perspective view of a supply-side cylinder member or a discharge-side cylinder member of Modification 6.
[0105] 筒部材 411、 41Eは、両端部に近づくに従い割れ目 43の大きさが中央部に比べて 小さくなるように形成されている。これによつて、筒部材 411、 41E中央部における伝 熱媒体流量を増やすことができる。本変形例は、本変形例は、中央部の冷却効果が 不十分となるような設置形態、換言すればスタック周囲の断熱が十分でありスタックの 熱の周囲への放熱が少ないような PEFCの設置形態、において好適である。  [0105] The cylindrical members 411 and 41E are formed such that the size of the crack 43 is smaller than that of the central portion as it approaches the both end portions. As a result, the heat transfer medium flow rate in the central part of the cylindrical members 411 and 41E can be increased. This modification is an installation configuration in which the cooling effect in the central part is insufficient, in other words, the PEFC has a sufficient heat insulation around the stack and less heat is dissipated around the stack. It is suitable for the installation mode.
[0106] [変形例 7]  [Variation 7]
図 12は、変形例 7の供給側筒部材あるいは排出側筒部材の斜視図である。  FIG. 12 is a perspective view of a supply-side cylinder member or a discharge-side cylinder member of Modification 7.
[0107] 筒部材 411、 41Eは、無蓋端部 44側力も遠くなるに従い割れ目 43の大きさが徐々 に小さくなるように形成されている。これによつて、筒部材 411、 41Eの供給端側にお ける伝熱媒体流量を増やすことができる。本変形例は、外気によって供給端側がより 冷却されるような PEFCの設置形態において好適である。  [0107] The cylindrical members 411 and 41E are formed so that the size of the crack 43 gradually decreases as the non-lid end 44 side force increases. Thereby, the heat transfer medium flow rate on the supply end side of the cylindrical members 411 and 41E can be increased. This modification is suitable for the installation form of PEFC in which the supply end side is further cooled by the outside air.
[0108] [変形例 8]  [Variation 8]
図 13は、変形例 8の供給側筒部材あるいは排出側筒部材の斜視図である。図 14 は、本変形例のスタックのアノードセパレータの外面側における断面図である。  FIG. 13 is a perspective view of a supply-side cylinder member or a discharge-side cylinder member of Modification 8. FIG. 14 is a cross-sectional view on the outer surface side of the anode separator of the stack of this modification.
[0109] 図 14に示すように、本変形例では、筒部材 411、 41Eがそれぞれ伝熱媒体マ-ホ 一ルド 941、 94Eの壁面の凹凸に係合するように構成されて 、る。  As shown in FIG. 14, in this modification, the cylindrical members 411 and 41E are configured to engage with the irregularities of the wall surfaces of the heat transfer medium molds 941 and 94E, respectively.
[0110] ここでは、図 14に示すように伝熱媒体マ-ホールド 941、 94Eの壁面の一部にセル 10積層方向に延伸する凸部 96が形成されている。そして、図 13に示すように筒部 材 411、 41Eの周壁にも凸部 96に係合する形状の凹部 45が、筒部材 411、 41Eの延 伸方向に延伸して形成されている。これによつて、筒部材 411、 41Eはそれぞれ伝熱 媒体マ-ホールド 941、 94E内により確実に固定される。 Here, as shown in FIG. 14, convex portions 96 extending in the cell 10 stacking direction are formed on part of the wall surfaces of the heat transfer medium holders 941 and 94E. Then, as shown in FIG. 13, the concave portions 45 having a shape that engages with the convex portions 96 are also formed on the peripheral walls of the cylindrical members 411 and 41E. It is formed by stretching in the stretching direction. Thereby, the cylindrical members 411 and 41E are more securely fixed in the heat transfer medium markers 941 and 94E, respectively.
[0111] なお、伝熱媒体マ-ホールド 941、 94Eの壁面の一部に凹部が形成され、筒部材 4 II、 41Eの周壁に凸部が形成されて構成することもできる。  [0111] It should be noted that a concave portion may be formed on a part of the wall surface of the heat transfer medium holders 941 and 94E, and a convex portion may be formed on the peripheral wall of the cylindrical members 4II and 41E.
[0112] また、図 6、図 7、図 8、図 10、図 11及び図 12のように、筒部材 411、 41Eは形成さ れた孔 42の配置及び割れ目 43の大きさを調整することによって、筒部材 411、 41E の延伸方向、すなわちセル 10の積層方向における伝熱媒体の流量を容易に調整す ることが可能となる。あるいは、図示しないが、孔 42の大きさを調整することによつても セル 10の積層方向における伝熱媒体の流量を調整することが可能となる。したがつ て、スタックの設置形態に応じて、図 6、図 7、図 8、図 10、図 11及び図 12の筒部材 4 II、 41Eを選択して使用することによって、セル 10の積層方向における伝熱媒体の 流量分布を最適化することができる。  [0112] Further, as shown in FIGS. 6, 7, 8, 10, 11, and 12, the cylindrical members 411 and 41E have the holes 42 formed and the sizes of the cracks 43 adjusted. Thus, the flow rate of the heat transfer medium in the extending direction of the cylindrical members 411 and 41E, that is, the stacking direction of the cells 10 can be easily adjusted. Alternatively, although not shown, the flow rate of the heat transfer medium in the stacking direction of the cells 10 can also be adjusted by adjusting the size of the holes 42. Therefore, by selecting and using the cylindrical members 4 II and 41E in FIGS. 6, 7, 8, 8, 10, 11, and 12 according to the stack installation mode, the stacking of the cells 10 can be performed. The flow distribution of the heat transfer medium in the direction can be optimized.
[0113] セル 10の積層方向における伝熱媒体の流量分布を容易に調整することができる筒 部材 411、 41Eは、特に電気自動車用等出力密度の高いスタックに効果的である。 すなわち、出力密度の高いスタックは積層数が多くかつ電流密度も大きい状態で運 転されるので発熱量が大きい。しかも、自動車等移動装置に搭載される PEFCは、ス タックの設置位置及び設置方向によって、スタックへの外気の影響の相違が大き ヽ おそれがある。つまり、セル 10の積層方向における温度偏差を抑制する伝熱媒体の 最適な流量分布は、スタックの設置位置及び設置方向によって異なる。したがって、 筒部材 411、 41Eの交換によって伝熱媒体の流量分布を容易に調整できる本発明は 極めて効果的である。  [0113] The cylindrical members 411 and 41E that can easily adjust the flow distribution of the heat transfer medium in the stacking direction of the cells 10 are particularly effective for stacks having a high output density for electric vehicles. In other words, a stack with a high output density generates a large amount of heat because it is operated with a large number of layers and a large current density. In addition, PEFCs mounted on mobile devices such as automobiles may have a large difference in the effect of outside air on the stack depending on the stack installation position and installation direction. That is, the optimum flow distribution of the heat transfer medium that suppresses the temperature deviation in the stacking direction of the cells 10 varies depending on the stack installation position and installation direction. Therefore, the present invention that can easily adjust the flow distribution of the heat transfer medium by exchanging the cylindrical members 411 and 41E is extremely effective.
[0114] 以上、本発明の実施形態について詳細に説明したが、本発明は上記実施形態に 限定されるものではない。上記説明から、当業者にとっては、本発明の多くの改良や 他の実施形態が明らかである。したがって、上記説明は、例示としてのみ解釈される べきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたも のである。本発明の効果を得ることができる範囲において、その構造及び Z又は機 能の詳細を変更することができる。  [0114] While the embodiments of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments. From the above description, many modifications and other embodiments of the present invention are obvious to one skilled in the art. Accordingly, the foregoing description should be construed as illustrative only and is provided for the purpose of teaching those skilled in the art the best mode of carrying out the invention. As long as the effects of the present invention can be obtained, the details of the structure and Z or function can be changed.
[0115] 上記第 1実施形態においては、供給側伝熱媒体マ-ホールド 941に供給側筒部材 411を配設し、排出側伝熱媒体マ-ホールド 94Eに排出側筒部材 41Eを配設して ヽ る。しかし、いずれか一方の伝熱媒体マ-ホールドに筒部材が配設されるだけでも本 発明の効果を得ることができる。 [0115] In the first embodiment, the supply-side heat transfer medium holder 941 includes the supply-side cylindrical member. 411 is disposed, and a discharge side tubular member 41E is disposed on the discharge side heat transfer medium holder 94E. However, the effect of the present invention can be obtained only by arranging the cylindrical member in any one of the heat transfer medium holders.
[0116] 上記第 1実施形態においては、両端部を除いて全てのセパレータ 9A、 9Cの外面 に伝熱媒体流路溝 26, 36が形成されている。すなわち、各セル 10の間に、伝熱媒 体流路溝 26, 36が形成されている。し力し、例えば 2〜3セル毎のセパレータ 9A、 9 Cの外面に伝熱媒体流路溝 26, 36が形成されていてもよい。すなわち、 2〜3セル 1 0の間に、伝熱媒体流路溝 26, 36が形成されていてもよい。  [0116] In the first embodiment, the heat transfer medium flow channel grooves 26, 36 are formed on the outer surfaces of all the separators 9A, 9C except for both ends. That is, the heat transfer medium flow channel grooves 26 and 36 are formed between the cells 10. For example, the heat transfer medium flow channel grooves 26 and 36 may be formed on the outer surfaces of the separators 9A and 9C every two to three cells. That is, the heat transfer medium flow channel grooves 26 and 36 may be formed between the two to three cells 10.
[0117] また、上記第 1実施形態においては、セパレータ 9A、 9Cの外面に伝熱媒体流路 溝 26, 36が形成され、セル積層体 99においては、伝熱媒体流路溝 26と伝熱媒体 流路溝 36とが接合するように形成されている。しかし、セパレータ 9A、 9Cのどちらか 一方にのみ伝熱媒体流路溝 26, 36が形成されて 、てもよ 、。  [0117] In the first embodiment, the heat transfer medium flow channel grooves 26 and 36 are formed on the outer surfaces of the separators 9A and 9C. In the cell laminate 99, the heat transfer medium flow channel groove 26 and the heat transfer medium The medium channel groove 36 is formed to be joined. However, the heat transfer medium channel grooves 26 and 36 may be formed only in one of the separators 9A and 9C.
[0118] また、上記第 1実施形態においては、スタックの両端部の力ソードセパレータ 9CE ( 図 3参照)およびアノードセパレータ(図示せず)の外面には、伝熱媒体流路溝が形 成されていない。しかし、スタックの両端部の力ソードセパレータおよびアノードセパレ ータの外面に伝熱媒体流路溝が形成されて ヽてもよ ヽ。  [0118] In the first embodiment, the heat transfer medium channel grooves are formed on the outer surfaces of the force sword separator 9CE (see Fig. 3) and the anode separator (not shown) at both ends of the stack. Not. However, a heat transfer medium flow channel may be formed on the outer surfaces of the force sword separator and the anode separator at both ends of the stack.
[0119] また、伝熱媒体流路溝 26, 36の形状、溝本数は上記第 1実施形態に限定されるも のではなぐ発明の趣旨から逸脱することなく様々な変形が可能である。  [0119] The shape and the number of grooves of the heat transfer medium flow channel grooves 26, 36 are not limited to those of the first embodiment, and various modifications can be made without departing from the spirit of the invention.
[0120] また、伝熱媒体マ-ホールド 941、 94Eの断面形状は、上記第 1実施形態のような 横長扁平状に限定されるものではなぐ縦長扁平状、円状であっても、伝熱媒体マ二 ホールド 941、 94Eの壁面に挟まれるようにして、筒部材 411、 41Eを配設することが できるので、本発明を実施することができる。  [0120] Further, the cross-sectional shape of the heat transfer medium holders 941 and 94E is not limited to the horizontally long flat shape as in the first embodiment, but the heat transfer medium holders 941 and 94E may be heat transfer. Since the cylindrical members 411 and 41E can be disposed so as to be sandwiched between the wall surfaces of the medium holders 941 and 94E, the present invention can be implemented.
[0121] また、上記第 1実施形態では、セパレータ 9A、 9Cは榭脂含有カーボンによって構 成されている力 金属によって構成されていてもよい。  [0121] In the first embodiment, the separators 9A and 9C may be made of a force metal made of a resin containing carbon.
[0122] また、上記第 1実施形態では、一方の集電板 50,絶縁板 60およびエンドプレート 7 0に供給側流通孔 521、 621、 721、 531、 631、 731、 541、 641、 741及び排出側流通 孑し 52E、 62E、 72E、 53E、 63E、 73E、 54E、 64E、 74E力 ^形成されて!ヽる力 集電 板 50,絶縁板 60およびエンドプレート 70に供給側流通孔 521、 621、 721、 531、 631 、 731、 541、 641、 741が形成され、図示しない他方の集電板,絶縁板およびエンドプ レートに 出側流通孔 52E、 62E、 72E、 53E、 63E、 73E、 54E、 64E、 74E力 S形 成されてもよい。これによつて、伝熱媒体、アノードガス及び力ソードガスは、一方の エンドプレート 70側から供給され、他方のエンドプレート側力も排出されるように構成 される。この場合、第 1実施形態における排出側筒部材 41Eは、その無蓋端部 44を 他端の集電板側に向けて配設される。 [0122] In the first embodiment, the current collector plate 50, the insulating plate 60, and the end plate 70 are provided with the supply-side flow holes 521, 621, 721, 531, 631, 731, 541, 641, 741, and Discharge-side circulation Deposition 52E, 62E, 72E, 53E, 63E, 73E, 54E, 64E, 74E force ^ Formed! Straining force Current collector plate 50, insulation plate 60 and end plate 70 supply side circulation hole 521, 621, 721, 531, 631 , 731, 541, 641, 741 are formed, and the other current collector plate, insulation plate and end plate (not shown) have outlet flow holes 52E, 62E, 72E, 53E, 63E, 73E, 54E, 64E, 74E It may be made. Accordingly, the heat transfer medium, the anode gas, and the power sword gas are supplied from one end plate 70 side, and the other end plate side force is also discharged. In this case, the discharge-side cylinder member 41E in the first embodiment is disposed with the non-cover end portion 44 facing the other current collector plate side.
[0123] 上記実施形態のスタック 100を用いた PEFCは、家庭用コージェネレーションシス テム、自動二輪車、電気自動車、ハイブリッド電気自動車、家電製品、携帯用コンビ ユータ装置、携帯電話、携帯用音響機器、携帯用情報端末などの携帯電気装置等 の PEFCシステムに用いられる。 [0123] The PEFC using the stack 100 of the above embodiment is a home cogeneration system, a motorcycle, an electric vehicle, a hybrid electric vehicle, a home electric appliance, a portable computer device, a mobile phone, a portable acoustic device, a portable device. Used in PEFC systems such as portable electrical devices such as information terminals.
産業上の利用可能性  Industrial applicability
[0124] 本発明は、伝熱媒体と伝熱媒体マ二ホールド壁面との熱交換を抑制し、かつセル の積層方向における伝熱媒体の流量分布を容易に調整することができる PEFCとし て有用である。 [0124] The present invention is useful as a PEFC that can suppress heat exchange between the heat transfer medium and the heat transfer medium manifold wall surface and can easily adjust the flow distribution of the heat transfer medium in the cell stacking direction. It is.

Claims

請求の範囲 The scope of the claims
[1] MEAを一対の板状のセパレータで挟んでなるセルが積層されたセル積層体を有 し、該セル積層体には前記セルの積層方向に貫通して延伸する供給側伝熱媒体マ 二ホールド及び排出側伝熱媒体マ-ホールドが形成され、かつ始端が前記供給側 伝熱媒体マ二ホールドに接続され、終端が前記排出側伝熱媒体マ二ホールドに接 続されるようにして隣接する前記セル同士の接合部に伝熱媒体流路が形成されてい る、高分子電解質形燃料電池であって、  [1] A cell laminated body in which cells are formed by sandwiching a MEA between a pair of plate-like separators, and the supply-side heat transfer medium that extends through the cell laminated direction in the cell laminating direction is provided. A second hold and a discharge-side heat transfer medium manifold are formed, and a starting end is connected to the supply-side heat transfer medium manifold and a terminal is connected to the discharge-side heat transfer medium manifold. A polymer electrolyte fuel cell in which a heat transfer medium flow path is formed at a joint between adjacent cells,
前記供給側伝熱媒体マ二ホールドおよび前記排出側伝熱媒体マ二ホールドの少 なくとも 、ずれかの伝熱媒体マ二ホールド内に前記積層方向に延伸するように配設 されている、断熱性材料カゝらなる筒部材を有し、  At least one of the supply-side heat transfer medium manifold and the discharge-side heat transfer medium manifold is disposed so as to extend in the stacking direction in any one of the heat transfer medium manifolds. Having a cylindrical member made of a functional material,
前記伝熱媒体マ二ホールドは筒部材内領域と筒部材外領域とに区画して構成され 前記筒部材には、前記筒部材内領域と前記筒部材外領域とを連通する貫通部が 前記積層方向に連続的に形成されて!ヽる、請求項 1に記載の高分子電解質形燃料 電池。  The heat transfer medium manifold is divided into a cylindrical member inner region and a cylindrical member outer region, and the cylindrical member has a through portion that communicates the cylindrical member inner region and the cylindrical member outer region. 2. The polymer electrolyte fuel cell according to claim 1, wherein the polymer electrolyte fuel cell is continuously formed in a direction.
[2] 前記筒部材は、前記伝熱媒体が供給される供給端から遠ざかるに従い、前記貫通 部の大きさが増カロしている、請求項 1に記載の高分子電解質形燃料電池。  [2] The polymer electrolyte fuel cell according to [1], wherein the size of the through portion increases as the cylindrical member moves away from a supply end to which the heat transfer medium is supplied.
[3] 前記筒部材は、前記伝熱媒体が供給される供給端から遠ざかるに従い、前記貫通 部の大きさが減少して 、る、請求項 1に記載の高分子電解質形燃料電池。 [3] The polymer electrolyte fuel cell according to [1], wherein the size of the through portion decreases as the cylindrical member moves away from a supply end to which the heat transfer medium is supplied.
[4] 前記筒部材は、前記積層方向中央部から遠ざかるに従い、前記貫通部の大きさが 増加して!/ヽる、請求項 1に記載の高分子電解質形燃料電池。 [4] As the cylindrical member moves away from the central portion in the stacking direction, the size of the penetrating portion increases! 2. The polymer electrolyte fuel cell according to claim 1, wherein
[5] 前記筒部材は、前記積層方向中央部から遠ざかるに従い、前記貫通部の大きさが 減少して!/ヽる、請求項 1に記載の高分子電解質形燃料電池。 [5] The polymer electrolyte fuel cell according to [1], wherein the size of the penetrating portion decreases as the cylindrical member moves away from the central portion in the stacking direction.
[6] 前記貫通部は、前記積層方向に連続して形成されている複数の貫通孔であって、 前記貫通孔の分布密度及び前記貫通孔の大きさのうち少なくともいずれかが連続的 に変化して 、る、請求項 1に記載の高分子電解質形燃料電池。 [6] The through portion is a plurality of through holes formed continuously in the stacking direction, and at least one of the distribution density of the through holes and the size of the through holes continuously changes. The polymer electrolyte fuel cell according to claim 1.
[7] 前記貫通部は、前記積層方向に延びる割れ目であって、前記積層方向において 前記割れ目の大きさが連続的に変化している、請求項 1に記載の高分子電解質形 燃料電池。 [7] The polymer electrolyte form according to [1], wherein the penetrating portion is a crack extending in the stacking direction, and the size of the crack continuously changes in the stacking direction. Fuel cell.
[8] 前記筒部材は、前記伝熱媒体マユホールドの壁面に係合して 1、る、請求項 1に記 載の高分子電解質形燃料電池。  8. The polymer electrolyte fuel cell according to claim 1, wherein the cylindrical member is engaged with a wall surface of the heat transfer medium manifold.
[9] 前記断熱性材料は、榭脂、ガラス、ゴムまたはセラミックスである、請求項 1に記載の 高分子電解質形燃料電池。 9. The polymer electrolyte fuel cell according to claim 1, wherein the heat insulating material is resin, glass, rubber or ceramics.
PCT/JP2006/320049 2005-10-18 2006-10-06 Polyelectrolyte fuel cell WO2007046249A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-302892 2005-10-18
JP2005302892 2005-10-18

Publications (1)

Publication Number Publication Date
WO2007046249A1 true WO2007046249A1 (en) 2007-04-26

Family

ID=37962345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/320049 WO2007046249A1 (en) 2005-10-18 2006-10-06 Polyelectrolyte fuel cell

Country Status (1)

Country Link
WO (1) WO2007046249A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008258113A (en) * 2007-04-09 2008-10-23 Matsushita Electric Ind Co Ltd Operation method of fuel cell and fuel cell system
JP2017504940A (en) * 2014-02-04 2017-02-09 コミサリア ア レネルジ アトミク エ オウ エネルジ アルタナティヴ Lightweight stack of membrane / electrode assemblies

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62237678A (en) * 1986-04-07 1987-10-17 Hitachi Ltd Manufold structure of stacked cell
JPH05129032A (en) * 1991-11-07 1993-05-25 Sanyo Electric Co Ltd Internal manifold system fuel cell
JP2000149977A (en) * 1998-11-06 2000-05-30 Honda Motor Co Ltd Fuel cell stack
JP2001155759A (en) * 1999-11-30 2001-06-08 Matsushita Electric Ind Co Ltd Polymer electrolyte type fuel cell
JP2005044620A (en) * 2003-07-22 2005-02-17 Toyota Motor Corp Fuel cell
JP2005044727A (en) * 2003-07-25 2005-02-17 Nissan Motor Co Ltd Fuel cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62237678A (en) * 1986-04-07 1987-10-17 Hitachi Ltd Manufold structure of stacked cell
JPH05129032A (en) * 1991-11-07 1993-05-25 Sanyo Electric Co Ltd Internal manifold system fuel cell
JP2000149977A (en) * 1998-11-06 2000-05-30 Honda Motor Co Ltd Fuel cell stack
JP2001155759A (en) * 1999-11-30 2001-06-08 Matsushita Electric Ind Co Ltd Polymer electrolyte type fuel cell
JP2005044620A (en) * 2003-07-22 2005-02-17 Toyota Motor Corp Fuel cell
JP2005044727A (en) * 2003-07-25 2005-02-17 Nissan Motor Co Ltd Fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008258113A (en) * 2007-04-09 2008-10-23 Matsushita Electric Ind Co Ltd Operation method of fuel cell and fuel cell system
JP2017504940A (en) * 2014-02-04 2017-02-09 コミサリア ア レネルジ アトミク エ オウ エネルジ アルタナティヴ Lightweight stack of membrane / electrode assemblies

Similar Documents

Publication Publication Date Title
US6770396B2 (en) Polymer electrolyte fuel cell
CA2618885C (en) Gas separator for fuel cells and fuel cell equipped with gas separator
JP7414334B2 (en) Fuel cells, bipolar plates and bipolar plate assemblies for fuel cells
US9761894B2 (en) Porous inserts for improved coolant distribution in bipolar plate assemblies for fuel cells
US20110053030A1 (en) Fuel Cell with Gas Diffusion Layer having Flow Channel and Manufacturing Method Thereof
WO2007129647A1 (en) Fuel cell stack, fuel cell system, and fuel cell system operation method
JP5096647B1 (en) Polymer electrolyte fuel cell
JP2008235009A (en) Separator for fuel cell
US20090136807A1 (en) Mea component, and polymer electrolyte fuel cell
JP2007335255A (en) Fuel cell stack and fuel cell system
JP2012248444A (en) Fuel battery cell and fuel battery cell stack
JPH1012262A (en) Solid high polymer electrolyte fuel cell
WO2007046249A1 (en) Polyelectrolyte fuel cell
JP2008084794A (en) Separator for fuel cell
JP5406207B2 (en) Adjustment of liquid water permeability in diffusion layer of fuel cell stack
US20080145741A1 (en) Fuel battery cell and fuel cell stack
WO2010109917A1 (en) Polymer electrolyte fuel cell stack
JP2005293902A (en) Separator for fuel cell and fuel cell
WO2022159101A1 (en) Fuel cell gas diffusion layers
JPH07122280A (en) Solid high polymer electrolyte type fuel cell
JP2006210212A (en) Polymer electrolyte fuel cell
JP2014216100A (en) Polyelectrolyte fuel cell
CN117766795A (en) Fuel cell stack
JP3580525B2 (en) Polymer electrolyte fuel cell
JP2009199755A (en) Fuel cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06811376

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP