WO2007041630A1 - Deuterated inhibitors of gastric h+, k+-atpase with enhanced therapeutic properties - Google Patents

Deuterated inhibitors of gastric h+, k+-atpase with enhanced therapeutic properties Download PDF

Info

Publication number
WO2007041630A1
WO2007041630A1 PCT/US2006/038819 US2006038819W WO2007041630A1 WO 2007041630 A1 WO2007041630 A1 WO 2007041630A1 US 2006038819 W US2006038819 W US 2006038819W WO 2007041630 A1 WO2007041630 A1 WO 2007041630A1
Authority
WO
WIPO (PCT)
Prior art keywords
enantiomer
compound
deuterium
mixture
formula
Prior art date
Application number
PCT/US2006/038819
Other languages
French (fr)
Inventor
Thomas Gant
Sepehr Sarshar
Original Assignee
Auspex Pharmaceuticals, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=37603090&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2007041630(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to EP06816227A priority Critical patent/EP1934201A1/en
Priority to AU2006299424A priority patent/AU2006299424A1/en
Priority to BRPI0617987-8A priority patent/BRPI0617987A2/en
Priority to CA002624179A priority patent/CA2624179A1/en
Priority to JP2008534658A priority patent/JP2009511481A/en
Application filed by Auspex Pharmaceuticals, Inc. filed Critical Auspex Pharmaceuticals, Inc.
Priority to CN2006800426099A priority patent/CN101309917B/en
Publication of WO2007041630A1 publication Critical patent/WO2007041630A1/en
Priority to IL190331A priority patent/IL190331A0/en
Priority to US12/413,365 priority patent/US20090215831A1/en
Priority to US12/413,323 priority patent/US20090209592A1/en
Priority to HK09103859.5A priority patent/HK1124336A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/06Antipsoriatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Definitions

  • the present invention is directed to inhibitors of the gastric H + , K + - ATPase and pharmaceutically acceptable salts and prodrugs thereof, the chemical synthesis thereof, and the medical use of such compounds for the treatment and/or management of duodenal ulcers, heartburn, acid reflux, other conditions mediated by gastric acid secretion and/or psoriasis.
  • the human body expresses various enzymes (e.g. the cytochrome P 450 enzymes or CYPs, esterases, proteases, reductases, dehydrogenases, and the like) that react with the chemicals and nutrients to produce novel intermediates or metabolites.
  • enzymes e.g. the cytochrome P 450 enzymes or CYPs, esterases, proteases, reductases, dehydrogenases, and the like
  • Some of the most common metabolic reactions of pharmaceutical compounds involve the oxidation of a carbon-hydrogen (C-H) bond to either a carbon-oxygen (C-O) or carbon-carbon (C-C) ⁇ -bond.
  • the resultant metabolites may be stable or unstable under physiological conditions, and can have substantially different pharmacokinetic, pharmacodynamic, acute and long-term toxicity profiles relative to the parent compounds. For most drugs, such oxidations are generally rapid and ultimately lead to administration of multiple or high daily doses. There is therefore an obvious and immediate need for improvements of such drugs.
  • Chemical kinetics is the study of reaction rates.
  • the activation energy E aot in chemistry is the energy that must be supplied to a system in order to initiate a particular chemical process. In other words, this is the minimum energy required for a specific chemical reaction to take place. A reaction will occur between two properly oriented molecules if they possess a minimum requisite energy. During the approach, the outer shell electrons of each molecule will induce repulsion.
  • RT is the average amount of thermal energy that molecules possess at a certain temperature T, where R is the molar gas constant, k is the rate constant for the reaction and A (the frequency factor) is a constant specific to each reaction that depends on the probability that the molecules will collide with the correct orientation.
  • the transition state in a reaction is a short lived state (on the order of 10 ⁇ 14 sec) along the reaction pathway during which the original bonds have stretched to their limit.
  • the activation energy E act for a reaction is the energy required to reach the transition state of that reaction. Reactions that involve multiple steps will necessarily have a number of transition states, and in these instances, the activation energy for the reaction is equal to the energy difference between the reactants and the most unstable transition state. Once the transition state is reached, the molecules can either revert, thus reforming the original reactants, or the new bonds form giving rise to the products. This dichotomy is possible because both pathways, forward and reverse, result in the release of energy.
  • a catalyst facilitates a reaction process by lowering the activation energy leading to a transition state.
  • Enzymes are examples of biological catalysts that reduce the energy necessary to achieve a particular transition state.
  • a carbon-hydrogen bond is by nature a covalent chemical bond. Such a bond forms when two atoms of similar electronegativity share some of their valence electrons, thereby creating a force that holds the atoms together. This force or bond strength can be quantified and is expressed in units of energy, and as such, covalent bonds between various atoms can be classified according to how much energy must be applied to the bond in order to break the bond or separate the two atoms.
  • the bond strength is directly proportional to the absolute value of the ground-state vibrational energy of the bond.
  • This vibrational energy which is also known as the zero-point vibrational energy, depends on the mass of the atoms that form the bond.
  • the absolute value of the zero-point vibrational energy increases as the mass of one or both of the atoms making the bond increases. Since deuterium (D) is two-fold more massive than hydrogen (H), it follows that a C-D bond is stronger than the corresponding C-H bond.
  • Compounds with C-D bonds are frequently indefinitely stable in H 2 O, and have been widely used for isotopic studies. If a C-H bond is broken during a rate-determining step in a chemical reaction (i.e.
  • DKIE deuterium Kinetic Isotope Effect
  • 1 no isotope effect
  • very large numbers such as 50 or more, meaning that the reaction can be fifty, or more, times slower when deuterium is substituted for hydrogen.
  • High DKIE values may be due in part to a phenomenon known as tunneling, which is a consequence of the uncertainty principle. Tunneling is ascribed to the small size of a hydrogen atom, and occurs because transition states involving a proton can sometimes form in the absence of the required activation energy. A deuterium is larger and statistically has a much lower probability of undergoing this phenomenon. Substitution of tritium for hydrogen results in yet a stronger bond than deuterium and gives numerically larger isotope effects.
  • deuterium is a stable and non-radioactive isotope of hydrogen. It was the first isotope to be separated from its element in pure form and is twice as massive as hydrogen, and makes up about 0.02% of the total mass of hydrogen (in this usage meaning all isotopes) on earth.
  • deuterium oxide D 2 O or "heavy water"
  • D 2 O looks and tastes like H 2 O but it has different physical properties. It boils at 101.41 0 C and freezes at 3.79 °C. Its heat capacity, heat of fusion, heat of vaporization, and entropy are all higher than H 2 O. It is also more viscous and is not as powerful a solvent as H 2 O.
  • Tritium (T) is a radioactive isotope of hydrogen, used in research, fusion reactors, neutron generators and radiopharmaceuticals. Mixing tritium with a phosphor provides a continuous light source, a technique that is commonly used in wristwatches, compasses, rifle sights and exit signs. It was discovered by Rutherford, Oliphant and Harteck in 1934 and is produced naturally in the upper atmosphere when cosmic rays react with H 2 molecules. Tritium is a hydrogen atom that has 2 neutrons in the nucleus and has an atomic weight close to 3. It occurs naturally in the environment in very low concentrations, most commonly found as T 2 O, a colorless and odorless liquid.
  • PK pharmacokinetics
  • PD pharmacodynamics
  • toxicity profiles have been demonstrated previously with some classes of drugs.
  • DKIE was used to decrease the hepatotoxicity of halothane by presumably limiting the production of reactive species such as trifluoroacetyl chloride.
  • this method may not be applicable to all drug classes.
  • deuterium incorporation can lead to metabolic switching which may even give rise to an oxidative intermediate with a faster off-rate from an activating Phase I enzyme (e.g. cytochrome P 450 3A4).
  • Omeprazole (PRILOSEC ® ) is an inhibitor of the gastric H + , K + -ATPase.
  • This class of drugs includes, among others, esomeprazole, lansoprazole, pantoprazole, rabeprazole, leminoprazole, ilaprazole, nepaprazole, saviprazole and tenatoprazole.
  • the mechanism of action of these drugs has been extensively studied, and it is postulated that they react transiently with a critical cysteine in the gastric H + , K + -ATPase ("gastric H + pump").
  • Omeprazole has been shown to degrade to inactive and less active metabolites as part of its metabolic clearance from systemic circulation. This degradation is so rapid that the producer of omeprazole (AstraZeneca) undertook a full development/clinical program to develop and market its successor (i.e. esomeprazole (NEXIUM ® )), a homochiral analog of omeprazole with a very similar pharmacodynamic, pharmacokinetic and toxicological profile. The only noticeable difference resides in the fact that the half-life of esomeprazole in human plasma is 20% higher than that of omeprazole. Clinical advantages of esomeprazole versus omeprazole are unclear.
  • Esomeprazole is extensively metabolized in the liver by the cytochrome P 450 (CYP) enzyme system.
  • the metabolites of esomeprazole lack antisecretory activity.
  • the major part of esomeprazole 's metabolism is dependent upon the CYP2C19 isoenzyme which forms the hydroxy- and desmethyl metabolites.
  • the remaining amount is dependent on CYP3A4 which forms the sulphone metabolite.
  • CYP2C19 isoenzyme exhibits polymorphism in the metabolism of esomeprazole, since some 3% of Caucasians and 15-20% of Asians lack CYP2C19 and are termed poor metabolizers.
  • AUC Area Under the Curve
  • R 1 , R 4 , R 9 and R 10 are independently selected from the group consisting of hydrogen, and deuterium;
  • R 2 , R 3 , R 6 , and R 8 are independently selected from the group consisting of hydrogen, deuterium, C 1 -C 6 alkyl, and C 1 -C 6 alkyloxy;
  • R. 5 is selected from the group consisting Of-CH 2 -, -CHD- and -CD 2 -;
  • R 7 is selected from the group consisting of hydrogen, deuterium, -NO 2 , Ci-C 6 alkyl, and Cj-C 6 alkyloxy; provided that compounds of Formula 1 contain at least one deuterium atom, and provided that deuterium enrichment in compounds of Formula 1 is at least about 1%.
  • compositions comprising a compound according to Formula 1, a single enantiomer of a compound of Formula 1, a mixture of the (+)-enantiomer and the (-)-enantiomer, a mixture of about 90% or more by weight of the (-)-enantiomer and about 10% or less by weight of the (+)-enantiomer, a mixture of about 90% or more by weight of the (+)-enantiomer and about 10% or less by weight of the (-)-enantiomer, an individual diastereomer of a compound of Formula 1, a mixture of diastereomers, or a pharmaceutically acceptable salt, solvate, or prodrug thereof, with a pharmaceutically acceptable carrier.
  • the carbon-hydrogen bonds of these gastric H + , K + -ATPase modulators contain a naturally occurring distribution of hydrogen isotopes, namely 1 H or protium (about 99.9844%), 2 H or deuterium (about 0.0156%), and 3 H or tritium (in the range between about 0.5 and 67 tritium atoms per 10 18 protium atoms).
  • Increased levels of deuterium incorporation produce a detectable Kinetic Isotope Effect (KIE) that could affect the pharmacokinetic, pharmacologic and/or toxicologic parameters of these gastric H + , K + - ATPase modulators relative to compounds having naturally occurring levels of deuterium.
  • KIE Kinetic Isotope Effect
  • aspects of the present invention disclosed herein describe a novel approach to designing and synthesizing new analogs of these gastric H + , K + -ATPaSe modulators through chemical modifications and derivations of the carbon-hydrogen bonds of the modulators and/or of the chemical precursors used to synthesize said modulators.
  • Suitable modifications of certain carbon-hydrogen bonds into carbon-deuterium bonds may generate novel gastric H + , K + - ATPase modulators with unexpected and non-obvious improvements of pharmacological, pharmacokinetic and toxicological properties in comparison to the non-isotopically enriched gastric H + , K + -ATPaSe modulators.
  • This invention relies on the judicious and successful application of chemical kinetics to drug design. Deuterium incorporation levels in the compounds of the invention are significantly higher than the naturally-occurring levels and are sufficient to induce at least one substantial improvement as described herein.
  • the deuterated analogs of this invention have the potential to uniquely maintain the beneficial aspects of the non-isotopically enriched drugs while substantially increasing the half-life (T 1 Z 2 ), lowering the maximum plasma concentration (C max ) of the minimum efficacious dose (MED), lowering the efficacious dose and thus decreasing the non-mechanism-related toxicity, and/or lowering the probability of drug-drug interactions.
  • These drugs also have strong potential to reduce the cost-of-goods (COG) owing to the ready availability of inexpensive sources of deuterated reagents combined with previously mentioned potential for lowering the therapeutic dose.
  • R 1 , R 4 , Rg and Rio are independently selected from the group consisting of hydrogen, and deuterium;
  • R 2 , R 3 , R 6 , and R 8 are independently selected from the group consisting of hydrogen, deuterium, C 1 -C 6 alkyl, and C 1 -C 6 alkyloxy;
  • R 5 is selected from the group consisting Of-CH 2 -, -CHD- and -CD 2 -;
  • R 7 is selected from the group consisting of hydrogen, deuterium, -NO 2 , Ci-C 6 alkyl, Ci-C 6 alkyloxy, and C 1 -C 6 alkoxy(Ci-C 6 )alkyloxy; provided that compounds of Formula 1 contain at least one deuterium atom, and provided that deuterium enrichment in compounds of Formula 1 is at least about 1%.
  • Compounds of this invention have the potential to uniquely maintain the beneficial aspects of non-isotopically enriched gastric H + , K + -ATPase modulators while substantially altering the half-life (T 1/2 ), lowering the maximum plasma concentration (C ma ⁇ ) of the minimum efficacious dose (MED), lowering the efficacious dose and thus decreasing non-mechanism-related toxicities, and/or lowering the probability of drug-drug interactions.
  • These drugs also have potential to reduce the cost-of-goods (COG) due to a potential for lowering the therapeutic dose when compared to the non-isotopically enriched gastric H , K + -ATPase modulators.
  • COG cost-of-goods
  • Agents in the present invention will expose patients to a maximum of 0.000005% D 2 O (can also be expressed as 0.00001% DHO). This quantity is a small fraction of the naturally occurring background levels of D 2 O (or DHO) in circulation. Even this minute exposure would require complete metabolism of every drug-incorporated C-D bond, and yet this C-D metabolism is precisely the phenomenon that can be eliminated or diminished through creative incorporation. Recall the levels of D 2 O shown to cause toxicity in animals (vide supra). The safety factor is thus extraordinary for this approach.
  • Deuterium enrichment refers to the percentage of incorporation of deuterium at a given site on the molecule instead of a hydrogen atom. For example, deuterium enrichment of 1% means that in 1% of molecules in a given sample a particular site is occupied by deuterium. Because the naturally occurring distribution of deuterium is about 0.0156%, deuterium enrichment in compounds synthesized using non-enriched starting materials is about 0.0156%. In some embodiments, the deuterium enrichment in the compounds of the present invention is greater than 10%. In other embodiments, the deuterium enrichment in the compounds of the present invention is greater than 20%. In further embodiments, the deuterium enrichment in the compounds of the present invention is greater than 50%. In some embodiments, the deuterium enrichment in the compounds of the present invention is greater than 70%. In some embodiments, the deuterium enrichment in the compounds of the present invention is greater than 90%.
  • Isotopic enrichment refers to the percentage of incorporation of a less prevalent isotope of an element at a given site on the molecule instead of the more prevalent isotope of the element.
  • Non-isotopically enriched refers to a molecule in which the percentage of the various isotopes is substantially the same as the naturally occurring percentages.
  • the compound of Formula 1 contains about 60% or more by weight of the (-)-enantiomer of the compound and about 40% or less by weight of (+)-enantiomer of the compound. In some embodiments, the compound of Formula 1 contains about 70% or more by weight of the (-)-enantiomer of the compound and about 30% or less by weight of (+)-enantiomer of the compound. In some embodiments, the compound of Formula 1 contains about 80% or more by weight of the (-)-enantiomer of the compound and about 20% or less by weight of (+)-enantiomer of the compound.
  • the compound of Formula 1 contains about 90% or more by weight of the (-)-enantiomer of the compound and about 10% or less by weight of the (+)-enantiomer of the compound. In some embodiments, the compound of Formula 1 contains about 95% or more by weight of the (-)-enantiomer of the compound and about 5% or less by weight of (+)-enantiomer of the compound. In some embodiments, the compound of Formula 1 contains about 99% or more by weight of the (-)-enantiomer of the compound and about 1% or less by weight of (+)- enantiomer of the compound.
  • the compound of Formula 1 contains about 60% or more by weight of the (+)-enantiomer of the compound and about 40% or less by weight of (-)-enantiomer of the compound. In some embodiments, the compound of Formula 1 contains about 70% or more by weight of the (+)-enantiomer of the compound and about 30% or less by weight of (-)-enantiomer of the compound. In some embodiments, the compound of Formula 1 contains about 80% or more by weight of the (+)-enantiomer of the compound and about 20% or less by weight of (-)-enantiomer of the compound.
  • the compound of Formula 1 contains about 90% or more by weight of the (+)- enantiomer of the compound and about 10% or less by weight of the (-)-enantiomer of the compound. In some embodiments, the compound of Formula 1 contains about 95% or more by weight of the (+)-enantiomer of the compound and about 5% or less by weight of (-)-enantiomer of the compound. In some embodiments, the compound of Formula 1 contains about 99% or more by weight of the (+)-enantiomer of the compound and about 1% or less by weight of (-)-enantiomer of the compound.
  • the alkyl is selected from the group consisting of methyl, ethyl, n-propyl, iso-propyl, n-butyl, sec-butyl, iso-butyl, and tert-butyl.
  • the alkyloxy is selected from the group consisting of methoxy, ethoxy, n- propoxy, iso-propoxy, n-butoxy, sec-butoxy, iso-butoxy, and tert-butoxy.
  • R 1 is hydrogen. In other embodiments, R 2 is hydrogen. In some embodiments, R 3 is hydrogen. In other embodiments, R 4 is hydrogen. In still other embodiments, R 6 is hydrogen. In yet other embodiments, R 7 is hydrogen. In yet other embodiments, R 8 is hydrogen. In still other embodiments, R 9 is hydrogen. In still other embodiments, R 10 is hydrogen.
  • Rj is deuterium.
  • R 2 is deuterium.
  • R 3 is deuterium.
  • R 4 is deuterium.
  • R 6 is deuterium.
  • R 7 is deuterium.
  • R 8 is deuterium.
  • R 9 is deuterium.
  • R 1O is deuterium.
  • R 2 is a Ci -6 alkyloxy, wherein any one or more of the hydrogen atoms on the alkoxy group can be substituted by deuterium.
  • R 2 is selected from the group consisting of -OCH 3 , -OCD 3 , -OCHF 2 , and - OCDF 2 . In other embodiments, R 2 is -OCD 3 or -OCDF 2 .
  • R 5 is -CH 2 -, -CHD- or -CD 2 -;
  • R 6 is a C 1-6 alkyloxy, wherein any one or more of the hydrogen atoms on the alkoxy group can be substituted by deuterium. In some of these embodiments, R 6 is -OCH 3 , or -OCD 3 ;
  • R 6 is a Ci -6 alkyl, wherein any one or more of the hydrogen atoms on the alkyl group can be substituted by deuterium. In some of these embodiments, R 6 is -CH 3 , or -CD 3 ;
  • R 7 is a Ci -6 alkyloxy, wherein any one or more of the hydrogen atoms on the alkoxy group can be substituted by deuterium.
  • R 7 is selected from the group consisting of -OCH 3 , -OCD 3 , -OCH 2 CF 3 , - OCD 2 CF 3 , and -O(CH 2 ) 3 OCH 3 wherein any one or more of the hydrogen atoms in - O(CH 2 ) 3 OCH 3 can be substituted by deuterium.
  • R 8 is a C 1-6 alkyl wherein any one or more of the hydrogen atoms on the alkyl group can be substituted by deuterium. In some of these embodiments, R 8 is -CH 3 , or -CD 3 ;
  • R 8 is a C 1-6 alkyloxy wherein any one or more of the hydrogen atoms on the alkoxy group can be substituted by deuterium.
  • Ri is not hydrogen. In other embodiments, R 2 is not hydrogen. In some embodiments, R 3 is not hydrogen. In other embodiments, R 4 is not hydrogen. In still other embodiments, R 6 is not hydrogen. In yet other embodiments, R 7 is not hydrogen. In yet other embodiments, R 8 is not hydrogen. In still other embodiments, R 9 is not hydrogen. In still other embodiments, Ri 0 is not hydrogen.
  • Ri is not deuterium.
  • R 2 is not deuterium.
  • R 3 is not deuterium.
  • R 4 is not deuterium.
  • R 6 is not deuterium.
  • R 7 is not deuterium.
  • R 8 is not deuterium.
  • R 9 is not deuterium.
  • Rio is not deuterium.
  • R 2 is not a Ci -6 alkyloxy. In some of these embodiments, R 2 is not -OCH 3 , -OCD 3 , -OCHF 2 , or -OCDF 2 . In other embodiments, R 2 is not -OCD 3 or -OCDF 2 .
  • R 5 is not -CH 2 , -CHD or -CD 2 ;
  • R 6 is not a C 1-6 alkyloxy. In some of these embodiments, R 6 is not -OCH 3 , or -OCD 3 ;
  • R 6 is not a C 1-6 alkyl. In some of these embodiments, R 6 Is not -CH 3 , or -CD 3 ;
  • R 7 is not a Ci -6 alkyloxy. In some of these embodiments, R 7 is not -OCH 3 , -OCD 3 , -OCH 2 CF 3 , -OCD 2 CF 3 , or -O(CH 2 ) 3 OCH 3 wherein any of the hydrogen atoms in -O(CH 2 ) 3 OCH 3 can be substituted by a deuterium.
  • R 8 is not a C 1-6 alkyl. In some of these embodiments, R 8 is not -CH 3 , or -CD 3 ;
  • R 8 is not a Ci -6 alkyloxy.
  • compositions comprising at least one of the compounds of Formula 1, a single enantiomer of a compound of Formula 1, a mixture of the (+)-enantiomer and the (-)- enantiomer, a mixture of about 90% or more by weight of the (-)-enantiomer and about 10% or less by weight of the (+)-enantiomer, a mixture of about 90% or more by weight of the (+)-enantiomer and about 10% or less by weight of the (-)-enantiomer, an individual diastereomer of a compound of Formula 1, a mixture of diastereomers, or a pharmaceutically acceptable salt, solvate, or prodrug thereof, in a pharmaceutically acceptable vehicle, carrier, diluent, or excipient, or a combination thereof, for enteral, intravenous infusion, oral, parenteral, topical or ocular administration.
  • compositions comprising at least one of the compounds of Formula 1, a single enantiomer of a compound of Formula 1, a mixture of the (+)-enantiomer and the (-)- enantiomer, a mixture of about 90% or more by weight of the (-)-enantiomer and about 10% or less by weight of the (+)-enantiomer, a mixture of about 90% or more by weight of the (+)-enantiomer and about 10% or less by weight of the (-)-enantiomer, an individual diastereomer of a compound of Formula 1, a mixture of diastereomers, or a pharmaceutically acceptable salt, solvate, or prodrug thereof, in a pharmaceutically acceptable vehicle, carrier, diluent, or excipient, or a combination thereof, for the treatment of conditions involving the gastric H + , K + -ATPase, duodenal ulcers, other conditions mediated by gastric acid secretion, or a combination thereof, for the treatment of conditions involving the gastric H
  • methods of modulating the activity of the gastric H + , K + -ATPase with one or more of the compounds or compositions of Formula 1, a single enantiomer of a compound of Formula 1, a mixture of the (+)-enantiomer and the (-)-enantiomer, a mixture of about 90% or more by weight of the (-)-enantiomer and about 10% or less by weight of the (+)-enantiomer, a mixture of about 90% or more by weight of the (+)-enantiomer and about 10% or less by weight of the (-)- enantiomer, an individual diastereomer of a compound of Formula 1, a mixture of diastereomers, or a pharmaceutically acceptable salt, solvate, or prodrug thereof.
  • a mammalian subject particularly a human, suspected of having, or being prone to a disease or condition involving the gastric H + , K + -ATPase, gastric ulcers, duodenal ulcers, esophageal ulcers, other conditions mediated by gastric acid secretion, or psoriasis.
  • the administering step in the above methods comprises administering the compound of the invention in some composition, i.e., a single tablet, pill, or capsule, or a single solution for intravenous injection, or a single drinkable solution, or a single dragee formulation or patch, wherein the amount administered is about 0.5 milligram to 80 milligram total daily dose.
  • a gastric H + , K + -ATPase inhibitor comprising at least one of the compounds of Formula 1, a single enantiomer of a compound of Formula 1, a mixture of the (+)-enantiomer and the (-)- enantiomer, a mixture of about 90% or more by weight of the (-)-enantiomer and about 10% or less by weight of the (+)-enantiomer, a mixture of about 90% or more by weight of the (+)-enantiomer and about 10% or less by weight of the (-)-enantiomer, an individual diastereomer of a compound of Formula 1, a mixture of diastereomers, or a pharmaceutically acceptable salt, solvate, or prodrug thereof, in a pharmaceutically acceptable vehicle, carrier, diluent, or
  • the inter-individual variation in plasma levels of the compounds of the invention, or metabolites thereof is decreased by greater than about 5%, as compared to the non-isotopically enriched compounds. In other embodiments, the inter-individual variation in plasma levels of the compounds of the invention, or metabolites thereof, is decreased by greater than about 10%, as compared to the non-isotopically enriched compounds. In other embodiments, the inter-individual variation in plasma levels of the compounds of the invention, or metabolites thereof, is decreased by greater than about 20%, as compared to the non-isotopically enriched compounds.
  • the inter- individual variation in plasma levels of the compounds of the invention, or metabolites thereof is decreased by greater than about 30%, as compared to the non-isotopically enriched compounds. In other embodiments, the inter-individual variation in plasma levels of the compounds of the invention, or metabolites thereof, is decreased by greater than about 40%, as compared to the non-isotopically enriched compounds. In other embodiments, the inter- individual variation in plasma levels of the compounds of the invention, or metabolites thereof, is decreased by greater than about 50%, as compared to the non-isotopically enriched compounds. Plasma levels of the compounds of the invention, or metabolites thereof, are measured by the methods of Li et al Rapid Communications in Mass Spectrometry 2005, 19(14), 1943-1950, which is hereby incorporated by reference in its entirety.
  • a gastric H + , K + -ATPase inhibitor comprising at least one of the compounds of Formula 1, a single enantiomer of a compound of Formula 1, a mixture of the (+)-enantiomer and the (-)- enantiomer, a mixture of about 90% or more by weight of the (-)-enantiomer and about 10% or less by weight of the (+)-enantiomer, a mixture of about 90% or more by weight of the (+)-enantiomer and about 10% or less by weight of the (-)-enantiomer, an individual diastereomer of a compound of Formula 1, a mixture of diastereomers, or a pharmaceutically acceptable salt, solvate, or prodrug thereof, in a pharmaceutically acceptable vehicle, carrier, diluent, or
  • the average plasma levels of the compounds of the invention are increased by greater than about 5%, as compared to the non-isotopically enriched compounds. In other embodiments, the average plasma levels of the compounds of the invention are increased by greater than about 10%, as compared to the non-isotopically enriched compounds. In other embodiments, the average plasma levels of the compounds of the invention are increased by greater than about 20%, as compared to the non-isotopically enriched compounds. In other embodiments, the average plasma levels of the compounds of the invention are increased by greater than about 30%, as compared to the non-isotopically enriched compounds.
  • the average plasma levels of the compounds of the invention are increased by greater than about 40%, as compared to the non-isotopically enriched compounds. In other embodiments, the average plasma levels of the compounds of the invention are increased by greater than about 50%, as compared to the non-isotopically enriched compounds.
  • the average plasma levels of a metabolite of the compounds of the invention are decreased by greater than about 5%, as compared to the non- isotopically enriched compounds. In other embodiments, the average plasma levels of a metabolite of the compounds of the invention are decreased by greater than about 10%, as compared to the non-isotopically enriched compounds. In other embodiments, the average plasma levels of a metabolite of the compounds of the invention are decreased by greater than about 20%, as compared to the non-isotopically enriched compounds. In other embodiments, the average plasma levels of a metabolite of the compounds of the invention are decreased by greater than about 30%, as compared to the non-isotopically enriched compounds.
  • the average plasma levels of a metabolite of the compounds of the invention are decreased by greater than about 40%, as compared to the non-isotopically enriched compounds. In other embodiments, the average plasma levels of a metabolite of the compounds of the invention are decreased by greater than about 50%, as compared to the non-isotopically enriched compounds.
  • Plasma levels of the compounds of the invention, or metabolites thereof, are measured by the methods of Li et al Rapid Communications in Mass Spectrometry 2005, 19(14), 1943-1950.
  • methods for treatment of gastric acid related diseases by inhibition of gastric acid secretion comprising administering to a mammalian subject in need of treatment a therapeutically effective amount of a gastric H + , K + -ATPase inhibitor comprising at least one of the compounds of Formula 1, a single enantiomer of a compound of Formula 1, a mixture of the (H-)-enantiomer and the (-)- enantiomer, a mixture of about 90% or more by weight of the (-)-enantiomer and about 10% or less by weight of the (+)-enantiomer, a mixture of about 90% or more by weight of the (+)-enantiomer and about 10% or less by weight of the (-)-enantiomer, an individual diastereomer of
  • a gastric H + , K + -ATPase inhibitor comprising at least one of the compounds of Formula 1, a single enantiomer of a compound of Formula 1, a mixture of the (+)-enantiomer and the (-)- enantiomer, a mixture of about 90% or more by weight of the (-)-enantiomer and about 10% or less by weight of the (+)-enantiomer, a mixture of about 90% or more by weight of the (+)-enantiomer and about 10% or less by weight of the (-)-enantiomer, an individual diastereomer of a compound of Formula 1, a mixture of diastereomers, or a pharmaceutically acceptable salt, solvate, or prodrug thereof, in a pharmaceutically acceptable vehicle, carrier, diluent, or
  • cytochrome P 450 isoforms in mammalian subjects include CYPlAl, CYP1A2, CYPlBl, CYP2A6, CYP2A13, CYP2B6, CYP2C8, CYP2C9, CYP2C18, CYP2C19, CYP2D6, CYP2E1, CYP2G1, CYP2J2, CYP2R1, CYP2S1, CYP3A4, CYP3A5, CYP3A5P1, CYP3A5P2, CYP3A7, CYP4A11, CYP4B1, CYP4F2, CYP4F3, CYP4F8, CYP4F11, CYP4F12, CYP4X1, CYP4Z1, CYP5A1, CYP7A1, CYP7B1, CYP8A1, CYP8B1, CYPIlAl, CYPIl,
  • the decrease in inhibition of the cytochrome P 450 isoform by compounds of the invention is greater than about 5%, as compared to the non- isotopically enriched compounds. In other embodiments, the decrease in inhibition of the cytochrome P 450 isoform by compounds of the invention is greater than about 10%, as compared to the non-isotopically enriched compounds. In other embodiments, the decrease in inhibition of the cytochrome P 450 isoform by compounds of the invention is greater than about 20%, as compared to the non-isotopically enriched compounds.
  • the decrease in inhibition of the cytochrome P 45 o isoform by compounds of the invention is greater than about 30%, as compared to the non-isotopically enriched compounds. In other embodiments, the decrease in inhibition of the cytochrome P 450 isoform by compounds of the invention is greater than about 40%, as compared to the non-isotopically enriched compounds. In other embodiments, the decrease in inhibition of the cytochrome P 450 isoform by compounds of the invention is greater than about 50%, as compared to the non- isotopically enriched compounds.
  • a gastric H + , K + -ATPase inhibitor comprising at least one of the compounds of Formula 1, a single enantiomer of a compound of Formula 1, a mixture of the (+)-enantiomer and the (-)- enantiomer, a mixture of about 90% or more by weight of the (-)-enantiomer and about 10% or less by weight of the (+)-enantiomer, a mixture of about 90% or more by weight of the (+)-enantiomer and about 10% or less by weight of the (-)-enantiomer, an individual diastereomer of a compound of Formula 1, a mixture of diastereomers, or a pharmaceutically acceptable salt, solvate, or prodrug thereof, in a pharmaceutically acceptable vehicle, carrier, diluent, or
  • a gastric H + , K + -ATPase inhibitor comprising at least one of the compounds of Formula 1, a single enantiomer of a compound of Formula 1, a mixture of the (+)-enantiomer and the (-)- enantiomer, a mixture of about 90% or more by weight of the (-)-enantiomer and about 10% or less by weight of the (+)-enantiomer, a mixture of about 90% or more by weight of the (+)-enantiomer and about 10% or less by weight of the (-)-enantiomer, an individual diastereomer of a compound of Formula 1, a mixture of diastereomers, or a pharmaceutically acceptable salt, solvate, or prodrug thereof, in a pharmaceutically acceptable vehicle, carrier, diluent, or
  • oral multiple unit tablet pharmaceutical compositions comprising two components A and B, wherein component A comprises one or more antibacterial agent with similar or different activities, such as for example amoxicillin, clarithromycin, metronidazole, and the like, and a combination thereof, and component B comprises at least one of the compounds of Formula 1, a single enantiomer of a compound of Formula 1, a mixture of the (+)-enantiomer and the (-)-enantiomer, a mixture of about 90% or more by weight of the (-)-enantiomer and about 10% or less by weight of the (+)-enantiomer, a mixture of about 90% or more by weight of the (+)-enantiomer and about 10% or less by weight of the (-)-enantiomer, an individual diastereomer of a compound of Formula 1, a mixture of diastereomers, or a pharmaceutically acceptable salt, solvate, or prodrug thereof, in a pharmaceutically acceptable vehicle, carrier, d
  • effervescent dosage forms comprising two components A and B, wherein, component A is one or more effervescent excipients, and component B is made up of a mixture comprising at least one of the compounds of Formula 1, a single enantiomer of a compound of Formula 1, a mixture of the (+)-enantiomer and the (-)-enantiomer, a mixture of about 90% or more by weight of the (-)-enantiomer and about 10% or less by weight of the (+)-enantiomer, a mixture of about 90% or more by weight of the (+)-enantiomer and about 10% or less by weight of the (-)-enantiomer, an individual diastereomer of a compound of Formula I 5 a mixture of diastereomers, or a pharmaceutically acceptable salt, solvate, or prodrug thereof, in a pharmaceutically acceptable vehicle, carrier, diluent, or excipient, or a combination thereof, a beta
  • oral multiple unit tablet pharmaceutical compositions comprising three components A, B and C, wherein component A comprises at least one of the compounds of Formula 1, a single enantiomer of a compound of Formula 1, a mixture of the (+)-enantiomer and the (-)- enantiomer, a mixture of about 90% or more by weight of the (-)-enantiomer and about 10% or less by weight of the (+)-enantiomer, a mixture of about 90% or more by weight of the (+)-enantiomer and about 10% or less by weight of the (-)-enantiomer, an individual diastereomer of a compound of Formula 1, a mixture of diastereomers, or a pharmaceutically acceptable salt, solvate, or prodrug thereof, in a pharmaceutically acceptable vehicle, carrier, diluent, or excipient, or a combination thereof, in the form of pellets covered with an enteric coating polymer layer with mechanical properties such that the acid resistance of the enteric
  • a bacterial infection caused or mediated by Helicobacter pylori comprising simultaneously, separately or sequentially administering to a mammalian subject in need, an effective amount of an Nitric Oxide releasing Non Steroidal Anti-inflammatory Drug (NSAE)) and at least one of the compounds of Formula 1, a single enantiomer of a compound of Formula 1, a mixture of the (+)-enantiomer and the (-)-enantiomer, a mixture of about 90% or more by weight of the (-)-enantiomer and about 10% or less by weight of the (+)-enantiomer, a mixture of about 90% or more by weight of the (H-)-enantiomer and about 10% or less by weight of the (-)-enantiomer, an individual diastereomer of a compound of Formula 1, a mixture of diastereomers, or a pharmaceutically acceptable salt, solvate, or prodrug thereof, in a pharmaceutically
  • NSAE Nitric Oxide releasing Non Steroidal Anti-inflammatory Drug
  • extended release pharmaceutical dosage forms comprising at least one of the compounds of Formula 1, a single enantiomer of a compound of Formula 1, a mixture of the (H-)-enantiomer and the (-)- enantiomer, a mixture of about 90% or more by weight of the (-)-enantiomer and about 10% or less by weight of the (+)-enantiomer, a mixture of about 90% or more by weight of the (+)-enantiomer and about 10% or less by weight of the (-)-enantiomer, an individual diastereomer of a compound of Formula 1, a mixture of diastereomers, or a pharmaceutically acceptable salt, solvate, or prodrug thereof, in a pharmaceutically acceptable vehicle, carrier, diluent, or excipient, or a combination thereof, a hydrophilic or hydrophobic matrix, a water- soluble separating layer, an enteric coating layer, and optionally one or more pharmaceutically acceptable excipients.
  • enteric coated pharmaceutical dosage forms comprising at least one of the compounds of Formula 1, a single enantiomer of a compound of Formula 1, a mixture of the (+)-enantiomer and the (-)- enantiomer, a mixture of about 90% or more by weight of the (-)-enantiomer and about 10% or less by weight of the (+)-enantiomer, a mixture of about 90% or more by weight of the (+)-enantiomer and about 10% or less by weight of the (-)-enantiomer, an individual diastereomer of a compound of Formula 1, a mixture of diastereomers, or a pharmaceutically acceptable salt, solvate, or prodrug thereof, in a pharmaceutically acceptable vehicle, carrier, diluent, or excipient, or a combination thereof, a disruptable semi-permeable membrane and one or more swellable substances, wherein the dosage form has an instant inhibitor-releasing 6 038819
  • the part and at least one delayed inhibitor-releasing part is capable of giving a discontinuous release of the compound in the form of at least two consecutive pulses separated in time from 0.1 up to 24 hours.
  • stable pharmaceutical dosage forms for oral administration to mammalian subjects which comprises at least one of the compounds of Formula 1, a single enantiomer of a compound of Formula 1, a mixture of the (+)-enantiomer and the (-)-enantiomer, a mixture of about 90% or more by weight of the (-)-enantiomer and about 10% or less by weight of the (+)-enantiomer, a mixture of about 90% or more by weight of the (+)-enantiomer and about 10% or less by weight of the (-)-enantiomer, an individual diastereomer of a compound of Formula 1, a mixture of diastereomers, or a pharmaceutically acceptable salt, solvate, or prodrug thereof, in a pharmaceutically acceptable vehicle, carrier, diluent, or excipient, or a combination thereof, and optionally one or more pharmaceutical adjuvants, enclosed in an intermediate reactive layer comprising a gastric juice-resistant polymeric layered material partially neutralized
  • the present invention is intended to include all isotopes of all atoms occurring in the present compounds.
  • Isotopes include those atoms having the same atomic number but different mass numbers.
  • isotopes of hydrogen include deuterium (D) and tritium (T).
  • isotopes of carbon include 13 C and 14 C.
  • Isotopes of sulfur include 32 S, 33 S, 34 S, and 36 S.
  • Isotopes of nitrogen include 14 N and 15 N.
  • Isotopes of oxygen include 16 0, 17 O, and 18 O.
  • Isotopic hydrogen can be introduced into organic molecules by synthetic techniques that employ deuterated reagents whereby incorporation rates are pre-determined and/or by exchange techniques wherein incorporation rates are determined by equilibrium conditions and maybe highly variable depending on the reaction conditions. Synthetic techniques, where tritium or deuterium is directly and specifically inserted by tritiated or deuterated reagents of known isotopic content, may yield high tritium or deuterium abundance, but can be limited by the chemistry required. In addition, the molecule being labeled may be changed, depending upon the severity of the synthetic reaction employed.
  • substituent is a group that may be substituted with one or more group(s) individually and independently selected from the group consisting of hydrogen, deuterium, alkyl, cycloalkyl, aryl, heteroaryl, heterocyclic, hydroxy, alkoxy, aryloxy, mercapto, alkylthio, arylthio, cyano, halo, carbonyl, thiocarbonyl, O-carbamyl, N-carbamyl, O-thiocarbamyl, N-thiocarbamyl, C-amido, N-amido, S-sulfonamido, N-sulfonamido, C-carboxy, O-carboxy, isocyanato, thiocyanato, isothiocyanato, nitro, silyl, trihalomethanesulfonyl, and amino,
  • the compounds according to this invention may occur as any reasonable tautomer as recognized by one skilled in the art or a mixture of such tautomers.
  • tautomer or “tautomerism” refers to one of two or more structural isomers that exist in equilibrium and are readily converted from one isomeric form to another. Examples include keto-enol tautomers, such as acetone/propen-2-ol and the like, ring-chain tautomers, such as glucose/ 2,3,4,5,6-pentahydroxy-hexanal and the like.
  • the compounds described herein may have one or more tautomers and therefore include various isomers. AU such isomeric forms of these compounds are expressly included in the present invention.
  • the following example of tautomerism is provided for reference:
  • the compounds according to this invention may contain one or more asymmetric atoms and can thus occur as racemates and racemic mixtures, single enantiomers, diastereomeric mixtures or individual diastereomers.
  • stereoisomer refers to a chemical compound having the same molecular weight, chemical composition, and constitution as another, but with the atoms grouped differently. That is, certain identical chemical moieties are at different orientations in space and, therefore, when pure, have the ability to rotate the plane of polarized light. However, some pure stereoisomers may have an optical rotation that is so slight that it is undetectable with present instrumentation.
  • the compounds described herein may have one or more asymmetrical atoms and therefore include various stereoisomers. All such isomeric forms of these compounds are expressly included in the present invention.
  • Each stereogenic carbon or sulfur may be of R or S configuration. Although the specific compounds exemplified in this application may be depicted in a particular configuration, compounds having the opposite stereochemistry at any given chiral center or mixtures thereof are also envisioned. When chiral centers are found in the derivatives of this invention, it is to be understood that this invention encompasses all possible stereoisomers.
  • optically pure compound or “optically pure isomer” refers to a single stereoisomer of a chiral compound regardless of the configuration of the said compound.
  • substantially homogeneous refers to collections of molecules wherein at least about 80%, preferably at least about 90% and more preferably at least about 95% of the molecules are a single compound or a single stereoisomer thereof, or to collections of molecules wherein at least about 80%, preferably at least about 90% and more preferably at least about 95% of the molecules are fully substituted (e.g., deuterated) at the positions stated.
  • attachment signifies a stable covalent bond, certain preferred points of attachment being apparent to those skilled in the art.
  • the term "effective amount" of a compound refers a sufficient amount of the compound that provides a desired effect but with no- or acceptable- toxicity. This amount may vary from subject to subject, depending on the species, age, and physical condition of the subject, the severity of the disease that is being treated, the particular compound used, its mode of administration, and the like. A suitable effective amount may be determined by one of ordinary skill in the art.
  • pharmaceutically acceptable refers to a compound, additive or composition that is not biologically or otherwise undesirable.
  • the additive or composition may be administered to a subject along with a compound of the invention without causing any undesirable biological effects or interacting in an undesirable manner with any of the other components of the pharmaceutical composition in which it is contained.
  • salts includes hydrochloric salt, hydrobromic salt, hydroiodic salt, hydrofluoric salt, sulfuric salt, citric salt, maleic salt, acetic salt, lactic salt, nicotinic salt, succinic salt, oxalic salt, phosphoric salt, malonic salt, salicylic salt, phenylacetic salt, stearic salt, pyridine salt, ammonium salt, piperazine salt, diethylamine salt, nicotinamide salt, formic salt, urea salt, sodium salt, potassium salt, calcium salt, magnesium salt, zinc salt, lithium salt, cinnamic salt, methylamino salt, methanesulfonic salt, picric salt, tartaric salt, triethylamino salt, dimethylamino salt, tris(hydroxymethyl)aminomethane salt and the like. Additional pharmaceutically acceptable salts are known to those of skill in the art.
  • the terms “elicit”, “eliciting,” “modulator”, “modulate”, “modulating”, “regulator”, “regulate” or “regulating” the activity refer to a compound that can act as an inhibitor, or an antagonist of a particular enzyme or receptor, such as for example the gastric H + , K + -ATPase and the like.
  • drug refers to a compound or compounds and pharmaceutically acceptable compositions thereof that are administered to mammalian subjects as prophylactic or remedy in the treatment of a disease or medical condition.
  • Such compounds may be administered to the subject via oral formulation, inhalation, ocular application, transdermal formulation or by injection.
  • the term "subject” refers to an animal, preferably a mammal, and most preferably a human, who is the object of treatment, observation or experiment.
  • the mammal may be selected from the group consisting of mice, rats, hamsters, gerbils, rabbits, guinea pigs, dogs, cats, sheep, goats, cows, horses, giraffes, platypuses, primates, such as monkeys, chimpanzees, and apes, and humans.
  • the term "therapeutically effective amount” is used to indicate an amount of an active compound, or pharmaceutical agent, that elicits the biological or medicinal response indicated. This response may occur in a tissue, system (animal including human) that is being sought by a researcher, veterinarian, medical doctor or other clinician.
  • treatment does not necessarily mean total loss of nociception. Any alleviation of any undesired signs or symptoms of a disease, such as inhibition of the gastric H + , K + -ATPase, duodenal ulcers and other conditions mediated by gastric acid secretion, or a subset of these conditions, to any extent can be considered treatment or therapy.
  • treatment may include acts that may worsen the patient's overall feeling of well-being or appearance.
  • Lewis acid refers to a molecule that can accept an unshared pair of electrons and as such would be obvious to one of ordinary skill and knowledge in the art.
  • the definition of "Lewis acid” includes but is not limited to: boron trifluoride, boron trifluoride etherate, boron trifluoride tetrahydrofuran complex, boron trifluoride tert-butyl- methyl ether complex, boron trifluoride dibutyl ether complex, boron trifluoride dihydrate, boron trifluoride di-acetic acid complex, boron trifluoride dimethyl sulfide complex, boron trichloride, boron trichloride dimethyl sulfide complex, boron tribromide, boron tribromide dimethyl sulfide complex, boron triiodide, triimethoxyborane, triethoxyborane, trimethylalumin
  • Lewis acids may have optically pure ligands attached to the electron acceptor atom, as set forth in Corey, E. J. Angewandte Chemie, International Edition (2002), 41(10), 1650-1667; Aspinall, H. C. Chemical Reviews (Washington, DC, United States) (2002), 102(6), 1807-1850; Groger, H. Chemistry-A European Journal (2001), 7(24), 5246-5251; Davies, H. M. L. Chemtracts (2001), 14(11), 642-645; Wan, Y. Chemtracts (2001), 14(11), 610-615; Kim, Y. H. Accounts of Chemical Research (2001), 34(12), 955-962; Seebach, D.
  • Such Lewis acids may be used by one of ordinary skill and knowledge in the art to produce optically pure compounds from achiral starting materials.
  • acylating agent refers to a molecule that can transfer an alkylcarbonyl, substituted alkylcarbonyl or aryl carbonyl group to another molecule.
  • the definition of "acylating agent” includes but is not limited to ethyl acetate, vinyl acetate, vinyl propionate, vinyl butyrate, isopropenyl acetate, 1-ethoxyvinyl acetate, trichloroethyl butyrate, trifluoroethyl butyrate, trifluoroethyl laureate, S-ethyl thiooctanoate, biacetyl monooxime acetate, acetic anhydride, acetyl chloride, succinic anhydride, diketene, diallyl carbonate, carbonic acid but-3-enyl ester cyanomethyl ester, amino acid and the like.
  • nucleophile refers to a negatively charged or neutral molecule that has an unshared pair of electrons and as such would be obvious to one of ordinary skill and knowledge in the art.
  • the definition of “nucleophile” includes but is not limited to: water, alkylhydroxy, alkoxy anion, arylhydroxy, aryloxy anion, alkylthiol, alkylthio anion, arylthiol, arylthio anion, ammonia, alkylamine, arylamine, alkylamine anion, arylamine anion, hydrazine, alkyl hydrazine, arylhydrazine, alkylcarbonyl hydrazine, arylcarbonyl hydrazine, hydrazine anion, alkyl hydrazine anion, arylhydrazine anion, alkylcarbonyl hydrazine anion, arylhydrazine anion, alkylcarbonyl hydrazin
  • electrophilic reagent refers to a positively charged or neutral molecule that has an open valence shell or an attraction for an electron- rich reactant and as such would be obvious to one of ordinary skill and knowledge in the art.
  • electrotrophile includes but is not limited to: hydronium, acylium, Lewis acids, such as for example, Boron trifluoride and the like, halogens, such as for example Br 2 and the like, carbocations, such as for example tert-butyl cation and the like, diazomethane, trimethylsilyldiazomethane, alkyl halides, such as for example methyl iodide, trideuteromethyl iodide (CD 3 I), benzyl bromide and the like, alkyl triflates, such as for example methyl triflate and the like, alkyl sulfonates, such as for example ethyl toluenesulfonate, butyl methanesulfonate, dimethylsulfate, hexadeuterodimethylsulfate ((CD 3 ) 2 SO 4 ) and the like, acyl halides, such as for example acet
  • LG refers to any atom (or group of atoms) that is stable in its anion or neutral form after it has been displaced by a nucleophile and as such would be obvious to one of ordinary skill and knowledge in the art.
  • the definition of “leaving group” includes but is not limited to: water, methanol, ethanol, chloride, bromide, iodide, methanesulfonate, tolylsulfonate, trifluoromethanesulfonate, acetate, trichloroacetate, benzoate and the like.
  • oxidant refers to any reagent that will increase the oxidation state of an atom, such as for example, hydrogen, carbon, nitrogen, sulfur, phosphorus and the like in the starting material by either adding an oxygen to this atom or removing an electron from this atom and as such would be obvious to one of ordinary skill and knowledge in the art.
  • the definition of "oxidant” includes but is not limited to: osmium tetroxide, ruthenium tetroxide, ruthenium trichloride, potassium permanganate, meta-chloroperbenzoic acid, hydrogen peroxide, dimethyl dioxirane and the like.
  • metal ligand refers to a molecule that has an unshared pair of electrons and can coordinate to a metal atom and as such would be obvious to one of ordinary skill and knowledge in the art.
  • metal ligand includes but is not limited to: water, alkoxy anion, alkylthio anion, ammonia, trialkylamine, triarylamine, trialkylphosphine, triarylphosphine, cyanide, azide and the like.
  • reducing reagent refers to any reagent that will decrease the oxidation state of an atom in the starting material by either adding a hydrogen to this atom, or adding an electron to this atom, or by removing an oxygen from this atom and as such would be obvious to one of ordinary skill and knowledge in the art.
  • reducing reagent includes but is not limited to: borane-dimethyl sulfide complex, 9- borabicyclo[3.3.1.]nonane (9-BBN), catechol borane, lithium borohydride, lithium borodeuteride, sodium borohydride, sodium borodeuteride, sodium borohydride-methanol complex, potassium borohydride, sodium hydroxyborohydride, lithium triethylborohydride, lithium n-butylborohydride, sodium cyanoborohydride, sodium cyanoborodeuteride, calcium (II) borohydride, lithium aluminum hydride, lithium aluminum deuteride, diisobutylAluminum hydride, n-butyl-diisobutylaluminum hydride, Sodium bis- methoxyethoxyAluminum hydride, triethoxysilane, diethoxymethylsilane, lithium hydride, lithium, sodium, hydrogen Ni/B, and the like.
  • Certain acidic and Lewis acidic reagents enhance the activity of reducing reagents.
  • acidic reagents include: acetic acid, methanesulfonic acid, hydrochloric acid, and the like.
  • Lewis acidic reagents include: trimethoxyborane, triethoxyborane, aluminum trichloride, lithium chloride, vanadium trichloride, dicyclopentadienyl titanium dichloride, cesium fluoride, potassium fluoride, zinc (II) chloride, zinc (II) bromide, zinc (II) iodide, and the like.
  • Coupled reagent refers to any reagent that will activate the carbonyl of a carboxylic acid and facilitate the formation of an ester or amide bond.
  • the definition of “coupling reagent” includes but is not limited to: acetyl chloride, ethyl chloroformate, dicyclohexylcarbodiimide (DCC), diisopropyl carbodiiimide (DIC), 1-ethyl- 3-(3-dimethylaminopropyl) carbodiimide (EDCI), N-hydroxybenzotriazole (HOBT), N- hydroxysuccinimide (HOSu), 4-nitrophenol, pentafluorophenol, 2-(lH-benzotriazole-l-yl)- 1,1,3,3-tetramethyluronium tetrafluoroborate (TBTU), O-benzotriazole-N,N,N'N'- tetramethyluronium hexafluorophosphate
  • removable protecting group or “protecting group” refers to any group which when bound to a functionality, such as the oxygen atom of a hydroxyl or carboxyl group or the Nitrogen atom of an amino group, prevents reactions from occurring at these functional groups and which protecting group can be removed by conventional chemical or enzymatic steps to reestablish the functional group.
  • the particular removable protecting group employed is not critical.
  • hydroxyl protecting group includes but is not limited to: a) Methyl, tert-butyl, allyl, propargyl, p-chlorophenyl, p-methoxyphenyl, p- nitrophenyl, 2,4-dinitrophenyl, 2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl, methoxymethyl, methylthiomethyl, (phenyldimethylsilyl)methoxymethyl, benzyloxymethyl, p-methoxy-benzyloxymethyl, p-nitrobenzyloxymethyl, o-nitrobenzyloxymethyl, (4- methoxyphenoxy)methyl, guaiacolmethyl, tert-butoxymethyl, 4-pentenyloxymethyl, tert- butyldimethylsiloxymethyl, thexyldimethylsiloxymethyl, tert-butyldiphenylsiloxymethyl, 2- methoxymethyl, tert-
  • amino protecting group includes but is not limited to: a) 2-methylthioethyl, 2-methylsulfonylethyl, 2-(p-toluenesulfonyl)ethyl, [2-(l,3- dithianyl)]methyl, 4-methylthiophenyl, 2,4-dimethylthiophenyl, 2-phosphonioethyl, 1- methyl- l-(triphenylphosphonio)ethyl, l,l-dimethyl-2-cyanoethyl, 2-dansylethyl, 2-(4- nitrophenyl)ethyl, 4- ⁇ henylacetoxybenzyl, 4-azidobenzyl, 4-azidomethoxybenzyl, m-chloro- p-acyloxybenzyl, p-(dihydroxyboryl)benzyl, 5-benzisoxazolylmethyl, 2-(trifluoromethyl)
  • N-2-nitro-4-methoxybenzenesulfenyl N- triphenylmethylsulfenyl, N-l-(2,2,2-trifluoro-l,l-diphenyl)ethylsulfenyl, N-3-nitro-2- pyridinesulfenyl, N-p-toluenesulfonyl, N-benzenesulfonyl, N-2,3,6-trimethyl-4- methoxybenzenesulfonyl, N-2,4,6-trimethoxybenzene-sulfonyl, N-2,6-dimethyl-4- methoxybenzenesulfonyl, N-pentamethylbenzenesulfonyl, N-2,3,5.6-tetramethyl-4- methoxybenzenesulfonyl and the like; b) -C(O)OR 20 , where R 20 is selected from the group consisting of alkyl, substituted alkyl,
  • carboxyl protecting groups are given in Greene and Wutts, above.
  • the definition of "thiol protecting group” includes but is not limited to: a) Alkyl, benzyl, 4-methoxybenzyl, .
  • amino acid refers to any of the naturally occurring amino acids, as well as synthetic analogs and derivatives thereof.
  • Alpha-Amino acids comprise a carbon atom to which is bonded an amino group, a carboxy group, a hydrogen atom, and a distinctive group referred to as a "side chain".
  • side chains of naturally occurring amino acids include, for example, hydrogen (e.g., as in glycine), alkyl (e.g., as in alanine, valine, leucine, isoleucine, proline), substituted alkyl (e.g., as in threonine, serine, methionine, cysteine, aspartic acid, asparagine, glutamic acid, glutamine, arginine, and lysine), arylalkyl (e.g., as in phenylalanine), substituted arylalkyl (e.g., as in tyrosine), heteroarylalkyl (e.g., as in tryptophan, histidine) and the like.
  • hydrogen e.g., as in glycine
  • alkyl e.g., as in alanine, valine, leucine, isoleucine, proline
  • substituted alkyl e.g., as in thre
  • amino acid can also include beta-, gamma-, delta-, omega- amino acids, and the like.
  • Unnatural amino acids are also known in the art, as set forth in, Natchus, M. G. Organic Synthesis: Theory and Applications (2001), 5, 89-196; Ager, D. J. Current Opinion in Drug Discovery & Development (2001), 4(6), 800; Reginato, G. Recent Research Developments in Organic Chemistry (2000), 4(Pt. 1), 351-359; Dougherty, D. A. Current Opinion in Chemical Biology (2000), 4(6), 645-652; Lesley, S. A.
  • Stereoisomers e.g., D-amino acids
  • unnatural amino acids such as alpha, alpha-disubstituted amino acids
  • unconventional amino acids include: 4-hydroxyproline, 3-methylhistidine, 5-hydroxylysine, and other similar amino acids and imino acids (e.g., 4-hydroxyproline).
  • N-protected amino acid refers to any amino acid which has a protecting group bound to the nitrogen of the amino functionality. This protecting group prevents reactions from occurring at the amino functional group and can be removed by conventional chemical or enzymatic steps to reestablish the amino functional group.
  • O-protected amino acid refers to any amino acid which has a protecting group bound to the oxygen of the carboxyl functionality. This protecting group prevents reactions from occurring at the carboxyl functional group and can be removed by conventional chemical or enzymatic steps to reestablish the carboxyl functional group.
  • the particular protecting group employed is not critical.
  • prodrug refers to an agent that is converted into the parent drug in vivo. Prodrugs are often useful because, in some situations, they may be easier to administer than the parent drug. They may, for instance, be bioavailable by oral administration whereas the parent drug is not. The prodrug may also have improved solubility in pharmaceutical compositions over the parent drug. A prodrug may be converted into the parent drug by various mechanisms, including enzymatic processes and metabolic hydrolysis. See Harper, “Drag Latentiation” in Jucker, ed. Progress in Drug Research 4:221- 294 (1962); Morozowich et al., "Application of Physical Organic Principles to Prodrug Design” in E. B. Roche ed.
  • references to reagents ordinarily containing hydrogens, hydrides, or protons may include partially or fully deuterated versions (containing deuterium, deuteride, or deuteronhim) as required to affect transformation to the improved drug substances outlined herein.
  • halogen includes fluorine, chlorine, bromine, and iodine.
  • alkyl and substituted alkyl are interchangeable and include substituted, optionally substituted and unsubstituted Q -do straight chain saturated aliphatic hydrocarbon groups, substituted, optionally substituted and unsubstituted C 2 -Ci 0 straight chain unsaturated aliphatic hydrocarbon groups, substituted, optionally substituted and unsubstituted C 2 -C 10 branched saturated aliphatic hydrocarbon groups, substituted and unsubstituted C 2 -C 10 branched unsaturated aliphatic hydrocarbon groups, substituted, optionally substituted and unsubstituted C 3 -C 8 cyclic saturated aliphatic hydrocarbon groups, substituted, optionally substituted and unsubstituted Cs-C 8 cyclic unsaturated aliphatic hydrocarbon groups having the specified number of carbon atoms.
  • alkyl shall include but is not limited to: methyl (Me), trideuteromethyl (-CD 3 ), ethyl (Et), propyl (Pr), butyl (Bu), pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, ethenyl, propenyl, butenyl, penentyl, hexenyl, heptenyl, octenyl, nonenyl, decenyl, undecenyl, isopropyl (i-Pr), isobutyl (i-Bu), tert-butyl (t-Bu), sec-butyl (s-Bu), isopentyl, neopentyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooc
  • alkyloxy (e.g. methoxy, ethoxy, propyloxy, allyloxy, cyclohexyloxy) represents a substituted or unsubstituted alkyl group as defined above having the indicated number of carbon atoms attached through an oxygen bridge.
  • alkyloxyalkyl represents an alkyloxy group attached through an alkyl or substituted alkyl group as defined above having the indicated number of carbon atoms.
  • alkyloxycarbonyl e.g. methoxycarbonyl, ethoxycarbonyl, tert- butoxycarbonyl, allyloxycarbonyl
  • alkyloxycarbonyl represents a substituted or unsubstituted alkyloxy group as defined above having the indicated number of carbon atoms attached through a carbonyl bridge.
  • alkylthio (e.g. methylthio, ethylthio, propylthio, cyclohexenylthio and the like) represents a substituted or unsubstituted alkyl group as defined above having the indicated number of carbon atoms attached through a sulfur bridge.
  • alkylthioalkyl represents an alkylthio group attached through an alkyl or substituted alkyl group as defined above having the indicated number of carbon atoms.
  • alkylamino (e.g. methylamino, diethylamino, butylamino, N- propyl-N-hexylamino, (2-cyclopentyl) ⁇ ropylamino, hexenylamino, and the like) represents one or two substituted or unsubstituted alkyl groups as defined above having the indicated number of carbon atoms attached through an amine bridge.
  • the substituted or unsubstituted alkyl groups maybe taken together with the nitrogen to which they are attached forming a saturated cyclic or unsaturated cyclic system containing 3 to 10 carbon atoms with at least one substituent as defined above.
  • alkylaminoalkyl represents an alkylamino group attached through a substituted or unsubstituted alkyl group as defined above having the indicated number of carbon atoms.
  • alkylhydrazino (e.g. methylhydrazino, diethylhydrazino, butylhydrazino, (2-cyclopentyl)propylhydrazino, cyclohexanehydrazino, and the like) represents one or two substituted or unsubstituted alkyl groups as defined above having the indicated number of carbon atoms attached through a nitrogen atom of a hydrazine bridge.
  • the substituted or unsubstituted alkyl groups maybe taken together with the nitrogen to which they are attached forming a saturated cyclic or unsaturated cyclic system containing 3 to 10 carbon atoms with at least one substituent as defined above.
  • alkylhydrazinoalkyl represents an alkylhydrazino group attached through a substituted or unsubstituted alkyl group as defined above having the indicated number of carbon atoms.
  • alkylcarbonyl (e.g. cyclooctylcarbonyl, pentylcarbonyl, 3- hexenylcarbonyl and the like) represents a substituted or unsubstituted alkyl group as defined above having the indicated number of carbon atoms attached through a carbonyl group.
  • alkylcarbonylalkyl represents an alkylcarbonyl group attached through a substituted or unsubstituted alkyl group as defined above having the indicated number of carbon atoms.
  • alkylcarboxy (e.g. heptylcarboxy, cyclopropylcarboxy, 3- pentenylcarboxy and the like) represents an alkylcarbonyl group as defined above wherein the carbonyl is in turn attached through an oxygen.
  • alkylcarboxyalkyl represents an alkylcarboxy group attached through an alkyl group as defined above having the indicated number of carbon atoms.
  • alkylcarbonylamino (e.g. hexylcarbonylamino, cyclopentylcarbonyl-aminomethyl, methylcarbonylaminophenyl and the like) represents an alkylcarbonyl group as defined above wherein the carbonyl is in turn attached through the nitrogen atom of an amino group.
  • the nitrogen group may itself be substituted with a substituted or unsubstituted alkyl or aryl group.
  • alkylcarbonylaminoalkyl represents an alkylcarbonylamino group attached through a substituted or unsubstituted alkyl group as defined above having the indicated number of carbon atoms.
  • alkylcarbonylhydrazino (e.g. ethylcarbonylhydrazino, tert- butylcarbonylhydrazino and the like) represents an alkylcarbonyl group as defined above wherein the carbonyl is in turn attached through the nitrogen atom of a hydrazino group.
  • aryl represents an unsubstituted, mono-, or polysubstituted monocyclic, polycyclic, biaryl aromatic groups covalently attached at any ring position capable of forming a stable covalent bond, certain preferred points of attachment being apparent to those skilled in the art (e.g., 3-phenyl, 4-naphthyl and the like).
  • the aryl substituents are independently selected from the group consisting of hydrogen, deuterium, halogen, -OH, -SH, -CN, -NO 2 , trihalomethyl, hydroxypyronyl, C 1-10 alkyl, arylC o-1 oalkyl, Co- alkyloxyCo-ioalkyl, arylCcioalkyloxyCo-ioalkyl, Co -1 oalkylthioC 0-1 oalkyl, arylCo-iQalkylthioCo-ioalkyl, C 0-10 alkylaminoCQ -1 Qalkyl, arylCc-toalkylaminoCo-ioalkyl, N-aryl- N-Co-ioalkylaminoCo-ioalkyl, Cj.toalkylcarbonylCo-ioalkyl, arylCo-ioalkylcarbonylC 0-1 oalkyl, d
  • R 21 , R 22 and R 23 are independently selected from the group consisting of hydrogen, deuterium, alkyl, aryl or R 22 and R 23 are taken together with the nitrogen to which they are attached forming a saturated cyclic or unsaturated cyclic system containing 3 to 8 carbon atoms with at least one substituent as defined above.
  • aryl includes but is not limited to phenyl, pentadeuterophenyl, biphenyl, naphthyl, dihydronaphthyl, tetrahydronaphthyl, indenyl, indanyl, azulenyl, anthryl, phenanthryl, fluorenyl, pyrenyl and the like.
  • arylalkyl e.g. (4-hydroxyphenyl)ethyl, (2- aminonaphthyl)hexenyl and the like
  • arylalkyl represents an aryl group as defined above attached through a substituted or unsubstituted alkyl group as defined above having the indicated number of carbon atoms.
  • arylcarbonyl e.g. 2-thiophenylcarbonyl, 3- methoxyanthrylcarbonyl and the like
  • arylcarbonyl represents an aryl group as defined above attached through a carbonyl group.
  • arylalkylcarbonyl e.g. (2,3-dimethoxyphenyl)propylcarbonyl, (2-chloronaphthyl)pentenyl-carbonyl and the like
  • arylalkylcarbonyl represents an arylalkyl group as defined above wherein the alkyl group is in turn attached through a carbonyl.
  • aryloxy (e.g. phenoxy, naphthoxy, 3-methylphenoxy, and the like) represents an aryl or substituted aryl group as defined above having the indicated number of carbon atoms attached through an oxygen bridge.
  • aryloxyalkyl represents an aryloxy group attached through a substituted or unsubstituted alkyl group as defined above having the indicated number of carbon atoms.
  • aryloxycarbonyl e.g. phenoxycarbonyl, naphthoxycarbonyl
  • aryloxycarbonyl represents a substituted or unsubstituted aryloxy group as defined above having the indicated number of carbon atoms attached through a carbonyl bridge.
  • arylthio (e.g. phenylthio, naphthylthio, 3-bromophenylthio, and the like) represents an aryl or substituted aryl group as defined above having the indicated number of carbon atoms attached through a sulfur bridge.
  • arylthioalkyl represents an arylthio group attached through a substituted or unsubstituted alkyl group as defined above having the indicated number of carbon atoms.
  • arylamino e.g. phenylamino, diphenylamino, naphthylamino, N- ⁇ henyl-N-naphthylamino, o-methylphenylamino, p-methoxyphenylamino, and the like
  • arylaminoalkyl represents an arylamino group attached through a substituted or unsubstituted alkyl group as defined above having the indicated number of carbon atoms.
  • arylalkylamino represents an aryl group attached through an alkylamino group as defined above having the indicated number of carbon atoms.
  • N-aryl-N-alkylamino e.g. N-phenyl-N-methylamino, N-naphthyl- N-butylamino, and the like
  • arylhydrazino (e.g. phenylhydrazino, naphthylhydrazino, 4- methoxyphenylhydrazino, and the like) represents one or two aryl groups as defined above having the indicated number of carbon atoms attached through a hydrazine bridge.
  • arylhydrazinoalkyl represents an arylhydrazino group attached through a substituted or unsubstituted alkyl group as defined above having the indicated number of carbon atoms.
  • arylalkylhydrazino represents an aryl group attached through an alkylhydrazino group as defined above having the indicated number of carbon atoms.
  • N-aryl-N- alkylhydrazino e.g. N-phenyl-N-methylhydrazino, N-naphthyl-N-butylhydrazino, and the like
  • N-aryl-N- alkylhydrazino represents one aryl and one a substituted or unsubstituted alkyl group as defined above having the indicated number of carbon atoms independently attached through an amine atom of a hydrazine bridge.
  • arylcarboxy e.g. phenylcarboxy, naphthylcarboxy, 3- fluorophenylcarboxy and the like
  • arylcarboxyalkyl represents an arylcarboxy group attached through a substituted or unsubstituted alkyl group as defined above having the indicated number of carbon atoms.
  • arylcarbonylamino (e.g. phenylcarbonylamino, naphthylcarbonylamino, 2-methylphenylcarbonylamino and the like) represents an arylcarbonyl group as defined above wherein the carbonyl is in turn attached through the nitrogen atom of an amino group.
  • the nitrogen group may itself be substituted with a substituted or unsubstituted alkyl or aryl group.
  • arylcarbonylaminoalkyl represents an arylcarbonylamino group attached through a substituted or unsubstituted alkyl group as defined above having the indicated number of carbon atoms.
  • the Nitrogen group may itself be substituted with a substituted or unsubstituted alkyl or aryl group.
  • arylcarbonylhydrazino e.g. phenylcarbonylhydrazino, naphthylcarbonylhydrazino, and the like
  • arylcarbonylhydrazino represents an arylcarbonyl group as defined above wherein the carbonyl is in turn attached through the Nitrogen atom of a hydrazino group.
  • heteroaryl refers to a monovalent unsaturated group having a single ring or multiple condensed rings, from 1 to 13 carbon atoms and from 1 to 10 hetero atoms selected from the group consisting of nitrogen, sulfur, and oxygen, within the ring.
  • heteroaryl groups in this invention can be optionally substituted with 1 to 10 substituents selected from the group consisting of: hydrogen, deuterium, halogen, -OH, -SH, -CN, -NO 2 , trihalomethyl, hydroxypyronyl, Ci-ioalkyl, arylCo- loalkyl, C 0-1 oalkyloxyC 0-10 alkyl, arylCo. ⁇ alkyloxyCo.ioalkyl, C 0-1 oalkylthioCo-ioalkyl, arylCo- i 0 alkylthioC 0-1 oalkyl, Co-ioalkylaminoCo-ioalkyl, arylCo-ioalkylaminoCo-ioalkyl, N-aryl-N-Co- l oalkylaminoCo-ioalkyl, Ci-walkylcarbonylC d oalkyl, arylCo-ioalky
  • heteroaryl includes but is not limited to thienyl, benzothienyl, isobenzothienyl, 2,3-dihydrobenzothienyl, furyl, pyranyl, benzofuranyl, isobenzofuranyl, 2,3-dihydrobenzofuranyl, pyrrolyl, pyrrolyl-2,5-dione, 3-pyrrolinyl, indolyl, isoindolyl, 3H-indolyl, indolinyl, indolizinyl, indazolyl, phthalimidyl (or isoindoly-1,3- dione), imidazolyl, 2H-imidazolinyl, benzimidazolyl, deuterobenzimidazolyl, dideuterobenzimidazolyl, trideuterobenzimidazolyl, tetradeuterobenzimidazolyl, pyridy
  • saturated heterocyclic represents an unsubstituted, mono-, and polysubstituted monocyclic, polycyclic saturated heterocyclic group covalently attached at any ring position capable of forming a stable covalent bond, certain preferred points of attachment being apparent to those skilled in the art (e.g., 1-piperidinyl, 4-piperazinyl, DBU, and the like).
  • the saturated heterocyclic substituents are independently selected from the group consisting of halo, -OH, -SH 5 -CN, -NO 2 , trihalomethyl, hydroxypyronyl, C 1 . l oalkyl, arylCo-i O alkyl, Co-ioalkyloxyCo-ioalkyl, arylCo-ioalkyloxyCo-ioalkyl, Co.i 0 alkylthioCo- ioalkyl, arylCo-ioalkylthioCo-ioalkyl, CQ-ioalkylaminoCo.ioalkyl, arylCo -10 alkylaminoC 0-10 alkyl, N-aryl-N-Co-ioalkylaminoCo-ioalkyl, Ci-ioalkylcarbonylCo- ⁇ alkyl, arylC 0-10 alkylcarbonylC 0- t oalkyl, Ci-io
  • R 21 , R 22 and R 23 are independently selected from the group consisting of hydrogen, deuterium, alkyl, aryl, or R 22 and R 23 are taken together with the nitrogen to which they are attached forming a saturated cyclic or unsaturated cyclic system containing 3 to 8 carbon atoms with at least one substituent as defined above.
  • saturated heterocyclic includes but is not limited to pyrrolidinyl, pyrazolidinyl, piperidinyl, 1,4-dioxanyl, morpholinyl, 1,4-dithienyl, thiomorpholinyl, piperazinyl, quinuclidinyl, and the like.
  • alpha-beta-unsaturated carbonyl refers to a molecule that has a carbonyl group directly attached to a double or triple bonded carbon and which would be obvious to one of ordinary skill and knowledge in the art.
  • the definition of alpha-beta- unsaturated carbonyl includes but is not limited to acrolein, methyl vinyl ketone, and the like.
  • acetal refers to a molecule that contains a carbon atom C 1 that is directly attached to a hydrogen atom (H 1 ), a substituted carbon atom (C 2 ) and two oxygen atoms (Oi and O 2 ). These oxygen atoms are in turn attached to other substituted carbon atoms (C 3 and C 4 ), which would be obvious to one of ordinary skill and knowledge in the art.
  • the definition of acetal includes but is not limited to 1,1-dimethoxypropane, 1,1-bis- allyloxybutane and the like.
  • cyclic acetal refers to an acetal as defined above where C 3 and C 4 , together with the oxygen atoms to which they are attached, combine thru an alkyl bridge to form a 5- to 10-membered ring, which would be obvious to one of ordinary skill and knowledge in the art.
  • the definition of cyclic acetal includes but is not limited to 2-methyl- [l,3]dioxolane, 2-ethyl-[l,3]dioxane, 2-phenyl-[l,3]dioxane, 2-phenyl-hexahydro- pyrano[3,2-d][l,3]dioxine and the like.
  • ketal refers to a molecule that contains a carbon atom Ci that is directly attached to two substituted carbon atom (C 2 and C 3 ) and two oxygen atoms (Oi and O 2 ). These oxygen atoms are in turn attached to other substituted carbon atoms (C 4 and C 5 ), which would be obvious to one of ordinary skill and knowledge in the art.
  • the definition of acetal includes but is not limited to 2,2-dimethoxy-butane, 3,3-diethoxy-pentane and the like.
  • cyclic ketal refers to a ketal as defined above where C 4 and C 5 , together with the oxygen atoms to which they are attached, combine thru an alkyl bridge to form a 5- to 10-membered ring, which would be obvious to one of ordinary skill and knowledge in the art.
  • the definition of cyclic acetal includes but is not limited to 2,2,4,5- tetramethyl ⁇ [l,3]dioxolane, 2,2-diethyl-[l,3]dioxe ⁇ ane, 2,2-dimethyl-hexahydro-pyrano[3,2- d][l,3]dioxine and the like.
  • An "acetyl” group refers to a -C( ⁇ O)CH 3 , group.
  • a "cyano” group refers to a -CN group.
  • An “isocyanato” group refers to a -NCO group. .
  • a “thiocyanato” group refers to a -CNS group.
  • An “isothiocyanato” group refers to a -NCS group.
  • perhaloalkyl refers to an alkyl group where all of the hydrogen atoms are replaced by halogen atoms.
  • composition refers to a mixture of a compound disclosed herein with other chemical components, such as diluents or carriers.
  • the pharmaceutical composition facilitates administration of the compound to an organism. Multiple techniques of administering a compound exist in the art including, but not limited to, oral, injection, aerosol, parenteral, and topical administration.
  • Pharmaceutical compositions can also be obtained by reacting compounds with inorganic or organic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid, salicylic acid and the like.
  • carrier defines a chemical compound that facilitates the incorporation of a compound into cells or tissues.
  • DMSO dimethyl sulfoxide
  • carrier facilitates the uptake of many organic compounds into the cells or tissues of an organism.
  • the term "diluent” defines a solution, typically one that is aqueous or partially aqueous, that dissolves chemical compounds of interest and may stabilize the biologically active form of the compound. Salts dissolved in buffered solutions are utilized as diluents in the art.
  • One commonly used buffered solution is phosphate buffered saline because it mimics the salt conditions of human blood. Since buffer salts can control the pH of a solution at low concentrations, a buffered diluent rarely modifies the biological activity of a compound.
  • gastric related diseases defines a medical or physiological condition that includes, but is not limited to, peptic ulcer, duodenal ulcer, stomach ulcer, gastric ulcer, chronic gastritis, gastroesophageal reflux disease, GERD, heartburn, acid reflux, reflux esophagitis, indigestion, non-ulcer dyspepsia, functional dyspepsia, dyspepsia caused by structural or biochemical disease, biliary tract disease, gastroparesis, pancreatitis, carbohydrate malabsorption, including but not limited to lactose, sorbitol, fructose, and mannitol malabsorption, infiltrative diseases of the stomach, Crohn's disease, sarcoidosis, ischemic bowel disease, inflammatory bowel disease, diverticulitis, Helicobacter infections, Helicobacter pylori infections, intestinal parasites including but not limited to giardia species and strongyloides species, abdominal cancer,
  • the present invention provides a process for preparing a compound of formula 3 wherein R 11 and R 14 are independently selected from the group consisting of hydrogen and deuterium; Rj 2 and R 13 are independently selected from the group consisting of -CH 3 , -CDH 2 , -CD 2 H, and -CD 3 .
  • Such a process can be performed, for example, by contacting compound of formula 2 with deuterium oxide under conditions suitable to form a compound of formula 3, as set forth below:
  • Compound of formula 2 may be prepared by known processes.
  • Compound 2 is typically contacted with deuterium oxide in the presence of a catalyst.
  • Catalysts contemplated for use in the practice of this particular invention process are typically sodium carbonate, potassium carbonate, DBU and the like.
  • Solvents contemplated for use in the practice of this particular invention process are typically polar solvents, such as for example, 1,4-dioxane, acetone, acetonitrile, dimethyl formamide, dimethyl acetamide, N- methylpyrrolidine, dimethyl sulfoxide and the like, or any suitable mixtures thereof.
  • the process is typically carried out at a temperature in the range of about 0 0 C up to about 500 0 C, for 0.01 to 240 hours, at a pH in the range of about 1 up to about 14, at a pressure in the range of about 1 mBar up to about 350 Bar.
  • Compound 2 is typically contacted with deuterium oxide in the presence of a catalyst, with or without another solvent.
  • Catalysts contemplated for use in the practice of this particular invention process are typically sodium carbonate, potassium carbonate, DBU and the like.
  • Solvents contemplated for use in the practice of this particular invention process are typically polar solvents, such as for example, 1,4-dioxane, acetone, acetonitrile, dimethyl formamide, dimethyl acetamide, N- methylpyrrolidine, dimethyl sulfoxide and the like, or any suitable mixtures thereof.
  • the process is typically carried out in the presence of focused microwave radiation using a quartz reactor at a pressure in the range of about 1 Bar to about 25 Bar, a power setting in the range of about 1 W per liter of solvent to about 900 W per liter of solvent, at a temperature in the range of about O 0 C up to about 500 0 C, for 0.01 to 5 hours, at a pH in the range of about 1 up to about 14.
  • the present invention provides a process for preparing a compound of formula 5 wherein R 14 is hydrogen or deuterium, R 12 , R 13 and R 15 are independently selected from the group consisting of -CH 3 , -CDH 2 , -CD 2 H, and -CD 3 .
  • Such a process can be performed, for example, by contacting compound of formula 4 with deuterium oxide under conditions suitable to form a compound of formula 5, as set forth below:
  • Compound of formula 4 may be prepared by known processes. Compound 4 is typically contacted with deuterium oxide in the presence of a catalyst. Catalysts contemplated for use in the practice of this particular invention process are typically sodium carbonate, potassium carbonate, DBU and the like. Solvents contemplated for use in the practice of this particular invention process are typically polar solvents, such as for example, 1,4-dioxane, acetone, acetonitrile, dimethyl formamide, dimethyl acetamide, N- methylpyrrolidine, dimethyl sulfoxide and the like, or any suitable mixtures thereof.
  • the process is typically carried out at a temperature in the range of about 0 0 C up to about 500 0 C, for 0.01 to 240 hours, at a pH in the range of about 1 up to about 14, and at a pressure in the range of about 1 mBar up to about 350 Bar.
  • Compound 4 is typically contacted with Deuterium oxide in the presence of a catalyst, with or without another solvent.
  • Catalysts contemplated for use in the practice of this particular invention process are typically Sodium carbonate, Potassium carbonate, DBU and the like.
  • Solvents contemplated for use in the practice of this particular invention process are typically polar solvents, such as for example, 1,4-dioxane, acetone, acetonitrile, dimethyl formamide, dimethyl acetamide, N- methylpyrrolidine, dimethyl sulfoxide and the like, or any suitable mixtures thereof.
  • the process is typically carried out in the presence of focused microwave radiation using a quartz reactor at a pressure in the range of about 1 Bar to about 25 Bar, a power setting in the range of about 1 W per liter of solvent to about 900 W per liter of solvent, at a temperature in the range of about O 0 C up to about 500 0 C, for 0.01 to 5 hours, at a pH in the range of about 1 up to about 14.
  • Certain pharmaceutically acceptable salts of the invention are prepared by treating the novel compounds of the invention with an appropriate amount of pharmaceutically acceptable base.
  • Representative pharmaceutically acceptable bases are ammonium hydroxide, sodium hydroxide, potassium hydroxide, lithium hydroxide, calcium hydroxide, magnesium hydroxide, ferrous hydroxide, zinc hydroxide, copper hydroxide, Aluminum hydroxide, ferric hydroxide, isopropylamine, trimethylamine, diethylamine, triethylamine, tripropylamine, ethanolamine, 2-dimethylaminoethanol, 2- diethylaminoethanol, lysine, arginine, histidine, and the like.
  • the reaction is conducted in water or D 2 O, alone or in combination with an inert, water-miscible organic solvent, at a temperature of from about 0 °C to about 100 °C, preferably at room temperature.
  • the molar ratio of compounds of structural Formula 1 to base used is chosen to provide the ratio desired for any particular salts.
  • compounds of Formula 1 can be treated with approximately one equivalent of the pharmaceutically acceptable base to yield a neutral salt.
  • Calcium salts approximately one-half a molar equivalent of base is used to yield a neutral salt, while for Aluminum salts, approximately one-third a molar equivalent of base will be used.
  • the compounds of the invention may be conveniently formulated into pharmaceutical compositions composed of one or more of the compounds together with a pharmaceutically acceptable carrier as described in Remington's Pharmaceutical Sciences, latest edition, by E. W. Martin (Mack Publ. Co., Easton Pa.).
  • the compounds of the invention may be administered orally, parenterally (e.g., intravenously), by intramuscular injection, by intraperitoneal injection, topically, transdermally, or the like, although oral or topical administration is typically preferred.
  • parenterally e.g., intravenously
  • intramuscular injection by intraperitoneal injection, topically, transdermally, or the like, although oral or topical administration is typically preferred.
  • the amount of active compound administered will, of course, be dependent on the subject being treated, the subject's weight, the manner of administration and the judgment of the prescribing physician.
  • the dosage will be in the range of about 1 microgram per kilogram per day to 100 milligram per kilogram per day.
  • the pharmaceutical compositions may be in the form of solid, semi-solid or liquid dosage forms, such as, for example, tablets, suppositories, pills, capsules, powders, liquids, suspensions, lotions, creams, gels and the like, preferably in unit dosage form suitable for single administration of a precise dosage.
  • the compositions will include, as noted above, an effective amount of the selected drug in combination with a pharmaceutically acceptable carrier and, in addition, may include other medicinal agents, pharmaceutical agents, carriers, adjuvants, diluents and the like.
  • conventional non-toxic solid carriers include, for example, pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharin, talc, cellulose, glucose, sucrose, magnesium carbonate, and the like.
  • Liquid pharmaceutically administrable-compositions can, for example, be prepared by dissolving, dispersing, etc., an active compound as described herein and optional pharmaceutical adjuvants in an excipient, such as, for example, water, saline, aqueous dextrose, glycerol, ethanol, and the like, to thereby form a solution or suspension.
  • the pharmaceutical composition to be administered may also contain minor amounts of nontoxic auxiliary substances such as wetting or emulsifying agents, pH buffering agents and the like, for example, sodium acetate, sorbitan monolaurate, triethanolamine sodium acetate, triethanolamine oleate, etc.
  • auxiliary substances such as wetting or emulsifying agents, pH buffering agents and the like, for example, sodium acetate, sorbitan monolaurate, triethanolamine sodium acetate, triethanolamine oleate, etc.
  • fine powders or granules may contain diluting, dispersing, and/or surface active agents, and may be presented in water or in a syrup, in capsules or sachets in the dry state, or in a non-aqueous solution or suspension wherein suspending agents may be included, in tablets wherein binders and lubricants may be included, or in a suspension in water or a syrup. Wherever required, flavoring, preserving, suspending, thickening, or emulsifying agents may also be included. Tablets and granules are preferred oral administration forms, and these may be coated.
  • Parenteral administration if used, is generally characterized by injection.
  • Injectables can be prepared in conventional forms, either as liquid solutions or suspensions, solid forms suitable for solution or suspension in liquid prior to injection, as emulsions, or as sustained release delivery system.
  • Systemic administration can also be by transmucosal or transdermal means.
  • penetrants appropriate to the barrier to be permeated are used in the formulation.
  • penetrants are generally known in the art, and include, for example, for transmucosal administration, bile salts and fusidic acid derivatives.
  • detergents can be used to facilitate permeation.
  • Transmucosal administration can be through nasal sprays, for example, or using suppositories.
  • the agents are formulated into ointments, creams, salves, powders and gels.
  • the transdermal delivery agent can be DMSO.
  • Transdermal delivery systems can include, such as for example, patches.
  • compositions containing the compounds of the invention as an active ingredient can take the form of tablets, capsules, powders, suspensions, solutions, emulsions as well as salves and creams, and can be used for parenteral (intravenous, intradermal, intramuscular, intrathecal etc.) injections, infiltration, topical application, central injection at spinal cord, oral, rectal, intravaginal and intranasal administering or for local application.
  • parenteral intravenous, intradermal, intramuscular, intrathecal etc.
  • Such compositions can be prepared by combining the active ingredient(s) with pharmaceutically acceptable excipients normally used for this purpose.
  • excipients can comprise aqueous and non-aqueous solvents, stabilizers, suspension agents, dispersing agents, moisturizers and the like, and will be known to the skilled person in the pharmaceutical field.
  • the composition may further contain likewise suitable additives such as for instance polyethylene glycols and, if necessary, colorants, fragrances and the like.
  • the pharmaceutical compositions will preferably contain at least 0.1 volume % by weight of the active ingredient.
  • the actual concentration will depend on the human subject and the chosen administering route. In general this concentration will lie between 0.1 and 100% for the above applications and indications.
  • the dose of the active ingredient to be administered can further vary between 1 microgram and 100 milligram per kilogram body weight per day, preferably between 1 microgram and 50 milligram per kilogram body weight per day, and most preferably between 1 microgram and 20 milligram per kilogram body weight per day. Also, all of the specific dosages which lie between the upper and lower dosages stated above are contemplated in the present invention.
  • the desired dose is preferably presented in the form of one, two, three, four, five, six or more sub-doses that are administered at appropriate intervals per day.
  • the dose or sub-doses can be administered in the form of dosage units containing for instance from 0.5 to 1500 milligram, preferably from 1 to 100 milligram and most preferably from 1 to 40 milligram active constituent per dosage unit, and if the condition of the patient requires the dose can, by way of alternative, be administered as a continuous infusion.
  • Me refers to methyl (CH 3 -)
  • Et refers to ethyl (CH 3 CH 2 -)
  • i-Pr refers to isopropyl ((CH 3 ) 2 CH 2 -)
  • t-Bu or tert-butyl refers to tertiary butyl ((CH 3 ) 3 CH-)
  • Ph refers to phenyl
  • Bn refers to benzyl (PhCH 2 -)
  • Bz refers to benzoyl (PhCO- )
  • MOM refers to methoxymethyl
  • Ac refers to acetyl
  • TMS refers to trimethylsilyl
  • TBS refers to tert-butyldimethylsilyl
  • Ms refers to methanesulfonyl (CH 3 SO 2 -)
  • Ts refers to p- toluenesulfonyl (p-CH 3 PhSO 2
  • HMQC proton detected heteronuclear multiplet-quantum coherence
  • HMBC heteronuclear multiple-bond connectivity
  • s refers to singlet
  • br s refers to broad singlet
  • d refers to doublet
  • br d refers to broad doublet
  • t refers to triplet
  • q refers to quartet
  • dd refers to double doublet
  • m refers to multiple!
  • ppm refers to parts per million
  • IR infrared spectrometry
  • MS mass spectrometry
  • HRMS high resolution mass spectrometry
  • EI electron impact
  • FAB fast atom bombardment
  • CI refers to chemical ion
  • a dry heavy-walled teflon screw cap glass tube equipped with a magnetic stirrer was charged with 2,3,5-trimethyl-4-nitropyridine-l-oxide (5 g, 27.5 mmol), K 2 CO 3 (3.8 g, 27.5 mmol) and D 2 O (30 mL) under nitrogen.
  • the apparatus was sealed and the mixture was placed in an oil bath at 15O 0 C for 2 hours.
  • the reaction was cooled to ambient temperature, NaCl (1Og) and brine (50 mL) were added and the mixture was extracted with ethyl acetate (5 x 50 mL).
  • the organic layer was dried over Na 2 SO 4 .
  • a solution of magnesium methoxide was prepared by adding magnesium turnings (1.31 g, 0.054 mol) and dichloromethane (5 mL) to methanol (150 niL) and stirring under nitrogen atmosphere for 2-3 hours, at 40-45°C.
  • the solution was cooled to 5-1O 0 C and added to a stirred mixture of esomeprazole (42.0 g, 0.121 mol) and methanol (150.0 mL), and stirring was maintained for 3 hours. Water (2.0 mL) was added and stirring was continued for 1 hour and the solution was filtered.
  • Human liver microsomal stability assays were conducted at 1 mg per niL protein concentration with an NADPH-generating system (1.3 mM NADPH, 3.3 mM glucose 6-phosphate and 0.4 U per mL glucose 6-phosphate dehydrogenase) and 3.3 mM MgCl 2 .
  • Test compounds were added as acetonitrile solutions (final assay concentration of acetonitrile should be ⁇ 1%) and incubated at 37 0 C with shaking. Aliquots (150 ⁇ L) were removed at 0, 15, 30, 60, and 120 minutes, and ice cold acetonitrile (300 ⁇ L) was added to stop the reactions. Samples were centrifuged at 4000 RPM for 5 minutes to precipitate all proteins.
  • Example 69 In vitro metabolism using human cytochrome Pa ⁇ n enzymes
  • the cytochrome P 450 enzymes are expressed from the corresponding human cDNA using a baculo virus expression system (BD Biosciences).
  • a 0.25 milliliter reaction mixture containing 0.8 milligrams per milliliter protein, 1.3 millimolar NADP + , 3.3 millimolar glucose-6-phosphate, 0.4 U/mL glucose-6-phosphate dehydrogenase, 3.3 millimolar magnesium chloride and 0.2 millimolar of a compound of Formula 1, the corresponding non-isotopically enriched compound or standard or control in 100 millimolar potassium phosphate (pH 7.4) is incubated at 37°C for 20 min. After incubation, the reaction is stopped by the addition of an appropiate solvent (e.g.
  • Example 70 In vitro inhibition of dog kidnev H + ZK + -ATPaSe activity
  • Example 71 In vitro inhibition of pig stomach gastric vesicle H + /K + -ATPase activity
  • the medium of pH 6.0 is adjusted with a HEPES-Tris buffer to pH 7.4.
  • the enzyme reaction is started by the addition of Tris-ATP.
  • the total reaction volume is 1 milliliter, containing 20 micrograms of vesicular protein, 4 millimolar MgCl 2 , 10 millimolar KCl, 20 micrograms Nigericin, 2 millimolar Tris-ATP, 10 millimolar Hepes, and additionally 2 millimolar Pipes for the preincubation medium at pH 6.0.
  • the reaction is stopped by the addition of 10 microliters of 50% trichloroacetic acid.
  • the denatured protein is spun down, and the P 1 content is determined as described (Le Bel, 1978).
  • the hydrolysis of ATP should not exceed 15%.
  • Inhibition is calculated as percent inhibition against maximal stimulation, and IC5 0 is calculated by probit analysis.
  • the gastric mucosa in the corpus part is scraped off and minced with a pair of scissors. Mucosa pieces are incubated in a collagenase-containing medium (1 milligrams per milliliter) for 30-45 min at 37 0 C.
  • the medium composition (in millimolar) is as follows: 100.0 NaCl, 5.0 KCl, 0.5 NaH 2 PO 4 , 1.0 Na 2 HPO 4 , 1.0 CaCl 2 , 1.5 MgCl 2 , 20.0 NaHCO 3 , 20.0 HEPES, 2 milligrams per milliliter glucose, and 1 milligrams per milliliter rabbit albumin.
  • the pH is adjusted to 7.4 with 1 M Tris.
  • the glands are filtered through a nylon mesh to remove coarse fragments and rinsed three times with incubation medium.
  • the glands are diluted to a final concentration of 2-4 mg dry weight/milliliter.
  • the ability of gastric glands to form acid is measured based on aminopyrine (AP) accumulation (Berglindh, 1976).
  • Samples of 1.0- milliliter gland suspension are equilibrated in 1.0 milliliter of medium containing 0.1 microcurie per milliliter 14 C-AP at 37 0 C in a shaking water bath together with compounds of Formula 1 or the corresponding non-isotopically enriched compounds or standards or controls.
  • dbcAMP is added, followed by a 45-min incubation period.
  • the glands are then separated from the medium by brief centrifugation, and aliquots of supernatant and the digested gland pellet are used for measurements in a liquid scintillation counter.
  • the AP accumulation is calculated as the ratio between AP in intraglandular water and AP in the incubation medium (Sack, 1982). All determinations are made in triplicate.
  • IC 50 is calculated by probit analysis where 0% corresponds to basal and 100% to maximal stimulated AP ratio.
  • White New Zealander Rabbit fundic glands are obtained by high-pressure perfusion of the circulation of the stomach and subsequent collagenase treatment of pieces of fundic mucosa. After the glands have been washed several times, they are placed in 20- milliliter vials with dibutyryl cyclic AMP (1 millimolar) and the test compound (3 x 10 " to 10 "4 molar) in the presence of [ l4 C]-aminopyrine (0.125 micromolar) and are incubated at 37 0 C. The incubate is agitated (150 oscillations per minute) for 30 minutes and the reaction stopped by centrifugation (10 seconds at 20,000 g).
  • the ability of the glands to maintain a pH gradient to the medium (pH 7.4) on stimulation with dibutyryl cyclic AMP is measured by means of the concentration ratio of [ C]-aminopyrine between glands and medium as described in Berglindh et al. Acta Physiol. Scand. 1976, 96, 150-169.
  • the concentration of purified Jack bean Urease used (18 micrograms per milliliter, 1.28 U/mL) gave the same Urease activity as the bacterial suspension.
  • Compounds of Formula 1 or the corresponding non-isotopically enriched compounds or standards or controls are dissolved in MeOH or DMSO and when necessary sonicated for some minutes. Aliquots are added to the test solutions to final concentrations of 1, 10, and 100 micromolar (with the exception of Flurofamide where the concentrations used are 1, 10, and 100 nanomolar), and the organic solvent component amounted to 51%. The samples are incubated for 30 min at 37 0 C in a water bath with gentle shaking.
  • the reaction is started by adding 1 part 200 millimolar urea solution to 1 part test solution and stopped 10 min later by adding 25 parts reagent A (10 gram of phenol and 50 milligrams of Na 2 Fe(CN) 5 NO dissolved in 1 liter of water) and 25 parts reagent B (5 gram of NaOH and 8.4 milliliter of NaOCl (Sigma- Aldrich) dissolved in 1 liter of water).
  • reagent A 10 gram of phenol and 50 milligrams of Na 2 Fe(CN) 5 NO dissolved in 1 liter of water
  • reagent B 5 gram of NaOH and 8.4 milliliter of NaOCl (Sigma- Aldrich) dissolved in 1 liter of water.
  • the samples are incubated for a further 15 min to allow color development, after which 200 microliters aliquots are transferred to 96-well microliter plates.
  • the absorbance at 650 nm is determined at ambient temperature using (NH 3 ) 2 SO 4 as standard.
  • SPF mice are challenged with bacteria three times during a 6-day period, and 3 weeks after inoculation animals are treated orally according to different regimens for 4 weeks.
  • Six different regimens are selected as follows: an uninfected no treatment control, an infected no treatment group to check for spontaneous elimination of the infection, an infected group receiving vehicle only, a triple therapy group used as a positive eradication control, and, finally, the three groups to be studied, using a compound of Formula 1, the corresponding non-isotopically enriched compound or standard or control and a therapeutic dose Flurofamide.
  • Methocel vehicle (0.1 milliliter) adjusted to pH 6 with citric acid is used and given twice daily. Compounds are given either dissolved or suspended in the vehicle, and the amounts stated are per mouse, mean body weight of 30 gram, and day. Stock solutions or suspensions are stored frozen.
  • Triple therapy is made up by 0.185 milligrams of bismuth, 0.675 milligrams of metronidazole, and 1.500 milligrams of tetracycline and is administered once daily for 2 weeks followed by bismuth alone once daily for another 2 weeks. In this group of animals, vehicle alone is administered at the second daily dosing occasion.
  • Compounds of Formula 1, the corresponding non-isotopically enriched compounds or standards or controls (125 micromole per kg) or Flurofamide (230 micromole per kg) are each dosed twice daily for 4 weeks. Animals are sacrificed 24 h or 5 weeks after cessation of the treatment to measure suppression and eradication, respectively. The assessment is done by checking mouse stomach specimens for Urease activity, and the rate of both suppression and eradication for each regimen is expressed as the number of Urease positive animals divided by the number of animals checked x 100% as described in Dick- Hegedus et al Scand. J . Gastroenterol. 1991, 26, 909-915 Hazell et ⁇ Am. J. Gastroenterol. 1987, 82, 292-296, both of which are incorporated by reference in their entireties.
  • the stomach is perfused continuously with warm (37 0 C) saline at a rate of 1 milliliter per minute.
  • the perfusate is collected at 15-minute periods and its acid concentration measured by electrotitration against 100 millimolar NaOH to an endpoint of pH 7, and acid output (micromolar of H + /15 minute) is calculated.
  • histamine (10 milligrams per kilogram per hour) is administered after a basal period of 45 minutes by iv infusion into the jugular vein, and observation is continued until acid output reaches a stable plateau (Herling, 1986).
  • Compounds of Formula 1 or the corresponding non-isotopically enriched compounds or standards or controls are administered iv (25% DMSO, 1 milliliter per rat). Maximal inhibition is calculated as percent change versus pre-dose value and presented as mean +/- SEM.
  • Gastric acid secretion is induced with an iv infusion of 0.05 milligrams per kilogram per h of histamine, which produces a maximal stimulation.
  • Gastric juice is collected from the pouch at 30-min intervals, and acidity is measured by titration against 100 millimolar NaOH to an endpoint of pH 7, and acid output (millimole H + /30 minute) is calculated.
  • Compounds of Formula 1 or the corresponding non-isotopically enriched compounds or standards or controls are administered at doses of 0.3 milligrams per kilogram iv or 1 milligrams per kilogram id at a volume of 20 milliliter per dog as soon as acid secretion stabilizes.
  • mice Female Wistar rats are treated orally for 10 weeks with 30 milligrams per kilogram per day of compounds of Formula 1 or the corresponding non-isotopically enriched compounds or standards or controls. At days 1 to 3, rats receive said compound by intraperitoneal (ip) administration, to cause gastric acid inhibition and therefore to reduce the acidic degradation of subsequent orally administered test compounds to 10 weeks. Said compounds are suspended in potato starch mucilage (20 milligrams per milliliter) and administered at a volume of 2 milliliter per kilogram. A control group is also included in the experiment. Blood samples are collected retroorbitally during anesthesia. Serum Gastrin levels (picogram per milliliter) are determined by using a commercially available RIA kit and presented as means +/- SEM. Significant differences (p ⁇ 0.05) are calculated by Students t- test.
  • a mixture containing an equal amount of a compound of Formula 1 and the corresponding non-isotopically enriched compound or standard or control are administered to the subjects either orally or by intravenous infusion.
  • Blood specimens are 6 038819
  • Serum is decanted immediately, and stored at -1O 0 C. Serum concentrations of said compound and the corresponding non-isotopically enriched compound or standard or control are analyzed by HPLC/MS/MS.
  • Omeprazole analogues VI. The reaction of Omeprazole in the absence of 2- mercaptoethanol" Browne, Synthesis and Applications of ' Isotopically Labelled Compounds, Proceedings of the

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Dermatology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicinal Preparation (AREA)
  • Pyridine Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

Chemical syntheses and medical uses of deuterated inhibitors of formula I of the gastric H+ , K+ -ATPase for the treatment and/or management of duodenal ulcers, heartburn, acid reflux, other conditions mediated by gastric acid secretion and/or psoriasis are described.

Description

DEUTERATED INHIBITORS OF GASTRIC H+ , K+-ATPASE WITH ENHANCED THERAPEUTIC PROPERTIES
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application claims priority to U.S. Provisional Application Nos. 60/724,160, entitled "INHIBITORS OF THE GASTRIC H+, K+-ATPASE WITH ENHANCED THERAPEUTIC PROPERTIES", filed October 6, 2005; and 60/741,316, entitled "INHIBITORS OF THE GASTRIC H+, K+-ATPASE WITH ENHANCED THERAPEUTIC PROPERTIES, filed December 1, 2005, both of which are incorporated by reference in their entireties.
BACKGROUND OF THE INVENTION Field of the Invention
[0002] The present invention is directed to inhibitors of the gastric H+, K+- ATPase and pharmaceutically acceptable salts and prodrugs thereof, the chemical synthesis thereof, and the medical use of such compounds for the treatment and/or management of duodenal ulcers, heartburn, acid reflux, other conditions mediated by gastric acid secretion and/or psoriasis.
Description of the Related Art
[0003] In an attempt to breakdown or to help solubilize chemicals and nutrients that have been absorbed into the blood, the human body expresses various enzymes (e.g. the cytochrome P450 enzymes or CYPs, esterases, proteases, reductases, dehydrogenases, and the like) that react with the chemicals and nutrients to produce novel intermediates or metabolites. Some of the most common metabolic reactions of pharmaceutical compounds involve the oxidation of a carbon-hydrogen (C-H) bond to either a carbon-oxygen (C-O) or carbon-carbon (C-C) π-bond. The resultant metabolites may be stable or unstable under physiological conditions, and can have substantially different pharmacokinetic, pharmacodynamic, acute and long-term toxicity profiles relative to the parent compounds. For most drugs, such oxidations are generally rapid and ultimately lead to administration of multiple or high daily doses. There is therefore an obvious and immediate need for improvements of such drugs. [0004] Chemical kinetics is the study of reaction rates. The activation energy Eaot in chemistry is the energy that must be supplied to a system in order to initiate a particular chemical process. In other words, this is the minimum energy required for a specific chemical reaction to take place. A reaction will occur between two properly oriented molecules if they possess a minimum requisite energy. During the approach, the outer shell electrons of each molecule will induce repulsion. Overcoming this repulsion requires an input of energy (i.e. the activation energy), which results from the heat of the system; i.e. the translational, vibrational, and rotational energy of each molecule. If sufficient energy is available, the molecules may attain the proximity and orientation necessary to cause a rearrangement of bonds to form new substances.
[0005] The relationship between the activation energy and the rate of reaction may be quantified by the Arrhenius equation which states that the fraction of molecules that have enough energy to overcome an energy barrier - those with energy at least equal to the activation energy, Eact - depends exponentially on the ratio of the activation to thermal energy k = Ae"Eact/RT. In this equation, RT is the average amount of thermal energy that molecules possess at a certain temperature T, where R is the molar gas constant, k is the rate constant for the reaction and A (the frequency factor) is a constant specific to each reaction that depends on the probability that the molecules will collide with the correct orientation.
[0006] The transition state in a reaction is a short lived state (on the order of 10~14 sec) along the reaction pathway during which the original bonds have stretched to their limit. By definition, the activation energy Eact for a reaction is the energy required to reach the transition state of that reaction. Reactions that involve multiple steps will necessarily have a number of transition states, and in these instances, the activation energy for the reaction is equal to the energy difference between the reactants and the most unstable transition state. Once the transition state is reached, the molecules can either revert, thus reforming the original reactants, or the new bonds form giving rise to the products. This dichotomy is possible because both pathways, forward and reverse, result in the release of energy. A catalyst facilitates a reaction process by lowering the activation energy leading to a transition state. Enzymes are examples of biological catalysts that reduce the energy necessary to achieve a particular transition state. [0007] A carbon-hydrogen bond is by nature a covalent chemical bond. Such a bond forms when two atoms of similar electronegativity share some of their valence electrons, thereby creating a force that holds the atoms together. This force or bond strength can be quantified and is expressed in units of energy, and as such, covalent bonds between various atoms can be classified according to how much energy must be applied to the bond in order to break the bond or separate the two atoms.
[0008] The bond strength is directly proportional to the absolute value of the ground-state vibrational energy of the bond. This vibrational energy, which is also known as the zero-point vibrational energy, depends on the mass of the atoms that form the bond. The absolute value of the zero-point vibrational energy increases as the mass of one or both of the atoms making the bond increases. Since deuterium (D) is two-fold more massive than hydrogen (H), it follows that a C-D bond is stronger than the corresponding C-H bond. Compounds with C-D bonds are frequently indefinitely stable in H2O, and have been widely used for isotopic studies. If a C-H bond is broken during a rate-determining step in a chemical reaction (i.e. the step with the highest transition state energy), then substituting a deuterium for that hydrogen will cause a decrease in the reaction rate and the process will slow down. This phenomenon is known as the deuterium Kinetic Isotope Effect (DKIE) and can range from 1 (no isotope effect) to very large numbers, such as 50 or more, meaning that the reaction can be fifty, or more, times slower when deuterium is substituted for hydrogen. High DKIE values may be due in part to a phenomenon known as tunneling, which is a consequence of the uncertainty principle. Tunneling is ascribed to the small size of a hydrogen atom, and occurs because transition states involving a proton can sometimes form in the absence of the required activation energy. A deuterium is larger and statistically has a much lower probability of undergoing this phenomenon. Substitution of tritium for hydrogen results in yet a stronger bond than deuterium and gives numerically larger isotope effects.
[0009] Discovered in 1932 by Urey, deuterium (D) is a stable and non-radioactive isotope of hydrogen. It was the first isotope to be separated from its element in pure form and is twice as massive as hydrogen, and makes up about 0.02% of the total mass of hydrogen (in this usage meaning all isotopes) on earth. When two deuteriums bond with one oxygen, deuterium oxide (D2O or "heavy water") is formed. D2O looks and tastes like H2O but it has different physical properties. It boils at 101.41 0C and freezes at 3.79 °C. Its heat capacity, heat of fusion, heat of vaporization, and entropy are all higher than H2O. It is also more viscous and is not as powerful a solvent as H2O.
[0010] Tritium (T) is a radioactive isotope of hydrogen, used in research, fusion reactors, neutron generators and radiopharmaceuticals. Mixing tritium with a phosphor provides a continuous light source, a technique that is commonly used in wristwatches, compasses, rifle sights and exit signs. It was discovered by Rutherford, Oliphant and Harteck in 1934 and is produced naturally in the upper atmosphere when cosmic rays react with H2 molecules. Tritium is a hydrogen atom that has 2 neutrons in the nucleus and has an atomic weight close to 3. It occurs naturally in the environment in very low concentrations, most commonly found as T2O, a colorless and odorless liquid. Tritium decays slowly (half-life = 12.3 years) and emits a low energy beta particle that cannot penetrate the outer layer of human skin. Internal exposure is the main hazard associated with this isotope, yet it must be ingested in large amounts to pose a significant health risk.
[0011] When pure D2O is given to rodents, it is readily absorbed and reaches an equilibrium level that is usually about eighty percent of the concentration that is consumed by the animals. The quantity of deuterium required to induce toxicity is extremely high. When 0 to as much as 15% of the body water has been replaced by D2O, animals are healthy but are unable to gain weight as fast as the control (untreated) group. Between 15 to 20% D2O, the animals become excitable. At 20 to 25%, the animals are so excitable that they go into frequent convulsions when stimulated. Skin lesions, ulcers on the paws and muzzles, and necrosis of the tails appear. The animals also become very aggressive; males becoming almost unmanageable. At 30%, the animals refuse to eat and become comatose. Their body weight drops sharply and their metabolic rates drop far below normal, with death occurring at 30 to 35% replacement. The effects are reversible unless more than thirty percent of the previous body weight has been lost due to D2O. Studies have also shown that the use OfD2O can delay the growth of cancer cells and enhance the cytotoxicity of certain antineoplastic agents.
[0012] Deuteration of pharmaceuticals to improve pharmacokinetics (PK), pharmacodynamics (PD), and toxicity profiles, has been demonstrated previously with some classes of drugs. For example, DKIE was used to decrease the hepatotoxicity of halothane by presumably limiting the production of reactive species such as trifluoroacetyl chloride. However, this method may not be applicable to all drug classes. For example, deuterium incorporation can lead to metabolic switching which may even give rise to an oxidative intermediate with a faster off-rate from an activating Phase I enzyme (e.g. cytochrome P450 3A4). The concept of metabolic switching asserts that xenogens, when sequestered by Phase I enzymes, may bind transiently and re-bind in a variety of conformations prior to the chemical reaction (e.g. oxidation). This claim is supported by the relatively vast size of binding pockets in many Phase I enzymes and the promiscuous nature of many metabolic reactions. Metabolic switching can potentially lead to different proportions of known metabolites as well as altogether new metabolites. This new metabolic profile may impart more or less toxicity. Such pitfalls are non-obvious and have not been heretofore sufficiently predictable a priori for any drug class.
[0013] Omeprazole (PRILOSEC®) is an inhibitor of the gastric H+, K+-ATPase. This class of drugs includes, among others, esomeprazole, lansoprazole, pantoprazole, rabeprazole, leminoprazole, ilaprazole, nepaprazole, saviprazole and tenatoprazole. The mechanism of action of these drugs has been extensively studied, and it is postulated that they react transiently with a critical cysteine in the gastric H+, K+-ATPase ("gastric H+ pump"). Omeprazole has been shown to degrade to inactive and less active metabolites as part of its metabolic clearance from systemic circulation. This degradation is so rapid that the producer of omeprazole (AstraZeneca) undertook a full development/clinical program to develop and market its successor (i.e. esomeprazole (NEXIUM®)), a homochiral analog of omeprazole with a very similar pharmacodynamic, pharmacokinetic and toxicological profile. The only noticeable difference resides in the fact that the half-life of esomeprazole in human plasma is 20% higher than that of omeprazole. Clinical advantages of esomeprazole versus omeprazole are unclear. "[AstraZeneca' s] conclusion that [esomeprazole] has been shown to provide a significant clinical advantage over omeprazole in the first-line treatment of patients with acid-related disorders is not supported by data." (Center for Drug Evaluation and Research, application number 21-153/21-154 for Esomeprazole Magnesium (Nexium), MEDICAL OFFICER'S REVIEW, Section X, Summary of Benefits vs Risks). The benefits of extending the half-lives of this class have been supported in theory by all researchers in this field but clearly a 20% improvement is not sufficient to affect a clinical advantage. An approach with far greater potential to improve clinical response is needed. [0014] Human clinical studies have also shown that
Esomeprazole is extensively metabolized in the liver by the cytochrome P450 (CYP) enzyme system. The metabolites of esomeprazole lack antisecretory activity. The major part of esomeprazole 's metabolism is dependent upon the CYP2C19 isoenzyme which forms the hydroxy- and desmethyl metabolites. The remaining amount is dependent on CYP3A4 which forms the sulphone metabolite. CYP2C19 isoenzyme exhibits polymorphism in the metabolism of esomeprazole, since some 3% of Caucasians and 15-20% of Asians lack CYP2C19 and are termed poor metabolizers. At steady state, the ratio of Area Under the Curve (AUC) in Poor metabolizers to AUC in the rest of the population (i.e. extensive metabolizers) is approximately 2.
(Center for Drug Evaluation and Research, application number 21-153/21-154, final printed labeling for Esomeprazole Magnesium (Nexium), FDA approval labeling February 14, 2001).
[0015] There is therefore an immediate need for improvements in the development of gastric H+, K+-ATPase modulators.
SUMMARY OF THE INVENTION [0016] Disclosed herein are compounds of Formula 1 :
Figure imgf000007_0001
or a single enantiomer, a mixture of the (+)-enantiomer and the (-)-enantiomer, a mixture of about 90% or more by weight of the (-)-enantiomer and about 10% or less by weight of the (+)-enantiomer, a mixture of about 90% or more by weight of the (+)- enantiomer and about 10% or less by weight of the (-)-enantiomer, an individual diastereomer, a mixture of diastereomers, or a pharmaceutically acceptable salt, solvate, or prodrug thereof wherein:
R1, R4, R9 and R10 are independently selected from the group consisting of hydrogen, and deuterium;
R2, R3, R6, and R8 are independently selected from the group consisting of hydrogen, deuterium, C1-C6 alkyl, and C1-C6 alkyloxy; R.5 is selected from the group consisting Of-CH2-, -CHD- and -CD2-;
R7 is selected from the group consisting of hydrogen, deuterium, -NO2, Ci-C6 alkyl, and Cj-C6 alkyloxy; provided that compounds of Formula 1 contain at least one deuterium atom, and provided that deuterium enrichment in compounds of Formula 1 is at least about 1%.
[0017] Also disclosed herein are pharmaceutical compositions comprising a compound according to Formula 1, a single enantiomer of a compound of Formula 1, a mixture of the (+)-enantiomer and the (-)-enantiomer, a mixture of about 90% or more by weight of the (-)-enantiomer and about 10% or less by weight of the (+)-enantiomer, a mixture of about 90% or more by weight of the (+)-enantiomer and about 10% or less by weight of the (-)-enantiomer, an individual diastereomer of a compound of Formula 1, a mixture of diastereomers, or a pharmaceutically acceptable salt, solvate, or prodrug thereof, with a pharmaceutically acceptable carrier.
[0018] Further, disclosed herein are methods of eliciting, modulating and/or regulating the gastric H+, K+-ATPase.
[0019] In addition, disclosed herein are methods of treating and/or managing a mammalian subject having, suspected of having, or being prone to a disease or condition involving duodenal ulcers, other conditions mediated by gastric acid secretion and/or psoriasis.
DETAILED DESCRIPTION OF THE INVENTION
[0020] Certain gastric H+, K+-ATPase modulators are known in the art. The structures of some of the known modulators are
Figure imgf000009_0001
Omeprazole ("Prilosec") Esomeprazole ("Nexium")
Figure imgf000009_0002
Lansoprazole ("Takepron") Pantoprazole ("Protonix")
[0021] The carbon-hydrogen bonds of these gastric H+, K+-ATPase modulators contain a naturally occurring distribution of hydrogen isotopes, namely 1H or protium (about 99.9844%), 2H or deuterium (about 0.0156%), and 3H or tritium (in the range between about 0.5 and 67 tritium atoms per 1018 protium atoms). Increased levels of deuterium incorporation produce a detectable Kinetic Isotope Effect (KIE) that could affect the pharmacokinetic, pharmacologic and/or toxicologic parameters of these gastric H+, K+- ATPase modulators relative to compounds having naturally occurring levels of deuterium. Aspects of the present invention disclosed herein describe a novel approach to designing and synthesizing new analogs of these gastric H+, K+-ATPaSe modulators through chemical modifications and derivations of the carbon-hydrogen bonds of the modulators and/or of the chemical precursors used to synthesize said modulators. Suitable modifications of certain carbon-hydrogen bonds into carbon-deuterium bonds may generate novel gastric H+, K+- ATPase modulators with unexpected and non-obvious improvements of pharmacological, pharmacokinetic and toxicological properties in comparison to the non-isotopically enriched gastric H+, K+-ATPaSe modulators. This invention relies on the judicious and successful application of chemical kinetics to drug design. Deuterium incorporation levels in the compounds of the invention are significantly higher than the naturally-occurring levels and are sufficient to induce at least one substantial improvement as described herein.
[0022] Information has come to light that enables the judicious use of deuterium in solving the PK and PD shortcomings for gastric H+, K+-ATPase modulators. For example, the (S)-isomer of omeprazole is rapidly oxidized at the benzimidazole methoxy group to a metabolite with little or no antisecretory activity. The (R)-isomer of omeprazole is rapidly oxidized to the 5-hydroxyrnethyl-pyridyl metabolite that also has little or no antisecretory activity. The toxicity of these metabolites is unknown. Furthermore, because these oxidations take place via polymorphically expressed CYP2C19, and because an inhibition of CYP2C19 ensues, the prevention of such oxidative destruction decreases interpatient variability, decreases drug-drug interactions, increases Ty2, decreases the necessary Cmaχ, and improves several other Absorption, Distribution, Metabolism, Excretion, and toxicological (ADMET) parameters. This affords many reasonable strategies: deuteration to protect sites in the (S)-isomer, deuteration to protect sites in the (R)-isomer, or deuteration to protect sites in each as applied to the racemic material. Furthermore, sites other than those mentioned above are deuterated when metabolic switching dictates that this is necessary. All of the other compounds of this invention have similar considerations with regard to the DKIE application.
[0023] The deuterated analogs of this invention have the potential to uniquely maintain the beneficial aspects of the non-isotopically enriched drugs while substantially increasing the half-life (T1Z2), lowering the maximum plasma concentration (Cmax) of the minimum efficacious dose (MED), lowering the efficacious dose and thus decreasing the non-mechanism-related toxicity, and/or lowering the probability of drug-drug interactions. These drugs also have strong potential to reduce the cost-of-goods (COG) owing to the ready availability of inexpensive sources of deuterated reagents combined with previously mentioned potential for lowering the therapeutic dose.
[0024] Thus, in one aspect, there are provided herein compounds having the structural Formula 1 :
Figure imgf000010_0001
or a single enantiomer, a mixture of the (+)-enantiomer and the (-)-enantiomer, a mixture of about 90% or more by weight of the (-)-enantiomer and about 10% or less by weight of the (+)-enantiomer, a mixture of about 90% or more by weight of the (+)- enantiomer and about 10% or less by weight of the (-)-enantiomer, an individual diastereomer, a mixture of diastereomers, or a pharmaceutically acceptable salt, solvate, or prodrug thereof, wherein:
R1, R4, Rg and Rio are independently selected from the group consisting of hydrogen, and deuterium;
R2, R3, R6, and R8 are independently selected from the group consisting of hydrogen, deuterium, C1-C6 alkyl, and C1-C6 alkyloxy;
R5 is selected from the group consisting Of-CH2-, -CHD- and -CD2-;
R7 is selected from the group consisting of hydrogen, deuterium, -NO2, Ci-C6 alkyl, Ci-C6 alkyloxy, and C1-C6 alkoxy(Ci-C6)alkyloxy; provided that compounds of Formula 1 contain at least one deuterium atom, and provided that deuterium enrichment in compounds of Formula 1 is at least about 1%.
[0025] Compounds of this invention have the potential to uniquely maintain the beneficial aspects of non-isotopically enriched gastric H+, K+-ATPase modulators while substantially altering the half-life (T1/2), lowering the maximum plasma concentration (Cmaχ) of the minimum efficacious dose (MED), lowering the efficacious dose and thus decreasing non-mechanism-related toxicities, and/or lowering the probability of drug-drug interactions. These drugs also have potential to reduce the cost-of-goods (COG) due to a potential for lowering the therapeutic dose when compared to the non-isotopically enriched gastric H , K+-ATPase modulators. In sum, many aspects of ADMET of the non-isotopically enriched gastric H+, K+-ATPase modulators are substantially improved by this invention.
[0026] Agents in the present invention will expose patients to a maximum of 0.000005% D2O (can also be expressed as 0.00001% DHO). This quantity is a small fraction of the naturally occurring background levels of D2O (or DHO) in circulation. Even this minute exposure would require complete metabolism of every drug-incorporated C-D bond, and yet this C-D metabolism is precisely the phenomenon that can be eliminated or diminished through creative incorporation. Recall the levels of D2O shown to cause toxicity in animals (vide supra). The safety factor is thus extraordinary for this approach.
[0027] "Deuterium enrichment" refers to the percentage of incorporation of deuterium at a given site on the molecule instead of a hydrogen atom. For example, deuterium enrichment of 1% means that in 1% of molecules in a given sample a particular site is occupied by deuterium. Because the naturally occurring distribution of deuterium is about 0.0156%, deuterium enrichment in compounds synthesized using non-enriched starting materials is about 0.0156%. In some embodiments, the deuterium enrichment in the compounds of the present invention is greater than 10%. In other embodiments, the deuterium enrichment in the compounds of the present invention is greater than 20%. In further embodiments, the deuterium enrichment in the compounds of the present invention is greater than 50%. In some embodiments, the deuterium enrichment in the compounds of the present invention is greater than 70%. In some embodiments, the deuterium enrichment in the compounds of the present invention is greater than 90%.
[0028] "Isotopic enrichment" refers to the percentage of incorporation of a less prevalent isotope of an element at a given site on the molecule instead of the more prevalent isotope of the element. "Non-isotopically enriched" refers to a molecule in which the percentage of the various isotopes is substantially the same as the naturally occurring percentages.
[0029] In certain embodiments, the compound of Formula 1 contains about 60% or more by weight of the (-)-enantiomer of the compound and about 40% or less by weight of (+)-enantiomer of the compound. In some embodiments, the compound of Formula 1 contains about 70% or more by weight of the (-)-enantiomer of the compound and about 30% or less by weight of (+)-enantiomer of the compound. In some embodiments, the compound of Formula 1 contains about 80% or more by weight of the (-)-enantiomer of the compound and about 20% or less by weight of (+)-enantiomer of the compound. In some embodiments, the compound of Formula 1 contains about 90% or more by weight of the (-)-enantiomer of the compound and about 10% or less by weight of the (+)-enantiomer of the compound. In some embodiments, the compound of Formula 1 contains about 95% or more by weight of the (-)-enantiomer of the compound and about 5% or less by weight of (+)-enantiomer of the compound. In some embodiments, the compound of Formula 1 contains about 99% or more by weight of the (-)-enantiomer of the compound and about 1% or less by weight of (+)- enantiomer of the compound.
[0030] In certain other embodiments, the compound of Formula 1 contains about 60% or more by weight of the (+)-enantiomer of the compound and about 40% or less by weight of (-)-enantiomer of the compound. In some embodiments, the compound of Formula 1 contains about 70% or more by weight of the (+)-enantiomer of the compound and about 30% or less by weight of (-)-enantiomer of the compound. In some embodiments, the compound of Formula 1 contains about 80% or more by weight of the (+)-enantiomer of the compound and about 20% or less by weight of (-)-enantiomer of the compound. In some embodiments, the compound of Formula 1 contains about 90% or more by weight of the (+)- enantiomer of the compound and about 10% or less by weight of the (-)-enantiomer of the compound. In some embodiments, the compound of Formula 1 contains about 95% or more by weight of the (+)-enantiomer of the compound and about 5% or less by weight of (-)-enantiomer of the compound. In some embodiments, the compound of Formula 1 contains about 99% or more by weight of the (+)-enantiomer of the compound and about 1% or less by weight of (-)-enantiomer of the compound.
[0031] In some embodiments, the alkyl is selected from the group consisting of methyl, ethyl, n-propyl, iso-propyl, n-butyl, sec-butyl, iso-butyl, and tert-butyl. In certain embodiments the alkyloxy is selected from the group consisting of methoxy, ethoxy, n- propoxy, iso-propoxy, n-butoxy, sec-butoxy, iso-butoxy, and tert-butoxy.
[0032] In certain embodiments, R1 is hydrogen. In other embodiments, R2 is hydrogen. In some embodiments, R3 is hydrogen. In other embodiments, R4 is hydrogen. In still other embodiments, R6 is hydrogen. In yet other embodiments, R7 is hydrogen. In yet other embodiments, R8 is hydrogen. In still other embodiments, R9 is hydrogen. In still other embodiments, R10 is hydrogen.
[0033] In certain embodiments, Rj is deuterium. In other embodiments, R2 is deuterium. In some embodiments, R3 is deuterium. In other embodiments, R4 is deuterium. In still other embodiments, R6 is deuterium. In yet other embodiments, R7 is deuterium. In yet other embodiments, R8 is deuterium. In still other embodiments, R9 is deuterium. In still other embodiments, R1O is deuterium.
[0034] In further embodiments, R2 is a Ci-6 alkyloxy, wherein any one or more of the hydrogen atoms on the alkoxy group can be substituted by deuterium. In some of these embodiments, R2 is selected from the group consisting of -OCH3, -OCD3, -OCHF2, and - OCDF2. In other embodiments, R2 is -OCD3 or -OCDF2.
[0035] In other embodiments, R5 is -CH2-, -CHD- or -CD2-; [0036] In yet other embodiments, R6 is a C1-6 alkyloxy, wherein any one or more of the hydrogen atoms on the alkoxy group can be substituted by deuterium. In some of these embodiments, R6 is -OCH3, or -OCD3;
[0037] In still other embodiments, R6 is a Ci-6 alkyl, wherein any one or more of the hydrogen atoms on the alkyl group can be substituted by deuterium. In some of these embodiments, R6 is -CH3, or -CD3;
[0038] In other embodiments, R7 is a Ci-6 alkyloxy, wherein any one or more of the hydrogen atoms on the alkoxy group can be substituted by deuterium. In some of these embodiments, R7 is selected from the group consisting of -OCH3, -OCD3, -OCH2CF3, - OCD2CF3, and -O(CH2)3OCH3 wherein any one or more of the hydrogen atoms in - O(CH2)3OCH3 can be substituted by deuterium.
[0039] In other embodiments, R8 is a C1-6 alkyl wherein any one or more of the hydrogen atoms on the alkyl group can be substituted by deuterium. In some of these embodiments, R8 is -CH3, or -CD3;
[0040] In yet other embodiments, R8 is a C1-6 alkyloxy wherein any one or more of the hydrogen atoms on the alkoxy group can be substituted by deuterium.
[0041] In certain embodiments, Ri is not hydrogen. In other embodiments, R2 is not hydrogen. In some embodiments, R3 is not hydrogen. In other embodiments, R4 is not hydrogen. In still other embodiments, R6 is not hydrogen. In yet other embodiments, R7 is not hydrogen. In yet other embodiments, R8 is not hydrogen. In still other embodiments, R9 is not hydrogen. In still other embodiments, Ri0 is not hydrogen.
[0042] In certain embodiments, Ri is not deuterium. In other embodiments, R2 is not deuterium. In some embodiments, R3 is not deuterium. In other embodiments, R4 is not deuterium. In still other embodiments, R6 is not deuterium. In yet other embodiments, R7 is not deuterium. In yet other embodiments, R8 is not deuterium. In still other embodiments, R9 is not deuterium. In still other embodiments, Rio is not deuterium.
[0043] In further embodiments, R2 is not a Ci-6 alkyloxy. In some of these embodiments, R2 is not -OCH3, -OCD3, -OCHF2, or -OCDF2. In other embodiments, R2 is not -OCD3 or -OCDF2.
[0044] In other embodiments, R5 is not -CH2, -CHD or -CD2; [0045] In yet other embodiments, R6 is not a C1-6 alkyloxy. In some of these embodiments, R6 is not -OCH3, or -OCD3;
[0046] In still other embodiments, R6 is not a C1-6 alkyl. In some of these embodiments, R6Is not -CH3, or -CD3;
[0047] In other embodiments, R7 is not a Ci-6 alkyloxy. In some of these embodiments, R7 is not -OCH3, -OCD3, -OCH2CF3, -OCD2CF3, or -O(CH2)3OCH3 wherein any of the hydrogen atoms in -O(CH2)3OCH3 can be substituted by a deuterium.
[0048] In other embodiments, R8 is not a C1-6 alkyl. In some of these embodiments, R8 is not -CH3, or -CD3;
[0049] In yet other embodiments, R8 is not a Ci-6 alkyloxy.
[0050] In another embodiment of the invention, there are provided pharmaceutical compositions comprising at least one of the compounds of Formula 1, a single enantiomer of a compound of Formula 1, a mixture of the (+)-enantiomer and the (-)- enantiomer, a mixture of about 90% or more by weight of the (-)-enantiomer and about 10% or less by weight of the (+)-enantiomer, a mixture of about 90% or more by weight of the (+)-enantiomer and about 10% or less by weight of the (-)-enantiomer, an individual diastereomer of a compound of Formula 1, a mixture of diastereomers, or a pharmaceutically acceptable salt, solvate, or prodrug thereof, in a pharmaceutically acceptable vehicle, carrier, diluent, or excipient, or a combination thereof, for enteral, intravenous infusion, oral, parenteral, topical or ocular administration.
[0051] In yet another embodiment of the invention, there are provided pharmaceutical compositions comprising at least one of the compounds of Formula 1, a single enantiomer of a compound of Formula 1, a mixture of the (+)-enantiomer and the (-)- enantiomer, a mixture of about 90% or more by weight of the (-)-enantiomer and about 10% or less by weight of the (+)-enantiomer, a mixture of about 90% or more by weight of the (+)-enantiomer and about 10% or less by weight of the (-)-enantiomer, an individual diastereomer of a compound of Formula 1, a mixture of diastereomers, or a pharmaceutically acceptable salt, solvate, or prodrug thereof, in a pharmaceutically acceptable vehicle, carrier, diluent, or excipient, or a combination thereof, for the treatment of conditions involving the gastric H+, K+-ATPase, duodenal ulcers, other conditions mediated by gastric acid secretion, or psoriasis. [0052] In another embodiment of the invention, there are provided methods of modulating the activity of the gastric H+, K+-ATPase, with one or more of the compounds or compositions of Formula 1, a single enantiomer of a compound of Formula 1, a mixture of the (+)-enantiomer and the (-)-enantiomer, a mixture of about 90% or more by weight of the (-)-enantiomer and about 10% or less by weight of the (+)-enantiomer, a mixture of about 90% or more by weight of the (+)-enantiomer and about 10% or less by weight of the (-)- enantiomer, an individual diastereomer of a compound of Formula 1, a mixture of diastereomers, or a pharmaceutically acceptable salt, solvate, or prodrug thereof.
[0053] In still another embodiment of the invention, there are provided methods of treating a mammalian subject, particularly a human, suspected of having, or being prone to a disease or condition involving the gastric H+, K+-ATPase, gastric ulcers, duodenal ulcers, esophageal ulcers, other conditions mediated by gastric acid secretion, or psoriasis.
[0054] In some embodiments, the administering step in the above methods comprises administering the compound of the invention in some composition, i.e., a single tablet, pill, or capsule, or a single solution for intravenous injection, or a single drinkable solution, or a single dragee formulation or patch, wherein the amount administered is about 0.5 milligram to 80 milligram total daily dose.
[0055] In another embodiment of the invention, there are provided methods for treatment of gastric acid related diseases by inhibition of gastric acid secretion comprising administering to a mammalian subject in need of treatment a therapeutically effective amount of a gastric H+, K+-ATPase inhibitor comprising at least one of the compounds of Formula 1, a single enantiomer of a compound of Formula 1, a mixture of the (+)-enantiomer and the (-)- enantiomer, a mixture of about 90% or more by weight of the (-)-enantiomer and about 10% or less by weight of the (+)-enantiomer, a mixture of about 90% or more by weight of the (+)-enantiomer and about 10% or less by weight of the (-)-enantiomer, an individual diastereomer of a compound of Formula 1, a mixture of diastereomers, or a pharmaceutically acceptable salt, solvate, or prodrug thereof, in a pharmaceutically acceptable vehicle, carrier, diluent, or excipient, or a combination thereof, so as to affect decreased inter-individual variation in plasma levels of said compound or a metabolite thereof during treatment of gastric acid related diseases as compared to the non-isotopically enriched compound. [0056] In some embodiments, the inter-individual variation in plasma levels of the compounds of the invention, or metabolites thereof, is decreased by greater than about 5%, as compared to the non-isotopically enriched compounds. In other embodiments, the inter-individual variation in plasma levels of the compounds of the invention, or metabolites thereof, is decreased by greater than about 10%, as compared to the non-isotopically enriched compounds. In other embodiments, the inter-individual variation in plasma levels of the compounds of the invention, or metabolites thereof, is decreased by greater than about 20%, as compared to the non-isotopically enriched compounds. In other embodiments, the inter- individual variation in plasma levels of the compounds of the invention, or metabolites thereof, is decreased by greater than about 30%, as compared to the non-isotopically enriched compounds. In other embodiments, the inter-individual variation in plasma levels of the compounds of the invention, or metabolites thereof, is decreased by greater than about 40%, as compared to the non-isotopically enriched compounds. In other embodiments, the inter- individual variation in plasma levels of the compounds of the invention, or metabolites thereof, is decreased by greater than about 50%, as compared to the non-isotopically enriched compounds. Plasma levels of the compounds of the invention, or metabolites thereof, are measured by the methods of Li et al Rapid Communications in Mass Spectrometry 2005, 19(14), 1943-1950, which is hereby incorporated by reference in its entirety.
[0057] In another embodiment of the invention, there are provided methods for treatment of gastric acid related diseases by inhibition of gastric acid secretion comprising administering to a mammalian subject in need of treatment a therapeutically effective amount of a gastric H+, K+-ATPase inhibitor comprising at least one of the compounds of Formula 1, a single enantiomer of a compound of Formula 1, a mixture of the (+)-enantiomer and the (-)- enantiomer, a mixture of about 90% or more by weight of the (-)-enantiomer and about 10% or less by weight of the (+)-enantiomer, a mixture of about 90% or more by weight of the (+)-enantiomer and about 10% or less by weight of the (-)-enantiomer, an individual diastereomer of a compound of Formula 1, a mixture of diastereomers, or a pharmaceutically acceptable salt, solvate, or prodrug thereof, in a pharmaceutically acceptable vehicle, carrier, diluent, or excipient, or a combination thereof, so as to affect increased average plasma levels of said compound or decreased average plasma levels of at least one metabolite of said compound per dosage unit as compared to the non-isotopically enriched compound. [0058] In some embodiments, the average plasma levels of the compounds of the invention are increased by greater than about 5%, as compared to the non-isotopically enriched compounds. In other embodiments, the average plasma levels of the compounds of the invention are increased by greater than about 10%, as compared to the non-isotopically enriched compounds. In other embodiments, the average plasma levels of the compounds of the invention are increased by greater than about 20%, as compared to the non-isotopically enriched compounds. In other embodiments, the average plasma levels of the compounds of the invention are increased by greater than about 30%, as compared to the non-isotopically enriched compounds. In other embodiments, the average plasma levels of the compounds of the invention are increased by greater than about 40%, as compared to the non-isotopically enriched compounds. In other embodiments, the average plasma levels of the compounds of the invention are increased by greater than about 50%, as compared to the non-isotopically enriched compounds.
[0059] In some embodiments, the average plasma levels of a metabolite of the compounds of the invention are decreased by greater than about 5%, as compared to the non- isotopically enriched compounds. In other embodiments, the average plasma levels of a metabolite of the compounds of the invention are decreased by greater than about 10%, as compared to the non-isotopically enriched compounds. In other embodiments, the average plasma levels of a metabolite of the compounds of the invention are decreased by greater than about 20%, as compared to the non-isotopically enriched compounds. In other embodiments, the average plasma levels of a metabolite of the compounds of the invention are decreased by greater than about 30%, as compared to the non-isotopically enriched compounds. In other embodiments, the average plasma levels of a metabolite of the compounds of the invention are decreased by greater than about 40%, as compared to the non-isotopically enriched compounds. In other embodiments, the average plasma levels of a metabolite of the compounds of the invention are decreased by greater than about 50%, as compared to the non-isotopically enriched compounds.
[0060] Plasma levels of the compounds of the invention, or metabolites thereof, are measured by the methods of Li et al Rapid Communications in Mass Spectrometry 2005, 19(14), 1943-1950. [0061] In another embodiment of the invention, there are provided methods for treatment of gastric acid related diseases by inhibition of gastric acid secretion comprising administering to a mammalian subject in need of treatment a therapeutically effective amount of a gastric H+, K+-ATPase inhibitor comprising at least one of the compounds of Formula 1, a single enantiomer of a compound of Formula 1, a mixture of the (H-)-enantiomer and the (-)- enantiomer, a mixture of about 90% or more by weight of the (-)-enantiomer and about 10% or less by weight of the (+)-enantiomer, a mixture of about 90% or more by weight of the (+)-enantiomer and about 10% or less by weight of the (-)-enantiomer, an individual diastereomer of a compound of Formula 1, a mixture of diastereomers, or a pharmaceutically acceptable salt, solvate, or prodrug thereof, in a pharmaceutically acceptable vehicle, carrier, diluent, or excipient, or a combination thereof, so as to affect a less pronounced increase in gastrin levels in mammalian subjects during treatment of gastric acid related diseases as compared to the non-isotopically enriched compound.
[0062] In another embodiment of the invention, there are provided methods for treatment of gastric acid related diseases by inhibition of gastric acid secretion comprising administering to a mammalian subject in need of treatment a therapeutically effective amount of a gastric H+, K+-ATPase inhibitor comprising at least one of the compounds of Formula 1, a single enantiomer of a compound of Formula 1, a mixture of the (+)-enantiomer and the (-)- enantiomer, a mixture of about 90% or more by weight of the (-)-enantiomer and about 10% or less by weight of the (+)-enantiomer, a mixture of about 90% or more by weight of the (+)-enantiomer and about 10% or less by weight of the (-)-enantiomer, an individual diastereomer of a compound of Formula 1, a mixture of diastereomers, or a pharmaceutically acceptable salt, solvate, or prodrug thereof, in a pharmaceutically acceptable vehicle, carrier, diluent, or excipient, or a combination thereof, so as to affect a decreased inhibition of at least one cytochrome P450 isoform in mammalian subjects during treatment of gastric acid related diseases as compared to the non-isotopically enriched compound. Examples of cytochrome P450 isoforms in mammalian subjects include CYPlAl, CYP1A2, CYPlBl, CYP2A6, CYP2A13, CYP2B6, CYP2C8, CYP2C9, CYP2C18, CYP2C19, CYP2D6, CYP2E1, CYP2G1, CYP2J2, CYP2R1, CYP2S1, CYP3A4, CYP3A5, CYP3A5P1, CYP3A5P2, CYP3A7, CYP4A11, CYP4B1, CYP4F2, CYP4F3, CYP4F8, CYP4F11, CYP4F12, CYP4X1, CYP4Z1, CYP5A1, CYP7A1, CYP7B1, CYP8A1, CYP8B1, CYPIlAl, CYPIlBl, CYP11B2, CYP17, CYP19, CYP21, CYP24, CYP26A1, CYP26B1, CYP27A1, CYP27B1, CYP39, CYP46, CYP51 and the like.
[0063] In some embodiments, the decrease in inhibition of the cytochrome P450 isoform by compounds of the invention is greater than about 5%, as compared to the non- isotopically enriched compounds. In other embodiments, the decrease in inhibition of the cytochrome P450 isoform by compounds of the invention is greater than about 10%, as compared to the non-isotopically enriched compounds. In other embodiments, the decrease in inhibition of the cytochrome P450 isoform by compounds of the invention is greater than about 20%, as compared to the non-isotopically enriched compounds. In other embodiments, the decrease in inhibition of the cytochrome P45o isoform by compounds of the invention is greater than about 30%, as compared to the non-isotopically enriched compounds. In other embodiments, the decrease in inhibition of the cytochrome P450 isoform by compounds of the invention is greater than about 40%, as compared to the non-isotopically enriched compounds. In other embodiments, the decrease in inhibition of the cytochrome P450 isoform by compounds of the invention is greater than about 50%, as compared to the non- isotopically enriched compounds.
[0064] The inhibition of the cytochrome P450 isoform is measured by the methods of Ko et al British Journal of Clinical Pharmacology 2000, 49(4), 343-351, which is hereby incorporated by reference in its entirety.
[0065] In another embodiment of the invention, there are provided methods for treatment of gastric acid related diseases by inhibition of gastric acid secretion comprising administering to a mammalian subject in need of treatment a therapeutically effective amount of a gastric H+, K+-ATPase inhibitor comprising at least one of the compounds of Formula 1, a single enantiomer of a compound of Formula 1, a mixture of the (+)-enantiomer and the (-)- enantiomer, a mixture of about 90% or more by weight of the (-)-enantiomer and about 10% or less by weight of the (+)-enantiomer, a mixture of about 90% or more by weight of the (+)-enantiomer and about 10% or less by weight of the (-)-enantiomer, an individual diastereomer of a compound of Formula 1, a mixture of diastereomers, or a pharmaceutically acceptable salt, solvate, or prodrug thereof, in a pharmaceutically acceptable vehicle, carrier, diluent, or excipient, or a combination thereof, so as to affect an improved antisecretory effect during the treatment of gastric related diseases as compared to the non-isotopically enriched compound.
[0066] In another embodiment of the invention, there are provided methods for treatment of gastric acid related diseases by inhibition of gastric acid secretion comprising administering to a mammalian subject in need of treatment a therapeutically effective amount of a gastric H+, K+-ATPase inhibitor comprising at least one of the compounds of Formula 1, a single enantiomer of a compound of Formula 1, a mixture of the (+)-enantiomer and the (-)- enantiomer, a mixture of about 90% or more by weight of the (-)-enantiomer and about 10% or less by weight of the (+)-enantiomer, a mixture of about 90% or more by weight of the (+)-enantiomer and about 10% or less by weight of the (-)-enantiomer, an individual diastereomer of a compound of Formula 1, a mixture of diastereomers, or a pharmaceutically acceptable salt, solvate, or prodrug thereof, in a pharmaceutically acceptable vehicle, carrier, diluent, or excipient, or a combination thereof, so as to affect an improved clinical effect (e.g., accelerated rate of healing and accelerated rate of symptom relief) during the treatment of gastric related diseases as compared to the non-isotopically enriched compound.
[0067] In another embodiment of the invention, there are provided oral multiple unit tablet pharmaceutical compositions comprising two components A and B, wherein component A comprises one or more antibacterial agent with similar or different activities, such as for example amoxicillin, clarithromycin, metronidazole, and the like, and a combination thereof, and component B comprises at least one of the compounds of Formula 1, a single enantiomer of a compound of Formula 1, a mixture of the (+)-enantiomer and the (-)-enantiomer, a mixture of about 90% or more by weight of the (-)-enantiomer and about 10% or less by weight of the (+)-enantiomer, a mixture of about 90% or more by weight of the (+)-enantiomer and about 10% or less by weight of the (-)-enantiomer, an individual diastereomer of a compound of Formula 1, a mixture of diastereomers, or a pharmaceutically acceptable salt, solvate, or prodrug thereof, in a pharmaceutically acceptable vehicle, carrier, diluent, or excipient, or a combination thereof, in the form of pellets covered with an enteric coating polymer layer with mechanical properties such that the acid resistance of the enteric coated pellets is not significantly affected by compression of the pellets with the other tablet components during tableting, wherein component A is separated from component B by the enteric coating layer covering component B. [0068] In still another embodiment of the invention, there are provided effervescent dosage forms comprising two components A and B, wherein, component A is one or more effervescent excipients, and component B is made up of a mixture comprising at least one of the compounds of Formula 1, a single enantiomer of a compound of Formula 1, a mixture of the (+)-enantiomer and the (-)-enantiomer, a mixture of about 90% or more by weight of the (-)-enantiomer and about 10% or less by weight of the (+)-enantiomer, a mixture of about 90% or more by weight of the (+)-enantiomer and about 10% or less by weight of the (-)-enantiomer, an individual diastereomer of a compound of Formula I5 a mixture of diastereomers, or a pharmaceutically acceptable salt, solvate, or prodrug thereof, in a pharmaceutically acceptable vehicle, carrier, diluent, or excipient, or a combination thereof, a beta blocking agent, such as for example atenolol, metoprolol, propranolol and the like, and optionally one or more pharmaceutically acceptable excipients.
[0069] In still another embodiment of the invention, there are provided oral multiple unit tablet pharmaceutical compositions comprising three components A, B and C, wherein component A comprises at least one of the compounds of Formula 1, a single enantiomer of a compound of Formula 1, a mixture of the (+)-enantiomer and the (-)- enantiomer, a mixture of about 90% or more by weight of the (-)-enantiomer and about 10% or less by weight of the (+)-enantiomer, a mixture of about 90% or more by weight of the (+)-enantiomer and about 10% or less by weight of the (-)-enantiomer, an individual diastereomer of a compound of Formula 1, a mixture of diastereomers, or a pharmaceutically acceptable salt, solvate, or prodrug thereof, in a pharmaceutically acceptable vehicle, carrier, diluent, or excipient, or a combination thereof, in the form of pellets covered with an enteric coating polymer layer with mechanical properties such that the acid resistance of the enteric coated pellets is not significantly affected by compression of the pellets with the other tablet components during tableting, component B consisting of at least one Non Steroidal Antiinflammatory Drug (NSAID), such as for example, Naproxen (Aleve), Ibuprofen (Motrin), Indomethacin (Indocin), TSJabumetone (Relafen), and the like, and optional component C consisting of one or more pharmaceutically acceptable excipients, wherein component B is separated from component A by the enteric coating layer covering component A.
[0070] In yet another embodiment of the invention, there are provided methods for the treatment of a bacterial infection caused or mediated by Helicobacter pylori, comprising simultaneously, separately or sequentially administering to a mammalian subject in need, an effective amount of an Nitric Oxide releasing Non Steroidal Anti-inflammatory Drug (NSAE)) and at least one of the compounds of Formula 1, a single enantiomer of a compound of Formula 1, a mixture of the (+)-enantiomer and the (-)-enantiomer, a mixture of about 90% or more by weight of the (-)-enantiomer and about 10% or less by weight of the (+)-enantiomer, a mixture of about 90% or more by weight of the (H-)-enantiomer and about 10% or less by weight of the (-)-enantiomer, an individual diastereomer of a compound of Formula 1, a mixture of diastereomers, or a pharmaceutically acceptable salt, solvate, or prodrug thereof, in a pharmaceutically acceptable vehicle, carrier, diluent, or excipient, or a combination thereof.
[0071] In another embodiment of the invention, there are provided extended release pharmaceutical dosage forms comprising at least one of the compounds of Formula 1, a single enantiomer of a compound of Formula 1, a mixture of the (H-)-enantiomer and the (-)- enantiomer, a mixture of about 90% or more by weight of the (-)-enantiomer and about 10% or less by weight of the (+)-enantiomer, a mixture of about 90% or more by weight of the (+)-enantiomer and about 10% or less by weight of the (-)-enantiomer, an individual diastereomer of a compound of Formula 1, a mixture of diastereomers, or a pharmaceutically acceptable salt, solvate, or prodrug thereof, in a pharmaceutically acceptable vehicle, carrier, diluent, or excipient, or a combination thereof, a hydrophilic or hydrophobic matrix, a water- soluble separating layer, an enteric coating layer, and optionally one or more pharmaceutically acceptable excipients.
[0072] In still another embodiment of the invention, there are provided enteric coated pharmaceutical dosage forms comprising at least one of the compounds of Formula 1, a single enantiomer of a compound of Formula 1, a mixture of the (+)-enantiomer and the (-)- enantiomer, a mixture of about 90% or more by weight of the (-)-enantiomer and about 10% or less by weight of the (+)-enantiomer, a mixture of about 90% or more by weight of the (+)-enantiomer and about 10% or less by weight of the (-)-enantiomer, an individual diastereomer of a compound of Formula 1, a mixture of diastereomers, or a pharmaceutically acceptable salt, solvate, or prodrug thereof, in a pharmaceutically acceptable vehicle, carrier, diluent, or excipient, or a combination thereof, a disruptable semi-permeable membrane and one or more swellable substances, wherein the dosage form has an instant inhibitor-releasing 6 038819
part and at least one delayed inhibitor-releasing part, and is capable of giving a discontinuous release of the compound in the form of at least two consecutive pulses separated in time from 0.1 up to 24 hours.
[0073] In still another embodiment of the invention, there are provided stable pharmaceutical dosage forms for oral administration to mammalian subjects which comprises at least one of the compounds of Formula 1, a single enantiomer of a compound of Formula 1, a mixture of the (+)-enantiomer and the (-)-enantiomer, a mixture of about 90% or more by weight of the (-)-enantiomer and about 10% or less by weight of the (+)-enantiomer, a mixture of about 90% or more by weight of the (+)-enantiomer and about 10% or less by weight of the (-)-enantiomer, an individual diastereomer of a compound of Formula 1, a mixture of diastereomers, or a pharmaceutically acceptable salt, solvate, or prodrug thereof, in a pharmaceutically acceptable vehicle, carrier, diluent, or excipient, or a combination thereof, and optionally one or more pharmaceutical adjuvants, enclosed in an intermediate reactive layer comprising a gastric juice-resistant polymeric layered material partially neutralized with alkali and having cation exchange capacity and a gastric juice-resistant outer layer.
[0074] In yet another embodiment of the invention, there are provided compounds according to formula 1 having one of the following structures:
Figure imgf000025_0001
Figure imgf000026_0001
Figure imgf000027_0001
Figure imgf000028_0001
Figure imgf000029_0001
Figure imgf000030_0001
Figure imgf000031_0001
Figure imgf000032_0001
Figure imgf000033_0001
Figure imgf000034_0001
Figure imgf000035_0001
Figure imgf000036_0001
Figure imgf000037_0001
Figure imgf000038_0001
or a single enantiomer, a mixture of the (+)-enantiomer and the (-)-enantiomer, a mixture of about 90% or more by weight of the (-)-enantiomer and about 10% or less by weight of the (+)-enantiomer, a mixture of about 90% or more by weight of the (+)- enantiomer and about 10% or less by weight of the (-)-enantiomer, an individual diastereomer, a mixture of diastereomers, or a pharmaceutically acceptable salt, solvate, or prodrug thereof.
[0075] The present invention is intended to include all isotopes of all atoms occurring in the present compounds. Isotopes include those atoms having the same atomic number but different mass numbers. By way of general example and without limitation, isotopes of hydrogen include deuterium (D) and tritium (T). Isotopes of carbon include 13C and 14C. Isotopes of sulfur include 32S, 33S, 34S, and 36S. Isotopes of nitrogen include 14N and 15N. Isotopes of oxygen include 160, 17O, and 18O.
[0076] Isotopic hydrogen can be introduced into organic molecules by synthetic techniques that employ deuterated reagents whereby incorporation rates are pre-determined and/or by exchange techniques wherein incorporation rates are determined by equilibrium conditions and maybe highly variable depending on the reaction conditions. Synthetic techniques, where tritium or deuterium is directly and specifically inserted by tritiated or deuterated reagents of known isotopic content, may yield high tritium or deuterium abundance, but can be limited by the chemistry required. In addition, the molecule being labeled may be changed, depending upon the severity of the synthetic reaction employed. Exchange techniques, on the other hand, may yield lower tritium or deuterium incorporation, often with the isotope being distributed over many sites on the molecule, but offer the advantage that they do not require separate synthetic steps and are less likely to disrupt the structure of the molecule being labeled.
[0077] Unless otherwise indicated, when a substituent is deemed to be "optionally substituted," it is meant that the substituent is a group that may be substituted with one or more group(s) individually and independently selected from the group consisting of hydrogen, deuterium, alkyl, cycloalkyl, aryl, heteroaryl, heterocyclic, hydroxy, alkoxy, aryloxy, mercapto, alkylthio, arylthio, cyano, halo, carbonyl, thiocarbonyl, O-carbamyl, N-carbamyl, O-thiocarbamyl, N-thiocarbamyl, C-amido, N-amido, S-sulfonamido, N-sulfonamido, C-carboxy, O-carboxy, isocyanato, thiocyanato, isothiocyanato, nitro, silyl, trihalomethanesulfonyl, and amino, including mono- and di-substituted amino groups, and the protected derivatives thereof. The protecting groups that may form the protective derivatives of the above substituents are known to those of skill in the art examples of which may be found in references such as Greene and Wuts, Protective Groups in Organic Synthesis, 3rd Ed., John Wiley & Sons, New York, NY, 1999, which is incorporated by reference herein in its entirety.
[0078] The compounds according to this invention may occur as any reasonable tautomer as recognized by one skilled in the art or a mixture of such tautomers. The term "tautomer" or "tautomerism" refers to one of two or more structural isomers that exist in equilibrium and are readily converted from one isomeric form to another. Examples include keto-enol tautomers, such as acetone/propen-2-ol and the like, ring-chain tautomers, such as glucose/ 2,3,4,5,6-pentahydroxy-hexanal and the like. The compounds described herein may have one or more tautomers and therefore include various isomers. AU such isomeric forms of these compounds are expressly included in the present invention. The following example of tautomerism is provided for reference:
Figure imgf000039_0001
[0079] The compounds according to this invention may contain one or more asymmetric atoms and can thus occur as racemates and racemic mixtures, single enantiomers, diastereomeric mixtures or individual diastereomers. The term "stereoisomer" refers to a chemical compound having the same molecular weight, chemical composition, and constitution as another, but with the atoms grouped differently. That is, certain identical chemical moieties are at different orientations in space and, therefore, when pure, have the ability to rotate the plane of polarized light. However, some pure stereoisomers may have an optical rotation that is so slight that it is undetectable with present instrumentation. The compounds described herein may have one or more asymmetrical atoms and therefore include various stereoisomers. All such isomeric forms of these compounds are expressly included in the present invention.
[0080] Each stereogenic carbon or sulfur may be of R or S configuration. Although the specific compounds exemplified in this application may be depicted in a particular configuration, compounds having the opposite stereochemistry at any given chiral center or mixtures thereof are also envisioned. When chiral centers are found in the derivatives of this invention, it is to be understood that this invention encompasses all possible stereoisomers.
[0081] The terms "optically pure compound" or "optically pure isomer" refers to a single stereoisomer of a chiral compound regardless of the configuration of the said compound.
[0082] The term "substantially homogeneous" refers to collections of molecules wherein at least about 80%, preferably at least about 90% and more preferably at least about 95% of the molecules are a single compound or a single stereoisomer thereof, or to collections of molecules wherein at least about 80%, preferably at least about 90% and more preferably at least about 95% of the molecules are fully substituted (e.g., deuterated) at the positions stated.
[0083] As used herein, the term "attached" signifies a stable covalent bond, certain preferred points of attachment being apparent to those skilled in the art.
[0084] The terms "optional" or "optionally" refer to occurrence or non- occurrence of the subsequently described event or circumstance, and that the description includes instances where said event or circumstance occurs and instances where it does not. For example, the sentence "optionally substituted alkyl group" means that the alkyl group may or may not be substituted and the description includes both a substituted and an unsubstituted alkyl group.
[0085] The term "effective amount" of a compound refers a sufficient amount of the compound that provides a desired effect but with no- or acceptable- toxicity. This amount may vary from subject to subject, depending on the species, age, and physical condition of the subject, the severity of the disease that is being treated, the particular compound used, its mode of administration, and the like. A suitable effective amount may be determined by one of ordinary skill in the art.
[0086] The term "pharmaceutically acceptable" refers to a compound, additive or composition that is not biologically or otherwise undesirable. For example, the additive or composition may be administered to a subject along with a compound of the invention without causing any undesirable biological effects or interacting in an undesirable manner with any of the other components of the pharmaceutical composition in which it is contained.
[0087] The term "pharmaceutically acceptable salts" includes hydrochloric salt, hydrobromic salt, hydroiodic salt, hydrofluoric salt, sulfuric salt, citric salt, maleic salt, acetic salt, lactic salt, nicotinic salt, succinic salt, oxalic salt, phosphoric salt, malonic salt, salicylic salt, phenylacetic salt, stearic salt, pyridine salt, ammonium salt, piperazine salt, diethylamine salt, nicotinamide salt, formic salt, urea salt, sodium salt, potassium salt, calcium salt, magnesium salt, zinc salt, lithium salt, cinnamic salt, methylamino salt, methanesulfonic salt, picric salt, tartaric salt, triethylamino salt, dimethylamino salt, tris(hydroxymethyl)aminomethane salt and the like. Additional pharmaceutically acceptable salts are known to those of skill in the art.
[0088] When used in conjunction with a compound of this invention, the terms "elicit", "eliciting," "modulator", "modulate", "modulating", "regulator", "regulate" or "regulating" the activity refer to a compound that can act as an inhibitor, or an antagonist of a particular enzyme or receptor, such as for example the gastric H+, K+-ATPase and the like.
[0089] The terms "drug", "therapeutic agent" and "chemotherapeutic agent", refer to a compound or compounds and pharmaceutically acceptable compositions thereof that are administered to mammalian subjects as prophylactic or remedy in the treatment of a disease or medical condition. Such compounds may be administered to the subject via oral formulation, inhalation, ocular application, transdermal formulation or by injection.
[0090] The term "subject" refers to an animal, preferably a mammal, and most preferably a human, who is the object of treatment, observation or experiment. The mammal may be selected from the group consisting of mice, rats, hamsters, gerbils, rabbits, guinea pigs, dogs, cats, sheep, goats, cows, horses, giraffes, platypuses, primates, such as monkeys, chimpanzees, and apes, and humans. [0091] The term "therapeutically effective amount" is used to indicate an amount of an active compound, or pharmaceutical agent, that elicits the biological or medicinal response indicated. This response may occur in a tissue, system (animal including human) that is being sought by a researcher, veterinarian, medical doctor or other clinician.
[0092] The terms "treating," "treatment," "therapeutic," or "therapy" do not necessarily mean total loss of nociception. Any alleviation of any undesired signs or symptoms of a disease, such as inhibition of the gastric H+, K+-ATPase, duodenal ulcers and other conditions mediated by gastric acid secretion, or a subset of these conditions, to any extent can be considered treatment or therapy. Furthermore, treatment may include acts that may worsen the patient's overall feeling of well-being or appearance.
[0093] The term "Lewis acid" refers to a molecule that can accept an unshared pair of electrons and as such would be obvious to one of ordinary skill and knowledge in the art. The definition of "Lewis acid" includes but is not limited to: boron trifluoride, boron trifluoride etherate, boron trifluoride tetrahydrofuran complex, boron trifluoride tert-butyl- methyl ether complex, boron trifluoride dibutyl ether complex, boron trifluoride dihydrate, boron trifluoride di-acetic acid complex, boron trifluoride dimethyl sulfide complex, boron trichloride, boron trichloride dimethyl sulfide complex, boron tribromide, boron tribromide dimethyl sulfide complex, boron triiodide, triimethoxyborane, triethoxyborane, trimethylaluminum, triethylaluminum, aluminum trichloride, aluminum trichloride tetrahydrofuran complex, aluminum tribromide, titanium tetrachloride, titanium tetrabromide, titanium iodide, titanium tetraethoxide, titanium tetraisopropoxide, scandium (III) trifluoromethanesulfonate, yttrium (III) trifluoromethanesulfonate, ytterbium (III) trifiuoromethanesulfonate, lanthanum (III) trifluoromethanesulfonate, zinc (II) chloride, zinc (II) bromide, zinc (II) iodide, zinc (II) trifluoromethanesulfonate, zinc (II) sulfate, magnesium sulfate, Lithium perchlorate, copper (II) trifluoromethanesulfonate, copper (II) tetrafiuoroborate and the like. Certain Lewis acids may have optically pure ligands attached to the electron acceptor atom, as set forth in Corey, E. J. Angewandte Chemie, International Edition (2002), 41(10), 1650-1667; Aspinall, H. C. Chemical Reviews (Washington, DC, United States) (2002), 102(6), 1807-1850; Groger, H. Chemistry-A European Journal (2001), 7(24), 5246-5251; Davies, H. M. L. Chemtracts (2001), 14(11), 642-645; Wan, Y. Chemtracts (2001), 14(11), 610-615; Kim, Y. H. Accounts of Chemical Research (2001), 34(12), 955-962; Seebach, D. Angewandte Chemie, International Edition (2001), 40(1), 92- 138; Blaser, H. U. Applied Catalysis, A: General (2001), 221(1-2), 119-143; Yet, L. Angewandte Chemie, International Edition (2001), 40(5), 875-877; Jorgensen, K. A. Angewandte Chemie, International Edition (2000), 39(20), 3558-3588; Dias, L. C. Current Organic Chemistry (2000), 4(3), 305-342; Spindler, F. Enantiomer (1999), 4(6), 557-568; Fodor, K. Enantiomer (1999), 4(6), 497-511; Shimizu, K. D.; Comprehensive Asymmetric Catalysis I-III (1999), 3, 1389-1399; Kagan, H. B. Comprehensive Asymmetric Catalysis I- III (1999), 1, 9-30; Mikami, K. Lewis Acid Reagents (1999), 93-136 and all references cited therein. Such Lewis acids may be used by one of ordinary skill and knowledge in the art to produce optically pure compounds from achiral starting materials.
[0094] The term "acylating agent" refers to a molecule that can transfer an alkylcarbonyl, substituted alkylcarbonyl or aryl carbonyl group to another molecule. The definition of "acylating agent" includes but is not limited to ethyl acetate, vinyl acetate, vinyl propionate, vinyl butyrate, isopropenyl acetate, 1-ethoxyvinyl acetate, trichloroethyl butyrate, trifluoroethyl butyrate, trifluoroethyl laureate, S-ethyl thiooctanoate, biacetyl monooxime acetate, acetic anhydride, acetyl chloride, succinic anhydride, diketene, diallyl carbonate, carbonic acid but-3-enyl ester cyanomethyl ester, amino acid and the like.
[0095] The term "nucleophile" or "nucleophilic reagent" refers to a negatively charged or neutral molecule that has an unshared pair of electrons and as such would be obvious to one of ordinary skill and knowledge in the art. The definition of "nucleophile" includes but is not limited to: water, alkylhydroxy, alkoxy anion, arylhydroxy, aryloxy anion, alkylthiol, alkylthio anion, arylthiol, arylthio anion, ammonia, alkylamine, arylamine, alkylamine anion, arylamine anion, hydrazine, alkyl hydrazine, arylhydrazine, alkylcarbonyl hydrazine, arylcarbonyl hydrazine, hydrazine anion, alkyl hydrazine anion, arylhydrazine anion, alkylcarbonyl hydrazine anion, arylcarbonyl hydrazine anion, cyanide, azide, hydride, alkyl anion, aryl anion and the like.
[0096] The term "electrophile" or "electrophilic reagent" refers to a positively charged or neutral molecule that has an open valence shell or an attraction for an electron- rich reactant and as such would be obvious to one of ordinary skill and knowledge in the art. The definition of "electrophile" includes but is not limited to: hydronium, acylium, Lewis acids, such as for example, Boron trifluoride and the like, halogens, such as for example Br2 and the like, carbocations, such as for example tert-butyl cation and the like, diazomethane, trimethylsilyldiazomethane, alkyl halides, such as for example methyl iodide, trideuteromethyl iodide (CD3I), benzyl bromide and the like, alkyl triflates, such as for example methyl triflate and the like, alkyl sulfonates, such as for example ethyl toluenesulfonate, butyl methanesulfonate, dimethylsulfate, hexadeuterodimethylsulfate ((CD3)2SO4) and the like, acyl halides, such as for example acetyl chloride, benzoyl bromide and the like, acid anhydrides, such as for example acetic anhydride, succinic anhydride, maleic anhydride and the like, isocyanates, such as for example methyl isocyanate, phenylisocyanate and the like, chloroformates, such as for example methyl chloroformate, ethyl chloroformate, benzyl chloroformate and the like, sulfonyl halides, such as for example methanesulfonyl chloride, p-toluenesulfonyl chloride and the like, silyl halides, such as for example trimethylsilyl chloride, tert-butyldimethylsilyl chloride and the like, phosphoryl halide such as for example dimethyl chlorophosphate and the like, alpha-beta-unsaturated carbonyl compounds such as for example acrolein, methyl vinyl ketone, cinnamaldehyde and the like.
[0097] The term "leaving group" (LG) refers to any atom (or group of atoms) that is stable in its anion or neutral form after it has been displaced by a nucleophile and as such would be obvious to one of ordinary skill and knowledge in the art. The definition of "leaving group" includes but is not limited to: water, methanol, ethanol, chloride, bromide, iodide, methanesulfonate, tolylsulfonate, trifluoromethanesulfonate, acetate, trichloroacetate, benzoate and the like.
[0098] The term "oxidant" refers to any reagent that will increase the oxidation state of an atom, such as for example, hydrogen, carbon, nitrogen, sulfur, phosphorus and the like in the starting material by either adding an oxygen to this atom or removing an electron from this atom and as such would be obvious to one of ordinary skill and knowledge in the art. The definition of "oxidant" includes but is not limited to: osmium tetroxide, ruthenium tetroxide, ruthenium trichloride, potassium permanganate, meta-chloroperbenzoic acid, hydrogen peroxide, dimethyl dioxirane and the like.
[0099] The term "metal ligand" refers to a molecule that has an unshared pair of electrons and can coordinate to a metal atom and as such would be obvious to one of ordinary skill and knowledge in the art. The definition of "metal ligand" includes but is not limited to: water, alkoxy anion, alkylthio anion, ammonia, trialkylamine, triarylamine, trialkylphosphine, triarylphosphine, cyanide, azide and the like.
[0100] The term "reducing reagent" refers to any reagent that will decrease the oxidation state of an atom in the starting material by either adding a hydrogen to this atom, or adding an electron to this atom, or by removing an oxygen from this atom and as such would be obvious to one of ordinary skill and knowledge in the art. The definition of "reducing reagent" includes but is not limited to: borane-dimethyl sulfide complex, 9- borabicyclo[3.3.1.]nonane (9-BBN), catechol borane, lithium borohydride, lithium borodeuteride, sodium borohydride, sodium borodeuteride, sodium borohydride-methanol complex, potassium borohydride, sodium hydroxyborohydride, lithium triethylborohydride, lithium n-butylborohydride, sodium cyanoborohydride, sodium cyanoborodeuteride, calcium (II) borohydride, lithium aluminum hydride, lithium aluminum deuteride, diisobutylAluminum hydride, n-butyl-diisobutylaluminum hydride, Sodium bis- methoxyethoxyAluminum hydride, triethoxysilane, diethoxymethylsilane, lithium hydride, lithium, sodium, hydrogen Ni/B, and the like. Certain acidic and Lewis acidic reagents enhance the activity of reducing reagents. Examples of such acidic reagents include: acetic acid, methanesulfonic acid, hydrochloric acid, and the like. Examples of such Lewis acidic reagents include: trimethoxyborane, triethoxyborane, aluminum trichloride, lithium chloride, vanadium trichloride, dicyclopentadienyl titanium dichloride, cesium fluoride, potassium fluoride, zinc (II) chloride, zinc (II) bromide, zinc (II) iodide, and the like.
[0101] The term "coupling reagent" refers to any reagent that will activate the carbonyl of a carboxylic acid and facilitate the formation of an ester or amide bond. The definition of "coupling reagent" includes but is not limited to: acetyl chloride, ethyl chloroformate, dicyclohexylcarbodiimide (DCC), diisopropyl carbodiiimide (DIC), 1-ethyl- 3-(3-dimethylaminopropyl) carbodiimide (EDCI), N-hydroxybenzotriazole (HOBT), N- hydroxysuccinimide (HOSu), 4-nitrophenol, pentafluorophenol, 2-(lH-benzotriazole-l-yl)- 1,1,3,3-tetramethyluronium tetrafluoroborate (TBTU), O-benzotriazole-N,N,N'N'- tetramethyluronium hexafluorophosphate (HBTU), benzotriazole-1-yl-oxy-tris- (dimethylamino)-phosphonium hexafluorophosphate (BOP), benzotriazole-1-yl-oxy-tris- pyrrolidinophosphonium hexafluorophosphate, bromo-trispyrrolidino- phosphonium hexafluorophosphate, 2-(5-norbornene-2,3-dicarboximido)- 1 , 1 ,3 ,3 -tetramethyluronium tetrafluoroborate (TNTU), O-CN-succinimidy^-l^jS^-tetramethyluroniurn tetrafluoroborate (TSTU), tetramethylfluoroformamidinium hexafiuorophosphate and the like.
[0102] The term "removable protecting group" or "protecting group" refers to any group which when bound to a functionality, such as the oxygen atom of a hydroxyl or carboxyl group or the Nitrogen atom of an amino group, prevents reactions from occurring at these functional groups and which protecting group can be removed by conventional chemical or enzymatic steps to reestablish the functional group. The particular removable protecting group employed is not critical.
[0103] The definition of "hydroxyl protecting group" includes but is not limited to: a) Methyl, tert-butyl, allyl, propargyl, p-chlorophenyl, p-methoxyphenyl, p- nitrophenyl, 2,4-dinitrophenyl, 2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl, methoxymethyl, methylthiomethyl, (phenyldimethylsilyl)methoxymethyl, benzyloxymethyl, p-methoxy-benzyloxymethyl, p-nitrobenzyloxymethyl, o-nitrobenzyloxymethyl, (4- methoxyphenoxy)methyl, guaiacolmethyl, tert-butoxymethyl, 4-pentenyloxymethyl, tert- butyldimethylsiloxymethyl, thexyldimethylsiloxymethyl, tert-butyldiphenylsiloxymethyl, 2- methoxyethoxymethyl, 2,2,2-trichloroethoxymethyl, bis(2-chloroethoxy)methyl, 2- (trimethylsilyl)ethoxymethyl, menthoxymethyl, 1-ethoxyethyl, l-(2-chloroethoxy)ethyl, l-[2- (trimethylsilyl)ethoxy]ethyl, 1 -methyl- 1-ethoxyethyl, 1 -methyl- 1-benzyloxyethyl, 1-methyl- l-benzyloxy-2-fluoroethyl, 1 -methyl- 1-phenoxyethyl, 2,2,2-trichloroethyl, l-dianisyl-2,2,2- trichloroethyl, 1,1, 1,3,3, 3-hexafluoro-2-phenylisopropyl, 2-trimethylsilylethyl, 2- (benzylthio)ethyl, 2-(phenylselenyl)ethyl, tetrahydropyranyl, 3-bromotetrahydropyranyl, tetrahydrothiopyranyl, 1-methoxycyclohexyl, 4-methoxytetrahydropyranyl, 4- methoxytetrahydrothiopyranyl, 4-methoxytetrahydropyranyl S,S-dioxide, l-[(2-chloro-4- methyl)phenyl]-4-methoxypiρeridin-4-yl, 1 -(2-fluorophenyl)-4-methoxypiperidin-4-yl, 1 ,4- dioxan-2-yl, tetrahydrofuranyl, tetrahydrothiofuranyl and the like; b) Benzyl, 2-nitrobenzyl, 2-trifluoromethylbenzyl, 4-methoxybenzyl, 4- nitrobenzyl, 4-chlorobenzyl, 4-bromobenzyl, 4-cyanobenzyl, 4-phenylbenzyl, 4- acylaminobenzyl, 4-azidobenzyl, 4-(methylsulfinyl)benzyl, 2,4-dimethoxybenzyl, 4-azido-3- chlorobenzyl, 3,4-dimethoxybenzyl, 2,6-dichlorobenzyl, 2,6-difluorobenzyl, 1- pyrenylmethyl, diphenylmethyl, 4,4'-dinitrobenzhydryl, 5-benzosuberyl, triphenylmethyl (trityl), α-naphthyldiphenylmethyl, (4-methoxyphenyl)-diphenyl-methyl, di-(p- methoxyphenyl)-phenylniethyl, tri-(p-methoxyphenyl)methyl, 4-(4' -bromophenacyloxy)- phenyldiphenylmethyl, 4,4' ,4"-tris(4,5-dichlorophthalimidoplienyl)nietliyl, 4,4' ,4"- tris(levulinoyloxyphenyl)methyl, 4,4'-dimethoxy-3"-[N-(imidazolylmethyl)]trityl, 4,4'- dimethoxy-3"-[N-(imidazolylethyl)carbamoyl]trityl, l,l-bis(4-methoxyphenyl)-l'- pyrenylmethyl, 4-(17-tetrabenzo[a,c,g,I]fluorenylmethyl)-4,4'-dimethoxytrityl, 9-anthryl, 9- (9-phenyl)xanthenyl, 9-(9-phenyl-10-oxo)anthryl and the like; c) Trimethylsilyl, triethylsilyl, triisopropylsilyl, dimethylisopropylsilyl, diethylisopropylsilyl, dimethylhexylsilyl, tert-butyldimethylsilyl, tert-butyldiphenylsilyl, tribenzylsilyl, tri-p-xylylsilyl, triphenylsilyl, diphenylmethylsilyl, di-tert-butylmethylsilyl, tris(trimethylsilyl)silyl, (2-hydroxystyryl)dimethylsilyl, (2-hydroxystyryl)diisopropylsilyl, tert-butylmethoxyphenylsilyl, tert-butoxydiphenylsilyl and the like; d) -C(O)R20, where R20 is selected from the group consisting of alkyl, substituted alkyl, aryl and more specifically R20 = hydrogen, methyl, ethyl, tert-butyl, adamantyl, crotyl, chloromethyl, dichloromethyl, trichloromethyl, trifluoromethyl, methoxymethyl, triphenylmethoxymethyl, phenoxymethyl, 4-chlorophenoxymethyl, phenylmethyl, diphenylmethyl, 4-methoxycrotyl, 3-phenylpropyl, 4-pentenyl, 4-oxopentyl, 4,4- (ethylenedithio)pentyl, 5-[3-bis(4-methoxyphenyl)hydroxymethylphenoxy]- 4-oxopentyl, phenyl, 4-methylphenyl, 4-nitrophenyl, 4-fiuorophenyl, 4-chlorophenyl, 4-methoxyphenyl, 4- phenylphenyl, 2,4,6-trimethylphenyl, α-naphthyl, benzoyl and the like; e) -C(O)OR2O, where R20 is selected from the group consisting of alkyl, substituted alkyl, aryl and more specifically R20 = methyl, methoxymethyl, 9- fluorenylmethyl, ethyl, 2,2,2-trichloromethyl, l,l-dimethyl-2,2,2-trichloroethyl, 2- (trimethylsilyl)ethyl, 2-(phenylsulfonyl)ethyl, isobutyl, tert-butyl, vinyl, allyl, 4-nitrophenyl, benzyl, 2-nitrobenzyl, 4-nitrobenzyl, 4-methoxybenzyl, 2,4-dimethoxybenzyl, 3,4- dimethoxybenzyl, 2-(methylthiomethoxy)ethyl, 2-dansenylethyl, 2-(4-nitrophenyl)ethyl, 2- (2,4-dinitrophenyl)ethyl, 2-cyano-l-phenylethyl, thiobenzyl, 4-ethoxy-l-naphthyl and the like. Other examples of hydroxyl protecting groups are given in Greene and Wutts, above.
[0104] The definition of "amino protecting group" includes but is not limited to: a) 2-methylthioethyl, 2-methylsulfonylethyl, 2-(p-toluenesulfonyl)ethyl, [2-(l,3- dithianyl)]methyl, 4-methylthiophenyl, 2,4-dimethylthiophenyl, 2-phosphonioethyl, 1- methyl- l-(triphenylphosphonio)ethyl, l,l-dimethyl-2-cyanoethyl, 2-dansylethyl, 2-(4- nitrophenyl)ethyl, 4-ρhenylacetoxybenzyl, 4-azidobenzyl, 4-azidomethoxybenzyl, m-chloro- p-acyloxybenzyl, p-(dihydroxyboryl)benzyl, 5-benzisoxazolylmethyl, 2-(trifluoromethyl)-6- chromonytmethyl, m-nitrophenyl, 3.5-dimethoxybenzyl, l-methyl-l-(3,5- dimethoxyphenyl) ethyl, o-nitrobenzyl, α-methylnitropiperonyl, 3,4-dimethoxy-6- nitrobenzyl, N-benzenesulfenyl, N-o-nitrobenzenesulfenyl, N-2,4-dinitrobenzenesulfenyl, N- pentachlorobenzenesulfenyl. N-2-nitro-4-methoxybenzenesulfenyl, N- triphenylmethylsulfenyl, N-l-(2,2,2-trifluoro-l,l-diphenyl)ethylsulfenyl, N-3-nitro-2- pyridinesulfenyl, N-p-toluenesulfonyl, N-benzenesulfonyl, N-2,3,6-trimethyl-4- methoxybenzenesulfonyl, N-2,4,6-trimethoxybenzene-sulfonyl, N-2,6-dimethyl-4- methoxybenzenesulfonyl, N-pentamethylbenzenesulfonyl, N-2,3,5.6-tetramethyl-4- methoxybenzenesulfonyl and the like; b) -C(O)OR20, where R20 is selected from the group consisting of alkyl, substituted alkyl, aryl and more specifically R20 = methyl, ethyl, 9-fluorenylmethyl, 9-(2- sulfo)fluorenylmethyl. 9-(2,7-dibromo)fluorenylmethyl, 17- tetrabenzo[a,c,g,i]fluorenylmethyl. 2-chloro-3-indenylmethyl, benz[f|inden-3-ylmethyl, 2,7- di-t-butyl-[9-(10,10-dioxo-10,10,10,10-tetrahydrothloxanthyl)]methyl, 1,1- dioxobenzo[b]thiophene-2-ylmethyl, 2,2,2-trichloroethyl, 2-trimethylsilylethyl, 2- phenylethyl, l-(l-adamantyl)-l-methylethyl, 2-chloroethyl, l.l-dimethyl-2-haloethyl, 1,1- dimethyl-2,2-dibromoethyl, 1 , 1 -dimethyl-2,2,2-trichloroethyl, 1 -methyl- 1 -(4- biphenylyl)ethyl, l-(3,5-di-tert-butylphenyl)-l-methylethyl, 2-(2'-pyridyl)ethyl, 2-(4'- pyridyl)ethyl, 2,2-bis(4'-nitrophenyl)ethyl, N-(2-pivaloylamino)-l,l-dimethylethyl, 2-[(2- nitrophenyl)dithio]-l-phenylethyl, tert-butyl, 1-adamantyl, 2-adamantyl, Vinyl, allyl, 1- lsopropylallyl, cinnamyl. 4-nitrocinnamyl, 3-(3-pyridyl)prop-2-enyl, 8-quinolyl, N- Hydroxypiperidinyl, alkyldithio, benzyl, p-methoxybenzyl, p-nitrobenzyl, p-bromobenzyl. p- chlorobenzyl, 2,4-dichlorobenzyl, 4-methylsulfinylbenzyl, 9-anthrylmethyl, diphenylmethyl, tert-amyl, S-benzyl thiocarbamate, butynyl, p-cyanobenzyl, cyclobutyl, cyclohexyl, cyclopentyl, cyclopropylmethyl, p-decyloxybenzyl, diisopropylmethyl, 2,2- dimethoxycarbonylvinyl, o-(N,N ' -dimethylcarboxamido)benzyl, 1 , 1 -dimethyl-3 -(N,N ' - dimethylcarboxamido)propyl, 1,1-dimethylpropynyl, di(2-pyridyl)methyl, 2-furanylmethyl, 2-lodoethyl, isobornyl, isobutyl, isonicotinyl, p-(p'-methoxyphenylazo)benzyl, 1- methylcyclobutyl, 1-methylcyclohexyl, 1 -methyl- 1-cyclopropylmethyl, 1 -methyl- l-(p- phenylazophenyl)ethyl, 1 -methyl- 1-phenylethyl, l-methyl-l-4'-pyridylethyl, phenyl, p- (phenylazo)benzyl, 2,4,6-trimethylphenyl, 4-(trimethylammonium)benzyl, 2,4,6- trimethylbenzyl and the like. Other examples of amino protecting groups are given in Greene and Wutts, above.
[0105] The definition of "carboxyl protecting group" includes but is not limited to:
2-N-(morpholino)ethyl, choline, methyl, methoxyethyl, 9-fluorenylmethyl, methoxymethyl, methylthiomethyl, tetrahydropyranyl, tetrahydrofuranyl, methoxyethoxymethyl, 2-(trimethylsilyl)ethoxymethyl, benzyloxymethyl, pivaloyloxymethyl, phenylacetoxymethyl, triisopropylsilylmethyl, cyanomethyl, acetol, p- bromophenacyl. α-methylphenacyl, p-methoxyphenacyl, desyl, carboxamidomethyl, p- azobenzenecarboxamido-methyl, N-phthalimidomethyl, (methoxyethoxy)ethyl, 2,2,2- trichloroethyl, 2-fluoro ethyl, 2-chloroethyl, 2-bromoethyl, 2-iodoethyl, 4-chlorobutyl, 5- chloropentyl, 2-(trimethylsilyl)ethyl, 2-methylthioethyl, l,3-dithianyl-2-methyl, 2-(p- nitrophenylsulfenyl)ethyl, 2-(p-toluenesulfonyl)ethyl, 2-(2 -pyridyl)ethyl, 2-(p- methoxyphenyl)ethyl, 2-(diphenylphosphino)ethyl, 1 -methyl- 1-phenylethyl, 2-(4-acetyl-2- nitrophenyl)ethyl, 2-cyanoethyl, heptyl, tert-butyl, 3-methyl-3-pentyl, dicyclopropylmethyl, 2,4-dimethyl-3-pentyl, cyclopentyl, cyclohexyl, allyl, methallyl, 2-methylbut-3-en-2-yl, 3- methylbut-2-(prenyl), 3-buten-l-yl, 4-(trimethylsilyl)-2-buten-l-yl, cinnamyl, α- methylcinnamyl, propargyl, phenyl, 2,6-dimethylphenyl, 2,6-diisopropylphenyl, 2,6-di-tert- butyl-4-methylphenyl, 2,6-di-tert-butyl-4-methoxyphenyl, p-(methylthio)phenyl, pentafluorophenyl, benzyl, triphenylmethyl, diphenylmethyl, bis(o-nitrophenyl)methyl, 9- anthrylmethyl, 2-(9,10-dioxo)anthrylmethyl. 5-dibenzosuberyl, 1-pyrenylmethyl, 2- (trifluoromethyl)-6-chromonylmethyl, 2,4,6-trimethylbenzyl, p-bromobenzyl, o-nitrobenzyl, p-nitrobenzyl, p-methoxybenzyl, 2.6-dimethoxybenzyl, 4-(methylsulfinyl)benzyl, 4- Sulfobenzyl, 4-azidomethoxybenzyl, 4- {a/-[l -(4,4-dimethyl-2,6-dioxocyclohexylidene)-3- methylbutyl]amino}benzyl, piperonyl, 4-picolyl, trimethylsilyl, triethylsilyl, tert- butyldimethylsilyl, isopropyldimethylsilyl, phenyldimethylsilyl, di-tert-butylmethylsilyl, triisopropylsilyl and the like. Other examples of carboxyl protecting groups are given in Greene and Wutts, above. [0106] The definition of "thiol protecting group" includes but is not limited to: a) Alkyl, benzyl, 4-methoxybenzyl, . 2-hydroxybenzyl, 4-hydroxybenzyl, 2- acetoxybenzyl, 4-acetoxybenzyl, 4-nitrobenzyl, 2,4,6-trimethylbenzyl, 2,4,6- trimethoxybenzyl, 4-picolyl, 2-quinolinylmethyl, 2-picolyl n-oxido, 9-anthrylmethyl, 9- fluorenylmethyl, xanthenyl, ferrocenylmethyl and the like; b) Diphenylmethyl, bis(4-methoxyphenyl)methyl, 5-dibenzosuberyl, triphenylmethyl, diphenyl-4-pyridylmethyl, phenyl, 2,4-dinitrophenyl, tert-butyl, 1- adamantyl and the like; c) Methoxymethyl, isobutoxymethyl, benzyloxymethyl, 2-tetrahydropyranyl, benzylthiomethyl, phenylthiomethyl, acetamidomethyl, trimethylacetamidomethyl, benzamidomethyl, allyloxycarbonylaminomethyl, phenylacetamidomethyl, phthalimidomethyl, acetyl, carboxy-, cyanomethyl and the like; d) (2-nitro-l-phenyl)ethyl, 2-(2,4-dinitrophenyl)ethyl, 2-(4'-pyridyl)ethyl, 2- cyanoethyl, 2-(trimethylsilyl)ethyl, 2,2-bis(carboethoxy)ethyl, l-(3-nitrophenyl)-2-benzoyl- ethyl, 2-phenylsulfonylethyl, l-(4-methylphenylsulfonyl)-2-methylpro4-2-yl and the like; e) Trimethylsilyl, triethylsilyl, triisopropylsilyl, dimethylisopropylsilyl, diethylisopropylsilyl, dimethylhexylsilyl, tert-butyldimethylsilyl, tert-butyldiphenylsilyl, tribenzylsilyl, tri-p-xylylsilyl, triphenylsilyl, diphenylmethylsilyl, di-tert-butylmethylsilyl, tris(trimethylsilyl)silyl, (2-hydroxystyryl)dimethylsilyl, (2-hydroxystyryl)diisopropylsilyl, tert-butylmethoxyphenylsilyl, tert-butoxydiphenylsilyl and the like; f) Benzoyl, trifluoroacetyl, N-[[(4-biphenylyl)isopropoxy]carbonyl]-N-methyl-γ- aminothiobutyrate, N-(t-butoxycarbonyl)-N-methyl-γ-aminothiobutyrate and the like; g) 2,2,2-Trichloroethoxycarbonyl, tert-butoxycarbonyl, benzyloxycarbonyl, 4- methoxybenzyloxycarbonyl and the like; h) N-(Ethylamino)carbonyl, N-(methoxymethylamino)carbonyl and the like; i) Ethylthio, tert-butylthio, phenylthio, substituted phenylthio and the like; j) (Dimethylphosphino)thioyl, (diphenylphosphino)thioyl and the like; k) Sulfonate, alkyloxycarbonylthio, benzyloxycarbonylthio, 3-nitro-2- pyridinethio and the like;
1) Tricarbonyl[l,2,3,4,5-η]-2,4-cyclohexadien-l-yl]-iron(l+) and the like. Other examples of thiol protecting groups are given in Greene and Wutts, above. [0107] The term "amino acid" refers to any of the naturally occurring amino acids, as well as synthetic analogs and derivatives thereof. Alpha-Amino acids comprise a carbon atom to which is bonded an amino group, a carboxy group, a hydrogen atom, and a distinctive group referred to as a "side chain". The side chains of naturally occurring amino acids are well known in the art and include, for example, hydrogen (e.g., as in glycine), alkyl (e.g., as in alanine, valine, leucine, isoleucine, proline), substituted alkyl (e.g., as in threonine, serine, methionine, cysteine, aspartic acid, asparagine, glutamic acid, glutamine, arginine, and lysine), arylalkyl (e.g., as in phenylalanine), substituted arylalkyl (e.g., as in tyrosine), heteroarylalkyl (e.g., as in tryptophan, histidine) and the like. One of skill in the art will appreciate that the term "amino acid" can also include beta-, gamma-, delta-, omega- amino acids, and the like. Unnatural amino acids are also known in the art, as set forth in, Natchus, M. G. Organic Synthesis: Theory and Applications (2001), 5, 89-196; Ager, D. J. Current Opinion in Drug Discovery & Development (2001), 4(6), 800; Reginato, G. Recent Research Developments in Organic Chemistry (2000), 4(Pt. 1), 351-359; Dougherty, D. A. Current Opinion in Chemical Biology (2000), 4(6), 645-652; Lesley, S. A. Drugs and the Pharmaceutical Sciences (2000), 101(Peptide and Protein Drug Analysis), 191-205; Pojitkov, A. E. Journal of Molecular Catalysis B: Enzymatic (2000), 10(1-3), 47-55; Ager, D. J. Speciality Chemicals (1999), 19(1), 10-12, and all references cited therein. Stereoisomers (e.g., D-amino acids) of the twenty conventional amino acids, unnatural amino acids such as alpha, alpha-disubstituted amino acids and other unconventional amino acids may also be suitable components for compounds of the present invention. Examples of unconventional amino acids include: 4-hydroxyproline, 3-methylhistidine, 5-hydroxylysine, and other similar amino acids and imino acids (e.g., 4-hydroxyproline).
[0108] The term "N-protected amino acid" refers to any amino acid which has a protecting group bound to the nitrogen of the amino functionality. This protecting group prevents reactions from occurring at the amino functional group and can be removed by conventional chemical or enzymatic steps to reestablish the amino functional group.
[0109] The term "O-protected amino acid" refers to any amino acid which has a protecting group bound to the oxygen of the carboxyl functionality. This protecting group prevents reactions from occurring at the carboxyl functional group and can be removed by conventional chemical or enzymatic steps to reestablish the carboxyl functional group. The particular protecting group employed is not critical.
[0110] The term "prodrug" refers to an agent that is converted into the parent drug in vivo. Prodrugs are often useful because, in some situations, they may be easier to administer than the parent drug. They may, for instance, be bioavailable by oral administration whereas the parent drug is not. The prodrug may also have improved solubility in pharmaceutical compositions over the parent drug. A prodrug may be converted into the parent drug by various mechanisms, including enzymatic processes and metabolic hydrolysis. See Harper, "Drag Latentiation" in Jucker, ed. Progress in Drug Research 4:221- 294 (1962); Morozowich et al., "Application of Physical Organic Principles to Prodrug Design" in E. B. Roche ed. Design of Biopharmaceutical Properties through Prodrugs and Analogs, APHA Acad. Pharm. Sci. (1977); Bioreversible Carriers in Drug in Drug Design, Theory and Application, E. B. Roche, ed., APHA Acad. Pharm. Sci. (1987); Design of Prodrugs, H. Bundgaard, Elsevier (1985); Wang et al. "Prodrug approaches to the improved delivery of peptide drug" in Curr. Pharm. Design. 5(4):265-287 (1999); Pauletti et al. (1997) Improvement in peptide bioavailability: Peptidomimetics and Prodrug Strategies, Adv. Drug. Delivery Rev. 27:235-256; Mizen et al. (1998) "The Use of Esters as Prodrugs for Oral Delivery of .beta. -Lactam antibiotics," Pharm. Biotech. 11,345-365; Gaignault et al. (1996) "Designing Prodrugs and Bioprecursors I. Carrier Prodrugs," Pract. Med. Chem. 671-696; Asgharnejad, "Improving Oral Drug Transport", in Transport Processes in Pharmaceutical Systems, G. L. Amidon, P. I. Lee and E. M. Topp, Eds., Marcell Dekker, p. 185-218 (2000); Balant et al., "Prodrugs for the improvement of drug absorption via different routes of administration", Eur. J. Drag Metab. Pharmacokinet, 15(2): 143-53 (1990); Balimane and Sinko, "Involvement of multiple transporters in the oral absorption of nucleoside analogues", Adv. Drag Delivery Rev., 39(1-3): 183-209 (1999); Browne, "Fosphenytoin (Cerebyx)", Clin. Neuropharmacol. 20(1): 1-12 (1997); Bundgaard, "Bioreversible derivatization of drags-principle and applicability to improve the therapeutic effects of drags", Arch. Pharm. Chemi 86(1): 1-39 (1979); Bundgaard H. "Improved drag delivery by the prodrug approach", Controlled Drag Delivery 17: 179-96 (1987); Bundgaard H. "Prodrugs as a means to improve the delivery of peptide drags", Adv. Drag Delivery Rev. 8(1): 1-38 (1992); Fleisher et al. "Improved oral drug delivery, solubility limitations overcome by the use of prodrugs", Adv. Drug Delivery Rev. 19(2): 115-130 (1996); Fleisher et al. "Design of prodrugs for improved gastrointestinal absorption by intestinal enzyme targeting", Methods Enzymol. 112 (Drug Enzyme Targeting, Pt. A): 360-81, (1985); Farquhar D, et al., "Biologically Reversible Phosphate-Protective Groups", J. Pharm. Sci., 72(3): 324-325 (1983); Freeman S, et al., "Bioreversible Protection for the Phospho Group: Chemical Stability and Bioactivation of Di(4-acetoxy-benzyl) Methylphosphonate with Carboxyesterase," J. Chem. Soc, Chem. Commun., 875-877 (1991); Friis and Bundgaard, "Prodrugs of phosphates and phosphonates: Novel lipophilic alpha-acyloxyalkyl ester derivatives of phosphate- or phosphonate containing drugs masking the negative charges of these groups", Eur. J. Pharm. Sci. 4: 49-59 (1996); Gangwar et al., "Pro-drug, molecular structure and percutaneous delivery", Des. Biopharm. Prop. Prodrugs Analogs, [Symp.] Meeting Date 1976, 409-21. (1977); Nathwani and Wood, "Penicillins: a current review of their clinical pharmacology and therapeutic use", Drugs 45(6): 866-94 (1993); Sinhababu and Thakker, "Prodrugs of anticancer agents", Adv. Drug Delivery Rev. 19(2): 241-273 (1996); Stella et al., "Prodrugs. Do they have advantages in clinical practice?", Drugs 29(5): 455-73 (1985); Tan et al. "Development and optimization of anti-HIV nucleoside analogs and prodrugs: A review of their cellular pharmacology, structure-activity relationships and pharmacokinetics", Adv. Drug Delivery Rev. 39(1-3): 117-151 (1999); Taylor, "Improved passive oral drug delivery via prodrugs", Adv. Drug Delivery Rev., 19(2): 131-148 (1996); Valentino and Borchardt, "Prodrug strategies to enhance the intestinal absorption of peptides", Drug Discovery Today 2(4): 148-155 (1997); Wiebe and Rnaus, "Concepts for the design of anti-HIV nucleoside prodrugs for treating cephalic HIV infection", Adv. Drug Delivery Rev.: 39(l-3):63-80 (1999); Waller et al., "Prodrugs", Br. J. Clin. Pharmac. 28: 497-507 (1989).
[0111] In light of the purposes described for the present invention, all references to reagents ordinarily containing hydrogens, hydrides, or protons may include partially or fully deuterated versions (containing deuterium, deuteride, or deuteronhim) as required to affect transformation to the improved drug substances outlined herein.
[0112] The term "halogen", "halide" or "halo" includes fluorine, chlorine, bromine, and iodine.
[0113] The terms "alkyl" and "substituted alkyl" are interchangeable and include substituted, optionally substituted and unsubstituted Q -do straight chain saturated aliphatic hydrocarbon groups, substituted, optionally substituted and unsubstituted C2-Ci0 straight chain unsaturated aliphatic hydrocarbon groups, substituted, optionally substituted and unsubstituted C2-C10 branched saturated aliphatic hydrocarbon groups, substituted and unsubstituted C2-C10 branched unsaturated aliphatic hydrocarbon groups, substituted, optionally substituted and unsubstituted C3-C8 cyclic saturated aliphatic hydrocarbon groups, substituted, optionally substituted and unsubstituted Cs-C8 cyclic unsaturated aliphatic hydrocarbon groups having the specified number of carbon atoms. For example, the definition of "alkyl" shall include but is not limited to: methyl (Me), trideuteromethyl (-CD3), ethyl (Et), propyl (Pr), butyl (Bu), pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, ethenyl, propenyl, butenyl, penentyl, hexenyl, heptenyl, octenyl, nonenyl, decenyl, undecenyl, isopropyl (i-Pr), isobutyl (i-Bu), tert-butyl (t-Bu), sec-butyl (s-Bu), isopentyl, neopentyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclopentenyl, cyclohexenyl, cycloheptenyl, cyclooctenyl, methylcyclopropyl, ethylcyclohexenyl, butenylcyclopentyl, adamantyl, norbornyl and the like. Alkyl substituents are independently selected from the group consisting of hydrogen, deuterium, halogen, -OH, -SH, -NH2, -CN, - NO2, =0, =CH2, trihalomethyl, carbamoyl, arylCo-ioalkyl, heteroarylCo-ioalkyl, Ci-10alkyloxy, arylCo-ioalkyloxy, C1-10alkylthio, arylCo-toalkylthio, C1-10alkylamino, arylC0-1oalkylamino, N-aryl-N-Co-ioalkylamino, d-ioalkylcarbonyl, arylCo-ioalkylcarbonyl, d-ioalkylcarboxy, arylC0-10alkylcarboxy, Ci-ioalkylcarbonylamino, arylCo-^alkylcarbonylamino, tetrahydrofuryl, morpholinyl, piperazinyl, hydroxypyronyl, -Co-10alkylCOOR21 and -Co-i0alkylCONR22R23 wherein R2i, R22 and R23 are independently selected from the group consisting of hydrogen, deuterium, alkyl, aryl, or R22 and R23 are taken together with the nitrogen to which they are attached forming a saturated cyclic or unsaturated cyclic system containing 3 to 8 carbon atoms with at least one substituent as defined herein.
[0114] In light of the purposes described for the present invention, all references to "alkyl" groups or any groups ordinarily containing C-H bonds may include partially or fully deuterated versions as required to affect the improvements outlined herein.
[0115] The term "alkyloxy" (e.g. methoxy, ethoxy, propyloxy, allyloxy, cyclohexyloxy) represents a substituted or unsubstituted alkyl group as defined above having the indicated number of carbon atoms attached through an oxygen bridge. The term "alkyloxyalkyl" represents an alkyloxy group attached through an alkyl or substituted alkyl group as defined above having the indicated number of carbon atoms.
[0116] The term "alkyloxycarbonyl" (e.g. methoxycarbonyl, ethoxycarbonyl, tert- butoxycarbonyl, allyloxycarbonyl) represents a substituted or unsubstituted alkyloxy group as defined above having the indicated number of carbon atoms attached through a carbonyl bridge.
[0117] The term "alkylthio" (e.g. methylthio, ethylthio, propylthio, cyclohexenylthio and the like) represents a substituted or unsubstituted alkyl group as defined above having the indicated number of carbon atoms attached through a sulfur bridge. The term "alkylthioalkyl" represents an alkylthio group attached through an alkyl or substituted alkyl group as defined above having the indicated number of carbon atoms.
[0118] The term "alkylamino" (e.g. methylamino, diethylamino, butylamino, N- propyl-N-hexylamino, (2-cyclopentyl)ρropylamino, hexenylamino, and the like) represents one or two substituted or unsubstituted alkyl groups as defined above having the indicated number of carbon atoms attached through an amine bridge. The substituted or unsubstituted alkyl groups maybe taken together with the nitrogen to which they are attached forming a saturated cyclic or unsaturated cyclic system containing 3 to 10 carbon atoms with at least one substituent as defined above. The term "alkylaminoalkyl" represents an alkylamino group attached through a substituted or unsubstituted alkyl group as defined above having the indicated number of carbon atoms.
[0119] The term "alkylhydrazino" (e.g. methylhydrazino, diethylhydrazino, butylhydrazino, (2-cyclopentyl)propylhydrazino, cyclohexanehydrazino, and the like) represents one or two substituted or unsubstituted alkyl groups as defined above having the indicated number of carbon atoms attached through a nitrogen atom of a hydrazine bridge. The substituted or unsubstituted alkyl groups maybe taken together with the nitrogen to which they are attached forming a saturated cyclic or unsaturated cyclic system containing 3 to 10 carbon atoms with at least one substituent as defined above. The term "alkylhydrazinoalkyl" represents an alkylhydrazino group attached through a substituted or unsubstituted alkyl group as defined above having the indicated number of carbon atoms.
[0120] The term "alkylcarbonyl" (e.g. cyclooctylcarbonyl, pentylcarbonyl, 3- hexenylcarbonyl and the like) represents a substituted or unsubstituted alkyl group as defined above having the indicated number of carbon atoms attached through a carbonyl group. The term "alkylcarbonylalkyl" represents an alkylcarbonyl group attached through a substituted or unsubstituted alkyl group as defined above having the indicated number of carbon atoms.
[0121] The term "alkylcarboxy" (e.g. heptylcarboxy, cyclopropylcarboxy, 3- pentenylcarboxy and the like) represents an alkylcarbonyl group as defined above wherein the carbonyl is in turn attached through an oxygen. The term "alkylcarboxyalkyl" represents an alkylcarboxy group attached through an alkyl group as defined above having the indicated number of carbon atoms.
[0122] The term "alkylcarbonylamino" (e.g. hexylcarbonylamino, cyclopentylcarbonyl-aminomethyl, methylcarbonylaminophenyl and the like) represents an alkylcarbonyl group as defined above wherein the carbonyl is in turn attached through the nitrogen atom of an amino group. The nitrogen group may itself be substituted with a substituted or unsubstituted alkyl or aryl group. The term "alkylcarbonylaminoalkyl" represents an alkylcarbonylamino group attached through a substituted or unsubstituted alkyl group as defined above having the indicated number of carbon atoms.
[0123] The term "alkylcarbonylhydrazino" (e.g. ethylcarbonylhydrazino, tert- butylcarbonylhydrazino and the like) represents an alkylcarbonyl group as defined above wherein the carbonyl is in turn attached through the nitrogen atom of a hydrazino group.
[0124] The term "aryl" represents an unsubstituted, mono-, or polysubstituted monocyclic, polycyclic, biaryl aromatic groups covalently attached at any ring position capable of forming a stable covalent bond, certain preferred points of attachment being apparent to those skilled in the art (e.g., 3-phenyl, 4-naphthyl and the like). The aryl substituents are independently selected from the group consisting of hydrogen, deuterium, halogen, -OH, -SH, -CN, -NO2, trihalomethyl, hydroxypyronyl, C1-10alkyl, arylCo-1oalkyl, Co- alkyloxyCo-ioalkyl, arylCcioalkyloxyCo-ioalkyl, Co-1oalkylthioC0-1oalkyl, arylCo-iQalkylthioCo-ioalkyl, C0-10alkylaminoCQ-1Qalkyl, arylCc-toalkylaminoCo-ioalkyl, N-aryl- N-Co-ioalkylaminoCo-ioalkyl, Cj.toalkylcarbonylCo-ioalkyl, arylCo-ioalkylcarbonylC0-1oalkyl, d-walkylcarboxyCo-ioalkyl, arylCo-ioalkylcarboxyCo-ioalkyl, C1- i oalkylcarbonylaminoCQ. i oalkyl, arylCo-i oalkylcarbonylaminoCo. i oalkyl, -Co-1OaIlCyICOOR2 i , and -Co-ioalkylCONR22R23 wherein R21, R22 and R23 are independently selected from the group consisting of hydrogen, deuterium, alkyl, aryl or R22 and R23 are taken together with the nitrogen to which they are attached forming a saturated cyclic or unsaturated cyclic system containing 3 to 8 carbon atoms with at least one substituent as defined above.
[0125] The definition of "aryl" includes but is not limited to phenyl, pentadeuterophenyl, biphenyl, naphthyl, dihydronaphthyl, tetrahydronaphthyl, indenyl, indanyl, azulenyl, anthryl, phenanthryl, fluorenyl, pyrenyl and the like.
[0126] The term "arylalkyl" (e.g. (4-hydroxyphenyl)ethyl, (2- aminonaphthyl)hexenyl and the like) represents an aryl group as defined above attached through a substituted or unsubstituted alkyl group as defined above having the indicated number of carbon atoms.
[0127] The term "arylcarbonyl" (e.g. 2-thiophenylcarbonyl, 3- methoxyanthrylcarbonyl and the like) represents an aryl group as defined above attached through a carbonyl group.
[0128] The term "arylalkylcarbonyl" (e.g. (2,3-dimethoxyphenyl)propylcarbonyl, (2-chloronaphthyl)pentenyl-carbonyl and the like) represents an arylalkyl group as defined above wherein the alkyl group is in turn attached through a carbonyl.
[0129] The term "aryloxy" (e.g. phenoxy, naphthoxy, 3-methylphenoxy, and the like) represents an aryl or substituted aryl group as defined above having the indicated number of carbon atoms attached through an oxygen bridge. The term "aryloxyalkyl" represents an aryloxy group attached through a substituted or unsubstituted alkyl group as defined above having the indicated number of carbon atoms.
[0130] The term "aryloxycarbonyl" (e.g. phenoxycarbonyl, naphthoxycarbonyl) represents a substituted or unsubstituted aryloxy group as defined above having the indicated number of carbon atoms attached through a carbonyl bridge.
[0131] The term "arylthio" (e.g. phenylthio, naphthylthio, 3-bromophenylthio, and the like) represents an aryl or substituted aryl group as defined above having the indicated number of carbon atoms attached through a sulfur bridge. The term "arylthioalkyl" represents an arylthio group attached through a substituted or unsubstituted alkyl group as defined above having the indicated number of carbon atoms.
[0132] The term "arylamino" (e.g. phenylamino, diphenylamino, naphthylamino, N-ρhenyl-N-naphthylamino, o-methylphenylamino, p-methoxyphenylamino, and the like) represents one or two aryl groups as defined above having the indicated number of carbon atoms attached through an amine bridge. The term "arylaminoalkyl" represents an arylamino group attached through a substituted or unsubstituted alkyl group as defined above having the indicated number of carbon atoms. The term "arylalkylamino" represents an aryl group attached through an alkylamino group as defined above having the indicated number of carbon atoms. The term "N-aryl-N-alkylamino" (e.g. N-phenyl-N-methylamino, N-naphthyl- N-butylamino, and the like) represents one aryl and one a substituted or unsubstituted alkyl group as defined above having the indicated number of carbon atoms independently attached through an amine bridge.
[0133] The term "arylhydrazino" (e.g. phenylhydrazino, naphthylhydrazino, 4- methoxyphenylhydrazino, and the like) represents one or two aryl groups as defined above having the indicated number of carbon atoms attached through a hydrazine bridge. The term "arylhydrazinoalkyl" represents an arylhydrazino group attached through a substituted or unsubstituted alkyl group as defined above having the indicated number of carbon atoms. The term "arylalkylhydrazino" represents an aryl group attached through an alkylhydrazino group as defined above having the indicated number of carbon atoms. The term "N-aryl-N- alkylhydrazino" (e.g. N-phenyl-N-methylhydrazino, N-naphthyl-N-butylhydrazino, and the like) represents one aryl and one a substituted or unsubstituted alkyl group as defined above having the indicated number of carbon atoms independently attached through an amine atom of a hydrazine bridge.
[0134] The term "arylcarboxy" (e.g. phenylcarboxy, naphthylcarboxy, 3- fluorophenylcarboxy and the like) represents an arylcarbonyl group as defined above wherein the carbonyl is in turn attached through an oxygen bridge. The term "arylcarboxyalkyl" represents an arylcarboxy group attached through a substituted or unsubstituted alkyl group as defined above having the indicated number of carbon atoms.
[0135] The term "arylcarbonylamino" (e.g. phenylcarbonylamino, naphthylcarbonylamino, 2-methylphenylcarbonylamino and the like) represents an arylcarbonyl group as defined above wherein the carbonyl is in turn attached through the nitrogen atom of an amino group. The nitrogen group may itself be substituted with a substituted or unsubstituted alkyl or aryl group. The term "arylcarbonylaminoalkyl" represents an arylcarbonylamino group attached through a substituted or unsubstituted alkyl group as defined above having the indicated number of carbon atoms. The Nitrogen group may itself be substituted with a substituted or unsubstituted alkyl or aryl group.
[0136] The term "arylcarbonylhydrazino" (e.g. phenylcarbonylhydrazino, naphthylcarbonylhydrazino, and the like) represents an arylcarbonyl group as defined above wherein the carbonyl is in turn attached through the Nitrogen atom of a hydrazino group.
[0137] The terms "heteroaryl", "heterocycle" or "heterocyclic" refers to a monovalent unsaturated group having a single ring or multiple condensed rings, from 1 to 13 carbon atoms and from 1 to 10 hetero atoms selected from the group consisting of nitrogen, sulfur, and oxygen, within the ring. The heteroaryl groups in this invention can be optionally substituted with 1 to 10 substituents selected from the group consisting of: hydrogen, deuterium, halogen, -OH, -SH, -CN, -NO2, trihalomethyl, hydroxypyronyl, Ci-ioalkyl, arylCo- loalkyl, C0-1oalkyloxyC0-10alkyl, arylCo.^alkyloxyCo.ioalkyl, C0-1oalkylthioCo-ioalkyl, arylCo- i0alkylthioC0-1oalkyl, Co-ioalkylaminoCo-ioalkyl, arylCo-ioalkylaminoCo-ioalkyl, N-aryl-N-Co- loalkylaminoCo-ioalkyl, Ci-walkylcarbonylCdoalkyl, arylCo-ioalkylcarbonylCo-ioalkyl, C1- ioalkylcarboxyCo-ioalkyl, arylCo-ioalkylcarboxyCo-ioalkyl, Ci-toalkylcarbonylaminoCQ-tQalkyl, arylCo-ioalkylcarbonylaminoCo-ioalkyl, -Co-10alkylCOOR21, and -C0-10alkylCONR22R23 wherein R2i, R22 and R23 are independently selected from the group consisting of hydrogen, deuterium, alkyl, aryl, or R22 and R23 are taken together with the nitrogen to which they are attached forming a saturated cyclic or unsaturated cyclic system containing 3 to 8 carbon atoms with at least one substituent as defined above.
[0138] The definition of "heteroaryl" includes but is not limited to thienyl, benzothienyl, isobenzothienyl, 2,3-dihydrobenzothienyl, furyl, pyranyl, benzofuranyl, isobenzofuranyl, 2,3-dihydrobenzofuranyl, pyrrolyl, pyrrolyl-2,5-dione, 3-pyrrolinyl, indolyl, isoindolyl, 3H-indolyl, indolinyl, indolizinyl, indazolyl, phthalimidyl (or isoindoly-1,3- dione), imidazolyl, 2H-imidazolinyl, benzimidazolyl, deuterobenzimidazolyl, dideuterobenzimidazolyl, trideuterobenzimidazolyl, tetradeuterobenzimidazolyl, pyridyl, deuteropyridyl, dideuteropyridyl, trideuteropyridyl, tetradeuteropyridyl, pyrazinyl, pyradazinyl, pyrimidinyl, triazinyl, quinolyl, isoquinolyl, 4H-quinolizinyl, cinnolinyl, phthalazinyl, quinazolinyl, quinoxalinyl, 1,8-naphthyridinyl, pteridinyl, carbazolyl, acridinyl, phenazinyl, phenothiazinyl, phenoxazinyl, chromanyl, benzodioxolyl, piperonyl, purinyl, pyrazolyl, triazolyl, tetrazolyl, thiazolyl, isothiazolyl, benzthiazolyl, oxazolyl, isoxazolyl, benzoxazolyl, oxadiazolyl, thiadiazolyl, pyrrolidinyl-2,5-dione, imidazolidinyl-2,4-dione, 2- thioxo-imidazolidinyl-4-one, imidazolidinyl-2,4-dithione, thiazolidinyl-2,4-dione, 4-thioxo- thiazolidinyl-2-one, piperazinyl-2,5-dione, tetrahydro-pyridazinyl-3,6-dione, 1,2-dihydro- [1 ,2,4,5]tetrazinyl-3,6-dione, [1 ,2,4,5]tetrazinanyl-3,6-dione, dihydro-pyrimidinyl-2,4-dione, pyrimidinyl-2,4,6-trione, lH-pyriniidinyl-2,4-dione, 5-iodo-lH-pyrimidinyl-2,4-dione, 5- chloro-lH-pyrimidinyl-2,4-dione, 5-methyl-lH-pyrimidinyl-2,4-dione, 5-isoρropyl-lH- pyrimidinyl-2,4-dione, 5-propynyl-lH-pyrimidinyl-2,4-dione, 5-trifluoromethyl-lH- pyrimidinyl-2,4-dione, 6-amino-9H-purinyl, 2-amino-9H-purinyl, 4-amino-lH-pyrimidinyl- 2-one, 4-amino-5-fluoro-lH-pyrimidinyl-2-one, 4-amino-5-methyl-lH-pyrimidinyl-2-one, 2- amino- 1 ,9 -dihydro-purinyl-6-one, 1 ,9-dihydro-purinyl-6-one , IH-[1 ,2,4]triazolyl-3 - carboxylic acid amide, 2,6-diamino-N6-cyclopropyl-9H-purinyl, 2-amino-6-(4- methoxyphenylsulfanyl)-9H-purinyl, 5,6-dichloro-lH-benzoimidazolyl, 2-isopropylamino- 5,6-dichloro-lH-benzoimidazolyl, 2-bromo-5,6-dichloro-lH-benzoimidazolyl, 5-methoxy- lH-benzoimidazolyl, 3-ethylpyridyl, 5-methyl-2-phenyl-oxazolyl, 5-methyl-2-thiophen-2-yl- oxazolyl, 2-furan-2-yl-5-methyl-oxazolyl, 3-methyl-3H-quinazolin-4-one, 4-methyl-2H- phthalazin- 1 -one, 2-ethyl-6-methyl-3H-pyrimidin-4-one, 5-methoxy-3 -methyl-3H- imidazo[4,5-b]pyridine and the like. For the purposes of this application, the terms "heteroaryl", "heterocycle" or "heterocyclic" do not include carbohydrate rings (i.e. mono- or oligosaccharides).
[0139] The term "saturated heterocyclic" represents an unsubstituted, mono-, and polysubstituted monocyclic, polycyclic saturated heterocyclic group covalently attached at any ring position capable of forming a stable covalent bond, certain preferred points of attachment being apparent to those skilled in the art (e.g., 1-piperidinyl, 4-piperazinyl, DBU, and the like).
[0140] The saturated heterocyclic substituents are independently selected from the group consisting of halo, -OH, -SH5 -CN, -NO2, trihalomethyl, hydroxypyronyl, C1. loalkyl, arylCo-iOalkyl, Co-ioalkyloxyCo-ioalkyl, arylCo-ioalkyloxyCo-ioalkyl, Co.i0alkylthioCo- ioalkyl, arylCo-ioalkylthioCo-ioalkyl, CQ-ioalkylaminoCo.ioalkyl, arylCo-10alkylaminoC0-10alkyl, N-aryl-N-Co-ioalkylaminoCo-ioalkyl, Ci-ioalkylcarbonylCo-^alkyl, arylC0-10alkylcarbonylC0- toalkyl, d-ioalkylcarboxyCo-ioalkyl, arylCo-ioalkylcarboxyCo-^alkyl, Ci. loalkylcarbonylaminoCo-ioalkyl, arylCo-ioalkylcarbonylaminoCo-ioalkyl, -Co-ioalkylCOORai, and -Co-1OaIlCyICONR22R23 wherein R21, R22 and R23 are independently selected from the group consisting of hydrogen, deuterium, alkyl, aryl, or R22 and R23 are taken together with the nitrogen to which they are attached forming a saturated cyclic or unsaturated cyclic system containing 3 to 8 carbon atoms with at least one substituent as defined above.
[0141] The definition of saturated heterocyclic includes but is not limited to pyrrolidinyl, pyrazolidinyl, piperidinyl, 1,4-dioxanyl, morpholinyl, 1,4-dithienyl, thiomorpholinyl, piperazinyl, quinuclidinyl, and the like.
[0142] The term "alpha-beta-unsaturated carbonyl" refers to a molecule that has a carbonyl group directly attached to a double or triple bonded carbon and which would be obvious to one of ordinary skill and knowledge in the art. The definition of alpha-beta- unsaturated carbonyl includes but is not limited to acrolein, methyl vinyl ketone, and the like.
[0143] The term "acetal" refers to a molecule that contains a carbon atom C1 that is directly attached to a hydrogen atom (H1), a substituted carbon atom (C2) and two oxygen atoms (Oi and O2). These oxygen atoms are in turn attached to other substituted carbon atoms (C3 and C4), which would be obvious to one of ordinary skill and knowledge in the art. The definition of acetal includes but is not limited to 1,1-dimethoxypropane, 1,1-bis- allyloxybutane and the like.
Figure imgf000061_0001
[0144] The term "cyclic acetal" refers to an acetal as defined above where C3 and C4, together with the oxygen atoms to which they are attached, combine thru an alkyl bridge to form a 5- to 10-membered ring, which would be obvious to one of ordinary skill and knowledge in the art. The definition of cyclic acetal includes but is not limited to 2-methyl- [l,3]dioxolane, 2-ethyl-[l,3]dioxane, 2-phenyl-[l,3]dioxane, 2-phenyl-hexahydro- pyrano[3,2-d][l,3]dioxine and the like.
5
Figure imgf000061_0002
[0145] The term "ketal" refers to a molecule that contains a carbon atom Ci that is directly attached to two substituted carbon atom (C2 and C3) and two oxygen atoms (Oi and O2). These oxygen atoms are in turn attached to other substituted carbon atoms (C4 and C5), which would be obvious to one of ordinary skill and knowledge in the art. The definition of acetal includes but is not limited to 2,2-dimethoxy-butane, 3,3-diethoxy-pentane and the like.
Figure imgf000062_0001
[0146] The term "cyclic ketal" refers to a ketal as defined above where C4 and C5, together with the oxygen atoms to which they are attached, combine thru an alkyl bridge to form a 5- to 10-membered ring, which would be obvious to one of ordinary skill and knowledge in the art. The definition of cyclic acetal includes but is not limited to 2,2,4,5- tetramethyl~[l,3]dioxolane, 2,2-diethyl-[l,3]dioxeρane, 2,2-dimethyl-hexahydro-pyrano[3,2- d][l,3]dioxine and the like.
5
Figure imgf000062_0002
[0147] A "C-carboxy" group refers to a -C(=O)OR groups where R is as defined herein.
[0148] An "acetyl" group refers to a -C(^O)CH3, group. [0149] A "trihalomethanesulfonyl" group refers to a X3CS(=O)2- group where X is a halogen. [0150] A "cyano" group refers to a -CN group. [0151] An "isocyanato" group refers to a -NCO group. . [0152] A "thiocyanato" group refers to a -CNS group. [0153] An "isothiocyanato" group refers to a -NCS group. [0154] A "sulfmyl" group refers to a -S(=O)-R group, with R as defined herein. [0155] A "S-sulfonamido" group refers to a -S(=O)2NR, group, with R as defined herein.
[0156] A "N-sulfonamido" group refers to a RS(=O)2NH- group with R as defined herein. [0157] A "trihalomethanesulfonamido" group refers to a X3CS(=O)2NR- group with X and R as defined herein. [0158] An "O-carbamyl" group refers to a -OC(=O)-NR, group-with R as defined herein.
[0159] An "N-carbamyl" group refers to a ROC(=O)NH- group, with R as defined herein.
[0160] An "O-thiocarbamyl" group refers to a -OC(=S)-NR, group with R as defined herein.
[0161] An "N-thiocarbamyl" group refers to an ROC(=S)NH- group, with R as defined herein.
[0162] A "C-amido" group refers to a -C(=O)-NR2 group with R as defined herein.
[0163] An "N-amido" group refers to a RC(=O)NH- group, with R as defined herein.
[0164] The term "perhaloalkyl" refers to an alkyl group where all of the hydrogen atoms are replaced by halogen atoms.
[0165] The term "pharmaceutical composition" refers to a mixture of a compound disclosed herein with other chemical components, such as diluents or carriers. The pharmaceutical composition facilitates administration of the compound to an organism. Multiple techniques of administering a compound exist in the art including, but not limited to, oral, injection, aerosol, parenteral, and topical administration. Pharmaceutical compositions can also be obtained by reacting compounds with inorganic or organic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid, salicylic acid and the like.
[0166] The term "carrier" defines a chemical compound that facilitates the incorporation of a compound into cells or tissues. For example dimethyl sulfoxide (DMSO) is a commonly utilized carrier as it facilitates the uptake of many organic compounds into the cells or tissues of an organism.
[0167] The term "diluent" defines a solution, typically one that is aqueous or partially aqueous, that dissolves chemical compounds of interest and may stabilize the biologically active form of the compound. Salts dissolved in buffered solutions are utilized as diluents in the art. One commonly used buffered solution is phosphate buffered saline because it mimics the salt conditions of human blood. Since buffer salts can control the pH of a solution at low concentrations, a buffered diluent rarely modifies the biological activity of a compound.
[0168] The term "gastric related diseases" defines a medical or physiological condition that includes, but is not limited to, peptic ulcer, duodenal ulcer, stomach ulcer, gastric ulcer, chronic gastritis, gastroesophageal reflux disease, GERD, heartburn, acid reflux, reflux esophagitis, indigestion, non-ulcer dyspepsia, functional dyspepsia, dyspepsia caused by structural or biochemical disease, biliary tract disease, gastroparesis, pancreatitis, carbohydrate malabsorption, including but not limited to lactose, sorbitol, fructose, and mannitol malabsorption, infiltrative diseases of the stomach, Crohn's disease, sarcoidosis, ischemic bowel disease, inflammatory bowel disease, diverticulitis, Helicobacter infections, Helicobacter pylori infections, intestinal parasites including but not limited to giardia species and strongyloides species, abdominal cancer, gastric cancer, esophageal cancer, pancreatic cancer, adenocarcinoma of the antrum and adenocarcinoma of the body of the stomach.
[0169] In one embodiment, the present invention provides a process for preparing a compound of formula 3 wherein R11 and R14 are independently selected from the group consisting of hydrogen and deuterium; Rj2 and R13 are independently selected from the group consisting of -CH3, -CDH2, -CD2H, and -CD3. Such a process can be performed, for example, by contacting compound of formula 2 with deuterium oxide under conditions suitable to form a compound of formula 3, as set forth below:
Figure imgf000064_0001
2 3
[0170] Compound of formula 2 may be prepared by known processes. Compound 2 is typically contacted with deuterium oxide in the presence of a catalyst. Catalysts contemplated for use in the practice of this particular invention process are typically sodium carbonate, potassium carbonate, DBU and the like. Solvents contemplated for use in the practice of this particular invention process are typically polar solvents, such as for example, 1,4-dioxane, acetone, acetonitrile, dimethyl formamide, dimethyl acetamide, N- methylpyrrolidine, dimethyl sulfoxide and the like, or any suitable mixtures thereof. The process is typically carried out at a temperature in the range of about 0 0C up to about 500 0C, for 0.01 to 240 hours, at a pH in the range of about 1 up to about 14, at a pressure in the range of about 1 mBar up to about 350 Bar.
[0171] In certain embodiments, Compound 2 is typically contacted with deuterium oxide in the presence of a catalyst, with or without another solvent. Catalysts contemplated for use in the practice of this particular invention process are typically sodium carbonate, potassium carbonate, DBU and the like. Solvents contemplated for use in the practice of this particular invention process are typically polar solvents, such as for example, 1,4-dioxane, acetone, acetonitrile, dimethyl formamide, dimethyl acetamide, N- methylpyrrolidine, dimethyl sulfoxide and the like, or any suitable mixtures thereof. The process is typically carried out in the presence of focused microwave radiation using a quartz reactor at a pressure in the range of about 1 Bar to about 25 Bar, a power setting in the range of about 1 W per liter of solvent to about 900 W per liter of solvent, at a temperature in the range of about O0C up to about 5000C, for 0.01 to 5 hours, at a pH in the range of about 1 up to about 14.
[0172] In another embodiment, the present invention provides a process for preparing a compound of formula 5 wherein R14 is hydrogen or deuterium, R12, R13 and R15 are independently selected from the group consisting of -CH3, -CDH2, -CD2H, and -CD3. Such a process can be performed, for example, by contacting compound of formula 4 with deuterium oxide under conditions suitable to form a compound of formula 5, as set forth below:
Figure imgf000065_0001
[0173] Compound of formula 4 may be prepared by known processes. Compound 4 is typically contacted with deuterium oxide in the presence of a catalyst. Catalysts contemplated for use in the practice of this particular invention process are typically sodium carbonate, potassium carbonate, DBU and the like. Solvents contemplated for use in the practice of this particular invention process are typically polar solvents, such as for example, 1,4-dioxane, acetone, acetonitrile, dimethyl formamide, dimethyl acetamide, N- methylpyrrolidine, dimethyl sulfoxide and the like, or any suitable mixtures thereof. The process is typically carried out at a temperature in the range of about 0 0C up to about 500 0C, for 0.01 to 240 hours, at a pH in the range of about 1 up to about 14, and at a pressure in the range of about 1 mBar up to about 350 Bar.
[0174] In certain embodiments, Compound 4 is typically contacted with Deuterium oxide in the presence of a catalyst, with or without another solvent. Catalysts contemplated for use in the practice of this particular invention process are typically Sodium carbonate, Potassium carbonate, DBU and the like. Solvents contemplated for use in the practice of this particular invention process are typically polar solvents, such as for example, 1,4-dioxane, acetone, acetonitrile, dimethyl formamide, dimethyl acetamide, N- methylpyrrolidine, dimethyl sulfoxide and the like, or any suitable mixtures thereof. The process is typically carried out in the presence of focused microwave radiation using a quartz reactor at a pressure in the range of about 1 Bar to about 25 Bar, a power setting in the range of about 1 W per liter of solvent to about 900 W per liter of solvent, at a temperature in the range of about O0C up to about 5000C, for 0.01 to 5 hours, at a pH in the range of about 1 up to about 14.
[0175] Before the present compounds, compositions and methods are disclosed and described, it is to be understood that aspects of the present invention are not limited to specific synthetic methods, specific pharmaceutical carriers, or to particular pharmaceutical formulations or administration regimens, as such may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting.
[0176] It is also noted that, as used in the specification and the appended claims, the singular forms "a," "an" and "the" include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to "a bicyclic aromatic compound" includes mixtures of bicyclic aromatic compounds; reference to "a pharmaceutical carrier" includes mixtures of two or more such carriers, and the like.
[0177] Certain pharmaceutically acceptable salts of the invention are prepared by treating the novel compounds of the invention with an appropriate amount of pharmaceutically acceptable base. Representative pharmaceutically acceptable bases are ammonium hydroxide, sodium hydroxide, potassium hydroxide, lithium hydroxide, calcium hydroxide, magnesium hydroxide, ferrous hydroxide, zinc hydroxide, copper hydroxide, Aluminum hydroxide, ferric hydroxide, isopropylamine, trimethylamine, diethylamine, triethylamine, tripropylamine, ethanolamine, 2-dimethylaminoethanol, 2- diethylaminoethanol, lysine, arginine, histidine, and the like. The reaction is conducted in water or D2O, alone or in combination with an inert, water-miscible organic solvent, at a temperature of from about 0 °C to about 100 °C, preferably at room temperature. The molar ratio of compounds of structural Formula 1 to base used is chosen to provide the ratio desired for any particular salts. For preparing, for example, the ammonium salts of the starting material, compounds of Formula 1 can be treated with approximately one equivalent of the pharmaceutically acceptable base to yield a neutral salt. When Calcium salts are prepared, approximately one-half a molar equivalent of base is used to yield a neutral salt, while for Aluminum salts, approximately one-third a molar equivalent of base will be used.
[0178] The compounds of the invention may be conveniently formulated into pharmaceutical compositions composed of one or more of the compounds together with a pharmaceutically acceptable carrier as described in Remington's Pharmaceutical Sciences, latest edition, by E. W. Martin (Mack Publ. Co., Easton Pa.).
[0179] The compounds of the invention may be administered orally, parenterally (e.g., intravenously), by intramuscular injection, by intraperitoneal injection, topically, transdermally, or the like, although oral or topical administration is typically preferred. The amount of active compound administered will, of course, be dependent on the subject being treated, the subject's weight, the manner of administration and the judgment of the prescribing physician. The dosage will be in the range of about 1 microgram per kilogram per day to 100 milligram per kilogram per day.
[0180] Depending on the intended mode of administration, the pharmaceutical compositions may be in the form of solid, semi-solid or liquid dosage forms, such as, for example, tablets, suppositories, pills, capsules, powders, liquids, suspensions, lotions, creams, gels and the like, preferably in unit dosage form suitable for single administration of a precise dosage. The compositions will include, as noted above, an effective amount of the selected drug in combination with a pharmaceutically acceptable carrier and, in addition, may include other medicinal agents, pharmaceutical agents, carriers, adjuvants, diluents and the like.
[0181] For solid compositions, conventional non-toxic solid carriers include, for example, pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharin, talc, cellulose, glucose, sucrose, magnesium carbonate, and the like. Liquid pharmaceutically administrable-compositions can, for example, be prepared by dissolving, dispersing, etc., an active compound as described herein and optional pharmaceutical adjuvants in an excipient, such as, for example, water, saline, aqueous dextrose, glycerol, ethanol, and the like, to thereby form a solution or suspension. If desired, the pharmaceutical composition to be administered may also contain minor amounts of nontoxic auxiliary substances such as wetting or emulsifying agents, pH buffering agents and the like, for example, sodium acetate, sorbitan monolaurate, triethanolamine sodium acetate, triethanolamine oleate, etc. Actual methods of preparing such dosage forms are known, or will be apparent, to those skilled in this art; for example, see Remington's Pharmaceutical Sciences, referenced above.
[0182] For oral administration, fine powders or granules may contain diluting, dispersing, and/or surface active agents, and may be presented in water or in a syrup, in capsules or sachets in the dry state, or in a non-aqueous solution or suspension wherein suspending agents may be included, in tablets wherein binders and lubricants may be included, or in a suspension in water or a syrup. Wherever required, flavoring, preserving, suspending, thickening, or emulsifying agents may also be included. Tablets and granules are preferred oral administration forms, and these may be coated.
[0183] Parenteral administration, if used, is generally characterized by injection. Injectables can be prepared in conventional forms, either as liquid solutions or suspensions, solid forms suitable for solution or suspension in liquid prior to injection, as emulsions, or as sustained release delivery system.
[0184] Systemic administration can also be by transmucosal or transdermal means. For transmucosal or transdermal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art, and include, for example, for transmucosal administration, bile salts and fusidic acid derivatives. In addition, detergents can be used to facilitate permeation. Transmucosal administration can be through nasal sprays, for example, or using suppositories.
[0185] For topical administration, the agents are formulated into ointments, creams, salves, powders and gels. In one aspect, the transdermal delivery agent can be DMSO. Transdermal delivery systems can include, such as for example, patches.
[0186] Pharmaceutical compositions containing the compounds of the invention as an active ingredient can take the form of tablets, capsules, powders, suspensions, solutions, emulsions as well as salves and creams, and can be used for parenteral (intravenous, intradermal, intramuscular, intrathecal etc.) injections, infiltration, topical application, central injection at spinal cord, oral, rectal, intravaginal and intranasal administering or for local application. Such compositions can be prepared by combining the active ingredient(s) with pharmaceutically acceptable excipients normally used for this purpose. Such excipients can comprise aqueous and non-aqueous solvents, stabilizers, suspension agents, dispersing agents, moisturizers and the like, and will be known to the skilled person in the pharmaceutical field. The composition may further contain likewise suitable additives such as for instance polyethylene glycols and, if necessary, colorants, fragrances and the like.
[0187] The pharmaceutical compositions will preferably contain at least 0.1 volume % by weight of the active ingredient. The actual concentration will depend on the human subject and the chosen administering route. In general this concentration will lie between 0.1 and 100% for the above applications and indications. The dose of the active ingredient to be administered can further vary between 1 microgram and 100 milligram per kilogram body weight per day, preferably between 1 microgram and 50 milligram per kilogram body weight per day, and most preferably between 1 microgram and 20 milligram per kilogram body weight per day. Also, all of the specific dosages which lie between the upper and lower dosages stated above are contemplated in the present invention.
[0188] The desired dose is preferably presented in the form of one, two, three, four, five, six or more sub-doses that are administered at appropriate intervals per day. The dose or sub-doses can be administered in the form of dosage units containing for instance from 0.5 to 1500 milligram, preferably from 1 to 100 milligram and most preferably from 1 to 40 milligram active constituent per dosage unit, and if the condition of the patient requires the dose can, by way of alternative, be administered as a continuous infusion.
EXAMPLES
[0189] As used herein, and unless otherwise indicated, the following abbreviations have the following meanings: Me refers to methyl (CH3-), Et refers to ethyl (CH3CH2-), i-Pr refers to isopropyl ((CH3)2CH2-), t-Bu or tert-butyl refers to tertiary butyl ((CH3)3CH-), Ph refers to phenyl, Bn refers to benzyl (PhCH2-), Bz refers to benzoyl (PhCO- ), MOM refers to methoxymethyl, Ac refers to acetyl, TMS refers to trimethylsilyl, TBS refers to tert-butyldimethylsilyl, Ms refers to methanesulfonyl (CH3SO2-), Ts refers to p- toluenesulfonyl (p-CH3PhSO2~), Tf refers to trifluoromethanesulfonyl (CF3SO2-), TfO refers to trifiuoromethanesulfonate (CF3SO3-), D2O refers to deuterium oxide, DMF refers to N5N- dimethylforrnarnide, DCM refers to dichloromethane (CH2Cl2), THF refers to tetrahydrofuran, EtOAc refers to ethyl acetate, Et2O refers to diethyl ether, MeCN refers to acetonitrile (CH3CN), NMP refers to l-N-methyl-2-pyrrolidinone, DMA refers to N9N- dimethylacetamide, DMSO refers to dimethylsulfoxide, DCC refers to 1,3- dicyclohexyldicarbodiimide, EDCI refers to l-(3-dimethylaminopropyl)-3- ethylcarbodiimide, Boc refers to tert-butylcarbonyl, Fmoc refers to 9- fluorenylmethoxycarbonyl, TBAF refers to tetrabutylammonium fluoride, TBAI refers to tetrabutylammonium iodide, TMEDA refers to N,N,N,N-tetrarnethylethylene diamine, Dess- Martin periodinane or Dess Martin reagent refers to l,l,l-triacetoxy-l,l-dihydro-l,2- benziodoxol-3(lH)-one, DMAP refers to 4-N,N-dimethylaminopyridine, (i-Pr)2NEt or DIEA or Hunig's base refers to N,N-diethylisopropylamine, DBU refers to 1,8- Diazabicyclo[5.4.0]undec-7-ene, (DHQ)2AQN refers to dihydroquinine anthraquinone-1,4- diyl diether, (DHQ)2PHAL refers to dihydroquinine phthalazine-l,4-diyl diether, (DHQ)2PYR refers to dihydroquinine 2,5-diphenyl-4,6-pyrimidinediyl diether, (DHQD)2AQN refers to dihydroquinidine anthraquinone-l,4-diyl diether, (DHQD)2PHAL refers to dihydroquinidine phthalazine-l,4-diyl diether, (DHQD)2PYR refers to dihydroquinidine 2,5-diphenyl-4,6-pyrimidinediyl diether, LDA refers to lithium diisopropylamide, LiTMP refers to Lithium 2,2,6,6-tetramethylpiperdinamide, n-BuLi refers to n-butylLithium, t-BuLi refers to tert-butyl lithium, IBA refers to 1 -hydroxy- 1,2- benziodoxol-3(lH)-one 1-oxide, OsO4 refers to osmium tetroxide, m-CPBA refers to meta- chloroperbenzoic acid, DMD refers to dimethyl dioxirane, PDC refers to pyridinium dichromate, NMO refers to N-methyl morpholine-N-oxide, NaHMDS refers to Sodium hexamethyldisilazide, LiHMDS refers to Lithium hexamethyldisilazide, HMPA refers to hexamethylphosphoramide, TMSCl refers to trimethylsilyl chloride, TMSCN refers to trimethylsilyl cyanide, TBSCl refers to tert-butyldimethylsilyl chloride, TFA refers to trifluoroacetic acid, TFAA refers to trifluoroacetic anhydride, AcOH refers to acetic acid, Ac2O refers to acetic anhydride, AcCl refers to acetyl chloride, TsOH refers to p- toluenesulfonic acid, TsCl refers to p-toluenesulfonyl chloride, MBHA refers to 4- rnethylbenzhydrylarnine, BHA refers to benzhydrylamine, ZnCl2 refers to zinc (II) dichloride, BF3 refers to boron trifiuoride, Y(OTf)2 refers to yttrium (III) trifluoromethanesulfonate, Cu(BF4)2 refers to copper (II) tetrafluoroborate, LAH refers to lithium aluminum hydride (LiAlH4), LAD refers to lithium aluminum deuteride, NaHCO3 refers to Sodium bicarbonate, K2CO3 refers to Potassium carbonate, NaOH refers to sodium hydroxide, KOH refers to potassium hydroxide, LiOH refers to lithium hydroxide, HCl refers to hydrochloric acid, H2SO4 refers to sulfuric acid, MgSO4 refers to magnesium sulfate, and Na2SO4 refers to sodium sulfate. 1H NMR refers to proton nuclear magnetic resonance, 13C NMR refers to carbon- 13 nuclear magnetic resonance, NOE refers to nuclear overhauser effect, NOESY refers to nuclear overhauser and exchange spectroscopy, COSY refers to homonuclear correlation spectroscopy, HMQC refers to proton detected heteronuclear multiplet-quantum coherence, HMBC refers to heteronuclear multiple-bond connectivity, s refers to singlet, br s refers to broad singlet, d refers to doublet, br d refers to broad doublet, t refers to triplet, q refers to quartet, dd refers to double doublet, m refers to multiple!, ppm refers to parts per million, IR refers to infrared spectrometry, MS refers to mass spectrometry, HRMS refers to high resolution mass spectrometry, EI refers to electron impact, FAB refers to fast atom bombardment, CI refers to chemical ionization, HPLC refers to high pressure liquid chromatography, TLC refer to thin layer chromatography, Rf refers to retention factor, Rt refers to retention time, GC refers to gas chromatography, min is minutes, h is hours, rt or RT is room or ambient temperature, g is grams, mg is milligrams, kg is kilograms, L is liters, mL is milliliters, mol is moles and mmol is millimoles. [0190] For all of the following examples, Standard work-up and purification methods can be utilized and will be obvious to those skilled in the art. Synthetic methodologies that make up the invention are shown in Scheme 1. This Scheme is intended to describe the applicable chemistry through the use of specific examples and is not indicative of the scope of the invention.
Figure imgf000072_0001
SCHEME 1
[0191] The following non-limiting examples illustrate the inventors' preferred methods for carrying out the process of the invention.
Example 1 - d3-4-methoxy acetanilide
Figure imgf000072_0002
CH3 [0192] To a suspension of acetaminophen (2g, 13.25 mmol) in water (30 mL) was added NaOH (1.06 g, 26.6 mmol) was added at ambient temperature. Upon dissolution, d6- dimethyl sulfate (3.5 g, 26.5 mmol) was added and the reaction mixture was stirred for 6h. The precipitate was filtered, washed with water and dried to give the product as a white crystalline solid. 1H-NMR analysis of this material showed greater than 98% deuterium incorporation.
[0193] Yield: 1.88 g (84%). 1H-NMR (CDCl3) δ ppm: 2.18 (s, 3H); 6.84 (d, 2H); 7.2 (br s, IH); 7.4 (d, 2H).
Example 2 - dh-2-nitro-4-methoxy acetanilide
Figure imgf000073_0001
[0194] To a suspension of d3-4-methoxy acetanilide (1.88 g, 11.2 mmol) in water (8 mL) and acetic acid (7 mL) was added 70% nitric acid (1.2 mL) dropwise at ambient temperature, and the reaction mixture was stirred for 6h, and the yellow precipitate was filtered, washed with water and dried. 1H-NMR analysis of this material showed greater than 98% deuterium incorporation.
[0195] Yield: 1.43 g (60%). 1H-NMR (CDCl3) δ ppm: 2.26 (s, 3H); 7.2 (d, IH); 7.64 (s, IH); 8.6 (d, IH); 10.2 (br s, IH).
Example 3 - d^-2-amino-4-methoxy acetanilide
Figure imgf000073_0002
2006/038819
[0196] To a solution of d3-2-nitro-4-methoxy acetanilide (1.46 g, 6.85 mmol) in ethanol (36 mL) was added 10% palladium carbon (300 mg, 0.28 mmol) and hydrazine hydrate (0.6 mL, 12.4 mmol) dropwise, at ambient temperature. The mixture was stirred until completion, the catalyst was filtered and the solvent was removed to give the product as a white solid. 1H-NMR analysis of this material showed greater than 98% deuterium incorporation.
[0197] Yield: 785 mg. (63%). 1H-NMR (CDCl3) δ ppm: 2.2 (s, 3H); 6.34 (m, 2H), 7.0 (m, 2H).
Example 4 - dτ-2-mercapto-5-methoxy benzimidazole
Figure imgf000074_0001
[0198] A suspension of d3-2-amino-4-methoxy acetanilide (785 mg, 4.29 mmol) and EtOCS2K (844 mg, 5.28 mmol) in EtOH (7 ml) and water (2 ml) was heated to 950C for 5 hr. The solution was cooled to ambient temperature and allowed to stand for 15 hr. The crystalline product is filtered, washed with water and dried. 1H-NMR analysis of this material showed greater than 98% deuterium incorporation.
[0199] Yield: 488 mg (62%). 1H-NMR (CDCl3-CD3OD) δ ppm: 2.4 (s, IH); 6.7 (m, 2H); 7.2 (d, IH).
Example 5 - 2,3,5-trimethylpyridine-l-oxide
Figure imgf000074_0002
[0200] To a stirred mixture of 2,3,5-collidine (10 g, 82.5 mmol) and glacial acetic acid (40 mL) was added hydrogen peroxide (30% solution, 20 mL, dropwise) at 650C. The bath was heated to 9O0C for 1 hour, cooled to 650C and additional hydrogen peroxide (30% solution, 10 mL, dropwise) was added. The reaction mixture was heated at 9O0C until completion and cooled to ambient temperature. The solvent was removed under reduced pressure and the crude residue was used directly in the next step.
[0201] 1H-NMR (CDCl3) δ ppm: 2.24 (s, 3H); 2.26 (s, 3H); 2.5 (s, 3H); 7.06 (s, IH); 8.2 (s, IH).
Example 6 - 23s5-trimethyI-4-nitropyridine-l-oxide
Figure imgf000075_0001
[0202] The crude residue from example 5 was placed in an ice bath and dissolved in cone. H2SO4 (14 mL). The solution was placed in a 9O0C bath and a mixture of 25 mL cone. H2SO4 and 28 mL cone, nitric acid was added dropwise over one hour, and the reaction was kept at 9O0C until completion. The solution was cooled to ambient temperature and poured onto crushed ice (~ 200 g). Solid NaOH (55 g) was added and the mixture was extracted with Ethyl acetate (200 x 3 mL); the combined organic layers were washed with water (100 mL), brine (50 mL) and dried over anhydrous Na2SO4. The solvent was removed and the yellow residue was purified by column chromatography (5% CH3OH-CH2Cl2) to give the product as a yellow light sensitive solid.
[0203] Yield: 9.0 g (84%). 1H-NMR (CDCl3) δ ppm: 2.22 (s, 3H); 2.24 (s, 3H); 2.5 (s, 3H); 8.08 (s, IH).
Example 7 - dio-2,3,5-Trimethyl-4-nitropyridme-l-oxide
Figure imgf000075_0002
38819
[0204] A dry heavy-walled teflon screw cap glass tube equipped with a magnetic stirrer was charged with 2,3,5-trimethyl-4-nitropyridine-l-oxide (5 g, 27.5 mmol), K2CO3 (3.8 g, 27.5 mmol) and D2O (30 mL) under nitrogen. The apparatus was sealed and the mixture was placed in an oil bath at 15O0C for 2 hours. The reaction was cooled to ambient temperature, NaCl (1Og) and brine (50 mL) were added and the mixture was extracted with ethyl acetate (5 x 50 mL). The organic layer was dried over Na2SO4. The solvent was removed to yield 4.2 g of a yellow solid with identical TLC behavior as the starting material (Rf = 0.3 in 10% methanol-DCM). The above process was repeated a second time to yield 3.25 g of the product. GC-MS analysis of this material showed 98.1% deuterium incorporation.
[0205] Yield: 65%. GC-MS: [M]+: 192 (81.6%, 2,3,5-trimethyl-4-nitroρyridine- 1-oxide-dio), 191 (18.3%, 2,3,5-trimethyl-4-nitropyridine-l-oxide-d9)
Example 8 - di2-5-methoxy-2-(4-nitro-3,5-dimethyIpyridin-2-ylmethylsulfanyI)-lH- benzimidazole
Figure imgf000076_0001
[0206] A solution of d1o-2,3,5-trimethyl-4-nitropyridine-l -oxide (384 mg, 2 mmol) and methanesulfonic anhydride (696 mg, 4 mmol) in 1,2-dichloroethane (4 ml) was heated to 950C for 6 hours in dry heavy-walled teflon screw cap glass tube. The reaction was cooled to 40C and a suspension of d3-2-mercapto-5-methoxy benzimidazole (328 mg, 1.79 mmol), ethyldiisopropylamine (1.6 ml, 4.8 mmol), dimethylaminopyridine (50 mg, 0.4 mmol) in dichloromethane (4 ml) was added. The mixture was stirred for 30 hours at ambient temperature, filtered through a short pad of silica gel (10% methanol-dichloromethane). The solvent was removed and the crude residue was recrystallized from methanol-water to give the product as a yellow solid. [0207] Yield: 412 mg (64%). 1H-NMR (d6-acetone) δ ppm: 6.8 (d, IH); 7.02 (s, IH); 7.4 (d, IH).
Example 9 - dig-5-methoxy-2-f4-methoxy-3,5-dimethylpyridin-2-ylmethylsulfanyl)-lH- benzimidazole
Figure imgf000077_0001
[0208] d12-5-methoxy-2-(4-nitro-3,5-dimethylpyridin-2-ylmetliylsulfanyl)-lH- benzimidazole (300 mg, 0.84 mmol) and benzyltriethylammonium chloride (20 mg, 0.1 mmol) were taken up in 4 ml of d4-methanol and treated with a 4.78 M solution OfNaOCD3 in άVmethanol (1.76 ml, 8.4 mmol) at ambient temperature. The solution was heated to reflux for 24 hours, cooled to ambient temperature, diluted with dichloromethane, washed with brine, dried over magnesium sulfate. The solvent was removed under reduced pressure to yield the crude product which was used directly in the next step.
[0209] Yield: 282 mg (98%). 1H-NMR (d6-acetone) δ ppm: 6.79 (m, IH); 7.05 (m, IH); 7.4 (m, IH).
Example 10 - dig-5-methoxy-2-f4-methoxy-3,5-dimethyl-p'yridin-2-vImethane-sulfinvπ- lH-benzimidazoIe (di ^-omeprazole)
Figure imgf000077_0002
[0210] d12-5-methoxy-2-(4-methoxy-3,5-dimethylpyridin-2-ylmethylsulfanyl)- lH-benzimidazole (30 mg, 0.087 mmol) was dissolved in 1.5 ml of chloroform, cooled to - 4O0C and treated dropwise with a solution of meta-chloroperbenzoic acid (15 mg, 1 equiv) in 0.5 ml of chloroform. The reaction was maintained at that temperature for 30 minutes, poured into saturated sodium bicarbonate and extracted with ethyl acetate. The organic layer was dried over sodium sulfate, the solvent was removed and the crude residue was purified by silica gel chromatography to yield the product (d^-omeprazole) as a white solid.
[0211] Yield: 10 mg (32%). 1H-NMR (d6-acetone) δ ppm: 6.95 (m, IH); 7.18 (m, IH); 7.58 (m, IH).
Example 11 - dij-5-methoxy-2-(4-methoxy-3.5-dimethyIpyridin-2-vImethane-suIflnγI)- lH-benzimidazoIe (di ^-omeprazole)
Figure imgf000078_0001
[0212] d^-Omeprazole (5 mg, 0.014 mmol) was taken up in 0.5 ml of methanol and added dropwise to a 0.1M solution of sodium carbonate in H2O (pH = 11.4) at ambient temperature; the solution was stirred for 4 days, diluted with dichloromethane, washed with brine and dried over anhydrous magnesium sulfate. The solvent was removed under reduced pressure to yield the product as a white solid.
[0213] Yield: 4 mg (80%). 1H-NMR (d6-acetone) δ ppm: 4.7 (s, 2H), 6.95 (d, IH); 7.18 (d, IH); 7.58 (d, IH).
Example 12 - din-5-methoxy-2-(4-methoxy-3,5-dimethylpyridin-2-ylmethylsulfanyl)-lH- benzimidazole
Figure imgf000078_0002
[0214] Prepared according to example 9, by substituting CD3ONa-CD3OH with CH3ONa-CH3OH. Example 13 - din-5-methoxy-2-(4-methoxy-3,5-dimethylpyridin-2-vImethane-sulfinvIV lH-benzimidazole (di n-omeprazole)
Figure imgf000079_0001
[0215] Prepared according to example 10.
Example 14 - dii-5-methoxy-2-(4-methoxy-3,5-dimethylpyridin-2-ylmethane-sulfinyl)- lH-benzimidazole (di 2-omeprazole*)
Figure imgf000079_0002
[0216] Prepared according to example 11, by substituting D2O for water and CD3OD for methanol.
Example 15 - dQ-5-methoxy-2-(4-nitro-3,5-dimethylpyridin-2-ylmethylsulfanylVlH- benzimidazole
Figure imgf000079_0003
[0217] Prepared according to example 8. Example 16 - di2-S-methoxy-2-(4-methoxy-3,5-dimethvIpyridin-2-yImethylsulfanyl)-lH- benzimidazole
Figure imgf000080_0001
[0218] Prepared according to example 9.
Example 17 - d7-5-methoxy-2-(4-methoxy-3,5-dimethylpyridin-2-ylmethylsulfaiivIVlH- benzimidazole
Figure imgf000080_0002
[0219] Prepared according to example 9, by substituting CD3ONa-CD3OH with CH3ONa-CH3OH.
Example 18 - di2-5-methoxy-2-(4-methoxy-3,5-dimethylpyridin-2-ylmethane-sulfinyl)- lH-benzimidazole (di 7-omeprazoIe)
Figure imgf000080_0003
[0220] Prepared according to example 10.
Example 19 - d7-5-methoxy-2-(4-methoxy-3,5-dimethylpyridin-2-ylmethane-suIfinyl)- lH-benzimidazole (d7-omeprazole)
Figure imgf000080_0004
[0221] Prepared according to example 10.
Example 20 - din-5-methoxy-2-(4-methoxy-3.5-dimethylpyridin-2-ylmethane-sulflnyl)- lH-benzimidazole (di n-omeprazole)
Figure imgf000081_0001
[0222] Prepared according to example 11.
Example 21 - d2-5-methoxy-2-(4-methoxy-3,5-dimethylpyridin-2-ylniethane-sulfinylV lH-benzimidazole (dq-omeprazole)
Figure imgf000081_0002
[0223] Prepared according to example 11, by substituting D2O for water and CD3OD for methanol.
Example 22 - dy5-methoxy-2-(4-nitro-3,5-dimethylpyridin-2-ylmethylsttlfanylVlH- benzimidazole
Figure imgf000081_0003
[0224] Prepared according to example 8. Example 23 - ds-5-methoxy-2-(4-methoxy-3,5-dimethylpyridin-2-yImethylsulfanyl)-lH- benzimidazole
Figure imgf000082_0001
[0225] Prepared according to example 9.
Example 24 - d^-5-methoxy-2-(4-methoxy-3.,5-dimethyIpyridiii-2-vImethylsuIfanyl)-lH- benzimidazole
Figure imgf000082_0002
[0226] Prepared according to example 9, by substituting CD3ONa-CD3OH with CH3ONa-CH3OH.
Example 25 - ds-5-methoxy-2-(4-methoxy-3,5-dimethvIpyridin-2-ylmethane-sttlflnvπ- lH-benzimidazole (ds-omeprazole)
Figure imgf000082_0003
[0227] Prepared according to example 10.
Example 26 - dg-5-methoxy-2"(4-methoxy-3,5-dimethylpyridin-2-ylmethane-sttIfinylV lH-benzimidazole (dyomeprazole)
Figure imgf000083_0001
[0228] Prepared according to example 10.
Example 27 - dfi-5-methoxy-2-(4-methoxy-3,5-dimethylpyridin-2-ylmethane-sulfinylV lH-benzimidazole (ds-omeprazole)
Figure imgf000083_0002
[0229] Prepared according to example 11.
Example 28 - dg-5-methoxy-2-(4-methoxy-3,5-dimethylpyridin-2-yImethane-sulfinylV lH-benzimidazole (ds-omeprazole)
Figure imgf000083_0003
[0230] Prepared according to example 11, by substituting D2O for water and CD3OD for methanol. Example 29 - 5-methoxy-2-(4-nitro-3,5-dimethylpyridin-2-ylmethylsttlfanyl)-lH- benzimidazole
Figure imgf000084_0001
[0231] Prepared according to example 8.
Example 30 - dg-5-methoxy-2-(4-methoxy-3,5-dimethylpyridin-2-yImethylsulfanyl)-lH- benzimidazole
Figure imgf000084_0002
[0232] Prepared according to example 9.
Example 31 - 5-methoxy-2-(4-methoxy-3,5-dimethylpyridin-2-yImethyIsulfanyl)-lH- benzimidazole
Figure imgf000084_0003
[0233] Prepared according to example 9, by substituting CD3ONa-CD3OH with CH3ONa-CH3OH. Example 32 - dg-5-methoxy-2-(4-methoxy-3.,5-dimethvIpyridin-2-ylinethane-suIfinvIV lH-benzimidazole (dg-omeprazole)
Figure imgf000085_0001
[0234] Prepared according to example 10.
Example 33 - omeprazole
Figure imgf000085_0002
[0235] Prepared according to example 10.
Example 34 - dj-5-methoxy-2-(4-methoxy-3,5-dimethylpyridin-2-vImethane-sulfinylV lH-benzimidazoIe (d^-omeprazole)
Figure imgf000085_0003
[0236] Prepared according to example 11.
Example 35 - d2-5-methoxy-2-(4-methoxy-3,5-dimethylpyridin-2-yImethane-sulfinyl)- lH-benzimidazole (dg-omeprazole)
Figure imgf000085_0004
[0237] Prepared according to example 11, by substituting D2O for water and CD3OD for methanol.
Example 36 - 5-methoxy-2-r4-methoxy-3,5-dimethyIpyridin-2-ylmethane-sulfinyl)-lH- benzimidazole sodium salt (omeprazole sodium salt)
Figure imgf000086_0001
[0238] The procedure was carried out as described in Raju et al, Organic Process Research & Development 2006, 10, 33-35, which is hereby incorporated by reference in its entirety. Sodium hydroxide (753 mg, 18.8 mmol, 1.14 equiv) was crushed, poured into a mixture of methanol (6 mL) and isopropyl alcohol (54 mL) and stirred vigorously at ambient temperature until homogeneous. The solution was filtered through Celite and the Celite was washed with isopropyl alcohol (7 mL). To the resultant filtrate, omeprazole (5.88 g, 17.1 mmol, 1 equiv) was added at ambient temperature and the mixture was stirred for 1-2 hours. The precipitate was filtered and washed with isopropyl alcohol (6 mL), and cyclohexane (10 mL). The white crystalline salt was stirred for 1-2 hours at ambient temperature in a mixture of cyclohexane (30 mL) and water (0.5 mL), filtered, washed with cyclohexane (15 mL) and dried under reduced pressure to afford 5.73 g of omeprazole sodium salt (88% yield).
Example 37 - (S)-5-methoxy-2-(4-methoxy-3,5-dimethylpyridin-2-ylmethane-sulfinyl')- lH-benzimidazole mandalate salt (esomeprazole mandalate salt)
Figure imgf000086_0002
[0239] The procedure was carried out as described in Raju et al, Organic Process Research & Development 2006, 10, 33-35, which is hereby incorporated by reference in its entirety. To a suspension of omeprazole sodium salt (5.53 g, 15.1 mmol, 1 equiv) in acetone (60 mL), were added a solution of diethyl-D-tartrate (3.1 g, 15.1 mol, 1 equiv) in acetone (3 mL), titanium (IV) isopropoxide (2.14 g, 7.55 mmol, 0.5 equiv) and triethylamine (4.75 g, 45.3 mmol, 3 equiv) at 35-40°C. To the resulting homogeneous solution was added L-(+)- mandelic acid (2.64 g, 17.4 mmol, 1.15 equiv). The mixture was cooled to ambient temperature and stirred for about 1-2 hours. The precipitate was filtered, washed with acetone (30 mL), and dried under reduced pressure to afford esomeprazole mandalate salt.
Example 38 - (S)-5-methoxy-2-(4-methoxy-3,5-dimethylpyridin-2-yImethane-sulfϊnyl)- lH-benzimidazole (esomeprazole)
Figure imgf000087_0001
[0240] The procedure was carried out as described in Raju et al, Organic Process Research & Development 2006, 10, 33-35, which is hereby incorporated by reference in its entirety. Esomeprazole mandalate salt (7.5 g) was suspended in a mixture of dichloromethane (80 mL) and 5% sodium bicarbonate (80 mL) and stirred for 15-30 minutes. The organic phase was separated, and the solvent was removed under reduced pressure to afford 7.3 g of esomperazole.
Example 39 - diWSV5-methoxy-2-(4-methoxy-3,5-dimethvIpyridin-2-vImethane- sulfinviyiH-benzimidazole (dij-esomeprazole)
Figure imgf000087_0002
[0241] Prepared according to examples 36, 37, and 38. Example 40 - (S)-5-methoxy-2-(4-methoxy-3.,5-dimethylpyridin-2-ylmethane-sulfinyl)- lH-benzimidazole Magnesium Salt (esomeprazole magnesium salt)
Figure imgf000088_0001
[0242] The procedure is carried out as described in Raju et al, Organic Process Research & Development 2006, 10, 33-35, which is hereby incorporated by reference in its entirety. A solution of magnesium methoxide was prepared by adding magnesium turnings (1.31 g, 0.054 mol) and dichloromethane (5 mL) to methanol (150 niL) and stirring under nitrogen atmosphere for 2-3 hours, at 40-45°C. The solution was cooled to 5-1O0C and added to a stirred mixture of esomeprazole (42.0 g, 0.121 mol) and methanol (150.0 mL), and stirring was maintained for 3 hours. Water (2.0 mL) was added and stirring was continued for 1 hour and the solution was filtered. The mother liquor was distilled under reduced pressure at 350C. Acetone (400 mL) was added and the mixture was stirred for 1 hour at 25-35°C. The precipitate was filtered and washed with acetone (200 mL), dissolved in methanol (222 mL) and water (8 mL) and stirred for about 30 minutes at 25-300C and filtered. The filtrate was suspended in water and stirred at 0-50C for about 45 minutes, filtered, washed with water (300 mL) and dried under reduced pressure to yield esomeprazole magnesium salt.
Example 41 - dn-(S)-5-methoxy-2-(4-methoxy-3,5-dimethylpyridin-2-ylmethane- sulfinyD-lH-benzimidazole Magnesium Salt (di .^-esomeprazole magnesium salt)
Figure imgf000088_0002
[0243] Prepared according to example 40. Example 42 - (R)-5-methoxy-2-(4-methoxy-3,5-dimethyIpyridin-2"ylmethane-sulflnyl)- lH-benzimidazoIe sodium salt ((K)-omeprazole sodium salt!
Figure imgf000089_0001
[0244] The procedure is carried out as described in Cotton et al, Tetrahedron: Asymmetry 2000, 11(18), 3819-3825, which is hereby incorporated by reference in its entirety. Water (2.4 mmol), (R,R)-diethyl tartrate (11.4 mmol) and titanium tetraisopropoxide (5.6 mmol) were added to a suspension of 5-methoxy-2-(4-methoxy-3,5-dimethyl-pyridin-2- ylmethylsulfanyl)-lH-benzoirnidazole (18.8 mmol) in toluene (25 niL) at 540C. The mixture was stirred for 50 minutes at 54°C, cooled to 300C and N,N-diisopropylethyl-amine (5.6 mmol) and cumene hydroperoxide (84% in cumene, 18.2 mmol) were added. The mixture was stirred for 1 hour, and extracted three times with aqueous ammonium hydroxide. Methyl isobutyl ketone (9 mL) was added to the combined aqueous extracts, and the pH was adjusted with acetic acid. The organic layer was treated with 50% aqueous sodium hydroxide (13.2 mmol) and acetonitrile (70 mL). The solution was concentrated during which the product gradually precipitated to give (R)-omeprazole sodium as a white solid. 1H NMR (DMSOd6) δ 2.15 (s, 3H), 2.20 (s, 3H), 3.68 (s, 3H), 3.71 (s, 3H), 4.5 (m, 2H), 6.56 (m, IH), 7.00 (d, IH), 7.34 (d, IH), 8.30 (s, IH).
Example 43 - dij-(RV5-methoxy-2-f4-methoxy-3,5-dimethylpyridin-2-ylmethane- sulfinyl)-lH-benzimidazoie sodium salt (di3-(R)-omeprazole sodium salt)
Figure imgf000089_0002
[0245] Prepared according to example 42. Example 44 - 2-(3"Methvl-4-nitro-pyridin-2-vImethvlsulfanyl)-lH-benzoimidazole
Figure imgf000090_0001
[0246] Prepared according to example 8.
Example 45 - dq-2-f3-Methyl-4-(2.,2,2-trifluoroethoxy)-Pyridin-2-vImethvIsuIfanvIl-lH- benzoimidazole
Figure imgf000090_0002
[0247] Prepared according to example 9, by substituting CF3CD2ONa- CF3CD2OH (Cambridge Isotope Laboratories) for CD3ONa-CD3OD.
Example 46 - d2-2-[3-Methyl-4-(2,2,2-trifluoroethoxyVpyridin-2-ylmethanesuIfinyll- lH-benzoimidazole (dg-lansoprazole)
Figure imgf000090_0003
[0248] Prepared according to example 10.
Example 47 - d4-2-[3-Methyl-4-(2,2,2-trifluoroethoxyVpyridin-2-ylmethaαesulflnvI]- lH-benzoimidazoIe (da-lansoprazole)
Figure imgf000090_0004
[0249] Prepared according to example 11, by substituting D2O for water and CD3OD for methanol. Example 48 - dr2-[3-MethvI-4-(2,2,2-trifluoroethoxy)-pyridin-2-ylmethanesulfinyl1- lH-benzoimidazole (d^-lansoprazole)
Figure imgf000091_0001
[0250] Prepared according to example 11, by substituting D2O for water and CD3OD for methanol.
Example 49 - dή-3-Methoxy-l-propanol
Figure imgf000091_0002
[0251] The procedure is carried out as described in Kulkarni et al, Synthesis 2004, 4, 595-599, which is hereby incorporated by reference in its entirety. A mixture of d6-l,2- propanediol (Sigma- Aldrich) (1 mmol), CH3I (1.25 mmol) and HgO (1.5 mmol) in dichloromethane was stirred at ambient temperature for 30 hours. The mixture was diluted with Et2O, decanted and concentrated under reduced pressure to give the crude product which was purified by silica gel chromatography.
Example 50 - dg-3-Methoxy-l-propanol
Figure imgf000091_0003
[0252] Prepared according to example 44, by substituting CD3I for CH3I.
Example 51 - dr-3-Methoxy-l-propanol
Figure imgf000091_0004
[0253] Prepared according to example 44, by substituting CD3I for CH3I. Example 52 - d6-2-r4-(3-Methoxy-propoxy)-3-methyI-pyridin-2-yImethylsulfanyll-lH- benzoimidazole
Figure imgf000092_0001
[0254] Prepared according to example 9, by substituting CH3OCD2CD2CD2ONa- CH3OCD2CD2CD2OH for CD3ONa-CD3OD.
Example 53 - dfi-2-[4-(3-Methoxy-propoxyV3-methyl-pyridin-2-ylmethanesulfinvn-lH- benzoimidazole (ds-rabeprazole)
Figure imgf000092_0002
[0255] Prepared according to example 10.
Example 54 - ds-2-[4-(3-Methoxy-propoxy)-3-methyl-pyridin-2-ylmethanesulfinyn-lH- benzoimidazole (dg-rabeprazole)
Figure imgf000092_0003
[0256] Prepared according to example 11, by substituting D2O for water and CD3OD for methanol.
Example 55 - d9-2-[4-(3-Methoxy-propoxy)-3-methyl-pyridin-2-ylmethylsttlfanyll-lH- benzoimidazole
Figure imgf000092_0004
[0257] Prepared according to example 9, by substituting CD3OCD2CD2CD2ONa- CD3OCD2CD2CD2OH for CD3ONa-CD3OD.
Example 56 - d9-2-f4-(3-Methoxy-propoxy)-3-methyl-Pyridin-2-yImethanesuIfinvn-lH- benzoimidazole (dy-rabeprazole)
Figure imgf000093_0001
[0258] Prepared according to example 10.
Example 57 - dn-244-(3-Methoxy-propoxyV3-methyl-pyridin-2-yImethanesuIfinyl]-lH- benzoimidazole (dii-rabeprazole)
Figure imgf000093_0002
[0259] Prepared according to example 11, by substituting D2O for water and CD3OD for methanol.
Example 58 - dλ-2-f4-(3-Methoxy-propoxy)-3-methyl-pyridin-2-ylmetb.ylsulfanyll-lH- benzoimidazole
Figure imgf000093_0003
[0260] Prepared according to example 9, by substituting CD3OCH2CH2CH2ONa- CD3OCH2CH2CH2OH for CD3ONa-CD3OD. Example 59 - d?-2-r4-f3-Methoxy-propoxyV3-methyl-pyridin-2-yϊmethanesulfinyll-lH- benzoimidazole (d^-rabeprazole)
Figure imgf000094_0001
[0261] Prepared according to example 10.
Example 60 - d5-2-[4-(3-Methoxy-propoxy)-3-methyI-pyridin-2-ylmethanesulflnyl1-lH- benzoimidazole (dg-rabeprazole)
Figure imgf000094_0002
[0262] Prepared according to example 11, by substituting D2O for water and CD3OD for methanol.
Example 61 - d2-2-[4-C3-Methoxy-propoxyV3-methyl-pyridin-2-ylmethanesulfinyl]-lH- benzoimidazole (d2-rabeprazole)
Figure imgf000094_0003
[0263] Prepared according to example 11, by substituting D2O for water and CD3OD for methanol.
Example 62 - 2-(4-Chloro-3-methoxy-pyridin-2-ylmethylsulfanyl>5-diflttoro-methoxy- lH-benzoimidazole
Figure imgf000094_0004
[0264] Prepared according to example 8.
Example 63 - dg-5-Difluoromethoxy-2-(3.4-dimethoxy-pyridm-2-ylmethvIsulfanyl)-lH- benzoimidazole
Figure imgf000095_0001
[0265] Prepared according to example 9.
Example 64 - dg-5-Difluoromethoxy-2-(34-dimethoxy-pyridin-2-vImethanesulfinvIMH- benzoimidazole (dypantoprazole)
Figure imgf000095_0002
[0266] Prepared according to example 10.
Example 65 - dy5-Difluoromethoxy-2-(3,4-dimethoxy-pyridin-2-ylmethanesulfinyl)-lH- benzoimidazole Td^-pantoprazole)
Figure imgf000095_0003
[0267] Prepared according to example 11.
Example 66 - d2-5-Difluoromethoxy-2-(3,4-dimethoxy-pyridin-2-ylmethanesulfinyl)-lH- benzoimidazole (d?-pantoprazole)
Figure imgf000095_0004
[0268] Prepared according to example 11, by substituting D2O for water and CD3OD for methanol.
Example 67 - Human Liver Microsomal stability assay
[0269] Human liver microsomal stability assays were conducted at 1 mg per niL protein concentration with an NADPH-generating system (1.3 mM NADPH, 3.3 mM glucose 6-phosphate and 0.4 U per mL glucose 6-phosphate dehydrogenase) and 3.3 mM MgCl2. Test compounds were added as acetonitrile solutions (final assay concentration of acetonitrile should be <1%) and incubated at 370C with shaking. Aliquots (150μL) were removed at 0, 15, 30, 60, and 120 minutes, and ice cold acetonitrile (300 μL) was added to stop the reactions. Samples were centrifuged at 4000 RPM for 5 minutes to precipitate all proteins. Supernatants were transferred to microcentrifuge tubes and stored for LC/MS/MS analysis of the degradation half-life of the test compounds. It has thus been found that the compounds of formula (1) that are illustrated in Examples 10, 11, 13, 14, 18, 19, 20, 21, 25, 26, 27, 28, 32, 34, 39 41, and 43 above show an increase of 10% or more in the degradation half-life, as compared to the non-isotopically enriched drug. For example, the degradation half-life of d^-omeprazole, d13-omeprazole, di3-(R)-omeprazole and d13-esomeprazole is increased by 20-60% as compared to non-isotopically enriched omeprazole.
Example 68 - Rat Gastric Activity, Pylorus Ligation
[0270] Compounds of formula (1) according to the present invention were evaluated for possible antisecretory activity in pylorus-ligated rats. A reduction of 50% or more in gastric acidity relative to the vehicle control group is considered significant in this experiment. Wistar derived male rats weighing 210 ± 10 g were fasted overnight. Under propofol anesthesia (15 mg/kg i.v.), the abdominal cavity was exposed and a ligature was made just below the pylorus sphincter. d15-Omeprazole (30 mg/kg) and vehicle (0.2% NaHCO3/0.25% MC/2% Tween 80) were each administered orally (PO) 30 minutes before the ligation in a volume of 10 ml/kg body weight. Animals were sacrificed 4 hours later and the gastric contents were collected. After centrifugation, the volume of each sample was measured and acidity was determined by titration.
Figure imgf000097_0001
Example 69 - In vitro metabolism using human cytochrome Paςn enzymes
[0271] The cytochrome P450 enzymes are expressed from the corresponding human cDNA using a baculo virus expression system (BD Biosciences). A 0.25 milliliter reaction mixture containing 0.8 milligrams per milliliter protein, 1.3 millimolar NADP+, 3.3 millimolar glucose-6-phosphate, 0.4 U/mL glucose-6-phosphate dehydrogenase, 3.3 millimolar magnesium chloride and 0.2 millimolar of a compound of Formula 1, the corresponding non-isotopically enriched compound or standard or control in 100 millimolar potassium phosphate (pH 7.4) is incubated at 37°C for 20 min. After incubation, the reaction is stopped by the addition of an appropiate solvent (e.g. acetonitrile, 20% trichloroacetic acid, 94% acetonitrile/6% glacial acetic acid, 70% perchloric acid, 94% acetonitrile/6% glacial acetic acid) and centrifuged (10,000 g) for 3 minutes. The supernatant is analyzed by HPLC/MS/MS.
Figure imgf000097_0002
Example 70 - In vitro inhibition of dog kidnev H+ZK+-ATPaSe activity
[0272] The procedure is carried out as described in Yoda et al Biochem. Biophys. Res. Comm. 1979, 40, 880, which is hereby incorporated by reference in its entirety. Compounds of Formula 1 or the corresponding non-isotopically enriched compounds or standards or controls are incubated with dog kidney H /K+-ATPaSe enzyme (20 micrograms) in HEPES buffer (50 millimolar, pH 7.4) in presence of (millimolar) 140 NaCl, 10 KCl, 3 ATP-Mg, 0.5 EDTA, and PSBs (0-300 micromolar). At the end of the incubation the inorganic phosphate released from ATP is determined.
Example 71 - In vitro inhibition of pig stomach gastric vesicle H+/K+-ATPase activity
[0273] The procedure is carried out as described in Ljungstrδm et al Biochim. Biophys. Acta 1984, 769, 209-219, which is hereby incorporated by reference in its entirety. Membrane vesicles containing H+/K+-ATPase are prepared from pig stomach. The ATPase activity is measured at 370C as the release of inorganic phosphate from ATP. In detail, compounds of Formula 1 or the corresponding non-isotopically enriched compounds or standards or controls at a single concentration of 10 micromolar, or for determination of IC50 values in concentrations of 0.01-100 micromolar, are preincubated in enzyme-containing buffers pH 6.0. After preincubation (370C, 30 min), the medium of pH 6.0 is adjusted with a HEPES-Tris buffer to pH 7.4. The enzyme reaction is started by the addition of Tris-ATP. The total reaction volume is 1 milliliter, containing 20 micrograms of vesicular protein, 4 millimolar MgCl2, 10 millimolar KCl, 20 micrograms Nigericin, 2 millimolar Tris-ATP, 10 millimolar Hepes, and additionally 2 millimolar Pipes for the preincubation medium at pH 6.0. After 4 min the reaction is stopped by the addition of 10 microliters of 50% trichloroacetic acid. The denatured protein is spun down, and the P1 content is determined as described (Le Bel, 1978). The hydrolysis of ATP should not exceed 15%. Inhibition is calculated as percent inhibition against maximal stimulation, and IC50 is calculated by probit analysis.
Example 72 - [14C1Aminopyrine accumulation in isolated rabbit gastric glands
[0274] The procedure is carried out as described in Berglindh et al. Acta Physiol. Scand. 1976, 96, 150-169, which is hereby incorporated by reference in its entirety. Rabbits 38819
(2-3 kilogram) are sacrificed by cervical fracture/dislocation during anesthesia. The gastric mucosa in the corpus part is scraped off and minced with a pair of scissors. Mucosa pieces are incubated in a collagenase-containing medium (1 milligrams per milliliter) for 30-45 min at 370C. The medium composition (in millimolar) is as follows: 100.0 NaCl, 5.0 KCl, 0.5 NaH2PO4, 1.0 Na2HPO4, 1.0 CaCl2, 1.5 MgCl2, 20.0 NaHCO3, 20.0 HEPES, 2 milligrams per milliliter glucose, and 1 milligrams per milliliter rabbit albumin. The pH is adjusted to 7.4 with 1 M Tris. The glands are filtered through a nylon mesh to remove coarse fragments and rinsed three times with incubation medium. The glands are diluted to a final concentration of 2-4 mg dry weight/milliliter. The ability of gastric glands to form acid is measured based on aminopyrine (AP) accumulation (Berglindh, 1976). Samples of 1.0- milliliter gland suspension are equilibrated in 1.0 milliliter of medium containing 0.1 microcurie per milliliter 14C-AP at 370C in a shaking water bath together with compounds of Formula 1 or the corresponding non-isotopically enriched compounds or standards or controls. After 20 min, 1 millimolar dbcAMP is added, followed by a 45-min incubation period. The glands are then separated from the medium by brief centrifugation, and aliquots of supernatant and the digested gland pellet are used for measurements in a liquid scintillation counter. The AP accumulation is calculated as the ratio between AP in intraglandular water and AP in the incubation medium (Sack, 1982). All determinations are made in triplicate. IC50 is calculated by probit analysis where 0% corresponds to basal and 100% to maximal stimulated AP ratio.
Example 73 - Inhibition of acid secretion in isolated rabbit gastric glands
[0275] White New Zealander Rabbit fundic glands are obtained by high-pressure perfusion of the circulation of the stomach and subsequent collagenase treatment of pieces of fundic mucosa. After the glands have been washed several times, they are placed in 20- milliliter vials with dibutyryl cyclic AMP (1 millimolar) and the test compound (3 x 10" to 10"4 molar) in the presence of [l4C]-aminopyrine (0.125 micromolar) and are incubated at 370C. The incubate is agitated (150 oscillations per minute) for 30 minutes and the reaction stopped by centrifugation (10 seconds at 20,000 g). The ability of the glands to maintain a pH gradient to the medium (pH 7.4) on stimulation with dibutyryl cyclic AMP is measured by means of the concentration ratio of [ C]-aminopyrine between glands and medium as described in Berglindh et al. Acta Physiol. Scand. 1976, 96, 150-169.
Example 74 - Inhibition of Helicobacter pylori Urease activity
[0276] Bacteria incubated for 3 days at 370C under microaerophilic conditions (85% N2, 10% CO2, and 5% O2) are gently scraped off from the Columbia blood agar plates and washed with PBS (137 millimolar NaCl, 5.1 millimolar Na2-HPO4, 2.7 millimolar KCl, and 0.88 millimolar KH2PO4) adjusted to the pH, which is to be used in the assay. The suspension is centrifuged at 2773 g for 10 min at ambient temperature, and the bacteria are collected. After two additional washings, the suspension is adjusted to As60 = 0.3. The concentration of purified Jack bean Urease used (18 micrograms per milliliter, 1.28 U/mL) gave the same Urease activity as the bacterial suspension. Compounds of Formula 1 or the corresponding non-isotopically enriched compounds or standards or controls are dissolved in MeOH or DMSO and when necessary sonicated for some minutes. Aliquots are added to the test solutions to final concentrations of 1, 10, and 100 micromolar (with the exception of Flurofamide where the concentrations used are 1, 10, and 100 nanomolar), and the organic solvent component amounted to 51%. The samples are incubated for 30 min at 370C in a water bath with gentle shaking. The reaction is started by adding 1 part 200 millimolar urea solution to 1 part test solution and stopped 10 min later by adding 25 parts reagent A (10 gram of phenol and 50 milligrams of Na2Fe(CN)5NO dissolved in 1 liter of water) and 25 parts reagent B (5 gram of NaOH and 8.4 milliliter of NaOCl (Sigma- Aldrich) dissolved in 1 liter of water). The samples are incubated for a further 15 min to allow color development, after which 200 microliters aliquots are transferred to 96-well microliter plates. The absorbance at 650 nm is determined at ambient temperature using (NH3)2SO4 as standard.
Example 75 - Anti-Helicobacter pylori activity in mice
[0277] SPF mice are challenged with bacteria three times during a 6-day period, and 3 weeks after inoculation animals are treated orally according to different regimens for 4 weeks. Six different regimens are selected as follows: an uninfected no treatment control, an infected no treatment group to check for spontaneous elimination of the infection, an infected group receiving vehicle only, a triple therapy group used as a positive eradication control, and, finally, the three groups to be studied, using a compound of Formula 1, the corresponding non-isotopically enriched compound or standard or control and a therapeutic dose Flurofamide.
[0278] Methocel vehicle (0.1 milliliter) adjusted to pH 6 with citric acid is used and given twice daily. Compounds are given either dissolved or suspended in the vehicle, and the amounts stated are per mouse, mean body weight of 30 gram, and day. Stock solutions or suspensions are stored frozen.
[0279] Triple therapy is made up by 0.185 milligrams of bismuth, 0.675 milligrams of metronidazole, and 1.500 milligrams of tetracycline and is administered once daily for 2 weeks followed by bismuth alone once daily for another 2 weeks. In this group of animals, vehicle alone is administered at the second daily dosing occasion.
[0280] Compounds of Formula 1, the corresponding non-isotopically enriched compounds or standards or controls (125 micromole per kg) or Flurofamide (230 micromole per kg) are each dosed twice daily for 4 weeks. Animals are sacrificed 24 h or 5 weeks after cessation of the treatment to measure suppression and eradication, respectively. The assessment is done by checking mouse stomach specimens for Urease activity, and the rate of both suppression and eradication for each regimen is expressed as the number of Urease positive animals divided by the number of animals checked x 100% as described in Dick- Hegedus et al Scand. J . Gastroenterol. 1991, 26, 909-915 Hazell et εΛ Am. J. Gastroenterol. 1987, 82, 292-296, both of which are incorporated by reference in their entireties.
Example 76 - Elevation of serum gastrin levels in pylorus-Iigated rats
[0281] This study is performed in female Wistar rats as described Shay et al Gastroenterology 1954, 26, 906-913 and Herling et al Eur. J. Pharmacol. 1988, 156, 341- 350, both of which are incorporated by reference in their entireties. Food is withdrawn 16 h before the start of the study, and water is available ad libitum. Following pylorus ligation (performed under anesthesia), the compounds of Formula 1 or the corresponding non- isotopically enriched compounds or standards or controls are administrated intraperitoneally (ip). Compounds of Formula 1 or the corresponding non-isotopically enriched compounds or standards or controls are suspended in Tylose (1%) and administered at a volume of 2 milliliter per kilogram at a dose of 5 milligrams per kilogram. Gastric acid secretion is 38819
stimulated by a subcutaneous (sc) injection of Desglugastrin at a dose of 400 micrograms per kilogram. This latter injection is repeated 1 h later. Three hours after the start of the experiment, the animals are sacrificed, the stomach is excised, and the accumulated gastric juice is collected and its volume measured. Acid concentration is measured by electrotitration against 100 millimolar NaOH to an endpoint of pH 7. Total acid output (millimole of H+/3 hours) is calculated. Percent inhibition of the treated rat group is calculated against the control group.
Example 77 - Inhibition of gastric acid secretion in stomach-himen-perfused rats
[0282] Gastric acid secretion in anesthetized male Sprague-Dawley rats is determined as described Barrett J. Pharm. Pharmacol. 1966, 18, 633-639 and Herling et al Eur. J. Pharmacol. 1988, 156, 341-350, both of which are incorporated by reference in their entireties. The animals are fasted for 18 h prior to the experiment and receive water ad libitum. They are anesthetized with 30% (w/v) urethane (5 milligrams per kilogram im) and tracheotomized. The esophagus and pylorus are ligated, and a double lumen perfusion cannula is inserted and fixed in the fore-stomach. The stomach is perfused continuously with warm (370C) saline at a rate of 1 milliliter per minute. The perfusate is collected at 15-minute periods and its acid concentration measured by electrotitration against 100 millimolar NaOH to an endpoint of pH 7, and acid output (micromolar of H+/15 minute) is calculated. To stimulate acid secretion, histamine (10 milligrams per kilogram per hour) is administered after a basal period of 45 minutes by iv infusion into the jugular vein, and observation is continued until acid output reaches a stable plateau (Herling, 1986). Compounds of Formula 1 or the corresponding non-isotopically enriched compounds or standards or controls are administered iv (25% DMSO, 1 milliliter per rat). Maximal inhibition is calculated as percent change versus pre-dose value and presented as mean +/- SEM.
Example 78 - Inhibition of gastric acid secretion in Heidenhain-pouch dogs
[0283] Male Beagle dogs are equipped with a Heidenhain-pouch as described De Vito et al J. Appl. Physiol. 1959, 14, 138-139 and Herling et al Eur. J. Pharmacol. 1988, 156, 341-350, both of which are incorporated by reference in their entireties. For intraduodenal (id) administration studies, three dogs received an additional cannula in the flexura duodenojejunalis. The dogs are trained to stay in a Pawlow stand. Food is withdrawn 18 h prior to the experiment and water is available ad libitum. Gastric acid secretion is induced with an iv infusion of 0.05 milligrams per kilogram per h of histamine, which produces a maximal stimulation. Gastric juice is collected from the pouch at 30-min intervals, and acidity is measured by titration against 100 millimolar NaOH to an endpoint of pH 7, and acid output (millimole H+/30 minute) is calculated. Compounds of Formula 1 or the corresponding non-isotopically enriched compounds or standards or controls (in 25% DMSO) are administered at doses of 0.3 milligrams per kilogram iv or 1 milligrams per kilogram id at a volume of 20 milliliter per dog as soon as acid secretion stabilizes. Maximal inhibition is calculated as percent change against pre-dose value and presented as mean =/- SEM. ED50 values and confidence limits (95%) are calculated according to Lichtfield and Wilcoxon, Lichtfield et al J. Pharmacol. Exp. Ther. 1949, 96, 99-113, which is hereby incorporated by reference in its entirety.
Example 79 - Determination of serum Gastrin levels in rats
[0284] Female Wistar rats are treated orally for 10 weeks with 30 milligrams per kilogram per day of compounds of Formula 1 or the corresponding non-isotopically enriched compounds or standards or controls. At days 1 to 3, rats receive said compound by intraperitoneal (ip) administration, to cause gastric acid inhibition and therefore to reduce the acidic degradation of subsequent orally administered test compounds to 10 weeks. Said compounds are suspended in potato starch mucilage (20 milligrams per milliliter) and administered at a volume of 2 milliliter per kilogram. A control group is also included in the experiment. Blood samples are collected retroorbitally during anesthesia. Serum Gastrin levels (picogram per milliliter) are determined by using a commercially available RIA kit and presented as means +/- SEM. Significant differences (p < 0.05) are calculated by Students t- test.
Example 80 - Human metabolism studies
[0285] A mixture containing an equal amount of a compound of Formula 1 and the corresponding non-isotopically enriched compound or standard or control are administered to the subjects either orally or by intravenous infusion. Blood specimens are 6 038819
drawn before dosing and at 0, 2, 5, 15, 20, and 45 minutes, and 1, 1.5, 2, 2.5, 3, 4, 6, 8, 12, 24 and 48 hours post dose. Serum is decanted immediately, and stored at -1O0C. Serum concentrations of said compound and the corresponding non-isotopically enriched compound or standard or control are analyzed by HPLC/MS/MS.
[0286] References Cited - The disclosures of each of the following references are incorporated by reference herein in their entireties.
U.S. Patent Documents
US 4,069,346 February 14, 1977 McCarty.
US 5,386,032 January 31, 1995 Brandstrom.
US 5,589,491 December 31, 1996 Nakanishi.
US 5,599,794 February 4, 1997 Eek.
US 5,629,305 May 13, 1997 Eek.
US 5,690,960 November 25, 1997 Bengtsson.
US 5,714,505 February 3, 1998 Hasselkus.
US 5,731,002 March 24, 1998 Olovson.
US 5,817,338 October 6, 1998 Bergstrand.
US 5,846,514 December 8, 1998 Foster.
US 5,877,192 March 2, 1999 Lindberg.
US 5,900,424 May 4, 1999 Kallstrom.
US 5,948,789 September 7, 1999 Larsson.
US 5,958,955 September 28, 1999 Gustavsson.
US 6,013,281 January 11, 2000 Lundberg.
US 6,090,827 July 18, 2000 Erickson.
US 6,132,770 October 17, 2000 Lundberg.
US 6,132,771 October 17, 2000 Depui.
US 6,136,344 October 24, 2000 Depui.
US 6,221,335 April 24, 2001 Foster.
US 6,245,913 June 12, 2001 Singh.
US 6,284,271 September 4, 2001 Lundberg.
US 6,303,788 October 16, 2001 Cotton.
US 6,333,342 December 25, 2001 Foster.
US 6,334,997 January 1, 2002 Foster.
US 6,365,184 April 2, 2002 Depui. US 6,342,507 January 29, 2002 Foster. US 6,476,058 November 5, 2002 Foster. US 6,503,921 January 7, 2003 Naicker. US 6,593,339 July 15, 2003 Eek. US 6,605,303 August 12, 2003 Karehill. US 6,605,593 August 12, 2003 Naicker. US 6,610,323 August 26, 2003 Lundberg. US 6,613,739 September 2, 2003 Naicker. US 6,623,759 September 23, 2003 Heese. US 6,710,053 March 23, 2004 Naicker. US 6,818,200 November 16, 2004 Foster. US 6,884,429 April 26, 2005 Koziak.
Other References
Center for Drug Evaluation and Research, application number 21-153/21-154 for
Esomeprazole Magnesium (Nexium). Altermatt, Cancer 1988, 62(3), 462-466, "Heavy water delays growth of human carcinoma in nude-mice". Altermatt, InternationalJournal of Cancer 1990, 45(3), 475-480, "Heavy-water enhances the antineoplastic effect of 5-fluoro-Uracil and Bleomycin in nude mice bearing human carcinoma".
Barrett J. Pharm. Pharmacol. 1966, 18, 633-639, "Specific stimulation of gastric acid secretion by a pentapeptide derivative of Gastrin"
Baselt, Disposition of Toxic Drugs and Chemicals in Man, 2004, 7th Edition. Berglindh et al Acta Physiol. Scand. 1976, 97, 401-414, "Effects of secretagogues on oxygen consumption, aminopyrine accumulation and morphology in isolated gastric glands" Berglindh et al. Acta Physiol. Scand. 1976, 96, 150-169, "A method for preparing isolated glands from the rabbit gastric mucosa" Brandstrom, Acta Chemica Scandinavica 1989, 43, 595-611, "Chemical reactions of
Omeprazole analogues. VI. The reaction of Omeprazole in the absence of 2- mercaptoethanol" Browne, Synthesis and Applications of ' Isotopically Labelled Compounds, Proceedings of the
International Symposium, 7th, Dresden, Germany, June 18-22, 2000, 519-532,
"Stable Isotopes in Pharmaceutical Research and Development". Browne, Pharmacochemistry Library, 1997, 26, "Stable isotopes in pharmaceutical research". Browne, Pharmacochemistry Library, 1997, 26, 13-18, "Isotope effect: implications for pharmaceutical investigations". Browne, Clinical Pharmacology & Therapeutics, 1981, 29(4), 511-15, "Kinetic equivalence of stable-isotope-labeled and unlabeled phenytoin". Browne, Journal of Clinical Pharmacology 1982, 22(7), 309-15, "Pharmacokinetic equivalence of stable-isotope-labeled and unlabeled drugs. Phenobarbital in man". Browne, Synth. Appl. Isot. Labeled Compd., Proc. Int. Symp. 1983, Meeting Date 1982, 343-
8, "Applications of stable isotope tracer methods to human drug interaction studies". Browne, Therapeutic Drug Monitoring 1984, 6(1), 3-9, "Applications of stable isotope methods to studying the clinical pharmacology of antiepileptic drugs in newborns, infants, children, and adolescents". Cotton et al., Tetrahedron: Asymmetry, 2000, 11(18), 3819-3825, "Asymmetric Synthesis of
Esomeprazole." Crowe, Journal of Labelled Compounds and Radiopharmaceuticals, 1986, 23(1), 21-33,
"The Preparation of 14C, 35S and 13C Labelled forms of Omeprazole". De Vito et al J. Appl. Physiol. 1959, 14, 138-139, "Techniques in Heidenhain Pouch experiments" Dick-Hegedus et al Scand. J . Gastroenterol. 1991, 26, 909-915, "Use of a mouse model to examine anti-Helicobacter pylori agents" Ding et al Journal of Neurochemistry 1995, 65(2), 682-690, "Mechanistic Positron Emission
Tomography Studies of 6-[18F]Fluorodopamine in Living Baboon Heart: Selective
Imaging and Control of Radiotracer Metabolism Using the Deuterium Isotope
Effect".
Foster, Trends in Pharmacological Sciences 1984, 5(12), 524-527. Garland, Synth. Appl. Isot. Labeled Compd. Proc. Int. Symp. 2nd, 1986, Meeting Date 1985,
283-284. Hazell et al Am. J. Gastroenterol. 1987, 82, 292-296, "Detection of Campylobacter pylori as a marker of bacterial colonisation and gastritis" Herling et al Eur. J. Pharmacol. 1988, 156, 341-350, "Effects of Verapamil on gastric acid secretion in-vitro and in-vivo" Herling et al. Eur. J. Pharmacol. 1986, 125, 233-239, "The stimulatory effect of Forskolin on gastric acid secretion in rats" Hoffmann, Drug Metabolism and Disposition 1986, 14(3), 341-348, "Identification of the main urinary metabolites of Omeprazole after an oral dose to rats and dogs". Kaufman, Phys. Rev. 1954, 93, 1337-1344, "The natural distribution of tritium". Ko et al British Journal of Clinical Pharmacology 2000, 49(4), 343-351, "In Vitro Inhibition of the Cytochrome P450 (CYP450) System by the Antiplatelet Drug Ticlopidine:
Potent Effect on CYP2C19 and CYP2D6". Kritchevsky, Annals of the New York Academy of Science 1960, vol. 84, article 16,
"Deuterium isotope effects in chemistry and biology". Kuehler, J. Med. Chem. 1995, 38, 4906-4916, "Structure- Activity Relationship of
Omeprazole and Analogs as Helicobacter pylori Urease Inhibitors". Kubo, Chem. Pharm. Bull. 1990, 3.S(IO), 2853-2858, "Synthesis of 2-[[(4-fluoroalkoxy-2- pyridyl)methyl]sulfinyl]-lH-benzimidazoles as antiulcer agents". Kulkarni et al, Synthesis, 2004, 4, 595-599, "Sythnesis of the Marine Compound (2R,5Z,9Z)-
2-Methoxyhexacosa-5,9-Dienoid Acid Via a Lipase-Catalyzed Resolution and a
Novel O-Alkylation Protocol"
Kushner, Can. J. Physiol. Pharmacol. 1999, 77, 79-88, "Pharmacological uses and perspectives of heavy water and deuterated compounds". Lamprect, European Journal of Cell Biology 1990, 51(2) 303-312, "Mitosis arrested by deuterium oxide - light microscopic, immunofluorescence and ultrastructural characterization" .
Le Bel et al Anal. Biochem. 1978, 85, 86-89, "Convenient method for the ATPase assay" Lewis, J. Am. Chem. Soc. 1968, 90, 4337, "The influence of tunneling on the relation between tritium and deuterium isotope effects. The exchange of 2-nitropropane-2-T". Li et al Rapid Communications in Mass Spectrometry 2005, 19(14), 1943-1950,
"Simultaneously Quantifying Parent Drugs and Screening for Metabolites in Plasma Pharmacokinetic Samples Using Selected Reaction Monitoring Information- Dependent Acquisition on a Qtrap Instrument".
Lichtfield et al J. Pharmacol. Exp. Ther. 1949, 96, 99-113, "A simplified method of evaluating dose-effect experiments"
Lindberg, J. Med. Chem. 1986, 29, 1327-1329, "The mechanism of action of the antisecretory agent Omeprazole"
Ljungstrδm et al Biochim. Biophys. Acta 1984, 769, 209-219, "Characterization of proton- transporting membranes from resting pig gastric mucosa"
March, Advanced Organic Chemistry, 1992, 4th edition, 226-230
Pohl, Drug Metabolism Reviews 1985, Volume Date 1984, 15(7), 1335-1351
Roecker, J. Am. Chem. Soc. 1987, 109, 746, "Hydride transfer in the oxidation of alcohols by [(bρy)2(py)Ru(Q)]2+. A kH/kD kinetic isotope effect of 50"
Raju et al. Organic Process Research & Development, 2006, 10, 33-35, "Preparation of Optically Pure Esomeprazole and Its Related Salt"
Sack et al Am. J. Physiol. 1982, 243, G313-G319, "Aminopyrine accumulation by mammalian gastric glands: an analysis of the technique"
Schroeter, European Journal of Cell Biology 1992, 58(2), 365-370, "Deuterium oxide arrests the cell-cycle of PTK2 cells during interphase".
Shay et al Gastroenterology 1954, 26, 906-913, "Quantitative method for measuring spontaneous gastric secretion in the rat"
Stenhoff, Journal of Chromatography B 1999, 734, 191-201, "Determination of the enantiomers of Omeprazole in blood plasma by normal-phase liquid chromatography and detection by atmospheric pressure ionization tandem mass spectrometry"
Tolonen, European Journal of Pharmaceutical Sciences 2005, 25, 155-162, "A simple method for differentiation of monoisotopic drug metabolites with hydrogen- deuterium exchange liquid chromatography/electro spray mass spectrometry"
Thomson, International Series of Monographs on Pure and Applied Biology, Modern trends in Physiological Sciences, 1963, "Biological Effects of deuterium"
Urey, Phys. Rev. 1932, 39, 164 "A hydrogen isotope of mass 2"
Yoda et al Biochem. Biophys. Res. Comm. 1979, 40, 880 "On the reversibility of binding of cardiac steroids to a partially purified Na+/K+-activated ATPase from beef brain" [0287] Although the invention has been described with reference to the above examples, it will be understood that modifications and variations are encompassed within the spirit and scope of the invention. Accordingly, the invention is limited only by the following claims.

Claims

WHAT IS CLAIMED IS:
1. A compound of Formula 1
Figure imgf000111_0001
or a single enantiomer, a mixture of the (+)-enantiomer and the (-)- enantiomer, an individual diastereomer, a mixture of diastereomers, or a pharmaceutically acceptable salt, solvate, or prodrug thereof, wherein:
R1, R4, R9 and R1Q are each independently hydrogen or deuterium;
R2, R3, R6, and R8 are each independently selected from the group consisting of hydrogen, deuterium, C1-C6 alkyl, and Ci-C6 alkyloxy;
R5 is selected from the group consisting Of-CH2-, -CHD- and -CD2-; and
R7 is selected from the group consisting of hydrogen, deuterium, -NO2, C1-C6 alkyl, and Ci-C6 alkyloxy; provided that said compound of Formula 1 contains at least one deuterium atom; and provided that deuterium enrichment in said compound of Formula 1 is at least about 1%.
2. The compound of Claim 1, wherein said compound contains about 90% or more by weight of the (-)-enantiomer of said compound and about 10% or less by weight of (+)-enantiomer of said compound.
3. The compound of Claim 1, wherein said compound contains about 90% or more by weight of the (+)-enantiomer of said compound and about 10% or less by weight of (-)-enantiomer of said compound.
4. The compound of Claim 1, wherein said alkyl is selected from the group consisting of methyl, ethyl, n-propyl, iso-propyl, n-butyl, sec-butyl, and tert-butyl.
5. The compound of Claim 1, wherein said alkyloxy is selected from the group consisting of methoxy, ethoxy, n-proρoxy, iso-propoxy, n-butoxy, sec-butoxy, and tert- butoxy.
6. A compound selected from the group consisting of:
Figure imgf000113_0001
Figure imgf000114_0001
Figure imgf000115_0001
Figure imgf000116_0001
Figure imgf000117_0001
Figure imgf000118_0001
Figure imgf000119_0001
Figure imgf000120_0001
Figure imgf000121_0001
Figure imgf000122_0001
Figure imgf000123_0001
Figure imgf000124_0001
or a single enantiomer, a mixture of the (+)-enantiomer and the (-)-enantiomer, a mixture of about 90% or more by weight of the (-)-enantiomer and about 10% or less by weight of the (+)-enantiomer, a mixture of about 90% or more by weight of the (+)- enantiomer and about 10% or less by weight of the (-)-enantiomer, an individual diastereomer, a mixture of diastereomers, or a pharmaceutically acceptable salt, solvate, or prodrug thereof.
7. A compound selected from the group consisting of:
Figure imgf000126_0001
or a single enantiomer, a mixture of the (H-)-enantiomer and the (-)-enantiomer, a mixture of about 90% or more by weight of the (-)-enantiomer and about 10% or less by weight of the (+)-enantiomer, a mixture of about 90% or more by weight of the (+)- enantiomer and about 10% or less by weight of the (-)-enantiomer, an individual diastereomer, a mixture of diastereomers, or a pharmaceutically acceptable salt, solvate, or prodrug thereof.
8. A compound selected from the group consisting of:
Figure imgf000127_0001
or a single enantiomer, a mixture of the (+)-enantiomer and the (-)-enantiomer, a mixture of about 90% or more by weight of the (-)-enantiomer and about 10% or less by weight of the (+)-enantiomer, a mixture of about 90% or more by weight of the (+)- enantiomer and about 10% or less by weight of the (-)-enantiomer, an individual diastereomer, a mixture of diastereomers, or a pharmaceutically acceptable salt, solvate, or prodrug thereof.
9. A pharmaceutical composition comprising a therapeutically effective amount of a compound according to Claim 1, or a single enantiomer of a compound according to Claim 1, a mixture of the (+)-enantiomer and the (-)-enantiomer of a compound according to Claim 1, a mixture of about 90% or more by weight of the (-)-enantiomer and about 10% or less by weight of the (+)-enantiomer of a compound according to Claim 1, a mixture of about 90% or more by weight of the (H-)-enantiomer and about 10% or less by weight of the (-)- enantiomer of a compound according to Claim 1, an individual diastereomer of a compound according to Claim 1, a mixture of diastereomers of a compound according to Claim 1, or a pharmaceutically acceptable salt, solvate, or prodrug thereof, with a pharmaceutically acceptable carrier.
10. The pharmaceutical composition of Claim 9, wherein said composition is suitable for oral, parenteral, or intravenous infusion administration.
11. The pharmaceutical composition of Claim 10, wherein said oral administration comprises administering a tablet or a capsule.
12. The pharmaceutical composition of Claim 9, wherein said compound of Claim 1 is administered in a dose 0.5 milligram to 80 milligram total daily.
13. An effervescent dosage form comprising a first component and a second component, wherein said first component is one or more effervescent excipients, and said second component is a mixture comprising a compound of Formula 1, a beta blocking agent, and optionally a pharmaceutically acceptable excipients; wherein said compound of Formula 1 has the structure
Figure imgf000128_0001
or a single enantiomer, a mixture of the (+)-enantiomer and the (-)- enantiomer, a mixture of about 90% or more by weight of the (-)-enantiomer and about 10% or less by weight of the (+)-enantiomer, a mixture of about 90% or more by weight of the (+)-enantiomer and about 10% or less by weight of the (-)- enantiomer, an individual diastereomer, a mixture of diastereomers, or a pharmaceutically acceptable salt, solvate, or prodrug thereof wherein:
R1, R4, R9 and Ri0 are each independently hydrogen or deuterium;
R2, R3, R6, and Rg are each independently selected from the group consisting of hydrogen, deuterium, C1-C6 alkyl, and Ci-C6 alkyloxy;
R5 is selected from the group consisting Of-CH2-, -CHD- and -CD2-; and
R7 is selected from the group consisting of hydrogen, deuterium, -NO2, C1-C6 alkyl, and C1-C6 alkyloxy; provided that said compound of Formula 1 contains at least one deuterium atom; and provided that deuterium enrichment in said compound of Formula 1 is at least about 1%.
14. An oral multiple unit tablet pharmaceutical composition comprising a first component and a second component, wherein said first component comprises one or more antibacterial agent with similar or different activities, and said second component is a compound of Formula 1, in the form of pellets covered with an enteric coating polymer layer; wherein said compound of Formula 1 has the structure
Figure imgf000129_0001
or a single enantiomer, a mixture of the (+)-enantiomer and the (-)- enantiomer, a mixture of about 90% or more by weight of the (-)-enantiomer and about 10% or less by weight of the (+)-enantiomer, a mixture of about 90% or more by weight of the (+)-enantiomer and about 10% or less by weight of the (-)- enantiomer, an individual diastereomer, a mixture of diastereomers, or a pharmaceutically acceptable salt, solvate, or prodrug thereof, wherein:
R1, R4, R9 and Ri0 are each independently hydrogen or deuterium;
R2, R3, R6, and R8 are each independently selected from the group consisting of hydrogen, deuterium, Ci-C6 alkyl, and Ci-C6 alkyloxy;
Rs is selected from the group consisting of -CH2-, -CHD- and -CD2-; and
R7 is selected from the group consisting of hydrogen, deuterium, -NO2, Ci-C6 alkyl, and C1-C6 alkyloxy; provided that said compound of Formula 1 contains at least one deuterium atom; and provided that deuterium enrichment in said compound of Formula 1 is at least about 1%.
15. The composition of Claim 14, wherein said pellets comprise acid resistant pellets wherein said acid resistance of said enteric coated pellets is not significantly affected by compression of said pellets with other tablet components during tableting, wherein said first component is separated from said second component by said enteric coating layer covering said second component.
16. The composition of Claim 14, wherein said antibacterial agent is selected from the group consisting of amoxicillin, clarithromycin, metronidazole, and a combination thereof.
17. An oral multiple unit tablet pharmaceutical composition comprising a first component, a second component, and an optional third component, wherein said first component is a compound of Formula 1 in the form of pellets covered with an enteric coating polymer layer, said second component comprises at least one non steroidal anti-inflammatory drug (NSAID), and said optional third component comprises a pharmaceutically acceptable excipients, wherein said second component is separated from said first component by said enteric coating layer covering said first component; wherein said compound of Formula 1 has the structure
Figure imgf000130_0001
or a single enantiomer, a mixture of the (+)-enantiomer and the (-)- enantiomer, a mixture of about 90% or more by weight of the (-)-enantiomer and about 10% or less by weight of the (+)-enantiomer, a mixture of about 90% or more by weight of the (+)-enantiomer and about 10% or less by weight of the (-)- enantiomer, an individual diastereomer, a mixture of diastereomers, or a pharmaceutically acceptable salt, solvate, or prodrug thereof wherein:
R1, R4, R9 and Rio are each independently hydrogen or deuterium;
R2, R3, Rg, and R8 are each independently selected from the group consisting of hydrogen, deuterium, Ci-C6 alkyl, and Ci-C6 alkyloxy;
R5 is selected from the group consisting Of-CH2-, -CHD- and -CD2-; and
R7 is selected from the group consisting of hydrogen, deuterium, -NO2, Ci-C6 alkyl, and Ci-C6 alkyloxy; provided that said compound of Formula 1 contains at least one deuterium atom; and provided that deuterium enrichment in said compound of Formula 1 is at least about 1%.
18. The composition of Claim 17, wherein said pellets comprise acid resistant pellets wherein said acid resistance of said enteric coated pellets is not significantly affected by compression of said pellets with other tablet components during tableting.
19. An extended release pharmaceutical dosage form comprising a compound of Formula 1, a hydrophilic or hydrophobic matrix, a water-soluble separating layer, an enteric coating layer, and optionally one or more pharmaceutically acceptable excipients; wherein said compound of Formula 1 has the structure
Figure imgf000131_0001
or a single enantiomer, a mixture of the (+)-enantiomer and the (-)- enantiomer, a mixture of about 90% or more by weight of the (-)-enantiomer and about 10% or less by weight of the (+)-enantiomer, a mixture of about 90% or more by weight of the (+)-enantiomer and about 10% or less by weight of the (-)- enantiomer, an individual diastereomer, a mixture of diastereomers, or a pharmaceutically acceptable salt, solvate, or prodrug thereof wherein:
R1, R4, R9 and R1O are each independently hydrogen or deuterium;
R2, R3, R6, and R8 are each independently selected from the group consisting of hydrogen, deuterium, C1-C6 alkyl, and Ci-C6 alkyloxy;
R5 is selected from the group consisting Of-CH2-, -CHD- and -CD2-; and
R7 is selected from the group consisting of hydrogen, deuterium, -NO2, Ci-C6 alkyl, and Ci-C6 alkyloxy; provided that said compound of Formula 1 contains at least one deuterium atom; and provided that deuterium enrichment in said compound of Formula 1 is at least about 1%.
20. An enteric coated pharmaceutical dosage form comprising a compound of Formula 1, a disruptable semi-permeable membrane and one or more swellable substances, wherein the dosage form comprises an instant inhibitor-releasing part and at least one delayed inhibitor-releasing part, and is capable of giving a discontinuous release of a compound of Formula 1, in the form of at least two consecutive pulses separated in time from about 0.1 up to about 24 hours; wherein said compound of Formula 1 has the structure
Figure imgf000132_0001
or a single enantiomer, a mixture of the (+)-enantiomer and the (-)- enantiomer, a mixture of about 90% or more by weight of the (-)-enantiomer and about 10% or less by weight of the (+)-enantiomer, a mixture of about 90% or more by weight of the (+)-enantiomer and about 10% or less by weight of the (-)- enantiomer, an individual diastereomer, a mixture of diastereomers, or a pharmaceutically acceptable salt, solvate, or prodrug thereof wherein:
R1, R4, R9 and R10 are each independently hydrogen or deuterium;
R2, R3, R6, and R8 are each independently selected from the group consisting of hydrogen, deuterium, Ci-C6 alkyl, and Ci-C6 alkyloxy;
R5 is selected from the group consisting Of-CH2-, -CHD- and -CD2-; and
R7 is selected from the group consisting of hydrogen, deuterium, -NO2, C1-C6 alkyl, and Ci-C6 alkyloxy; provided that said compound of Formula 1 contains at least one deuterium atom; and provided that deuterium enrichment in said compound of Formula 1 is at least about 1%.
21. A stable pharmaceutical dosage form for oral administration to mammalian subjects which comprises a compound of Formula 1, and optionally one or more pharmaceutical adjuvants, enclosed in an intermediate reactive layer comprising a gastric juice-resistant polymeric layered material partially neutralized with alkali and having cation exchange capacity and a gastric juice-resistant outer layer; wherein said compound of Formula 1 has the structure
Figure imgf000133_0001
or a single enantiomer, a mixture of the (+)-enantiomer and the (-)- enantiomer, a mixture of about 90% or more by weight of the (-)-enantiomer and about 10% or less by weight of the (+)-enantiomer, a mixture of about 90% or more by weight of the (+)-enantiomer and about 10% or less by weight of the (-)- enantiomer, an individual diastereomer, a mixture of diastereomers, or a pharmaceutically acceptable salt, solvate, or prodrug thereof wherein:
R1, R4, R9 and R10 are each independently hydrogen or deuterium; R2, R3, R6, and R8 are each independently selected from the group consisting of hydrogen, deuterium, C1-C6 alkyl, and Ci-C6 alkyloxy;
R5 is selected from the group consisting of -CH2-, -CHD- and -CD2-; and R7 is selected from the group consisting of hydrogen, deuterium, -NO2, Ci-C6 alkyl, and Ci-C6 alkyloxy; provided that said compound of Formula 1 contains at least one deuterium atom; and provided that deuterium enrichment in said compound of Formula 1 is at least about 1%.
22. A method for treatment of gastric acid related diseases by inhibition of gastric acid secretion comprising administering to a mammalian subject in need of treatment a therapeutically effective amount of a gastric H+, K+-ATPaSe inhibitor comprising a compound of Formula 1 so as to affect decreased inter-individual variation in plasma levels of said compound or a metabolite thereof during treatment of gastric acid related diseases as compared to the non-isotopically enriched compound; wherein said compound of Formula 1 has the structure
Figure imgf000134_0001
or a single enantiomer, a mixture of the (+)-enantiomer and the (-)- enantiomer, a mixture of about 90% or more by weight of the (-)-enantiomer and about 10% or less by weight of the (+)-enantiomer, a mixture of about 90% or more by weight of the (+)-enantiomer and about 10% or less by weight of the (-)- enantiomer, an individual diastereomer, a mixture of diastereomers, or a pharmaceutically acceptable salt, solvate, or prodrug thereof, wherein:
R1, R4, R9 and R10 are each independently hydrogen or deuterium; R2, R3, R6, and R8 are each independently selected from the group consisting of hydrogen, deuterium, C1-C6 alkyl, and C1-C6 alkyloxy;
R5 is selected from the group consisting Of-CH2-, -CHD- and -CD2-; and R7 is selected from the group consisting of hydrogen, deuterium, -NO2, C1-C6 alkyl, and C1-C6 alkyloxy; provided that said compound of Formula 1 contains at least one deuterium atom; and provided that deuterium enrichment in said compound of Formula 1 is at least about 1%.
23. A method for treatment of gastric acid related diseases by inhibition of gastric acid secretion comprising administering to a mammalian subject in need of treatment a therapeutically effective amount of a gastric H+, K+-ATPase inhibitor comprising a compound of Formula 1 so as to affect increased average plasma levels of said compound or decreased average plasma levels of at least one metabolite of said compound per dosage unit as compared to the non-isotopically enriched compound; wherein said compound of Formula 1 has the structure
Figure imgf000135_0001
or a single enantiomer, a mixture of the (+)-enantiomer and the (-)- enantiomer, a mixture of about 90% or more by weight of the (-)-enantiomer and about 10% or less by weight of the (+)-enantiomer, a mixture of about 90% or more by weight of the (+)-enantiomer and about 10% or less by weight of the (-)- enantiomer, an individual diastereomer, a mixture of diastereomers, or a pharmaceutically acceptable salt, solvate, or prodrug thereof, wherein:
R1, R4, R9 and R10 are each independently hydrogen or deuterium; R2, R3, R6, and R$ are each independently selected from the group consisting of hydrogen, deuterium, Ci-C6 alkyl, and Ci-C6 alkyloxy;
R5 is selected from the group consisting of -CH2-, -CHD- and -CD2-; and R7 is selected from the group consisting of hydrogen, deuterium, -NO2, Ci-C6 alkyl, and C1-C6 alkyloxy; provided that said compound of Formula 1 contains at least one deuterium atom; and provided that deuterium enrichment in said compound of Formula 1 is at least about 1%.
24. A method for treatment of gastric acid related diseases by inhibition of gastric acid secretion comprising administering to a mammalian subject in need of treatment a therapeutically effective amount of a gastric H+, K+-ATPase inhibitor comprising a compound of Formula 1 wherein said amount of said gastric H+, K+-ATPase inhibitor affects a less pronounced increase in gastrin levels in mammalian subjects during treatment of gastric acid related diseases as compared to the non-isotopically enriched compound; wherein said compound of Formula 1 has the structure
Figure imgf000136_0001
or a single enantiomer, a mixture of the (+)-enantiomer and the (-)- enantiomer, a mixture of about 90% or more by weight of the (-)-enantiomer and about 10% or less by weight of the (+)-enantiomer, a mixture of about 90% or more by weight of the (+)-enantiomer and about 10% or less by weight of the (-)- enantiomer, an individual diastereomer, a mixture of diastereomers, or a pharmaceutically acceptable salt, solvate, or prodrug thereof, wherein:
R1, R4, R9 and R10 are each independently hydrogen or deuterium; R2, R3, R6, and R8 are each independently selected from the group consisting of hydrogen, deuterium, C1-C6 alkyl, and Ci-C6 alkyloxy;
R5 is selected from the group consisting Of-CH2-, -CHD- and -CD2-; and R7 is selected from the group consisting of hydrogen, deuterium, -NO2, C1-C6 alkyl, and Ci-C6 alkyloxy; provided that said compound of Formula 1 contains at least one deuterium atom; and provided that deuterium enrichment in said compound of Formula 1 is at least about 1%..
25. A method for treatment of gastric acid related diseases by inhibition of gastric acid secretion comprising administering to a mammalian subject in need of treatment a therapeutically effective amount of a gastric H+, K+-ATPase inhibitor comprising a compound of Formula 1 wherein said amount of said gastric H+, K+-ATPase inhibitor affects a decreased inhibition of at least one cytochrome P4S0 isoform in mammalian subjects during treatment of gastric acid related diseases as compared to the non-isotopically enriched compound; wherein said compound of Formula 1 has the structure T/US2006/038819
Figure imgf000137_0001
or a single enantiomer, a mixture of the (+)-enantiomer and the (-)- enantiomer, a mixture of about 90% or more by weight of the (-)-enantiomer and about 10% or less by weight of the (+)-enantiomer, a mixture of about 90% or more by weight of the (+)-enantiomer and about 10% or less by weight of the (-)- enantiomer, an individual diastereomer, a mixture of diastereomers, or a pharmaceutically acceptable salt, solvate, or prodrug thereof, wherein:
R1, R4, R9 and R1O are each independently hydrogen or deuterium;
R2, R3, R6, and R8 are each independently selected from the group consisting of hydrogen, deuterium, C1-C6 alkyl, and C1-C6 alkyloxy;
R5 is selected from the group consisting Of-CH2-, -CHD- and -CD2-; and
R7 is selected from the group consisting of hydrogen, deuterium, -NO2, C1-C6 alkyl, and C1-C6 alkyloxy; provided that said compound of Formula 1 contains at least one deuterium atom; and provided that deuterium enrichment in said compound of Formula 1 is at least about 1%.
26. The method of Claim 25, wherein said cytochrome P450 isoform is selected from the group consisting of CYPlAl, CYP1A2, CYPlBl, CYP2A6, CYP2A13, CYP2B6, CYP2C8, CYP2C9, CYP2C18, CYP2C19, CYP2D6, CYP2E1, CYP2G1, CYP2J2, CYP2R1, CYP2S1, CYP3A4, CYP3A5, CYP3A5P1, CYP3A5P2, CYP3A7, CYP4A11, CYP4B1, CYP4F2, CYP4F3, CYP4F8, CYP4F11, CYP4F12, CYP4X1, CYP4Z1, CYP5A1, CYP7A1, CYP7B1, CYP8A1, CYP8B1, CYPIlAl, CYPIlBl, CYPl 1B2, CYP17, CYP19, CYP21, CYP24, CYP26A1, CYP26B1, CYP27A1, CYP27B1, CYP39, CYP46, and CYP51,
27. A method for treatment of gastric acid related diseases by inhibition of gastric acid secretion comprising administering to a mammalian subject in need of treatment a therapeutically effective amount of a gastric H+, K+-ATPaSe inhibitor comprising a compound of Formula 1 so as to elicit an improved antisecretory effect during the treatment of gastric acid related diseases as compared to the non-isotopically enriched compound; wherein said compound of Formula 1 has the structure
Figure imgf000138_0001
or a single enantiomer, a mixture of the (+)-enantiomer and the (-)- enantiomer, a mixture of about 90% or more by weight of the (-)-enantiomer and about 10% or less by weight of the (+)-enantiomer, a mixture of about 90% or more by weight of the (+)-enantiomer and about 10% or less by weight of the (-)- enantiomer, an individual diastereomer, a mixture of diastereomers, or a pharmaceutically acceptable salt, solvate, or prodrug thereof, wherein:
R1, R4, R9 and R10 are each independently hydrogen or deuterium; R2, R3, R6, and R8 are each independently selected from the group consisting of hydrogen, deuterium, Ci-C6 alkyl, and Ci-C6 alkyloxy;
R5 is selected from the group consisting Of-CH2-, -CHD- and -CD2-; and R7 is selected from the group consisting of hydrogen, deuterium, -NO2, C1-C6 alkyl, and C1-C6 alkyloxy; provided that said compound of Formula 1 contains at least one deuterium atom; and provided that deuterium enrichment in said compound of Formula 1 is at least about 1%.
28. A method for treatment of gastric acid related diseases by inhibition of gastric acid secretion comprising administering to a mammalian subject in need of treatment a therapeutically effective amount of a gastric H+, K+-ATPase inhibitor comprising a compound of Formula 1 wherein said amount of said gastric H+, K+-ATPase inhibitor elicits an improved clinical effect comprising accelerated rate of healing and accelerated rate of symptom relief during the treatment of gastric related diseases as compared to the non- isotopically enriched compound; wherein said compound of Formula 1 has the structure
Figure imgf000139_0001
or a single enantiomer, a mixture of the (+)-enantiomer and the (-)- enantiomer, a mixture of about 90% or more by weight of the (-)-enantiomer and about 10% or less by weight of the (+)-enantiomer, a mixture of about 90% or more by weight of the (+)-enantiomer and about 10% or less by weight of the (-)- enantiomer, an individual diastereomer, a mixture of diastereomers, or a pharmaceutically acceptable salt, solvate, or prodrug thereof, wherein:
R1, R4, Rg and R10 are each independently hydrogen or deuterium;
R2, R3, R6, and R8 are each independently selected from the group consisting of hydrogen, deuterium, C1-C6 alkyl, and C1-C6 alkyloxy;
R5 is selected from the group consisting Of-CH2-, -CHD- and -CD2-; and
R7 is selected from the group consisting of hydrogen, deuterium, -NO2, C1-C6 alkyl, and C1-C6 alkyloxy; provided that said compound of Formula 1 contains at least one deuterium atom; and provided that deuterium enrichment in said compound of Formula 1 is at least about 1%.
29. A method for treatment of a bacterial infection caused or mediated by Helicobacter pylori, comprising administering to a mammalian subject in need thereof an effective amount of a nitric oxide-releasing non-steroidal anti-inflammatory drug (NSAID) and a compound of Formula 1; wherein said compound of Formula 1 has the structure
Figure imgf000139_0002
or a single enantiomer, a mixture of the (+)-enantiomer and the (-)- enantiomer, a mixture of about 90% or more by weight of the (-)-enantiomer and about 10% or less by weight of the (+)-enantiomer, a mixture of about 90% or more by weight of the (+)-enantiomer and about 10% or less by weight of the (-)- enantiomer, an individual diastereomer, a mixture of diastereomers, or a pharmaceutically acceptable salt, solvate, or prodrug thereof wherein:
R1, R4, R9 and R10 are each independently hydrogen or deuterium;
R2, R3, R6, and R8 are each independently selected from the group consisting of hydrogen, deuterium, C1-C6 alkyl, and Ci-C6 alkyloxy;
R5 is selected from the group consisting Of-CH2-, -CHD- and -CD2-; and
R7 is selected from the group consisting of hydrogen, deuterium, -NO2, Ci-C6 alkyl, and Ci-C6 alkyloxy; provided that said compound of Formula 1 contains at least one deuterium atom; and provided that deuterium enrichment in said compound of Formula 1 is at least about 1%.
30. The method of Claim 29, wherein said NSAID and said compound of Formula 1 are administered simultaneously, or separately, or sequentially.
31. A method for treatment of gastric acid related diseases by inhibition of gastric acid secretion comprising administering to a mammalian subject in need of treatment a therapeutically effective amount of a gastric H+, K+-ATPase inhibitor comprising a compound of Formula 1 wherein said compound of Formula 1 has the structure
Figure imgf000140_0001
or a single enantiomer, a mixture of the (+)-enantiomer and the (-)- enantiomer, a mixture of about 90% or more by weight of the (-)-enantiomer and about 10% or less by weight of the (+)-enantiomer, a mixture of about 90% or more by weight of the (+)-enantiomer and about 10% or less by weight of the (-)- enantiomer, an individual diastereomer, a mixture of diastereomers, or a pharmaceutically acceptable salt, solvate, or prodrug thereof wherein:
R1, R4, R9 and R10 are each independently hydrogen or deuterium;
R2, R3, R6, and R8 are each independently selected from the group consisting of hydrogen, deuterium, Ci-C6 alkyl, and Ci-C6 alkyloxy;
R5 is selected from the group consisting Of-CH2-, -CHD- and -CD2-; and
R7 is selected from the group consisting of hydrogen, deuterium, -NO2, Ci-C6 alkyl, and Ci-C6 alkyloxy; provided that said compound of Formula 1 contains at least one deuterium atom; and provided that deuterium enrichment in said compound of Formula 1 is at least about 1%.
32. A process for preparing a compound of formula 3 comprising contacting a compound of formula 2 with deuterium oxide under conditions to produce compound of formula 3,
Figure imgf000141_0001
2
wherein, R14 and Rn are independently selected from the group consisting of hydrogen and deuterium;
Ri2 and Ri3 are independently selected from the group consisting of -CH3, -CDH2, -CD2H, and -CD3, where the reaction is carried out in a solvent or a mixture of solvents selected from the group consisting of deuterium oxide, 1,4-dioxane, acetone, acetonitrile, dimethyl formamide, dimethyl acetamide, N-methylpyrrolidine, dimethyl sulfoxide, in the presence of a catalyst selected from the group consisting of sodium carbonate, potassium carbonate, and DBU, and at a temperature in the range of about O °C up to about 500 °C, for 0.01 to 240 hours, at a pH in the range of about 1 up to about 14, and at a pressure in the range of about 1 mBar up to about 350 Bar.
33. A process according to Claim 32, wherein the reaction is carried out in the presence of focused microwave radiation using a quartz reactor at a pressure in the range of about 1 Bar to about 25 Bar, a power setting in the range of about 1 W per liter of solvent to about 900 W per liter of solvent, at a temperature in the range of about O0C up to about 5000C, for 0.01 to 5 hours, at a pH in the range of about 1 up to about 14.
34. A process for preparing a compound of formula 5 comprising contacting a compound of formula 4 with deuterium oxide under conditions to produce compound of formula 5,
Figure imgf000142_0001
wherein, R14 is selected from the group consisting of hydrogen, and deuterium;
R12, R13 and R15 are independently selected from the group consisting of - CH3, -CDH2, -CD2H, and -CD3, where the reaction is carried out in a solvent or a mixture of solvents selected from the group consisting of deuterium oxide, 1,4-dioxane, acetone, acetonitrile, dimethyl formamide, dimethyl acetamide, N-methylpyrrolidine, dimethyl sulfoxide, in the presence of a catalyst selected from the group consisting of sodium carbonate, potassium carbonate, and DBU, and at a temperature in the range of about 0 °C up to about 500 °C, for 0.01 to 240 hours, at a pH in the range of about 1 up to about 14, and at a pressure in the range of about 1 mBar up to about 350 Bar.
35. A process according to Claim 34, wherein the reaction is carried out in the presence of focused microwave radiation using a quartz reactor at a pressure in the range of about 1 Bar to about 25 Bar, a power setting in the range of about 1 W per liter of solvent to about 900 W per liter of solvent, at a temperature in the range of about O0C up to about 50O0C, for 0.01 to 5 hours, at a pH in the range of about 1 up to about 14.
36. Use of a compound of Formula I for the preparation of a medicament for treatment of gastric acid related diseases by inhibition of gastric acid secretion comprising administering to a mammalian subject in need of treatment a therapeutically effective amount of a gastric H+, K+-ATPase inhibitor comprising a compound of Formula 1 so as to affect decreased inter-individual variation in plasma levels of said compound or a metabolite thereof during treatment of gastric acid related diseases as compared to the non-isotopically enriched compound; wherein said compound of Formula 1 has the structure
Figure imgf000143_0001
or a single enantiomer, a mixture of the (+)-enantiomer and the (-)- enantiomer, a mixture of about 90% or more by weight of the (-)-enantiomer and about 10% or less by weight of the (+)-enantiomer, a mixture of about 90% or more by weight of the (+)-enantiomer and about 10% or less by weight of the (-)- enantiomer, an individual diastereomer, a mixture of diastereomers, or a pharmaceutically acceptable salt, solvate, or prodrug thereof, wherein:
R1, R4, R9 and R10 are each independently hydrogen or deuterium;
R2, R3, R6, and R8 are each independently selected from the group consisting of hydrogen, deuterium, C1-C6 alkyl, and Ci-C6 alkyloxy;
R5 is selected from the group consisting of -CH2-, -CHD- and -CD2-; and
R7 is selected from the group consisting of hydrogen, deuterium, -NO2, C1-C6 alkyl, and C1-C6 alkyloxy; provided that said compound of Formula 1 contains at least one deuterium atom; and provided that deuterium enrichment in said compound of Formula 1 is at least about 1%.
37. Use of a compound of Formula I for the preparation of a medicament for treatment of gastric acid related diseases by inhibition of gastric acid secretion comprising administering to a mammalian subject in need of treatment a therapeutically effective amount of a gastric H+, K+-ATPase inhibitor comprising a compound of Formula 1 so as to affect increased average plasma levels of said compound or decreased average plasma levels of at least one metabolite of said compound per dosage unit as compared to the non-isotopically enriched compound; wherein said compound of Formula 1 has the structure
Figure imgf000144_0001
or a single enantiomer, a mixture of the (+)-enantiomer and the (-)- enantiomer, a mixture of about 90% or more by weight of the (-)-enantiomer and about 10% or less by weight of the (+)-enantiomer, a mixture of about 90% or more by weight of the (+)-enantiomer and about 10% or less by weight of the (-)- enantiomer, an individual diastereomer, a mixture of diastereomers, or a pharmaceutically acceptable salt, solvate, or prodrug thereof, wherein:
R1, R4, R9 and R10 are each independently hydrogen or deuterium;
R2, R3, R6, and R8 are each independently selected from the group consisting of hydrogen, deuterium, Ci-C6 alkyl, and Ci-C6 alkyloxy;
R5 is selected from the group consisting Of-CH2-, -CHD- and -CD2-; and
R7 is selected from the group consisting of hydrogen, deuterium, -NO2, Ci-C6 alkyl, and Cj-C6 alkyloxy; provided that said compound of Formula 1 contains at least one deuterium atom; and provided that deuterium enrichment in said compound of Formula 1 is at least about 1%.
38. Use of a compound of Formula I for the preparation of a medicament for treatment of gastric acid related diseases by inhibition of gastric acid secretion comprising administering to a mammalian subject in need of treatment a therapeutically effective amount of a gastric H+, K+-ATPase inhibitor comprising a compound of Formula 1 wherein said amount of said gastric H+, K+-ATPaSe inhibitor affects a less pronounced increase in gastrin levels in mammalian subjects during treatment of gastric acid related diseases as compared to the non-isotopically enriched compound; wherein said compound of Formula 1 has the structure
Figure imgf000145_0001
or a single enantiomer, a mixture of the (+)-enantiomer and the (-)- enantiomer, a mixture of about 90% or more by weight of the (-)-enantiomer and about 10% or less by weight of the (+)-enantiomer, a mixture of about 90% or more by weight of the (+)-enantiomer and about 10% or less by weight of the (-)- enantiomer, an individual diastereomer, a mixture of diastereomers, or a pharmaceutically acceptable salt, solvate, or prodrug thereof, wherein:
Ri, R4, Rg and R1O are each independently hydrogen or deuterium;
R2, R3, R6, and R8 are each independently selected from the group consisting of hydrogen, deuterium, Ci-C6 alkyl, and Ci-C6 alkyloxy;
R5 is selected from the group consisting Of-CH2-, -CHD- and -CD2-; and
R7 is selected from the group consisting of hydrogen, deuterium, -NO2, Ci-C6 alkyl, and Ci-C6 alkyloxy; provided that said compound of Formula 1 contains at least one deuterium atom; and provided that deuterium enrichment in said compound of Formula 1 is at least about 1%..
39. Use of a compound of Formula I for the preparation of a medicament for treatment of gastric acid related diseases by inhibition of gastric acid secretion comprising administering to a mammalian subject in need of treatment a therapeutically effective amount of a gastric H+, K+-ATPase inhibitor comprising a compound of Formula 1 wherein said amount of said gastric H+, K+-ATPaSe inhibitor affects a decreased inhibition of at least one cytochrome P450 isoform in mammalian subjects during treatment of gastric acid related diseases as compared to the non-isotopically enriched compound; wherein said compound of Formula 1 has the structure
Figure imgf000146_0001
or a single enantiomer, a mixture of the (+)-enantiomer and the (-)- enantiomer, a mixture of about 90% or more by weight of the (-)-enantiomer and about 10% or less by weight of the (+)-enantiomer, a mixture of about 90% or more by weight of the (+)-enantiomer and about 10% or less by weight of the (-)- enantiomer, an individual diastereomer, a mixture of diastereomers, or a pharmaceutically acceptable salt, solvate, or prodrug thereof, wherein:
R1, R4, R9 and R1O are each independently hydrogen or deuterium;
R2, R3, R6, and R8 are each independently selected from the group consisting of hydrogen, deuterium, C1-C6 alkyl, and C1-C6 alkyloxy;
R5 is selected from the group consisting Of-CH2-, -CHD- and -CD2-; and
R7 is selected from the group consisting of hydrogen, deuterium, -NO2, C1-C6 alkyl, and C1-C6 alkyloxy; provided that said compound of Formula 1 contains at least one deuterium atom; and provided that deuterium enrichment in said compound of Formula 1 is at least about 1%.
40. The use of Claim 39, wherein said cytochrome P450 isoform is selected from the group consisting of CYPlAl, CYP1A2, CYPlBl, CYP2A6, CYP2A13, CYP2B6, CYP2C8, CYP2C9, CYP2C18, CYP2C19, CYP2D6, CYP2E1, CYP2G1, CYP2J2, CYP2R1, CYP2S1, CYP3A4, CYP3A5, CYP3A5P1, CYP3A5P2, CYP3A7, CYP4A11, CYP4B1, CYP4F2, CYP4F3, CYP4F8, CYP4F11, CYP4F12, CYP4X1, CYP4Z1, CYP5A1, CYP7A1, CYP7B1, CYP8A1, CYP8B1, CYPIlAl, CYPIlBl, CYP11B2, CYP17, CYP19, CYP21, CYP24, CYP26A1, CYP26B1, CYP27A1, CYP27B1, CYP39, CYP46, and CYP51,
41. Use of a compound of Formula I for the preparation of a medicament for treatment of gastric acid related diseases by inhibition of gastric acid secretion comprising administering to a mammalian subject in need of treatment a therapeutically effective amount of a gastric H+, K -ATPase inhibitor comprising a compound of Formula 1 so as to elicit an improved antisecretory effect during the treatment of gastric acid related diseases as compared to the non-isotopically enriched compound; wherein said compound of Formula 1 has the structure
Figure imgf000147_0001
or a single enantiomer, a mixture of the (+)-enantiomer and the (-)- enantiomer, a mixture of about 90% or more by weight of the (-)-enantiomer and about 10% or less by weight of the (+)-enantiomer, a mixture of about 90% or more by weight of the (+)-enantiomer and about 10% or less by weight of the (-)- enantiomer, an individual diastereomer, a mixture of diastereomers, or a pharmaceutically acceptable salt, solvate, or prodrug thereof, wherein:
R1, R4, R9 and R10 are each independently hydrogen or deuterium;
R-5 R3, RO, and R8 are each independently selected from the group consisting of hydrogen, deuterium, C1-C6 alkyl, and C1-C6 alkyloxy;
R5 is selected from the group consisting of -CH2-, -CHD- and -CD2-; and
R7 is selected from the group consisting of hydrogen, deuterium, -NO2, Ci-C6 alkyl, and Ci-C6 alkyloxy; provided that said compound of Formula 1 contains at least one deuterium atom; and provided that deuterium enrichment in said compound of Formula 1 is at least about 1%.
42. Use of a compound of Formula I for the preparation of a medicament for treatment of gastric acid related diseases by inhibition of gastric acid secretion comprising administering to a mammalian subject in need of treatment a therapeutically effective amount of a gastric H+, K+-ATPase inhibitor comprising a compound of Formula 1 wherein said amount of said gastric H+, K+-ATPase inhibitor elicits an improved clinical effect comprising accelerated rate of healing and accelerated rate of symptom relief during the treatment of gastric related diseases as compared to the non-isotopically enriched compound; wherein said compound of Formula 1 has the structure
Figure imgf000148_0001
or a single enantiomer, a mixture of the (+)-enantiomer and the (-)- enantiomer, a mixture of about 90% or more by weight of the (-)-enantiomer and about 10% or less by weight of the (+)-enantiomer, a mixture of about 90% or more by weight of the (+)-enantiomer and about 10% or less by weight of the (-)- enantiomer, an individual diastereomer, a mixture of diastereomers, or a pharmaceutically acceptable salt, solvate, or prodrug thereof, wherein:
R1, R4, R9 and R10 are each independently hydrogen or deuterium;
R2, R3, R6, and R8 are each independently selected from the group consisting of hydrogen, deuterium, C1-C6 alkyl, and C1-C6 alkyloxy;
R5 is selected from the group consisting Of-CH2-, -CHD- and -CD2-; and
R7 is selected from the group consisting of hydrogen, deuterium, -NO2, Ci-C6 alkyl, and Ci-C6 alkyloxy; provided that said compound of Formula 1 contains at least one deuterium atom; and provided that deuterium enrichment in said compound of Formula 1 is at least about 1%.
43. Use of a compound of Formula I for the preparation of a medicament for treatment of a bacterial infection caused or mediated by Helicobacter pylori, comprising administering to a mammalian subject in need thereof an effective amount of a nitric oxide- releasing non-steroidal anti-inflammatory drug (NSAID) and a compound of Formula 1; wherein said compound of Formula 1 has the structure
Figure imgf000149_0001
or a single enantiomer, a mixture of the (+)-enantiomer and the (-)- enantiomer, a mixture of about 90% or more by weight of the (-)-enantiomer and about 10% or less by weight of the (+)-enantiomer, a mixture of about 90% or more by weight of the (+)-enantiomer and about 10% or less by weight of the (-)- enantiomer, an individual diastereomer, a mixture of diastereomers, or a pharmaceutically acceptable salt, solvate, or prodrug thereof wherein:
R1, R4, R9 and R10 are each independently hydrogen or deuterium;
R2, R3, R6, and R8 are each independently selected from the group consisting of hydrogen, deuterium, C1-C6 alkyl, and C1-C6 alkyloxy;
R5 is selected from the group consisting Of-CH2-, -CHD- and -CD2-; and
R7 is selected from the group consisting of hydrogen, deuterium, -NO2, C1-C6 alkyl, and Ci-C6 alkyloxy; provided that said compound of Formula 1 contains at least one deuterium atom; and provided that deuterium enrichment in said compound of Formula 1 is at least about 1%.
44. The use of Claim 43, wherein said NSAID and said compound of Formula 1 are administered simultaneously, or separately, or sequentially.
45. Use of a compound of Formula I for the preparation of a medicament for treatment of gastric acid related diseases by inhibition of gastric acid secretion comprising administering to a mammalian subject in need of treatment a therapeutically effective amount of a gastric H+, K+-ATPase inhibitor comprising a compound of Formula 1 wherein said compound of Formula 1 has the structure 006/038819
Figure imgf000150_0001
or a single enantiomer, a mixture of the (+)-enantiomer and the (-)- enantiomer, a mixture of about 90% or more by weight of the (-)-enantiomer and about 10% or less by weight of the (+)-enantiomer, a mixture of about 90% or more by weight of the (+)-enantiomer and about 10% or less by weight of the (-)- enantiomer, an individual diastereomer, a mixture of diastereomers, or a pharmaceutically acceptable salt, solvate, or prodrug thereof wherein:
R1, R4, R9 and R1O are each independently hydrogen or deuterium;
R2, R3, R6, and R8 are each independently selected from the group consisting of hydrogen, deuterium, C1-C6 alkyl, and C1-C6 alkyloxy;
R5 is selected from the group consisting Of-CH2-, -CHD- and -CD2-; and
R7 is selected from the group consisting of hydrogen, deuterium, -NO2, C1-C6 alkyl, and C1-C6 alkyloxy; provided that said compound of Formula 1 contains at least one deuterium atom; and provided that deuterium enrichment in said compound of Formula 1 is at least about 1%.
PCT/US2006/038819 2005-10-06 2006-10-04 Deuterated inhibitors of gastric h+, k+-atpase with enhanced therapeutic properties WO2007041630A1 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
CN2006800426099A CN101309917B (en) 2005-10-06 2006-10-04 Inhibitors of the gastric h+, k+-atpase with enhanced therapeutic properties
AU2006299424A AU2006299424A1 (en) 2005-10-06 2006-10-04 Deuterated inhibitors of gastric H+, K+-ATPase with enhanced therapeutic properties
BRPI0617987-8A BRPI0617987A2 (en) 2005-10-06 2006-10-04 composition, pharmaceutical composition, effervescent dosage form, multiple unit oral oral pharmaceutical composition, extended release pharmaceutical dosage form, enteric coated pharmaceutical dosage form, stable pharmaceutical dosage form for oral administration to mammalian subjects, method for treating diseases acid-related diseases by inhibiting gastric acid secretion, method for treating a bacterial infection caused or caused by helicobacter pylori, process for preparing a compound of formula 3, process for preparing a compound of formula 5, use of a compound of formula 1 for the preparation of a medicament for treating gastric acid-related diseases by inhibiting gastric acid secretion, use of a compound of formula 1 for the preparation of a medicament for treating a bacterial infection caused or caused by helicobacter pyl or use of a compound of formula 1 for the preparation of a medicament for treating gastric acid-related diseases by inhibiting gastric acid secretion
CA002624179A CA2624179A1 (en) 2005-10-06 2006-10-04 Deuterated inhibitors of gastric h+, k+-atpase with enhanced therapeutic properties
JP2008534658A JP2009511481A (en) 2005-10-06 2006-10-04 Gastric H +, K + -ATPase deuteration inhibitors with enhanced therapeutic properties
EP06816227A EP1934201A1 (en) 2005-10-06 2006-10-04 Deuterated inhibitors of gastric h+, k+-atpase with enhanced therapeutic properties
IL190331A IL190331A0 (en) 2005-10-06 2008-03-20 Deuterated inhibitors of the gastric h+, k+-atpase with enhanced therapeutic properties
US12/413,365 US20090215831A1 (en) 2005-10-06 2009-03-27 Inhibitors of the gastric h+, k+-atpase with enhanced therapeutic properties
US12/413,323 US20090209592A1 (en) 2005-10-06 2009-03-27 Inhibitors of the gastric h+, k+-atpase with enhanced therapeutic properties
HK09103859.5A HK1124336A1 (en) 2005-10-06 2009-04-27 Deuterated inhibitors of gastric h+, k+-atpase with enhanced therapeutic properties

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US72416005P 2005-10-06 2005-10-06
US60/724,160 2005-10-06
US74131605P 2005-12-01 2005-12-01
US60/741,316 2005-12-01

Publications (1)

Publication Number Publication Date
WO2007041630A1 true WO2007041630A1 (en) 2007-04-12

Family

ID=37603090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2006/038819 WO2007041630A1 (en) 2005-10-06 2006-10-04 Deuterated inhibitors of gastric h+, k+-atpase with enhanced therapeutic properties

Country Status (10)

Country Link
US (3) US7598273B2 (en)
EP (1) EP1934201A1 (en)
JP (1) JP2009511481A (en)
CN (1) CN101309917B (en)
AU (1) AU2006299424A1 (en)
BR (1) BRPI0617987A2 (en)
CA (1) CA2624179A1 (en)
HK (1) HK1124336A1 (en)
IL (1) IL190331A0 (en)
WO (1) WO2007041630A1 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008127640A2 (en) * 2007-04-11 2008-10-23 Auspex Pharmaceuticals, Inc. Substituted benzimidazoles
US7598273B2 (en) 2005-10-06 2009-10-06 Auspex Pharmaceuticals, Inc Inhibitors of the gastric H+, K+-ATPase with enhanced therapeutic properties
US7601737B2 (en) 2005-07-26 2009-10-13 Nycomed Gmbh Isotopically substituted proton pump inhibitors
CN101492452B (en) * 2008-01-25 2010-11-17 山东轩竹医药科技有限公司 Sulfhydryl benzimidazole derivative containing dioxepane-pyridine
CN101492464B (en) * 2008-01-25 2011-01-12 山东轩竹医药科技有限公司 Sulfhydryl imidazopyridine derivative containing dioxepane-pyridine
WO2010120797A3 (en) * 2009-04-13 2011-03-31 Auspex Pharmaceuticals, Inc. Methods of reduction of interpatient variability
JP2011516426A (en) * 2008-03-28 2011-05-26 コンサート ファーマシューティカルズ インコーポレイテッド Quinazoline derivatives and methods of treatment
JP2012501328A (en) * 2008-09-02 2012-01-19 アクチミス ファーマシューティカルズ インコーポレーテッド Isotopically enriched pyrimidin-5-yl acetic acid derivatives as CRTH2 antagonists
JP2012502038A (en) * 2008-09-03 2012-01-26 テバ ファーマシューティカル インダストリーズ リミティド 2-oxo-1,2-dihydro-quinoline modulator of immune function
JP2013519708A (en) * 2010-02-19 2013-05-30 ノバルティス アーゲー Deuterated pyrrolopyrimidine compounds as CDK4 / 6 inhibitors
CN103204819A (en) * 2013-04-15 2013-07-17 公安部物证鉴定中心 Deuterated diazepam and preparation method thereof
WO2014039421A1 (en) * 2012-09-04 2014-03-13 Celgene Corporation Isotopologues of 3-(5-amino-2-methyl-4-oxoquinazolin-3(4h)-yl) piperidine-2-6-dione and methods of preparation thereof
US9035050B2 (en) 2008-02-29 2015-05-19 Concert Pharmaceuticals, Inc. Substituted xanthine derivatives
US9061060B2 (en) 2008-07-15 2015-06-23 Theracos Inc. Deuterated benzylbenzene derivatives and methods of use
US9074233B2 (en) 2010-09-01 2015-07-07 Concert Pharmaceuticals, Inc. Process for preparing an enantiomerically enriched, deuterated secondary alcohol from a corresponding ketone without reducing deuterium incorporation
US9085788B2 (en) 2010-09-01 2015-07-21 Concert Pharmaceuticals, Inc. Process for preparing an enantiomerically enriched, deuterated secondary alcohol from a corresponding ketone without reducing deuterium incorporation
US9260432B2 (en) 2009-09-02 2016-02-16 Concert Pharmaceuticals, Inc. Substituted derivatives of bicyclic [4.3.0] heteroaryl compounds
US9328113B2 (en) 2012-04-13 2016-05-03 Concert Pharmaceuticals, Inc. Substituted xanthine derivatives
US9492457B2 (en) 2009-02-27 2016-11-15 Concert Pharmaceuticals, Inc. Substituted xanthine derivatives

Families Citing this family (275)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7683177B2 (en) * 2003-06-10 2010-03-23 Teva Pharmaceutical Industries Ltd Process for preparing 2-[(pyridinyl)methyl]sulfinyl-substituted benzimidazoles and novel chlorinated derivatives of pantoprazole
US7863274B2 (en) * 2005-07-29 2011-01-04 Concert Pharmaceuticals Inc. Deuterium enriched analogues of tadalafil as PDE5 inhibitors
CA2616383C (en) * 2005-07-29 2015-06-09 Concert Pharmaceuticals Inc. Novel benzo[d][1,3]-dioxol derivatives
CA2646229A1 (en) * 2006-03-16 2007-09-27 Vertex Pharmaceuticals Incorporated Deuterated hepatitis c protease inhibitors
US20070276042A1 (en) * 2006-05-26 2007-11-29 Auspex Pharmaceuticals, Inc. Preparation and utility of substituted carboxylic acid compounds
US20080051422A1 (en) * 2006-08-22 2008-02-28 Concert Pharmaceuticals Inc. 4-Aminoquinazoline derivatives and methods of use thereof
US20110053964A1 (en) * 2006-08-22 2011-03-03 Roger Tung 4-aminoquinazoline derivatives and methods of use thereof
CA2664940A1 (en) * 2006-10-20 2008-06-12 Concert Pharmaceuticals Inc. 3-(dihydro-1h-pyrazolo [4,3-d] pyrimidin-5-yl)-4-propoxybenzenesulfonamide derivatives and methods of use
US20080280927A1 (en) * 2006-10-20 2008-11-13 Concert Pharmaceuticals Inc. 3-(dihydro-1h-pyrazolo[4,3-d]pyrimidin-5-yl)-4-propoxybenzenesulfonamide derivatives and methods of use
US20090197899A1 (en) * 2006-10-20 2009-08-06 Concert Pharmaceuticals Inc. 3-(Dihydro-1H-pyrazolo[4,3-d]pyrimidin-5-yl)-4-propoxybenzenesulfonamide Derivatives and Methods of Use
US20090270425A1 (en) * 2006-10-20 2009-10-29 Concert Pharmaceuticals Inc. 3-(dihydro-1h-pyrazolo[4,3-d]pyrimidin-5-yl)-4-propoxybenzenesulfonamide derivatives and methods of use
WO2008066620A2 (en) * 2006-10-20 2008-06-05 Concert Pharmaceuticals Inc. Dibenzothiazepine derivatives
JP5302200B2 (en) * 2006-10-23 2013-10-02 コンサート ファーマシューティカルズ インコーポレイテッド Oxazolidinone derivatives and methods of use
US8796267B2 (en) 2006-10-23 2014-08-05 Concert Pharmaceuticals, Inc. Oxazolidinone derivatives and methods of use
US7932235B2 (en) * 2006-11-17 2011-04-26 Concert Pharmaceuticals, Inc. Triazolyl tropane derivatives
WO2008076949A2 (en) * 2006-12-15 2008-06-26 Concert Pharmaceuticals Inc. Quinazoline derivatives and methods of treatment
US20100260674A1 (en) * 2006-12-15 2010-10-14 Concert Pharmaceuticals, Inc. Quinazoline derivatives and methods of treatment
US20090325976A1 (en) * 2006-12-21 2009-12-31 Concert Pharmaceuticals Inc. Prostacyclin derivatives
US8071596B2 (en) * 2007-01-12 2011-12-06 Concert Pharmaceuticals, Inc. Endothelin receptor antagonists
US8080549B2 (en) * 2007-01-12 2011-12-20 Concert Pharmaceuticals, Inc. Endothelin receptor antagonists
US20080262006A1 (en) * 2007-02-02 2008-10-23 Harbeson Scott L Selective endothelin type-a antagonists
WO2008106125A2 (en) * 2007-02-26 2008-09-04 Concert Pharmaceuticals, Inc. Deuterated derivatives of silodosin as alpha la-adrenoceptor antagonists
US20100076010A1 (en) * 2007-02-26 2010-03-25 Concert Pharmaceuticals, Inc. Alpha 1a-adrenoceptor antagonists
WO2008109175A1 (en) * 2007-03-07 2008-09-12 Concert Pharmaceuticals, Inc. Deuterated piperazine derivatives as anti-anginal compounds
CA2681628C (en) 2007-03-16 2016-10-18 Concert Pharmaceuticals, Inc. Inhibitors of cholesterol ester transfer protein
WO2008130863A2 (en) * 2007-04-11 2008-10-30 Auspex Pharmaceuticals, Inc. Substituted benzimidazoles
US8198305B2 (en) * 2007-04-13 2012-06-12 Concert Pharmaceuticals Inc. 1,2-benzisoxazol-3-yl compounds
ES2401914T3 (en) 2007-04-25 2013-04-25 Concert Pharmaceuticals Inc. Cilostazol analogues
US8349817B2 (en) * 2007-04-25 2013-01-08 Concert Pharmaceuticals, Inc. Analogues of cilostazol
PL2522667T3 (en) * 2007-05-01 2015-01-30 Concert Pharmaceuticals Inc Morphinan compounds
CA2685924A1 (en) * 2007-05-01 2008-11-13 Concert Pharmaceuticals Inc. Naphthyl(ethyl)acetamides
DK2792662T3 (en) 2007-05-01 2016-07-25 Concert Pharmaceuticals Inc MORPHINANE COMPOUNDS
WO2008141021A1 (en) * 2007-05-08 2008-11-20 Concert Pharmaceuticals, Inc. Deuterated derivatives of tetrahydrotriazolopyrazine compounds and their use as dpp-iv inhibitors
US20080306151A1 (en) * 2007-06-11 2008-12-11 Protia, Llc Deuterium-enriched fenofibrate
WO2008156632A1 (en) * 2007-06-12 2008-12-24 Concert Pharmaceuticals, Inc. Azapeptide derivatives
CA2690379A1 (en) * 2007-06-13 2008-12-24 Auspex Pharmaceuticals, Inc. Substituted piperazines
US20090005366A1 (en) * 2007-06-19 2009-01-01 Protia, Llc Deuterium-enriched olanzapine
US20080318920A1 (en) * 2007-06-19 2008-12-25 Protia, Llc Deuterium-enriched ezetimibe
US7915309B2 (en) * 2007-06-20 2011-03-29 Protia, Llc Deuterium-enriched oseltamivir
US20080319007A1 (en) * 2007-06-21 2008-12-25 Protia, Llc Deuterium-enriched montelukast
CA2702317A1 (en) * 2007-07-09 2009-01-15 Concert Pharmaceuticals, Inc. Novel pyrimidinecarboxamide derivatives
EP2190841B1 (en) * 2007-08-14 2013-05-15 Concert Pharmaceuticals Inc. Substituted oxazolidinone derivatives
US20090062561A1 (en) * 2007-08-29 2009-03-05 Protia, Llc Deuterium-enriched latanoprost
US20090062299A1 (en) * 2007-08-29 2009-03-05 Protia, Llc Deuterium-enriched doxazosin
US20090062385A1 (en) * 2007-08-29 2009-03-05 Protia, Llc Deuterium-enriched fesoterodine
US20090062393A1 (en) * 2007-08-29 2009-03-05 Protia, Llc Deuterium-enriched pregabalin
US20090062374A1 (en) * 2007-08-29 2009-03-05 Protia, Llc Deuterium-enriched lasofoxifene
US20090062305A1 (en) * 2007-08-29 2009-03-05 Protia, Llc Deuterium-enriched cetirizine
US20090062399A1 (en) * 2007-08-29 2009-03-05 Protia, Llc Deuterium-enriched sertraline
US20090062283A1 (en) * 2007-08-29 2009-03-05 Protia, Llc Deuterium-enriched linezolid
US20090062316A1 (en) * 2007-08-29 2009-03-05 Protia, Llc Deuterium-enriched pelitrexol
US20090069410A1 (en) * 2007-09-09 2009-03-12 Protia, Llc Deuterium-enriched paclitaxel
US20090069413A1 (en) * 2007-09-09 2009-03-12 Protia, Llc Deuterium-enriched olopatadine
US20090131485A1 (en) * 2007-09-10 2009-05-21 Concert Pharmaceuticals, Inc. Deuterated pirfenidone
US20090069339A1 (en) * 2007-09-11 2009-03-12 Protia, Llc Deuterium-enriched ciprofloxacin
US20090069431A1 (en) * 2007-09-12 2009-03-12 Protia, Llc Deuterium-enriched milnacipran
WO2009035662A1 (en) * 2007-09-12 2009-03-19 Concert Pharmaceuticals, Inc. Deuterated 4 -oxoquinoline derivatives for the treatment of hiv infection
US20090076165A1 (en) * 2007-09-12 2009-03-19 Protia, Llc Deuterium-enriched memantine
US8288414B2 (en) * 2007-09-12 2012-10-16 Deuteria Pharmaceuticals, Inc. Deuterium-enriched lenalidomide
EP2200997B9 (en) 2007-09-13 2016-01-13 Concert Pharmaceuticals Inc. Synthesis of deuterated benzodioxoles
US20090076112A1 (en) * 2007-09-13 2009-03-19 Protia, Llc Deuterium-enriched eltrombopag
US20090076118A1 (en) * 2007-09-13 2009-03-19 Protia, Llc Deuterium-enriched saxagliptin
US7919516B2 (en) * 2007-09-13 2011-04-05 Protia, Llc Deuterium-enriched ondansetron
US20090076161A1 (en) * 2007-09-13 2009-03-19 Protia, Llc Deuterium-enriched bupropion
US20090076116A1 (en) * 2007-09-13 2009-03-19 Protia, Llc Deuterium-enriched carvediolo
US20090075965A1 (en) * 2007-09-13 2009-03-19 Protia, Llc Deuterium-enriched amoxicilin
US20090076010A1 (en) * 2007-09-13 2009-03-19 Protia, Llc Deuterium-enriched lamotrigine
US20090075991A1 (en) * 2007-09-14 2009-03-19 Protia, Llc Deuterium-enriched efavirenz
US20090076148A1 (en) * 2007-09-14 2009-03-19 Protia, Llc Deuterium-enriched pravastatin
US20090076038A1 (en) * 2007-09-14 2009-03-19 Protia, Llc Deuterium-enriched entecavir
US20090076034A1 (en) * 2007-09-14 2009-03-19 Protia, Llc Deuterium-enriched bms-690514
US20090076039A1 (en) * 2007-09-14 2009-03-19 Protia, Llc Deuterium-enriched valacyclovir
US20090076102A1 (en) * 2007-09-14 2009-03-19 Protia, Llc Deuterium-enriched muraglitazar
US20090075994A1 (en) * 2007-09-14 2009-03-19 Protia, Llc Deuterium-enriched radafaxine
US20090076028A1 (en) * 2007-09-15 2009-03-19 Protia, Llc Deuterium-enriched itraconazole
US20090076000A1 (en) * 2007-09-15 2009-03-19 Protia, Llc Deuterium-enriched mycophenolate mofetil
US20090076164A1 (en) * 2007-09-15 2009-03-19 Protia, Llc Deuterium-enriched tapentadol
US20090076128A1 (en) * 2007-09-15 2009-03-19 Protia Llc Deuterium-enriched topiramate
US20090076163A1 (en) * 2007-09-15 2009-03-19 Protia, Llc Deuterium-enriched dapoxetine
US20090076138A1 (en) * 2007-09-15 2009-03-19 Protia, Llc Deuterium-enriched darunavir
US20090076018A1 (en) * 2007-09-15 2009-03-19 Protia, Llc Deuterium-enriched ranolazine
US20090076157A1 (en) * 2007-09-15 2009-03-19 Protia, Llc Deuterium-enriched senicapoc
US20090076040A1 (en) * 2007-09-15 2009-03-19 Protia, Llc Deuterium-enriched valganciclovir
US20090075944A1 (en) * 2007-09-15 2009-03-19 Protia, Llc Deuterium-enriched ibandronate
US20090076264A1 (en) * 2007-09-15 2009-03-19 Protia, Llc Deuterium-enriched rivaroxaban
US20090076017A1 (en) * 2007-09-15 2009-03-19 Protia, Llc Deuterium-enriched trabectedin
US20090076144A1 (en) * 2007-09-17 2009-03-19 Protia, Llc Deuterium-enriched bazedoxifene
US20090076027A1 (en) * 2007-09-17 2009-03-19 Protia, Llc Deuterium-enriched lurasidone
US20090076126A1 (en) * 2007-09-17 2009-03-19 Protia, Llc Deuterium-enriched enalapril
US20090118238A1 (en) * 2007-09-17 2009-05-07 Protia, Llc Deuterium-enriched alendronate
US20090076154A1 (en) * 2007-09-17 2009-03-19 Protia, Llc Deuterium-enriched vorinostat
US20090076117A1 (en) * 2007-09-17 2009-03-19 Protia, Llc Deuterium-enriched laropiprant
US20090076058A1 (en) * 2007-09-17 2009-03-19 Protia, Llc Deuterium-enriched finasteride
US20090076167A1 (en) * 2007-09-17 2009-03-19 Protia, Llc Deuterium-enriched tramiprosate
US20090076011A1 (en) * 2007-09-19 2009-03-19 Protia, Llc Deuterium-enriched tirapazamine
US20090075997A1 (en) * 2007-09-19 2009-03-19 Protia, Llc Deuterium-enriched satavaptan
US20090076127A1 (en) * 2007-09-19 2009-03-19 Protia, Llc Deuterium-enriched larotaxel
US20090076159A1 (en) * 2007-09-19 2009-03-19 Protia, Llc Deuterium-enriched eplivanserin
US20090082454A1 (en) * 2007-09-25 2009-03-26 Protia, Llc Deuterium-enriched disufenton
US20090082334A1 (en) * 2007-09-25 2009-03-26 Protia, Llc Deuterium-enriched quetiapine
US20090082462A1 (en) * 2007-09-25 2009-03-26 Protia, Llc Deuterium-enriched armodafinil
US20090082364A1 (en) * 2007-09-26 2009-03-26 Protia, Llc Deuterium-enriched levocedtirizine
US20090082335A1 (en) * 2007-09-26 2009-03-26 Protia, Llc Deuterium-enriched oxcarbazepine
US20090082459A1 (en) * 2007-09-26 2009-03-26 Protia, Llc Deuterium-enriched guanfacine
US20090082452A1 (en) * 2007-09-26 2009-03-26 Protia, Llc Deuterium-enriched lumiracoxib
US20090082363A1 (en) * 2007-09-26 2009-03-26 Protia, Llc Deuterium-enriched posaconazole
US20090082436A1 (en) * 2007-09-26 2009-03-26 Protia, Llc Deuterium-enriched rivastigmine
US20090082387A1 (en) * 2007-09-26 2009-03-26 Protia, Llc Deuterium-enriched nvp-bez234
US8722710B2 (en) 2007-09-26 2014-05-13 Deuterx, Llc Deuterium-enriched pioglitazone
US20090082471A1 (en) * 2007-09-26 2009-03-26 Protia, Llc Deuterium-enriched fingolimod
US20090082442A1 (en) * 2007-09-26 2009-03-26 Protia, Llc Deuterium-enriched lubiprostone
US20090143363A1 (en) * 2007-10-15 2009-06-04 Concert Pharmaceuticals, Inc. Deuterated lorcaserin
US8410124B2 (en) * 2007-10-18 2013-04-02 Concert Pharmaceuticals Inc. Deuterated etravirine
WO2009054964A1 (en) * 2007-10-22 2009-04-30 Concert Pharmaceuticals, Inc. Alpha-aminoamide derivatives
US20090131363A1 (en) * 2007-10-26 2009-05-21 Harbeson Scott L Deuterated darunavir
US8592487B2 (en) * 2007-10-26 2013-11-26 Concert Pharmaceuticals, Inc. Deuterated darunavir
US20090175824A1 (en) * 2007-11-20 2009-07-09 Craig Masse Peptides for the treatment of HCV infections
EP2222166B9 (en) * 2007-12-10 2012-11-07 Concert Pharmaceuticals Inc. Heterocyclic kinase inhibitors
US8084464B2 (en) * 2007-12-18 2011-12-27 Concert Pharmaceuticals, Inc. Tetrahydroisoquinoline derivatives
WO2009094216A1 (en) * 2008-01-22 2009-07-30 Concert Pharmaceuticals Inc. Derivatives of gefitinib
WO2009094210A1 (en) * 2008-01-22 2009-07-30 Concert Pharmaceuticals Inc. Vandetanib derivatives
WO2009105604A1 (en) * 2008-02-20 2009-08-27 Auspex Pharmaceuticals, Inc. Substituted triazolopyridines
EP2268604B1 (en) * 2008-03-14 2017-02-15 Retrotope, Inc. Therapies for cancer using isotopically substituted lysine
EP2276774B1 (en) * 2008-03-14 2016-08-17 Retrotope, Inc. Therapeutic substances that modulate genome methylation
WO2009126844A2 (en) * 2008-04-09 2009-10-15 Concert Pharmaceuticals Inc. Derivatives of 3-(2-hydroxy-5-methyphenyl)-n,n-diisopropyl-3-phenylpropylamine and methods of use thereof
US8367674B2 (en) * 2008-04-17 2013-02-05 Concert Pharmaceuticals, Inc. Piperazine derivatives
US20110129549A1 (en) * 2008-04-17 2011-06-02 Liu Julie F Tricyclic benzo[5,6]cyclohepta[1,2-b]pyridine derivatives and uses thereof
US20100120786A1 (en) * 2008-04-17 2010-05-13 Concert Pharmaceuticals, Inc. Piperazine Derivatives
WO2009146310A1 (en) * 2008-05-28 2009-12-03 Concert Pharmaceuticals Inc. Deuterated tizanidine
US8354557B2 (en) * 2008-06-17 2013-01-15 Concert Pharmaceuticals, Inc. Synthesis of deuterated morpholine derivatives
WO2010011868A2 (en) * 2008-07-23 2010-01-28 Auspex Pharmaceuticals Pyridine sulfonamide modulators of endothelin-a-receptor
WO2010019557A1 (en) * 2008-08-12 2010-02-18 Concert Pharmaceuticals Inc. N-phenyl-2-pyrimidineamine derivatives
ES2451542T3 (en) 2008-08-29 2014-03-27 Concert Pharmaceuticals Inc. Substituted triazolo-pyridazine derivatives
US20100105755A1 (en) * 2008-09-12 2010-04-29 Auspex Pharmaceuticals, Inc. Substituted benzamide modulators of dopamine receptor
US8704001B2 (en) * 2008-09-16 2014-04-22 Concert Pharmaceuticals, Inc. Deuterated 2-amino-3-hydroxypropanoic acid derivatives
WO2010033270A1 (en) * 2008-09-17 2010-03-25 Auspex Pharmaceuticals, Inc. Dibenzothiazepine modulators of dopamine, alpha adrenergic, and serotonin receptors
ES2750825T3 (en) * 2008-09-19 2020-03-27 Concert Pharmaceuticals Inc Deuterated morphinan compounds
US20100087455A1 (en) * 2008-10-06 2010-04-08 Auspex Pharmaceuticals, Inc. Substituted xanthine compounds
AU2009305563C1 (en) 2008-10-17 2015-09-03 Signature Therapeutics, Inc. Pharmaceutical compositions with attenuated release of phenolic opioids
US20100099701A1 (en) * 2008-10-20 2010-04-22 Auspex Pharmaceuticals, Inc. Isoquinolinone modulators of 5-ht3 receptors
US9045453B2 (en) 2008-11-14 2015-06-02 Concert Pharmaceuticals, Inc. Substituted dioxopiperidinyl phthalimide derivatives
US20100137215A1 (en) * 2008-11-25 2010-06-03 Concert Pharmaceuticals Inc. Novel tetrahydro-1h-pyrido[4,3-b]indoles
US20110313004A1 (en) * 2008-12-04 2011-12-22 Concert Pharmaceuticals, Inc. Deuterated pyridinones
US20100143354A1 (en) * 2008-12-04 2010-06-10 Auspex Pharmaceuticals, Inc. Triazine dna modifiers
US20100144657A1 (en) * 2008-12-09 2010-06-10 Auspex Pharmaceuticals, Inc. PHENYLPIPERIDINE MODULATORS OF mu-OPIOID RECEPTORS
WO2010075086A2 (en) * 2008-12-15 2010-07-01 Auspex Pharmaceuticals, Inc. Pyrrolidinone inhibitors of pde-4
ES2575689T3 (en) * 2008-12-23 2016-06-30 Aquilus Pharmaceuticals, Inc Compounds and methods for the treatment of pain and other diseases
EP2396312A1 (en) * 2009-02-11 2011-12-21 Celgene Corporation Isotopologues of lenalidomide
US20110053961A1 (en) * 2009-02-27 2011-03-03 Concert Pharmaceuticals, Inc. Substituted xanthine derivatives
US8563554B2 (en) 2009-03-17 2013-10-22 Concert Pharmaceuticals, Inc. Deuterated pyrazinoisoquinoline compounds
US8778998B2 (en) * 2009-04-10 2014-07-15 Auspex Pharmaceuticals, Inc. Biphenyl-3-carboxylic acid modulators of beta-3-adrenoreceptor
WO2010123999A2 (en) * 2009-04-21 2010-10-28 Auspex Pharmaceuticals, Inc. 1-methylpyrazole modulators of substance p, calcitonin gene-related peptide, adrenergic receptor, and/or 5-ht receptor
NZ620074A (en) 2009-04-22 2015-09-25 Axikin Pharmaceuticals Inc 2,5-disubstituted arylsulfonamide ccr3 antagonists
CA2759251C (en) 2009-04-23 2017-01-03 Concert Pharmaceuticals, Inc. 4-hydroxybutyric acid analogs
US20100305173A1 (en) * 2009-04-30 2010-12-02 Concert Pharmaceuticals, Inc. Hydroxyethylamino sulfonamide derivatives
JP2012526810A (en) 2009-05-13 2012-11-01 イントラ−セルラー・セラピーズ・インコーポレイテッド Organic compounds
US8410082B2 (en) 2009-05-22 2013-04-02 Concert Pharmaceuticals, Inc. Fluorinated diaryl urea derivatives
WO2010144499A2 (en) * 2009-06-09 2010-12-16 Medolution Limited Urea derivatives as kinase inhibitors
JP5852565B2 (en) 2009-06-18 2016-02-03 コンサート ファーマシューティカルズ インコーポレイテッド Deuterated isoindoline-1,3-dione derivatives as PDE4 and TNF-α inhibitors
WO2011005520A1 (en) 2009-06-23 2011-01-13 Concert Pharmaceuticals, Inc. Deuterium-modified triazolo-pyridazine derivatives as gaba-a receptor modulators
WO2011009075A2 (en) * 2009-07-17 2011-01-20 Rigel Pharmaceuticals, Inc. Deuterated 2, 4-pyrimidinediamine compounds and prodrugs thereof and their uses
EP2456311A4 (en) * 2009-07-24 2013-01-23 Concert Pharmaceuticals Inc Substituted imidazotriazines
US8575348B2 (en) * 2009-07-28 2013-11-05 Auspex Pharmaceuticals, Inc Quinolone inhibitors of lipoprotein-associated phospholipase A2
US9512104B2 (en) 2009-07-28 2016-12-06 Auspex Pharmaceuticals, Inc. Quinolone inhibitors of lipoprotein-associated phospholipase A2
US8637524B2 (en) * 2009-07-28 2014-01-28 Auspex Pharmaceuticals, Inc Pyrimidinone inhibitors of lipoprotein-associated phospholipase A2
US8618116B2 (en) * 2009-08-03 2013-12-31 Daljit Singh Dhanoa Deuterium-enriched pyrimidine compounds and derivatives
EP2464355A4 (en) * 2009-08-14 2013-01-02 Concert Pharmaceuticals Inc Substituted triazolophthalazine derivatives
US8658236B2 (en) 2009-08-21 2014-02-25 Deuteria Beverages, Llc Alcoholic compositions having a lowered risk of acetaldehydemia
EP2473052A4 (en) * 2009-09-02 2013-03-20 Concert Pharmaceuticals Inc Substituted xanthine derivatives
US9493477B2 (en) 2009-09-08 2016-11-15 Signature Therapeutics, Inc. Compositions comprising enzyme-cleavable ketone-modified opioid prodrugs and optional inhibitors thereof
WO2011041584A2 (en) 2009-09-30 2011-04-07 President And Fellows Of Harvard College Methods for modulation of autophagy through the modulation of autophagy-enhancing gene products
US8278460B2 (en) * 2009-10-15 2012-10-02 Concert Pharmaceuticals, Inc. Substituted benzimidazoles
CA2778907A1 (en) * 2009-10-28 2011-05-12 Anadys Pharmaceuticals, Inc. Deuterated 5,6-dihydro-1h-pyridin-2-one compounds
WO2011060112A1 (en) 2009-11-12 2011-05-19 Osi Pharmaceuticals, Inc. Deuterated tyrosine kinase inhibitors
WO2011063001A1 (en) * 2009-11-18 2011-05-26 Concert Pharmaceuticals, Inc. Niacin prodrugs and deuterated versions thereof
BR112012012085A2 (en) * 2009-11-21 2016-05-17 Hoffmann La Roche heterocyclic antiviral compounds
US20110178180A1 (en) * 2010-01-18 2011-07-21 Kurt Nielsen Deuterium-enriched colchicine, thiocolchicine, and derivatives thereof; methods of preparation; and use thereof
EP2539347A2 (en) * 2010-02-24 2013-01-02 Auspex Pharmaceuticals, Inc. Trimethoxyphenyl inhibitors of tyrosine kinase
EP2542075A4 (en) * 2010-03-01 2014-11-05 Concert Pharmaceuticals Inc Fluorouracil derivatives
US8513434B2 (en) * 2010-03-02 2013-08-20 Concert Pharmaceuticals Inc. Tetrahydronaphthalene derivatives
US8575361B2 (en) 2010-03-02 2013-11-05 Concert Pharmaceuticals Inc. Tetrahydronaphthalene derivatives
US8575221B2 (en) 2010-03-17 2013-11-05 Concert Pharmaceuticals, Inc. Derivatives of dimethylcurcumin
WO2011133149A1 (en) * 2010-04-21 2011-10-27 Pharmacofore, Inc. Compositions comprising enzyme-cleavable opioid prodrugs and inhibitors thereof
EP2560486B1 (en) 2010-04-21 2018-11-21 Signature Therapeutics, Inc. Compositions comprising enzyme-cleavable amphetamine prodrugs and inhibitors thereof
US9238020B2 (en) 2010-04-21 2016-01-19 Signature Therapeutics, Inc. Compositions comprising enzyme-cleavable phenol-modified tapentadol prodrug
US20110262355A1 (en) 2010-04-21 2011-10-27 Jenkins Thomas E Compositions comprising enzyme-cleavable opioid prodrugs and inhibitors thereof
EP2560490A1 (en) * 2010-04-21 2013-02-27 Signature Therapeutics, Inc. Compositions comprising enzyme-cleavable prodrugs of active agents and inhibitors thereof
US9107922B2 (en) 2010-07-16 2015-08-18 Concert Pharmaceuticals, Inc. Pyrimidinecarboxamide derivatives
CN103249697B (en) * 2010-09-03 2016-06-15 梯瓦制药国际有限责任公司 It is useful as fixed (pridopidine) deuterated analogue of Puli many of dopaminergic stabilizer
WO2012096886A1 (en) 2011-01-11 2012-07-19 Signature Therapeutics, Inc. Compositions comprising enzyme-cleavable oxycodone prodrug
ES2584634T3 (en) 2011-01-11 2016-09-28 Signature Therapeutics, Inc. Compositions comprising an enzymatically cleavable oxycodone prodrug
WO2012099915A1 (en) * 2011-01-19 2012-07-26 Hongwen Zhu Thiazolidine derivatives and their therapeutic use
ES2804540T3 (en) 2011-02-14 2021-02-08 Concert Pharmaceuticals Inc Deuterated analogs of 4-hydroxybutyric acid
US9145390B2 (en) 2011-03-03 2015-09-29 Concert Pharmaceuticals, Inc. Derivatives of pyrazole-substituted amino-heteroaryl compounds
WO2012122028A2 (en) 2011-03-04 2012-09-13 Concert Pharmaceuticals Inc. Pyrazinoisoquinoline compounds
WO2012122420A2 (en) 2011-03-09 2012-09-13 Pharmacofore, Inc. Opioid prodrugs with heterocyclic linkers
AU2012225337B2 (en) 2011-03-09 2016-04-28 Signature Therapeutics, Inc. Active agent prodrugs with heterocyclic linkers
US9090585B2 (en) 2011-03-28 2015-07-28 Deuterx, Llc 2,6-dioxo-3-deutero-piperdin-3-yl-isoindoline compounds
US20140213553A1 (en) * 2011-05-03 2014-07-31 Concert Pharmaceuticals Inc. Carbamoylpyridone derivatives
JP6092849B2 (en) 2011-05-04 2017-03-08 バランス セラピューティックス, インコーポレイテッドBalance Therapeutics, Inc. Pentylenetetrazole derivatives
HUE047354T2 (en) 2011-05-18 2020-04-28 Vertex Pharmaceuticals Europe Ltd Deuterated derivatives of ivacaftor
CA2860489C (en) * 2012-02-08 2019-11-12 Merck Patent Gmbh Deuterated thiazolidinone analogues as agonists for follicle stimulating hormone receptor
WO2013159026A1 (en) 2012-04-20 2013-10-24 Concert Pharmaceuticals, Inc. Deuterated rigosertib
US20150197525A1 (en) * 2012-06-15 2015-07-16 Concert Pharmaceuticals, Inc. Deuterated derivatives of ruxolitinib
WO2014008417A1 (en) 2012-07-04 2014-01-09 Concert Pharmaceuticals, Inc. Deuterated vercirnon
ES2694202T3 (en) 2012-07-12 2018-12-19 Concert Pharmaceuticals, Inc. Deuterated Idebenone
EA201590296A1 (en) 2012-07-30 2015-07-30 Консерт Фармасьютикалс Инк. DEUTERATED IBRUTINIB
MX361499B (en) 2012-08-17 2018-12-06 Concert Pharmaceuticals Inc Deuterated baricitinib.
EP2888222A1 (en) * 2012-08-22 2015-07-01 Concert Pharmaceuticals Inc. Deuterated 4-hydroxybutyric acid analogs
EP2892884A1 (en) * 2012-09-07 2015-07-15 Axikin Pharmaceuticals, Inc. Isotopically enriched arylsulfonamide ccr3 antagonists
EP2922838B1 (en) 2012-10-22 2018-03-14 Concert Pharmaceuticals Inc. Solid forms of {s-3-(4-amino-1-oxo-isoindolin-2-yl)(piperidine-3,4,4,5,5-d5)-2,6-dione} .
WO2014110189A1 (en) 2013-01-09 2014-07-17 Concert Pharmaceuticals Inc. Deuterated momelotinib
US9540340B2 (en) 2013-01-14 2017-01-10 Deuterx, Llc 3-(5-substituted-4-oxoquinazolin-3(4H)-yl)-3-deutero-piperidine-2,6-dione derivatives and compositions comprising and methods of using the same
WO2014121036A1 (en) * 2013-02-01 2014-08-07 Deuterx, Llc 5-deutero-2,4-thiazolidinedione and 5-deutero-2,4-oxazolidinedione derivatives and compositions comprising and methods of using the same
WO2014127331A1 (en) 2013-02-17 2014-08-21 Intra-Cellular Therapies, Inc. Novel uses
CA2941560A1 (en) 2013-03-14 2014-09-25 Deuterx, Llc 3-(substituted-4-oxo-quinazolin-3(4h)-yl)-3-deutero-piperidine-2,6-dione derivatives
WO2014152843A1 (en) 2013-03-14 2014-09-25 Deuterx, Llc Deuterium-enriched 2,4-thiazolidinediones and methods of treatment
EP2968268B1 (en) 2013-03-15 2020-07-29 Concert Pharmaceuticals Inc. Inhibitors of the enzyme udp-glucose: n-acyl-sphingosine glucosyltransferase
US9676790B2 (en) 2013-08-30 2017-06-13 Concert Pharmaceuticals, Inc. Substituted thienotriazolodiazapines
WO2015085004A1 (en) 2013-12-03 2015-06-11 Intra-Cellular Therapies, Inc. Novel methods
EP3077397B1 (en) * 2013-12-06 2019-09-18 Vertex Pharmaceuticals Inc. 2-amino-6-fluoro-n-[5-fluoro-pyridin-3-yl]pyrazolo[1,5-a]pyrimidin-3-carboxamide compound useful as atr kinase inhibitor, its preparation, different solid forms and radiolabelled derivatives thereof
WO2015095713A1 (en) 2013-12-20 2015-06-25 Deuterx, Llc Methods of treating neurological and other disorders using enantiopure deuterium-enriched bupropion
ES2831326T3 (en) 2014-01-15 2021-06-08 Poxel Sa Methods to treat neurological, metabolic, and other disorders using deuterium-enriched enantiopure pioglitazone
EP3099299A4 (en) * 2014-01-27 2017-10-04 Auspex Pharmaceuticals, Inc. Benzoquinoline inhibitors of vesicular monoamine transporter 2
MX2016010213A (en) 2014-02-07 2017-04-13 Auspex Pharmaceuticals Inc Novel pharmaceutical formulations.
US9694017B2 (en) 2014-02-10 2017-07-04 Concert Pharmaceuticals, Inc. Substituted triazolobenzodiazepines
MX2021014508A (en) 2014-04-04 2023-05-18 Intra Cellular Therapies Inc Organic compounds.
ES2732442T3 (en) * 2014-06-20 2019-11-22 Intra Cellular Therapies Inc Organic compounds
WO2016022893A1 (en) 2014-08-07 2016-02-11 Intra-Cellular Therapies, Inc. Organic compounds
JP2017527614A (en) * 2014-09-02 2017-09-21 ブピンダー シン Deuterated or non-deuterated molecules and pharmaceutical formulations
WO2016069630A1 (en) 2014-10-27 2016-05-06 Concert Pharmaceuticals, Inc. Pyrimidine phosphonic acid esters bearing at least one deuterium atom
CA2966452A1 (en) * 2014-12-17 2016-06-23 Samuel David Brown Substituted bicyclic compounds as bromodomain inhibitors
US20180022710A1 (en) 2015-01-29 2018-01-25 Signal Pharmaceuticals, Llc Isotopologues of 2-(tert-butylamino)-4-((1r,3r,4r)-3-hydroxy-4-methylcyclohexylamino)-pyrimidine-5-carboxamide
US10196384B2 (en) 2015-03-31 2019-02-05 Vertex Pharmaceuticals (Europe) Limited Deuterated CFTR modulators
SI3277681T1 (en) * 2015-04-02 2019-09-30 Merck Patent Gmbh Imidazolonylquinolines and their use as atm kinase inhibitors
WO2016176335A1 (en) * 2015-04-27 2016-11-03 Concert Pharmaceuticals, Inc. Deuterated otx-015
CN107698620A (en) * 2015-06-23 2018-02-16 江苏天士力帝益药业有限公司 A kind of deuterated thieno piperidine derivative, preparation method and applications
AU2015399642B2 (en) * 2015-06-26 2020-04-09 Chongqing Dikang Erle Pharma Co. Ltd. Novel phosphodiesterase type-5 inhibitor and application thereof
US9809603B1 (en) 2015-08-18 2017-11-07 Deuterx, Llc Deuterium-enriched isoindolinonyl-piperidinonyl conjugates and oxoquinazolin-3(4H)-yl-piperidinonyl conjugates and methods of treating medical disorders using same
EP3352758A4 (en) 2015-09-25 2018-08-01 Vertex Pharmaceuticals (Europe) Limited Deuterated cftr potentiators
US9688659B2 (en) * 2015-10-21 2017-06-27 NeuForm Pharmaceuticals, Inc. Deuterated compounds for treating hematologic malignancies, and compositions and methods thereof
PT3377476T (en) * 2015-11-16 2022-12-29 Ptc Therapeutics Inc Hydrogen isotope-enriched analogues of 1,2,4-oxadiazole benzoic acid compounds, compositions and uses thereof
WO2017087795A1 (en) 2015-11-19 2017-05-26 Concert Pharmaceuticals, Inc. Deuterated epi-743
PT3838274T (en) 2016-01-26 2023-12-18 Intra Cellular Therapies Inc Pyrido[3',4':4,5]pyrrolo[1,2,3-de]quinoxaline derivative for use in the treatment of cns disorders
CN108541255B (en) * 2016-02-02 2019-06-14 深圳市塔吉瑞生物医药有限公司 A kind of steroid compound and the composition comprising the compound and application thereof
US10442761B2 (en) 2016-02-16 2019-10-15 Concert Pharmaceuticals, Inc. Deuterated GFT-505
CN113754661A (en) 2016-03-25 2021-12-07 细胞内治疗公司 Organic compounds
US10682354B2 (en) 2016-03-28 2020-06-16 Intra-Cellular Therapies, Inc. Compositions and methods
US11331316B2 (en) 2016-10-12 2022-05-17 Intra-Cellular Therapies, Inc. Amorphous solid dispersions
US10961245B2 (en) 2016-12-29 2021-03-30 Intra-Cellular Therapies, Inc. Substituted heterocycle fused gamma-carbolines for treatment of central nervous system disorders
JP6987868B2 (en) 2016-12-29 2022-01-05 イントラ−セルラー・セラピーズ・インコーポレイテッドIntra−Cellular Therapies, Inc. Organic compounds
RU2767410C2 (en) 2017-03-24 2022-03-17 Интра-Селлулар Терапиз, Инк. New compositions and methods
KR102714561B1 (en) * 2017-05-16 2024-10-10 버텍스 파마슈티칼스 인코포레이티드 Deuterated pyridone amides and their prodrugs as modulators of sodium channels
CN109498811A (en) * 2017-09-15 2019-03-22 江苏吉贝尔药业股份有限公司 A kind of compound preparation containing potassium ion competitive sour retarding agent and non-steroidal anti-inflammatory drugs
MX2020005336A (en) 2017-11-22 2020-08-13 Concert Pharmaceuticals Inc Deuterated analogs of d-serine and uses thereof.
WO2019109021A1 (en) 2017-12-01 2019-06-06 Vertex Pharmaceuticals Incorporated Processes for making modulators of cystic fibrosis transmembrane conductance regulator
CN111362949B (en) * 2017-12-22 2021-12-21 深圳市塔吉瑞生物医药有限公司 Substituted pyrazolo [1,5-a ] pyrimidine compound, and pharmaceutical composition and application thereof
WO2019144885A1 (en) 2018-01-23 2019-08-01 深圳市塔吉瑞生物医药有限公司 Substituted pyrazolo[1,5-a]pyrimidine macrocyclic compound
US11839614B2 (en) 2018-01-31 2023-12-12 Intra-Cellular Therapies, Inc. Methods for treating or mitigating cardiotoxicity characterized by inhibition of adenosine A2 signaling and/or adenosine A2 receptor expression
JP2021517902A (en) * 2018-04-16 2021-07-29 深▲チェン▼市塔吉瑞生物医薬有限公司Shenzhen TargetRx, Inc. Substituted pyrorotriazine compounds and their pharmaceutical compositions and their use
EP3810134A4 (en) * 2018-06-19 2022-03-30 Celecor Therapeutics, Inc. Deuterated ruc-4
EP3816162A4 (en) * 2018-07-12 2021-08-11 Shenzhen TargetRx, Inc. Diarylpyrazole compound, composition comprising same, and use thereof
CN112584837A (en) 2018-08-31 2021-03-30 细胞内治疗公司 New method
EP3843739A4 (en) 2018-08-31 2022-06-01 Intra-Cellular Therapies, Inc. Novel methods
WO2020063676A1 (en) * 2018-09-26 2020-04-02 江苏恒瑞医药股份有限公司 Ligand-drug conjugate of exatecan analogue, preparation method therefor and application thereof
US11851409B2 (en) * 2019-01-25 2023-12-26 Qingdao Jião Pharmaceutical Technology Co., Ltd Deuterated benzylaminopyrimidinedione derivatives and use thereof
US12065395B2 (en) 2019-04-03 2024-08-20 Sun Pharmaceutical Industries, Inc. Processes for the preparation of deuterated D-serine
WO2020227491A1 (en) * 2019-05-07 2020-11-12 The Trustees Of The University Of Pennsylvania Deuterated triazolopyrimidines
CN114072150A (en) 2019-07-07 2022-02-18 细胞内治疗公司 New method
CN110194773B (en) * 2019-07-26 2019-11-22 上海美迪西生物医药股份有限公司 Pyrrolo-pyrazole analog derivative, preparation method and its application in medicine
US11319313B2 (en) 2020-06-30 2022-05-03 Poxel Sa Crystalline forms of deuterium-enriched pioglitazone
US11767317B1 (en) 2020-06-30 2023-09-26 Poxel Sa Methods of synthesizing enantiopure deuterium-enriched pioglitazone
US20230150965A1 (en) * 2021-11-05 2023-05-18 Terran Biosciences, Inc. Isotopically enriched n-methyl-1,3-benzodioxolylbutanamine (mbdb) and stereoisomers thereof
WO2023092044A2 (en) 2021-11-17 2023-05-25 Terran Biosciences, Inc. Phenethylamine compounds salts, polymorphic forms and methods of use thereof
CN116726011A (en) * 2022-03-04 2023-09-12 丽珠医药集团股份有限公司 Application of ilaprazole in regulating digestive tract microecology

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0005129A1 (en) * 1978-04-14 1979-10-31 Aktiebolaget Hässle Substituted pyridylsulfinylbenzimidazoles having gastric acid secretion properties, pharmaceutical preparations containing same, and intermediates for their preparation

Family Cites Families (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL75400A (en) 1984-06-16 1988-10-31 Byk Gulden Lomberg Chem Fab Dialkoxypyridine methyl(sulfinyl or sulfonyl)benzimidazoles,processes for the preparation thereof and pharmaceutical compositions containing the same
JPS6150978A (en) 1984-08-16 1986-03-13 Takeda Chem Ind Ltd Pyridine derivative and preparation thereof
CA1327010C (en) 1986-02-13 1994-02-15 Tadashi Makino Stabilized solid pharmaceutical composition containing antiulcer benzimidazole compound and its production
US5433959A (en) 1986-02-13 1995-07-18 Takeda Chemical Industries, Ltd. Stabilized pharmaceutical composition
US6749864B2 (en) 1986-02-13 2004-06-15 Takeda Chemical Industries, Ltd. Stabilized pharmaceutical composition
US5026560A (en) 1987-01-29 1991-06-25 Takeda Chemical Industries, Ltd. Spherical granules having core and their production
DK0382489T3 (en) 1989-02-10 1995-01-16 Takeda Chemical Industries Ltd Monoclonal Anti-Human Papillomavirus Antibody, Hybridoma Cell Producing This, and Method of Preparation thereof
YU48263B (en) 1991-06-17 1997-09-30 Byk Gulden Lomberg Chemische Fabrik Gmbh. PROCEDURE FOR OBTAINING PANTOPRAZOLE PHARMACEUTICAL PRODUCT
US5464632C1 (en) 1991-07-22 2001-02-20 Prographarm Lab Rapidly disintegratable multiparticular tablet
US5877192A (en) 1993-05-28 1999-03-02 Astra Aktiebolag Method for the treatment of gastric acid-related diseases and production of medication using (-) enantiomer of omeprazole
SE9301830D0 (en) 1993-05-28 1993-05-28 Ab Astra NEW COMPOUNDS
US6875872B1 (en) 1993-05-28 2005-04-05 Astrazeneca Compounds
SE9302395D0 (en) 1993-07-09 1993-07-09 Ab Astra NEW PHARMACEUTICAL FORMULATION
SE9302396D0 (en) 1993-07-09 1993-07-09 Ab Astra A NOVEL COMPOUND FORM
US6334997B1 (en) 1994-03-25 2002-01-01 Isotechnika, Inc. Method of using deuterated calcium channel blockers
US6221335B1 (en) * 1994-03-25 2001-04-24 Isotechnika, Inc. Method of using deuterated calcium channel blockers
CN1087725C (en) * 1994-03-25 2002-07-17 同位素技术有限公司 Enhancement of the effect of drugs by deuteration
US6645988B2 (en) 1996-01-04 2003-11-11 Curators Of The University Of Missouri Substituted benzimidazole dosage forms and method of using same
US6699885B2 (en) 1996-01-04 2004-03-02 The Curators Of The University Of Missouri Substituted benzimidazole dosage forms and methods of using same
US5840737A (en) 1996-01-04 1998-11-24 The Curators Of The University Of Missouri Omeprazole solution and method for using same
US6489346B1 (en) 1996-01-04 2002-12-03 The Curators Of The University Of Missouri Substituted benzimidazole dosage forms and method of using same
SE510650C2 (en) 1997-05-30 1999-06-14 Astra Ab New association
US6884429B2 (en) * 1997-09-05 2005-04-26 Isotechnika International Inc. Medical devices incorporating deuterated rapamycin for controlled delivery thereof
DE69832984T2 (en) * 1997-10-08 2006-09-21 Isotechnika, Inc., Edmonton DEUTERATED AND UNINTERRATED CYCLOSPORIN ANALOGUES AND THEIR USE AS IMMUNOMODULATING AGENTS
ES2559766T3 (en) 1998-05-18 2016-02-15 Takeda Pharmaceutical Company Limited Disintegrable tablets in the mouth
DE69942777D1 (en) 1998-07-28 2010-10-28 Takeda Pharmaceutical Easily disintegrating solid preparation
US6191148B1 (en) 1998-08-11 2001-02-20 Merck & Co., Inc. Omerazole process and compositions thereof
US6166213A (en) 1998-08-11 2000-12-26 Merck & Co., Inc. Omeprazole process and compositions thereof
SE9803772D0 (en) 1998-11-05 1998-11-05 Astra Ab Pharmaceutical formulation
UA72748C2 (en) 1998-11-10 2005-04-15 Astrazeneca Ab A novel crystalline form of omeprazole
US6440710B1 (en) * 1998-12-10 2002-08-27 The Scripps Research Institute Antibody-catalyzed deuteration, tritiation, dedeuteration or detritiation of carbonyl compounds
NO309305B1 (en) * 1999-02-19 2001-01-15 Norsk Hydro As Use of benzaldehyde derivatives in the manufacture of pharmaceutical preparations for the prevention and / or treatment of cancer, as well as certain new benzaldehyde derivatives
TWI275587B (en) 1999-06-17 2007-03-11 Takeda Chemical Industries Ltd A crystal of (R)-2-[[[3-methyl-4-(2,2,2-trifluoroethoxy)-2-pyridyl]methyl]sulfinyl]-1H-benzimidazole
PT1104760E (en) * 1999-12-03 2003-06-30 Pfizer Prod Inc SULFAMOYL-HETEROARILPIRAZOLE COMPOUNDS AS ANALGESIC AND ANTI-INFLAMMATORY AGENTS
EP1134290A3 (en) 2000-03-14 2004-01-02 Pfizer Products Inc. Pharmacophore models for the identification of the CYP2D6 inhibitory potency of selective serotonin reuptake inhibitors
WO2002015908A1 (en) 2000-08-18 2002-02-28 Takeda Chemical Industries, Ltd. Injections
MY137726A (en) 2000-11-22 2009-03-31 Nycomed Gmbh Freeze-dried pantoprazole preparation and pantoprazole injection
EP1337525B8 (en) 2000-12-01 2011-10-05 Takeda Pharmaceutical Company Limited Process for the crystallization of (r)- or (s)-lansoprazole
DE10123129A1 (en) * 2001-05-02 2002-11-14 Berolina Drug Dev Ab Svedala Deuterated 3-piperidinopropiophenones and medicinal products containing these compounds
DE10162121A1 (en) * 2001-12-12 2003-06-18 Berolina Drug Dev Ab Svedala Deuterated substituted pyrazolyl-benzenesulfonamides and drugs containing these compounds
TW200413273A (en) * 2002-11-15 2004-08-01 Wako Pure Chem Ind Ltd Heavy hydrogenation method of heterocyclic rings
EA016814B1 (en) 2005-07-26 2012-07-30 Никомед Гмбх Isotopically substituted proton pump inhibitors
AR054583A1 (en) * 2005-07-26 2007-06-27 Altana Pharma Ag PANTOPRAZOL ISOTOPICALLY REPLACED
US7601737B2 (en) 2005-07-26 2009-10-13 Nycomed Gmbh Isotopically substituted proton pump inhibitors
US20080033011A1 (en) 2005-07-29 2008-02-07 Concert Pharmaceuticals Inc. Novel benzo[d][1,3]-dioxol derivatives
AU2006283876A1 (en) 2005-08-22 2007-03-01 Nycomed Gmbh Isotopically substituted benzimidazole derivatives
EP1934215A1 (en) 2005-09-22 2008-06-25 Nycomed GmbH Isotopically substituted imidazopyridine derivatives for the treatment of gastrointestinal disorders
US20100076087A1 (en) * 2005-10-06 2010-03-25 Auspex Pharmaceuticals, Inc. Methods of reduction of interpatient variability
CA2624179A1 (en) 2005-10-06 2007-04-12 Auspex Pharmaceuticals, Inc. Deuterated inhibitors of gastric h+, k+-atpase with enhanced therapeutic properties
US7750168B2 (en) * 2006-02-10 2010-07-06 Sigma-Aldrich Co. Stabilized deuteroborane-tetrahydrofuran complex
CA2654450A1 (en) 2006-06-05 2007-12-13 Auspex Pharmaceuticals, Inc. Preparation and utility of substituted erythromycin analogs
EP2081939B1 (en) 2006-09-21 2011-06-15 RaQualia Pharma Inc Benzimidazole derivatives as selective acid pump inhibitors
WO2008114123A1 (en) 2007-03-21 2008-09-25 Raqualia Pharma Inc. Spiro benzimidazole derivatives as acid pump inhibitors
WO2008127640A2 (en) 2007-04-11 2008-10-23 Auspex Pharmaceuticals, Inc. Substituted benzimidazoles
WO2008130863A2 (en) 2007-04-11 2008-10-30 Auspex Pharmaceuticals, Inc. Substituted benzimidazoles
KR20100105802A (en) 2007-04-19 2010-09-29 콘서트 파마슈티컬즈, 인크. Deuterated morpholinyl compounds
US20090076089A1 (en) * 2007-09-17 2009-03-19 Protia, Llc Deuterium-enriched pantoprazole
US20090258897A1 (en) * 2008-04-11 2009-10-15 Auspex Pharmaceuticals, Inc. Substituted benzimidazoles

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0005129A1 (en) * 1978-04-14 1979-10-31 Aktiebolaget Hässle Substituted pyridylsulfinylbenzimidazoles having gastric acid secretion properties, pharmaceutical preparations containing same, and intermediates for their preparation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TONINI M ET AL: "Novel therapeutic strategies in acid-related disorders", EXPERT OPINION ON THERAPEUTIC PATENTS, ASHLEY PUBLICATIONS, GB, vol. 13, no. 5, 5 May 2003 (2003-05-05), pages 639 - 649, XP002269191, ISSN: 1354-3776 *

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7601737B2 (en) 2005-07-26 2009-10-13 Nycomed Gmbh Isotopically substituted proton pump inhibitors
US7598273B2 (en) 2005-10-06 2009-10-06 Auspex Pharmaceuticals, Inc Inhibitors of the gastric H+, K+-ATPase with enhanced therapeutic properties
WO2008127640A2 (en) * 2007-04-11 2008-10-23 Auspex Pharmaceuticals, Inc. Substituted benzimidazoles
WO2008127640A3 (en) * 2007-04-11 2008-12-04 Auspex Pharmaceuticals Inc Substituted benzimidazoles
CN101492452B (en) * 2008-01-25 2010-11-17 山东轩竹医药科技有限公司 Sulfhydryl benzimidazole derivative containing dioxepane-pyridine
CN101492464B (en) * 2008-01-25 2011-01-12 山东轩竹医药科技有限公司 Sulfhydryl imidazopyridine derivative containing dioxepane-pyridine
US9035050B2 (en) 2008-02-29 2015-05-19 Concert Pharmaceuticals, Inc. Substituted xanthine derivatives
US9493463B2 (en) 2008-02-29 2016-11-15 Concert Pharmaceuticals, Inc. Substituted xanthine derivatives
JP2011516426A (en) * 2008-03-28 2011-05-26 コンサート ファーマシューティカルズ インコーポレイテッド Quinazoline derivatives and methods of treatment
US9061060B2 (en) 2008-07-15 2015-06-23 Theracos Inc. Deuterated benzylbenzene derivatives and methods of use
JP2012501328A (en) * 2008-09-02 2012-01-19 アクチミス ファーマシューティカルズ インコーポレーテッド Isotopically enriched pyrimidin-5-yl acetic acid derivatives as CRTH2 antagonists
JP2015007060A (en) * 2008-09-03 2015-01-15 テバ ファーマシューティカル インダストリーズ リミティド 2-oxo-1,2-dihydro-quinoline modulators of immune function
JP2016183158A (en) * 2008-09-03 2016-10-20 テバ ファーマシューティカル インダストリーズ リミティド 2-oxo-1,2-dihydro-quinoline modulators of immune function
JP2012502038A (en) * 2008-09-03 2012-01-26 テバ ファーマシューティカル インダストリーズ リミティド 2-oxo-1,2-dihydro-quinoline modulator of immune function
US9918987B2 (en) 2009-02-27 2018-03-20 Concert Pharmaceuticals, Inc. Substituted xanthine derivatives
US10335413B2 (en) 2009-02-27 2019-07-02 Concert Pharmaceuticals, Inc. Substituted xanthine derivatives
US9492457B2 (en) 2009-02-27 2016-11-15 Concert Pharmaceuticals, Inc. Substituted xanthine derivatives
WO2010120797A3 (en) * 2009-04-13 2011-03-31 Auspex Pharmaceuticals, Inc. Methods of reduction of interpatient variability
US9260432B2 (en) 2009-09-02 2016-02-16 Concert Pharmaceuticals, Inc. Substituted derivatives of bicyclic [4.3.0] heteroaryl compounds
JP2013519708A (en) * 2010-02-19 2013-05-30 ノバルティス アーゲー Deuterated pyrrolopyrimidine compounds as CDK4 / 6 inhibitors
US9085788B2 (en) 2010-09-01 2015-07-21 Concert Pharmaceuticals, Inc. Process for preparing an enantiomerically enriched, deuterated secondary alcohol from a corresponding ketone without reducing deuterium incorporation
US9074233B2 (en) 2010-09-01 2015-07-07 Concert Pharmaceuticals, Inc. Process for preparing an enantiomerically enriched, deuterated secondary alcohol from a corresponding ketone without reducing deuterium incorporation
US9328113B2 (en) 2012-04-13 2016-05-03 Concert Pharmaceuticals, Inc. Substituted xanthine derivatives
US9682952B2 (en) 2012-09-04 2017-06-20 Celgene Corporation Isotopologues of 3-(5-amino-2-methyl-4-oxoquinazolin-3(4H)-yl) piperidine-2-6-dione and methods of preparation thereof
WO2014039421A1 (en) * 2012-09-04 2014-03-13 Celgene Corporation Isotopologues of 3-(5-amino-2-methyl-4-oxoquinazolin-3(4h)-yl) piperidine-2-6-dione and methods of preparation thereof
CN103204819B (en) * 2013-04-15 2015-03-11 公安部物证鉴定中心 Deuterated diazepam and preparation method thereof
CN103204819A (en) * 2013-04-15 2013-07-17 公安部物证鉴定中心 Deuterated diazepam and preparation method thereof

Also Published As

Publication number Publication date
EP1934201A1 (en) 2008-06-25
AU2006299424A1 (en) 2007-04-12
IL190331A0 (en) 2009-09-22
CA2624179A1 (en) 2007-04-12
CN101309917A (en) 2008-11-19
US20090215831A1 (en) 2009-08-27
BRPI0617987A2 (en) 2011-08-16
JP2009511481A (en) 2009-03-19
US7598273B2 (en) 2009-10-06
US20090209592A1 (en) 2009-08-20
US20070082929A1 (en) 2007-04-12
HK1124336A1 (en) 2009-07-10
CN101309917B (en) 2013-09-11

Similar Documents

Publication Publication Date Title
US7598273B2 (en) Inhibitors of the gastric H+, K+-ATPase with enhanced therapeutic properties
US9422225B2 (en) Substituted phenethylamines with serotoninergic and/or norepinephrinergic activity
JP2009517480A5 (en)
US20110130424A1 (en) Substituted phenylpiperidines with serotoninergic activity and enhanced therapeutic properties
US20110136914A1 (en) Substituted aryloxypropylamines with serotoninergic and/or norepinephrinergic activity
US20090312435A1 (en) Substituted phenethylamines with serotoninergic and/or norepinephrinergic activity
US20100137244A1 (en) Preparation and utility of hmg-coa reductase inhibitors
MX2008004622A (en) Deuterated inhibitors of gastric h+, k+-atpase with enhanced therapeutic properties

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680042609.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006299424

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 566700

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 1145/KOLNP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2006816227

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 190331

Country of ref document: IL

ENP Entry into the national phase

Ref document number: 2624179

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/a/2008/004622

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2008534658

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2006299424

Country of ref document: AU

Date of ref document: 20061004

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: PI0617987

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20080404