NO309305B1 - Use of benzaldehyde derivatives in the manufacture of pharmaceutical preparations for the prevention and / or treatment of cancer, as well as certain new benzaldehyde derivatives - Google Patents

Use of benzaldehyde derivatives in the manufacture of pharmaceutical preparations for the prevention and / or treatment of cancer, as well as certain new benzaldehyde derivatives Download PDF

Info

Publication number
NO309305B1
NO309305B1 NO990814A NO990814A NO309305B1 NO 309305 B1 NO309305 B1 NO 309305B1 NO 990814 A NO990814 A NO 990814A NO 990814 A NO990814 A NO 990814A NO 309305 B1 NO309305 B1 NO 309305B1
Authority
NO
Norway
Prior art keywords
glucopyranose
deoxy
benzylidene
hydroxybenzylidene
galactopyranose
Prior art date
Application number
NO990814A
Other languages
Norwegian (no)
Other versions
NO990814D0 (en
NO990814L (en
Inventor
Bernt Boerretzen
Vidar Moen
Rolf Olaf Larsen
Erik Olai Pettersen
Camilla Bruno Dunsaed
Geir Sagvolden
Original Assignee
Norsk Hydro As
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Norsk Hydro As filed Critical Norsk Hydro As
Priority to NO990814A priority Critical patent/NO309305B1/en
Publication of NO990814D0 publication Critical patent/NO990814D0/en
Priority to PCT/NO2000/000060 priority patent/WO2000048610A1/en
Priority to CA002363670A priority patent/CA2363670A1/en
Priority to SK1161-2001A priority patent/SK11612001A3/en
Priority to CA002362306A priority patent/CA2362306A1/en
Priority to MXPA01008346A priority patent/MXPA01008346A/en
Priority to HU0105280A priority patent/HUP0105280A2/en
Priority to HU0105281A priority patent/HUP0105281A2/en
Priority to SK1160-2001A priority patent/SK11602001A3/en
Priority to JP2000599400A priority patent/JP2002537263A/en
Priority to IL14489500A priority patent/IL144895A0/en
Priority to PL00350519A priority patent/PL350519A1/en
Priority to CN00806338A priority patent/CN1347322A/en
Priority to JP2000599401A priority patent/JP2002537264A/en
Priority to MXPA01008347A priority patent/MXPA01008347A/en
Priority to IL14489600A priority patent/IL144896A0/en
Priority to RU2001123124/15A priority patent/RU2001123124A/en
Priority to CN00806488A priority patent/CN1347323A/en
Priority to EP00906781A priority patent/EP1150689A1/en
Priority to PCT/NO2000/000059 priority patent/WO2000048609A1/en
Priority to AU28341/00A priority patent/AU2834100A/en
Priority to AU28342/00A priority patent/AU2834200A/en
Priority to BR0008302-0A priority patent/BR0008302A/en
Priority to CZ20012965A priority patent/CZ20012965A3/en
Priority to PL00350520A priority patent/PL350520A1/en
Priority to CZ20012966A priority patent/CZ20012966A3/en
Priority to BR0008297-0A priority patent/BR0008297A/en
Priority to EP00906782A priority patent/EP1150690A1/en
Priority to RU2001123035/14A priority patent/RU2001123035A/en
Publication of NO990814L publication Critical patent/NO990814L/en
Publication of NO309305B1 publication Critical patent/NO309305B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H9/00Compounds containing a hetero ring sharing at least two hetero atoms with a saccharide radical
    • C07H9/02Compounds containing a hetero ring sharing at least two hetero atoms with a saccharide radical the hetero ring containing only oxygen as ring hetero atoms
    • C07H9/04Cyclic acetals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7048Compounds having saccharide radicals and heterocyclic rings having oxygen as a ring hetero atom, e.g. leucoglucosan, hesperidin, erythromycin, nystatin, digitoxin or digoxin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/06Antipsoriatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/10Antimycotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • A61P33/02Antiprotozoals, e.g. for leishmaniasis, trichomoniasis, toxoplasmosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/18Acyclic radicals, substituted by carbocyclic rings

Description

Denne oppfinnelsen vedrører en ny anvendelse av benzaldehydderivater som This invention relates to a new use of benzaldehyde derivatives which

anticancer midler. Noen av forbindelsene som anvendes i henhold til denne oppfinnelse er nye perse. anticancer agents. Some of the compounds used in accordance with this invention are novel perse.

De fleste kreftmedikamenter som brukes i dag virker cytotoksisk. Selv om disse Most cancer drugs used today are cytotoxic. Although these

midlene har vist gode resultater ved behandling av noen kreftformer som lymfekreft, leukemi og testikkelkreft, gir de ofte alvorlige og uakseptable bivirkninger som begrenser muligheten for effektiv behandling. Dessuten har kjemoterapi ved en rekke kreftformer som f.eks. ved solide tumorer (karsinom) the agents have shown good results in the treatment of some forms of cancer such as lymphoma, leukemia and testicular cancer, they often produce serious and unacceptable side effects that limit the possibility of effective treatment. In addition, chemotherapy for a number of forms of cancer, such as in solid tumors (carcinoma)

hittil vist seg å ha begrenset verdi, da etablerte cytostatika sjelden bedrer prognosen for pasienten. Kreftcellenes evne til å utvikle motstand mot cytotoksiske produkter er også en hovedårsak til at de ikke kan brukes til behandling av solide tumorer. Derfor er det et behov for nye kreftmedikamenter med færre bivirkninger og en mer selektiv virkning på kreftceller. so far proved to be of limited value, as established cytostatics rarely improve the prognosis for the patient. The ability of cancer cells to develop resistance to cytotoxic products is also a main reason why they cannot be used for the treatment of solid tumors. There is therefore a need for new cancer drugs with fewer side effects and a more selective effect on cancer cells.

Det er kjent bl.a. fra EP-0215395, JP-63264411, JP-8800940, JP-55069510 og EP-0283139 at benzaldehyder og derivater av disse har en selektiv virkning mot It is known i.a. from EP-0215395, JP-63264411, JP-8800940, JP-55069510 and EP-0283139 that benzaldehydes and derivatives thereof have a selective effect against

kreft. cancer.

Aldehyder reagerer med en rekke 0-, S- eller N-holdige nukleofile grupper som hydroksylgrupper, sulfhydrylgrupper og aminogrupper under dannelse av karbonylholdige kondensasjonsprodukter som acetaler, merkaptaler, aminaler etc. Aldehydes react with a number of 0-, S- or N-containing nucleophilic groups such as hydroxyl groups, sulfhydryl groups and amino groups to form carbonyl-containing condensation products such as acetals, mercaptals, aminals etc.

Med primære aminer vil reaksjonen imidlertid normalt føre til en With primary amines, however, the reaction will normally lead to a

addisjonsforbindelse i form av en Schiff-base (et imin). Det er velkjent at in vivo Schiff-base-dannelse er involvert i biokjemiske nøkkelprosesser som addition compound in the form of a Schiff base (an imine). It is well known that in vivo Schiff base formation is involved in key biochemical processes such as

transaminering, dekarboksylering og andre aminosyremodifiserende reaksjoner som katalyseres ved hjelp av pyridoksalfosfat, virkningen av aldolase på transamination, decarboxylation, and other amino acid modifying reactions catalyzed by pyridoxal phosphate, the action of aldolase on

fruktosedifosfat i glykolysen og kondensasjonen av retinal med rodopsin i synsprosessen. Det er også kjent at signalisering gjennom membraner innebærer karbonylkondensasjonsreaksjoner, f.eks. når det skal settes i gang en respons fra immunsystemet. fructose diphosphate in glycolysis and the condensation of retinal with rhodopsin in the visual process. It is also known that signaling through membranes involves carbonyl condensation reactions, e.g. when a response from the immune system is to be initiated.

Dannelsen av iminer skjer ved en totrinnsmekanisme. Ved å tilsette en amino- The formation of imines occurs by a two-step mechanism. By adding an amino-

nukleofil til karbonylgruppen dannes mellomproduktet karbinolamin (aminohydrin), nucleophile to the carbonyl group, the intermediate carbinolamine (aminohydrin) is formed,

deretter følger et dehydreringstrinn ved dannelsen av dobbeltbindingen C=N. Begge trinnene er reversible, men begunstiges ved forskjellige pH-verdier. Derfor går reaksjonen etter en karakteristisk klokkeformet pH-/hastighetsprofil hvor den høyeste totale reaksjonshastigheten opptrer ved moderat pH. then follows a dehydration step in the formation of the double bond C=N. Both steps are reversible, but are favored at different pH values. Therefore, the reaction follows a characteristic bell-shaped pH/rate profile where the highest overall reaction rate occurs at moderate pH.

Imidlertid vet man at Schiff-baser lett dannes også ved fysiologiske betingelser, og mange karbonylkondensasjonsreaksjoner er vel kjent in vivo (E.Schauenstein et. al., Aldehydes in Biological Systems, London, Pion Ltd., 1977). However, it is known that Schiff bases are easily formed also under physiological conditions, and many carbonyl condensation reactions are well known in vivo (E.Schauenstein et. al., Aldehydes in Biological Systems, London, Pion Ltd., 1977).

Schiff-basen er gjerne selv et reaktivt molekyl, og deltar ofte i ytterligere reaksjoner som fører til addisjon av nukleofile enheter til dobbeltbindingen. For visse svovelholdige aminer, spesielt aminosyrene cystein og metionin og for glutation, vil Schiff-basen som dannes først kunne gjennomgå reversibel intern ringdannelse hvor sulfhydrylgruppen adderes til iminet under dannelse av tiazolidinkarboksylat (M.Friedman, The Chemistry and Biochemistry of the Sulfhydryl Group in Amino Acids, Peptides and Proteins, Oxford, Pergamon Press, 1973). The Schiff base is often itself a reactive molecule, and often participates in further reactions that lead to the addition of nucleophilic units to the double bond. For certain sulphur-containing amines, especially the amino acids cysteine and methionine and for glutathione, the Schiff base that is first formed will be able to undergo reversible internal ring formation where the sulfhydryl group is added to the imine to form thiazolidine carboxylate (M.Friedman, The Chemistry and Biochemistry of the Sulfhydryl Group in Amino Acids, Peptides and Proteins, Oxford, Pergamon Press, 1973).

Indikasjoner på reaksjoner mellom karbonylforbindelser og frie aminogrupper i Indications of reactions between carbonyl compounds and free amino groups i

proteiner under dannelse av reversible Schiff-baser ble rapportert av G.E.Means og R.E.Feeney (Chemical Modification of Proteins, s. 125 - 138, San Francisco, Holden-Day, 1971). Aromatiske aldehyder er generelt mer reaktive enn mettede proteins during the formation of reversible Schiff bases was reported by G.E.Means and R.E.Feeney (Chemical Modification of Proteins, pp. 125-138, San Francisco, Holden-Day, 1971). Aromatic aldehydes are generally more reactive than saturated ones

alifatiske aldehyder, og kan danne Schiff-baser selv uten at man fjerner vann under reaksjonen. (R.W.Layer, Chem. Rev. 63 (1963), 489-510). Dette er viktig når man tar i betraktning dannelse av Schiff-baser under fysiologiske betingelser. Med hemoglobin som kilde for aminogrupper har Zaugg et. al. (J. Biol. Chem. 252 aliphatic aldehydes, and can form Schiff bases even without removing water during the reaction. (R.W.Layer, Chem. Rev. 63 (1963), 489-510). This is important when considering the formation of Schiff bases under physiological conditions. With hemoglobin as a source of amino groups, Zaugg et. eel. (J. Biol. Chem. 252

(1977), 8542 - 8548) vist at aromatiske aldehyder er to til tre ganger så reaktive som alifatiske aldehyder for dannelse av Schiff-baser. En forklaring på den begrensede reaktiviteten til alkanalene kunne være at det i vannløsning ved nøytral pH kreves et meget stort overskudd av fritt aldehyd for å forskyve likevekten i retning av Schiff-basedannelse (E.Schauenstein et. al., Aldehydes in Biological Systems, London, Pion Ltd., 1977). (1977), 8542 - 8548) showed that aromatic aldehydes are two to three times as reactive as aliphatic aldehydes for the formation of Schiff bases. An explanation for the limited reactivity of the alkanal channels could be that in water solution at neutral pH a very large excess of free aldehyde is required to shift the equilibrium in the direction of Schiff base formation (E.Schauenstein et. al., Aldehydes in Biological Systems, London , Pion Ltd., 1977).

Benzaldehyd og salicylaldehyd danner lett Schiff-baseiminer med membran-aminogrupper, og det er målt høye likevektskonstanter for reaksjonen av benzaldehyd med aminer (J.J. Pesek og J.H.Frost, Org. Magnet. Res. 5(1976), 173 - 176, J.N.Williams Jr. og R.M.Jacobs, Biochim. Biophys. Acta., 754 (1968), 323 - 331). Med salicylaldehyd kan iminet stabiliseres ytterligere ved hydrogenbinding mellom det enslige elektronparet i iminnitrogenet og orto-hydroksylgruppen (G.E.Means og R.E.Feeney, Chemical Modification of Proteins, s. 125 - 138, San Francisco, Holden-Day, 1971, J.M.Dornish og E.O.Pettersen, Biochem. Pharmac. 35(1990), 309-318). Benzaldehyde and salicylaldehyde readily form Schiff base imines with membrane amino groups, and high equilibrium constants have been measured for the reaction of benzaldehyde with amines (J.J. Pesek and J.H.Frost, Org. Magnet. Res. 5(1976), 173 - 176, J.N.Williams Jr . and R. M. Jacobs, Biochim. Biophys. Acta., 754 (1968), 323-331). With salicylaldehyde, the imine can be further stabilized by hydrogen bonding between the lone pair of electrons in the imine nitrogen and the ortho-hydroxyl group (G.E.Means and R.E.Feeney, Chemical Modification of Proteins, pp. 125 - 138, San Francisco, Holden-Day, 1971, J.M. Dornish and E.O.Pettersen , Biochem. Pharmac. 35(1990), 309-318).

Vi har tidligere vist ved å fotografere reaksjoner mellom radioaktivt merkede reagenser at benzaldehydet ikke går inn i cellene, men bindes til cellemembranen (Dornish, J.M. og Pettersen, E.O., Cancer Letters 25(1985), 235-243). Dette stemmer overens med en tidligere undersøkelse som viser at benzaldehydet reagerte med membranproteinene til E. coli (K.Sakaguchi et. al., Agric. Biol. Chem. 43 (1979), 1775-1777). Det ble også funnet at både pyridoksal og pyridoksal-5-fosfat beskytter cellene mot det cytotoksiske anticancer medikamentet cis-DDP. Cis-DDP virker på kjernen inne i cellen. Selv om pyridoksalet i prinsippet kunne trenge gjennom den lipofile cellemembranen er dette umulig for pyridoksal-5-fosfat på grunn av den ioniske fosfatgruppen. Pyridoksal-5-fosfatet må derfor utøve beskyttelsesvirkningen utenfor cellemembranen. En samtidig observasjon av en forskyvning i spektrogråfisk absorbans for pyridoksal-5-fosfat til kortere bølgelengder samsvarer med dannelse av Schiff-base-addisjonsforbindelser mellom aldehydet og aminogrupper i cellemembranene (J.M.Dornish og E.O.Pettersen, Cancer Lett. 29, (1985), 235 - 243). We have previously shown by photographing reactions between radioactively labeled reagents that the benzaldehyde does not enter the cells, but is bound to the cell membrane (Dornish, J.M. and Pettersen, E.O., Cancer Letters 25(1985), 235-243). This agrees with a previous study showing that the benzaldehyde reacted with the membrane proteins of E. coli (K.Sakaguchi et. al., Agric. Biol. Chem. 43 (1979), 1775-1777). It was also found that both pyridoxal and pyridoxal-5-phosphate protect the cells against the cytotoxic anticancer drug cis-DDP. Cis-DDP acts on the nucleus inside the cell. Although pyridoxal could in principle penetrate the lipophilic cell membrane, this is impossible for pyridoxal-5-phosphate due to the ionic phosphate group. The pyridoxal-5-phosphate must therefore exert its protective effect outside the cell membrane. A simultaneous observation of a shift in spectral grayscale absorbance for pyridoxal-5-phosphate to shorter wavelengths is consistent with the formation of Schiff base addition compounds between the aldehyde and amino groups in the cell membranes (J.M. Dornish and E.O. Pettersen, Cancer Lett. 29, (1985), 235 - 243).

Disse funnene tyder på at aldehyder bindes til aminer og andre nukleofile enheter på cellemembranen ved å danne Schiff-baser og andre kondensasjonsprodukter. Det er kjent at celler stimuleres til vekst av en kaskade av hendelser som virker fra utsiden av cellemembranen. På samme måte kan derivatene i den foreliggende patentsøknaden virke ved å danne addisjonsforbindelser med ligander på cellemembranen og gi opphav til impulser inne i cellen som har betydning for cellevekstparametre som proteinsyntese og mitose, og på uttrykking av immunrespons og tumorundertrykkende gener. Siden kondensasjonsreaksjonene er reversible kan celleeffektene moduleres ved en likevektforskyvning som involverer de molekylene som bindes sammen. At det finnes dynamiske likevekter på kjemisk nivå stemmer overens med den reversible og ikke-giftige virkningsmåten til benzaldehydderivatene. These findings suggest that aldehydes bind to amines and other nucleophilic units on the cell membrane by forming Schiff bases and other condensation products. It is known that cells are stimulated to grow by a cascade of events that act from outside the cell membrane. In the same way, the derivatives in the present patent application can act by forming addition compounds with ligands on the cell membrane and giving rise to impulses inside the cell that have an impact on cell growth parameters such as protein synthesis and mitosis, and on the expression of immune response and tumor suppressor genes. Since the condensation reactions are reversible, the cell effects can be modulated by an equilibrium shift involving the molecules that are bound together. That there are dynamic equilibria at the chemical level is consistent with the reversible and non-toxic mode of action of the benzaldehyde derivatives.

Benzaldehydderivatenes hemming av proteinsyntesen er meget godt studert in vitro i forskningsgruppen vår. I solide tumorer kan den reduserte proteinsyntesen resultere i en mangel på livsviktige proteiner som fører til at cellen dør. Normale celler har en potensiell kapasitet for proteinsyntese som er større enn i de fleste kreftceller i solide tumorer. Dette kan man vise ved å sammenlikne cellesyklustiden for normale stamceller, som ofte er under 10 timer, med cellesyklustiden for de fleste kreftceller i solide tumorer, som typisk er 30-150 timer (se Gustavo og Pileri i: The Cell Cvcle of Cancer, red.: Baserga, Marcel Dekker Inc., N.Y. 1971, s. 99). Siden cellene i gjennomsnitt fordobler proteininnholdet sitt under en cellesyklus betyr dette at det samler seg mer protein i vekststimulerte normale celler enn i de fleste typer kreftceller. The benzaldehyde derivatives' inhibition of protein synthesis has been very well studied in vitro in our research group. In solid tumours, the reduced protein synthesis can result in a lack of vital proteins leading to cell death. Normal cells have a potential capacity for protein synthesis that is greater than in most cancer cells in solid tumors. This can be shown by comparing the cell cycle time of normal stem cells, which is often less than 10 hours, with the cell cycle time of most cancer cells in solid tumors, which is typically 30-150 hours (see Gustavo and Pileri in: The Cell Cycle of Cancer, ed .: Baserga, Marcel Dekker Inc., N.Y. 1971, p. 99). Since cells on average double their protein content during a cell cycle, this means that more protein accumulates in growth-stimulated normal cells than in most types of cancer cells.

Med denne forskjellen mellom kreftceller og normale celler i tankene er det en annen forskjell av liknende viktighet å ta i betraktning: mens normale celler reagerer på vekstregulerende stimuli har kreftceller ingen eller en redusert slik respons. Mens normale celler under ordinære vekstbetingelser kan ha et reservevekstpotensiale, vil derfor kreftceller ha liten eller ingen slik reserve. Hvis proteinsyntesen hemmes kontinuerlig over et langt tidsrom både i kreftceller og normale celler, vil de to celletypene kunne reagere forskjellig. Det normale vevet vil kunne bruke noe av reservevekstpotensialet og dermed opprettholde en normal celleproduksjon. Men kreftvev har liten eller ingen slik reserve. Samtidig er hastigheten for oppsamling av protein i kreftceller nokså lav (d.v.s. proteinsyntesen skjer bare litt raskere enn proteinnedbrytingen). Derfor kan proteinsyntesehemmingen være nok til å gjøre kreftvevet ubalansert med hensyn til proteinoppsamlingen, noe som resulterer i en negativ balanse for visse proteiner. Under kontinuerlig behandling i flere dager vil dette resultere i inaktivering av cellene og nekrose i tumorvevet mens det normale vevet forblir uskadd. With this difference between cancer cells and normal cells in mind, there is another difference of similar importance to consider: while normal cells respond to growth-regulatory stimuli, cancer cells have no or a reduced such response. While normal cells under ordinary growth conditions can have a reserve growth potential, cancer cells will therefore have little or no such reserve. If protein synthesis is continuously inhibited over a long period of time in both cancer cells and normal cells, the two cell types will be able to react differently. The normal tissue will be able to use some of the reserve growth potential and thus maintain normal cell production. But cancerous tissue has little or no such reserve. At the same time, the rate of accumulation of protein in cancer cells is quite low (i.e. protein synthesis occurs only slightly faster than protein breakdown). Therefore, the inhibition of protein synthesis may be enough to make the cancer tissue unbalanced with respect to protein accumulation, resulting in a negative balance for certain proteins. During continuous treatment for several days, this will result in inactivation of the cells and necrosis in the tumor tissue while the normal tissue remains undamaged.

Til dags dato er 5,6-benzyliden-di-askorbinsyre [zilascorb(<2>H)] den mest testede av de forbindelsene som gir reversibel hemming av proteinsyntesen og viser aktivitet mot kreft. Den proteinsyntesehemmende aktiviteten til denne kjente forbindelsen beskrives i detalj av Pettersen et.al. (Anticancer Res., bind 11, s. 1077-1082, 1991) og i EP-0283139. Zilascorb(<2>H) gir tumornekrose in vivo \ implantater av humant tumorvev på nakne mus (Pettersen et al., Br. J. Cancer, bind 67, s. 650-656, 1993). I tillegg til zilascorb(<2>H) er den nærmest beslektede kjente forbindelsen for kreftbehandling 4,6-O-benzyliden-D-glukopyranose (forbindelse 1). Disse to forbindelsene har en kjent generell aktivitet mot kreft og har vært testet klinisk mot en rekke kreftsykdommer. Imidlertid viste ikke noen spesielle kreftsyke organer eller vev seg som mer egnet for behandling enn andre med disse forbindelsene, slik at det ikke var berettiget å utvikle medikamentet kommersielt. To date, 5,6-benzylidene-di-ascorbic acid [zilascorb(<2>H)] is the most tested of the compounds that provide reversible inhibition of protein synthesis and show activity against cancer. The protein synthesis inhibitory activity of this known compound is described in detail by Pettersen et.al. (Anticancer Res., Vol. 11, pp. 1077-1082, 1991) and in EP-0283139. Zilascorb(<2>H) causes tumor necrosis in vivo \ implants of human tumor tissue in nude mice (Pettersen et al., Br. J. Cancer, vol. 67, pp. 650-656, 1993). In addition to zilascorb(<2>H), the closest known compound for cancer treatment is 4,6-O-benzylidene-D-glucopyranose (compound 1). These two compounds have a known general activity against cancer and have been tested clinically against a number of cancers. However, no particular cancerous organs or tissues proved more amenable to treatment than others with these compounds, so developing the drug commercially was not warranted.

Vi har funnet at visse av produktene våre, som for eksempel forbindelse 8, (2-acetamido-4,6-0-(benzyliden-di)-2-deoksy-D-glukopyranose) gir en uventet god virkning på en nakenmusmodell (se eksempel 3, tabell 1). 3 av 8 mus var frie for tumorer, noe som er et usedvanlig resultat for tilsvarende eksperimenter på immunundertrykte arter. Årsaken til denne effekten kan være at acetamidgruppen har en høy affinitet for hyaluronsyrereseptorer. Det er kjent at ondartede svulster er rike på hyaluronsyre og derfor også rike på de tilhørende reseptorene. We have found that certain of our products, such as compound 8, (2-acetamido-4,6-0-(benzylidene-di)-2-deoxy-D-glucopyranose) produce an unexpectedly good effect in a nude mouse model (see example 3, table 1). 3 out of 8 mice were free of tumors, which is an extraordinary result for similar experiments on immunosuppressed species. The reason for this effect may be that the acetamide group has a high affinity for hyaluronic acid receptors. It is known that malignant tumors are rich in hyaluronic acid and therefore also rich in the associated receptors.

Vi har også funnet ved eksperimentene våre at den deutererte analogen til disse forbindelsene er vesentlig mer effektiv enn tilsvarende protonanalog. Forskjellen i virkning er meget påfallende i cellebindingseksperimentet vårt (se eksempel 5 og også eksempel 7). Når et hydrogenatom er substituert med den dobbelt så tunge deuteriumisotopen endres de kinetiske egenskapene til molekylet, siden hastigheten for å bryte C-D-bindingen er lavere enn for å bryte C-H-bindingen. Det er kjent bl.a. fra M.l.Blake et.al., J.Pharm. Sei. 64 (1975), 367-391 at den farmakologiske funksjonen av medikamenter kan endres ved deuterering. We have also found in our experiments that the deuterated analogue of these compounds is significantly more effective than the corresponding proton analogue. The difference in effect is very striking in our cell binding experiment (see Example 5 and also Example 7). When a hydrogen atom is substituted with the twice as heavy deuterium isotope, the kinetic properties of the molecule change, since the rate of breaking the C-D bond is lower than that of breaking the C-H bond. It is known i.a. from M.l.Blake et.al., J.Pharm. Pollock. 64 (1975), 367-391 that the pharmacological function of drugs can be changed by deuteration.

Det er også kjent (EP 0 283 139 og Anticancer Res. 15:1921-1928 (1955)) at når acetalprotonet i 4,6-O-benzyliden-D-glukopyranose erstattes med deuterium (forbindelse 1/forbindelse 2) kan dette virke inn både på proteinsyntesen og den celleoverlevelsesfraksjonen som måles in vitro. Vi tror at en mulig forklaring på denne deuteriumisotopvirkningen på kjemisk nivå kommer av at det deutererte benzaldehydet oksideres langsommere til den inaktive benzosyren, noe som resulterer i en lengre halveringstid for den deutererte aktive ingrediensen på cellenivået. Imidlertid må man bruke medikamentkonsentrasjoner på mer enn 6 mM for å se en signifikant forskjell i fraksjonen av NHIK 3025-celler som overlever når de utsettes for forbindelse 1 sammenliknet med overlevelsesfraksjonen for forbindelse 2. Forskjellen i proteinsyntesehemming var meget liten når disse cellene ble utsatt for konsentrasjoner på 1-10 mM. It is also known (EP 0 283 139 and Anticancer Res. 15:1921-1928 (1955)) that when the acetal proton in 4,6-O-benzylidene-D-glucopyranose is replaced by deuterium (compound 1/compound 2) this can act into both protein synthesis and the cell survival fraction measured in vitro. We believe that a possible explanation for this deuterium isotope effect at the chemical level comes from the fact that the deuterated benzaldehyde is oxidized more slowly to the inactive benzoic acid, resulting in a longer half-life of the deuterated active ingredient at the cellular level. However, one must use drug concentrations greater than 6 mM to see a significant difference in the fraction of NHIK 3025 cells that survive when exposed to compound 1 compared to the survival fraction for compound 2. The difference in protein synthesis inhibition was very small when these cells were exposed to concentrations of 1-10 mM.

Nå gjorde oppfinnerne en helt annen type eksperiment. Adhesjonskraften mellom NHIK 3025-celler og substratum ble målt etter pre-inkubering av cellene i løsninger av forbindelse 1 og 2 (se eksempel 5). Selv ved så lav konsentrasjon som 1 mM så man en forbløffende D-isotopeffekt. Overraskende nok reduserte forbindelse 2 adhesjonskraften signifikant til 1/3 i forhold til kontrollen, mens forbindelse 1 ikke ga noen signifikant reduksjon. Oppfinnerne tror at forbindelse 2 kan interferere med biosyntesen av integriner slik at cellens evne til å binde seg til substratum reduseres. Integriner er strukturelle transmembranproteiner som er viktige for å binde celler til ekstracellulær matriks og for interaksjoner mellom cellene. Å hemme funksjonen til integrinene kan dermed innvirke direkte på kreftcellenes evne til å danne metastaser. Eksperimentet tyder på at integrinene kan være spesielt følsomme for hemming av proteinsyntesen. Forbindelse 2 kan derfor gjerne brukes til å forebygge metastaseprosesser under utvikling av kreft. Now the inventors did a completely different kind of experiment. The adhesion force between NHIK 3025 cells and substratum was measured after pre-incubation of the cells in solutions of compounds 1 and 2 (see example 5). Even at a concentration as low as 1 mM, an astonishing D isotope effect was seen. Surprisingly, compound 2 significantly reduced the adhesion force to 1/3 compared to the control, while compound 1 did not produce any significant reduction. The inventors believe that compound 2 can interfere with the biosynthesis of integrins so that the cell's ability to bind to the substrate is reduced. Integrins are structural transmembrane proteins that are important for binding cells to the extracellular matrix and for interactions between cells. Inhibiting the function of the integrins can thus directly affect the cancer cells' ability to form metastases. The experiment suggests that the integrins may be particularly sensitive to inhibition of protein synthesis. Compound 2 can therefore be used to prevent metastatic processes during the development of cancer.

Den kjemisk induserte karsinogenesen har en mekanisme som likner karsinogenesen til visse virustyper som hepatitt B og C, visse papillomvirus, visse herpesvirus etc. Dette er spesielt tilfelle ved utvikling av leverkreft hos pasienter som er infisert med hepatitt B og C. Man kan derfor anta at en forebyggende behandling av disse pasientene med produkter i henhold til oppfinnelsen kan forebygge eller forsinke utviklingen av leverkreft. Også det faktum at disse produktene har en lav giftighetsprofil (for eksempel forbindelse 2) ville gjøre dem egnet for slik behandling. The chemically induced carcinogenesis has a mechanism similar to the carcinogenesis of certain virus types such as hepatitis B and C, certain papilloma viruses, certain herpes viruses etc. This is especially the case in the development of liver cancer in patients infected with hepatitis B and C. One can therefore assume that a preventive treatment of these patients with products according to the invention can prevent or delay the development of liver cancer. Also, the fact that these products have a low toxicity profile (eg compound 2) would make them suitable for such treatment.

Ved en immunologisk gjenkjennelsesprosess sperres et fragment av et fremmed protein inne i kløften i et MHC-klasse ll-protein på overflaten av en antigenpresenterende celle (APC). Til dette MHC-antistoffkomplekset bindes også reseptoren for en T-hjelpercelle. For å aktivere en T-hjelpercelle trengs minst to signaler. Det primære signalet gis av antigenet selv, via MHC-klasse ll-komplekset og forsterkes av CD4-koreseptorene. Det andre signalet kan fås fra et spesifikt signaliseringsmolekyl som er bundet i plasmamembranen på overflaten av APC-cellen. Et tilsvarende koreseptorprotein befinner seg på overflaten av T-hjelpercellen. Begge signalene er nødvendige for å aktivisere T-cellene. Når de aktiviseres vil de stimulere sin egen formering ved å skille ut interleukinbaserte vekstfaktorer og syntetisere tilsvarende reseptorer på overflaten. Bindingen av interleukinet til disse reseptorene stimulerer så T-cellene direkte til å formere seg. In an immunological recognition process, a fragment of a foreign protein is trapped within the cleft of an MHC class II protein on the surface of an antigen-presenting cell (APC). The receptor for a T-helper cell is also bound to this MHC-antibody complex. To activate a T-helper cell, at least two signals are needed. The primary signal is given by the antigen itself, via the MHC class II complex and is amplified by the CD4 co-receptors. The second signal can be obtained from a specific signaling molecule that is bound in the plasma membrane on the surface of the APC cell. A corresponding coreceptor protein is located on the surface of the T helper cell. Both signals are necessary to activate the T cells. When they are activated, they will stimulate their own reproduction by secreting interleukin-based growth factors and synthesizing corresponding receptors on the surface. The binding of the interleukin to these receptors then directly stimulates the T cells to multiply.

På 1980-tallet ble det kjent at et syklodekstrin-benzaldehydbasert inklusjonskompleks kunne stimulere immunsystemet ved å styrke de lymfokinaktiverte drepercellene i en musemodell (Y. Kuroki et al., J. Cancer Res. Clin. Oncol. 117, (1991), 109-114). In v/fro-studier har senere avslørt naturen til de kjemiske reaksjonene ved APC-donor-/T-cellereseptor-interaksjonsstedene som er ansvarlige for det andre stimulerende signalet, og at disse reaksjonene har form av karbonyl-aminokondensasjoner (Schiff-basedannelse). Videre kan disse interaksjonene imiteres av syntetiske kjemiske enheter. Disse oppdagelsene åpner for nye terapeutiske muligheter for kunstig modulering av immunsystemet. I In the 1980s, it was known that a cyclodextrin-benzaldehyde-based inclusion complex could stimulate the immune system by enhancing the lymphokine-activated killer cells in a mouse model (Y. Kuroki et al., J. Cancer Res. Clin. Oncol. 117, (1991), 109- 114). In v/fro studies have subsequently revealed the nature of the chemical reactions at the APC donor/T cell receptor interaction sites responsible for the second stimulatory signal, and that these reactions take the form of carbonyl-amino condensations (Schiff base formation). Furthermore, these interactions can be imitated by synthetic chemical entities. These discoveries open up new therapeutic possibilities for artificial modulation of the immune system. IN

WO 94/07479 kreves patent for bruk av visse aldehyder og ketoner som danner Schiff-baser og hydrazoner med aminogrupper på T-celleoverflaten. I EP 0609606 WO 94/07479 patent claimed for the use of certain aldehydes and ketones which form Schiff bases and hydrazones with amino groups on the T cell surface. In EP 0609606

A2 er den foretrukne immunstimulerende substansen 4-(2-formyl-3-hydroksyfenoksymetyl)benzosyre (Tucaresol), en forbindelse som opprinnelig var konstruert for å kurere sigdcelleanemi. Denne substansen gis oralt og er systemisk biotilgjengelig. Potensialet til Tucaresol for å kurere et antall sykdommer som f.eks. bakterie-, virus- og protozoinfeksjoner, autoimmunsykdommer og kreft undersøkes nå (H.Chen og J.Rhodes, J. Mol. Med. (1996) 74:497-504) og kombinasjonsstrategier hvor Tucaresol gis sammen med en vaksine for å kurere kronisk hepatitt B, HIV og malignt melanom er under utvikling. A2 is the preferred immunostimulatory substance 4-(2-formyl-3-hydroxyphenoxymethyl)benzoic acid (Tucaresol), a compound originally designed to cure sickle cell anemia. This substance is given orally and is systemically bioavailable. The potential of Tucaresol to cure a number of diseases such as bacterial, viral and protozoan infections, autoimmune diseases and cancer are now being investigated (H.Chen and J.Rhodes, J. Mol. Med. (1996) 74:497-504) and combination strategies where Tucaresol is given together with a vaccine to cure chronic hepatitis B, HIV and malignant melanoma are under development.

Måling av immunparametre in vitro og undersøkelser av virkningene in vivo Measurement of immune parameters in vitro and investigations of the effects in vivo

resulterte i en klokkeformet dose-/responsprofil (H.Chen og J.Rhodes, J. Mol. resulted in a bell-shaped dose/response profile (H.Chen and J.Rhodes, J. Mol.

Med. (1996) 74:497-504). Dette dose-/responsforholdet, som ellers er noe uvanlig, With. (1996) 74:497-504). This dose/response relationship, which is otherwise somewhat unusual,

kan begrunnes ved å anta at en høy konsentrasjon av aldehydmedikamentet fører til at de ko-stimulerende ligandene som trengs for effektiv binding av APC til T- can be justified by assuming that a high concentration of the aldehyde drug leads to the co-stimulatory ligands needed for efficient binding of APC to T-

cellen mettes med medikamentmolekyler slik at virkningen svekkes. En dose som er nok til å danne en dynamisk likevekt som bidrar til stimulering uten å blokkere bindingen mellom cellene ser ut til å være optimal. the cell is saturated with drug molecules so that the effect is weakened. A dose sufficient to form a dynamic equilibrium conducive to stimulation without blocking the binding between cells appears to be optimal.

Generelt er aldehyder i seg selv ustabile overfor oksidasjon. 4-(2-formyl-3-hydroksyfenoksymetyl)benzosyre (Tucaresol) som presenteres i EP-0609606 er betydelig mer aktiv in vivo enn in vitro. Årsaken til dette kan være at medikamentet oksideres i vannløsning in vitro (H.Chen og J.Rhodes, J. Mol. Med. (1996) 74:497- In general, aldehydes themselves are unstable to oxidation. 4-(2-formyl-3-hydroxyphenoxymethyl)benzoic acid (Tucaresol) presented in EP-0609606 is significantly more active in vivo than in vitro. The reason for this may be that the drug is oxidized in aqueous solution in vitro (H.Chen and J.Rhodes, J. Mol. Med. (1996) 74:497-

504). Mange aldehyder er for reaktive til å gis som aldehyder, og selv om benzaldehyd har vist seg å være et aktivt anticancer medikament in vitro, er det svært irriterende og uegnet for direkte bruk in vivo. I et biologisk system vil karbonylgruppen i aldehydet reagere raskt med nukleofile grupper som finnes i store mengder i alle kroppsvæsker. Disse uønskede sidereaksjonene kan føre til rask metabolisering av medikamentet og vanskeligheter med å kontrollere konsentrasjonen i serum av det aktive medikamentet. Å kontrollere medikamentet på cellenivået innen et smalt konsentrasjonsvindu er avgjørende for å oppnå en effektiv immunmodulering. Tucaresol gis oralt som et ubeskyttet aldehyd, og det 504). Many aldehydes are too reactive to be given as aldehydes, and although benzaldehyde has been shown to be an active anticancer drug in vitro, it is highly irritating and unsuitable for direct use in vivo. In a biological system, the carbonyl group in the aldehyde will react rapidly with nucleophilic groups that are present in large quantities in all body fluids. These unwanted side reactions can lead to rapid metabolism of the drug and difficulties in controlling the serum concentration of the active drug. Controlling the drug at the cellular level within a narrow concentration window is essential to achieve effective immunomodulation. Tucaresol is given orally as an unprotected aldehyde, and it

kan være grunn til å mistenke at medikamentet kan være utsatt for oksidasjon og at farmakokinetikken kan være vanskelig å kontrollere. may be reason to suspect that the drug may be subject to oxidation and that the pharmacokinetics may be difficult to control.

Benzaldehydderivatene 4,6-benzyliden-D-glukose og den deutererte analogen (forbindelse 1 og 2) har vist seg å ha høy biotilgjengelighet enten de gis intravenøst eller peroralt. Biotilgjengeligheten for BALB-mus målt som konsentrasjon i serum etter oral tilførsel av forbindelse 2 var 93-99% (C.B. Dunsaed, J.M. Dornish og E.O. Pettersen, Cancer Chemother. Pharmacol. (1995) 35: 464-470). Dessuten kan glukosegruppen ha affinitet til reseptorer på celleoverflaten slik at medikamentet blir mer tilgjengelig på cellenivået. Det frie aldehydet kan lett frigjøres ved hydrolyse av acetalet slik at karbonylgruppen blir tilgjengelig for Schiff-basedannelse med målligandene. The benzaldehyde derivatives 4,6-benzylidene-D-glucose and the deuterated analogue (compounds 1 and 2) have been shown to have high bioavailability whether given intravenously or orally. The bioavailability for BALB mice measured as concentration in serum after oral administration of compound 2 was 93-99% (C.B. Dunsaed, J.M. Dornish and E.O. Pettersen, Cancer Chemother. Pharmacol. (1995) 35: 464-470). In addition, the glucose group can have an affinity for receptors on the cell surface so that the drug becomes more available at the cell level. The free aldehyde can be easily released by hydrolysis of the acetal so that the carbonyl group becomes available for Schiff base formation with the target ligands.

I den foreliggende beskrivelsen er aldehydene derivatiserte med biologisk akseptable karbohydrater som glukose, galaktose og andre og danner acetaler med dem. Sukkergruppen vil dermed gi bidrag til å øke stabiliteten og forbedre biotilgjengeligheten av aldehydfunksjonen for målcellene. Dette fører overraskende nok til at karbonylkondensasjonsreaksjonene blir mer effektive og farmakokinetikken lettere kontrollerbar ved bruk av forbindelsene våre sammenliknet med tidligere kjente forbindelser. In the present disclosure, the aldehydes are derivatized with biologically acceptable carbohydrates such as glucose, galactose and others and form acetals with them. The sugar group will thus contribute to increasing the stability and improving the bioavailability of the aldehyde function for the target cells. Surprisingly enough, this leads to the carbonyl condensation reactions becoming more efficient and the pharmacokinetics easier to control when using our compounds compared to previously known compounds.

For å sammenlikne forbindelse 2 med Tucaresol ble proteinsyntese og inaktivering av celler målt ved like store konsentrasjoner av de to medikamentene. Som det kan ses fra fig. 4 og fig. 5, ble det påvist at forbindelse 2 var mer effektiv enn Tucaresol med hensyn til begge de målte parametrene. To compare compound 2 with Tucaresol, protein synthesis and inactivation of cells were measured at equal concentrations of the two drugs. As can be seen from fig. 4 and fig. 5, it was demonstrated that compound 2 was more effective than Tucaresol with respect to both measured parameters.

Det er et hovedmål med oppfinnelsen å tilveiebringe en ny anvendelse av benzaldehydderivater med formel I for fremstilling av et terapeutisk middel for forebygging og/eller behandling av kreft. It is a main aim of the invention to provide a new use of benzaldehyde derivatives of formula I for the production of a therapeutic agent for the prevention and/or treatment of cancer.

Et annet mål med oppfinnelsen er å tilveiebringe ved den nye anvendelsen, terapeutiske midler for forebygging eller behandling av kreft uten at forbindelsene har giftige bivirkninger. Another aim of the invention is to provide, by the new application, therapeutic agents for the prevention or treatment of cancer without the compounds having toxic side effects.

Et tredje mål med oppfinnelsen er å tilveiebringe ved den nye anvendelsen terapeutiske midler for effektiv og gunstig forebygging og/eller behandling av kreft i vev og celler som har reseptorer med affinitet til tilsvarende sukkergrupper. A third aim of the invention is to provide, through the new application, therapeutic agents for effective and beneficial prevention and/or treatment of cancer in tissues and cells that have receptors with affinity for corresponding sugar groups.

Et fjerde mål er å tilveiebringe terapeutiske midler for effektiv og gunstig forebyggelse av leverkreft hos personer med hepatitt B- eller C-infeksjon. A fourth objective is to provide therapeutic agents for effective and beneficial prevention of liver cancer in persons with hepatitis B or C infection.

Et femte mål med oppfinnelsen er å tilveiebringe nye forbindelser som kan utnyttes ved anvendelsen i henhold til oppfinnelsen. A fifth aim of the invention is to provide new compounds which can be utilized in the application according to the invention.

Disse og andre mål med oppfinnelsen oppnås ved de vedlagte patentkravene. These and other aims of the invention are achieved by the attached patent claims.

Forbindelsene som anvendes i henhold til den foreliggende oppfinnelsen har en generell formel (I): The compounds used according to the present invention have a general formula (I):

hvor L er H eller D; where L is H or D;

Ar er fenyl eller mono- eller di- substituert fenyl, hvor substituenten(e) er valgt fra gruppen bestående av alkyl med 1-6 karbonatomer, CF3) fluor, klor, nitro, cyano, OR<1>, SR<1>, N(R1)2 eller COOR<1> hvor R<1> er H, CF3 eller alkyl med 1-6 karbonatomer, eller OC(0)R<2>, CA(OR<2>)2, CA[OC(0)R<2>]2, NHC(0)R<2> eller N[C(0)R2]2 der A er H eller D og R2 er CF3 eller alkyl med 1-6 karbonatomer, eller C(0)R3 der R3 er H, D, CF3 eller alkyl med 1-6 karbonatomer; Ar is phenyl or mono- or di-substituted phenyl, where the substituent(s) is selected from the group consisting of alkyl with 1-6 carbon atoms, CF3) fluorine, chlorine, nitro, cyano, OR<1>, SR<1>, N(R1)2 or COOR<1> where R<1> is H, CF3 or alkyl with 1-6 carbon atoms, or OC(0)R<2>, CA(OR<2>)2, CA[OC( 0)R<2>]2, NHC(0)R<2> or N[C(0)R2]2 where A is H or D and R2 is CF3 or alkyl with 1-6 carbon atoms, or C(0) R 3 where R 3 is H, D, CF 3 or alkyl of 1-6 carbon atoms;

Y er valgt fra atomene eller gruppen bestående av H, D, fluor, klor, nitro, OR<1>, OC(0)R<2>, N(R<1>)2, NHC(0)R<2> eller N[C(0)R<2>]2; og R<1> og R2 er som definert ovenfor; Y is selected from the atoms or group consisting of H, D, fluorine, chlorine, nitro, OR<1>, OC(0)R<2>, N(R<1>)2, NHC(0)R<2> or N[C(O)R<2>]2; and R<1> and R2 are as defined above;

R er H, CF3 eller alkyl med 1-6 karbonatomer; R is H, CF3 or alkyl of 1-6 carbon atoms;

eller et farmasøytisk aksepterbart salt av dette, med det forbehold at 4,6-0-benzyliden-D-glukopyranose, 4,6-0-(benzyliden-di) -D-glukopyranose, 4,6-0-benzyliden-D-allose og derivater av 4,6-O-benzyliden-D-allose er ekskludert. or a pharmaceutically acceptable salt thereof, with the proviso that 4,6-0-benzylidene-D-glucopyranose, 4,6-0-(benzylidene-di)-D-glucopyranose, 4,6-0-benzylidene-D- allose and derivatives of 4,6-O-benzylidene-D-allose are excluded.

Det er underforstått at enhver stereoisomer i henhold til formel (I) omfattes av den foreliggende oppfinnelsen. It is understood that any stereoisomer according to formula (I) is encompassed by the present invention.

Detaljert beskrivelse av oppfinnelsen Detailed description of the invention

Oppfinnelsen beskrives videre nedenfor med eksempler og vedlagte figurer. The invention is further described below with examples and attached figures.

Beskrivelse av figurene Description of the figures

Fig. 1: Dataene representerer et eksperiment hvor NHIK 3025-celler ble behandlet med forbindelse 8 (O) eller forbindelse 9 (•) i 20 timer ved 37°C mens de var festet til petri-skåler i plast. Overlevende fraksjon betyr hvor stor andel av cellene som var i stand til å danne en makroskopisk koloni etter behandlingen. Hvert punkt representerer middelverdien av kolonitellinger fra 5 parallelle skåler. Standardavvikene er mindre enn størrelsen av symbolene. Fig. 2: Dataene representerer et eksperiment hvor NHIK 3025-celler ble behandlet med forbindelse 5 (O) eller forbindelse 7 (#) i 20 timer ved 37°C mens de var festet til petri-skåler i plast. Overlevende fraksjon betyr hvor stor andel av cellene som var i stand til å danne en makroskopisk koloni etter behandlingen. Hvert punkt representerer middelverdien av kolonitellinger fra 5 parallelle skåler. De vertikale søylene indikerer standardavvik og vises hvis de er større enn symbolene. Fig. 3: Dataene representerer et eksperiment hvor NHIK 3025-celler ble behandlet med forbindelse 12 (■) i 20 timer ved 37°C mens de var festet til petri-skåler i plast. Overlevende fraksjon betyr hvor stor andel av cellene som var i stand til å danne en makroskopisk koloni etter behandlingen. Hvert punkt representerer middelverdien av kolonitellinger fra 5 parallelle skåler. De vertikale søylene indikerer standardavvik og vises hvis de er større enn symbolene. Fig. 6: Viser gjennomsnittlige tumorvekstkurver for tumorcellelinjen SK-OV-3 eggstokkarsinom implantert på nakne mus. Musene ble behandlet daglig intravenøst med 1 mg/kg av forbindelse 8 (T) og 7,5 mg/kg av forbindelse 8 (A). ■, kontrollgruppen, fikk 0,9% NaCI. Hvert datapunkt representerer gjennomsnittlig tumorvolum for 4 til 5 mus i forhold til tumorvolumet dag 1. De vertikale søylene representerer standardavvik. Fig. 7- 12 viser morfologisk utseende av SK-OV-3-tumorer fra hver av de følgende 3 gruppene: dyrene som ble behandlet med placebo (figur 7 og 8), gruppen som ble behandlet med 1 mg/kg/dag av forbindelse 8 (figur 9 og 10) og gruppen som ble behandlet med 7,5 mg/kg/dag (figur 11 og 12). Tumorene ble fiksert i formalin, innkapslet i parafin, skåret i 6 mm skiver og farget med hematoksylin og eosin. Forstørrelsen er 40 ganger. Fig. 13: Viser gjennomsnittlige vekstkurver for kuler av cellelinjen T-47D brystkarsinom. Kulene ble behandlet med 0,1 mM av forbindelse 8 (A) og 1,0 mM av forbindelse 8 (T) oppløst i mediet. ■, kontroll. Hvert datapunkt representerer det gjennomsnittlige kulevolumet av 6 til 11 kuler. De vertikale søylene representerer standardavvik. Fig. 14 viser mikroskopiske fotografier av snitt av tre NHIK 3025-cellekuler som fikk forskjellig behandling, en ubehandlet kontroll (A), en behandlet med 0,1 mM av forbindelse 8 i 4 dager (B) og en behandlet med 1,0 mM av forbindelse 8 i 4 dager (C). Fig, 15- 18: Dataene viser hvor stor fraksjon av kjerner innen hvert av interfasetrinnene, G1, S og G2, som har RB-proteinet bundet i kjernen etter behandling med forbindelse 8. Fig. 1: The data represent an experiment where NHIK 3025 cells were treated with compound 8 (O) or compound 9 (•) for 20 hours at 37°C while attached to plastic petri dishes. Surviving fraction means the proportion of cells that were able to form a macroscopic colony after the treatment. Each point represents the mean of colony counts from 5 parallel dishes. The standard deviations are smaller than the size of the symbols. Fig. 2: The data represent an experiment where NHIK 3025 cells were treated with compound 5 (O) or compound 7 (#) for 20 hours at 37°C while attached to plastic petri dishes. Surviving fraction means the proportion of cells that were able to form a macroscopic colony after the treatment. Each point represents the mean of colony counts from 5 parallel dishes. The vertical bars indicate standard deviations and are shown if they are larger than the symbols. Fig. 3: The data represent an experiment where NHIK 3025 cells were treated with compound 12 (■) for 20 hours at 37°C while attached to plastic petri dishes. Surviving fraction means the proportion of cells that were able to form a macroscopic colony after the treatment. Each point represents the mean of colony counts from 5 parallel dishes. The vertical bars indicate standard deviations and are shown if they are larger than the symbols. Fig. 6: Shows average tumor growth curves for the tumor cell line SK-OV-3 ovarian carcinoma implanted in nude mice. The mice were treated daily intravenously with 1 mg/kg of compound 8 (T) and 7.5 mg/kg of compound 8 (A). ■, the control group, received 0.9% NaCl. Each data point represents the mean tumor volume for 4 to 5 mice relative to the day 1 tumor volume. The vertical bars represent standard deviation. Figures 7-12 show morphological appearance of SK-OV-3 tumors from each of the following 3 groups: the animals treated with placebo (Figures 7 and 8), the group treated with 1 mg/kg/day of compound 8 (figures 9 and 10) and the group treated with 7.5 mg/kg/day (figures 11 and 12). The tumors were fixed in formalin, embedded in paraffin, cut into 6 mm slices and stained with hematoxylin and eosin. The magnification is 40 times. Fig. 13: Shows average growth curves of spheres of the T-47D breast carcinoma cell line. The spheres were treated with 0.1 mM of compound 8 (A) and 1.0 mM of compound 8 (T) dissolved in the medium. ■, control. Each data point represents the mean sphere volume of 6 to 11 spheres. The vertical bars represent standard deviation. Fig. 14 shows microscopic photographs of sections of three NHIK 3025 cell spheres that received different treatments, an untreated control (A), one treated with 0.1 mM of compound 8 for 4 days (B) and one treated with 1.0 mM of compound 8 for 4 days (C). Fig, 15-18: The data show how large a fraction of nuclei within each of the interphase steps, G1, S and G2, have the RB protein bound in the nucleus after treatment with compound 8.

Fio. 19- 20: Proteinsvnteshastioheten i forhold til kontrollceller for NHIK 3025-celler (figur 19) og T-47D-celler (figur 20). Hvert punkt representerer gjennomsnittet av målinger fra 4 parallelle prøver. Standardavvikene vises med vertikale søyler hvis de er større enn symbolene. Fio. 19-20: The protein synthesis rate relative to control cells for NHIK 3025 cells (Figure 19) and T-47D cells (Figure 20). Each point represents the average of measurements from 4 parallel samples. The standard deviations are shown with vertical bars if they are larger than the symbols.

Fig. 21: Median-adhesjonskraft for celler som ble utsatt for forskjellige benzaldehydderivater. Cellene ble utsatt for en 1 mM konsentrasjon av forbindelse 1 og 2. Fig. 21: Median adhesion force for cells exposed to different benzaldehyde derivatives. The cells were exposed to a 1 mM concentration of compounds 1 and 2.

Fio. 23: Viser virkningen av forbindelse 1 og 5 på leverinvasjonen av menneskelig kolorektal tumor, C170HM2. Fio. 23: Shows the effect of compounds 1 and 5 on the liver invasion of human colorectal tumor, C170HM2.

Fremstilling Manufacturing

Som kjent gjennomgår aldehyder syrekatalyserte kondensasjonsreaksjoner med alkoholer under dannelse av acetaler. Samtidig fås vann som et biprodukt. Reaksjonen er reversibel, og i løsning dannes en likevektsblanding av aldehyd/alkohol og acetal/vann. Likevektsposisjonen bestemmes hovedsakelig av reaktiviteten og konsentrasjonen av hvert molekylslag. For å gjøre reaksjonen fullstendig fjerner man gjerne et av produktene (acetal eller vann) fra reaksjonsblandingen. As is known, aldehydes undergo acid-catalyzed condensation reactions with alcohols to form acetals. At the same time, water is obtained as a by-product. The reaction is reversible, and in solution an equilibrium mixture of aldehyde/alcohol and acetal/water is formed. The equilibrium position is mainly determined by the reactivity and concentration of each molecular species. To complete the reaction, one of the products (acetal or water) is removed from the reaction mixture.

I den foreliggende patentsøknaden kondenseres forskjellige sukkere, deoksysukkere og aminosukkere med aldehyder eller aldehydekvivalenter til sukkeracetaler. Spesielt foretrukket er en reacetaliseringsstrategi hvor aldehydet innføres beskyttet som dimetylacetalet i stedet for aldehydet selv. Dermed dannes metanol som biprodukt. Reaksjonsblandingen oppvarmes moderat ved redusert trykk for å fjerne metanolen så snart den dannes. I de fleste tilfellene vil disse reaksjonsbetingelsene lett forskyve likevekten til fordel for acetalet. In the present patent application, various sugars, deoxysugars and aminosugars are condensed with aldehydes or aldehyde equivalents to sugar acetals. Particularly preferred is a reacetalization strategy where the aldehyde is introduced protected as the dimethyl acetal instead of the aldehyde itself. Methanol is thus formed as a by-product. The reaction mixture is moderately heated under reduced pressure to remove the methanol as soon as it is formed. In most cases, these reaction conditions will easily shift the equilibrium in favor of the acetal.

Acetalisering av sukkere vil normalt føre til at det dannes blandinger av regio- og stereoisomerer. Det kan også opptre ringkontraksjoner som fører til blandinger av pyranoser og furanoser og i noen tilfeller dannes di-acetaliseringsprodukter. Hvis man ikke bruker beskyttelsesstrategier vil man derfor ofte få ytterst komplekse reaksjonsblandinger. Imidlertid ble det fremstilt overraskende rene produktfraksjoner etter passende opparbeiding, spesielt ved væskekromatografi. Identifikasjonen av produktene ble gjort ved GC-MS-spektroskopi og forskjellige NMR-teknikker. Acetalization of sugars will normally lead to the formation of mixtures of regio- and stereoisomers. Ring contractions can also occur which lead to mixtures of pyranoses and furanoses and in some cases di-acetalisation products are formed. If you do not use protection strategies, you will therefore often get extremely complex reaction mixtures. However, surprisingly pure product fractions were produced after suitable work-up, especially by liquid chromatography. The identification of the products was done by GC-MS spectroscopy and various NMR techniques.

De spesifikke reaksjonsbetingelsene og hvilke løsningsmidler og katalysatorer som brukes vil i hvert enkelt individuelt tilfelle avhenge av løseligheten og reaktiviteten av reaktantene og av egenskapene til produktet. Katalysatoren kan være en mineralsyre, f.eks. svovelsyre, en organisk syre, f.eks. paratoluensulfonsyre, et surt ionebyttemiddel, f.eks. Amberlyst 15, en elektrofil mineralleire, f.eks. montmorillonitt K-10 eller en resinstøttet supersyre, f.eks. Nafion NR 50. Reaksjonen kan gjerne utføres i et dipolart, aprotisk løsningsmiddel som dimetylformamid, dimetylacetamid, dimetylsulfoksid, N-metylpyrrolidon, dimetoksyetan eller liknende. Paratoluensulfonsyre i dimetylformamid var det foretrukne og mest brukte reaksjonsmediet. The specific reaction conditions and which solvents and catalysts are used will depend in each individual case on the solubility and reactivity of the reactants and on the properties of the product. The catalyst can be a mineral acid, e.g. sulfuric acid, an organic acid, e.g. paratoluenesulfonic acid, an acidic ion exchange agent, e.g. Amberlyst 15, an electrophilic mineral clay, e.g. montmorillonite K-10 or a resin-supported superacid, e.g. Nafion NR 50. The reaction can preferably be carried out in a dipolar, aprotic solvent such as dimethylformamide, dimethylacetamide, dimethylsulfoxide, N-methylpyrrolidone, dimethoxyethane or the like. Paratoluenesulfonic acid in dimethylformamide was the preferred and most commonly used reaction medium.

Forbindelsene av formel (I) hvor L er deuterium kan fremstilles som bekrevet ovenfor, men med utgangspunkt i dimetylacetalet av et aldehyd som deutereres i formylposisjonen. Fremstilling av deutero-benzaldehyd kan utføres med en modifisert Rosenmund-reduksjon med D2-gass i et deuterert løsningsmiddel, som beskrevet i EP 0 283 139 B1. Deutererte benzaldehydderivater med substituenter i fenylringen kan fremstilles i henhold til eksemplene som gis i EP 0 493 883 A1 og EP 0 552 880 A1. The compounds of formula (I) where L is deuterium can be prepared as described above, but starting from the dimethyl acetal of an aldehyde which is deuterated in the formyl position. Production of deutero-benzaldehyde can be carried out with a modified Rosenmund reduction with D2 gas in a deuterated solvent, as described in EP 0 283 139 B1. Deuterated benzaldehyde derivatives with substituents in the phenyl ring can be prepared according to the examples given in EP 0 493 883 A1 and EP 0 552 880 A1.

De følgende eksemplene illustrerer hvordan forbindelsene til den foreliggende oppfinnelsen kan fremstilles. The following examples illustrate how the compounds of the present invention can be prepared.

Forbindelse 1:4, 6- O- benzyliden- D- qlukopvranose Compound 1:4, 6- O- benzylidene- D- qulcopvranose

Denne kjente forbindelsen ble fremstilt som beskrevet for forbindelse 2, med utgangspunkt i udeuterert benzaldehyddimetylacetal. Identiteten ble bekreftet ved <1>H NMR-spektroskopi i DMSO-d6: 5 rel. til TMS: 7,58-7,29 (5H, m, Ar-H), 6,83 (0.4H, d, OH-1-P), 6,60 (0.6H, d, OH-1-cc), 5,61 (1H, s+s, acetal-H), 5,25 (0,4H, d, OH-3-<p>), 5,21 (0,4H, d, OH-2-P), 5,62 (0,6H, d, OH-3-cc), 5,00 (0,6H, H-1-a), 4,82 (0,6H, d, OH-2-cc), 4,49 (0,4H, t, H-1-p), 4,18-4,02 (1H, m, H-6'-a+P), 3,89-3,77 (0,6H, m, H-5-cc), 3,75-3,57 (1,6H, m, H-6"-a+p og H-3-a), 3,45-3,27 (2,5H, m, H-3-p, H-4-a+p, H-5-P og H-2-a) og 3,11-3,00 (0,4H, m, H-2-P). This known compound was prepared as described for compound 2, starting from undeuterated benzaldehyde dimethyl acetal. The identity was confirmed by <1>H NMR spectroscopy in DMSO-d6: 5 rel. to TMS: 7.58-7.29 (5H, m, Ar-H), 6.83 (0.4H, d, OH-1-P), 6.60 (0.6H, d, OH-1-cc ), 5.61 (1H, s+s, acetal-H), 5.25 (0.4H, d, OH-3-<p>), 5.21 (0.4H, d, OH-2- P), 5.62 (0.6H, d, OH-3-cc), 5.00 (0.6H, H-1-a), 4.82 (0.6H, d, OH-2-cc ), 4.49 (0.4H, t, H-1-p), 4.18-4.02 (1H, m, H-6'-a+P), 3.89-3.77 (0 ,6H, m, H-5-cc), 3.75-3.57 (1.6H, m, H-6"-a+p and H-3-a), 3.45-3.27 ( 2.5H, m, H-3-p, H-4-a+p, H-5-P and H-2-a) and 3.11-3.00 (0.4H, m, H-2 -P).

Forbindelse 3: 4. 6- O- benzyliden- D- qalaktopyranose Compound 3: 4. 6- O- benzylidene- D- chalactopyranose

D(+)-galaktose (15,0 g, 0,083 mol) og tørr DMF (80 ml) ble blandet under omrøring ved 50 °C i et destillasjonsapparat. Suspensjonen som dannet seg ble tilsatt benzaldehyddimetylacetal (12,2 g, 0,083 mmol) og paratoluensulfonsyre (0,14 g) og metanol/DMF ble sakte destillert av ved hjelp av en vannstrålepumpe. Etter 3 timer var det meste av galaktosen brukt opp og det resterende DMF fjernet på en rotavapor koblet til en vakuumpumpe. Destillasjonsresten, en nokså seig sirupsaktig masse, ble renset på en Lobar C RP-8-kolonne med metanol/vann (1:1) som eluent. Produktfraksjonene ble frysetørket. D(+)-galactose (15.0 g, 0.083 mol) and dry DMF (80 mL) were mixed with stirring at 50 °C in a still. To the resulting suspension was added benzaldehyde dimethyl acetal (12.2 g, 0.083 mmol) and paratoluenesulfonic acid (0.14 g) and methanol/DMF was slowly distilled off using a water jet pump. After 3 hours, most of the galactose was used up and the remaining DMF was removed on a rotavapor connected to a vacuum pump. The distillation residue, a rather tough syrupy mass, was purified on a Lobar C RP-8 column with methanol/water (1:1) as eluent. The product fractions were freeze-dried.

Gasskromatografi for TMS-derivatene viste at produktet hovedsakelig besto av to isomerer. På basis av <1>H-, <13>C-, COSY-, DEPT- og C-H-korrelasjons-NMR-spektra ble produktet identifisert som a- og p-anomerene av tittelforbindelsen. Gas chromatography for the TMS derivatives showed that the product consisted mainly of two isomers. On the basis of <1>H, <13>C, COSY, DEPT and C-H correlation NMR spectra, the product was identified as the α and β anomers of the title compound.

<1>H og <13>C NMR (DMSO-d6), 8 rel. til TMS: 7,49-7,27 (5H, m, Ar-H), 5,57 (1H, s, acetal-H), 5,22 (0,5H, d, H-1-oc), 4,56 (0.5H, d, H-1-P), 4,23+4,18 (0,5H+0,5H, d+d, H-4-a+P), 4,14-3,98 (2H, m, H-6-ot+p), 3,94-3,79 (1,5H, m, H-2-cc, H-3-cc og H-5-a), 3,69-3,49 (1.5H, m, H-2-p, H-3-P og H-5-p); 137,422, 129,981 128,902 126,639 og 126,590 (Ar-C), 101,325 (acetal-C), 96,540 (C-1-p), 93,161 (C-1-a), 76,581 (C-4-a), 76,093 (C-4-P), 71,889 + 71,802 (C-2-P+C-3-p), 69,404 (C-6-a), 69,182 (C-6-p), 68,566 + 68.057 (C-2-oc + C-3-P), 66,579 (C-5-P) og 62,886 (C-5-a). <1>H and <13>C NMR (DMSO-d6), 8 rel. to TMS: 7.49-7.27 (5H, m, Ar-H), 5.57 (1H, s, acetal-H), 5.22 (0.5H, d, H-1-oc), 4.56 (0.5H, d, H-1-P), 4.23+4.18 (0.5H+0.5H, d+d, H-4-a+P), 4.14-3 .98 (2H, m, H-6-ot+p), 3.94-3.79 (1.5H, m, H-2-cc, H-3-cc and H-5-a), 3 .69-3.49 (1.5H, m, H-2-p, H-3-P and H-5-p); 137.422, 129.981 128.902 126.639 and 126.590 (Ar-C), 101.325 (acetal-C), 96.540 (C-1-p), 93.161 (C-1-a), 76.581 (C-4-a), 76.093 (C -4-P), 71.889 + 71.802 (C-2-P+C-3-p), 69.404 (C-6-a), 69.182 (C-6-p), 68.566 + 68.057 (C-2-oc + C-3-P), 66.579 (C-5-P) and 62.886 (C-5-a).

Forbindelse 4: metvl- 4. 6- Q- benzvliden- a- D- mannopvranosid Compound 4: metvl- 4. 6- Q- benzvlidene- a- D- mannopvranoside

Metyl-a-mannopyranosid (18,1 g, 0,093 mol), benzaldehyddimetylacetal (21,0 g, 0,138 mol) og tørr DMF ble blandet under omrøring ved 50-55 °C i et destillasjonsapparat. Det ble tilsatt paratoluensulfonsyre (ca. 0,1 g) og 10 min. senere ble det koblet til en vannstrålepumpe for å destillere av metanol. Etter 4 timer ble reaksjonsblandingen inndampet til et hvitt fast stoff. Inndampingsresten ble vasket med dibutyleter, filtrert og filterkaken ble løst i acetonitril. Det begynte å danne seg et bunnfall og blandingen ble satt i kjøleskap i 5 dager. Deretter ble bunnfallet filtrert fra og filtratet inndampet. Inndampingsresten ble renset på en Lobar C RP-8-kolonne med 30 % acetonitril i vann som eluent. Produktfraksjoner fra 4 separate synteser ble frysetørket og kombinert. Methyl α-mannopyranoside (18.1 g, 0.093 mol), benzaldehyde dimethyl acetal (21.0 g, 0.138 mol) and dry DMF were mixed with stirring at 50-55 °C in a still. Paratoluenesulfonic acid (approx. 0.1 g) was added and 10 min. later it was connected to a water jet pump to distill off methanol. After 4 hours, the reaction mixture was evaporated to a white solid. The evaporation residue was washed with dibutyl ether, filtered and the filter cake was dissolved in acetonitrile. A precipitate began to form and the mixture was refrigerated for 5 days. The precipitate was then filtered off and the filtrate evaporated. The evaporation residue was purified on a Lobar C RP-8 column with 30% acetonitrile in water as eluent. Product fractions from 4 separate syntheses were freeze-dried and combined.

Gasskromatografisk analyse av TMS-derivatene indikerte at produktet besto av 95 arealprosent monoacetaler. Monoacetalene besto for sin del av 4 topper som kunne integreres til henholdsvis 0,4, 3,2, 94,1 og 2,4 areal-%. På basis av <1>H-, <13>C-, COSY-, DEPT- og C-H-korrelasjons NMR-spektra sammen med gasskromatografi og MS-spektroskopi ble det dominerende molekylslaget identifisert som tittelforbindelsen. Gas chromatographic analysis of the TMS derivatives indicated that the product consisted of 95 area percent monoacetals. The monoacetals for their part consisted of 4 peaks which could be integrated to 0.4, 3.2, 94.1 and 2.4 area-% respectively. On the basis of <1>H, <13>C, COSY, DEPT and C-H correlation NMR spectra together with gas chromatography and MS spectroscopy, the dominant molecular species was identified as the title compound.

<1>H og <13>C NMR (aceton-d6), 5 rel. til TMS: 7,54-7,30 (5H, m, Ar-H), 5,60 (1H, s, acetal-H), 4,71 (1H, s, H-1), 4,34 (1H, bred s, OH), 4,22-4,02 (2H, m+bred s, H-6'+OH), 3,94-3,82 (3H, m, H-2, H-3 og H-4), 3,80-3,60 (2H, m, H-5+H-6") og 3,39 (3H, s, CH3); 139,264, 129,396, 128,662 og 127,211 (Ar-C), 102,825 (C-1), <1>H and <13>C NMR (acetone-d6), 5 rel. to TMS: 7.54-7.30 (5H, m, Ar-H), 5.60 (1H, s, acetal-H), 4.71 (1H, s, H-1), 4.34 ( 1H, broad s, OH), 4.22-4.02 (2H, m+broad s, H-6'+OH), 3.94-3.82 (3H, m, H-2, H-3 and H-4), 3.80-3.60 (2H, m, H-5+H-6") and 3.39 (3H, s, CH3); 139.264, 129.396, 128.662 and 127.211 (Ar-C ), 102,825 (C-1),

102,468 (acetal-C), 79,888 (C-4), 72,090 (C-3), 69,308 (C-6), 69,127 (C-2), 64,363 102.468 (acetal-C), 79.888 (C-4), 72.090 (C-3), 69.308 (C-6), 69.127 (C-2), 64.363

(C-5) og 54,921 (CH3). (C-5) and 54.921 (CH3).

Forbindelse 5: 4, 6-( benzvliden- di)- 2- deoksv- D- alukoDvranose Compound 5: 4, 6-( Benzvlidene-di)- 2- deoxy- D-alukoDvranose

Benzaldehyd-di ble fremstilt og konvertert til benzaldehyddimetylacetal-di som Benzaldehyde di was prepared and converted to benzaldehyde dimethyl acetal di as

beskrevet i EP 0 283 139 B1. described in EP 0 283 139 B1.

2-Deoksy-D-glukose (10 g, 60,9 mmol), tørr DMF (35 ml), 2-Deoxy-D-glucose (10 g, 60.9 mmol), dry DMF (35 mL),

i benzaldehyddimetylacetal-d-i (11,7 g, 76,4 mmol) og paratoluensulfonsyre (70 mg, in benzaldehyde dimethylacetal-d-i (11.7 g, 76.4 mmol) and paratoluenesulfonic acid (70 mg,

0,37 mmol) ble blandet under N2 til en hvit grøt. Ved oppvarming til 45-50 °C ble det dannet en fargeløs løsning i løpet av en halv time. En vakuumpumpe ble tilkoblet for å fjerne metanol gjennom en avkjølt kolonne (for å hindre tap av benzaldehyddimetylacetal-di). Trykket ble regulert trinnvis ned fra 70 millibar til 20-30 millibar i løpet av 4,5 timer og temperaturen ble opprettholdt på 40-45 °C. 0.37 mmol) was mixed under N2 to a white slurry. When heated to 45-50 °C, a colorless solution was formed within half an hour. A vacuum pump was connected to remove methanol through a cooled column (to prevent loss of benzaldehyde dimethyl acetal-di). The pressure was regulated stepwise down from 70 millibars to 20-30 millibars during 4.5 hours and the temperature was maintained at 40-45 °C.

Deretter ble destillasjonen avbrutt, apparatet ombygd uten kolonnen og DMF ble Then the distillation was stopped, the apparatus rebuilt without the column and the DMF remained

fjernet ved kortbanedestillasjon ved 50-55 °C, maks. vakuum. Resten var en svakt gul sirupsaktig masse. removed by short path distillation at 50-55 °C, max. vacuum. The rest was a pale yellow syrupy mass.

i 1/4 av sirupsmassen ble løst i svakt alkalisk (NaHC03) metanol/vann 60/40 og in 1/4 of the syrup mass was dissolved in weakly alkaline (NaHC03) methanol/water 60/40 and

renset på en Merck LiChroprep RP-8 omvendt fase-kolonne med metanol/vann 60/40 som eluent. Produktfraksjoner ble konsentrert for å fjerne metanol og frysetørket til et hvitt, ullent fast stoff. Produkter fra fire separate synteser ble kombinert til et utbytte på 3,5 g, 23 % av det teoretiske. purified on a Merck LiChroprep RP-8 reversed phase column with methanol/water 60/40 as eluent. Product fractions were concentrated to remove methanol and freeze-dried to a white, woolly solid. Products from four separate syntheses were combined in a yield of 3.5 g, 23% of theory.

i in

Gasskromatografisk analyse av TMS-derivatene og NMR-spektroskopi viste at Gas chromatographic analysis of the TMS derivatives and NMR spectroscopy showed that

produktet besto av en 1:1 blanding av a- og (3-anomerene. the product consisted of a 1:1 mixture of the α- and (3-anomers.

<1>H og <13>C NMR (DMSO-d6), 5 (ppm) rel. til TMS: 7,52-7,28 (m, 5H, Ar-H I + II), <1>H and <13>C NMR (DMSO-d6), δ (ppm) rel. to TMS: 7.52-7.28 (m, 5H, Ar-H I + II),

) 6,9-6,65 (bred s, 1/2 H, OH-1 II), 6,55-6,32 (bred s, 1/2 H, OH-1 I), 5,25-5,12 (m, 1 ) 6.9-6.65 (broad s, 1/2 H, OH-1 II), 6.55-6.32 (broad s, 1/2 H, OH-1 I), 5.25-5 ,12 (m, 1

H, OH-3 II og H-1 I), 5,12-5,0 (d, 1/2 H, OH-3 II), 4,84-4,73 (dd, 1/2 H, H-1 II), H, OH-3 II and H-1 I), 5.12-5.0 (d, 1/2 H, OH-3 II), 4.84-4.73 (dd, 1/2 H, H -1 II),

4,20-4,02 (m, 1H, H-6 l+ll), 3,98-3,73 (m, 1H, H-3 I og H-5 I), 3,73-3,58 (m, 1.5H, 4.20-4.02 (m, 1H, H-6 l+ll), 3.98-3.73 (m, 1H, H-3 I and H-5 I), 3.73-3.58 (m, 1.5H,

H-6' l+ll og H-3 II), 3,42-3,18 (2,5 H, H-4 l+ll og H-5 II og H2O), 2,10-1,86 (m, 1H, H-6' l+ll and H-3 II), 3.42-3.18 (2.5 H, H-4 l+ll and H-5 II and H2O), 2.10-1.86 ( m, 1H,

H-2 l+ll) og 1,62-1,34 (m, 1H, H-2' l+ll); 137,979, 137,926, 128,841, 128,036 og 126,432 (Ar-C l+ll), 101,5-100,0 (acetal-C l+ll), 94,057 og 91,424 (C-1 l+ll), 83,916 og 83,093 (C-4 l+ll), 68,374 og 68,119 (C-6 l+ll), 66,889, 66,092, 64,174 og 62,604 (C-3 l+ll og C-5 l+ll) og 41,932 og 40,051 (C-2 l+ll). H-2 1+ll) and 1.62-1.34 (m, 1H, H-2' 1+ll); 137.979, 137.926, 128.841, 128.036 and 126.432 (Ar-C l+ll), 101.5-100.0 (acetal-C l+ll), 94.057 and 91.424 (C-1 l+ll), 83.916 and 83.093 ( C-4 l+ll), 68.374 and 68.119 (C-6 l+ll), 66.889, 66.092, 64.174 and 62.604 (C-3 l+ll and C-5 l+ll) and 41.932 and 40.051 (C-2 l+ll).

Forbindelse 6: 4, 6- 0-( 4- karbometoksvbenzvliden)- D- alukopyranose Compound 6: 4,6-O-(4-carbomethoxybenzvlidene)-D-alucopyranose

Metyl-4-formylbenzoat (100 g, 0,609 mol), metanol (91,5 g, 2,86 mol), trimetylortoformiat (71 g, 0,67 mol) og konsentrert saltsyre (165 jLtl) ble blandet til en grøt i en 500 ml trehalset flaske. Grøten ble omdannet til en svakt gul løsning på få minutter og temperaturen økte spontant fra 15 °C til 30 °C. Etter 15 minutters omrøring ble reaksjonsblandingen refluksert ved 58 °C i 25 minutter til og så nedkjølt til 10 °C (isvann). Det ble laget en alkalisk løsning ved å løse KOH (8,3 g) Methyl-4-formylbenzoate (100 g, 0.609 mol), methanol (91.5 g, 2.86 mol), trimethyl orthoformate (71 g, 0.67 mol) and concentrated hydrochloric acid (165 µL) were mixed to a slurry in a 500 ml wooden neck bottle. The porridge was converted to a slightly yellow solution in a few minutes and the temperature increased spontaneously from 15 °C to 30 °C. After stirring for 15 minutes, the reaction mixture was refluxed at 58°C for another 25 minutes and then cooled to 10°C (ice water). An alkaline solution was made by dissolving KOH (8.3 g)

i metanol (53 ml) og 7 ml av løsningen ble tilsatt til reaksjonsblandingen. Etter 25 minutters omrøring ved 10 °C ble reaktoren ombygd for kortbanedestillasjon og alle flyktige stoffer fjernet i vakuum (vannstrålepumpe). Destillasjonen fortsatte deretter med en vakuumpumpe til det var igjen en fargeløs olje ved 112- in methanol (53 mL) and 7 mL of the solution was added to the reaction mixture. After 25 minutes of stirring at 10 °C, the reactor was rebuilt for short path distillation and all volatile substances removed in vacuum (water jet pump). Distillation was then continued with a vacuum pump until a colorless oil was left at 112-

114 °C/0,5 millibar. Oljen omdannet seg til et fargeløst fast stoff med smeltepunkt 32-33 °C, og ble identifisert ved NMR som metyl-4-formylbenzoatdimetylacetal. Utbyttet var 108,75 g, 85 % av det teoretiske. 114 °C/0.5 millibar. The oil turned into a colorless solid with a melting point of 32-33 °C, and was identified by NMR as methyl-4-formylbenzoate dimethyl acetal. The yield was 108.75 g, 85% of the theoretical.

D(+)-glukose (8,0 g, 44,4 mmol), tørr DMF (25 ml), metyl-4-formylbenzoatdimetylacetal (10,4 g, 49,5 mmol) og paratoluensulfonsyre ble blandet ved 50 °C under N2 til en hvit suspensjon. Apparatet var koblet til en vakuumpumpe gjennom en vertikal kondensator og fordampningen av metanol startet ved 80-100 millibar, 55 °C. Vakuumet ble gradvis økt til 40 millibar mens temperaturen ble holdt på 55-60 °C. Reaksjonsblandingen ble gradvis klar og apparaturen ble ombygd for kortbanedestillasjon av DMF. Destillasjonsresten var en svakt gul sirupsmasse. D(+)-glucose (8.0 g, 44.4 mmol), dry DMF (25 mL), methyl 4-formylbenzoate dimethyl acetal (10.4 g, 49.5 mmol) and paratoluenesulfonic acid were mixed at 50 °C under N2 to a white suspension. The apparatus was connected to a vacuum pump through a vertical condenser and the evaporation of methanol started at 80-100 millibar, 55 °C. The vacuum was gradually increased to 40 millibars while the temperature was maintained at 55-60 °C. The reaction mixture gradually became clear and the apparatus was rebuilt for short path distillation of DMF. The distillation residue was a pale yellow syrupy mass.

Sirupsmassen ble løst i en varm løsning av 100 mg NaHC03 i 20 ml metanol og 8 ml vann og felt ved tilsetning av 100 ml etylacetat. Bunnfallet ble isolert fra modervæsken ved filtrering, vasket med kaldt vann (4 x 15-20 ml) og overført til en rotavaporflaske. Fuktigheten ble fjernet ved å tilsette etylacetat og inndampe to ganger. Produktet ble endelig tørket under høyt vakuum. Det ble filtrert av mer bunnfall fra modervæsken og vasket og tørket til nok en produktporsjon. De to porsjonene ble slått sammen til 1,94 g rent produkt, 13 % av det teoretiske utbyttet. The syrup mass was dissolved in a warm solution of 100 mg of NaHCO 3 in 20 ml of methanol and 8 ml of water and filtered by adding 100 ml of ethyl acetate. The precipitate was isolated from the mother liquor by filtration, washed with cold water (4 x 15-20 ml) and transferred to a rotavapor bottle. The moisture was removed by adding ethyl acetate and evaporating twice. The product was finally dried under high vacuum. It was filtered off more sediment from the mother liquor and washed and dried for another product portion. The two portions were combined to give 1.94 g of pure product, 13% of the theoretical yield.

Gasskromatografisk analyse av TMS-derivatene viste to isomerer i forholdet 2:1. Gas chromatographic analysis of the TMS derivatives showed two isomers in the ratio 2:1.

<1>H- og <13>C NMR (DMSO-d6), 5 (ppm) rel. til TMS: 7,99 og 7,61 (dd, 2+2H, furfuryl-H), 6,87 (d, 0.67H OH-1 II), 6,59 (d, 0.28H, OH-1 I), 5,68 (s+s, 1H, acetal-H l+ll), 5,29 (d, 0.68H, OH-3 II), 5,21 (d, 0,67H, OH-2 II), 5,16 (d, 0,31 H, OH-3 I), 5,00 (t, <1>H- and <13>C NMR (DMSO-d6), δ (ppm) rel. to TMS: 7.99 and 7.61 (dd, 2+2H, furfuryl-H), 6.87 (d, 0.67H OH-1 II), 6.59 (d, 0.28H, OH-1 I) , 5.68 (s+s, 1H, acetal-H l+ll), 5.29 (d, 0.68H, OH-3 II), 5.21 (d, 0.67H, OH-2 II), 5.16 (d, 0.31 H, OH-3 I), 5.00 (t,

i 0,30H, H-1 I), 4,85 (d, 0.28H, OH-2 I), 4,48 (t, 0.73H, H-1 II), 4,25-4,08 (m, 1.14H, H-6), 3,95-3,77 (m, 3.43H, OCH3 og H-5 I), 3,78-3,59 (m, 1,40H, H-3 I og H-6'), 3,49-3,23 (m, 3.59H, H-4 I og II, H-5 II, H-2 I og H-3 II), 3,10-2,98 (m, 0.72H, H-2 II); 165,978, 142,553, 142,553, 129,959, 129,067, 126,763, 99,982, 99,812, 97,661, 93,238, 81,794, 81,794, 80,963, 75,808, 72,902, 69,658, 68,487, 68,110, 65,714, 61,952 og 52,253. i 0.30H, H-1 I), 4.85 (d, 0.28H, OH-2 I), 4.48 (t, 0.73H, H-1 II), 4.25-4.08 (m , 1.14H, H-6), 3.95-3.77 (m, 3.43H, OCH3 and H-5 I), 3.78-3.59 (m, 1.40H, H-3 I and H -6'), 3.49-3.23 (m, 3.59H, H-4 I and II, H-5 II, H-2 I and H-3 II), 3.10-2.98 (m , 0.72H, H-2 II); 165,978, 142.553, 142553, 129,959, 129,067, 126,763, 99,982, 99,812, 97,661, 93,238, 81,794, 81,794, 80,965.9. 95.9.9.S

Forbindelse 7: 4. 6- 0- benzvliden- 2- deoksv- D- alukopvranose Compound 7: 4. 6- 0- benzvlidene- 2- deoxv- D- alucopvranose

12-deoksy-D-glukose (10,0 g, 60,9 mmol), tørr DMF (34 ml), 12-deoxy-D-glucose (10.0 g, 60.9 mmol), dry DMF (34 mL),

i benzaldehyddimetylacetal (11,6 g, 76,2 mmol) og paratoluensulfonsyre (70 mg, 0,37 mmol) ble blandet under N2 til en hvit grøt. Reaksjonsblandingen ble omrørt ved romtemperatur i 30 minutter og ved oppvarming til 45-50 °C ble den faste substansen gradvis løst. Det ble koblet til en vakuumpumpe for å fjerne metanol gjennom en avkjølt kolonne (for å forhindre tap av benzaldehyddimetylacetal) og in benzaldehyde dimethyl acetal (11.6 g, 76.2 mmol) and paratoluenesulfonic acid (70 mg, 0.37 mmol) were mixed under N 2 to a white slurry. The reaction mixture was stirred at room temperature for 30 minutes and by heating to 45-50 °C the solid substance was gradually dissolved. It was connected to a vacuum pump to remove methanol through a cooled column (to prevent loss of benzaldehyde dimethyl acetal) and

i reaksjonen fortsatte i 4,5 timer. Deretter ble destillasjonen avbrutt, kolonnen fjernet og DMF destillert fra ved kortbanedestillasjon ved 50-55 °C, maksimalt vakuum. Destillasjonsresten var en svakt gul sirupsmasse. in the reaction continued for 4.5 hours. The distillation was then interrupted, the column removed and DMF distilled from by short path distillation at 50-55 °C, maximum vacuum. The distillation residue was a pale yellow syrupy mass.

Sirupsmassen ble løst i svakt alkalisk (NaHC03) metanol/vann 60/40 og renset på ) en Merck LiChroprep RP-8 omvendt fase-kolonne med metanol/vann 60/40 som eluent. Produktfraksjonene ble konsentrert for å fjerne metanol og frysetørket til et hvitt, ullent fast stoff. Produktene fra fire separate synteser ble kombinert til 3,18 g, 21 % av det teoretiske utbyttet. The syrup mass was dissolved in weakly alkaline (NaHCO 3 ) methanol/water 60/40 and purified on ) a Merck LiChroprep RP-8 reverse phase column with methanol/water 60/40 as eluent. The product fractions were concentrated to remove methanol and freeze-dried to a white, woolly solid. The products from four separate syntheses were combined to give 3.18 g, 21% of the theoretical yield.

Gasskromatografisk analyse av TMS-derivatene og NMR-spektroskopi viste at produktet besto av en 1:1 blanding av a- og p-anomerene. Gas chromatographic analysis of the TMS derivatives and NMR spectroscopy showed that the product consisted of a 1:1 mixture of the α- and β-anomers.

<1>H og <13>C NMR (DMSO-d6), 5 (ppm) rel. til TMS: 7,52-7,30 (m, 5H, Ar-H I + II), 6,85-6,68 (bred s, 1/2 H, OH-1 II), 6,50-6,35 (bred s, 1/2 H, OH-1 I), 5,61 (s+s, 1H, acetal-H l+ll), 5,23-5,12 (m, 1 H, OH-3 II og H-1 I), 5,12-5,02 (d, 1/2 H, OH-3 II), 4,84-4,74 (dd, 1/2 H, H-1 II), 4,20-4,04 (m, 1H, H-6 l+ll), 3,98-3,74 (m, 1H, H-3 I og H-5 I), 3,74-3,57 (m, 1,5H, H-6' l+ll og H-3 II), 3,42-3,18 (2,5 H, H-4 l+ll og H-5 II og HsO), 2,08-1,88 (m, 1H, H-2 l+ll) og 1,62-1,32 (m, 1H, H-2' l+ll). <1>H and <13>C NMR (DMSO-d6), δ (ppm) rel. to TMS: 7.52-7.30 (m, 5H, Ar-H I + II), 6.85-6.68 (broad s, 1/2 H, OH-1 II), 6.50-6 .35 (broad s, 1/2 H, OH-1 I), 5.61 (s+s, 1H, acetal-H l+ll), 5.23-5.12 (m, 1 H, OH- 3 II and H-1 I), 5.12-5.02 (d, 1/2 H, OH-3 II), 4.84-4.74 (dd, 1/2 H, H-1 II) , 4.20-4.04 (m, 1H, H-6 1+11), 3.98-3.74 (m, 1H, H-3 I and H-5 I), 3.74-3, 57 (m, 1.5H, H-6' 1+ll and H-3 II), 3.42-3.18 (2.5 H, H-4 1+ll and H-5 II and HsO), 2.08-1.88 (m, 1H, H-2 1+ll) and 1.62-1.32 (m, 1H, H-2' 1+ll).

Forbindelse 8: 2- acetamido- 4. 6- 0- benzvliden- di- 2- deoksv- D- qlukopvranose Compound 8: 2- acetamido- 4. 6- 0- benzvlidene- di- 2- deoxv- D- qlukopvranose

Benzaldehyd-di ble fremstilt og konvertert til benzaldehyddimetylacetal-di som beskrevet i EP 0 283 139 B1. Benzaldehyde di was prepared and converted to benzaldehyde dimethyl acetal di as described in EP 0 283 139 B1.

Benzaldehyddimetylacetal-di (8,7 g, 56,8 mmol), N-acetyl-D-glukosamin (10,0 g, 45,2 mmol), tørr DMF (30 ml) og paratoluensulfonsyre (88 mg, 0,46 mmol) ble blandet under N2 til en hvit suspensjon. Reaksjonsblandingen ble omrørt ved 50°C i 45 minutter, så ble det tilkoblet en vakuumpumpe gjennom en vertikal kondensator og reaksjonen fortsatte i 2 timer ved 55 °C/60-70 mbar. Apparaturen ble ombygd for å fjerne DMF ved kortbanedestillasjon og destillasjonen fortsatte ved 55-60 °C, maks. vakuum i 1 time til. Destillasjonsresten var en gulhvit, myk fast substans. Benzaldehyde dimethyl acetal-di (8.7 g, 56.8 mmol), N-acetyl-D-glucosamine (10.0 g, 45.2 mmol), dry DMF (30 mL) and paratoluenesulfonic acid (88 mg, 0.46 mmol ) was mixed under N2 to a white suspension. The reaction mixture was stirred at 50°C for 45 minutes, then a vacuum pump was connected through a vertical condenser and the reaction continued for 2 hours at 55°C/60-70 mbar. The apparatus was rebuilt to remove DMF by short path distillation and the distillation continued at 55-60 °C, max. vacuum for 1 more hour. The distillation residue was a yellow-white, soft solid.

Det ble laget en løsning ved å blande NaHC03 (150 mg) i 30 ml metanol/vann (3:2) og destillasjonsresten ble nøytralisert ved å tilsette løsningen. Dette resulterte i en kremaktig grøt som ble filtrert, vasket 2-3 ganger med en 1 % NaHC03-løsning og flere ganger med eter. Produktet ble funnet å være tilstrekkelig rent ved analyse (GC) og tørket i vakuum. Utbyttet var 8,8 g, 63 % av det teoretiske. A solution was made by mixing NaHCO 3 (150 mg) in 30 ml methanol/water (3:2) and the distillation residue was neutralized by adding the solution. This resulted in a creamy slurry which was filtered, washed 2-3 times with a 1% NaHCO 3 solution and several times with ether. The product was found to be sufficiently pure by analysis (GC) and dried in vacuo. The yield was 8.8 g, 63% of the theoretical.

Gasskromatografisk analyse av TMS-derivatene indikerte en 1:1 isomerblanding. NMR-spektroskopi i DMSO-d6-løsning identifiserte produktet som en 3:1 anomerblanding. Gas chromatographic analysis of the TMS derivatives indicated a 1:1 isomeric mixture. NMR spectroscopy in DMSO-d6 solution identified the product as a 3:1 anomeric mixture.

<1>H og <13>C NMR (DMSO-d6), 8 rel. til TMS: 7,83 (s+s, 1H, NH), 7,51-7,28 (m, 6H, Ar-H), 7,0-6,2 (bred s, 1H, OH-1), 5,65-5,05 (bred s, 1 H, OH-3), 4,99 (d, 1H, H-1 I), 4,61 (d, 0,3H, H-1 II), 4,21-4,03, 3,92-3,67 og 3,51-3,22 (m, 6H, H-2, H-3, H-4, H-5 og H-6), og 1,85 (s+s, 3H, CH3); 169,452 (C=0), 137,818, 128,869, 128,035 og 126,438 (Ar-C), 100,505 (Acetal-C), 96,056, 91,500, 82,471, 81,505, 70,549, 68,300, 67,961, 67,218, 65,906, 62,123, 58,038, 54,790 (sukker-C) og 23,123 og 22,674 (CH3). <1>H and <13>C NMR (DMSO-d6), 8 rel. to TMS: 7.83 (s+s, 1H, NH), 7.51-7.28 (m, 6H, Ar-H), 7.0-6.2 (broad s, 1H, OH-1) , 5.65-5.05 (broad s, 1 H, OH-3), 4.99 (d, 1H, H-1 I), 4.61 (d, 0.3H, H-1 II), 4.21-4.03, 3.92-3.67 and 3.51-3.22 (m, 6H, H-2, H-3, H-4, H-5 and H-6), and 1.85 (s+s, 3H, CH3); 169,452 (C = 0), 137,818, 128,869, 128,035 and 126,438 (AR-C), 100,505 (Acetal-c), 96,056, 91,500, 82,471, 81,505, 70,549, 68,15, 67,15, 67,1,1, 67,1,1,1. (sugar-C) and 23.123 and 22.674 (CH3).

Forbindelse 9: 2- acetamido- 2- deoksv- 4. 6- 0-( 3- nitrobenzvliden)- D- glukopvranose Compound 9: 2- acetamido- 2- deoxy- 4. 6- O-( 3- nitrobenzvlidene)- D- glucopvranose

3-nitrobenzaldehyd (100 g, 0,66 mol), metanol (99 g, 3,1 mol), trimetylortoformiat (77,3 g, 0,73 mol) og konsentrert saltsyre (165 uJ) ble blandet i en 500 ml trehalset flaske til en gul grøt som forvandlet seg til en løsning i etter 5 minutter. Reaksjonsblandingen ble refluksert av -50 °C i 15 minutter og avkjølt til 10 °C med isvann. Reaksjonen ble stanset ved å tilsette 6,6 ml av en løsning som var laget ved å løse 2,5 g KOH i 16 ml metanol. Omrøringen fortsatte i 15 minutter og reaktoren ble ombygd for kortbane-vakuumdestillasjon. Flyktige substanser (CH3OH + HCOOCH3) ble destillert fra med vannstrålepumpe, destillasjonen ble avbrutt og en vakuumpumpe tilkoblet. Deretter fortsatte destillasjonen og en gul olje ble destillert fra ved 93 - 97,5 °C/20 mbar. Ved NMR ble oljen funnet å være 3-nitrobenzaldehyddimetylacetal av høy renhet. Utbyttet var 127 g, 97,6 % av det teoretiske. 3-Nitrobenzaldehyde (100 g, 0.66 mol), methanol (99 g, 3.1 mol), trimethyl orthoformate (77.3 g, 0.73 mol) and concentrated hydrochloric acid (165 µJ) were mixed in a 500 mL three-necked bottle to a yellow mush which turned into a solution after 5 minutes. The reaction mixture was refluxed at -50 °C for 15 min and cooled to 10 °C with ice water. The reaction was quenched by adding 6.6 ml of a solution made by dissolving 2.5 g of KOH in 16 ml of methanol. Stirring was continued for 15 minutes and the reactor was converted for short path vacuum distillation. Volatile substances (CH3OH + HCOOCH3) were distilled off with a water jet pump, the distillation was interrupted and a vacuum pump connected. Distillation then continued and a yellow oil was distilled from at 93 - 97.5 °C/20 mbar. By NMR, the oil was found to be 3-nitrobenzaldehyde dimethyl acetal of high purity. The yield was 127 g, 97.6% of the theoretical.

3-nitrobenzaldehyddimetylacetal (5,5 g, 0,028 mol), N-acetyl-D-glukosamin (5,0 g, 0,023 mol), paratoluensulfonsyre (50 mg, 0,263 mmol) og tørr DMF (15 ml) ble blandet under omrøring ved 50 °C til en svakt gul suspensjon. Etter 1/2 time ble det tilkoblet en vakuumpumpe og reaksjonen fortsatte ved 56 °C/50 mbar i 11 timer. Reaksjonsblandingen ble inndampet og inndampingsresten fordelt mellom et lite volum svakt alkalisk (NaHC03) vann og kloroform. Vannfasen (som dannet en osteaktig suspensjon) ble ekstrahert to ganger med kloroform og filtrert og vasket flere ganger med vann og eter. Produktet ble tørket i vakuum til et svakt brunlig pulver. Utbyttet var 570 mg, 7 % av det teoretiske. 3-Nitrobenzaldehyde dimethyl acetal (5.5 g, 0.028 mol), N-acetyl-D-glucosamine (5.0 g, 0.023 mol), paratoluenesulfonic acid (50 mg, 0.263 mmol) and dry DMF (15 mL) were mixed with stirring at 50 °C to a pale yellow suspension. After 1/2 hour a vacuum pump was connected and the reaction continued at 56 °C/50 mbar for 11 hours. The reaction mixture was evaporated and the evaporation residue partitioned between a small volume of weakly alkaline (NaHCO 3 ) water and chloroform. The aqueous phase (which formed a cheesy suspension) was extracted twice with chloroform and filtered and washed several times with water and ether. The product was dried in vacuo to a slightly brownish powder. The yield was 570 mg, 7% of the theoretical.

Gasskromatografisk analyse av TMS-derivatene indikerte at produktet besto av to isomerer i et 2:1 forhold. NMR-spektroskopi identifiserte produktet som en blanding av a- og f3-anomerer. <1>H og <13>C NMR (DMSO-d6), 8 rel. til TMS: 8,4-8,1 (m, 2H, Ar-H), 8,05-7,79 (m, 2H, Ar-H), 7,79-7,60 (t, 1H, NH), 6,80 (d, 1H, OH-1), 5,81 (s+s, 1H, acetal-H), 5,30 og 5,18 (s+s, 1/2 H + 1/2 H, H-1), 4,30-4,10, 3,93-3,3 (m, 6H, H-2 - H-6), og 1,85 (d, 3H, CH3); 169,331 (C=0), 147,490, 139,544, 133,018, 129,862, 123,732, 120,884 (Ar-C), 99,000, 98,806 (acetal-C), 95,924, 91,406, 82,433, 81,454, 70,320, 68,240, 67,907, 67,020, 65,574, 61,833, 57,875, 54,609 (sukker-C) 23,014 og 22,557 (CH3). Gas chromatographic analysis of the TMS derivatives indicated that the product consisted of two isomers in a 2:1 ratio. NMR spectroscopy identified the product as a mixture of α- and f3-anomers. <1>H and <13>C NMR (DMSO-d6), 8 rel. to TMS: 8.4-8.1 (m, 2H, Ar-H), 8.05-7.79 (m, 2H, Ar-H), 7.79-7.60 (t, 1H, NH ), 6.80 (d, 1H, OH-1), 5.81 (s+s, 1H, acetal-H), 5.30 and 5.18 (s+s, 1/2 H + 1/2 H, H-1), 4.30-4.10, 3.93-3.3 (m, 6H, H-2 - H-6), and 1.85 (d, 3H, CH3); 169,331 (C=0), 147,490, 139,544, 133,018, 129,862, 123,732, 120,884 (Ar-C), 99,000, 98,806 (acetal-C), 95,924, 91,406, 82,433, 81,454, 70,320, 68,240, 67,907, 67,020, 65,574 , 61.833, 57.875, 54.609 (sugar-C) 23.014 and 22.557 (CH3).

Forbindelse 10: 4, 6- 0-( benzvliden- di)- D- aalaktopvranose Compound 10: 4,6-O-(benzvlidene-di)-D-alactopvranose

Benzaldehyd-di ble fremstilt og konvertert til benzaldehyddimetylacetal-di som beskrevet i EP 0 283 139 B1. Benzaldehyde di was prepared and converted to benzaldehyde dimethyl acetal di as described in EP 0 283 139 B1.

D(+)-galaktose (15,0 g, 0,0833 mol) og tørr DMF (80 ml) ble omrørt i et destillasjonsapparat ved 45°C. Det ble tilsatt benzaldehyddimetylacetal-di (12,8 g, 0,0836 mol) og paratoluensulfonsyre (0,14 g) og metanol og DMF sakte destillert av i vakuum (vannstråle). Etter 3 timer ble det montert en vakuumpumpe og det resterende DMF ble destillert fra. Porsjoner av destillasjonsresten ble løst i metanol/vann (1:1) som inneholdt NaHC03 (11 mg/ml) og renset på en Lobar C RP-8-kolonne med metanol/vann (1:1) som eluent. Produktfraksjoner fra 7 individuelle synteser ble frysetørket og slått sammen til et hvitt, ullent produkt. Utbyttet var 6,62 g, 30 % av det teoretiske. D(+)-galactose (15.0 g, 0.0833 mol) and dry DMF (80 mL) were stirred in a still at 45°C. Benzaldehyde dimethyl acetal-di (12.8 g, 0.0836 mol) and paratoluenesulfonic acid (0.14 g) were added and methanol and DMF slowly distilled off in vacuo (water jet). After 3 hours a vacuum pump was fitted and the remaining DMF was distilled off. Aliquots of the distillation residue were dissolved in methanol/water (1:1) containing NaHCO 3 (11 mg/ml) and purified on a Lobar C RP-8 column with methanol/water (1:1) as eluent. Product fractions from 7 individual syntheses were freeze-dried and pooled into a white, woolly product. The yield was 6.62 g, 30% of the theoretical.

Gasskromatografisk og NMR-analyse viste at produktet besto av en 1:1 anomerblanding. <1>H og <13>C NMR (DMSO-d6), 8 rel. til TMS: 7,52-7,30 (m, 5H, Ar-H), 6,62 (0,5H, d, OH-1-0), 6,32 (0,5H, d, OH-1-a), 5,05 (0,5H, t, H-1-a), 4,85+4,69+4,49 (1H+0,5H+0,5H, m+d+d, OH-2+OH-3), 4,35 (0,5H, t, H-1-P), 4,12-3,92+3,81 -3,71 +3,69-3,59+3,49-3,39+3,39-3,28 (3H+1 H+0.5H+1 H+2H, m+m+m+m+m, H-2-H-6+H20); 138,753, 138,690, 128,607, 128,319, 127,913 og 126,3 (Ar-C), 99,345 (acetal-C), 97,307 og 93,178 (C-1), 76,738 og 76,158 (C-4), 72,101, 71,605, 68,947, 68,862, 68,486 og 67,730 (C-2, C-3 og C-6) og 65,829 og 62,068 (C-5). Gas chromatographic and NMR analysis showed that the product consisted of a 1:1 anomeric mixture. <1>H and <13>C NMR (DMSO-d6), 8 rel. to TMS: 7.52-7.30 (m, 5H, Ar-H), 6.62 (0.5H, d, OH-1-0), 6.32 (0.5H, d, OH-1 -a), 5.05 (0.5H, t, H-1-a), 4.85+4.69+4.49 (1H+0.5H+0.5H, m+d+d, OH -2+OH-3), 4.35 (0.5H, t, H-1-P), 4.12-3.92+3.81 -3.71 +3.69-3.59+3 .49-3.39+3.39-3.28 (3H+1 H+0.5H+1 H+2H, m+m+m+m+m, H-2-H-6+H 2 O); 138.753. 68.862, 68.486 and 67.730 (C-2, C-3 and C-6) and 65.829 and 62.068 (C-5).

Forbindelse 11: 4, 6- Q-( benzvliden- di)- D- mannopyranose Compound 11: 4, 6- Q-( benzvlidene-di)- D- mannopyranose

Benzaldehyd-di ble fremstilt og konvertert til benzaldehyddimetylacetal-d! som beskrevet i EP 0 283 139 B1. Benzaldehyde-di was prepared and converted to benzaldehyde-dimethyl acetal-d! as described in EP 0 283 139 B1.

D(+)-mannose (15,0 g, 0,0833 mol) og tørr DMF (70 ml) ble omrørt i en destillasjonsapparata ved 40 °C. Benzylidendimetylacetal-di og paratoluensulfonsyre (0,14 g) ble tilsatt og det dannet seg en klar løsning. Det ble tilkoblet en vakuumpumpe og metanol og DMF ble sakte destillert fra ved 70-20 mbar, 45-50 °C. Etter 3 timer ble det resterende DMF destillert av ved maks. vakuum, slik at det ble igjen en svakt gul sirupsmasse. D(+)-mannose (15.0 g, 0.0833 mol) and dry DMF (70 mL) were stirred in a still at 40 °C. Benzylidenedimethylacetal-di and paratoluenesulfonic acid (0.14 g) were added and a clear solution formed. A vacuum pump was connected and methanol and DMF were slowly distilled from at 70-20 mbar, 45-50 °C. After 3 hours, the remaining DMF was distilled off at max. vacuum, so that a faint yellow syrupy mass remained.

Resten ble vasket flere ganger med eter for å fjerne lipofile substanser. Noen porsjoner av råproduktet ble løst i svakt alkalisk (NaHC03) metanol/vann (3:2) og renset på en Lobar C RP-8-kolonne med metanol/vann (3:2) som eluent. gasskromatografi av TMS-derivatene indikerte at produktet besto av 4 isomerer i forholdet 10:3:1:4. Det ble re-eluert med metanol/vann (1:4) til et hvitt, ullent produkt som besto av bare to isomerer i forholdet 70/30, ifølge gasskromatografisk analyse. Utbyttet var 1,42 g, 6,4 % av det teoretiske. The residue was washed several times with ether to remove lipophilic substances. Some portions of the crude product were dissolved in weakly alkaline (NaHCO 3 ) methanol/water (3:2) and purified on a Lobar C RP-8 column with methanol/water (3:2) as eluent. gas chromatography of the TMS derivatives indicated that the product consisted of 4 isomers in the ratio 10:3:1:4. It was re-eluted with methanol/water (1:4) to give a white, woolly product consisting of only two isomers in the ratio 70/30, according to gas chromatographic analysis. The yield was 1.42 g, 6.4% of the theoretical.

På basis av <1>H-, <13>C-, COSY-, DEPT- og C-H-korrelasjons-NMR ble den kjemiske strukturen bekreftet og a- og p-anomerene funnet å nå en likevekt ved et 1:8-forhold. On the basis of <1>H, <13>C, COSY, DEPT and C-H correlation NMR, the chemical structure was confirmed and the α and β anomers were found to reach an equilibrium at a 1:8 ratio .

<1>H og <13>C NMR (DMSO-d6) av den dominerende isomeren, 5 rel. til TMS: 7,5-7,28 (m, 5H, Ar-H), 6,56 (d, 1H, OH-1), 5,0-4,85 (m, 3H, OH-2 og OH-3), 4,10-4,02 (m, i 1H, H-6), 3,63-3,40 (m, 5H, H-2, H-3, H-4, H-5 og H-6'); 138,045, 128,825, 128,029, 126,438 (Ar-C), 100,802 (Acetal-C), 95,233 (C-1), 78,967 (C-4), 72,032 (C-3), 68,317 (C-6), 67,252 (C-2), 63,495 (C-5). <1>H and <13>C NMR (DMSO-d6) of the dominant isomer, 5 rel. to TMS: 7.5-7.28 (m, 5H, Ar-H), 6.56 (d, 1H, OH-1), 5.0-4.85 (m, 3H, OH-2 and OH -3), 4.10-4.02 (m, in 1H, H-6), 3.63-3.40 (m, 5H, H-2, H-3, H-4, H-5 and H-6'); 138.045, 128.825, 128.029, 126.438 (Ar-C), 100.802 (Acetal-C), 95.233 (C-1), 78.967 (C-4), 72.032 (C-3), 68.317 (C-6), 67.252 ( C-2), 63.495 (C-5).

Forbindelse 12: 2- acetamido- 4. 6- 0- benzvliden- 2- deoksv- a- D- aalaktopvranose Compound 12: 2- acetamido- 4. 6- 0- benzvlidene- 2- deoxy- a- D- aalactopvranose

Benzaldehyddimetylacetal (2,0 ml, 14 mmol) og deretter paratoluensulfonsyre-monohydrat (15 mg) ble tilsatt til en omrørt suspensjon av N-acetyl-D-galaktosamin (1,50 g, 6,77 mmol) i acetonitril (37 ml). Reaksjonsblandingen ble så senket ned i et varmt (60°C) oljebad og omrørt under nitrogen i 3 timer, mens man observerte at det dannet seg et tykt hvitt bunnfall. Reaksjonsblandingen ble så filtrert og det faste stoffet vasket med kald diklormetan (omtrent 2 ml), deretter fortsatte man med sugefiltrering under nitrogenstrøm. Det hvite pulveret ble så plassert i et forhåndsveid glass og satt under vakuum (0,06 mbar) i 72 timer slik at man fikk det rene, ønskede produktet som bare oc-isomeren (1,74 g, 83 %). Benzaldehyde dimethyl acetal (2.0 mL, 14 mmol) followed by paratoluenesulfonic acid monohydrate (15 mg) was added to a stirred suspension of N-acetyl-D-galactosamine (1.50 g, 6.77 mmol) in acetonitrile (37 mL) . The reaction mixture was then immersed in a hot (60°C) oil bath and stirred under nitrogen for 3 hours, while a thick white precipitate was observed to form. The reaction mixture was then filtered and the solid washed with cold dichloromethane (about 2 mL), then continued with suction filtration under nitrogen flow. The white powder was then placed in a preweighed beaker and placed under vacuum (0.06 mbar) for 72 hours to give the pure desired product as only the oc isomer (1.74 g, 83%).

<1>H NMR 5H (300 MHz, d6-DMSO) 1,83 (3H, s, CH3), 3,80-4,17 (6H, m, H-2, H-3, H-4, H-5 og H-6), 4,65 (1H, d, OH-3), 5,06 (1H, t, H-1), 5,59 (1H, s, ArCH), 6,52 (1H, d, OH-1), 7,33-7,55 (5H, m, ArH) og 7,69 (1H, d, NH);13C NMR 6C{<1>H} (75 MHz, d6-DMSO) 23 (CH3), 50, 62, 65, 69 og 76 (C-2, C-3, C-4, C-5, C-6), 91 (C-1), 100 (ArCH), 126, 128, 128 og 138 (arom. C) og 170 (C=0). <1>H NMR 5H (300 MHz, d6-DMSO) 1.83 (3H, s, CH3), 3.80-4.17 (6H, m, H-2, H-3, H-4, H -5 and H-6), 4.65 (1H, d, OH-3), 5.06 (1H, t, H-1), 5.59 (1H, s, ArCH), 6.52 (1H , d, OH-1), 7.33-7.55 (5H, m, ArH) and 7.69 (1H, d, NH); 13C NMR 6C{<1>H} (75 MHz, d6-DMSO ) 23 (CH3), 50, 62, 65, 69 and 76 (C-2, C-3, C-4, C-5, C-6), 91 (C-1), 100 (ArCH), 126 , 128, 128 and 138 (arom. C) and 170 (C=0).

Forbindelse 13: 4. 6- 0-( 3- nitrobenzen)- D- glukopvranose Compound 13: 4. 6- O-( 3- nitrobenzene)- D- glucopvranose

3-nitrobenzaldehyddimetylacetal ble fremstilt som beskrevet for forbindelse 9. 3-Nitrobenzaldehyde dimethyl acetal was prepared as described for compound 9.

3-nitrobenzaldehyddimetylacetal (21,9 g, 0,11 mol), D(+)-glukose (16,0 g, 0,09 mol), paratoluensulfonsyre (100 mg, 0,5 mmol) og tørr DMF (50 ml) ble blandet 3-nitrobenzaldehyde dimethyl acetal (21.9 g, 0.11 mol), D(+)-glucose (16.0 g, 0.09 mol), paratoluenesulfonic acid (100 mg, 0.5 mmol) and dry DMF (50 mL) was mixed

under N2 og omrørt ved 58 °C i 25 minutter. Det ble tilkoblet en vakuumpumpe og metanol og DMF ble sakte destillert av gjennom en avkjølt kolonne ved 55-60 °C, 30-40 mbar i løpet av 4 timer og 15 minutter. Apparaturen ble ombygd for å fjerne det meste av DMF ved kortbanedestillasjon og destillasjonen fortsatte i 1,5 time til. Destillasjonsresten var en svakt gul sirupsmasse. under N2 and stirred at 58 °C for 25 min. A vacuum pump was connected and methanol and DMF were slowly distilled off through a cooled column at 55-60°C, 30-40 mbar over 4 hours and 15 minutes. The apparatus was rebuilt to remove most of the DMF by short path distillation and the distillation continued for another 1.5 hours. The distillation residue was a pale yellow syrupy mass.

Sirupsmassen ble løst i svakt alkalisk (NaHC03) metanol/vann 60:40 og renset på en Lobar C RP-8-kolonne med metanol/vann 60:40 som eluent. Produktfraksjonene ble inndampet (for å fjerne metanol), frysetørket og slått sammen til 5 g av et hvitt, ullent fast stoff. Produktet ble renset en gang til med metanol/vann 60:40 som eluent for å få tittelforbindelsen tilstrekkelig ren. Utbyttet var 3,3 g, 12 % av det teoretiske. Gasskromatografi indikerte at produktet besto av to isomerer i et 70:30-forhold. The syrup mass was dissolved in weakly alkaline (NaHCO 3 ) methanol/water 60:40 and purified on a Lobar C RP-8 column with methanol/water 60:40 as eluent. The product fractions were evaporated (to remove methanol), freeze-dried and combined to give 5 g of a white, woolly solid. The product was purified once more with methanol/water 60:40 as eluent to obtain the title compound sufficiently pure. The yield was 3.3 g, 12% of the theoretical. Gas chromatography indicated that the product consisted of two isomers in a 70:30 ratio.

<1>H NMR (DMSO-d6), 8 rel. til TMS: 8,33-7,63 (5H, m, Ar-H), 6,89+6,60 (1H, d+d, OH-1-l+ll), 5,78 (1H, s+s, acetal-H-i+ii), 5,34 (0.65H, d, OH-3-II), 5,57+5,71 (1,12H, d+d, OH-2-II + OH-3-I), 4,99 (0,56H, m, H-1-I), 4,88 (0.32H, OH-2-I), 4,49 (0.74H, m, H-1-II), 4,28-4,12 (1H, m, H-6'-l+ll), 3,85-3,53 (2.27H, m, H-3-l, H-5-I og H-6"-l+ll), 3,49-3,32 (2.58H, m, H-2-I, H-3-II, H-4-I+II og H-5-II) og 3,12-2,98 (0.85H, m, H-2-II). <1>H NMR (DMSO-d6), 8 rel. to TMS: 8.33-7.63 (5H, m, Ar-H), 6.89+6.60 (1H, d+d, OH-1-l+ll), 5.78 (1H, s +s, acetal-H-i+ii), 5.34 (0.65H, d, OH-3-II), 5.57+5.71 (1.12H, d+d, OH-2-II + OH-3-I), 4.99 (0.56H, m, H-1-I), 4.88 (0.32H, OH-2-I), 4.49 (0.74H, m, H-1 -II), 4.28-4.12 (1H, m, H-6'-1+11), 3.85-3.53 (2.27H, m, H-3-1, H-5-I and H-6"-l+ll), 3.49-3.32 (2.58H, m, H-2-I, H-3-II, H-4-I+II and H-5-II) and 3.12-2.98 (0.85H, m, H-2-II).

Forbindelse 14: 4, 6- 0-( 2- hvdroksvbenzvliden)- D- qlukopvranose Compound 14: 4, 6- 0-( 2- hydroxybenzvlidene)- D- qulkopvranose

Salicylaldehyd (74,4 g, 0,609 mol), metanol (91,5 g, 2,86 mol), trimetylortoformiat (71 g, 0,67 mol) og konsentrert saltsyre (165 ul) blandes i en 500 ml trehalset flaske. Reaksjonsblandingen omrøres ved romtemperatur i 15 minutter og reflukseres i ytterligere 25 minutter. Etter avkjøling (isvann) tilsettes en alkalisk løsning som lages ved å løse KOH (1,1 g) i metanol (7 ml) og omrøringen fortsetter i 25 minutter. Alle flyktige stoffer fjernes (vannstrålepumpe) og det dannede salicylaldehyddimetylacetalet destilleres i vakuum (vakuumpumpe). Salicylicaldehyde (74.4 g, 0.609 mol), methanol (91.5 g, 2.86 mol), trimethyl orthoformate (71 g, 0.67 mol), and concentrated hydrochloric acid (165 µl) are mixed in a 500 mL three-necked flask. The reaction mixture is stirred at room temperature for 15 minutes and refluxed for a further 25 minutes. After cooling (ice water), an alkaline solution prepared by dissolving KOH (1.1 g) in methanol (7 ml) is added and stirring is continued for 25 minutes. All volatile substances are removed (water jet pump) and the formed salicylaldehyde dimethyl acetal is distilled in a vacuum (vacuum pump).

D(+)-glukose (8,0 g, 44,4 mmol), tørr DMF (25 ml), salicylaldehyddimetylacetal (8,33 g, 49,5 mmol) og paratoluensulfonsyre blandes under N2 ved 50 °C. Apparaturen tilkobles til en vakuumpumpe og fordampingen av metanol starter. Temperaturen opprettholdes ved 55-60 °C og vakuumet reguleres gradvis ned for å gjøre reaksjonen fullstendig. Apparaturen ombygges for kortbanedestillasjon for å fjerne DMF. Det dannes en sirupsaktig rest. D(+)-glucose (8.0 g, 44.4 mmol), dry DMF (25 mL), salicylaldehyde dimethyl acetal (8.33 g, 49.5 mmol) and paratoluenesulfonic acid are mixed under N 2 at 50 °C. The apparatus is connected to a vacuum pump and the evaporation of methanol starts. The temperature is maintained at 55-60 °C and the vacuum is gradually regulated down to make the reaction complete. The apparatus is converted for short path distillation to remove DMF. A syrupy residue is formed.

Resten løses i svakt alkalisk (NaHC03) metanol/vann og renses på en Lobar RP-8-kolonne med metanol/vann som eluent. Produktfraksjonene frysetørkes og slås sammen. Identiteten bekreftes ved NMR-analyse. The residue is dissolved in weakly alkaline (NaHCO 3 ) methanol/water and purified on a Lobar RP-8 column with methanol/water as eluent. The product fractions are freeze-dried and combined. The identity is confirmed by NMR analysis.

Forbindelse 15: 2- deoksv- 4. 6- 0-( 2- hvdroksvbenzvlidenVD- glukopvranose Compound 15: 2- deoxy- 4. 6- 0-( 2- hvdroxvbenzvlideneVD- glucopvranose

Salicylaldehyddimetylacetal fremstilles som beskrevet for forbindelse 14. Salicylaldehyde dimethyl acetal is prepared as described for compound 14.

2-deoksy-D-glukose (7,3 g, 44,5 mmol), tørr DMF (25 ml), 2-deoxy-D-glucose (7.3 g, 44.5 mmol), dry DMF (25 mL),

salicylaldehyddimetylacetal (8,33 g, 49,5 mmol) og paratoluensulfonsyre blandes under N2 ved 50 °C. Apparaturen kobles til en vakuumpumpe og fordampingen av metanol starter. Temperaturen holdes ved like på 55-60 °C og vakuumet reguleres gradvis ned for å drive reaksjonen til ende. Apparaturen ombygges for kortbanedestillasjon for å fjerne DMF. Det dannes en sirupsaktig rest. salicylaldehyde dimethyl acetal (8.33 g, 49.5 mmol) and paratoluenesulfonic acid are mixed under N 2 at 50 °C. The apparatus is connected to a vacuum pump and the evaporation of methanol starts. The temperature is kept at 55-60 °C and the vacuum is gradually regulated down to drive the reaction to completion. The apparatus is converted for short path distillation to remove DMF. A syrupy residue is formed.

Resten løses i svakt alkalisk (NaHCOa) metanol/vann og renses på en Lobar RP-8-kolonne med metanol/vann som eluent. Produktfraksjonene frysetørkes og slås sammen. Identiteten bekreftes ved NMR-analyse. The residue is dissolved in weakly alkaline (NaHCOa) methanol/water and purified on a Lobar RP-8 column with methanol/water as eluent. The product fractions are freeze-dried and combined. The identity is confirmed by NMR analysis.

Forbindelse 16: 2- acetamido- 2- deoksv- 4. 6- 0-( 2- hvdroksvbenzvliden)-D- glukopyranose Compound 16: 2- acetamido- 2- deoxy- 4. 6- O-( 2- hydroxybenzvlidene)-D- glucopyranose

Salicylaldehyddimetylacetal fremstilles som beskrevet for forbindelse 14. Salicylaldehyde dimethyl acetal is prepared as described for compound 14.

Salicylaldehyddimetylacetal (9,5 g, 56,5 mmol), N-acetyl-D-glukosamin (10,0 g, 45,2 mmol), tørr DMF (30 ml) og paratoluensulfonsyre (88 mg, 0,46 mmol) blandes under N2. Reaksjonsblandingen omrøres ved 50 °C ved redusert trykk for å drive reaksjonen til ende. Apparaturen ombygges for å fjerne DMF ved kortbanedestillasjon og destillasjonen fortsettes ved 55-60 °C, maks. vakuum. Mix salicylaldehyde dimethyl acetal (9.5 g, 56.5 mmol), N-acetyl-D-glucosamine (10.0 g, 45.2 mmol), dry DMF (30 mL) and paratoluenesulfonic acid (88 mg, 0.46 mmol) under N2. The reaction mixture is stirred at 50 °C under reduced pressure to drive the reaction to completion. The apparatus is rebuilt to remove DMF by short path distillation and the distillation is continued at 55-60 °C, max. vacuum.

Resten nøytraliseres ved å tilsette metanol/vann som inneholder litt NaHC03 og renses på en Lobar RP-8-kolonne med metanol/vann som eluent. Identiteten bekreftes ved NMR-spektroskopi. The residue is neutralized by adding methanol/water containing a little NaHCO 3 and purified on a Lobar RP-8 column with methanol/water as eluent. The identity is confirmed by NMR spectroscopy.

Forbindelse 17: 4. 6- 0-( 2- hvdroksvbenzvliden)- D- qalaktopvranose Compound 17: 4. 6- O-( 2- Hydroxybenzvlidene)- D- qalactopvranose

D(+)-galaktose (8,0 g, 44,4 mmol), tørr DMF (25 ml), salicylaldehyddimetylacetal (8,33 g, 49,5 mmol) og paratoluensulfonsyre blandes under N2 ved 50 °C. Apparaturen kobles til en vakuumpumpe og fordampningen av metanol starter. Temperaturen holdes ved like ved 55-60 °C og vakuumet reguleres gradvis ned for å drive reaksjonen til ende. Apparaturen ombygges for kortbanedestillasjon for å fjerne DMF. Det dannes en sirupsaktig rest. D(+)-galactose (8.0 g, 44.4 mmol), dry DMF (25 mL), salicylaldehyde dimethyl acetal (8.33 g, 49.5 mmol) and paratoluenesulfonic acid are mixed under N 2 at 50 °C. The apparatus is connected to a vacuum pump and the evaporation of methanol starts. The temperature is kept at around 55-60 °C and the vacuum is gradually regulated down to drive the reaction to completion. The apparatus is converted for short path distillation to remove DMF. A syrupy residue is formed.

Resten løses i svakt alkalisk (NaHCOs) metanol/vann og renses på en Lobar RP-8-kolonne med metanol/vann som eluent. Produktfraksjonene frysetørkes og slås sammen. Identiteten bekreftes ved NMR-analyse. The residue is dissolved in weakly alkaline (NaHCO 3 ) methanol/water and purified on a Lobar RP-8 column with methanol/water as eluent. The product fractions are freeze-dried and combined. The identity is confirmed by NMR analysis.

Forbindelse 18: 2- deoksv- 4. 6- 0-( 2- hvdroksvbenzvliden)- D- aalaktopvranose Salicylaldehyddimetylacetal fremstilles som beskrevet for forbindelse 14. Compound 18: 2-deoxy-4.6-0-(2-hydroxybenzvlidene)-D-alalactopvranose Salicylaldehyde dimethyl acetal is prepared as described for compound 14.

2-deoksy-D-galaktose (7,3 g, 44,5 mmol), tørr DMF (25 ml), salicylaldehyddimetylacetal (8,33 g, 49,5 mmol) og paratoluensulfonsyre blandes under N2 ved 50 °C. Apparaturen kobles til en vakuumpumpe og fordampningen av metanol starter. Temperaturen holdes ved like ved 55-60 °C og vakuumet reguleres gradvis ned for å drive reaksjonen til ende. Apparaturen ombygges for kortbanedestillasjon for å fjerne DMF. Det dannes en sirupsaktig rest. 2-Deoxy-D-galactose (7.3 g, 44.5 mmol), dry DMF (25 mL), salicylaldehyde dimethyl acetal (8.33 g, 49.5 mmol) and paratoluenesulfonic acid are mixed under N 2 at 50 °C. The apparatus is connected to a vacuum pump and the evaporation of methanol starts. The temperature is kept at around 55-60 °C and the vacuum is gradually regulated down to drive the reaction to completion. The apparatus is converted for short path distillation to remove DMF. A syrupy residue is formed.

Resten løses i svakt alkalisk (NaHCOa) metanol/vann og renses på en Lobar RP-8-kolonne med metanol/vann som eluent. Produktfraksjonene frysetørkes og slås sammen. Identiteten bekreftes ved NMR-analyse. The residue is dissolved in weakly alkaline (NaHCOa) methanol/water and purified on a Lobar RP-8 column with methanol/water as eluent. The product fractions are freeze-dried and combined. The identity is confirmed by NMR analysis.

Forbindelse 19: 2- acetamido- 2- deoksv- 4. 6-( 2- hvdroksvbenzvliden)-D- aalaktopvranose Compound 19: 2-acetamido-2-deoxy-4.6-(2-hydroxybenzvlidene)-D-alactopvranose

Salicylaldehyddimetylacetal fremstilles som beskrevet for forbindelse 14. Salicylaldehyde dimethyl acetal is prepared as described for compound 14.

N-acetyl-D-galaktosamin (10,0 g, 45,2 mmol), tørr DMF (25 ml), salicylaldehyddimetylacetal (8,33 g, 49,5 mmol) og paratoluensulfonsyre blandes under N2 ved 50 °C. Apparaturen kobles til en vakuumpumpe og fordampningen av metanol starter. Temperaturen holdes ved like ved 55-60 °C og vakuumet reguleres gradvis ned for å drive reaksjonen til ende. Apparaturen ombygges for kortbanedestillasjon for å fjerne DMF. Det dannes en destillasjonsrest. N-acetyl-D-galactosamine (10.0 g, 45.2 mmol), dry DMF (25 mL), salicylaldehyde dimethyl acetal (8.33 g, 49.5 mmol) and paratoluenesulfonic acid are mixed under N 2 at 50 °C. The apparatus is connected to a vacuum pump and the evaporation of methanol starts. The temperature is kept at around 55-60 °C and the vacuum is gradually regulated down to drive the reaction to completion. The apparatus is converted for short path distillation to remove DMF. A distillation residue is formed.

Det lages en svakt alkalisk løsning ved å blande NaHC03 i metanol/vann og destillasjonsresten nøytraliseres ved å tilsette denne løsningen. Grøten som dannes filtreres og vaskes med 1% NaHC03-løsning og vann. Produktet analyseres ved gasskromatografi og omkrystalliseres hvis nødvendig. Produktet tørkes i vakuum når det er tilstrekkelig rent. A weakly alkaline solution is made by mixing NaHCO3 in methanol/water and the distillation residue is neutralized by adding this solution. The slurry that forms is filtered and washed with 1% NaHCO 3 solution and water. The product is analyzed by gas chromatography and recrystallized if necessary. The product is dried in a vacuum when it is sufficiently clean.

Identiteten bekreftes ved NMR-analyse. The identity is confirmed by NMR analysis.

Forbindelse 20: 4. 6- 2( hvdroksvbenzvliden)- D- mannopvranose Salicylaldehyddimetylacetal fremstilles som beskrevet for forbindelse 14. Compound 20: 4. 6- 2(hydroxybenzvlidene)-D-mannopuranose Salicylaldehyde dimethyl acetal is prepared as described for compound 14.

D(+)-mannose (8,0 g, 44,4 mmol), tørr DMF (25 ml), salicylaldehyddimetylacetal (8,33 g, 49,5 mmol) og paratoluensulfonsyre blandes under N2 ved 50 °C. Apparaturen kobles til en vakuumpumpe og fordampningen av metanol starter. Temperaturen holdes ved like ved 55-60 °C og vakuumet reguleres gradvis ned for å drive reaksjonen til ende. Apparaturen ombygges for kortbanedestillasjon for å fjerne DMF. Det dannes en sirupsaktig rest. D(+)-mannose (8.0 g, 44.4 mmol), dry DMF (25 mL), salicylaldehyde dimethyl acetal (8.33 g, 49.5 mmol) and paratoluenesulfonic acid are mixed under N 2 at 50 °C. The apparatus is connected to a vacuum pump and the evaporation of methanol starts. The temperature is kept at around 55-60 °C and the vacuum is gradually regulated down to drive the reaction to completion. The apparatus is converted for short path distillation to remove DMF. A syrupy residue is formed.

Resten løses i svakt alkalisk (NaHCO-3) metanol/vann og renses på en Lobar RP-8-kolonne med metanol/vann som eluent. Produktfraksjonene frysetørkes og slås sammen. Identiteten bekreftes ved NMR-analyse. The residue is dissolved in weakly alkaline (NaHCO-3) methanol/water and purified on a Lobar RP-8 column with methanol/water as eluent. The product fractions are freeze-dried and combined. The identity is confirmed by NMR analysis.

Biologiske eksperimenter Biological experiments

Eksempel 1 Example 1

Biologiske materialer og metoder som brukes til å vise virkningen av forbindelsene. Biological materials and methods used to show the action of the compounds.

Cellekulturteknikker Cell culture techniques

Humane celler, NHIK 3025, fra en livmorhalstumor in situ (Nordbye, K og Oftebro, R. Exp. Cell Res., 58:458, 1969, Oftebro, R. og Nordbye K., Exp. Cell Res., 58:459-60, 1969) ble dyrket i Eagels Minimal Essential Medium (MEM) komplettert med 15 % kalvefosterserum (Gibco BRL Ltd). Humane brystkreftceller, T-47D, (Keydar, I. et al., Er. J. Cancer, bind 15, s. 659-670, 1979) ble dyrket i mediet RPMI-1640 komplettert med 10 % kalvefosterserum, 0,2 u/ml insulin, 292 mg/ml L-glutamin, 50 u/ml penicillin, 50 mg/ml streptomycin. Cellene dyrkes rutinemessig som enkeltlag ved 37 °C i vevskulturkolber. For å holde cellene i kontinuerlig eksponentiell vekst ble de trypsinifisert og gjenoppdyrket tre ganger pr. uke. Human cells, NHIK 3025, from a cervical tumor in situ (Nordbye, K and Oftebro, R. Exp. Cell Res., 58:458, 1969, Oftebro, R. and Nordbye K., Exp. Cell Res., 58:459 -60, 1969) were cultured in Eagel's Minimal Essential Medium (MEM) supplemented with 15% fetal calf serum (Gibco BRL Ltd). Human breast cancer cells, T-47D, (Keydar, I. et al., Er. J. Cancer, vol. 15, pp. 659-670, 1979) were grown in RPMI-1640 medium supplemented with 10% fetal calf serum, 0.2 u /ml insulin, 292 mg/ml L-glutamine, 50 u/ml penicillin, 50 mg/ml streptomycin. The cells are routinely grown as monolayers at 37 °C in tissue culture flasks. To keep the cells in continuous exponential growth, they were trypsinized and recultured three times per week.

Cellenes overlevelsesfaktor Cell survival factor

Overlevelsesfaktoren ble målt som evnen til kolonidannelse. Før såingen ble de eksponentielt voksende cellene trypsinifisert, suspendert som enkeltceller og sådd direkte på 5 cm plastskiver. Antallet sådde celler ble justert slik at antallet overlevende celler ville bli omtrent 150 pr. skive. Etter omtrent 2 timers inkubering ved 37 °C hadde cellene festet seg til bunnen av skivene. Medikamentbehandlingen ble så startet ved å erstatte mediet med et medium som hadde den ønskede medikamentkonsentrasjonen. Etter medikamentbehandlingen ble cellene renset igjen med varm (37 °C) Hanks balanserte saltløsning før det ble tilsatt friskt medium. Etter 10 til 12 dager ved 37 °C i en C02-inkubator ble cellene fiksert i etanol og farget med metylenblått før koloniene ble talt. The survival factor was measured as the ability to form colonies. Before seeding, the exponentially growing cells were trypsinized, suspended as single cells and seeded directly onto 5 cm plastic dishes. The number of seeded cells was adjusted so that the number of surviving cells would be approximately 150 per slice. After approximately 2 hours of incubation at 37°C, the cells had adhered to the bottom of the slides. The drug treatment was then started by replacing the medium with a medium having the desired drug concentration. After the drug treatment, the cells were washed again with warm (37 °C) Hank's balanced salt solution before fresh medium was added. After 10 to 12 days at 37°C in a CO 2 incubator, cells were fixed in ethanol and stained with methylene blue before colonies were counted.

Fig. 1-3 viser overlevende cellefraksjon for NHIK 3025-celler som ble behandlet i 20 timer med enten forbindelse 8 og 9 (fig. 1), forbindelse 5 og 7 (fig. 2) eller forbindelse 12 (fig. 3). Dataene tyder på at alle forbindelsene fører til inaktivering av cellene i omtrent de samme doseintervallene som zilascorb(<2>H) (Pettersen et al., Anticancer Res. Bind 11, (1991), s. 1077-1082). Figures 1-3 show surviving cell fraction for NHIK 3025 cells treated for 20 hours with either compounds 8 and 9 (Figure 1), compounds 5 and 7 (Figure 2) or compound 12 (Figure 3). The data suggest that all compounds lead to inactivation of the cells in approximately the same dose ranges as zilascorb(<2>H) (Pettersen et al., Anticancer Res. Vol. 11, (1991), pp. 1077-1082).

Utfra fig. 4 kan man se at forbindelse 2 gir høyere grad av celleinaktivering enn Tucaresol. Based on fig. 4 it can be seen that compound 2 gives a higher degree of cell inactivation than Tucaresol.

Eksempel 2 Example 2

Proteins<y>ntese Protein Synthesis

Proteinsyntesehastigheten ble beregnet som tidligere beskrevet (Ronning, O.W. et al., J. Cell Physiol., 107: 47-57,1981). Kort sagt ble celleproteinet merket til metningspunktet ved minst 2 dagers preinkubering med [<14>C]-valin av konstant spesifikk radioaktivitet (0,5 Ci/mol). For å holde den spesifikke radioaktiviteten konstant ble det brukt en høy konsentrasjon av valin i mediet (1,0 mM). Ved denne valinkonsentrasjonen vil fortynningen av [<14>C]valin i det intracellulære og det proteolytisk genererte valinet være neglisjerbar (Ronning, O.W., et al., Exp. Cell Res. 123: 63-72, 1979). Proteinsyntesehastigheten ble beregnet utfra inkorporeringen av [<3>H]valin relativt til den totale [<14>C]-radioaktiviteten i proteinet ved begynnelsen av de forskjellige måleperiodene og uttrykt som et prosenttall pr. time (Ronning, O.W. et al., J. Cell Physiol., 107: 47-57, 1981). The rate of protein synthesis was calculated as previously described (Ronning, O.W. et al., J. Cell Physiol., 107: 47-57, 1981). Briefly, the cell protein was labeled to saturation point by at least 2 days of preincubation with [<14>C]-valine of constant specific radioactivity (0.5 Ci/mol). To keep the specific radioactivity constant, a high concentration of valine was used in the medium (1.0 mM). At this valine concentration, the dilution of [<14>C]valine in the intracellular and the proteolytically generated valine will be negligible (Ronning, O.W., et al., Exp. Cell Res. 123: 63-72, 1979). The protein synthesis rate was calculated from the incorporation of [<3>H]valine relative to the total [<14>C] radioactivity in the protein at the beginning of the different measurement periods and expressed as a percentage per hour (Ronning, O.W. et al., J. Cell Physiol., 107: 47-57, 1981).

Man kan se av fig. 5 at forbindelse 2 fører til sterkere hemming av proteinsyntesen enn Tucaresol. It can be seen from fig. 5 that compound 2 leads to stronger inhibition of protein synthesis than Tucaresol.

Eksempel 3 Example 3

Eksperimenter med humant implantat på nakne mus Experiments with human implant on naked mice

Medikamentene ble testet ved behandling av tre humane kreftimplantater på The drugs were tested by treating three human cancer implants on

brisselløse hunnmus. De brukte cellelinjene er SK-OV-3 eggstokkarsinom, A-549 lungekreft og Caco-2 kolorektal kreft. De ble innkjøpt fra den amerikanske typekultursamlingen og dyrket kort tid in vitroiør de ble implantert på musene. Tumorlinjene ble sendt som s.c.-implantater på nakne mus. Musene som ble brukt female bristleless mice. The cell lines used are SK-OV-3 ovarian carcinoma, A-549 lung cancer and Caco-2 colorectal cancer. They were purchased from the American Type Culture Collection and cultured for a short time in vitro before being implanted in the mice. The tumor lines were sent as s.c. implants on nude mice. The mice used

i eksperimentene var 8-9 uker gamle ved implanteringen. Små tumorbiter ble implantert s.c. på venstre flanke av dyrene. Dyr med voksende tumorer (tumorvolum 25-110 mm<3>) ble tilfeldig tilordnet til medikamenterings- og kontrollgrupper, men det ble tatt hensyn til at gjennomsnittlig tumorstørrelse i hver av gruppene skulle være omtrent den samme. Antitumoraktiviteten av medikamentet ble målt ved vekstkorver for tumorvolumet og histologisk evaluering av noen av tumorene. Under behandlingen ble tumorene målt 2 ganger pr. uke ved å måle to diametre vinkelrett på hverandre med krumpassere. Tumorvolumet ble estimert med formelen: volum = (lengde x bredde)/2. Vekstkurvene ble laget ved å standardisere tumorvolumet i de forskjellige gruppene ved å beregne relativt tumorvolum (RV) etter formelen RV = Vx/V1, hvor Vx er tumorvolumet dag x og V1 in the experiments were 8-9 weeks old at the time of implantation. Small pieces of tumor were implanted s.c. on the left flank of the animals. Animals with growing tumors (tumor volume 25-110 mm<3>) were randomly assigned to drug and control groups, but it was taken into account that the average tumor size in each of the groups should be approximately the same. The antitumor activity of the drug was measured by growth curves for the tumor volume and histological evaluation of some of the tumors. During the treatment, the tumors were measured 2 times per week by measuring two diameters perpendicular to each other with calipers. The tumor volume was estimated with the formula: volume = (length x width)/2. The growth curves were created by standardizing the tumor volume in the different groups by calculating relative tumor volume (RV) according to the formula RV = Vx/V1, where Vx is the tumor volume on day x and V1

det opprinnelige volumet ved starten av behandlingen (dag 1), og plotte middelvolumet med standardavvik for hver behandlingsgruppe som funksjon av tiden. Det ble tilpasset en eksponentialkurve til de relative volumvekstdataene og tidsintervallet for fordobling av tumorvolumet i hver gruppe, the initial volume at the start of treatment (day 1), and plot the mean volume with standard deviation for each treatment group as a function of time. An exponential curve was fitted to the relative volume growth data and the time interval for tumor volume doubling in each group,

tumorvolumfordoblingstiden (TD), ble beregnet utfra tilpasningskur/en (loge2//c, the tumor volume doubling time (TD), was calculated from the adaptation course/en (loge2//c,

hvor k er den estimerte hastighetskonstanten for prosessen.) Den histologiske evalueringen var basert på makroskopisk undersøkelse av tumoren og lysmikroskopisk undersøkelse av små tumorseksjoner (6-8 mm tykke) innkapslet i parafin og farget med hematoksylin og eosin. where k is the estimated rate constant for the process.) The histological evaluation was based on macroscopic examination of the tumor and light microscopic examination of small tumor sections (6-8 mm thick) embedded in paraffin and stained with hematoxylin and eosin.

Tabell 1 viser tiden for fordobling av tumorvolumet (TD) i humane Table 1 shows the tumor volume doubling time (TD) in humans

tumorimplantater på nakne mus som daglig behandles intravenøst med de angitte medisinene og dosene. tumor implants on nude mice treated daily intravenously with the indicated drugs and doses.

Fig. 6 viser gjennomsnittlige tumorvekstkurver for tumorlinjen SK-OV-3 eggstokkarsinom implantert på nakne mus, hvor musene ble behandlet daglig med 1 mg/kg og 7,5 mg/kg av forbindelse 8. Kurvene viser en signifikant veksthemmende effekt ved begge dosene. Fig. 7-12 viser mikroskopfoto av tumorer fra hver gruppe. Disse bildene viser en generell oppdagelse for denne forbindelsen, nemlig at det er forskjell i tumorcellenekrose mellom kontrolltumorene og de som behandles med forbindelse 8. Siden de behandlede tumorene nekrotiseres ved behandlingen er medikamentvirkningen i virkeligheten enda sterkere enn den som vises ved vekstkurvene. Fig. 6 shows average tumor growth curves for the tumor line SK-OV-3 ovarian carcinoma implanted in nude mice, where the mice were treated daily with 1 mg/kg and 7.5 mg/kg of compound 8. The curves show a significant growth inhibitory effect at both doses. Fig. 7-12 shows microscope photographs of tumors from each group. These images show a general finding for this compound, namely that there is a difference in tumor cell necrosis between the control tumors and those treated with compound 8. Since the treated tumors necrotize with the treatment, the drug effect is actually even stronger than that shown by the growth curves.

Eksempel 4 Example 4

Multicellulære kuler og aktivering av retinoblastomprotein ( pRB) Multicellular spheres and activation of retinoblastoma protein (pRB)

Kulene ble initiert ved å overføre suspenderte enkeltceller til en 25 cm<2>The spheres were initiated by transferring suspended single cells to a 25 cm<2>

vevskulturkolbe som inneholdt 12 ml medium. Kolben ble så plassert på et vippebord (MIXER 440, Swelab Instrument) inne i et walk-in inkubatorrom ved 37 °C. Vippehastigheten ble justert til 10 vipp på 18 sekunder. Under vippingen ble de suspenderte cellene hindret i å feste seg til kolbebunnen. I stedet kunne mange celler feste seg til hverandre og danne små celleklumper på vanligvis 50-100 celler hver etter omtrent 24 timers vipping. De små klumpene ble så overført til en annen 25 cm<2> vevskulturkolbe. I dette tilfellet var kolbebunnen på forhånd dekket (d.v.s. overtrukket) med et tynt lag 1,3% sterilisert agar (Bacto-Agar, Difco Laboratories, tissue culture flask containing 12 ml medium. The flask was then placed on a tilt table (MIXER 440, Swelab Instrument) inside a walk-in incubator room at 37 °C. The flip speed was adjusted to 10 flips in 18 seconds. During the tilting, the suspended cells were prevented from sticking to the bottom of the flask. Instead, many cells could adhere to each other and form small cell clumps of typically 50-100 cells each after about 24 hours of rocking. The small clumps were then transferred to another 25 cm<2> tissue culture flask. In this case, the bottom of the flask was previously covered (i.e. coated) with a thin layer of 1.3% sterilized agar (Bacto-Agar, Difco Laboratories,

USA). Celleklumpene sedimenterte seg på toppen av agarlaget og klarte ikke å USA). The clumps of cells settled on top of the agar layer and failed to

feste seg til dette. Cellene i klumpene festet seg imidlertid til hverandre og begynte å dele seg. Etter 1 uke var volumet av klumpene fordoblet flere ganger og de var runde, som kuler. Under denne perioden ble mediet byttet 3 ganger i uka og kulene ble overført til nye agar-overtrukne kolber en gang hver uke. stick to this. However, the cells in the clumps stuck to each other and began to divide. After 1 week, the volume of the lumps had doubled several times and they were round, like balls. During this period, the medium was changed 3 times a week and the spheres were transferred to new agar-coated flasks once a week.

Når kulene var blitt omtrent 400 mm i diameter (etter 2 til 3 ukers dyrking) ble de When the balls had become about 400 mm in diameter (after 2 to 3 weeks of cultivation) they were

overført til små mikrobrønner med en kule pr. brønn sammen med 1 ml medium. transferred to small microwells with one sphere per well together with 1 ml medium.

Man sørget for at alle de valgte kulene var omtrent like store. Brønnene var også overtrukket med agar for å hindre at kulene festet seg til bunnen. De forskjellige brønnene ble tilført nytt medium som inneholdt testsubstansen i den valgte konsentrasjonen og deretter ble diameteren av hver av kulene målt en gang om dagen. Dette ble gjort ved mikroskopi, med fastkontrastoptikk og et gitter med kjent linjeseparasjon (avstanden mellom to nabolinjer) på et av okularene. I hver av gruppene var det 8-12 parallelle kuler. Hver dag ble relativt kulevolum (volumet dag n dividert med volumet ved dag 1) beregnet for hver individuell kule og det ble plottet vekstkurver med gjennomsnittlig relativt volum for alle kulene i en gruppe som funksjon av tiden etter starten av behandlingen. Care was taken to ensure that all the selected balls were approximately the same size. The wells were also coated with agar to prevent the beads from sticking to the bottom. The different wells were supplied with new medium containing the test substance in the chosen concentration and then the diameter of each of the spheres was measured once a day. This was done by microscopy, with fixed contrast optics and a grating with known line separation (the distance between two neighboring lines) on one of the eyepieces. In each of the groups there were 8-12 parallel balls. Each day, relative sphere volume (the volume on day n divided by the volume on day 1) was calculated for each individual sphere and growth curves were plotted with the average relative volume for all spheres in a group as a function of time after the start of treatment.

I tabell 2 vises volumfordoblingstiden (TD) for T-47D-kuler som ble behandlet i 259 Table 2 shows the volume doubling time (TD) for T-47D bullets treated in 259

timer med forbindelse 8 ved de angitte dosene. Tabell 2 viser volumfordoblingtiden hours with compound 8 at the indicated doses. Table 2 shows the volume doubling time

for kuler av T-47D-celler som enten er ubehandlet (dose = 0 mM) eller kontinuerlig behandlet med 0,1 eller 1,0 mM av forbindelse 8 i mediet. Forbindelse 8 øker beviselig fordoblingstiden for kulene (d.v.s. den hemmer kuleveksten) på en måte som avhenger av dosen, siden virkningen klart er sterkere med 1,0 mM enn med 0,1 mM av medikamentet. for beads of T-47D cells either untreated (dose = 0 mM) or continuously treated with 0.1 or 1.0 mM of compound 8 in the medium. Compound 8 demonstrably increases the doubling time of spheres (i.e. inhibits sphere growth) in a dose-dependent manner, as the effect is clearly stronger with 1.0 mM than with 0.1 mM of the drug.

Fig. 13 viser gjennomsnittlige vekstkurver for kulevolumet av cellelinjen T-47D brystkreft hvor kulene ble behandlet med 0,1 mM og 1,0 mM forbindelse 8 løst i mediet. Fig. 13 shows average growth curves for the sphere volume of the cell line T-47D breast cancer where the spheres were treated with 0.1 mM and 1.0 mM compound 8 dissolved in the medium.

Med NHIK 3025-cellekuler fant man ikke at økningen av kulevolumet med tiden ble redusert på samme måte som med T-47D-cellekuler. I stedet desintegrerte kulene som ble behandlet med forbindelse 8 etter forholdsvis kort tids behandling (7 til 10 dager). For å oppklare årsaken til denne sterke effekten utførte vi et eksperiment hvor vi behandlet kuler av NHIK 3025-celler i bare 4 dager og deretter laget vi histologiske snitt av kulene. Resultatene av dette eksperimentet vises i fig. 14. With NHIK 3025 cell spheres, it was not found that the increase in sphere volume with time was reduced in the same way as with T-47D cell spheres. Instead, the spheres treated with compound 8 disintegrated after a relatively short period of treatment (7 to 10 days). To elucidate the reason for this strong effect, we performed an experiment where we treated spheres of NHIK 3025 cells for only 4 days and then made histological sections of the spheres. The results of this experiment are shown in fig. 14.

Fig. 14 viser mikroskopfoto av tverrsnitt av 3 NHIK 3025-cellekuler som hadde fått forskjellig behandling, en ubehandlet kontroll (A), en som var behandlet med 0,1 mM av forbindelse 8 i 4 dager (B) og en som var behandlet med 1,0 mM av forbindelse 8 i 4 dager (C). Kulene ble fiksert i 4% formaldehyd og innkapslet i parafin før det ble laget 6 mm tykke seksjoner som ble farget med hematoksylin og eosin. Fig. 14 shows microscope photographs of cross-sections of 3 NHIK 3025 cell spheres that had received different treatments, an untreated control (A), one treated with 0.1 mM of compound 8 for 4 days (B) and one treated with 1.0 mM of compound 8 for 4 days (C). The spheres were fixed in 4% formaldehyde and embedded in paraffin before 6 mm thick sections were made and stained with hematoxylin and eosin.

Begge kulene som var behandlet med forbindelse 8 viser betydelige sentralområder hvor cellene ser ut til å være i apoptose. Apoptotiske figurer ble ikke funnet i noen av kontrollkulene, men var utbredt i de som var behandlet med forbindelse 8. Both spheres treated with compound 8 show significant central areas where the cells appear to be in apoptosis. Apoptotic figures were not found in any of the control spheres, but were widespread in those treated with compound 8.

I begge celletypene som ble behandlet med forbindelse 8 er det en klar virkning av medikamentet, men den er forskjellig fra den ene celletypen til den andre. For kuler av T-47D-celler skjer det en redusert volumvekst i medikamentelle kuler som er doseavhengig. I kuler av NHIK 3025 skjer det ingen reduksjon i veksten av kulevolumet på grunn av medikamenteringen, volumet av de behandlede kulene øker heller raskere sammenliknet med kontrollkuler på en periode av 9 dager. I de behandlede kulene er det imidlertid en vesentlig fraksjon som gjennomgår apoptose, slik at avfall fra døde celler i dette tilfeller utgjør mye av kulevolumet. Den raske volumøkningen i disse kulene kommer trolig av endringer i osmotisk trykk etter oppløsning av cellefragmentene. På grunn av utsvellingen blir disse kulene ustabile og desintegrerte etter omtrent 9 dager. In both cell types that were treated with compound 8, there is a clear effect of the drug, but it differs from one cell type to the other. For spheres of T-47D cells, there is a reduced volume growth in medicinal spheres which is dose-dependent. In spheres of NHIK 3025 there is no reduction in the growth of the sphere volume due to the medication, the volume of the treated spheres rather increases more quickly compared to control spheres over a period of 9 days. In the treated spheres, however, a significant fraction undergoes apoptosis, so that waste from dead cells in this case makes up much of the sphere volume. The rapid increase in volume in these spheres probably comes from changes in osmotic pressure after dissolution of the cell fragments. Due to the swelling, these spheres become unstable and disintegrate after about 9 days.

Årsaken til at de to celletypene reagerer forskjellig kan ikke fastslås med sikkerhet. Men det er mulig at en del av årsaken kan være en viktig genetisk forskjell mellom de to celletypene når det gjelder regulering av celleveksten og celleformeringen. T-47D-celler uttrykker funksjonelt pRB, retinoblastom-proteinet, et normalt tumorundertrykkende gen som er viktig for å regulere progresjonen av cellesyklusen i vanlige celler. Dette genet er ofte defekt i kreftceller, og NHIK 3025 er en av de celletypene som har en defekt pRB-funksjon. Vi har observert at pRB kan aktiveres for å bremse opp celler under stressbetingelser selv om cellene har gått inn i S-fasen av cellesyklusen, noe som tyder på at dette genet kan beskytte cellene mot den inaktiverende virkningen av stress i kombinasjon med DNA-syntesen (se Åmellem, Sandvik, Stokke og Pettersen, British Journal of Cancer 77 The reason why the two cell types react differently cannot be determined with certainty. But it is possible that part of the reason may be an important genetic difference between the two cell types when it comes to the regulation of cell growth and cell proliferation. T-47D cells functionally express pRB, the retinoblastoma protein, a normal tumor suppressor gene important for regulating cell cycle progression in normal cells. This gene is often defective in cancer cells, and NHIK 3025 is one of the cell types that has a defective pRB function. We have observed that pRB can be activated to slow down cells under stress conditions even after the cells have entered the S phase of the cell cycle, suggesting that this gene can protect cells from the inactivating effect of stress in combination with DNA synthesis ( see Åmellem, Sandvik, Stokke and Pettersen, British Journal of Cancer 77

(1998) 862-872). I den foreliggende undersøkelsen virker benzaldehydderivatet som en veksthemmende stresspåvirkning. Dermed er det mulig at T-47D-cellene beskyttes av det funksjonelle pRB-genet, og derfor ikke får apoptose, mens NHIK 3025-celler med en defekt pRB-funksjon ikke unngår apoptotisk død. (1998) 862-872). In the present investigation, the benzaldehyde derivative acts as a growth-inhibiting stress effect. Thus, it is possible that the T-47D cells are protected by the functional pRB gene, and therefore do not undergo apoptosis, while NHIK 3025 cells with a defective pRB function do not avoid apoptotic death.

For å teste aktiveringen av pRB brukte vi to forskjellige celletyper som begge uttrykker pRB normalt, T-47D og MCF-7. Det kjernebundne pRB-proteinet ble målt med strømningscytometri. Vi målte samtidig DNA og dataene ble presentert i histogrammer med de to parameterne DNA mot pRB. Fikseringen og fargingen ble utført som beskrevet av Åmellem, Sandvik, Stokke og Pettersen, British Journal of Cancer 77(1998) 862-872. Celler som var ekstrahert med detergent ble raskt preparert ved å resuspendere cellene i 1,5 ml saltfattig detergentbuffer. De ekstraherte kjernene ble fiksert i 4% paraformaldehyd i 1 time før pRB ble bundet med PMG3-245 monoklonalt antistoff (Pharmingen) som gjenkjenner både de underfosforylerte og hyperfosforylerte formene av proteinet. DNA ble farget med Hoechst 33258 og pRB-antistoffet med streptavidin-FITC. Kjernene ble målt i et FACStartplus strømningscytometer (Becton-Dickinson) med to argonlasere (Spectra Physics) innstilt på h.h.v. 488 nm og UV. To test the activation of pRB, we used two different cell types that both express pRB normally, T-47D and MCF-7. The nuclear bound pRB protein was measured by flow cytometry. We simultaneously measured DNA and the data were presented in histograms with the two parameters DNA versus pRB. Fixation and staining were performed as described by Åmellem, Sandvik, Stokke and Pettersen, British Journal of Cancer 77(1998) 862-872. Cells that had been extracted with detergent were quickly prepared by resuspending the cells in 1.5 ml low-salt detergent buffer. The extracted nuclei were fixed in 4% paraformaldehyde for 1 h before pRB was bound with PMG3-245 monoclonal antibody (Pharmingen) which recognizes both the hypophosphorylated and hyperphosphorylated forms of the protein. DNA was stained with Hoechst 33258 and the pRB antibody with streptavidin-FITC. The nuclei were measured in a FACStartplus flow cytometer (Becton-Dickinson) with two argon lasers (Spectra Physics) set to r.h.v. 488 nm and UV.

Dataene i fig. 15-18 viser hvilken fraksjon av kjernene i hvert av de tre interfasestadiene, G1, S og G2, som har RB-proteinet bundet i kjernen etter behandling med forbindelse 8. Når det er bundet på denne måten antar man at pRB regulerer cellen ut av cellesyklusen, d.v.s. at det overtar cellesykluskontrollen. (Se Åmellem, 0., Stokke, T., Sandvik, J.A. & Pettersen, E.O.: The retinoblastoma gene product is reversibly dephosphorylated and bound in the nucleus in S and G2 phase during hypoxic stress. Exp. Cell Res. 227 (1996) 106-115.) Figurene viser data for to typer menneskelige brystkreftceller, MCF-7 (fig. 15 og 16) og T-47D (fig. 17 og 18) og for medikamenteringstider på 24 timer (fig. 15 og 17) og 48 timer (fig. 16 og 18). For begge celletypene øker forbindelse 8 ved konsentrasjoner over 0,5 mM fraksjonen av kjerner som har bundet pRB i alle interfasestadiene. Virkningen øker med økende behandlingstid og er derfor langt mer markert etter 48 enn etter 24 timers behandling. Dette antas å indikere at substansen aktiverer den cellesyklusregulerende funksjonen til pRB, noe som resulterer i redusert cellesyklusprogresjon. Avhengigheten av medikamentdosen er imidlertid komplisert, og viser en maksimal effekt for en dose av forbindelse 8 på rundt 1 mM og en reduksjon for høyere doser. Vi ser altså en klokkeformet doseresponskurve omtrent på samme måten som for forbindelse 10 i dyreeksperimentet på SK-OV-3-implantat på nakne mus (se tabell 1). Selv om det hittil ikke er kjent hvorfor pRB-aktiveringen reduseres for forbindelse 8 i doser over 1 til 1,5 mM er det interessant å merke seg at vi har funnet en relativt sterk proteinsyntesehemming for dette medikamentet ved disse dosene. Etter 24 timers behandling av NHIK 3025-celler med 1,5 mM av forbindelse 8 er proteinsyntesehastigheten 70% av hastigheten i kontrollcellene (se fig. 19). The data in fig. 15-18 show which fraction of the nuclei in each of the three interphase stages, G1, S and G2, has the RB protein bound in the nucleus after treatment with compound 8. When it is bound in this way, it is assumed that pRB regulates the cell out of the cell cycle, i.e. that it takes over cell cycle control. (See Åmellem, 0., Stokke, T., Sandvik, J.A. & Pettersen, E.O.: The retinoblastoma gene product is reversibly dephosphorylated and bound in the nucleus in S and G2 phase during hypoxic stress. Exp. Cell Res. 227 (1996) 106-115.) The figures show data for two types of human breast cancer cells, MCF-7 (Figs. 15 and 16) and T-47D (Figs. 17 and 18) and for drug treatment times of 24 hours (Figs. 15 and 17) and 48 hours (fig. 16 and 18). For both cell types, compound 8 at concentrations above 0.5 mM increases the fraction of nuclei that have bound pRB in all interphase stages. The effect increases with increasing treatment time and is therefore far more marked after 48 than after 24 hours of treatment. This is believed to indicate that the substance activates the cell cycle regulatory function of pRB, resulting in reduced cell cycle progression. However, the dependence on the drug dose is complicated, showing a maximal effect for a dose of compound 8 of around 1 mM and a decrease for higher doses. We therefore see a bell-shaped dose-response curve in much the same way as for compound 10 in the animal experiment on SK-OV-3 implants in nude mice (see table 1). Although it is not yet known why pRB activation is reduced for compound 8 at doses above 1 to 1.5 mM, it is interesting to note that we have found a relatively strong protein synthesis inhibition for this drug at these doses. After 24 hours of treatment of NHIK 3025 cells with 1.5 mM of compound 8, the rate of protein synthesis is 70% of the rate in the control cells (see Fig. 19).

Fig. 20 viser at proteinsyntesen etter 24 timers behandling med enten 1,5 eller 2,5 mM av forbindelse 8 er henholdsvis 75 og 50%, men øker til det normale igjen på omtrent 6 timer etter at medikamentet fjernes. Kanskje blir den regulerende virkningen av pRB ved konsentrasjoner i området 1,5 til 2,5 mM selv overstyrt av den hemmingen av cellesyklusen som uunngåelig følger som et resultat av den reduserte hemmingen av proteinsyntesen (se Rønning, Ø.W., Lindmo, T., Pettersen, E.O. & Seglen, P.O.: Effect of serum step-down on protein metabolism and proliferation kinetics of NHIK 3025 cells. J. Cell Physiol. 107 (1981) 47-57). Fig. 20 shows that the protein synthesis after 24 hours of treatment with either 1.5 or 2.5 mM of compound 8 is respectively 75 and 50%, but increases to normal again in approximately 6 hours after the drug is removed. Perhaps the regulatory action of pRB at concentrations in the range of 1.5 to 2.5 mM is itself overridden by the inhibition of the cell cycle that inevitably follows as a result of the reduced inhibition of protein synthesis (see Rønning, Ø.W., Lindmo, T ., Pettersen, E.O. & Seglen, P.O.: Effect of serum step-down on protein metabolism and proliferation kinetics of NHIK 3025 cells. J. Cell Physiol. 107 (1981) 47-57).

Eksempel 5 Example 5

Cellebindinas målinger Cellebindina's measurements

Cellebindingskreftene ble målt med manipulasjonskraftmikroskopet. (G. Sagvolden. Manipulation force microscope. Doktoravhandling, Universitetet i Oslo, 1998, og G. Sagvolden, I. Giaever og J. Feder. Characteristic protein adhesion forces on glass and polystyrene substrates by atomic force microscopy. Langmuir 14 (21), 5984-5987, 1998) NHIK 3025-kreftceller ble dyrket kortvarig i et C02-uavhengig medium som inneholdt 15% kalvefosterserum. Cellene ble i 20 timer utsatt for en 1 mM konsentrasjon av forbindelse 1 eller forbindelse 2 før de ble frigjort fra cellekulturkolbene med trypsin. Cellene ble holdt i suspensjon og sådd i medium med forbindelse 1 eller forbindelse 2 på vevskultursubstrater av polystyren 90 minutter etter at trypsinreaksjonen ble stoppet. Adhesjonskraften mellom celle og substrat ble målt ved å løsne cellene ved hjelp av en skrå atomær kraftmikroskopbom som virket som kraftomformer. Cellene ble løsnet en om gangen og hver av cellene ble løsnet bare en gang. The cell attachment forces were measured with the manipulative force microscope. (G. Sagvolden. Manipulation force microscope. Doctoral thesis, University of Oslo, 1998, and G. Sagvolden, I. Giaever and J. Feder. Characteristic protein adhesion forces on glass and polystyrene substrates by atomic force microscopy. Langmuir 14 (21), 5984-5987, 1998) NHIK 3025 cancer cells were cultured briefly in a CO 2 -independent medium containing 15% fetal calf serum. The cells were exposed for 20 hours to a 1 mM concentration of compound 1 or compound 2 before being released from the cell culture flasks with trypsin. The cells were kept in suspension and seeded in compound 1 or compound 2 medium on polystyrene tissue culture substrates 90 minutes after the trypsin reaction was stopped. The adhesion force between cell and substrate was measured by detaching the cells using an inclined atomic force microscope boom that acted as a force transducer. The cells were detached one at a time and each of the cells was detached only once.

Den maksimale kraften som ble brukt på hver av cellene ble registrert som funksjon av tiden som var gått siden cellene ble sådd på substratet. Fig. 21 viser medianen av en gruppe på 19 kraftmålinger som en funksjon av gjennomsnittstiden for celler som har vært utsatt for forbindelse 1 eller forbindelse The maximum force applied to each of the cells was recorded as a function of the time elapsed since the cells were seeded on the substrate. Fig. 21 shows the median of a group of 19 force measurements as a function of the average time for cells exposed to compound 1 or compound

2 sammen med adhesjonskraften til celler som ikke er utsatt for disse <->forbindelsene. Forbindelse 2 reduserer adhesjonskraften sterkt ved denne konsentrasjonen, mens forbindelse 1 ikke viser noen signifikant effekt. Virkningen av forbindelsene er hovedsakelig å redusere adhesjonskraften til cellene, men ikke tidsforløpet av adhesjonen. 2 together with the adhesion force of cells not exposed to these <->compounds. Compound 2 strongly reduces the adhesion force at this concentration, while compound 1 shows no significant effect. The effect of the compounds is mainly to reduce the adhesion force of the cells, but not the time course of the adhesion.

Den reduserte evnen til å feste seg til substratet kan være beslektet med blokkering av den integrinbaserte celleforankringen. Det har blitt vist at slik blokkering kan føre til programmert celledød både i hepatom- og melanom-tumorer. (Paulsen JE, Hall KS, Rugstad HE, Reichelt KL og Elgjo K, The synthetic hepatic peptides pyroglutamylglutamylglycylserylasparagine and pyroglutamylglutamylgylcylserylaspartic acid inhibit growth of MH1C1 rat hepatoma cells transplanted into buffalo rats and athymic mice. Cancer Res. 52 The reduced ability to adhere to the substrate may be related to blocking the integrin-based cell anchoring. It has been shown that such blockage can lead to programmed cell death in both hepatoma and melanoma tumors. (Paulsen JE, Hall KS, Rugstad HE, Reichelt KL and Elgjo K, The synthetic hepatic peptides pyroglutamylglutamylglycylserylsparagine and pyroglutamylglutamylgylcylserylaspartic acid inhibit growth of MH1C1 rat hepatoma cells transplanted into buffalo rats and athymic mice. Cancer Res. 52

(1992) 1218-1221 og Mason MD, Allman R og Quibell M, "Adhesion molecules in melanoma - more than just superglue?" J. Royal Soc. Med. 89 (1992) 393-395). (1992) 1218-1221 and Mason MD, Allman R and Quibell M, "Adhesion molecules in melanoma - more than just superglue?" J. Royal Soc. With. 89 (1992) 393-395).

Adhesjonskraften mellom NHIK 3025-celler og substratet ble målt etter preinkubering av cellene i løsninger av forbindelse 1 og 2. Selv ved 1 mM konsentrasjon kunne man se en forbløffende D-isotopeffekt. Overraskende nok reduserte forbindelse 2 adhesjonskraften signifikant til 1/3 i forhold til kontrollen, mens forbindelse 1 ikke ga noen signifikant reduksjon. Oppfinnerne tror at forbindelse 2 kan ha innvirket på biosyntesen av integriner og dermed redusert cellens evne til å binde til substratet. Integriner er strukturelle transmembranproteiner som er avgjørende for å binde celler til en ektracellulær matriks og for interaksjoner mellom celler. Å hemme funksjonen av integrinene kan derfor direkte virke på metastaseevnen til kreftceller. Eksperimentet tyder på at integriner kan være spesielt følsomme for hemming av proteinsyntesen. Forbindelse 2 kan derfor med fordel brukes til å hindre metastaseprosesser ved utvikling av kreft. The adhesion force between NHIK 3025 cells and the substrate was measured after preincubation of the cells in solutions of compounds 1 and 2. Even at 1 mM concentration, a surprising D-isotope effect could be seen. Surprisingly, compound 2 significantly reduced the adhesion force to 1/3 compared to the control, while compound 1 did not produce any significant reduction. The inventors believe that compound 2 may have affected the biosynthesis of integrins and thus reduced the cell's ability to bind to the substrate. Integrins are structural transmembrane proteins that are essential for binding cells to an extracellular matrix and for interactions between cells. Inhibiting the function of the integrins can therefore directly affect the metastatic ability of cancer cells. The experiment suggests that integrins may be particularly sensitive to inhibition of protein synthesis. Compound 2 can therefore be advantageously used to prevent metastasis processes in the development of cancer.

Eksempel 7 Example 7

Effekten på leverinvaderende kolorektal kreft hos nakne mus The effect on liver-invasive colorectal cancer in nude mice

Materiale oa fremgangsmåter Material and methods

Den evaluerte cellelinjen, C170HM2, er en etablert human kolorektal cellelinje (S.A.Watson et al., Eur.J.Cancer 29A (1993), 1740-1745) og ble opprinnelig tatt fra en primærtumor hos en pasient. C170HM2-celler ble holdt i live in vitro i RPMI 1640 kulturmedium (Gibco, Paisley, UK) som inneholdt 10 vol-% varmeinaktivert kalvefosterserum (Sigma, Poole, UK) ved 37 °C i 5 % C02 og fuktede betingelser. Celler fra semikonfluente enkeltlag ble høstet med 0,025 % EDTA og vasket to ganger i det ovennevnte kulturmediet. The evaluated cell line, C170HM2, is an established human colorectal cell line (S.A.Watson et al., Eur.J.Cancer 29A (1993), 1740-1745) and was originally obtained from a primary tumor in a patient. C170HM2 cells were maintained in vitro in RPMI 1640 culture medium (Gibco, Paisley, UK) containing 10 vol% heat-inactivated fetal calf serum (Sigma, Poole, UK) at 37°C in 5% CO 2 and humidified conditions. Cells from semiconfluent monolayers were harvested with 0.025% EDTA and washed twice in the above culture medium.

C170HM2-celler høstet fra semikonfluente enkeltlag av celler ble resuspendert til 1x10<6>/ml steril fosfatbufret saltløsning, pH 7,4 [PBS] og injisert i et 1 ml volum i den peritoneale kroppshulen til 20 MFI nakne hannmus (oppfostret i kreftforskningsavdelingen på universitetet i Nottingham). Musene ble identifisert med et elektronisk merkesystem (RS Biotech DL2000 Datalogger). Dag 10 etter injeksjonen ble musene tilfeldig fordelt enten til en placebo-kontrollgruppe eller eksperimentgrupper. C170HM2 cells harvested from semiconfluent monolayers of cells were resuspended in 1x10<6>/ml sterile phosphate buffered saline, pH 7.4 [PBS] and injected in a 1 ml volume into the peritoneal body cavity of 20 MFI male nude mice (raised in the Cancer Research Department of University of Nottingham). The mice were identified with an electronic tagging system (RS Biotech DL2000 Datalogger). On day 10 after the injection, the mice were randomly assigned to either a placebo control group or experimental groups.

Medikamentene ble dosert intravenøst fra dag 10 og fortsatte til behandlingen ble avsluttet. Eksperimentet ble avsluttet dag 40 etter implanteringen. Musene ble veid med regelmessige mellomrom under forsøket. The drugs were dosed intravenously from day 10 and continued until treatment was terminated. The experiment was terminated on day 40 after implantation. The mice were weighed at regular intervals during the experiment.

Ved avslutningen ble leveren avdekket, synlige levertumorer ble talt og det totale tversnittarealet målt. Tumorene ble også fotografert. Det hadde ikke skjedd noen utflyting av tumorene, så de ble dissekert ut fra det normale levervevet, veid og fiksert i formell saltløsning. Peritoneale noduler ble dissekert ut og vekten og tverrsnittarealet målt. At the end, the liver was uncovered, visible liver tumors were counted and the total cross-sectional area was measured. The tumors were also photographed. No liquefaction of the tumors had occurred, so they were dissected from the normal liver tissue, weighed and fixed in formal saline. Peritoneal nodules were dissected out and the weight and cross-sectional area measured.

Det ble utført en detaljert patologisk vurdering av tumorene. A detailed pathological assessment of the tumors was performed.

Virkningen av forbindelse 1 og 5 på leverinvasjon av human kolorektal tumor C170HM2 vises i fig. 23. The effect of compounds 1 and 5 on liver invasion of human colorectal tumor C170HM2 is shown in Fig. 23.

Konklusjoner Conclusions

Benzaldehydderivatene som an i henhold til denne oppfinnelsen reagerer til Schiff-baser med visse grupper på celleoverflaten, f.eks. frie aminogrupper. Siden mange celleprosesser, som proteinsyntese, cellesyklus, immunrespons etc, kontrolleres av signaler fra celleoverflaten vil disse bindingene endre oppførselen til cellen. Vi har også vist at benzaldehyd kompleksene på celleoverflaten endrer adhesjonskarakteristikaene til cellen. Vi har vist at forbindelsene i henhold til denne oppfinnelsen kan være nyttige i nye behandlinger for å bekjempe kreft. The benzaldehyde derivatives which according to this invention react to form Schiff bases with certain groups on the cell surface, e.g. free amino groups. Since many cell processes, such as protein synthesis, cell cycle, immune response, etc., are controlled by signals from the cell surface, these bonds will change the behavior of the cell. We have also shown that the benzaldehyde complexes on the cell surface change the adhesion characteristics of the cell. We have shown that the compounds of this invention can be useful in new treatments to fight cancer.

Vi har funnet at heksosederivatene av benzaldehyder er overraskende mer effektive enn derivatene av andre karbohydrater for å behandle kreft. Vi tror at dette fenomenet er forbundet med reseptoraffiniteten til disse organene for sukkergruppen i derivatene. We have found that the hexose derivatives of benzaldehydes are surprisingly more effective than the derivatives of other carbohydrates in treating cancer. We believe that this phenomenon is associated with the receptor affinity of these organs for the sugar group in the derivatives.

Administrering Administration

De terapeutiske midler som fremstilles ved anvendelsen i henhold til den foreliggende oppfinnelsen kan gis ved kreftbehandling. The therapeutic agents produced by the application according to the present invention can be given in cancer treatment.

Til denne anvendelse kan forbindelsene av formel (I) formuleres på en hvilken som helst egnet måte for å gis til en pasient, enten alene eller tilsatt egnede farmasøytiske bærere eller hjelpestoffer. For this use, the compounds of formula (I) may be formulated in any suitable manner for administration to a patient, either alone or with the addition of suitable pharmaceutical carriers or excipients.

Det foretrekkes spesielt at formuleringene for systemisk terapi fremstilles enten som orale preparater eller parenterale formuleringer. It is particularly preferred that the formulations for systemic therapy are prepared either as oral preparations or parenteral formulations.

Egnede enterale preparater vil være tabletter, kapsler, f.eks. bløte eller harde gelatinkapsler, korn eller pulvere, geleer, suspensjoner, løsninger eller stikkpiller. Slike preparater vil fremstilles på kjent måte ved å blande en eller flere av forbindelsene av formel (I) med ikke-giftige, inerte faste eller flytende bærere. Suitable enteral preparations will be tablets, capsules, e.g. soft or hard gelatin capsules, granules or powders, gels, suspensions, solutions or suppositories. Such preparations will be prepared in a known manner by mixing one or more of the compounds of formula (I) with non-toxic, inert solid or liquid carriers.

Egnede parenterale preparater av forbindelsene av formel (I) er injeksjons- eller infusjonsløsninger. Suitable parenteral preparations of the compounds of formula (I) are injection or infusion solutions.

Når de gis utvortes kan forbindelsene av formel (I) formuleres som en oppløsning, salve, krem, sirup, tinktur, spray eller liknende som inneholder forbindelsene av formel (I) med tilsetning av ikke-giftige, inerte faste eller flytende bærere som er vanlige i lokale preparater. Det er spesielt godt egnet å bruke en formulering som beskytter den aktive ingrediensen mot luft, vann eller liknende. When administered externally, the compounds of formula (I) may be formulated as a solution, ointment, cream, syrup, tincture, spray or the like containing the compounds of formula (I) with the addition of non-toxic, inert solid or liquid carriers which are customary in local preparations. It is particularly well suited to use a formulation that protects the active ingredient from air, water or the like.

Preparatene kan inneholde inerte eller farmakodynamisk aktive tilsetninger. F.eks. kan tabletter eller granulater inneholde en serie bindemidler, fyllmaterialer, bærersubstanser og/eller fortynningsmidler. Flytende preparater kan for eksempel foreligge i form av en steril løsning. Kapsler kan inneholde et fyllmateriale eller et fortykningsmiddel i tillegg til den aktive ingrediensen. Preparatet kan dessuten også inneholde smaksforbedrende tilsetninger så vel som slike substanser som vanligvis brukes som holdbarhets-, stabilisator-, emulgeringsmidler eller fuktighetsbevarende midler, salter for å variere det osmotiske trykket, buffere og andre tilsetninger. The preparations may contain inert or pharmacodynamically active additives. E.g. tablets or granules may contain a series of binders, fillers, carrier substances and/or diluents. Liquid preparations can, for example, be available in the form of a sterile solution. Capsules may contain a filler or thickener in addition to the active ingredient. Furthermore, the preparation may also contain flavor-enhancing additives as well as such substances that are usually used as preservatives, stabilizers, emulsifiers or humectants, salts to vary the osmotic pressure, buffers and other additives.

Doseringen kan variere i samsvar med sykdommen, bruksmåten og innføringsveien, så vel som pasientens behov. Generelt vil en daglig dose i en systemisk terapi for en gjennomsnittlig voksen pasient være omtrent 0,01-500 mg/kg kroppsvekt en eller to ganger om dagen, fortrinnsvis 0,5-100 mg/kg kroppsvekt en eller to ganger om dagen og helst 1 -20 mg/kg vekt en eller to ganger om dagen. The dosage may vary according to the disease, the method of use and the route of administration, as well as the needs of the patient. In general, a daily dose in a systemic therapy for an average adult patient will be about 0.01-500 mg/kg body weight once or twice a day, preferably 0.5-100 mg/kg body weight once or twice a day and preferably 1 - 20 mg/kg weight once or twice a day.

Hvis man ønsker det kan det farmasøytiske preparatet av forbindelsen av formel (I) inneholde en antioksidant, f.eks. tokoferol, N-metyl-tokoferamin, butylert hydroksyanisol, askorbinsyre eller butylert hydroksytoluen. If desired, the pharmaceutical preparation of the compound of formula (I) may contain an antioxidant, e.g. tocopherol, N-methyl-tocopheramine, butylated hydroxyanisole, ascorbic acid or butylated hydroxytoluene.

Claims (6)

1. Anvendelse av et benzaldehydderivat med formel I: hvor L er H eller D; Ar er fenyl eller mono- eller di- substituert fenyl, hvor substituenten (e) er valgt fra gruppen bestående av alkyl med 1-6 karbonatomer, CF3, fluor, klor, nitro, cyano, OR<1>, SR<1>, N(R<1>)2 eller COOR<1> hvor R<1> er H, CF3 eller alkyl med 1-6 karbonatomer, eller OC(0)R<2>, CA(OR<2>)2, CA[OC(0)R<2>]2, NHC(0)R<2> eller N[C(0)R<2>]2 der A er H eller D og R2 er CF3 eller alkyl med 1-6 karbonatomer, eller C(0)R<3> der R<3> er H, D, CF3 eller alkyl med 1-6 karbonatomer; Y er valgt fra atomene eller gruppen bestående av H, D, fluor, klor, nitro, OR<1>, OC(0)R<2>, N(R<1>)2) NHC(0)R<2> eller N[C(0)R<2>]2; og R<1> og R<2> er som definert ovenfor; R er H, CF3 eller alkyl med 1-6 karbonatomer; eller en hvilken som helst steroisomer derav, eller et farmasøytisk aksepterbart salt av dette, med det forbehold at 4,6-O-benzyliden-D-glukopyranose, 4,6-0-(benzyliden-d-i)-D-glukopyranose, 4,6-benzyliden-allose og derivater av 4,6-benzyliden-D-allose ekskluderes, for fremstilling av et terapeutisk middel for forebygging og/eller behandling av kreft.1. Use of a benzaldehyde derivative of formula I: where L is H or D; Ar is phenyl or mono- or di-substituted phenyl, where the substituent (e) is selected from the group consisting of alkyl with 1-6 carbon atoms, CF3, fluorine, chlorine, nitro, cyano, OR<1>, SR<1>, N(R<1>)2 or COOR<1> where R<1> is H, CF3 or alkyl with 1-6 carbon atoms, or OC(0)R<2>, CA(OR<2>)2, CA [OC(0)R<2>]2, NHC(0)R<2> or N[C(0)R<2>]2 where A is H or D and R2 is CF3 or alkyl with 1-6 carbon atoms , or C(0)R<3> where R<3> is H, D, CF3 or alkyl with 1-6 carbon atoms; Y is selected from the atoms or group consisting of H, D, fluorine, chlorine, nitro, OR<1>, OC(0)R<2>, N(R<1>)2) NHC(0)R<2> or N[C(O)R<2>]2; and R<1> and R<2> are as defined above; R is H, CF3 or alkyl of 1-6 carbon atoms; or any steroisomer thereof, or a pharmaceutically acceptable salt thereof, with the proviso that 4,6-O-benzylidene-D-glucopyranose, 4,6-O-(benzylidene-d-i)-D-glucopyranose, 4, 6-benzylidene-allose and derivatives of 4,6-benzylidene-D-allose are excluded, for the preparation of a therapeutic agent for the prevention and/or treatment of cancer. 2. Anvendelse ifølge krav 1, til fremstilling av et terapeutisk middel for forebyggende behandling av kreft som skyldes virus som hepatitt B og C, onkogene papillomvirus og andre onkogene virus.2. Use according to claim 1, for the production of a therapeutic agent for the preventive treatment of cancer caused by viruses such as hepatitis B and C, oncogenic papillomaviruses and other oncogenic viruses. 3. Anvendelse ifølge krav 1 eller 2 der benzaldehydderivatet er, 4,6-O-benzyliden-D-galaktopyranose, metyl-4,6-0-benzyliden-a-D-mannopyranosid, 4,6-0-(benzyliden-di)-2-deoksy-D-glukopyranose, 4,6-0-(4-karbometoksybenzyliden)-D-glukopyranose, 4,6-0-benzyliden-2-deoksy-D-glukopyranose, 2-acetamido-4,6-0-(benzyliden-di)-2-deoksy-D-glukopyranose, 2-acetamido-2-deoksy-4,6-0-(3-nitrobenzyliden)-D-glukopyranose, 4,6-0-(benzyliden-di)-D-galaktopyranose, 4,6-0-(benzyliden-d-i)-D-mannopyranose, 2-acetamido-4,6-0-benzyliden-2-deoksy-a-D-galaktopyranose, 4,6-0-(3-nitrobenzyliden)-D-glukopyranose, 4,6-0-(2-hydroksybenzyliden)-D-glukopyranose, 2-deoksy-4,6-0-(2-hydroksybenzyliden)-D-glukopyranose, 2-acetamido-2-deoksy-4,6-0-(2-hydroksybenzyliden)-D-glukopyranose, 4,6-0-(2-hydroksybenzyliden)-D-galaktopyranose, 2-deoksy-4,6-0-(2-hydroksybenzyliden)-D-galaktopyranose, 2-acetamido-2-deoksy-4,6-0-(2-hydroksybenzyliden)-D-galaktopyranose, 4,6-0-(2-hydroksybenzyliden)-D-mannopyranose, 4,6-0-(2-acetoksybenzyliden)-D-glukopyranose og/eller 4,6-0-(2,3-dihydroksybenzyliden)-D-glukopyranose eller de tilsvarende L-isomerene, eller et farmasøytisk aksepterbart salt av disse.3. Use according to claim 1 or 2 where the benzaldehyde derivative is, 4,6-O-benzylidene-D-galactopyranose, methyl 4,6-0-benzylidene-α-D-mannopyranoside, 4,6-0-(benzylidene-di)-2-deoxy-D-glucopyranose, 4,6-0-(4-carbomethoxybenzylidene)-D-glucopyranose, 4,6-0-benzylidene-2-deoxy-D-glucopyranose, 2-acetamido-4,6-0-(benzylidene-di)-2-deoxy-D-glucopyranose, 2-acetamido-2-deoxy-4, 6-0-(3-nitrobenzylidene)-D-glucopyranose, 4,6-0-(benzylidene-di)-D-galactopyranose, 4,6-0-(benzylidene-d-i)-D-mannopyranose, 2-acetamido- 4,6-0-benzylidene-2-deoxy-α-D-galactopyranose, 4,6-0-(3-nitrobenzylidene)-D-glucopyranose, 4,6-0-(2-hydroxybenzylidene)-D-glucopyranose, 2-deoxy-4,6-0-(2-hydroxybenzylidene)-D- glucopyranose, 2-acetamido-2-deoxy-4,6-0-(2-hydroxybenzylidene)-D-glucopyranose, 4,6-0-(2-hydroxybenzylidene)-D-galactopyranose, 2-deoxy-4,6- 0-(2-hydroxybenzylidene)-D-galactopyranose, 2-acetamido-2-deoxy-4,6-0-(2-hydroxybenzylidene)-D-galactopyranose, 4,6-0-(2-hydroxybenzylidene)-D- mannopyranose, 4,6-0-(2-acetoxybenzylidene)-D-glucopyranose and/or 4,6-0-(2,3-dihydroxybenzylidene)-D-glucopyranose or the corresponding L-isomers, or a pharmaceutically acceptable salt of these. 4. Et benzaldehydderivat karakterisert ved at det er 4,6-O-benzyliden-D-galaktopyranose, metyl-4,6-0-benzyliden-oc-D-mannopyranosid, 4,6-0-(benzyliden-di)-2-deoksy-D-glukopyranose, 4,6-0-(4-karbometoksybenzyliden)-D-glukopyranose, 4,6-0-benzyliden-2-deoksy-D-glukopyranose, 2-acetamido-4,6-0-(benzyliclen-cli)-2-deoksy-D-glukopyranose) 2-acetamido-2-deoksy-4,6-0-(3-nitrobenzyliden)-D-glukopyranose, 4,6-0-(benzyliden-di)-D-galaktopyranose, 4,6-0-(benzyliden-di)-D-mannopyranose, 2-acetamido-4,6-0-benzyliden-2-deoksy-a-D-galaktopyranose, 4,6-0-(3-nitrobenzyliden)-D-glukopyranose, 4,6-0-(2-hydroksybenzyliden)-D-glukopyranose, 2-deoksy-4,6-0-(2-hydroksybenzyliden)-D-glukopyranose, 2-acetamido-2-deoksy-4,6-0-(2-hydroksybenzyliden)-D-glukopyranose, 4,6-0-(2-hydroksybenzyliden)-D-galaktopyranose, 2-deoksy-4,6-0-(2-hydroksybenzyliden)-D-galaktopyranose, 2-acetamido-2-deoksy-4,6-0-(2-hydroksybenzyliden)-D-galaktopyranose, 4,6-0-(2-hydroksybenzyliden)-D-mannopyranose, 4,6-0-(2-acetoksybenzyliden)-D-glukopyranose og/eller 4,6-0-(2,3-dihydroksybenzyliden)-D-glukopyranose eller de tilsvarende L-isomerene eller et farmasøytisk akseptabelt salt derav.4. A benzaldehyde derivative characterized in that it is 4,6-O-benzylidene-D-galactopyranose, methyl-4,6-0-benzylidene-oc-D-mannopyranoside, 4,6-0-(benzylidene-di)-2 -deoxy-D-glucopyranose, 4,6-0-(4-carbomethoxybenzylidene)-D-glucopyranose, 4,6-0-benzylidene-2-deoxy-D-glucopyranose, 2-acetamido-4,6-0-(benzyliclene-cli)-2-deoxy-D-glucopyranose) 2-acetamido-2-deoxy-4,6-0-(3-nitrobenzylidene)-D-glucopyranose, 4, 6-0-(benzylidene-di)-D-galactopyranose, 4,6-0-(benzylidene-di)-D-mannopyranose, 2-acetamido-4,6-0-benzylidene-2-deoxy-α-D-galactopyranose, 4,6-0-(3-nitrobenzylidene)-D-glucopyranose, 4,6-0-(2-hydroxybenzylidene)-D-glucopyranose, 2-deoxy-4,6-0-(2-hydroxybenzylidene)-D- glucopyranose, 2-acetamido-2-deoxy-4,6-0-(2-hydroxybenzylidene)-D-glucopyranose, 4,6-0-(2-hydroxybenzylidene)-D-galactopyranose, 2-deoxy-4,6- 0-(2-hydroxybenzylidene)-D-galactopyranose, 2-acetamido-2-deoxy-4,6-0-(2-hydroxybenzylidene)-D-galactopyranose, 4,6-0-(2-hydroxybenzylidene)-D- mannopyranose, 4,6-O-(2-acetoxybenzylidene)-D-glucopyranose and/or 4,6-O-(2,3-dihydroxybenzylidene)-D-glucopyranose or the corresponding L-isomers or a pharmaceutically acceptable salt thereof. 5. En farmasøytisk sammensetning karakterisert ved at den innbefatter et benzaldehydderivat i henhold til krav 4, og en farmasøytisk akseptabel bærer, fortynnings- eller hjelpesubstans.5. A pharmaceutical composition characterized in that it includes a benzaldehyde derivative according to claim 4, and a pharmaceutically acceptable carrier, diluent or auxiliary substance. 6. Et benzaldehydderivat karakterisert ved at det er 4,6-0-(benzyliden-di)-2-deoksy-D-glukopyranose, 4,6-0-(4-karbometoksybenzyliden)-D-glukopyranose, 4,6-0-benzyliden-2-deoksy-D-glukopyranose, 2-acetamido-4,6-0-(benzyliden-di)-2-deoksy-D-glukopyranose, 2-acetamido-2-deoksy-4,6-0-(3-nitrobenzyliden)-D-glukopyranose, 4,6-0-(benzyliden-di)-D-galaktopyranose, 4,6-0-(benzyliden-di)-D-mannopyranose, 4,6-0-(3-nitrobenzyliden)-D-glukopyranose, i 4,6-0-(2-hydroksybenzyliden)-D-glukopyranose, 2-deoksy-4,6-0-(2-hydroksybenzyliden)-D-glukopyranose, 2-acetamido-2-deoksy-4,6-0-(2-hydroksybenzyliden)-D-glukopyranose, 4,6-0-(2-hydroksybenzyliden)-D-galaktopyranose, 2-deoksy-4,6-0-(2-hydroksybenzyliden)-D-galaktopyranose, 2-acetamido-2-deoksy-4,6-0-(2-hydroksybenzyliden)-D-galaktopyranose, 4,6-0-(2-hydroksybenzyliden)-D-mannopyranose, 4,6-0-(2-acetoksybenzyliden)-D-glukopyranose, 4,6-0-(2,3-dihydroksybenzyliden)-D-glukopyranose eller de tilsvarende L-isomerene eller et farmasøytisk akseptabelt salt derav.6. A benzaldehyde derivative characterized in that it is 4,6-0-(benzylidene-di)-2-deoxy-D-glucopyranose, 4,6-0-(4-carbomethoxybenzylidene)-D-glucopyranose, 4,6-0 -benzylidene-2-deoxy-D-glucopyranose, 2-acetamido-4,6-0-(benzylidene-di)-2-deoxy-D-glucopyranose, 2-acetamido-2-deoxy-4,6-0-( 3-nitrobenzylidene)-D-glucopyranose, 4,6-0-(benzylidene-di)-D-galactopyranose, 4,6-0-(benzylidene-di)-D-mannopyranose, 4,6-0-(3- nitrobenzylidene)-D-glucopyranose, in 4,6-O-(2-hydroxybenzylidene)-D-glucopyranose, 2-deoxy-4,6-0-(2-hydroxybenzylidene)-D-glucopyranose, 2-acetamido-2-deoxy-4,6-0-(2-hydroxybenzylidene)-D-glucopyranose, 4,6-0- (2-hydroxybenzylidene)-D-galactopyranose, 2-deoxy-4,6-0-(2-hydroxybenzylidene)-D-galactopyranose, 2-acetamido-2-deoxy-4,6-0-(2-hydroxybenzylidene)-D-galactopyranose, 4,6-0-(2-hydroxybenzylidene)-D-mannopyranose, 4,6-0-(2-acetoxybenzylidene )-D-glucopyranose, 4,6-0-(2,3-dihydroxybenzylidene)-D-glucopyranose or the corresponding L-isomers or a pharmaceutically acceptable salt thereof.
NO990814A 1999-02-19 1999-02-19 Use of benzaldehyde derivatives in the manufacture of pharmaceutical preparations for the prevention and / or treatment of cancer, as well as certain new benzaldehyde derivatives NO309305B1 (en)

Priority Applications (29)

Application Number Priority Date Filing Date Title
NO990814A NO309305B1 (en) 1999-02-19 1999-02-19 Use of benzaldehyde derivatives in the manufacture of pharmaceutical preparations for the prevention and / or treatment of cancer, as well as certain new benzaldehyde derivatives
RU2001123035/14A RU2001123035A (en) 1999-02-19 2000-02-18 CHEMICAL COMPOUNDS
MXPA01008347A MXPA01008347A (en) 1999-02-19 2000-02-18 Chemical compounds.
RU2001123124/15A RU2001123124A (en) 1999-02-19 2000-02-18 Chemical compounds
CA002363670A CA2363670A1 (en) 1999-02-19 2000-02-18 Chemical compounds
CA002362306A CA2362306A1 (en) 1999-02-19 2000-02-18 Chemical compounds
MXPA01008346A MXPA01008346A (en) 1999-02-19 2000-02-18 Chemical compounds.
HU0105280A HUP0105280A2 (en) 1999-02-19 2000-02-18 Benzaldehyde derivatives and their pharmaceutical use and medicaments containing the compounds
HU0105281A HUP0105281A2 (en) 1999-02-19 2000-02-18 Anticancer benzaldehyde derivatives and their pharmaceutical use
SK1160-2001A SK11602001A3 (en) 1999-02-19 2000-02-18 Benzaldehyde derivatives useful as anticancer agents
JP2000599400A JP2002537263A (en) 1999-02-19 2000-02-18 Chemical substances
IL14489500A IL144895A0 (en) 1999-02-19 2000-02-18 Pharmaceutical compositions comprising benzaldehyde derivatives and several such new compounds
PL00350519A PL350519A1 (en) 1999-02-19 2000-02-18 Chemical compounds
CN00806338A CN1347322A (en) 1999-02-19 2000-02-18 Chemical compounds
JP2000599401A JP2002537264A (en) 1999-02-19 2000-02-18 Benzaldehyde derivatives
PCT/NO2000/000060 WO2000048610A1 (en) 1999-02-19 2000-02-18 Chemical compounds
IL14489600A IL144896A0 (en) 1999-02-19 2000-02-18 Pharmaceutical compositions comprising benzaldehyde derivatives and several such new compounds
SK1161-2001A SK11612001A3 (en) 1999-02-19 2000-02-18 Benzaldehyde derivatives useful as anticancer agents
CN00806488A CN1347323A (en) 1999-02-19 2000-02-18 Chemical compounds
EP00906781A EP1150689A1 (en) 1999-02-19 2000-02-18 Chemical compounds
PCT/NO2000/000059 WO2000048609A1 (en) 1999-02-19 2000-02-18 Chemical compounds
AU28341/00A AU2834100A (en) 1999-02-19 2000-02-18 Chemical compounds
AU28342/00A AU2834200A (en) 1999-02-19 2000-02-18 Chemical compounds
BR0008302-0A BR0008302A (en) 1999-02-19 2000-02-18 Use of a benzaldehyde derivative, benzaldehyde derivative, pharmaceutical composition, and process for manufacturing it
CZ20012965A CZ20012965A3 (en) 1999-02-19 2000-02-18 Benzaldehyde derivatives that are suitable for use as antitumor preparations
PL00350520A PL350520A1 (en) 1999-02-19 2000-02-18 Chemical compounds
CZ20012966A CZ20012966A3 (en) 1999-02-19 2000-02-18 Benzaldehyde derivatives that are suitable for use as antitumor preparations
BR0008297-0A BR0008297A (en) 1999-02-19 2000-02-18 Use of 4,6-o- (benzylidene-d1) -d-glucopyranose, 4,6-o-benzylidene-1-glucopyranose, and / or 4,6-o- (benzylidene-d1) -l-glucopyranose, or an acceptable pharmaceutical salt thereof, derived from benzaldehyde pharmaceutical composition, and process for the manufacture thereof
EP00906782A EP1150690A1 (en) 1999-02-19 2000-02-18 Chemical compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NO990814A NO309305B1 (en) 1999-02-19 1999-02-19 Use of benzaldehyde derivatives in the manufacture of pharmaceutical preparations for the prevention and / or treatment of cancer, as well as certain new benzaldehyde derivatives

Publications (3)

Publication Number Publication Date
NO990814D0 NO990814D0 (en) 1999-02-19
NO990814L NO990814L (en) 2000-08-21
NO309305B1 true NO309305B1 (en) 2001-01-15

Family

ID=19902986

Family Applications (1)

Application Number Title Priority Date Filing Date
NO990814A NO309305B1 (en) 1999-02-19 1999-02-19 Use of benzaldehyde derivatives in the manufacture of pharmaceutical preparations for the prevention and / or treatment of cancer, as well as certain new benzaldehyde derivatives

Country Status (15)

Country Link
EP (2) EP1150689A1 (en)
JP (2) JP2002537264A (en)
CN (2) CN1347322A (en)
AU (2) AU2834100A (en)
BR (2) BR0008302A (en)
CA (2) CA2363670A1 (en)
CZ (2) CZ20012966A3 (en)
HU (2) HUP0105280A2 (en)
IL (2) IL144896A0 (en)
MX (2) MXPA01008347A (en)
NO (1) NO309305B1 (en)
PL (2) PL350519A1 (en)
RU (2) RU2001123124A (en)
SK (2) SK11612001A3 (en)
WO (2) WO2000048609A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4182218B2 (en) * 2001-05-30 2008-11-19 学校法人東京理科大学 Novel glucose derivative that induces apoptosis, process for its production and its use as a medicament
DE10261807A1 (en) 2002-12-19 2004-07-01 Turicum Drug Development Ag Deuterated catecholamine derivatives and medicinal products containing these compounds
KR101358509B1 (en) * 2005-07-26 2014-02-05 다케다 게엠베하 Isotopically substituted proton pump inhibitors
JP5289951B2 (en) * 2005-07-26 2013-09-11 タケダ ゲゼルシャフト ミット ベシュレンクテル ハフツング Isotopically substituted pantoprazole
CA2624179A1 (en) * 2005-10-06 2007-04-12 Auspex Pharmaceuticals, Inc. Deuterated inhibitors of gastric h+, k+-atpase with enhanced therapeutic properties
CN101157711B (en) * 2007-09-28 2010-12-08 西安交通大学 Compound having antineoplastic activity and uses thereof
EP2271350A4 (en) * 2008-04-03 2011-05-18 Cognate3 Llc Compositions and methods for immunotherapy
CN101735284B (en) * 2008-11-24 2012-05-23 上海医药工业研究院 Method for preparing 4, 6-O-benzylidene-D-glucopyranose
EP3666271A1 (en) 2013-12-03 2020-06-17 Intra-Cellular Therapies, Inc. Miscrospheres comprising a plga matrix for medical use
EP3125893B1 (en) * 2014-04-04 2023-09-20 Intra-Cellular Therapies, Inc. Deuterated heterocycle fused gamma-carbolines as antagonists of 5-ht2a receptors
JP6898072B2 (en) * 2015-08-27 2021-07-07 秀行 佐谷 14-3-3 Protein activity regulator
EP3888656A1 (en) 2016-03-25 2021-10-06 Intra-Cellular Therapies, Inc. Deuterated heterocyclic gamma-carboline compounds and their use in the treatment or prophylaxis of a central nervous system disorder
JP7013454B2 (en) 2016-10-12 2022-02-15 イントラ-セルラー・セラピーズ・インコーポレイテッド Amorphous solid dispersion
MX2021013640A (en) 2017-03-24 2022-08-31 Intra Cellular Therapies Inc Novel compositions and methods.
CA3108558A1 (en) 2018-08-31 2020-03-05 Intra-Cellular Therapies, Inc. Novel methods
BR112021003655A2 (en) 2018-08-31 2021-05-18 Intra-Cellular Therapies, Inc. new methods

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB811510A (en) * 1954-12-20 1959-04-08 Gyogyszeripari Ki New nitrogen-containing derivatives of polyhydroxy compounds and process for the preparation thereof
JPS6112623A (en) * 1984-06-28 1986-01-21 Kaken Pharmaceut Co Ltd Encephalinase inhibiting agent
JPS6256423A (en) * 1985-09-06 1987-03-12 Kaken Pharmaceut Co Ltd Remedy and ameliorating agent for cachexia
GB8705780D0 (en) * 1987-03-11 1987-04-15 Norsk Hydro As Anticancer compounds
JPH07145191A (en) * 1993-11-24 1995-06-06 Japan Tobacco Inc Galactosyl phosphonate derivative

Also Published As

Publication number Publication date
MXPA01008346A (en) 2003-06-06
WO2000048610A1 (en) 2000-08-24
CN1347323A (en) 2002-05-01
RU2001123035A (en) 2004-03-20
SK11612001A3 (en) 2002-04-04
PL350519A1 (en) 2002-12-16
SK11602001A3 (en) 2002-02-05
EP1150690A1 (en) 2001-11-07
RU2001123124A (en) 2004-02-20
EP1150689A1 (en) 2001-11-07
HUP0105281A2 (en) 2002-05-29
CZ20012965A3 (en) 2002-03-13
CA2362306A1 (en) 2000-08-24
IL144895A0 (en) 2002-06-30
IL144896A0 (en) 2002-06-30
BR0008297A (en) 2002-05-28
CN1347322A (en) 2002-05-01
HUP0105280A2 (en) 2002-04-29
JP2002537264A (en) 2002-11-05
WO2000048609A1 (en) 2000-08-24
AU2834200A (en) 2000-09-04
CA2363670A1 (en) 2000-08-24
BR0008302A (en) 2002-08-27
AU2834100A (en) 2000-09-04
MXPA01008347A (en) 2004-03-10
JP2002537263A (en) 2002-11-05
PL350520A1 (en) 2002-12-16
NO990814D0 (en) 1999-02-19
NO990814L (en) 2000-08-21
CZ20012966A3 (en) 2002-03-13

Similar Documents

Publication Publication Date Title
NO309305B1 (en) Use of benzaldehyde derivatives in the manufacture of pharmaceutical preparations for the prevention and / or treatment of cancer, as well as certain new benzaldehyde derivatives
US4690918A (en) Use of trichostatin compounds for treating tumor cells
CN110402248A (en) Azaindoles as HPK1 inhibitor
EP2133095A1 (en) Pharmaceutical composition
FR2532178A1 (en) PROCESS FOR STABILIZING TUMOR NECROSIS FACTOR AND AQUEOUS SOLUTION OR STABLE POWDER CONTAINING THE SAME
US5624908A (en) Antineoplastic compositions
EP3213752B1 (en) Composition for treating cancer stem cells
HU198091B (en) Process for producing ganglioside derivatives and pharmaceutical compositions comprising same as active ingedient
EP2583972B1 (en) Therapeutic agent for inflammatory diseases containing adenosine n1-oxide as active ingredient
US4874780A (en) Anticancer compounds
US20220152068A1 (en) Drug delivery carrier utilizing property of d-allose being uptaken by cancer cell, drug delivery method, and composition for treating renal cell carcinoma
EP3586836A1 (en) Pharmaceutical composition for preventing and treating pancreatic cancer, containing gossypol and phenformin as active ingredients
US5135948A (en) Pharmaceutical compositions with anti-cancer activity against carcinoma and method for the treatment of carcinoma
FR3022458A1 (en) USE OF MANNOSYLGLYCERATE AND ITS DERIVATIVES AS AN IMMUNOSTIMULATING AGENT
US5032610A (en) Activity against carcinoma and method for the treatment of carcinoma
US7649016B2 (en) Antitumor medicine
Ciaranfi et al. Studies on the anti-tumour activity of aliphatic aldehydes—II: Effects on survival of yoshida ascites hepatoma-bearing rats
NO312226B1 (en) Use of 4,6- &lt;Omicron&gt; - (benzylidene-d1) -D-glucopyranose and the corresponding 1-isomer in the prophylaxis and treatment of cancer
NO309815B1 (en) Derivatives of 5-nitrofurfural
KR20130009685A (en) Composition comprising esculetin for inhibition of bone loss
EP0369079B1 (en) Pharmaceutical compositions with anti-cancer activity and method for the treatment of cancer
NO311004B1 (en) Use of benzaldehyde derivatives for the preparation of a therapeutic agent for the treatment of microbial infections
NO311005B1 (en) Use of benzaldehyde derivatives for the preparation of a therapeutic agent for the treatment of autoimmune diseases
JPH0643303B2 (en) Pharmaceutical composition having anticancer activity and anticancer activity enhancer
KR20010113695A (en) Chemical compounds

Legal Events

Date Code Title Description
MM1K Lapsed by not paying the annual fees

Free format text: LAPSED IN AUGUST 2003