WO2007040117A1 - Method of simultaneously measuring a plural number of cell responses - Google Patents

Method of simultaneously measuring a plural number of cell responses Download PDF

Info

Publication number
WO2007040117A1
WO2007040117A1 PCT/JP2006/319156 JP2006319156W WO2007040117A1 WO 2007040117 A1 WO2007040117 A1 WO 2007040117A1 JP 2006319156 W JP2006319156 W JP 2006319156W WO 2007040117 A1 WO2007040117 A1 WO 2007040117A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
cells
fluorescence
fluorescence intensity
detected
Prior art date
Application number
PCT/JP2006/319156
Other languages
French (fr)
Japanese (ja)
Inventor
Ritsu Honda
Hiroyuki Kishi
Atsushi Muraguchi
Eiichi Kanaumi
Kihachiro Tohbo
Original Assignee
National University Corporation University Of Toyama
Ns Materials Inc.
Toyama New Industry Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation University Of Toyama, Ns Materials Inc., Toyama New Industry Organization filed Critical National University Corporation University Of Toyama
Publication of WO2007040117A1 publication Critical patent/WO2007040117A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56966Animal cells
    • G01N33/56972White blood cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6452Individual samples arranged in a regular 2D-array, e.g. multiwell plates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • G01N21/6458Fluorescence microscopy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5044Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
    • G01N33/5047Cells of the immune system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5091Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing the pathological state of an organism
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/582Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with fluorescent label

Definitions

  • the present invention relates to a multi-cell response simultaneous measurement method using an image sensor such as a CCD image scanner.
  • the present invention is a method that allows the fluorescence emitted by a large number of cells to be tracked independently for each cell over time and in a massively parallel manner.
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2004-173681
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-187676
  • Patent Documents 1 and 2 describe that it has been confirmed that cells are identified on a cell-by-cell basis, and describe that the identified cells can also be collected. However, it was not easy to detect many lymphocyte forces from lymphocytes that actually reacted specifically to the antigen.
  • a detection method for example, an increase in calcium ion concentration in lymphocytes in response to an antigen is used, and a change in the calcium ion concentration is detected as fluorescence to identify an antigen-specific lymphocyte.
  • the manner in which fluorescence is generated and the intensity, etc. are not always constant.
  • the calcium ion concentration increases after a certain period of time, resulting in an increase in fluorescence intensity.
  • the fluorescence microscope 'imaging device has an imaging device in addition to a normal fluorescence microscope.
  • Fluorescence microscope ⁇ The imaging device has no problem in terms of speed, but with an ordinary microscope, the imaging range is narrow, and up to 1000 cells cannot be detected at a time, and tens of thousands to hundreds of thousands of cells cannot be detected. It was impossible to detect strong fluorescence at once.
  • a cell chip detection device based on a DNA microarray scanner has been developed to detect cell fluorescence arrayed on a cell chip, and can detect intracellular or extracellular fluorescence.
  • this system uses a laser to excite the fluorescent dye and detect the excitation light, a detection system that tracks changes over time cannot simultaneously detect a large number of cell regions with a slow line scan speed.
  • the object of the present invention is to simultaneously measure the state of a large number of cells retained on the chip, more than 10,000, preferably more than 100,000, for example, lymphocyte reactivity to antigen stimulation,
  • the object is to provide a method for individually grasping the state of each cell.
  • Fluorescence having at least a part of the position of the plurality of positions on a cell chip that holds a plurality of cells independently at a plurality of positions is detected by an image sensor
  • lymphocyte is a B lymphocyte and the receptor is a B lymphocyte receptor.
  • the image sensor is a CCD image scanner or a CMOS image scanner
  • the cell chip that holds a plurality of cells independently at a plurality of positions has a spot or a hole at a position for holding the cell on one surface of the substrate, and at least the spot or the hole.
  • a stimulus response that an antigen exerts on lymphocytes can be rapidly detected on a large scale and quantitatively for individual cells. As a result, it becomes easier to produce an antibody having a high affinity for a specific antigen.
  • lymphocytes of patients with B cell leukemia have a reduced calcium response to stimulation by anti-IgM antibodies.
  • B cell leukemia leukemia
  • the power of being able to diagnose Beel 1 Leukemia (leukemia) can also be applied in this way, thereby enabling rapid diagnosis of leukemia, life expectancy tests, and the like. .
  • the necessary treatment can be performed accurately, and it can be used effectively in clinical examinations.
  • the method of the present invention comprises:
  • Fluorescence of at least a part of the position force of the plurality of positions on the cell chip holding a plurality of cells independently at a plurality of positions is detected by an image sensor (fluorescence detection step),
  • a method of measuring a cell state including displaying (recording) fluorescence intensity or a converted value from fluorescence intensity (display step). Then, at least the detection and recording are repeated over time.
  • the measurement target in the method of the present invention is a cell chip that holds a plurality of cells independently at a plurality of positions. If the cell chip is to hold a plurality of cells independently at a plurality of positions, the method of holding the cell, the number of held cells, the density of the held cells on the chip surface, etc. are particularly limited. There is no.
  • the cell chip for example, a plurality of microchips for storing cells on one surface of the substrate described in Patent Documents 1 and 2 above.
  • a microwell array chip having a clowell may contain one cell (independently) in each microwell.
  • a plurality of microwells (holes) correspond to the “plural positions”.
  • the culture solution can be stored together with the cells.
  • the cell chip may be one in which cells are individually fixed on the chip surface using a thermosensitive polymer described in JP-A-2005-102628.
  • the fixed positions of a plurality of cells on the chip surface correspond to the “plural positions”.
  • the cell chip can be held in a plurality of 1S clusters that can hold cells uniformly (at equal intervals) throughout. For example, if one cluster is a group of 10 to 1000 cells X 10 to 1000 cells (positions), a plurality of clusters, for example, n cells x m (n and m are independently 2 to 50, for example) ) On the substrate.
  • the number of cells held on the cell chip is not particularly limited. However, since the object of the present invention is to simultaneously measure the state of a large number of cells, for example, at least 10,000 cells. Yes, preferably 50,000 or more, more preferably 100,000 or more, and even more preferably 200,000 or more. In particular, from the viewpoint of searching for lymphocytes that are antigen-specific and low in frequency, the number of cells retained on the cell chip is preferably at least 200,000.
  • the condition for the number of cells held on the cell chip can be determined appropriately in consideration of the purpose of measurement and the sensitivity of the image sensor, which is a measuring instrument, and the resolution required for fluorescence detection. For example, about 1 million cells And preferably 500,000. However, the upper limit of the number of cells retained on the cell chip can be further increased if the capabilities of the image sensor and the equipment required for recording processing of the detected fluorescence intensity improve as the technology advances. It is a spear.
  • lymphocytes are used as cells in the method of the present invention
  • the state before and after stimulation with an antigen for lymphocytes can be measured. More specifically, measurement of the state before and after stimulation with antigen is based on intracellular calcium generated by a signal through a receptor possessed by lymphocytes. Can be measured by a change in fluorescence intensity using a Ca ion-dependent fluorescent dye. More specifically, for example, an increase in intracellular calcium caused by a signal through the B cell receptor can be measured by a change in fluorescence intensity. The same applies to T cell receptors.
  • Fluorescence from at least some of the plurality of positions is detected by an image sensor. Fluorescence from the position where the cell is fixed is generated when the cell reacts with the antigen by adding a Ca ion-dependent fluorescent dye to the fixed cell in advance.
  • an antigen binds to the antigen receptor (immunoglobulin) of B lymphocytes, intracellular signal transduction occurs first, and as a result, the concentration of intracellular Ca ions changes, and when Ca ion-dependent fluorescent dyes coexist, Fluorescence is generated.
  • the fluorescent dye for example, Fura-2, Fluo_3 or Fluo-4 can be used.
  • the fluorescent dye is not particularly limited as long as it is a Ca ion-dependent fluorescent dye.
  • the fluorescence may be a deviation of intracellular fluorescence, fluorescence on the cell membrane surface, or fluorescence emitted from a cell! ,.
  • a cell chip containing 200,000 cells is placed in the measurement range.
  • an image scanner that has sufficient sensitivity to fully examine cell responses.
  • This device 1) is a cell derived from a biological host regularly arranged on a microwell array chip !, or puts all the intracellular or extracellular fluorescence of a subcultured cell line into the field of view, 2) By allowing time-lapse photography, the reaction of cells after drug loading can be performed for each of several hundreds of thousands of cells. This can be analyzed.
  • the resolving power of the image sensor does not necessarily have to be remarkably high, and may be appropriate.
  • CMOS type image scanner that is slightly inferior in resolution if it has the ability to detect fluorescence of cells that use CCD type image scanners.
  • the design is such that a stimulus response in the detection range can be detected in real time for each individual cell.
  • the image scanner is, for example, It is appropriate that the imaging area has a resolution of 3 million pixels or more and has a function of capturing fluorescence per cell (position) by 4 pixels or more of the imaging element. The number of pixels required for the image scanner is determined appropriately by the product of the number of pixels that capture fluorescence per cell (position) and the number of cells (positions) that include the imaging area. Is done.
  • a fluorescence measuring device including the image sensor can be used.
  • An explanatory diagram of this fluorescence measuring apparatus is shown in FIG. It consists of an image sensor 10, a split filter 20, a telecentric optical system 30, a light source 40, a shutter 50, and a computer 60 that controls them.
  • the image sensor 10 receives fluorescence emitted from the cell chip 70 and converts it into digital data.
  • the image sensor 10 has a sufficient number of pixels necessary for data acquisition, and it is appropriate that the image sensor 10 has a function of photographing fluorescence per sphere with four or more pixels of the image sensor. 9 pixels or more is desirable to stabilize From this, the number of lymphocytes that can be handled by the device is determined by the total number of image sensors.
  • the split filter 20 reflects and transmits the excitation light wavelength selected from the light emitted from the light source. In addition, it has a function to select and pass the fluorescence wavelength emitted from the sample.
  • the telecentric optical system 30 has a function of efficiently irradiating the sample with excitation light and efficiently condensing the fluorescent light emitted from the sample onto the image sensor 10.
  • a telecentric optical system (lens system) as the optical system in order to minimize the distortion of the peripheral area.
  • the light source 40 has a function of generating light necessary for excitation with a sufficient output.
  • the shutter 50 has a function of irradiating the cell chip 70 with excitation light only when necessary in order to minimize damage to the cell chip 70, and is controlled by the computer 60.
  • the computer 60 has a function of controlling the image sensor 10 and the shutter 50, and has a function of acquiring, analyzing, and storing fluorescence data output from the image sensor 10. It also monitors and controls the entire device.
  • the cycle of fluorescence detection by the image sensor can be appropriately determined according to the state of the cell to be measured. For example, if the cell is a lymphocyte and the cell condition is the lymphocyte's reactivity to antigen stimulation, fluorescence detection by the image sensor should be performed at least once every 60 seconds, preferably every 30 seconds. Is appropriate. The fluorescence detection cycle is limited by the data processing capability of the device used for fluorescence detection and recording. With the fluorescence measurement device shown in Fig. 1, fluorescence detection and recording is performed once every 10 seconds.
  • One fluorescence detection and recording (1 cycle) includes a series of processes including all fluorescence detection, including fluorescence detection, transfer of image data to a computer, and image correction on a personal computer. .
  • the fluorescence detected by the image sensor 10 is digitized by the image sensor 10 and recorded in the computer 60.
  • Data digitized by the image sensor 10 is digitized in proportion to the amount of fluorescence emitted.
  • the data that can be stopped here is the relative fluorescence.
  • the image sensor 10 includes a plurality of light receiving units, and each light receiving unit has a respective light receiving characteristic.
  • a correction map for the light intensity of each light receiving unit is created to correct the input light quantity and obtain an accurate fluorescence amount.
  • Fluorescence data digitized by the image sensor is captured by a plurality of pixels for one lymphocyte.
  • the converted value of the fluorescence intensity can be a calcium concentration.
  • the fluorescence emission amount can be converted into the calcium concentration and the calcium concentration can be quantitatively measured.
  • Display of recorded fluorescence intensity or converted value of fluorescence intensity force may be performed at the appropriate time after being stored over time in parallel with the above detection and recording, or after being temporarily stored in the computer. You can also Each position where the cell is held is assigned an address, and the fluorescence intensity detected in association with the address is recorded. Therefore, the acquired fluorescence intensity or calcium concentration can be displayed on a computer monitor in real time for each location (cell).
  • the addresses can be numbered in the direction of the entire raster, the number of the cluster, and the lymphocytes in the cluster.
  • the fluorescence intensity and the calcium concentration can be displayed in time series. It is also possible to display data of only lymphocytes selected arbitrarily. In addition, fluorescence intensity and calcium concentration can be compared individually for the time acquired. The change in overall brightness can be confirmed at a glance. In addition, any range of data can be selected and displayed on the graph.
  • the computer display in Fig. 1 shows the changes over time in the amount of fluorescence reflecting the intracellular calcium concentration in individual cells.
  • lymphocyte fractions are collected from peripheral blood B lymphocytes using a known method (density gradient centrifugation).
  • the B lymphocyte fraction is preferably collected using a commercially available kit.
  • the collected B lymphocytes should be preliminarily introduced with a calcium indicator that increases or decreases the amount of fluorescence when excited by binding to calcium.
  • the amount of fluorescent dye introduced is controlled by the amount of fluorescent dye in the liquid in which the cells are reacted, and is preferably between 0.1 micromole / liter and a concentration force of 5 micromole Z liter.
  • the action time is preferably 15 minutes or 60 minutes to maintain cell activity. For temperature, room temperature Or it is desirable to do it at the temperature of body temperature.
  • lymphocytes are isolated from the spleen after splenectomy, and isotonic solution After washing well, suspend in a culture solution such as RPMI1640 containing 10% FCS or a buffer solution that retains cell function.
  • Samples shall be arrayed on cell chips.
  • Cell chips are mainly 10x5 clusters (45000 pieces: 900 quenore per cluster) as experimental chips! / ⁇ i3 ⁇ 415xl 5 (203 ⁇ 4 "2500) ⁇ @
  • the substrate of the cell chip it is necessary to use a silicon chip that has been surface-treated, or polyethylene glycolanol 2000 (PEG2000) and polyethyleneglycolole 6000 (PEG6000) in a ratio of about 2 to 1.
  • PEG2000 polyethylene glycolanol 2000
  • PEG6000 polyethyleneglycolole 6000
  • lipid membrane coating agent called lipidid
  • lipidid in the case of ethanol solvent, use a commercially available 10X or 50X solution and apply it to the array area on the cell chip. If this happens, the subsequent operation may be affected, so the ethanol may be washed twice or three times with more ethanol than the amount applied before it dries. This removes excess coating agent and prevents it from peeling off during measurement or adversely affecting cells.
  • aqueous type lipidids in a solution diluted 10 to 50 times, vibrate evenly inside the well on the cell chip in an ultrasonic cleaner. After leaving it for a while, clean it with water again in water to remove the excess coating agent.
  • the cell suspension obtained by suspending the cells in a culture solution containing 10% FCS or a serum-free medium having a function of maintaining the cell function was replaced with ethanol. Fills a buffer with the same composition as the cell suspension with the vacuum expelling the air in the well on the cell chip, and gently places a sufficient amount of the cell suspension on it.
  • a rubber spacer is placed on the cell chip after the array work, and a thin glass (such as a cover glass) cut to an appropriate size is placed on the spacer.
  • the cover glass and the surface of the cell chip are filled with the same culture solution as the cell suspension or a buffer with a composition having an appropriate function of maintaining cell responsiveness.
  • a rubber or other glass, plastic or metal spacer is placed directly on a glass, plastic or metal base to which the cell chip is fixed, and a bridge is formed on the spacer. Install the cover glass so that Hereinafter, the cell arrayed on the cell chip is referred to as a prep.
  • the light source of the scanner is activated and the warm-up operation is performed until the temperature inside the casing reaches equilibrium.
  • the warm-up operation it is possible to perform highly accurate measurement while suppressing fluctuations in the amount of excitation light.
  • the prep is placed on the moving stage of the array scanner, and set so that the optical axis and the cell chip surface are vertical. By making the optical axis and the cell chip surface perpendicular to each other and preventing tilting, accurate measurement is possible.
  • the dedicated data capture software is started up on the computer for analysis that has been started up. Under the red LED ring illumination light, data is collected for the part to be measured on the prep. Adjust the XY stage under the scanner receiver so that it is within the field of view of the insertion software, and focus the optical system on the chip surface. At this time, the ⁇ stage does not drift easily, and precise position adjustment is possible.
  • the position detection image is digitally processed, noise is removed, enhancement processing and rotation correction are performed, and the positions of the wells are arranged so as to form individual grids.
  • the pixel of each image sensor constituting each cell is 2x2 or more, preferably 4x4 pixels or more. This cell is large enough to contain a single cell, and is used for detection as if the cell is in this position.
  • a desirable example that fits within the field of view of an image sensor in the case of a 15x15 cluster prep would be a 4x4 pixel comprising a single cell area.
  • fluorescence detection matrixes These images showing cell regions created from the position detection images are called fluorescence detection matrixes.
  • the creation of the fluorescence detection matrix is performed fully automatically by the automatic image processing process on the computer as shown in FIG. 2 after the position detection image is collected.
  • the fluorescence detection matrix In order to detect the fluorescence of cells, we automatically create a matrix for fluorescence detection that corresponds one-to-one with the number of cells as many as the number of cells using our digital image processing technology.
  • the fluorescence value data recorded on the memory is recorded on a hard disk of a personal computer as a text file or binary data.
  • the recorded data is a general-purpose format and can be read using a commercially available program.
  • the fluorescence value data stored in the memory can be used for calculation without any special operation, and analysis can be performed at high speed.
  • the program starts shooting immediately, and is released from a calcium indicator combined with intracellular free calcium excited under the excitation light of a mercury lamp for a limited time before and after each shooting cycle. Take the captured fluorescence with an image sensor.
  • the fluorescence imaging is performed every 10 seconds, and the image acquisition and analysis process is completed by the time the next imaging sequence starts. Even if image processing is prolonged, shooting, image data transfer by high-speed serial bus, and image analysis processing are processed in separate processes, and after the data transfer, the next shooting process is not affected.
  • the fluorescence image including the fluorescence of the photographed cell is compared with the fluorescence detection matrix as electronic information, and the information of the pixels in the target cell region is integrated, or the cell region (16 pieces) is integrated. It is recorded as the maximum value or average value or median value of the pixels. Images taken over time are processed before the next shooting, and the output numerical values are recorded on a memory or hard disk as electronic information in time series.
  • Cell fluorescence analysis mainly uses at least one, preferably three of the following three filters (see Fig. 4).
  • Figure 4-a shows the distribution of cell fluorescence using a histogram filter and selects a uniform cell population.
  • Fig. 4-b is a scatter plot filter, showing the distribution of the fluorescence values of cells at two time points before and after, and the cells with changed fluorescence values can be detected at positions away from the population.
  • Figure 4- c is a time-series filter, which shows a change with time for each cell.
  • the histogram filter shown in Fig. 4a is mainly used to separate cell fluorescence from background fluorescence.
  • the fluorescence of cells before stimulation also varies depending on intracellular calcium.
  • a very well-prepared prep is divided into a group of empty wells that contain nothing and a group of cells that contain fluorescence. Cells that appear scattered at positions with higher fluorescence values than this population are generally activated cells from the beginning, and are inappropriate as the initial cell state.
  • the histogram 'filter is very useful for extracting a group of cells to be analyzed and facilitating the subsequent sorting operation.
  • the scatter diagram filter shown in Fig. 4b displays on the XY axis the fluorescence value at one time point before stimulation and the fluorescence value at an arbitrary time point after stimulation.
  • the time point displayed on the Y-axis is changed along the time series, the change in intracellular calcium concentration of cells activated in response to antigens or stimulating substances in the cell group selected on the histogram In response, it can be recognized as a separated cell population compared to the cell population.
  • This cell group is set as an area connecting arbitrary points on the screen of the personal computer, and only the information on the cells contained in the enclosed area is selected. The screen can be enlarged or reduced to select a more accurate group.
  • the time-series filter shown in Fig. 4c shows a time-series fluorescence change on the horizontal axis for each individual cell, and among them, a cell having a desired intracellular calcium mobilization pattern can be selected. It is a filter that can. By adding analysis to the cells selected with other filters, it is possible to operate more efficiently.
  • filters By using these filters properly, they can be used for various purposes. Furthermore, by using a plurality of filters, a more detailed evaluation can be performed on the cells selected by the previous filter.
  • RATIO indicating the degree of response of the cell, which is not just the absolute value data of fluorescence, or a primary differential value for sensitively detecting fluorescence changes, or the like is used. This makes it possible to examine qualitative changes in intracellular calcium, and to distinguish calcium mobilization caused by a specific antigen from calcium fluctuations as part of normal cellular activity.
  • the fluorescence information selected by the narrowing operation of the fluorescence information includes the fluorescence information.
  • the position information on the obtained image is attached. Therefore, based on this information, by referring to the cluster address and the address of the well in the prep cell area, cells can be collected by a micromanipulator, or the address can be passed automatically. This makes it possible to collect cells with an automatic cell collection device.
  • FIG. 3 shows an example of actual cell fluorescence acquisition.
  • the calcium response of each cell can be analyzed with parallelism of 200,000 or more simultaneous processes.
  • Stimulation is an anti-IgM antibody that stimulates the B cell receptor itself. (Displayed! /, The data for 250 samples randomly selected to improve visibility: Create images in Excel) 1% of mouse splenocytes that actually react with antigen were mixed When antigen stimulation was performed on a prep of a cell group (0.3-0.7% as reactive B cells), a clear cellular response that was considered to be antigen-specific was observed (bottom).
  • This method is not limited to antibody production techniques, and it is possible to examine more detailed cell profiles by measuring cell calcium mobilization on a prep and then staining the cell membrane antigen on the chip. . Using this technology, it can be expected to be used in fields such as clinical diagnosis.
  • the present invention is very useful in the case where it is necessary to grasp the state of a large number of cells, particularly lymphocytes at once, and is useful for preparing antigen-specific antibodies and diagnosing diseases involving lymphocytes, etc. Useful.
  • FIG. 1 is an explanatory diagram of a fluorescence detection apparatus.
  • FIG. 2 is an explanatory diagram of the operation of the automatic recognition function of the CCD scanner shown in FIG.
  • FIG. 4 is an explanatory diagram of three filters used for cell fluorescence analysis.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Cell Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Food Science & Technology (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Toxicology (AREA)
  • Optics & Photonics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Physiology (AREA)
  • Zoology (AREA)
  • Virology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

[PROBLEMS] To provide a method whereby the states of a large number of cells held on a chip (for example, the reactivities of lymphocytes to an antigen stimulation) can be simultaneously measured and the states of the individual cells can be understood. [MEANS FOR SOLVING PROBLEMS] A method of measuring cell states which comprises independently holding a plural number of cells at a plural number of positions on a cell chip, detecting the fluorescence from at least a part of the a plural number of positions by using an image sensor, recording the intensities of the fluorescence thus detected for each of the positions, and indicating the fluorescent intensities or data converted from the fluorescent intensities thus recorded. At least the detection and recording as described above are repeated with the passage of time.

Description

明 細 書  Specification
多細胞応答同時測定法  Simultaneous measurement of multicellular responses
技術分野  Technical field
[0001] 本発明は、 CCD型イメージスキャナ等のイメージセンサを用いた多細胞応答同時 測定法に関する。本発明は、多数の細胞が発する蛍光を、それぞれの細胞について 独立に、経時的かつ大規模並列的に追跡することを可能にする方法である。  [0001] The present invention relates to a multi-cell response simultaneous measurement method using an image sensor such as a CCD image scanner. The present invention is a method that allows the fluorescence emitted by a large number of cells to be tracked independently for each cell over time and in a massively parallel manner.
背景技術  Background art
[0002] 細胞を 1つ 1つのレベルで特定し、選別し、選別された細胞を用いる試みがなされて いる。例えば、 1つ 1つのリンパ球の抗原特異性を個別に検出し、さらに検出された 1 つの抗原特異的リンパ球を回収し、回収された 1つの抗原特異的リンパ球を用いて、 例えば、抗体を製造することが検討されている(特開 2004— 173681号公報、特開 200 4 187676号公報)。  [0002] Attempts have been made to identify and sort cells at each level and use the sorted cells. For example, the antigen specificity of each lymphocyte is detected individually, and then the detected antigen-specific lymphocyte is recovered, and the recovered antigen-specific lymphocyte is used, for example, antibody Has been studied (Japanese Unexamined Patent Publication No. 2004-173681 and Japanese Unexamined Patent Publication No. 2004 187676).
特許文献 1:特開 2004— 173681号公報  Patent Document 1: Japanese Unexamined Patent Application Publication No. 2004-173681
特許文献 2:特開 2004— 187676号公報  Patent Document 2: Japanese Patent Application Laid-Open No. 2004-187676
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] 従来は、マ-ユアルで、 1つ 1つのリンパ球の抗原特異性を個別に検出し、さらに検 出された抗原特異的リンパ球を回収していた。特許文献 1および 2では、細胞単位で 細胞を特定することが確認されたと記載され、かつ特定された細胞を回収することも 可能であると記載されている。しかし、実際に抗原に特異的に反応したリンパ球を多 数のリンパ球力も検出することは容易でな力つた。  [0003] Conventionally, the antigen specificity of each lymphocyte was individually detected by a manual, and the detected antigen-specific lymphocytes were collected. Patent Documents 1 and 2 describe that it has been confirmed that cells are identified on a cell-by-cell basis, and describe that the identified cells can also be collected. However, it was not easy to detect many lymphocyte forces from lymphocytes that actually reacted specifically to the antigen.
[0004] 検出法としては、例えば、抗原に反応したリンパ球におけるカルシウムイオン濃度が 上がることを利用し、カルシウムイオン濃度の変化を蛍光として検出し、抗原特異的リ ンパ球を特定している。しかし、細胞 (リンパ球)の種類によって蛍光の発生の仕方や 強度等が必ずしも一定ではなぐ抗原刺激を受けると即座にカルシウムイオン濃度が 上がり、その結果、蛍光強度も上がるリンパ球もあるが、抗原刺激後一定時間経過後 にカルシウムイオン濃度が上がり、その結果、蛍光強度も上がるという細胞もある。ま た、数センチ四方のキップ表面に保持された 1〜20万程度のリンパ球の蛍光強度を、 一度にほぼ同時に測定する必要が有り、かつ、蛍光が、 1つの細胞毎に起因する蛍 光であるために蛍光強度が低ぐ高感度での蛍光検出である必要も有る。 [0004] As a detection method, for example, an increase in calcium ion concentration in lymphocytes in response to an antigen is used, and a change in the calcium ion concentration is detected as fluorescence to identify an antigen-specific lymphocyte. However, depending on the type of cells (lymphocytes), the manner in which fluorescence is generated and the intensity, etc. are not always constant. In some cells, the calcium ion concentration increases after a certain period of time, resulting in an increase in fluorescence intensity. Ma In addition, it is necessary to measure the fluorescence intensity of about 1 to 200,000 lymphocytes held on the surface of a chip about several centimeters square at the same time, and the fluorescence is fluorescence caused by each cell. For this reason, it is also necessary to perform fluorescence detection with high sensitivity and low fluorescence intensity.
[0005] しかし、これまでのところ、そのような高集積されたチップ表面上の多数のしかも微 弱な蛍光強度を、同時に測定できる方法および装置は存在しな力つた。  [0005] However, so far, there has been no method and apparatus that can simultaneously measure a large number of weak fluorescence intensities on the surface of such highly integrated chips.
[0006] 従来からある装置としては、レーザースキャンニング 'サイトメーターがあり、レーザ 一スキャンユング 'サイトメーターを用いると、数十万個の細胞を個々に細胞内カルシ ゥム濃度の測定ができる。しかし、一回のスキャンにかかる時間は 10分以上と長ぐ抗 原刺激後数分で蛍光強度が変化するリンパ球についての検出には、リアルタイム性 に欠け、不向きである。  [0006] As a conventional apparatus, there is a laser scanning 'cytometer, and when a laser single-scanning' cytometer is used, intracellular calcium concentration can be individually measured for several hundreds of thousands of cells. However, the detection of lymphocytes whose fluorescence intensity changes within a few minutes after an original stimulus, which takes 10 minutes or more for a single scan, lacks real-time properties and is unsuitable.
[0007] 蛍光顕微鏡'撮影装置は、通常の蛍光顕微鏡に撮影装置を併せ持つものである。  [0007] The fluorescence microscope 'imaging device has an imaging device in addition to a normal fluorescence microscope.
蛍光顕微鏡 ·撮影装置は、速度的には問題が無いが、通常の顕微鏡だと撮影範囲 が狭く、一度に最大 1000個程度し力検出することができず、数万〜数十万個の細胞 力もの蛍光を一度に検出することはできな力つた。  Fluorescence microscope · The imaging device has no problem in terms of speed, but with an ordinary microscope, the imaging range is narrow, and up to 1000 cells cannot be detected at a time, and tens of thousands to hundreds of thousands of cells cannot be detected. It was impossible to detect strong fluorescence at once.
[0008] DNAマイクロアレイスキャナを基にした細胞チップ検出装置は、細胞チップにアレイ した細胞蛍光を検出するために開発され、細胞内あるいは細胞外蛍光を検出するこ とができる装置である。しかし、レーザーを用いて蛍光色素を励起し、励起光を検出 するシステムであるため、時間変化を追う検出系ではレーザーによる線スキャン速度 が遅ぐ多数の細胞領域の同時検出はできない。  [0008] A cell chip detection device based on a DNA microarray scanner has been developed to detect cell fluorescence arrayed on a cell chip, and can detect intracellular or extracellular fluorescence. However, since this system uses a laser to excite the fluorescent dye and detect the excitation light, a detection system that tracks changes over time cannot simultaneously detect a large number of cell regions with a slow line scan speed.
[0009] 前述の特許文献 1および 2に記載されている方法で、抗原に対して特異的に反応す る細胞を検出するには、反応検出系において、ひとつの細胞に対して、細胞内の力 ルシゥムの変化を経時的に捕らえることができるリアルタイム性と、多数の細胞の中に ごくわずかに存在 (反応)する細胞を検出する必要性から、多数の細胞を個別に同時 に解析できる並列性、が求められる。  [0009] In the method described in Patent Documents 1 and 2 described above, in order to detect a cell that specifically reacts with an antigen, in the reaction detection system, Because of the real-time nature that can capture changes in force over time and the need to detect very few (reactive) cells in a large number of cells, parallelism that can analyze many cells individually and simultaneously , Is required.
[0010] そこで本発明の目的は、チップ上に保持された 1万を超える、好ましくは 10万を超え る多数の細胞の状態、例えば、抗原刺激に対するリンパ球の反応性を、同時に測定 し、各細胞についてその状態を個別に把握できる方法を提供することにある。  [0010] Therefore, the object of the present invention is to simultaneously measure the state of a large number of cells retained on the chip, more than 10,000, preferably more than 100,000, for example, lymphocyte reactivity to antigen stimulation, The object is to provide a method for individually grasping the state of each cell.
課題を解決するための手段 本発明の以下のとおりである。 Means for solving the problem The present invention is as follows.
[1]複数の細胞を複数の位置に独立して保持した細胞チップ上の、前記複数の位置 の少なくとも一部の位置力もの蛍光をイメージセンサにより検出し、  [1] Fluorescence having at least a part of the position of the plurality of positions on a cell chip that holds a plurality of cells independently at a plurality of positions is detected by an image sensor,
検出した蛍光強度を、位置毎に記録し、 Record the detected fluorescence intensity for each position,
記録した蛍光強度または蛍光強度からの換算値を表示することを含む Including displaying the recorded fluorescence intensity or the converted value from the fluorescence intensity
細胞状態の計測方法であって、 A cell state measurement method,
少なくとも前記検出および記録を経時的に繰り返し行う、方法。 A method wherein at least the detection and recording are repeated over time.
[2]前記複数の細胞がリンパ球であり、前記細胞状態が、抗原での刺激の前後のリン パ球の状態である [1]に記載の方法。  [2] The method according to [1], wherein the plurality of cells are lymphocytes, and the cell state is a state of lymphocytes before and after stimulation with an antigen.
[3]前記リンパ球の状態を、リンパ球が有する受容体を介したシグナルにより生じる細 胞内カルシウムの上昇を、蛍光強度の変化により計測する [2]に記載の方法。  [3] The method according to [2], wherein the state of the lymphocyte is measured by a change in fluorescence intensity of an increase in intracellular calcium caused by a signal via a receptor possessed by the lymphocyte.
[4]リンパ球が Bリンパ球であり、受容体が Bリンパ球受容体である請求項 3に記載の方 法。  [4] The method according to claim 3, wherein the lymphocyte is a B lymphocyte and the receptor is a B lymphocyte receptor.
[5]前記複数の細胞力 少なくとも 1万個の細胞である [1]〜[4]のいずれかに記載の 方法。  [5] The method according to any one of [1] to [4], wherein the plurality of cell forces are at least 10,000 cells.
[6]イメージセンサが、 CCD型イメージスキャナまたは CMOS型イメージスキャナである [6] The image sensor is a CCD image scanner or a CMOS image scanner
[I]〜[5]の 、ずれかに記載の方法。 The method according to any one of [I] to [5].
[7]イメージセンサによる蛍光の検出を、少なくとも 60秒に 1回行う [1]〜[6]のいずれ かに記載の方法。  [7] The method according to any one of [1] to [6], wherein the fluorescence is detected by the image sensor at least once every 60 seconds.
[8]蛍光強度力もの換算値がカルシウム濃度である [3]〜[7]のいずれかに記載の方 法。  [8] The method according to any one of [3] to [7], wherein the converted value of fluorescence intensity is calcium concentration.
[9]記録した蛍光強度または蛍光強度力 の換算値を表示は、検出および記録と並 列に、経時的に行われる [1]〜[8]のいずれかに記載の方法。  [9] The method according to any one of [1] to [8], wherein the recorded fluorescence intensity or the converted value of fluorescence intensity force is displayed over time in parallel with detection and recording.
[10]複数の細胞を複数の位置に独立して保持した細胞チップが、基板の一方の表 面に細胞を保持するための位置にスポットまたは穴を有するものであり、前記スポット または穴の少なくとも一部に細胞が独立して保持されている [1]〜[9]のいずれかに記 載の方法。 [10] The cell chip that holds a plurality of cells independently at a plurality of positions has a spot or a hole at a position for holding the cell on one surface of the substrate, and at least the spot or the hole The method according to any one of [1] to [9], wherein some cells are independently retained.
[I I]前記複数の位置にはアドレスが付されており、アドレスに対応づけて検出した蛍 光強度の記録が行われる [1]〜[10]のいずれかに記載の方法。 [II] An address is attached to the plurality of positions, and the firefly detected in association with the address The method according to any one of [1] to [10], wherein recording of light intensity is performed.
発明の効果  The invention's effect
[0012] 本発明の方法によれば、抗原がリンパ球に対して及ぼす刺激応答を、大規模かつ 個々の細胞に対して定量的に、迅速に検出することができる。その結果、特定の抗 原に対して高親和性を持つ抗体の作製がより容易に行えるようになる。  [0012] According to the method of the present invention, a stimulus response that an antigen exerts on lymphocytes can be rapidly detected on a large scale and quantitatively for individual cells. As a result, it becomes easier to produce an antibody having a high affinity for a specific antigen.
[0013] さらに、 B cell Leukemia (白血病)の患者さんのリンパ球は、抗 IgM抗体による刺激 に対してカルシウム応答が減弱することが知られる。臨床の現場にぉ 、て患者さん由 来のリンパ球に対して抗 IgM抗体を用いて刺激をすることによる B細胞の抗 IgM抗体 に対する反応性を迅速かつ定量的に経時測定および評価することができれば、 B eel 1 Leukemia (白血病)の診断も可能である力 本発明の方法は、このような応用も可能 であり、これにより、白血病診断や余命の検査などを迅速に行うことが可能となる。そ の結果、必要とされる処置を的確に行うことができるなど、臨床における検査法などで 有効に活用し得る。  [0013] Furthermore, it is known that lymphocytes of patients with B cell leukemia (leukemia) have a reduced calcium response to stimulation by anti-IgM antibodies. In clinical settings, it is possible to quickly and quantitatively measure and evaluate the responsiveness of B cells to anti-IgM antibodies by stimulating lymphocytes derived from patients with anti-IgM antibodies over time. If possible, the power of being able to diagnose Beel 1 Leukemia (leukemia) The method of the present invention can also be applied in this way, thereby enabling rapid diagnosis of leukemia, life expectancy tests, and the like. . As a result, the necessary treatment can be performed accurately, and it can be used effectively in clinical examinations.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0014] 本発明の方法は、 [0014] The method of the present invention comprises:
(1)複数の細胞を複数の位置に独立して保持した細胞チップ上の、前記複数の位 置の少なくとも一部の位置力 の蛍光をイメージセンサにより検出し (蛍光検出ステツ プ)、  (1) Fluorescence of at least a part of the position force of the plurality of positions on the cell chip holding a plurality of cells independently at a plurality of positions is detected by an image sensor (fluorescence detection step),
(2)検出した蛍光強度を、位置毎に記録し (蛍光強度記録ステップ)、  (2) Record the detected fluorescence intensity for each position (fluorescence intensity recording step),
(3)記録した蛍光強度または蛍光強度からの換算値を表示すること (表示ステップ) を含む細胞状態の計測方法である。そして、少なくとも前記検出及び記録を経時的 に繰り返し行う。  (3) A method of measuring a cell state including displaying (recording) fluorescence intensity or a converted value from fluorescence intensity (display step). Then, at least the detection and recording are repeated over time.
[0015] (蛍光検出ステップ) [0015] (Fluorescence detection step)
本発明の方法における計測対象は、複数の細胞を複数の位置に独立して保持し た細胞チップである。細胞チップは、複数の細胞を複数の位置に独立して保持したも のであれば、細胞の保持の仕方、保持された細胞の数、保持された細胞のチップ表 面における密度等には特に制限はない。細胞チップの例はとしては、例えば、上記 特許文献 1および 2に記載の基板の一方の表面に細胞を格納するための複数のマイ クロウエルを有するマイクロウェルアレイチップの各マイクロウェルに細胞を 1つずつ( 独立に)含むものを挙げることができる。この細胞チップの例においては、複数のマイ クロウエル (穴)が、前記「複数の位置」に相当する。細胞を格納したマイクロウェルに は、細胞とともに、培養液を格納することもできる。 The measurement target in the method of the present invention is a cell chip that holds a plurality of cells independently at a plurality of positions. If the cell chip is to hold a plurality of cells independently at a plurality of positions, the method of holding the cell, the number of held cells, the density of the held cells on the chip surface, etc. are particularly limited. There is no. As an example of the cell chip, for example, a plurality of microchips for storing cells on one surface of the substrate described in Patent Documents 1 and 2 above. A microwell array chip having a clowell may contain one cell (independently) in each microwell. In this cell chip example, a plurality of microwells (holes) correspond to the “plural positions”. In the microwell in which the cells are stored, the culture solution can be stored together with the cells.
[0016] あるいは、細胞チップは、特開 2005-102628号公報に記載された感熱応答性ポリマ 一を用いて細胞をチップ表面上に個別に固定したものであることもできる。この細胞 チップの例においては、チップ表面上の複数の細胞の固定位置が、前記「複数の位 置」に相当する。  [0016] Alternatively, the cell chip may be one in which cells are individually fixed on the chip surface using a thermosensitive polymer described in JP-A-2005-102628. In this cell chip example, the fixed positions of a plurality of cells on the chip surface correspond to the “plural positions”.
[0017] 細胞チップは、全体に渡って均一に (等間隔で)細胞が保持されていることもできる 1S 複数のクラスタに分けて保持することもできる。例えば、 1つのクラスタを 10〜1000 個 X 10〜1000個の細胞 (位置)群として、このクラスタを複数個、例えば、 n個 X m個 (n および mは独立に例えば、 2〜50である)のように基板上に設けることができる。  [0017] The cell chip can be held in a plurality of 1S clusters that can hold cells uniformly (at equal intervals) throughout. For example, if one cluster is a group of 10 to 1000 cells X 10 to 1000 cells (positions), a plurality of clusters, for example, n cells x m (n and m are independently 2 to 50, for example) ) On the substrate.
[0018] 細胞チップに保持される細胞の数は、特に制限はないが、本発明の目的が、多数 の細胞の状態を同時並列に計測することであることから、例えば、少なくとも 1万個で あり、好ましくは 5万個以上であり、より好ましくは 10万個以上であり、さらに好ましくは 20万個以上である。特に、抗原特異的なリンパ球であって、存在頻度の低いリンパ球 を探索するという観点からは、細胞チップに保持される細胞の数は、少なくとも 20万 個であることが好ましい。細胞チップに保持される細胞の数の条件は、計測の目的と 、計測機器であるイメージセンサの感度や蛍光検出に必要とされる解像度等を考慮 して適宜決定できる力 例えば、 100万個程度であり、好ましくは 50万個である。但し、 技術の進歩にともない、イメージセンサや検出された蛍光強度の記録処理に必要な 装置の能力が向上すれば、細胞チップに保持される細胞の数の上限は、さらに大き くすることち可會である。  [0018] The number of cells held on the cell chip is not particularly limited. However, since the object of the present invention is to simultaneously measure the state of a large number of cells, for example, at least 10,000 cells. Yes, preferably 50,000 or more, more preferably 100,000 or more, and even more preferably 200,000 or more. In particular, from the viewpoint of searching for lymphocytes that are antigen-specific and low in frequency, the number of cells retained on the cell chip is preferably at least 200,000. The condition for the number of cells held on the cell chip can be determined appropriately in consideration of the purpose of measurement and the sensitivity of the image sensor, which is a measuring instrument, and the resolution required for fluorescence detection. For example, about 1 million cells And preferably 500,000. However, the upper limit of the number of cells retained on the cell chip can be further increased if the capabilities of the image sensor and the equipment required for recording processing of the detected fluorescence intensity improve as the technology advances. It is a spear.
[0019] 細胞チップに保持される細胞には、特に制限はな!/、が、例えば、リンパ球を挙げる ことができ、リンパ球としては、 Bリンパ球および Tリンパ球を挙げることができる。本発 明の方法において細胞としてリンパ球を用いる場合、リンパ球に対する抗原での刺激 の前後の状態を計測することができる。抗原での刺激の前後の状態を計測は、より具 体的には、リンパ球が有する受容体を介したシグナルにより生じる細胞内カルシウム の上昇を、 Caイオン依存性蛍光色素を用いて、蛍光強度の変化により計測すること ができる。より具体的には、例えば、 B細胞受容体を介したシグナルにより生じる細胞 内カルシウムの上昇を、蛍光強度の変化により計測することができる。また、 T細胞受 容体などでも同様である。 [0019] The cells retained in the cell chip are not particularly limited! /, But examples include lymphocytes, and examples of lymphocytes include B lymphocytes and T lymphocytes. When lymphocytes are used as cells in the method of the present invention, the state before and after stimulation with an antigen for lymphocytes can be measured. More specifically, measurement of the state before and after stimulation with antigen is based on intracellular calcium generated by a signal through a receptor possessed by lymphocytes. Can be measured by a change in fluorescence intensity using a Ca ion-dependent fluorescent dye. More specifically, for example, an increase in intracellular calcium caused by a signal through the B cell receptor can be measured by a change in fluorescence intensity. The same applies to T cell receptors.
[0020] 前記複数の位置の少なくとも一部の位置からの蛍光をイメージセンサにより検出す る。細胞が固定された位置からの蛍光は、固定された細胞に予め Caイオン依存性蛍 光色素を添加しておくことで、細胞が抗原に反応した場合に発生する。 Bリンパ球の 抗原受容体 (免疫グロブリン)に抗原が結合するとまず細胞内シグナル伝達が起こり 、その結果、細胞内 Caイオンの濃度が変化し、 Caイオン依存性の蛍光色素が共存す ると、蛍光が発生する。蛍光色素としては、例えば、 Fura-2、 Fluo_3あるいは Fluo-4 を用いることができる。但し、蛍光色素は、 Caイオン依存性蛍光色素であれば、特に 制限はない。また、蛍光は、細胞内蛍光、細胞膜表面の蛍光、細胞から放出された 物質からの蛍光の 、ずれであっても良!、。  [0020] Fluorescence from at least some of the plurality of positions is detected by an image sensor. Fluorescence from the position where the cell is fixed is generated when the cell reacts with the antigen by adding a Ca ion-dependent fluorescent dye to the fixed cell in advance. When an antigen binds to the antigen receptor (immunoglobulin) of B lymphocytes, intracellular signal transduction occurs first, and as a result, the concentration of intracellular Ca ions changes, and when Ca ion-dependent fluorescent dyes coexist, Fluorescence is generated. As the fluorescent dye, for example, Fura-2, Fluo_3 or Fluo-4 can be used. However, the fluorescent dye is not particularly limited as long as it is a Ca ion-dependent fluorescent dye. In addition, the fluorescence may be a deviation of intracellular fluorescence, fluorescence on the cell membrane surface, or fluorescence emitted from a cell! ,.
[0021] 本発明の方法では、例えば、非常にまれに存在する抗原特異的な細胞を、多数の 細胞の中から検出する場合には、 20万個の細胞の入る細胞チップを測定範囲に入 れ、且つ細胞の反応を十分に検討できるだけの感度を併せ持つイメージスキャナを 用いる。  [0021] In the method of the present invention, for example, when detecting an antigen-specific cell that is very rarely present from a large number of cells, a cell chip containing 200,000 cells is placed in the measurement range. In addition, use an image scanner that has sufficient sensitivity to fully examine cell responses.
[0022] この装置は、 1)マイクロウェルアレイチップ上に規則正しく配列した、生物宿主由来 の細胞ある!、は継代培養した株化細胞の細胞内あるいは細胞外蛍光をすベて視野 に入れ、一度に撮影することのできる、 2)経時的な撮影を可能にすることにより薬物 負荷後の細胞の反応を、数十万個という多数の細胞に対して、個々の細胞ごとに並 歹 U〖こ解析することができる。  [0022] This device 1) is a cell derived from a biological host regularly arranged on a microwell array chip !, or puts all the intracellular or extracellular fluorescence of a subcultured cell line into the field of view, 2) By allowing time-lapse photography, the reaction of cells after drug loading can be performed for each of several hundreds of thousands of cells. This can be analyzed.
[0023] 抗原に反応する細胞を検出するためには、必ずしもイメージセンサの解像力が著し く高い必要はなく適度であればよい。通常、高解像度を求めるには CCD型イメージス キヤナを使用する力 細胞の蛍光を検出できる性能であれば若干解像力では劣る C MOS型イメージスキャナを用いることもできる。  [0023] In order to detect cells that react with an antigen, the resolving power of the image sensor does not necessarily have to be remarkably high, and may be appropriate. Usually, to obtain high resolution, it is possible to use a CMOS type image scanner that is slightly inferior in resolution if it has the ability to detect fluorescence of cells that use CCD type image scanners.
[0024] むしろ、検出範囲の刺激応答を個々の細胞ごとにリアルタイムに検出することがで きるような、設計であることが適当である。このような場合、イメージスキャナは、例えば 、撮影領域が 300万画素以上の解像度を持ち、細胞 (位置)ひとつ当たりの蛍光を撮 影素子の 4画素以上で捕らえることができる機能を持つものであることが適当である。 イメージスキャナに必要とされる画素数は、細胞 (位置)ひとつ当たりの蛍光を撮影す る素子の数を何画素とするか、及び撮影領域を含まれる細胞 (位置)数の積により適 宜決定される。 Rather, it is appropriate that the design is such that a stimulus response in the detection range can be detected in real time for each individual cell. In such a case, the image scanner is, for example, It is appropriate that the imaging area has a resolution of 3 million pixels or more and has a function of capturing fluorescence per cell (position) by 4 pixels or more of the imaging element. The number of pixels required for the image scanner is determined appropriately by the product of the number of pixels that capture fluorescence per cell (position) and the number of cells (positions) that include the imaging area. Is done.
[0025] 本発明の方法においては、上記イメージセンサを含む蛍光測定装置を用いること ができる。この蛍光測定装置の説明図を図 1に示す。イメージセンサ 10、スプリットフィ ルター 20、テレセントリック光学系 30、光源 40、シャッター 50及びそれらをコントロール するコンピュータ 60より構成される。  In the method of the present invention, a fluorescence measuring device including the image sensor can be used. An explanatory diagram of this fluorescence measuring apparatus is shown in FIG. It consists of an image sensor 10, a split filter 20, a telecentric optical system 30, a light source 40, a shutter 50, and a computer 60 that controls them.
[0026] イメージセンサ 10は、細胞チップ 70より発せられる蛍光を受光し、デジタルデータへ 変換する。また、イメージセンサ 10はデータの取得に必要十分な画素数を持ち、リン パ球一つあたりの蛍光を撮影素子の 4画素以上で撮影することができる機能を持つこ とが適当であり、データを安定させるためには 9画素以上が望ましい。このことより、ィ メージセンサの画総数により装置が扱うことができるリンパ球の数が決まる。  The image sensor 10 receives fluorescence emitted from the cell chip 70 and converts it into digital data. In addition, the image sensor 10 has a sufficient number of pixels necessary for data acquisition, and it is appropriate that the image sensor 10 has a function of photographing fluorescence per sphere with four or more pixels of the image sensor. 9 pixels or more is desirable to stabilize From this, the number of lymphocytes that can be handled by the device is determined by the total number of image sensors.
[0027] スプリットフィルター 20は光源より発せられる光より励起光波長を選択して反射、透 過する。また、試料より発せられる蛍光波長を選択して通過させる機能を持つ。  [0027] The split filter 20 reflects and transmits the excitation light wavelength selected from the light emitted from the light source. In addition, it has a function to select and pass the fluorescence wavelength emitted from the sample.
[0028] テレセントリック光学系 30は励起光を効率よく試料に照射し、試料より発せられる蛍 光を効率よくイメージセンサ 10へ集光させる機能を持つ。通常、顕微鏡下で観察する 場合、撮影視野のうち周辺部が異常にゆがむ現象が見られる。これをディストーショ ンというが、本スキャナではこの周辺部のゆがみを最小限に抑えるために、光学系と してテレセントリック光学系 (レンズ系)を用いることが好まし 、。テレセントリック光学系( レンズ系)を用いることで、周辺部のディストーションは最小限に抑えられている。  The telecentric optical system 30 has a function of efficiently irradiating the sample with excitation light and efficiently condensing the fluorescent light emitted from the sample onto the image sensor 10. Usually, when observing under a microscope, there is a phenomenon that the peripheral part of the field of view is abnormally distorted. This is called distortion, but in this scanner, it is preferable to use a telecentric optical system (lens system) as the optical system in order to minimize the distortion of the peripheral area. By using a telecentric optical system (lens system), distortion at the periphery is minimized.
[0029] 光源 40は励起に必要な光を十分な出力をもって発生させる機能を持つ。  [0029] The light source 40 has a function of generating light necessary for excitation with a sufficient output.
シャッター 50は細胞チップ 70に対するダメージを最小限にするため、必要な時のみ 励起光を細胞チップ 70に照射する機能を持ち、コンピュータ 60により制御される。  The shutter 50 has a function of irradiating the cell chip 70 with excitation light only when necessary in order to minimize damage to the cell chip 70, and is controlled by the computer 60.
[0030] コンピュータ 60はイメージセンサ 10及びシャッター 50をコントロールする機能を持ち 、イメージセンサ 10より出力される蛍光データの取得、解析、保存を行なう機能を持 つ。また、装置全体の監視、コントロールを行なう。 [0031] イメージセンサによる蛍光の検出のサイクルは、計測対象である細胞の状態に応じ て適宜決定できる。例えば、細胞がリンパ球であり、細胞の状態が、抗原刺激に対す るリンパ球の反応性である場合、イメージセンサによる蛍光の検出は、少なくとも 60秒 、好ましくは 30秒に 1回行うことが適当である。蛍光の検出のサイクルは、蛍光検出 および記録に使用する装置のデータ処理能力によって制限を受ける力 前記図 1に 示す蛍光測定装置であれば、 10秒に 1回のサイクルで、蛍光の検出および記録が 可能である。但し、サイクルの最短時間は、蛍光測定装置によりさらに短くすることも できる。 1回の蛍光検出および記録(1サイクル)には、蛍光検出、ノ ソコンへの画像 データの転送、パソコン上での画像補正を含む細胞蛍光輝度抽出をすベて含む一 連の過程が含まれる。 The computer 60 has a function of controlling the image sensor 10 and the shutter 50, and has a function of acquiring, analyzing, and storing fluorescence data output from the image sensor 10. It also monitors and controls the entire device. [0031] The cycle of fluorescence detection by the image sensor can be appropriately determined according to the state of the cell to be measured. For example, if the cell is a lymphocyte and the cell condition is the lymphocyte's reactivity to antigen stimulation, fluorescence detection by the image sensor should be performed at least once every 60 seconds, preferably every 30 seconds. Is appropriate. The fluorescence detection cycle is limited by the data processing capability of the device used for fluorescence detection and recording. With the fluorescence measurement device shown in Fig. 1, fluorescence detection and recording is performed once every 10 seconds. Is possible. However, the shortest cycle time can be further shortened by a fluorescence measuring device. One fluorescence detection and recording (1 cycle) includes a series of processes including all fluorescence detection, including fluorescence detection, transfer of image data to a computer, and image correction on a personal computer. .
[0032] (蛍光強度記録ステップ)、  [0032] (fluorescence intensity recording step),
イメージセンサ 10により検出された蛍光は、イメージセンサ 10において数値ィ匕され、 コンピュータ 60に記録される。イメージセンサ 10により数値ィ匕されるデータは蛍光発 光量に比例して数値化される。ここでもとめることが可能なデータは相対的な蛍光発 光量である。  The fluorescence detected by the image sensor 10 is digitized by the image sensor 10 and recorded in the computer 60. Data digitized by the image sensor 10 is digitized in proportion to the amount of fluorescence emitted. The data that can be stopped here is the relative fluorescence.
[0033] イメージセンサ 10は複数の光受光部により構成されるが、それぞれの受光部はそれ ぞれの光受光特性をもっている。それぞれの特性を均一の特性として扱うために、そ れぞれの受光部の光強度に対する補正マップを作成することで、入力する光量に対 して補正を行い、正確な蛍光量を得ることを可能にする。イメージセンサにより数値ィ匕 された蛍光データは 1つのリンパ球に対して複数の画素により撮影されている。 1つ のリンパ球が発光する蛍光データの総量を扱う加算処理方式、平均値を扱う方式、 最大値を扱う方式を備えることで、様々なパターンの解析を可能にして 、る。  [0033] The image sensor 10 includes a plurality of light receiving units, and each light receiving unit has a respective light receiving characteristic. In order to treat each characteristic as a uniform characteristic, a correction map for the light intensity of each light receiving unit is created to correct the input light quantity and obtain an accurate fluorescence amount. enable. Fluorescence data digitized by the image sensor is captured by a plurality of pixels for one lymphocyte. By providing an addition processing method that handles the total amount of fluorescence data emitted by one lymphocyte, a method that handles the average value, and a method that handles the maximum value, various patterns can be analyzed.
[0034] 蛍光強度力もの換算値は、カルシウム濃度であることができる。この場合、蛍光発光 量力 カルシウム濃度へ変換を行なうテーブルデータを作成することで、蛍光発光量 をカルシウム濃度へ変換し、カルシウム濃度の定量測定が可能となる。  [0034] The converted value of the fluorescence intensity can be a calcium concentration. In this case, by generating table data for converting the fluorescence emission intensity into the calcium concentration, the fluorescence emission amount can be converted into the calcium concentration and the calcium concentration can be quantitatively measured.
[0035] 以上の蛍光検出ステップおよび蛍光強度記録ステップは、経時的に繰り返し行われ 、データがコンピュータ 60に蓄積される。蛍光強度からの換算値も同様にコンビユー タ 60に蓄積される。 [0036] (表示ステップ) The above fluorescence detection step and fluorescence intensity recording step are repeated over time, and data is accumulated in the computer 60 . The converted value from the fluorescence intensity is also stored in the computer 60 in the same manner. [0036] (Display step)
記録した蛍光強度または蛍光強度力 の換算値の表示は、上記検出および記録と 並列に、経時的に行われても、あるいは、一時的にコンピュータに蓄積された後に、 適当なタイミングで一度に表示することもできる。また、細胞が保持された各位置には 、アドレスが付され、アドレスに対応づけて検出した蛍光強度の記録が行われる。従 つて、取得された蛍光強度またはカルシウム濃度は、各位置 (細胞)について、リアル タイムでコンピュータのモニタに表示できる。尚、アドレスは、全体でのラスタ(raster) 方向への番号付けと、クラスタの番号付け、クラスタ内のリンパ球のアドレス付けを行 なうことができる。  Display of recorded fluorescence intensity or converted value of fluorescence intensity force may be performed at the appropriate time after being stored over time in parallel with the above detection and recording, or after being temporarily stored in the computer. You can also Each position where the cell is held is assigned an address, and the fluorescence intensity detected in association with the address is recorded. Therefore, the acquired fluorescence intensity or calcium concentration can be displayed on a computer monitor in real time for each location (cell). The addresses can be numbered in the direction of the entire raster, the number of the cluster, and the lymphocytes in the cluster.
[0037] 本発明の方法では、蛍光強度及びカルシウム濃度は時系列に表示することが可能 である。また、任意に選択したリンパ球のみのデータを表示することも可能である。さ らに、蛍光強度及びカルシウム濃度は取得された時間個別に比較が可能である。全 体の輝度の変化状況を一目で確認することが出来る。また、グラフ上で任意の範囲 のデータを選別して表示することが出来る。図 1のコンピュータのディスプレーには、 個々の細胞における、細胞内カルシウム濃度を反映する蛍光量の時系列に対する 変化が表示されている。  [0037] In the method of the present invention, the fluorescence intensity and the calcium concentration can be displayed in time series. It is also possible to display data of only lymphocytes selected arbitrarily. In addition, fluorescence intensity and calcium concentration can be compared individually for the time acquired. The change in overall brightness can be confirmed at a glance. In addition, any range of data can be selected and displayed on the graph. The computer display in Fig. 1 shows the changes over time in the amount of fluorescence reflecting the intracellular calcium concentration in individual cells.
実施例  Example
[0038] 以下本発明を実施例によりさらに詳細に説明する。  Hereinafter, the present invention will be described in more detail with reference to examples.
[0039] B細胞に対する抗 IgM抗体あるいは抗原の引き起こす細胞内カルシウムの動員を評 価する場合は以下のように行う。  [0039] When evaluating the mobilization of intracellular calcium caused by an anti-IgM antibody or antigen to B cells, it is carried out as follows.
[0040] 細胞の準備 [0040] Cell preparation
ヒトを対象とする場合は、末梢血 Bリンパ球より、知られている方法 (密度勾配遠心法 )などを利用してリンパ球分画を採取する。望ましくは市販のキットなどを用い Bリンパ 球分画を採取する。採取した Bリンパ球には、カルシウムに結合することで、励起した ときの蛍光量が増加する、ある 、は減少するカルシウム指示薬をあら力じめ導入して おく。蛍光色素の導入量は、細胞を反応させる液体中の蛍光色素の量で調節し、 0.1 マイクロモル/リットルの濃度力 5マイクロモル Zリットルの間が望ましい。作用させる 時間は 15分力も 60分の間が細胞の活性を保つ上で望ましい。温度に関しては、室温 あるいは体温程度の温度で行うのが望まし 、。 For human subjects, lymphocyte fractions are collected from peripheral blood B lymphocytes using a known method (density gradient centrifugation). The B lymphocyte fraction is preferably collected using a commercially available kit. The collected B lymphocytes should be preliminarily introduced with a calcium indicator that increases or decreases the amount of fluorescence when excited by binding to calcium. The amount of fluorescent dye introduced is controlled by the amount of fluorescent dye in the liquid in which the cells are reacted, and is preferably between 0.1 micromole / liter and a concentration force of 5 micromole Z liter. The action time is preferably 15 minutes or 60 minutes to maintain cell activity. For temperature, room temperature Or it is desirable to do it at the temperature of body temperature.
[0041] マウスなどの哺乳類由来の全血を対象とする場合はヒトと同様に行い、マウス脾臓由 来の細胞を用いる場合は、脾臓摘出後、脾臓よりリンパ球細胞を分離し、等張液でよ く洗浄後、 10%FCSを含む RPMI1640などの培養液あるいは細胞機能を保持する機能 を持つ緩衝液に懸濁する。  [0041] When whole blood derived from mammals such as mice is used, the procedure is similar to that for humans. When cells derived from the mouse spleen are used, lymphocytes are isolated from the spleen after splenectomy, and isotonic solution After washing well, suspend in a culture solution such as RPMI1640 containing 10% FCS or a buffer solution that retains cell function.
サンプルは細胞チップ上にアレイするものとする。  Samples shall be arrayed on cell chips.
[0042] アレイするための細胞チップの条件  [0042] Cell chip conditions for arraying
細胞チップは主に実験用チップとして 10x5クラスタ (45000個: 1クラスタ当たり 90 0クェノレ;)ある!/ヽ i¾15xl 5 (20¾"2500) {@のものを j¾ ヽる。  Cell chips are mainly 10x5 clusters (45000 pieces: 900 quenore per cluster) as experimental chips! / ヽ i¾15xl 5 (20¾ "2500) {@
[0043] 細胞チップの基板としては、表面処理されて!ヽな 、シリコンチップを用いる力 ある いはポリエチレングリコーノレ 2000 (PEG2000)とポリエチレングリコーノレ 6000 (PEG60 00)を約 2対 1の割合でミックスし、全体の 5%程度になるように純粋水に溶解してこの 中に一晚浸漬しておき、用時に水あるいは緩衝液あるいは細胞培養液中で超音波 洗浄して余分な浸漬液を除くことにより、細胞チップ上の表面に細胞の余分な吸着が 起こらな 、ような表面状態のものを用いる。  [0043] As the substrate of the cell chip, it is necessary to use a silicon chip that has been surface-treated, or polyethylene glycolanol 2000 (PEG2000) and polyethyleneglycolole 6000 (PEG6000) in a ratio of about 2 to 1. Mix, dissolve in pure water so that it is about 5% of the total, soak in it for a while, and use ultrasonically wash in water, buffer solution, or cell culture medium before use. Use a surface that does not cause excessive adsorption of cells on the surface of the cell chip.
[0044] 細胞チップ表面の細胞が吸着しにくくするコ一ティングは上記のほ力他の方法でも 可能である。リピデュアという脂質膜系のコーティング剤を用いる場合は、エタノール 溶剤の場合は市販されている濃度の 10倍液もしくは 50倍液を用い、細胞チップ上の アレイ領域に塗りつけるが、この場合は乾固させてしまうと後の操作に影響をきたす 場合があるのでエタノールが乾燥しないうちに塗りつけた量よりも多くのエタノールを 用いて 2度ないしは 3度洗浄を行う。これにより、余分なコーティング剤が取り除かれ、 測定中に剥離するあるいは細胞に悪影響を及ぼすことを防ぐことができる。水溶液タ イブのリピデュア剤を用いる場合は、 10倍乃至 50倍に希釈した溶液中で超音波洗 浄器中で細胞チップ上のゥエル内部に満遍なくいきわたるように振動を与える。しば らく放置後、再度水中で超音波洗浄し、余分なコーティング剤を取り除く。  [0044] Coating that makes it difficult for cells on the surface of the cell chip to be adsorbed is also possible by the above-mentioned other methods. When lipid membrane coating agent called lipidid is used, in the case of ethanol solvent, use a commercially available 10X or 50X solution and apply it to the array area on the cell chip. If this happens, the subsequent operation may be affected, so the ethanol may be washed twice or three times with more ethanol than the amount applied before it dries. This removes excess coating agent and prevents it from peeling off during measurement or adversely affecting cells. When using aqueous type lipidids, in a solution diluted 10 to 50 times, vibrate evenly inside the well on the cell chip in an ultrasonic cleaner. After leaving it for a while, clean it with water again in water to remove the excess coating agent.
[0045] 上記のような細胞チップのコーティング剤を用いるときは、使用中に剥離する可能 性のあるコーティング剤の余剰分を極力除 、ておくことが好ま 、。  [0045] When using the coating agent for cell chips as described above, it is preferable to remove as much as possible the excess of the coating agent that may peel off during use.
[0046] または、あら力じめテフロンやシリコンコーティングが工業的になされているものを用 いることにより、細胞の強固な吸着を防ぐことができる。 [0046] Alternatively, use a Teflon or silicon coating that has been industrially made. Therefore, it is possible to prevent strong adsorption of cells.
[0047] 細胞チップに細胞をアレイする際には、 10%FCSを含む培養液または細胞機能を維 持させる機能を持つ無血清培地に細胞を懸濁した細胞懸濁液を、エタノール置換ま たはバキュームにより細胞チップ上のゥエル内の空気を追い出した状態で細胞懸濁 液と同等の組成を持つバッファーを満たし、その上に細胞懸濁液を必要十分な量を 静かに乗せる。  [0047] When the cells were arrayed on the cell chip, the cell suspension obtained by suspending the cells in a culture solution containing 10% FCS or a serum-free medium having a function of maintaining the cell function was replaced with ethanol. Fills a buffer with the same composition as the cell suspension with the vacuum expelling the air in the well on the cell chip, and gently places a sufficient amount of the cell suspension on it.
[0048] 1分乃至 2分後に細胞が沈殿し、細胞チップのゥ ル外の部分に細胞の薄く白い層 が見えるような状態になったら、 P200規格または P20規格のマイクロピペットで、ゥエル 内の細胞が外へ出ない程度の柔らかい吐出力でチップ表面に沈殿した細胞を撹拌 する。前述コーティング剤が無い、生のシリコン表面だとこのとき攪拌される効率が著 しく低下し、表面についた細胞が十分に撹拌できないことがある。この操作を 2— 3回 繰り返すことにより細胞チップの細胞アレイ率を飛躍的に高めることができる。  [0048] After 1 to 2 minutes, the cells have settled and a thin white layer of cells is visible outside the cell tip. With a P200 or P20 micropipette, Stir the cells that have settled on the chip surface with a soft discharge force that prevents the cells from going outside. In the case of a raw silicon surface without the above-mentioned coating agent, the efficiency of stirring at this time is significantly reduced, and the cells on the surface may not be sufficiently stirred. By repeating this operation 2-3 times, the cell array ratio of the cell chip can be dramatically increased.
[0049] アレイ作業の終わった細胞チップにラバー製のスぺーサーを設置し、スぺーサー上 に薄膜ガラス (カバーガラスなど)を適切な大きさに切ったものを乗せる。このカバー ガラスと細胞チップ表面の間に細胞懸濁液と同じ培養液もしくは適切な細胞応答性 保持機能を持つ組成の緩衝液で満たす。  [0049] A rubber spacer is placed on the cell chip after the array work, and a thin glass (such as a cover glass) cut to an appropriate size is placed on the spacer. The cover glass and the surface of the cell chip are filled with the same culture solution as the cell suspension or a buffer with a composition having an appropriate function of maintaining cell responsiveness.
[0050] もしくは、細胞チップを固定してあるガラスあるいはプラスチックあるいは金属性の基 台上に直接ラバー製またはその他のガラスあるいはプラスチックあるいは金属製のス ぺーサ一を設置し、その上にブリッジ状になるようにカバーガラスを設置する。以降、 この細胞が細胞チップ上にアレイされたものをプレップと表記する。  [0050] Alternatively, a rubber or other glass, plastic or metal spacer is placed directly on a glass, plastic or metal base to which the cell chip is fixed, and a bridge is formed on the spacer. Install the cover glass so that Hereinafter, the cell arrayed on the cell chip is referred to as a prep.
[0051] スキャナの光源をあら力じめ起動しておき、筐体内温度が平衡になるまで暖機運転 を行う。暖機運転を行うことで、励起光量の変動を抑制して精度の高い計測が可能に なる。  [0051] The light source of the scanner is activated and the warm-up operation is performed until the temperature inside the casing reaches equilibrium. By performing the warm-up operation, it is possible to perform highly accurate measurement while suppressing fluctuations in the amount of excitation light.
[0052] プレップをアレイスキャナの移動ステージ上に載せ、光軸と細胞チップ面が垂直に なるようにセットする。光軸と細胞チップ面が垂直にし、傾きが生じないようすることで 、正確な測定を可能にする。  [0052] The prep is placed on the moving stage of the array scanner, and set so that the optical axis and the cell chip surface are vertical. By making the optical axis and the cell chip surface perpendicular to each other and preventing tilting, accurate measurement is possible.
[0053] あら力じめ立ち上げておいた解析用コンピュータ上で、専用データ取り込みソフトを 起動する。赤色の LEDリング照明光下で、プレップの測定対象となる部分をデータ取 り込みソフトの視野内に入るようにスキャナの受光器の下で XYステージを調節し、光 学系の焦点をチップ表面に合わせる。この際に ΧΥステージは容易にはドリフトしない ようになっており、精密な位置調整が可能である。 [0053] The dedicated data capture software is started up on the computer for analysis that has been started up. Under the red LED ring illumination light, data is collected for the part to be measured on the prep. Adjust the XY stage under the scanner receiver so that it is within the field of view of the insertion software, and focus the optical system on the chip surface. At this time, the ΧΥ stage does not drift easily, and precise position adjustment is possible.
[0054] 带光の撮影  [0054] Fluorescence shooting
細胞の蛍光の撮影はコンピュータの画面上で行う。  Cell fluorescence is photographed on a computer screen.
まず、細胞の位置を特定するために、赤色リング LED照明下、通常 100msの露光を行 い、ゥエル位置検出画像を取得する。ゥエル位置検出画像は、プレップの細胞領域 が狭い場合は他の部分が検出の妨げとなる場合があるので、細胞領域をコンビユー ターマウス入力(クリックおよびドラッグ)により指定し、実行ボタンをクリックすることに より開始する。  First, in order to specify the cell position, exposure is usually performed for 100 ms under red ring LED illumination, and a well position detection image is acquired. In the position detection image, if the cell area of the prep is narrow, other parts may interfere with detection. Therefore, the cell area must be specified by computer mouse input (click and drag), and the execution button must be clicked. Start with.
[0055] 認識は位置検出用画像をデジタル処理し、ノイズを除去した後で強調処理、回転 補正を行い、ゥエル位置を一つ一つの升目となるように配列していくことを行う。一つ 一つの升目を構成するイメージセンサの画素は、 2x2以上であり、望ましくは 4x4画素 以上のものを用いる。この升目は細胞ひとつがちょうど入る大きさで、細胞がこの位置 にあるものとして検出に用いる。 15x15クラスタのプレップの場合にイメージセンサの 視野内に納まるような望ましい例は、 4x4画素でひとつの細胞のある領域を構成する ものである。  For recognition, the position detection image is digitally processed, noise is removed, enhancement processing and rotation correction are performed, and the positions of the wells are arranged so as to form individual grids. The pixel of each image sensor constituting each cell is 2x2 or more, preferably 4x4 pixels or more. This cell is large enough to contain a single cell, and is used for detection as if the cell is in this position. A desirable example that fits within the field of view of an image sensor in the case of a 15x15 cluster prep would be a 4x4 pixel comprising a single cell area.
[0056] これらの、位置検出用画像から作成された細胞領域を示す画像を、蛍光検出用マ トリタスと呼ぶ。蛍光検出用マトリクスの作成は、位置検出用画像の採取後、図 2に示 されるようなコンピュータ上の自動画像処理工程により、全自動で行われる。細胞の 蛍光を検出するために、ゥエルのデジタル画像処理技術により細胞の数と同数の細 胞の位置と 1対 1対応する蛍光検出用マトリクスを自動作成する。  [0056] These images showing cell regions created from the position detection images are called fluorescence detection matrixes. The creation of the fluorescence detection matrix is performed fully automatically by the automatic image processing process on the computer as shown in FIG. 2 after the position detection image is collected. In order to detect the fluorescence of cells, we automatically create a matrix for fluorescence detection that corresponds one-to-one with the number of cells as many as the number of cells using our digital image processing technology.
[0057] メモリ上に記録された蛍光値データは、テキストファイルまたはバイナリデータとして パソコンのハードディスク上に記録される。記録されたデータは汎用フォーマットであ り、市販のプログラムなどを用いて読み込むこともできる。メモリ上に保持された蛍光 値のデータは特段の操作を必要とせずそのまま計算に用いることもでき、高速に解 析作業を行うことができる。  [0057] The fluorescence value data recorded on the memory is recorded on a hard disk of a personal computer as a text file or binary data. The recorded data is a general-purpose format and can be read using a commercially available program. The fluorescence value data stored in the memory can be used for calculation without any special operation, and analysis can be performed at high speed.
[0058] 刺激後の細胞の带光 細胞の刺激は、撮影を一時停止させ行う。遮光扉を開けて撮影台の上に半固定さ れたプレップを取り外し、または取り外さずに撮影台を引き出して、実験者がアクセス しゃすいような状態にし、細胞領域とカバーガラスとの間に吸水性の紙を近づけ、細 胞培養液または緩衝液を吸収させる。または機械的にゆっくりと吸引を行い、取り除く [0058] Fluorescence of cells after stimulation Cell stimulation is performed by temporarily stopping imaging. Open the shading door and remove the semi-fixed prep on the imaging table, or pull out the imaging table without removing it, making it accessible for the experimenter to absorb water between the cell area and the cover glass. Bring in a neutral paper and absorb the cell culture medium or buffer. Or mechanically slowly suck and remove
[0059] ごくわずかに残った細胞培養液または緩衝液が乾ききる前に、前記した細胞培養 液や緩衝液と同じものに抗原や抗原に類する細胞刺激物質や化学物質などを含む ものを静かに細胞の上にのせる。この際に泡などの混入がないように気をつける。 [0059] Before the very small amount of the remaining cell culture solution or buffer solution is dried, gently remove the same cell culture solution or buffer solution that contains an antigen, a cell stimulating substance similar to the antigen, or a chemical substance. Place on cells. Be careful not to mix any bubbles.
[0060] 刺激物質の入った細胞培養液を乗せた後で、すぐにプレップを撮影台の上にもど し、または引き出された撮影台を元の位置に戻し、遮光扉を閉じてから、撮影を開始 する。  [0060] Immediately after placing the cell culture solution containing the stimulating substance, return the prep to the imaging table, or return the drawn imaging table to its original position, close the light shielding door, and then Start.
[0061] 撮影を開始すると、プログラムが即座に撮影を開始し、各撮影サイクルの前後の限 られた時間に水銀灯の励起光下で励起された、細胞内の遊離カルシウムと結合した カルシウム指示薬より放たれた蛍光をイメージセンサで撮影する。  [0061] When shooting is started, the program starts shooting immediately, and is released from a calcium indicator combined with intracellular free calcium excited under the excitation light of a mercury lamp for a limited time before and after each shooting cycle. Take the captured fluorescence with an image sensor.
[0062] 蛍光の撮影は 10秒おきに行い、次の撮影シーケンスが始まるまでには画像の取得 および解析工程が終わっている。画像の処理が長引いても、撮影と高速シリアルバス による画像データ転送、および画像解析処理は別のプロセスで処理され、データ転 送後は次の撮影工程影響を及ぼさない。  [0062] The fluorescence imaging is performed every 10 seconds, and the image acquisition and analysis process is completed by the time the next imaging sequence starts. Even if image processing is prolonged, shooting, image data transfer by high-speed serial bus, and image analysis processing are processed in separate processes, and after the data transfer, the next shooting process is not affected.
[0063] 以降、撮影された細胞の蛍光を含む蛍光画像は、蛍光検出用マトリクスと電子情報 として比較され、対象となる細胞領域にある画素の情報が積算され、または細胞領域 (16個)の画素の最大値、または平均値または中央値として記録される。経時的に撮 影された画像は次の撮影までに処理され、出力された数値は時系列に沿って電子 情報としてメモリ上またはハードディスク上に記録される。  [0063] Thereafter, the fluorescence image including the fluorescence of the photographed cell is compared with the fluorescence detection matrix as electronic information, and the information of the pixels in the target cell region is integrated, or the cell region (16 pieces) is integrated. It is recorded as the maximum value or average value or median value of the pixels. Images taken over time are processed before the next shooting, and the output numerical values are recorded on a memory or hard disk as electronic information in time series.
[0064] 細胞の带光解析作業  [0064] Cell fluorescence analysis work
細胞の蛍光解析は主に以下の 3つのフィルタ (図 4参照)の少なくとも 1つ好ましくは 3 つを用いる。図 4-aは、ヒストグラムフィルタにより細胞の蛍光の分布を示し、均一な細 胞集団を選択する。図 4-bは、散布図フィルタであり、ある 2時点の細胞の蛍光値の 前後の分布を示し、蛍光値が変化した細胞が集団と離れた位置に検出できる。図 4- cは、時系列フィルタであり、一つ一つの細胞に関して経時変化を示す。 Cell fluorescence analysis mainly uses at least one, preferably three of the following three filters (see Fig. 4). Figure 4-a shows the distribution of cell fluorescence using a histogram filter and selects a uniform cell population. Fig. 4-b is a scatter plot filter, showing the distribution of the fluorescence values of cells at two time points before and after, and the cells with changed fluorescence values can be detected at positions away from the population. Figure 4- c is a time-series filter, which shows a change with time for each cell.
[0065] 図 4 aに示すヒストグラム ·フィルタは、主に細胞の蛍光とバックグラウンドの蛍光を 分離するために用いる。刺激前の細胞の蛍光も、細胞内のカルシウムに応じて多寡 がみられる。非常に条件のよいプレップだと、何も入っていない空ゥエルの集団と、細 胞が入っていて蛍光が見られる集団とに分かれる。この集団より蛍光値の高い位置 にばらばらと現れる細胞は一般にはじめから活性ィ匕されている細胞であり、初期の細 胞状態としては不適切である。ヒストグラム 'フィルタはこのうち、解析するべき細胞群 を抽出し、その後の選別操作を円滑に進めるために非常に有用である。  [0065] The histogram filter shown in Fig. 4a is mainly used to separate cell fluorescence from background fluorescence. The fluorescence of cells before stimulation also varies depending on intracellular calcium. A very well-prepared prep is divided into a group of empty wells that contain nothing and a group of cells that contain fluorescence. Cells that appear scattered at positions with higher fluorescence values than this population are generally activated cells from the beginning, and are inappropriate as the initial cell state. The histogram 'filter is very useful for extracting a group of cells to be analyzed and facilitating the subsequent sorting operation.
[0066] 図 4 bに示す散布図フィルタは、刺激前の一時点の蛍光値と、刺激後の任意の時 点の蛍光値を XY軸上に表示したものである。 Y軸に表示する時点を時系列に沿って 変化させると、ヒストグラム上で選抜された細胞群の中で、抗原や刺激物質と反応し て活性ィ匕した細胞の細胞内カルシウム濃度の変化が、反応して 、な 、細胞集団と比 較して分離された細胞集団として認識することができる。この細胞群を、パソコンの画 面上で任意の点を結んだ領域として設定し、囲まれた領域に含まれる細胞の情報の みを選別する。画面は拡大縮小でき、より正確な集団を選択できる。  [0066] The scatter diagram filter shown in Fig. 4b displays on the XY axis the fluorescence value at one time point before stimulation and the fluorescence value at an arbitrary time point after stimulation. When the time point displayed on the Y-axis is changed along the time series, the change in intracellular calcium concentration of cells activated in response to antigens or stimulating substances in the cell group selected on the histogram In response, it can be recognized as a separated cell population compared to the cell population. This cell group is set as an area connecting arbitrary points on the screen of the personal computer, and only the information on the cells contained in the enclosed area is selected. The screen can be enlarged or reduced to select a more accurate group.
[0067] 図 4 cに示す時系列フィルタは、個々の細胞ごとに時系列の蛍光変化を横軸上に 示し、このなかで、 目的とする細胞内カルシウム動員パターンを示す細胞を選択する ことができるフィルタである。あら力じめ他のフィルタで選抜した細胞に対して解析を 加えることにより、より効率的な運用をすることができる。  [0067] The time-series filter shown in Fig. 4c shows a time-series fluorescence change on the horizontal axis for each individual cell, and among them, a cell having a desired intracellular calcium mobilization pattern can be selected. It is a filter that can. By adding analysis to the cells selected with other filters, it is possible to operate more efficiently.
[0068] これらのフィルタを相互に使い分けることにより、さまざまな用途に利用することがで きる。さらに、複数のフィルタを用いることで、前のフィルタで選抜された細胞に関して 、より詳しい評価をすることができる。  [0068] By using these filters properly, they can be used for various purposes. Furthermore, by using a plurality of filters, a more detailed evaluation can be performed on the cells selected by the previous filter.
[0069] これら 3種のフィルタに用いる蛍光データは、蛍光の絶対値データのみではなぐ細 胞の応答の度合いを示す RATIOや、蛍光変化を敏感に検出するための一次微分値 などを用いる。これにより、細胞内カルシウムの質的変化を検討することが可能になり 、特定の抗原により引き起こされたカルシウム動員と、通常の細胞活動の一環として のカルシウム変動を区別することができる。  [0069] As the fluorescence data used for these three types of filters, RATIO indicating the degree of response of the cell, which is not just the absolute value data of fluorescence, or a primary differential value for sensitively detecting fluorescence changes, or the like is used. This makes it possible to examine qualitative changes in intracellular calcium, and to distinguish calcium mobilization caused by a specific antigen from calcium fluctuations as part of normal cellular activity.
[0070] これらの蛍光情報の絞込み操作により、選抜された蛍光情報には、その蛍光情報 が得られた画像上の位置情報が付属する。したがつてこの情報をもとに、プレップの 細胞領域のなかで、クラスタの番地とクラスタ内のゥエルの番地を参照することにより、 マイクロマニピュレーターによる細胞の採取あるいは、全自動でアドレスを受け渡すこ とにより自動細胞採取装置での細胞採取が可能になる。 [0070] The fluorescence information selected by the narrowing operation of the fluorescence information includes the fluorescence information. The position information on the obtained image is attached. Therefore, based on this information, by referring to the cluster address and the address of the well in the prep cell area, cells can be collected by a micromanipulator, or the address can be passed automatically. This makes it possible to collect cells with an automatic cell collection device.
[0071] 実際の細胞蛍光の取得例を図 3に示す。図 3に示すように、一つ一つの細胞のカル シゥム応答を、同時処理数 20万個以上の並列性を持って解析できる。刺激は B細胞 受容体自体を刺激する抗 IgM抗体である。(表示して!/、るのは視認性を良くするため に無作為に選んだ 250サンプル分のデータ: Excelにて画像作成)実際に抗原に反応 するマウス脾細胞を、 1%混ぜ込んだ細胞群 (反応する B細胞として 0.3-0.7%)のプレ ップに対して抗原刺激を行ったところ、抗原特異的だと思われる明瞭な細胞応答が 観察された (下)。  FIG. 3 shows an example of actual cell fluorescence acquisition. As shown in Fig. 3, the calcium response of each cell can be analyzed with parallelism of 200,000 or more simultaneous processes. Stimulation is an anti-IgM antibody that stimulates the B cell receptor itself. (Displayed! /, The data for 250 samples randomly selected to improve visibility: Create images in Excel) 1% of mouse splenocytes that actually react with antigen were mixed When antigen stimulation was performed on a prep of a cell group (0.3-0.7% as reactive B cells), a clear cellular response that was considered to be antigen-specific was observed (bottom).
[0072] これら一連の作業は非常に高速に行うことができ、従来技術では行うことのできなか つた 20万もの個々の細胞の経時的なカルシウム動員プロファイルの作成を、ものの数 分で行うことができ、非常に有用な方法である。  [0072] These series of operations can be performed very quickly, and the creation of calcium mobilization profiles over 200,000 individual cells over time, which could not be done with the prior art, can be done within minutes. It is a very useful method.
[0073] この方法は抗体作成技術のみにとどまらず、プレップ上で細胞のカルシウム動員を 測定し、その後、チップ上での細胞膜抗原の染色などにより、より詳しい細胞のプロフ アイルを検討することができる。この技術を利用して、臨床診断などの分野で活用す ることが期待できる。  [0073] This method is not limited to antibody production techniques, and it is possible to examine more detailed cell profiles by measuring cell calcium mobilization on a prep and then staining the cell membrane antigen on the chip. . Using this technology, it can be expected to be used in fields such as clinical diagnosis.
産業上の利用可能性  Industrial applicability
[0074] 本発明は、多数の細胞、特に、リンパ球の状態を一度に把握する必要がある場合 に非常に有用であり、抗原特異的抗体の作成やリンパ球等が関わる疾患の診断等 に有用である。 [0074] The present invention is very useful in the case where it is necessary to grasp the state of a large number of cells, particularly lymphocytes at once, and is useful for preparing antigen-specific antibodies and diagnosing diseases involving lymphocytes, etc. Useful.
図面の簡単な説明  Brief Description of Drawings
[0075] [図 1]蛍光検出装置の説明図。 FIG. 1 is an explanatory diagram of a fluorescence detection apparatus.
[図 2]図 1に示す CCDスキャナの自動認識機能の動作の説明図。  FIG. 2 is an explanatory diagram of the operation of the automatic recognition function of the CCD scanner shown in FIG.
[図 3]実際の細胞蛍光の取得例。  [Figure 3] Example of actual cell fluorescence acquisition.
[図 4]細胞の蛍光解析に用いる 3つのフィルタの説明図。  FIG. 4 is an explanatory diagram of three filters used for cell fluorescence analysis.

Claims

請求の範囲  The scope of the claims
[I] 複数の細胞を複数の位置に独立して保持した細胞チップ上の、前記複数の位置の 少なくとも一部の位置からの蛍光をイメージセンサにより検出し、  [I] Fluorescence from at least a part of the plurality of positions on a cell chip holding a plurality of cells independently at a plurality of positions is detected by an image sensor,
検出した蛍光強度を、位置毎に記録し、  Record the detected fluorescence intensity for each position,
記録した蛍光強度または蛍光強度からの換算値を表示することを含む  Including displaying the recorded fluorescence intensity or the converted value from the fluorescence intensity
細胞状態の計測方法であって、  A cell state measurement method,
少なくとも前記検出および記録を経時的に繰り返し行う、方法。  A method wherein at least the detection and recording are repeated over time.
[2] 前記複数の細胞カ^ンパ球であり、前記細胞状態が、抗原での刺激の前後のリンパ 球の状態である請求項 1に記載の方法。  [2] The method according to [1], wherein the cells are a plurality of cell lymphocytes, and the cell state is a state of lymphocytes before and after stimulation with an antigen.
[3] 前記リンパ球の状態を、リンパ球が有する受容体を介したシグナルにより生じる細胞 内カルシウムの上昇を、蛍光強度の変化により計測する請求項 2に記載の方法。 [3] The method according to claim 2, wherein the state of the lymphocyte is measured by a change in fluorescence intensity of an increase in intracellular calcium caused by a signal through a receptor possessed by the lymphocyte.
[4] リンパ球が Bリンパ球であり、受容体が Bリンパ球受容体である請求項 3に記載の方法 [4] The method according to claim 3, wherein the lymphocyte is a B lymphocyte and the receptor is a B lymphocyte receptor.
[5] 前記複数の細胞が、少なくとも 1万個の細胞である請求項 1〜4のいずれか 1項に記 載の方法。 [5] The method according to any one of claims 1 to 4, wherein the plurality of cells are at least 10,000 cells.
[6] イメージセンサが、 CCD型イメージスキャナまたは CMOS型イメージスキャナである請 求項 1〜5のいずれか 1項に記載の方法。  [6] The method according to any one of claims 1 to 5, wherein the image sensor is a CCD image scanner or a CMOS image scanner.
[7] イメージセンサによる蛍光の検出を、少なくとも 60秒に 1回行う請求項 1〜6のいずれ 力 1項に記載の方法。 [7] The method according to any one of [1] to [6], wherein the fluorescence is detected by the image sensor at least once every 60 seconds.
[8] 蛍光強度からの換算値がカルシウム濃度である請求項 3〜7のいずれか 1項に記載 の方法。  [8] The method according to any one of claims 3 to 7, wherein the converted value from the fluorescence intensity is a calcium concentration.
[9] 記録した蛍光強度または蛍光強度力 の換算値を表示は、検出および記録と並列 に、経時的に行われる請求項 1〜8のいずれ力 1項に記載の方法。  [9] The method according to any one of [1] to [8], wherein the display of the recorded fluorescence intensity or the converted value of the fluorescence intensity force is performed over time in parallel with the detection and recording.
[10] 複数の細胞を複数の位置に独立して保持した細胞チップが、基板の一方の表面に 細胞を保持するための位置にスポットまたは穴を有するものであり、前記スポットまた は穴の少なくとも一部に細胞が独立して保持されている請求項 1〜9のいずれか 1項 に記載の方法。  [10] A cell chip that holds a plurality of cells independently at a plurality of positions has a spot or a hole at a position for holding the cell on one surface of the substrate, and at least the spot or the hole The method according to any one of claims 1 to 9, wherein a part of the cells is independently retained.
[II] 前記複数の位置にはアドレスが付されており、アドレスに対応づけて検出した蛍光強 度の記録が行われる請求項 1〜: LOのいずれか 1項に記載の方法。 [II] Addresses are assigned to the plurality of positions, and fluorescence intensity detected in association with the addresses is detected. The method according to any one of claims 1 to: LO, wherein the degree of recording is performed.
PCT/JP2006/319156 2005-09-30 2006-09-27 Method of simultaneously measuring a plural number of cell responses WO2007040117A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005287567A JP4089916B2 (en) 2005-09-30 2005-09-30 Simultaneous measurement of multicellular responses
JP2005-287567 2005-09-30

Publications (1)

Publication Number Publication Date
WO2007040117A1 true WO2007040117A1 (en) 2007-04-12

Family

ID=37906160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/319156 WO2007040117A1 (en) 2005-09-30 2006-09-27 Method of simultaneously measuring a plural number of cell responses

Country Status (2)

Country Link
JP (1) JP4089916B2 (en)
WO (1) WO2007040117A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113155791A (en) * 2015-10-23 2021-07-23 阿贝里奥仪器有限责任公司 Method and device for high-resolution imaging of structures marked with fluorescent markings of a sample

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009110614A1 (en) * 2008-03-07 2009-09-11 Kobayashi Yasunobu Effector cell function measurement method, measurement kit and measurement system
CN102272561B (en) * 2009-01-06 2014-05-14 古河电气工业株式会社 Optical measurement apparatus and sample identifying and dispensing apparatus
JP6787561B2 (en) * 2016-04-18 2020-11-18 学校法人 工学院大学 Information processing equipment, methods, and programs
JP2020054234A (en) * 2017-01-31 2020-04-09 富士フイルム株式会社 Cell culture apparatus, imaging unit, and culture monitoring method
US11379983B2 (en) * 2017-06-23 2022-07-05 Nikon Corporation Analysis device, analysis program, and analysis method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003329681A (en) * 2002-05-14 2003-11-19 Hitachi Ltd Biological sample testing apparatus
JP2004173681A (en) * 2002-11-14 2004-06-24 Atsushi Muraguchi Microwell array chip for detecting antigen-specific lymphocyte, method for detecting the antigen-specific lymphocyte and method for producing the same
JP2005148048A (en) * 2003-04-25 2005-06-09 Jsr Corp Biochip, biochip kit, and method for manufacturing and using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003329681A (en) * 2002-05-14 2003-11-19 Hitachi Ltd Biological sample testing apparatus
JP2004173681A (en) * 2002-11-14 2004-06-24 Atsushi Muraguchi Microwell array chip for detecting antigen-specific lymphocyte, method for detecting the antigen-specific lymphocyte and method for producing the same
JP2005148048A (en) * 2003-04-25 2005-06-09 Jsr Corp Biochip, biochip kit, and method for manufacturing and using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113155791A (en) * 2015-10-23 2021-07-23 阿贝里奥仪器有限责任公司 Method and device for high-resolution imaging of structures marked with fluorescent markings of a sample

Also Published As

Publication number Publication date
JP4089916B2 (en) 2008-05-28
JP2007097411A (en) 2007-04-19

Similar Documents

Publication Publication Date Title
Grinvald Real-time optical mapping of neuronal activity: from single growth cones to the intact mammalian brain
EP1500035B1 (en) Ray-based image analysis for biological specimens
US4647531A (en) Generalized cytometry instrument and methods of use
JP4089916B2 (en) Simultaneous measurement of multicellular responses
Mikami et al. High-speed imaging meets single-cell analysis
JP2000512009A (en) Miniaturized cell array method and apparatus for performing cell-based screening
JPH07111425B2 (en) Analytical method and device for biological specimen
CN106520537B (en) A kind of the micro-fluidic optical analysis system and analysis method of T cell immune response
HU195245B (en) Process and equipment for selection of specified biological cells from cell-set and for inspection of minimum one characteristics of the specified cells
JP4979516B2 (en) Image reading method and apparatus
CA2624475A1 (en) Apparatus and method for detecting activity of living cells
JP4728025B2 (en) Cell image analyzer
JP2004354164A (en) Specimen inspection method using microparticle and its inspection system
CN1256443C (en) Significant signal extracting method, recording medium and program
JP3929057B2 (en) Luminescence intensity analysis method and apparatus
EP4299712A1 (en) Cell processing system, cell processing method, and learning data creation method
EP4160209A1 (en) Information processing device, biological sample analysis method, biological sample detection device, and biological sample detection system
WO2021131411A1 (en) Nucleic acid sequence measurement apparatus, nucleic acid sequence measurement method, and computer-readable non-temporary storage medium
JP2007155558A (en) Feeble light analysis method
JP2522773B2 (en) Cell identification / quantification method
WO2023189281A1 (en) Information processing apparatus, information processing method, cell culturing system, and program
JP2000292542A (en) Method and device for quantifying image
WO2023042646A1 (en) Classification model generation method, particle determination method, computer program, and information processing device
US8365921B2 (en) Cell sorting method and cell sorter
EP4137795A1 (en) Fluorescence image analysis method, fluorescence image analyser, fluoresence image analysis program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06798364

Country of ref document: EP

Kind code of ref document: A1