WO2007039702A1 - Dispositif de repartition des gaz recircules, refroidisseur de gaz recircules et procede de recirculation de gaz d'echappement - Google Patents

Dispositif de repartition des gaz recircules, refroidisseur de gaz recircules et procede de recirculation de gaz d'echappement Download PDF

Info

Publication number
WO2007039702A1
WO2007039702A1 PCT/FR2006/050979 FR2006050979W WO2007039702A1 WO 2007039702 A1 WO2007039702 A1 WO 2007039702A1 FR 2006050979 W FR2006050979 W FR 2006050979W WO 2007039702 A1 WO2007039702 A1 WO 2007039702A1
Authority
WO
WIPO (PCT)
Prior art keywords
recirculated
gas
cooler
gases
outlet
Prior art date
Application number
PCT/FR2006/050979
Other languages
English (en)
Inventor
Bernard Rollet
Original Assignee
Renault S.A.S
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault S.A.S filed Critical Renault S.A.S
Priority to CN2006800362754A priority Critical patent/CN101278120B/zh
Priority to US12/088,169 priority patent/US7950376B2/en
Priority to JP2008532847A priority patent/JP2009510320A/ja
Priority to EP06831265A priority patent/EP1934460A1/fr
Publication of WO2007039702A1 publication Critical patent/WO2007039702A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D21/00Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas
    • F02D21/06Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air
    • F02D21/08Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air the other gas being the exhaust gas of engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/65Constructional details of EGR valves
    • F02M26/71Multi-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/25Layout, e.g. schematics with coolers having bypasses
    • F02M26/26Layout, e.g. schematics with coolers having bypasses characterised by details of the bypass valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/29Constructional details of the coolers, e.g. pipes, plates, ribs, insulation or materials
    • F02M26/30Connections of coolers to other devices, e.g. to valves, heaters, compressors or filters; Coolers characterised by their location on the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/50Arrangements or methods for preventing or reducing deposits, corrosion or wear caused by impurities

Definitions

  • the present invention relates to exhaust gas recirculation devices, called recirculated gas, EGR gas or EGR gas (for exhaust gas recirculation), and more particularly the EGR gas devices which comprises a gas cooler
  • Document J P20043400099 relates to an EGR system of an internal combustion engine comprising two groups of separate cylinders.
  • This EGR system has the particularity of being able to reversing the flow of exhaust gas flowing in the duct, and consequently in the coolers, by modifying the pressures of the exhaust gases between the first and the second group of cylinders.
  • a major disadvantage is that it is necessary to have two separate groups of cylinders in which the exhaust gas pressures can be modified.
  • the invention aims to solve the problem of fouling EGR coolers.
  • the invention proposes an EGR gas distribution device, the device comprising an EGR gas inlet and an EG R gas outlet, an inlet orifice and an outlet orifice to a component, such as an EGR cooler. , and means for reversing the flow of EGR gas in this component.
  • the invention also proposes a recirculated gas cooler which comprises means for reversing the flow of recirculated gases circulating in the heat exchanger.
  • the invention also proposes an exhaust gas recirculation method, the method comprising a step of cleaning the EGR circuit triggered by an electronic unit, the cleaning step comprising a step of inverting the gas flow EG R crossing an EG R. cooler
  • FIG. 1 is a diagram of distribution device according to the invention
  • FIG. 2 and a diagram of a U-shaped cooler U
  • FIGS. 3 and 4 are diagrams of the cooler EG with means for reversing the flow of recirculated gas
  • FIGS. 5 and 6 are alternative embodiments of the EG cooler R
  • Figures 7 and 8 show an alternative embodiment of the openings and the inlet and outlet chambers of the cooler.
  • Figure 1 shows the device 1 for distributing recirculated gas to a component (not shown) of the EGR circuit according to the invention.
  • the device 1 comprises an inlet e1 and an outlet if recirculated gas, an inlet orifice e2 and an outlet orifice s2 to the component, and means for reversing the flow of recirculated gas flowing in the component.
  • the means for reversing the flow of recirculated gas may comprise a rotating valve.
  • the valve may be in the form of a flap 3 pivoting on itself inside a cylinder formed in the device 1.
  • the pivoting shutter 3 thus divides the cylinder into two separate volumes.
  • the inlet e1 of the recirculated gases opens into the cylinder and is opposite the outlet if recirculated gases.
  • the inlet orifice e2 for the recirculated gases in the component is defined on the cylinder between the inlet e1 and the outlet si, and it is opposite the outlet s2.
  • the valve is rotatable between two positions.
  • the first position is shown in Figure 1a.
  • the flap In this position, the flap is inclined at +45 ° (taken in the counterclockwise direction with respect to a fictitious vertical axis); on the one hand there is the inlet e1 of the recirculated gases and the inlet orifice e2 towards the component which are in communication; and on the other hand, the outlet orifice s2 to the component and the outlet if recirculated gases which are in communication.
  • the second position is shown in Figure 1b.
  • the flap In this position, the flap is inclined at -45 °; on the one hand, there is the inlet e1 of the recirculated gases and the outlet orifice s2 to the component which are in communication; and on the other hand, there is the inlet orifice e2 towards the component and the outlet if recirculated gases which are in communication.
  • the rotating valve can also have an intermediate position making it possible to bypass the component, thus conferring an additional bypass function which is directly integrated into the device.
  • the pane is at
  • valve is of the proportional valve type. With reference to FIG. 1 d, it is thus possible to define intermediate positions (between 0 ° and -45 °, and in the same way between
  • the invention also relates to an EGR gas cooler which comprises means for reversing the flow of EGR gas circulating in the heat exchanger of the cooler.
  • the cooler is configured in a U-shape.
  • the cooler 2 comprises a heat exchanger 4.
  • the heat exchanger 4 corresponds to a closed chamber which is traversed by a plurality of tubes 5 inside which the recirculated gases circulate.
  • the tubes 5 separate the recirculated gases from the cooling fluid flowing in the exchanger between an inlet orifice 1 1 and an outlet orifice 12 defined on the closed enclosure.
  • a partition wall 8 is provided at the volume 7 on an end surface of the exchanger 4. This partition 8 then defines a gas inlet chamber 9 recirculated and an outlet chamber 1 0 substantially recirculated gas.
  • the inlet and outlet of the exhaust gases of the exchanger 4 are on the same plane, the separation being carried out by the partition 8.
  • the means for reversing the recirculated gas flow comprise a valve of the type described above, that is to say, with reference to FIG. 4, which consists of a shutter 17 which pivots around itself at the The axes of the flap 17 and the cylinder 1 8 are coaxial.
  • the valve also comprises a disc 13 (or plate 13) covering the inlet and the outlet of the cooler 2.
  • the disc 13 closes the volume 7 of the cooler 2.
  • This disc defines at least two openings e2 and s2, one e2 communicating with the chamber 9 gas inlet and the other s2 communicating with the gas outlet chamber 10. These openings e2 and s2 may be of quarter disc type, so as to cooperate with the positions of the flap 17.
  • the axis of the flap 17 is perpendicular to the disc 13.
  • the cylinder 1 8 defines the inlet e1 and the outlet if recirculated gases.
  • the inlet e1 and outlet si By considering the shutter 1 7 rotating in the cylinder 18, the inlet e1 and outlet si, the inlet ports e2 and exit s2, we find the principle of distribution of the recirculated gases described above with the aid of Figure 1 .
  • the difference lies in the realization of orifices e2 and s2, because they are defined on the disc 13.
  • the disc 13 carries the bottom of the cylinder 18, it is conceivable that the disc 13 and the cylinder 1 8 are made together in one piece .
  • Figures 7 and 8 show an alternative embodiment of the openings and the inlet and outlet chambers of the cooler.
  • Partition 8 defines the inlet chambers 9 'and the outlet chambers 10'. These chambers are flared on the side so that the edges 1 09 'and 1 10' have an angle of inclination with respect to the partition 8.
  • the plate 13 ' covers the two chambers 9' and 1 0 ', and defines 2 openings é2 and s'2. These openings are offset on the sides by at least half a length of the flap 1 7 pivoting.
  • This variant makes it possible to reduce the losses of charges to favor the flow of the recirculated gases, as represented in FIG. 8. This variant thus takes up the principle of FIG. 1, with openings offset with respect to the openings of FIG.
  • the valve may comprise means for increasing the distribution accuracy of the recirculated gas flow at the small openings thereof.
  • a plate 19 perpendicular to the flap 17 whose curvature is adapted to that of the inner wall of the cylinder 1 8.
  • the plate 19 may be for example of curved triangular shape on the flap 17. The advantage of adding this plate 19 to the flap 17 is that it increases the accuracy of the flow distribution variation at the flap 17. small openings relative to the first and second positions of the flap 17.
  • the triangular shape can be divided into two equal parts 20, each of the parts 20 then being disposed on one side of the end of the inlet e1 or the outlet if opening into the cylinder 1 8.
  • the invention also relates to an exhaust gas recirculation method, the method comprising a step of cleaning the EGR circuit triggered by an electronic unit.
  • the cleaning step can begin for example when the temperature of the recirculated gas is sufficient to remove soot deposits, and this information can be provided by an engine temperature sensor.
  • the cleaning step comprises a step of reversing the flow of EGR gas passing through an EGR cooler.
  • the inversion step may be initiated after a predetermined time from the initiation of the cleaning step.
  • the recirculation method can act directly on the drive means of the flap 17 of the recirculated gas cooler 2.
  • These drive means may consist for example of an electric motor (or servomotor) which rotates the axis of the flap 17.
  • the computer (not shown) can thus control the electric motor to rotate the flap 17 from its first position to its second, and thus reverse the flow of recirculated gas.
  • This action, or step of reversing the flow can take place after a predetermined time which is stored in the computer memory. It is also possible to use other ways to engage this inversion step during the cleaning phase, for example by using sensors for temperatures, pressures, etc.
  • the method may also provide a step of cleaning the valve represented by the flap 1 7 during this phase of cleaning the circulation of recirculated gas.
  • the computer can control the electric drive motor to make it perform at least one complete rotation, so as to eliminate any deposits of soot.
  • the method can also control the flap outside a cleaning phase by alternating, for example at each new start of the engine, the position of the flap between the first and second position.
  • the method comprises for this purpose a reversal step of the recirculated gas flow in the cooler at each new start of the engine.
  • One advantage of this characteristic is that the natural fouling of the cooler is more evenly distributed at the inlet and also at the outlet of the recirculated gases.
  • the computer can control the valve in the following way during a cycle of engine operation: before starting the engine, put in the bypass position of the cooler, - then, when operating conditions are reached (for example when exceeding a temperature threshold of the cooling fluid representative of the engine heater), rotating the flap to put it in the first position, or in the second.
  • the position of the flap is a function of the last of the two possible positions registered by the calculator. Or put in the intermediate position (in the case of a proportional type valve), to perform controlled cooling, but always on the opposite side to the last position (first or second) recorded by the computer, interlocking. a cleaning step when the temperature of the recirculated gases is sufficient, see also when another condition is met, such as a certain mileage of the vehicle, or when a differential pressure threshold representative of the fouling of the EGR cooler is exceeded.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

Dispositif (1 ) de répartition de gaz recirculés vers un composant (2) du circuit EGR comportant u ne entrée (e1) et une sortie (e2) de gaz recirculés, un orifice d'entrée (e2) et un orifice de sortie (s2) vers le composant (2) , et des moyens pour inverser le flux de gaz recirculés circulant dans le composant. L'invention concerne également un refroidisseur de gaz recirculés (EGR) équipés de moyens pour inverser le flux de gaz recirculés à l'intérieur de l'échangeur (4) , L'invention concerne également un procédé de recirculation de gaz d'échappement, le procédé comportant une étape de nettoyage du circuit EGR déclenchée par une unité électronique, et l'étape de nettoyage comportant une étape d'inversion du flux de gaz EG R traversant un refroidisseur EGR.

Description

DISPOSITIF DE REPARTITION DES GAZ RECIRCULES, REFROIDISSEUR DE GAZ RECIRCULES ET PROCEDE DE RECIRCULATION DE GAZ D'ECHAPPEMENT.
La présente invention concerne les dispositifs de recirculation de gaz d'échappement, appelé gaz recirculés, gaz RGE, ou encore gaz EGR (pour exhaust gas recirculation), et plus particulièrement les dispositifs de gaz EGR qui comporte un refroidisseur de gaz
EGR.
Pour améliorer la dépollution des gaz d'échappement d'un moteur à combustion interne, on a recours à la recirculation de gaz d'échappement dans l'admission, que l'on appelle d'une manière générale circuit EGR. De plus, l'emploi de refroidisseurs spécifiques pour ces gaz permet d'augmenter encore cette dépollution.
Cependant, un problème majeur est que le recirculation des gaz d'échappement entraîne un encrassement important des composants qui se trouvent dans ce circuit EGR. C'est pourquoi on peut procéder à des séances de nettoyage / décrassage en ouvrant complètement la vanne EGR (la vanne EGR régule le débit de gaz EGR qui repart à l'admission) quand le moteur est sur une zone de fonctionnement déterminée. Ce procédé, décrit dans la demande FR2833653, permet d'éliminer thermiquement les dépôts s'accumulant dans le circuit EGR.
Ce problème d'encrassement n'est pourtant pas totalement résolu pour ce qui est du refroidisseur EGR. Le refroidisseur est constamment en fonctionnement, c'est-à-dire qu'il y a toujours un débit d'eau qui traverse l'échangeur. Ce qui se passe alors est que le refroidisseur est parfaitement décrassé à l'entrée lorsque l'on procède à une phase de décrassage, mais les gaz EGR qui sont constamment refroidis ne sont pas assez chaud pour décrasser complètement le refroidisseur EGR, surtout dans la deuxième moitié de l'échangeur eau/gaz EGR.
Le document J P20043400099 concerne un système EGR de moteur à combustion interne comportant deux groupes de cylindres distincts. Ce système EGR présente la particularité de pouvoir inverser le flux de gaz d'échappement circu lant dans le conduit, et par conséquent dans les refroidisseurs, en modifiant les pressions des gaz d'échappement entre le premier et le deuxième groupe de cylindres. U n inconvénient majeur est qu'il est nécessaire de disposer de deux groupes de cylindres distincts dans lesquels on peut modifier les pressions des gaz à l'échappement.
L'invention vise à résoudre le problème d'encrassement des refroidisseurs EGR.
L'invention propose dans ce but un dispositif de répartition de gaz EGR, le dispositif comportant u ne entrée de gaz EGR et une sortie de gaz EG R, u n orifice d'entrée et un orifice de sortie vers un composant, tel un refroidisseur EGR, et des moyens pour inverser le flux de gaz EGR dans ce composant.
L'invention propose également u n refroidisseur de gaz recirculés qui comporte des moyens pou r inverser le flux de gaz recirculés circulant dans l'échangeur thermique.
L'invention propose également un procédé de recirculation de gaz d'échappement, le procédé comportant u ne étape de nettoyage du circuit EGR déclenchée par une u nité électronique, l'étape de nettoyage comportant une étape d'inversion du flux de gaz EG R traversant un refroidisseu r EG R.
La présente invention et ses avantages seront mieux compris à la lecture de la description détaillée d'u n mode de réalisation pris à titre d'exemple et nullement limitatif , et illustré par les dessins annexés sur lesquels : la figu re 1 est un schéma du dispositif de répartition selon l'invention , la figure 2 et un schéma d'u n refroidisseur EG R en U , les figures 3 et 4 sont des schémas du refroidisseur EG R avec des moyens pou r inverser le flux de gaz recirculés,
Les figures 5 et 6 sont des variantes de réalisation du refroidisseur EG R,
Les figu res 7 et 8 représentent u ne variante de réalisation des ouvertures et des chambres d'entrée et de sortie du refroidisseur. La figure 1 représente le dispositif 1 de répartition de gaz recirculés vers un composant (non représenté) du circuit EGR selon l'invention.
Le dispositif 1 comporte une entrée e1 et une sortie si de gaz recirculés, un orifice d'entrée e2 et un orifice de sortie s2 vers le composant, et des moyens pour inverser le flux de gaz recirculés circulant dans le composant.
Les moyens pour inverser le flux de gaz recirculés peuvent comporter une vanne mobile en rotation. La vanne peut se représenter sous la forme d'un volet 3 pivotant sur lui-même à l'intérieur d'un cylindre formé dans le dispositif 1 . Le volet pivotant 3 divise ainsi le cylindre en deux volumes distincts. L'entrée e1 des gaz recirculés débouche dans le cylindre et se trouve en face de la sortie si des gaz recirculés. L'orifice e2 d'entrée des gaz recirculés dans le composant est définie sur le cylindre entre l'entrée e1 et la sortie si , et il se trouve en face de la sortie s2. La position du volet
3 définit la circulation du flux de gaz recirculés.
La vanne est mobile en rotation entre deux positions.
La première position est représentée à la figure 1 a. Dans cette position, le volet est incliné à +45 ° (pris dans le sens trigonométrique par rapport à un axe vertical fictif) ; on a d'une part l'entrée e1 des gaz recirculés et l'orifice d'entrée e2 vers le composant qui sont en communication ; et on a d'autre part l'orifice de sortie s2 vers le composant et la sortie si de gaz recirculés qui sont en communication.
La deuxième position est représentée à la figure 1 b. Dans cette position, le volet est incliné à -45 ° ; on a d'une part l'entrée e1 des gaz recirculés et l'orifice s2 de sortie vers le composant qui sont en communication ; et on a d'autre part l'orifice e2 d'entrée vers le composant et la sortie si de gaz recirculés qui sont en communication.
En référence à la figure 1 c, la vanne mobile en rotation peut également posséder une position intermédiaire permettant de bypasser le composant, conférant ainsi une fonction supplémentaire de bypass qui est directement intégrée au dispositif. Le volet est à
0 °, on a alors le flux de gaz recirculés qui arrive de l'entrée e1 et qui se dirige directement vers la sortie si , sans passer par les orifices e2 et s2.
On peut également prévoir que la vanne soit du type vanne proportionnelle. En référence à la figure 1 d, on peut ainsi définir des positions intermédiaires (entre 0 ° et -45 °, et de la même façon entre
0 ° et +45 °), par exemple pour faire du refroidissement partiel de gaz recirculés lorsque le composant est un refroidisseur EGR.
L'invention concerne également un refroidisseur de gaz EGR qui comporte des moyens pour inverser le flux de gaz EGR circulant dans l'échangeur thermique du refroidisseur.
Selon un mode de réalisation non limitatif, le refroidisseur est configuré en U . En référence à la figure 2, le refroidisseur 2 comporte un échangeur thermique 4. L'échangeur thermique 4 correspond à une enceinte fermée qui est traversée d'une pluralité de tubes 5 à l'intérieur desquels circulent les gaz recirculés. Les tubes 5 séparent les gaz recirculés du fluide de refroidissement qui s'écoule dans l'échangeur entre un orifice d'entrée 1 1 et un orifice de sortie 12 définis sur l'enceinte fermée. Dans ce mode de réalisation, pour réaliser la forme en U , on dispose une cloison de séparation 8 au niveau du volume 7 sur une surface d'extrémité de l'échangeur 4. Cette cloison 8 définit alors une chambre d'entrée 9 de gaz recirculés et une chambre de sortie 1 0 de gaz recirculés sensiblement égales. A l'autre surface d'extrémité de l'échangeur 4, on dispose un couvercle 6 de renvoi des gaz. L'entrée et la sortie des gaz d'échappement de l'échangeur 4 se trouvent sur un même plan , la séparation étant réalisée par la cloison 8.
Les moyens pour inverser le flux de gaz recirculés comportent une vanne du type décrit précédemment, c'est-à-dire, en référence à la figure 4, qui est constituée d'un volet 17 qui pivote autour de lui- même à l'intérieur d'un cylindre 18. Les axes du volet 17 et du cylindre 1 8 sont coaxiaux.
En référence à la figure 3, la vanne comporte également un disque 13 (ou plaque 13) recouvrant l'entrée et la sortie du refroidisseur 2. Le disque 13 ferme le volume 7 du refroidisseur 2. Ce disque définit au moins deux ouvertures e2 et s2, l'une e2 communiquant avec la chambre 9 d'entrée des gaz et l'autre s2 communiquant avec la chambre 10 de sortie des gaz. Ces ouvertures e2 et s2 peuvent être du type en quart de disque, de manière à coopérer avec les positions du volet 17.
En référence à la figure 4 qui représente l'assemblage final du refroidisseur selon l'invention, l'axe du volet 17 est perpendiculaire au disque 13. Le cylindre 1 8 définit l'entrée e1 et la sortie si des gaz recirculés. En considérant le volet 1 7 tournant dans le cylindre 18, les entrée e1 et sortie si , les orifices d'entrée e2 et de sortie s2, on retrouve le principe de répartition des gaz recirculés décrit ci dessus à l'aide de la figure 1 . La différence réside dans la réalisation des orifices e2 et s2, car ils sont définit sur le disque 13. Le disque 13 réalise le fond du cylindre 18, on peut envisager que le disque 13 et le cylindre 1 8 soient réalisés ensemble en une seule pièce. Les figures 7 et 8 représentent une variante de réalisation des ouvertures et des chambres d'entrée et de sortie du refroidisseur. La cloison 8 définit les chambres d'entrée 9' et de sortie 1 0'. Ces chambres sont évasées sur le côté de sorte que les bords 1 09' et 1 10' présente un angle d'inclinaison par rapport à la cloison 8. La plaque 13' recouvre les deux chambres 9' et 1 0', et elle définit 2 ouvertures e'2 et s'2. Ces ouvertures sont décalées sur les côtés d'au moins une demi-longueur du volet 1 7 pivotant. Cette variante permet de diminuer les pertes de charges pour favoriser l'écoulement des gaz recirculés, comme représenté sur la figure 8. Cette variante reprend ainsi le principe de la figure 1 , avec des ouvertures décalées par rapport aux ouvertures de la figure 4.
Selon une caractéristique supplémentaire, la vanne peut comporter des moyens pour accroître la précision de répartition du flux de gaz recirculés aux faibles ouvertures de celle-ci. Selon un premier mode de réalisation représenté à la figure 5, il est possible d'adjoindre sur une extrémité du volet 17 une plaque 19 perpendiculaire au volet 17, dont la courbure est adaptée à celle de la paroi intérieure du cylindre 1 8. La plaque 19 peut être par exemple de forme triangulaire cintrée sur le volet 17. L'avantage d'adjoindre cette plaque 19 sur le volet 17 est qu'elle permet d'accroître la précision de la variation de répartition de débit aux faibles ouvertures par rapport aux première et deuxième positions du volet 17.
Un autre mode de réalisation représenté à la figure 6 peut être envisagé. La forme triangulaire peut être divisée en deux parties égales 20, chacune des parties 20 étant alors disposée d'un côté de l'extrémité de l'entrée e1 ou de la sortie si débouchant dans le cylindre 1 8.
Ces deux modes de réalisation permettent une plus grande précision de gestion des débits de gaz recirculés, entre ceux qui sont bypassés et ceux qui sont refroidis (dans le cas où l'on utilise une vanne du type proportionnelle et grâce à laquelle on peut faire de la régulation de température de gaz recirculés), et une meilleure maîtrise de la variation du refroidissement des gaz.
L'invention concerne également un procédé de recirculation de gaz d'échappement, le procédé comportant une étape de nettoyage du circuit EGR déclenchée par une unité électronique. L'étape de nettoyage peut commencer par exemple lorsque la température des gaz recirculés est suffisante pour éliminer les dépôts de suies, et cette information peut être fournie par un capteur de température du moteur. Selon l'invention, l'étape de nettoyage comporte une étape d'inversion du flux de gaz EGR traversant un refroidisseur EGR.
L'étape d'inversion peut être déclenchée au bout d'une durée prédéterminée à partir du déclenchement de l'étape de nettoyage.
Le procédé de recirculation peut agir directement sur les moyens d'entraînement du volet 17 du refroidisseur de gaz recirculés 2. Ces moyens d'entraînement peuvent consister par exemple en un moteur électrique (ou servomoteur) qui fait tourner l'axe du volet 17. Le calculateur (non représenté) peut ainsi commander le moteur électrique pour faire pivoter le volet 17 de sa première position vers sa deuxième, et inverser ainsi le flux de gaz recirculés. Cette action, ou étape d'inversion du flux, peut se dérouler au bout d'un temps prédéterminé qui est enregistré dans la mémoire du calculateur. On peut aussi prévoir d'utiliser d'autres façons d'enclencher cette étape d'inversion pendant la phase de nettoyage, en utilisant par exemple des capteurs de températures, de pressions, etc. Le procédé peut aussi prévoir u ne étape de nettoyage de la vanne représenté par le volet 1 7 pendant cette phase de nettoyage du circu it de gaz recirculés. Le calculateur peut commander le moteur électrique d'entraînement pour lui faire réaliser au moins une rotation complète, de sorte à éliminer les éventuels dépôts de suies.
Le procédé peut aussi commander le volet en dehors d'une phase de nettoyage en alternant, par exemple à chaque nouveau démarrage du moteur, la position du volet entre la première et la deuxième position . Le procédé comporte à cet effet une étape d'inversion du flux de gaz recirculés dans le refroidisseur à chaque nouveau démarrage du moteur. U n avantage de cette caractéristique est que l'encrassement naturel du refroidisseur est réparti de manière plus u niforme au niveau de l'entrée et aussi de la sortie des gaz recircu lés. Avec tous ces éléments, le calculateur peut commander la vanne de la façon suivante au cours d'un cycle de fonctionnement du moteur : avant le démarrage du moteu r, mise en position de bypass du refroidisseur, - ensuite, lorsque des conditions de fonctionnement sont atteintes (par exemple lors du dépassement d'un seuil de températu re du fluide de refroidissement représentatif de la chauffe du moteur) , mise en rotation du volet pour le mettre soit dans la première position , soit dans la deuxième. La position du volet est fonction de la dernière des deux positions possibles en registrée par le calculateu r. Ou alors mise en position intermédiaire (dans le cas d'une vanne du type proportionnelle) , pou r faire du refroidissement contrôlé, mais toujours du côté de la position opposée à la dernière position (première ou deuxième) enregistrée par le calculateur, enclenchement d'une étape de nettoyage lorsque la température des gaz recirculés est suffisante, voir aussi lorsque une autre condition est remplie, comme par exemple u n certain kilométrage du véhicule, ou encore lorsque qu'un seuil de pression différentielle représentatif de l'encrassement du refroidisseur EGR est dépassé.
Enclenchement de l'étape d'inversion du flux dans le refroidisseur, au bout d'un certain temps.

Claims

Revendications
1 ) Dispositif (1 ) de répartition de gaz recirculés vers un refroidisseur (2) du circuit EGR comportant un échangeur thermique (4), caractérisé en ce qu'il comporte une entrée (e1 ) et une sortie (si ) de gaz recirculés, un orifice d'entrée (e2) et un orifice de sortie (s2) vers le composant (2), et des moyens pour inverser le flux de gaz recirculés circulant dans l'échangeur thermique (4) du refroidisseur (2).
2) Dispositif selon la revendication 1 , caractérisé en ce que les moyens pour inverser le flux de gaz recirculés comportent une vanne mobile en rotation entre une première position dans laquelle d'une part l'entrée (e1 ) des gaz recirculés et l'orifice d'entrée (e2) vers le composant (2) et d'autre part l'orifice de sortie (s2) vers le composant et la sortie (si ) de gaz recirculés sont en communication, et une deuxième position dans laquelle d'une part l'entrée (e1 ) des gaz recirculés et l'orifice de sortie (s2) vers le composant (2) et d'autre part l'orifice d'entrée (e2) vers le composant et la sortie (si ) de gaz recirculés sont en communication.
3) Dispositif selon la revendication 2, caractérisé en ce que la vanne mobile en rotation possède une position intermédiaire permettant de bypasser le composant (2).
4) Dispositif selon la revendication 3, caractérisé en ce que la vanne est du type proportionnelle.
5) Refroidisseur (2) de gaz recirculés, caractérisé en ce qu'il comporte des moyens pour inverser le flux de gaz EGR circulant dans l'échangeur thermique (4).
6) Refroidisseur (2) selon la revendication 5, le refroidisseur (2) étant configuré U, caractérisé en ce les moyens pour inverser le flux de gaz recirculés comportent une vanne, la vanne comportant un disque (13) recouvrant l'entrée et la sortie du refroidisseur (2), et qui définit au moins deux ouvertures (e2, s2), l'une (e2) communiquant avec une chambre d'entrée (9) des gaz et l'autre communiquant avec la une chambre de sortie (10) des gaz, et un volet (17) pivotant selon un axe perpendiculaire au disque (13) à l'intérieur d'un cylindre (18), le cylindre (18) définissant les orifices d'entrée (e1) et de sortie (si) des gaz EGR.
7) Refroidisseur (2) selon la revendication 6, caractérisé en ce que la vanne comporte des moyens (19 ; 20) pour accroître la précision de répartition du flux de gaz recirculés aux faibles ouvertures de celle-ci.
8) Procédé de recirculation de gaz d'échappement, le procédé comportant : - une étape de nettoyage du circuit EGR déclenchée par une unité électronique lorsque la température des gaz recirculés est suffisante pour éliminer les dépôt de suie,
- l'étape de nettoyage comportant une étape d'inversion du flux de gaz EGR traversant un refroidisseur EGR.
9) Procédé selon la revendication 7, dans lequel l'étape d'inversion est déclenchée au bout d'une durée prédéterminée à partir du déclenchement de l'étape de nettoyage.
10)Procédé selon l'une quelconque des revendications 6 à 8, caractérisé en ce qu'il comporte une étape d'inversion du flux de gaz recirculés dans le refroidisseur à chaque nouveau démarrage du moteur.
PCT/FR2006/050979 2005-09-30 2006-10-02 Dispositif de repartition des gaz recircules, refroidisseur de gaz recircules et procede de recirculation de gaz d'echappement WO2007039702A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2006800362754A CN101278120B (zh) 2005-09-30 2006-10-02 分配再循环气体的设备、冷却再循环气体的设备和再循环排气的方法
US12/088,169 US7950376B2 (en) 2005-09-30 2006-10-02 Device for distributing recirculated gases, device for cooling recirculated gases and method of recirculating exhaust gases
JP2008532847A JP2009510320A (ja) 2005-09-30 2006-10-02 再循環ガスの分配装置、再循環ガスの冷却装置及び排気ガスの再循環方法
EP06831265A EP1934460A1 (fr) 2005-09-30 2006-10-02 Dispositif de repartition des gaz recircules, refroidisseur de gaz recircules et procede de recirculation de gaz d'echappement

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0552970A FR2891590B1 (fr) 2005-09-30 2005-09-30 Dispositif de repartition des gaz recircules, refroidisseur de gaz recircules et procede de recirculation de gaz d'echappement.
FR0552970 2005-09-30

Publications (1)

Publication Number Publication Date
WO2007039702A1 true WO2007039702A1 (fr) 2007-04-12

Family

ID=36636296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2006/050979 WO2007039702A1 (fr) 2005-09-30 2006-10-02 Dispositif de repartition des gaz recircules, refroidisseur de gaz recircules et procede de recirculation de gaz d'echappement

Country Status (7)

Country Link
US (1) US7950376B2 (fr)
EP (1) EP1934460A1 (fr)
JP (1) JP2009510320A (fr)
KR (1) KR20080067616A (fr)
CN (1) CN101278120B (fr)
FR (1) FR2891590B1 (fr)
WO (1) WO2007039702A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1975400A1 (fr) * 2007-03-28 2008-10-01 Ford Global Technologies, LLC Dispositif de refroidissement pour gaz d'échappement recyclé
JP2009036077A (ja) * 2007-08-01 2009-02-19 Denso Corp 排気ガス切替弁
WO2009048408A1 (fr) * 2007-10-08 2009-04-16 Scania Cv Ab (Publ) Agencement et procédé de recirculation de gaz d'échappement provenant d'un moteur à combustion
JP2015517636A (ja) * 2012-05-15 2015-06-22 ヴァレオ システム ドゥ コントロール モトゥール 特に自動車用の流体循環バルブおよび該バルブを備える温度調整デバイス
EP4328443A4 (fr) * 2021-04-23 2024-09-18 Toyota Jidoshokki Kk Moteur à combustion interne et procédé de commande de moteur à combustion interne

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7588018B2 (en) * 2006-06-06 2009-09-15 Continental Automotive Systems Us, Inc. Exhaust gas recirculation cooler bypass cartridge
US7958874B2 (en) * 2007-02-05 2011-06-14 Denso Corporation Exhaust gas recirculation apparatus
DE102007038882A1 (de) 2007-08-17 2009-02-19 Pierburg Gmbh Abgaskühlvorrichtung für eine Verbrennungskraftmaschine
DE102008033823B4 (de) * 2008-07-19 2013-03-07 Pierburg Gmbh Abgasrückführvorrichtung für eine Verbrennungskraftmaschine
JP5009270B2 (ja) * 2008-11-24 2012-08-22 愛三工業株式会社 Egrクーラの切替バルブ
DE102008062455A1 (de) * 2008-12-16 2010-06-17 Man Turbo Ag Schaltbare Solarheizeinrichtung für eine Gasturbine
DE102010002643A1 (de) * 2010-03-08 2011-09-08 Behr Gmbh & Co. Kg MTC-Ventil
EP2558752B1 (fr) * 2010-04-14 2015-09-16 BorgWarner Inc. Soupape multifonction
CN102691593A (zh) * 2011-03-25 2012-09-26 皮尔伯格有限责任公司 用于内燃机的废气冷却装置
FR2990741B1 (fr) * 2012-05-15 2016-07-29 Valeo Systemes De Controle Moteur Vanne de circulation de fluide, notamment pour vehicule automobile, et dispositif de conditionnement thermique comprenant une telle vanne
DE102013111215B4 (de) * 2013-10-10 2019-11-07 Pierburg Gmbh Drosselklappenstutzen für eine Brennkraftmaschine sowie Verfahren zur Regelung einer Drosselklappe in einem Drosselklappenstutzen
US9803760B2 (en) * 2014-06-05 2017-10-31 Schaeffler Technologies AG & Co. KG Rotary valve with an isolating distribution body
US10458313B2 (en) * 2016-09-27 2019-10-29 Hanon Systems Multifunctional rotary valve module
FR3060698B1 (fr) 2016-12-20 2019-10-18 Zodiac Pool Care Europe Vanne compacte multivoie de raccordement entre deux circuits de circulation de fluide
CN110657021B (zh) * 2018-06-29 2020-11-20 潍柴动力股份有限公司 涡前控制阀及发动机
US10982900B2 (en) * 2019-07-19 2021-04-20 Solex Thermal Science Inc. Thermal processing of bulk solids
CN114076053B (zh) * 2020-08-10 2022-12-06 长城汽车股份有限公司 一种废气再循环再生的方法、装置以及车辆
US11352986B2 (en) * 2020-10-19 2022-06-07 Ford Global Technologies, Llc Systems and methods for a valve in a dual-core EGR cooler

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1138888A2 (fr) * 2000-03-27 2001-10-04 Toyota Jidosha Kabushiki Kaisha Dispositif de purification des gaz d'échappement d'un moteur à combustion interne
US6360532B2 (en) * 2000-03-11 2002-03-26 Modine Manufacturing Company Exhaust gas heat exchange system for an internal combustion engine
EP1251263A2 (fr) * 2001-04-20 2002-10-23 Delphi Technologies, Inc. Dispositif pour recirculation de gaz d'échappement
JP2004340099A (ja) * 2003-05-19 2004-12-02 Toyota Motor Corp 内燃機関のegr装置及びegr装置の詰まり検出装置
US20050056263A1 (en) * 2002-06-21 2005-03-17 Kennedy Lawrence C. Working fluid circuit for a turbocharged engine having exhaust gas recirculation

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2532003A (en) * 1945-10-03 1950-11-28 John M Wyer Means for use in applying, alternatively, air pressure and suction to a given point
US3191628A (en) * 1963-01-18 1965-06-29 Creal E Kirkwood Multi-port valve
US3211217A (en) * 1963-07-12 1965-10-12 Westinghouse Electric Corp Fluid reversing valve structure
US3973592A (en) * 1975-01-27 1976-08-10 Water Services Of America, Inc. Fluid flow diverter
US4134377A (en) * 1977-09-29 1979-01-16 Borg-Warner Corporation Exhaust gas recirculation control valve and heat exchanger
US4323116A (en) * 1979-12-17 1982-04-06 Carrier Corporation Flow control apparatus
US4506703A (en) * 1983-03-14 1985-03-26 Water Services Of America, Inc. Four-way fluid flow diverter valve
US4520847A (en) * 1983-08-30 1985-06-04 Water Services Of America, Inc. Fluid flow diverter disc valve
US4972877A (en) * 1989-02-09 1990-11-27 Kinetico, Inc. Bypass valve
JP3358554B2 (ja) * 1998-08-19 2002-12-24 トヨタ自動車株式会社 内燃機関
US6289931B1 (en) * 2000-01-19 2001-09-18 Emerson Electric Co. Cycle reversing valve for use in heat pumps
GB0001283D0 (en) * 2000-01-21 2000-03-08 Serck Heat Transfer Limited Twin flow valve gas cooler
JP3578102B2 (ja) * 2000-03-27 2004-10-20 トヨタ自動車株式会社 内燃機関の排気浄化装置
GB0018406D0 (en) * 2000-07-28 2000-09-13 Serck Heat Transfer Limited EGR bypass tube cooler
US6675572B2 (en) * 2000-09-14 2004-01-13 Siemens Automotive Inc. Valve including a recirculation chamber
US6401754B1 (en) * 2000-10-12 2002-06-11 Metso Automation Usa Inc. Four way valve
DE10116643C2 (de) * 2001-04-04 2003-07-03 Man B&W Diesel A/S, Copenhagen Sv Hubkolbenbrennkraftmaschine
DE10203003B4 (de) * 2002-01-26 2007-03-15 Behr Gmbh & Co. Kg Abgaswärmeübertrager
SE0202344L (sv) * 2002-07-31 2003-05-27 Marinnovation Hb Backspolningsventil med genomströmmat ventilhus
US6904898B1 (en) * 2003-09-09 2005-06-14 Volvo Lastyagnar Ab Method and arrangement for reducing particulate load in an EGR cooler
DE102004019554C5 (de) * 2004-04-22 2014-03-27 Pierburg Gmbh Abgasrückführsystem für eine Verbrennungskraftmaschine
ES2233217B1 (es) * 2005-02-08 2007-03-16 Dayco Ensa, S.L. Valvula by-pass.
JP4396581B2 (ja) * 2005-06-02 2010-01-13 株式会社デンソー 内燃機関のegr制御装置
JP2007056765A (ja) * 2005-08-24 2007-03-08 Daihatsu Motor Co Ltd 内燃機関における排気ガス還流装置
FR2891591A1 (fr) * 2005-09-30 2007-04-06 Renault Sas Dispositif de repartition des gaz recircules, et refroidisseur de gaz recircules comportant un tel dispositif
JP4468277B2 (ja) * 2005-10-03 2010-05-26 愛三工業株式会社 流路切替弁
US7281529B2 (en) * 2005-10-17 2007-10-16 International Engine Intellectual Property Company, Llc EGR cooler purging apparatus and method
US7588018B2 (en) * 2006-06-06 2009-09-15 Continental Automotive Systems Us, Inc. Exhaust gas recirculation cooler bypass cartridge
US7621264B2 (en) * 2006-09-21 2009-11-24 Continental Automotive Canada, Inc. Cartridge style exhaust bypass valve
US7958874B2 (en) * 2007-02-05 2011-06-14 Denso Corporation Exhaust gas recirculation apparatus
JP5001752B2 (ja) * 2007-08-28 2012-08-15 愛三工業株式会社 Egrクーラバイパス切替システム
US8448626B2 (en) * 2008-08-13 2013-05-28 International Engine Intellectual Property Company, Llc Exhaust system for engine braking
US7581533B1 (en) * 2008-10-09 2009-09-01 Gm Global Technology Operations, Inc. Three mode cooler for exhaust gas recirculation
JP5009270B2 (ja) * 2008-11-24 2012-08-22 愛三工業株式会社 Egrクーラの切替バルブ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6360532B2 (en) * 2000-03-11 2002-03-26 Modine Manufacturing Company Exhaust gas heat exchange system for an internal combustion engine
EP1138888A2 (fr) * 2000-03-27 2001-10-04 Toyota Jidosha Kabushiki Kaisha Dispositif de purification des gaz d'échappement d'un moteur à combustion interne
EP1251263A2 (fr) * 2001-04-20 2002-10-23 Delphi Technologies, Inc. Dispositif pour recirculation de gaz d'échappement
US20050056263A1 (en) * 2002-06-21 2005-03-17 Kennedy Lawrence C. Working fluid circuit for a turbocharged engine having exhaust gas recirculation
JP2004340099A (ja) * 2003-05-19 2004-12-02 Toyota Motor Corp 内燃機関のegr装置及びegr装置の詰まり検出装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 2003, no. 12 5 December 2003 (2003-12-05) *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1975400A1 (fr) * 2007-03-28 2008-10-01 Ford Global Technologies, LLC Dispositif de refroidissement pour gaz d'échappement recyclé
JP2009036077A (ja) * 2007-08-01 2009-02-19 Denso Corp 排気ガス切替弁
WO2009048408A1 (fr) * 2007-10-08 2009-04-16 Scania Cv Ab (Publ) Agencement et procédé de recirculation de gaz d'échappement provenant d'un moteur à combustion
JP2015517636A (ja) * 2012-05-15 2015-06-22 ヴァレオ システム ドゥ コントロール モトゥール 特に自動車用の流体循環バルブおよび該バルブを備える温度調整デバイス
EP4328443A4 (fr) * 2021-04-23 2024-09-18 Toyota Jidoshokki Kk Moteur à combustion interne et procédé de commande de moteur à combustion interne
US12116960B2 (en) 2021-04-23 2024-10-15 Kabushiki Kaisha Toyota Jidoshokki Internal combustion engine and method for controlling internal combustion engine

Also Published As

Publication number Publication date
CN101278120B (zh) 2012-05-16
FR2891590B1 (fr) 2010-09-17
EP1934460A1 (fr) 2008-06-25
CN101278120A (zh) 2008-10-01
US7950376B2 (en) 2011-05-31
KR20080067616A (ko) 2008-07-21
JP2009510320A (ja) 2009-03-12
US20090007891A1 (en) 2009-01-08
FR2891590A1 (fr) 2007-04-06

Similar Documents

Publication Publication Date Title
WO2007039702A1 (fr) Dispositif de repartition des gaz recircules, refroidisseur de gaz recircules et procede de recirculation de gaz d'echappement
EP1934459B1 (fr) Dispositif de repartition des gaz recircules, et refroidisseur de gaz recircules comportant un tel dispositif
EP2935853B1 (fr) Dispositif de gestion thermique de l'air d'admission d'un moteur et procédé de gestion thermique associé
EP1706615A1 (fr) Module d'echange de chaleur pour la regulation de la temperature des gas admis dans un moteur thermique de vehicule automobile
EP3256705A1 (fr) Ensemble moteur turbocompresse a deux conduits d'echappement avec ligne de recirculation
FR2930281A1 (fr) Ligne d'echappement de vehicule automobile avec conduit de recyclage.
EP2850297B1 (fr) Vanne de circulation de fluide, notamment pour véhicule automobile, et dispositif de conditionnement thermique comprenant une telle vanne
FR2920853A1 (fr) Vanne pour circuit d'alimentation en air d'un moteur de vehicule automobile, circuit comportant une telle vanne et procede de commande d'un moteur utilisant un tel circuit
EP3971510B1 (fr) Module de traitement thermique pour moteur à combustion interne
EP3217006B1 (fr) Moteur thermique à système de recirculation des gaz d'échappement
FR2911638A1 (fr) Systeme d'orientation d'un flux de gaz de combustion en re-circulation
EP2850299B1 (fr) Vanne de circulation de fluide, notamment pour vehicule automobile, et dispositif de conditionnement thermique comprenant une telle vanne
EP2850349B1 (fr) Vanne de circulation de fluide
FR2938321A1 (fr) Echangeur thermique comportant des conduites paralleles
WO2002001049A1 (fr) Volume d'echappement et dispositif d'echappement le comportant
FR2907503A1 (fr) Dispositif de refroidissement pour moteur a combustion interne
FR3059051B1 (fr) Dispositif de conditionnement thermique de fluide pour moteur a combustion
WO2007039700A1 (fr) Refroidisseur de gaz recircules
FR2905424A1 (fr) Dispositif de distribution de gaz pour un circuit egr, refroidisseur et procede de commande.
FR3032487A1 (fr) Ensemble moteur turbocompresse a deux conduits d’echappement avec ligne de recirculation et dispositif de regulation
EP4028654A1 (fr) Module de refroidissement pour véhicule automobile à turbomachine tangentielle
FR2986312A1 (fr) Echangeur thermique, tube plat et plaque correspondants
FR2928178A1 (fr) Ensemble pour moteur a combustion interne comprenant une piece de circulation de gaz brules et une electrovanne de controle de passage de carburant.
FR2982646A1 (fr) Systeme d'echangeur de chaleur pour un moteur a combustion interne et ligne d'echappement d'un moteur a combustion interne
FR3000139A1 (fr) Dispositif de gestion de la temperature d'air d'admission

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680036275.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006831265

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020087007477

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2008532847

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2006831265

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12088169

Country of ref document: US