WO2007037494A1 - Sheet body, antenna device, and electronic information transmission device - Google Patents

Sheet body, antenna device, and electronic information transmission device Download PDF

Info

Publication number
WO2007037494A1
WO2007037494A1 PCT/JP2006/319738 JP2006319738W WO2007037494A1 WO 2007037494 A1 WO2007037494 A1 WO 2007037494A1 JP 2006319738 W JP2006319738 W JP 2006319738W WO 2007037494 A1 WO2007037494 A1 WO 2007037494A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna element
sheet body
shield layer
antenna
frequency
Prior art date
Application number
PCT/JP2006/319738
Other languages
French (fr)
Japanese (ja)
Inventor
Takahiko Yoshida
Masato Matsushita
Haruhide Go
Yoshiharu Kiyohara
Shinichi Sato
Ryota Yoshihara
Kazuhisa Morita
Hiroaki Kogure
Original Assignee
Nitta Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitta Corporation filed Critical Nitta Corporation
Publication of WO2007037494A1 publication Critical patent/WO2007037494A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • G06K19/07771Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card the record carrier comprising means for minimising adverse effects on the data communication capability of the record carrier, e.g. minimising Eddy currents induced in a proximate metal or otherwise electromagnetically interfering object
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures

Definitions

  • Sheet body Sheet body, antenna device, and electronic information transmission device
  • the present invention relates to a sheet body for wireless communication using an electric field type antenna element in the vicinity of a member having a portion made of a conductive material, and an electronic information transmission apparatus including the sheet body.
  • the electric field type antenna element in the present invention has a function of an electric field type antenna element used for radio communication of radio wave type, and has a function of a magnetic field type antenna element or a magnetic field type element. It can be switched to a type antenna element.
  • FIG. 19 is a cross-sectional view showing a simplified tag 1 of the prior art.
  • the RFID (Radio Frequency IDentification) system is a system used for automatic identification of solids, and basically includes a reader and a transbonder.
  • Tag 1 is used as a transbonder for this RFID system.
  • the tag 1 has a coiled loop antenna 2 that is a magnetic field type antenna that detects magnetic field lines, and an integrated circuit (IC) 3 that performs radio communication using the antenna 2.
  • IC integrated circuit
  • the tag 1 When the tag 1 is used by sticking it to a metal product, and there is a member 4 having a portion made of a conductive material in the vicinity of the antenna 2, an electromagnetic wave signal transmitted and received by the antenna 2 is formed.
  • the magnetic field lines of the magnetic field flow along the surface of the part 4 made of the conductive material.
  • an eddy current is induced in the portion made of the conductive material of the member 4, and the electromagnetic wave energy is converted to heat energy and lost due to the eddy current loss. If energy is lost in this way, the electromagnetic wave signal is greatly attenuated, and tag 1 cannot communicate wirelessly.
  • the induced eddy current generates a magnetic field in the opposite direction to the tag's communication magnetic field, thereby canceling the magnetic field. Arise.
  • This phenomenon also prevents tag 1 from communicating wirelessly. Therefore, the tag 1 cannot be used in the vicinity of the member 4 having a portion that also has a conductive material force. In addition, the resonance frequency of tag 1 shifts due to the influence of member 4, and there is a phenomenon that communication cannot be performed at the original communication frequency, so that wireless communication of tag 1 becomes difficult.
  • FIG. 20 is a cross-sectional view schematically showing a tag 1A as another conventional technique.
  • the tag 1A shown in FIG. 20 is similar to the tag 1 shown in FIG. 19, and the same reference numerals are given to the corresponding parts, and only different configurations will be described.
  • tag 1A in FIG. 20 has a magnetic absorption plate 7 provided so as to be disposed between member 4 as an article to be attached and antenna 2. Configured to provide.
  • the magnetic absorption plate 7, which is a sheet having a complex relative permeability has a high permeability material such as sendust, ferrite, and carbon iron, and therefore has a high complex relative permeability and material strength.
  • the complex relative permeability has a real part and an imaginary part, and the complex relative permeability increases as the real part increases.
  • a material having a high complex relative permeability has a high real part in the complex relative permeability. If a material with a high real part in the complex relative permeability exists in the magnetic field, the magnetic lines of force pass through the member in a concentrated manner.
  • the magnetic absorption plate 7 is provided to prevent leakage of the magnetic field to the member 4 having the portion made of the conductive material, and to have the portion made of the conductive material.
  • the sheet having complex relative permeability which has been studied as a metal-compatible technology for antenna communication, is mainly for improving self-inductance.
  • the effect of improving the communication environment by this sheet was the effect obtained when using a coil antenna, which is a magnetic field type antenna for electromagnetic induction communication.
  • a portion made of a conductive material is prevented by preventing leakage of the magnetic field.
  • Force that can enable wireless communication in the vicinity of the member 4 that has the configuration to prevent leakage of such a magnetic field uses an electric field type antenna that detects electric field lines In some cases, it was considered ineffective and was not considered for adoption.
  • An object of the present invention is to provide a sheet body capable of preferably performing wireless communication in the vicinity of a member having a portion made of a conductive material using an electric field type antenna element, an antenna device including the sheet body, and electronic information It is to provide a transmission device.
  • the present invention relates to an antenna element and a member having a portion made of a conductive material, or an antenna element when performing wireless communication in the vicinity of a member having a portion made of a conductive material using an electric field type antenna element.
  • a sheet body characterized by suppressing a decrease in input impedance of an antenna element by a member provided in the vicinity and having a portion made of a conductive material.
  • the sheet body is provided between the electric field type antenna element and the member having the portion made of the conductive material or in the vicinity of the antenna element, so that the portion of the antenna element made of the conductive material cover is provided.
  • the portion of the antenna element made of the conductive material cover is provided.
  • the electric field type antenna element hardly operates in the vicinity of a member having a portion made of a conductive material, and cannot be used for wireless communication. This is because the input impedance of the electric field type antenna element is greatly reduced.
  • the decrease in input impedance is caused by a phenomenon in which the antenna element and a member having a portion made of a conductive material are short-circuited at a high frequency. This phenomenon is peculiar to electric field type antennas that do not involve eddy currents.
  • the input impedance of an electric field type antenna element becomes small, it deviates from the impedance of the communication means that communicates using the electric field type antenna element. The signal cannot be passed between the antenna element of the mold and the communication means.
  • the sheet member can suppress a decrease in input impedance of the antenna element when the antenna element is disposed in the vicinity of a member having a portion made of a conductive material. Therefore, by using a sheet body, it has a portion made of a conductive material using an electric field type antenna element. Even in the vicinity of the member, wireless communication can be suitably performed.
  • the present invention provides an electric field type antenna element for performing wireless communication in the vicinity of a member having a portion made of a conductive material, or between an antenna element and a member having a portion made of a conductive material, or an antenna.
  • a sheet body is provided with an electric field type antenna element and a conductive material.
  • the sheet body is characterized by suppressing loss of electromagnetic energy caused by a member having a portion made of a conductive material.
  • the electric field type antenna element hardly operates near a member having a portion made of a conductive material and cannot be used for wireless communication.
  • the reason for this is explained by the fact that even an electric field type antenna element consumes electromagnetic energy because electromagnetic coupling occurs between the antenna element and a member having a portion made of a conductive material.
  • a current that is not an eddy current is induced in a member having a portion made of a conductive material by a high-frequency short-circuit, and the change to thermal energy due to resistance loss when this current occurs and the reverse direction generated by the current.
  • the electromagnetic energy is lost due to the cancellation of the communication electromagnetic field by the magnetic field.
  • the sheet body can suppress the loss of electromagnetic energy when the antenna element is arranged in the vicinity of a member having a portion made of a conductive material.
  • the reason for this is that the short circuit is less likely to occur, and the vicinity of the electric field type antenna element, which is a conductor portion where current is generated, and a member having a portion made of a conductive material due to the magnetic permeability of the sheet body (that is, the interior of the sheet body).
  • This is because the loss of electromagnetic energy can be prevented by allowing the magnetic field to pass through the magnetic field distribution without any attenuation.
  • the impedance adjustment (matching) described above also plays an important role in preventing electromagnetic energy loss. Therefore, by using the sheet member, wireless communication can be suitably performed in the vicinity of a member having a portion made of a conductive material using an electric field type antenna element.
  • the antenna element includes a dipole antenna, a monopole antenna, and a loop. It includes at least one of an antenna or an antenna loaded with a reactance structure portion.
  • a dipole antenna having a simple configuration can be used for wireless communication in the vicinity of a member having a portion made of a conductive material.
  • the antenna element can be miniaturized by combining a dipole antenna and a sheet. This is coupled with the height of the real part 'of the complex relative permeability of this sheet and the real part ⁇ ' of the complex relative permittivity, which adds to the wavelength shortening effect and achieves a much smaller size than conventional products. It is because it can do.
  • the dipole antenna is linear and may be curved or bent and may have a free shape. For example, there is a horseshoe shape. The total length should be ⁇ ⁇ 2.
  • the monopole antenna feeds power between the element on one side of the dipole antenna and the ground plane, the total element length is ⁇
  • ⁇ 4 can be further downsized with ⁇ 4.
  • a loop antenna when the entire circumference is close to one wavelength, it can be approximated to a structure in which two half-wave dipole antennas are arranged, and can be regarded as an electric field antenna element.
  • These antennas can also preferably perform wireless communication in the vicinity of the communication disturbing member.
  • these antenna elements may or may not be loaded with a resonance matching portion (reactance matching portion) by an inductance (L) component and a capacitor (C) component.
  • the present invention is characterized in that the frequency of electromagnetic waves used for wireless communication is included in a range of 300 MHz to 300 GHz.
  • a relatively long wireless communication distance can be realized with a small antenna by using an electromagnetic wave included in a frequency range of 300 MHz to 300 GHz.
  • the range from 300 MHz to 300 GHz includes UHF band (300 MHz to 3 GHz), SHF band (3 GHz to 30 GHz), and EHF band (30 GHz to 300 GHz).
  • the present invention is characterized in that the frequency of electromagnetic waves used for wireless communication is included in the range of 860 MHz to 1 GHz.
  • the frequency of electromagnetic waves used for wireless communication since the frequency included below 860MHz above 1GH z, can be applied to a communication between relatively distant device.
  • communication can be made possible by using a small electric field type antenna having a relatively small electromagnetic wave wavelength used for wireless communication.
  • the present invention is characterized in that the frequency of electromagnetic waves used for wireless communication is included in the 2.4 GHz band.
  • the frequency of the electromagnetic wave used for wireless communication is a frequency included in the 2.4 GHz band, it can be applied to communication between relatively distant devices. Furthermore, communication can be made possible by using a small electric field type antenna whose wavelength of electromagnetic waves used for wireless communication is relatively small.
  • the present invention is a sheet body including a shield layer that is a magnetic body.
  • the sheet used between the antenna element and the member having a portion made of a conductive material or in the vicinity of the antenna element is provided with a shield layer that is a magnetic substance.
  • the shield layer which is a magnetic material, is effective for suppressing a decrease in impedance caused by a member having a portion made of a conductive material that exists in the vicinity of the electric field type antenna element.
  • a force in which a current is induced by a high-frequency short-circuit in a member having a conductive material force in the vicinity of the antenna element, and a decrease in impedance is observed.
  • the presence of the layer can suppress the impedance drop. This impedance adjustment corresponds only to a specific frequency when the magnetic properties of the magnetic material are frequency-dependent.
  • the present invention is characterized by including a shield layer in which the real part ⁇ ′ of the complex relative permeability is equal to or more than the imaginary part ⁇ ′′ of the complex relative permeability at the frequency of the electromagnetic wave used for wireless communication.
  • the sheet body is provided with a shield layer, and the shield layer has a real part 'of the complex relative permeability at the frequency of the electromagnetic wave used for wireless communication equal to or more than the imaginary part "of the complex relative permeability. Therefore, ⁇ ⁇ ".
  • the real part 'of the complex relative permeability that indicates the ease of collecting the magnetic field is larger than the imaginary part of the complex relative permeability that thermally converts (losses) the magnetic field and has a portion that is made of conductive material force.
  • Input impedance of antenna element by member It is possible to realize a sheet body that can suppress a decrease in dance and more efficiently suppress a loss of electromagnetic energy due to a member having a part made of a conductive material.
  • the real part of the complex relative permeability of the shield layer, together with the real part ⁇ ′ of the complex relative permittivity has the effect of shortening the wavelength of the antenna element, which also contributes to the miniaturization of the antenna element.
  • the sheet body is provided with a shield layer, and the shield layer has a real part / ⁇ ′ of the complex relative permeability of 5 or more at the frequency of the electromagnetic wave used for wireless communication, and the permeability. Loss term tan ⁇ ⁇ force ⁇ or less.
  • the present invention further comprises a shield layer in which the real part of the complex relative permeability is 20 or more and the permeability loss term tan ⁇ is 0.5 or less at the frequency of the electromagnetic wave used for wireless communication.
  • the sheet body is provided with a shield layer, and the shield layer has a real part of the complex relative permeability / ⁇ ′ of 20 or more at the frequency of the electromagnetic wave used for wireless communication, and the permeability.
  • the loss term tan ⁇ ⁇ is 0.5 or less.
  • the present invention is characterized by including a shield layer having a real part ⁇ ′ of a complex relative dielectric constant of 20 or more at the frequency of an electromagnetic wave used for wireless communication.
  • the sheet body is provided with a shield layer, and the shield layer is a wireless communication device.
  • the real part ⁇ ′ of the complex relative permittivity is 20 or more at the frequency of the electromagnetic wave used for.
  • the present invention is characterized by including a shield layer having an imaginary part ⁇ ′′ of a complex relative dielectric constant of 300 or less at the frequency of electromagnetic waves used for wireless communication.
  • the sheet body is provided with a shield layer, and the shield layer has an imaginary part ⁇ ′′ of the complex relative dielectric constant of 300 or less at the frequency of the electromagnetic wave used for wireless communication. Therefore, when the antenna element is disposed in the vicinity of a member having a portion having a conductive material force, a decrease in the input impedance of the antenna element due to the member having a portion having a conductive material force can be suppressed, and the conductivity can be reduced. It is possible to realize a sheet body capable of suppressing loss of electromagnetic energy caused by a member having a part made of a material, and to provide a conductive layer having conductivity.
  • the conductor layer made of a conductive material is present in the vicinity of the antenna element, so that the sheet body matches the frequency of the electromagnetic wave used for the wireless communication.
  • the real part 'and the imaginary part / ⁇ "of the complex relative permeability of the shield layer or the real part ⁇ , of the complex relative permittivity are adjusted, so that a favorable characteristic of the shield layer can be realized. More suitable wireless communication can be realized in the vicinity of a member having a material force portion.
  • the shield layer is made of a material having at least one of a force of a soft magnetic metal, a soft magnetic oxide metal, a magnetic metal and a magnetic acid metal as a magnetic material, or a material containing the same. It is characterized by being.
  • the shield layer is a material made of at least one of soft magnetic metal, soft magnetic metal oxide, magnetic metal and magnetic metal oxide, or a material containing the same. Therefore, the shield layer is formed using only these materials, or is realized by dispersing these materials in the binder. With this configuration, the aforementioned characteristics are The resulting shield layer can be formed. Therefore, it is possible to realize a sheet body that achieves the above-described excellent effects.
  • the shield layer of the present invention comprises one or more materials selected from the group consisting of ferrite, iron alloy and iron particles as a magnetic material with respect to 100 parts by weight of the organic polymer. It is also characterized in that the material strength is contained with a blending amount of not more than parts by weight.
  • the shield layer is obtained by blending a magnetic material with an organic polymer serving as a binder. With such a blend, stable magnetic properties can be obtained, and processability such as cutting and flexibility can be imparted.
  • the present invention is characterized in that flame retardancy is imparted.
  • the sheet body is flame retardant.
  • an electronic information transmission device that performs wireless communication using an antenna element including a tag, a reader, and a mobile phone may be required to be flame retardant.
  • the sheet body can be suitably used for such applications that require flame retardancy.
  • the present invention is characterized in that thermal conductivity is imparted.
  • the environment in which the sheet body is used may be used in the vicinity of a means serving as a heat source, such as a communication means including an IC and a power supply means. Since the heat conductivity of the sheet body is excellent, the heat generated by the heat source means can be released, and the temperature rise of the heat source means is suppressed and exposed to high temperatures. This can prevent performance degradation.
  • a means serving as a heat source such as a communication means including an IC and a power supply means. Since the heat conductivity of the sheet body is excellent, the heat generated by the heat source means can be released, and the temperature rise of the heat source means is suppressed and exposed to high temperatures. This can prevent performance degradation.
  • the present invention is characterized in that at least one surface portion has tackiness or adhesiveness.
  • At least one surface portion has adhesiveness or adhesiveness, it can be adhered to another article such as a member having a portion having the conductive material force. Accordingly, the sheet body can be easily used.
  • the present invention also provides an electric field antenna element having a resonance frequency matched to a frequency used for wireless communication,
  • An antenna device comprising the sheet body.
  • the sheet body has a portion made of an antenna element and a conductive material. It is provided between the materials or in the vicinity of the antenna element. Accordingly, the antenna device can be provided in the vicinity of a member having a portion made of a conductive material cover, and can be used for suitably performing wireless communication using the antenna element and transmitting electronic information. Thus, an antenna device that can be suitably used in the vicinity of a member having a portion made of a conductive material can be realized.
  • the present invention is also an electronic information transmission device comprising the antenna device.
  • an electronic information transmission device capable of suitably performing wireless communication using an antenna device including an antenna element even when provided in the vicinity of a member having a portion having a conductive material force.
  • the present invention is characterized in that it is used as a transbonder that is attached to a densely packed article.
  • an electronic information transmission device including a sheet body is used as a transponder of a radio frequency identification (RFID) system such as a tag, for example.
  • RFID radio frequency identification
  • the V is installed, the electromagnetic coupling with other transponders in the vicinity and the influence of other transbonders can be suppressed.
  • the other transbonders become members having portions made of conductive materials, and the force that affects wireless communication. The influence of the transbonder can be suppressed and the reading rate by the reader can be improved.
  • FIG. 1 is a cross-sectional view schematically showing a sheet body 10 according to an embodiment of the present invention.
  • FIG. 2 is an enlarged sectional view showing the internal structure of the shield layer 13.
  • FIG. 3 is a graph showing the measurement results of the material constants', ⁇ ⁇ ⁇ "of Example 1.
  • FIG. 4 is a cross-sectional view showing the tag 30 including the sheet body 10 in a simplified manner.
  • FIG. 5 is a perspective view showing the tag 30.
  • FIG. 6 is a cross-sectional view showing an electric field formed in the vicinity of the antenna element 11 in a state where the tag 30 is attached to the communication disturbing member 12.
  • FIG. 7 is a cross-sectional view showing an electric field formed in the vicinity of the antenna element 11 in a state where the antenna element 11 and the IC tag 17 are arranged in the vicinity of the communication disturbing member 12 without the sheet body 10 interposed.
  • FIG. 8 is a cross-sectional view showing the configuration of the tag 30 assumed in the simulation for confirming the effect of the sheet 10 when a dipole antenna is used as the antenna element 11.
  • FIG. 9 is a graph showing a simulation result by the configuration of FIG. 8 and showing a relationship between the frequency and the input impedance of the antenna element.
  • FIG. 10 is a graph showing the directivity gain, showing the simulation result of the configuration of FIG.
  • FIG. 11 is a graph showing a simulation result by the configuration of FIG. 8 and showing an absolute gain.
  • FIG. 12 is a perspective view schematically showing a tag 30 according to another embodiment of the present invention.
  • FIG. 13 is a perspective view showing the beverage 40 to which the tag 30 is attached.
  • FIG. 14 is a perspective view showing an electronic device 41 in which the tag 30 is built.
  • FIG. 15 is a plan view schematically showing a tag 30 according to still another embodiment of the present invention.
  • FIG. 16 is a cross-sectional view showing the tag 30 of FIG.
  • FIG. 17 is a graph showing a simulation result when two tags 30 are placed close to each other as shown in FIG. 15 and FIG.
  • FIG. 18 is a graph showing a simulation result when two tags that are not provided with the sheet member 10 in the tag 30 shown in FIGS. 15 and 16 are similarly arranged close to each other.
  • FIG. 19 is a cross-sectional view schematically showing a tag 1 which is a conventional technique.
  • FIG. 20 is a cross-sectional view schematically showing a tag 1A as another conventional technique.
  • FIG. 1 is a cross-sectional view schematically showing a sheet body 10 according to an embodiment of the present invention.
  • the sheet body 10 is provided between the electric field type antenna element 11 and a member 12 having a portion made of a conductive material (hereinafter referred to as “communication blocking member”) 12 or in the vicinity of the antenna element.
  • communication blocking member a conductive material
  • the sheet body 10 suppresses the deterioration of the communication environment by the antenna element 11 due to the communication disturbing member 12.
  • the vicinity means a close position that affects the communication environment of the wireless communication by the antenna element.
  • the bad communication environment includes a decrease in the input impedance of the antenna element 11 and a loss of electromagnetic energy. Further, the resonance frequency of the antenna element 11 may shift due to the influence of the communication disturbing member 12. Therefore, the sheet body 10 is the sheet body 10 that suppresses a decrease in input impedance of the antenna element 11 due to the communication interference member 12 and suppresses a loss of electromagnetic energy due to the communication interference member 12.
  • the resonance frequency may be adjusted by the sheet body 10 or may be adjusted by a matching circuit (reactance loading portion).
  • the antenna element 11 is not particularly limited as long as it is an electric field type antenna element.
  • the antenna element 11 is a dipole antenna, a monopole antenna, or a loop antenna.
  • a loop antenna an electric field type behavior is exhibited when the perimeter is one wavelength or near one wavelength.
  • there is one wavelength! / The 1Z2 wavelength of the dipole antenna and the 1Z4 wavelength of the monopole antenna are effective meanings. Including the case of length.
  • the electric field type antenna element means the function of the electric field type antenna element except for the function of the electromagnetic induction type magnetic field type antenna element, that is, only the function of detecting the magnetic field lines. Any device having a function of detecting electric lines of force may be used.
  • an element that uses only the function of detecting electric lines of force an element that uses both the function of detecting electric lines of force and the function of detecting lines of magnetic force, and electric lines of force
  • a conductive material as a communication blocking member is a material including only a conductive material and a material including a conductive material.
  • This conductive material includes, for example, conductive materials such as metals, Si-based materials, graphite sheets, oxides such as ITO and ZnO, liquids such as water, chemicals, and oils, water-containing materials, and the like.
  • the conductive material is a conductive material, such as a metal, which has a resistivity of 10 " 6 ⁇ cm or more and less than 10 _1 ⁇ cm, a relatively low resistivity material, a liquid such as water and seawater, and a semiconductor In other words , the resistivity is 10_1 ⁇ cm or more and 10 6 ⁇ cm or less, and the resistivity is relatively high!
  • the member having a portion made of a conductive material includes at least a member made of a conductive material, and includes a member made entirely of a conductive material force and a member made only of a conductive material. Therefore, this member is a member that is at least partially conductive. For example, only the surface portion may have conductivity, or the whole may have conductivity.
  • the antenna element 11 and the sheet body 10 may be attached via an adhesive layer or directly provided without an adhesive layer.
  • the adhesive layer is a layer having adhesiveness or adhesiveness and made of a bonding agent, and the antenna element 11 and the sheet body 10 are attached by the adhesiveness or adhesiveness.
  • the bonding agent is generally a dielectric, and the adhesive layer is also a dielectric layer.
  • the structure directly provided may be a structure in which at least one of the antenna element 11 and the shield layer 13 is adhered to each other by the adhesiveness or adhesiveness of the antenna element 11 and the shield layer 13, and the antenna element 11 is attached to the shield layer 13.
  • the shield element 13 may be coated, welded, fixed, embedded, or sandwiched between the antenna element 11 or the support body that supports the antenna element 11. Alternatively, it may be added by spraying or the like.
  • the support is, for example, a PET film.
  • the sheet body 10 is a sheet body having an effect of shielding an electromagnetic field, and is a sheet body having an effect of shielding an electromagnetic field formed by an electromagnetic wave used for wireless communication.
  • the sheet is used to reduce the electromagnetic field from the antenna element 11 to reach the communication disturbing member 12 in order to suppress the influence of impedance reduction or the like caused by the communication disturbing member 12 in the vicinity of the antenna element 11.
  • shielding it includes not only complete shielding but also partial shielding and passing through a magnetic field. Therefore, the sheet body 10 is configured to block electromagnetic waves used for wireless communication, thereby suppressing the above-described adverse effects of the communication environment.
  • the electromagnetic wave to be blocked may be an electromagnetic wave used for any purpose.
  • the frequency of the electromagnetic wave to be blocked is determined by the use of the electromagnetic wave.
  • the electromagnetic waves to be blocked are, for example, electromagnetic waves used in RFID systems, and are electromagnetic waves having a frequency included in the range of 860 MHz to 1 GHz belonging to the UHF band (hereinafter referred to as “high MHz band”). More specifically, it is an electromagnetic wave having a frequency within the range of 950 MHz to 956 MHz in Japan.
  • the frequency of the electromagnetic wave to be blocked is an exemplification, and a configuration for blocking electromagnetic waves having a frequency other than the illustrated frequency is also included in the present invention.
  • the material characteristics of the shield layer change little in these frequency ranges, and the numerical values in the present invention can be used as they are.
  • electromagnetic waves with a frequency in the 4 GHz band may be targeted for blocking.
  • the 4 GHz band is a frequency range from 2400 MHz to less than 2500 MHz.
  • the frequency of electromagnetic waves used in RFID systems is in the range of 2400MHz to 2483.5MHz.
  • the frequency of the electromagnetic wave to be blocked is not particularly limited, but any single or plural frequencies can be selected, including a range from 300 MHz to 300 GHz.
  • the range from 300 MHz to 300 GHz includes UHF band (300 MHz to 3 GHz), SHF band (3 GHz to 30 GHz), and EHF band (30 GHz to 300 GHz).
  • the sheet body 10 is configured as a laminated body in which the shield layer 13, the conductor layer 14, and the adhesive agent layer 15 are laminated.
  • the shield layer 13 is a layer for blocking electromagnetic fields, and is a layer for blocking electromagnetic waves.
  • the conductor layer 14 is a layer made of a conductive material, and is made of copper in this embodiment. Since the conductor layer 14 may affect the antenna element 11 as a communication disturbing member, This effect is suppressed by the layer 13. Conductor layer 14 may also function as an intermediate antenna. In order to improve the impedance of the conductor layer 14, it is possible to make slits, to divide them, or to distribute the conductivity. The size of the conductor layer 14 is not limited.
  • the sticking agent layer 15 is a layer composed of a sticking agent cover for sticking the sheet body 10 including the shield layer 13 to an article.
  • the sticking agent includes at least one of a pressure-sensitive adhesive and an adhesive, and has a bonding force due to stickiness or adhesiveness.
  • the shield layer 13, the conductor layer 14, and the sticking agent layer 15 are laminated in this order from one side in the thickness direction to the other side.
  • a binder layer 16 made of an adhesive or an adhesive is interposed between the shield layer 13 and the conductor layer 14 or in the vicinity of the antenna element. By this binder layer 16, the shield layer 13 and the conductor layer 14 are mutually connected. Are combined.
  • the adhesive layer 15 is bonded to the conductor layer 14 by its own adhesive force or adhesive force.
  • the shield layer 13, the conductor layer 14, the adhesive layer 15 and the binder layer 16 are collectively referred to as the constituent layers 13 to 16.
  • the conductor layer 14 and the adhesive layer 15 are not necessarily required constituent materials, but the shield layer 13 is attached to the communication blocking member 12 via the binder layer 16, or directly without the binder layer 16. It is also possible to do.
  • Each of the constituent layers 13 to 16 of the sheet body 10 may be multi-layered.
  • the shield layer 13 may be multi-layered to give the magnetic permeability a gradient, or even a single layer to give the magnetic permeability a gradient. Can be used.
  • each layer 13 to 16 and the total thickness dimension of the sheet body 10 are not particularly limited.
  • the thickness dimension of the shield layer 13 is 1 m or more and 10 mm.
  • the thickness dimension of the conductor layer 14 is ⁇ (1 X 10 _8 m) or more and 500 0 m or less, the adhesive layer 15 is 1 m or more and lmm or less, and the binder layer 16 is 1
  • the total thickness of the sheet 10 is 3 ⁇ m or more and 12 mm or less.
  • the sheet body 10 can be reduced in overall thickness dimension, and the layers 13 to 16 are made of the material force as described above, and have flexibility. Therefore, the sheet body 10 can be freely deformed.
  • the shield layer 13 blocks electromagnetic waves used for wireless communication by selecting material characteristic values including complex relative permeability and complex relative permittivity.
  • the real part 'and imaginary part' of the complex relative permeability and the real part ⁇ 'and imaginary part ⁇ "of the complex relative permittivity are values corresponding to the frequency of the electromagnetic wave used for wireless communication.
  • the frequency of electromagnetic waves used for wireless communication is not particularly limited, but may be in the range of 300 MHz to 300 GHz including UHF, SHF and EHF bands, for example 860 MHz to 1 GHz.
  • the following high MHz band or 2.4 GHz band frequency may be used.
  • the shield layer 13 is configured such that the real part ⁇ of the complex relative permeability and the imaginary part ⁇ ′′ of the complex relative permeability are ⁇ ′ ⁇ ”with respect to the electromagnetic wave used for wireless communication. Therefore, the real part / ⁇ ′ of the complex relative permeability is equal to or greater than the imaginary part “of the complex relative permeability.
  • the shield layer 13 has a complex relative permeability with respect to electromagnetic waves used for wireless communication.
  • the real part ⁇ is 5 or more and the permeability loss term tan ⁇ ⁇ is 1 or less, and the shield layer 13 has a real part / ⁇ ′ of complex relative permeability for electromagnetic waves used in wireless communication.
  • the electromagnetic wave used for wireless communication which is preferably 10 or more and the permeability loss term tan ⁇ ⁇ is 1 or less
  • the real part 'of the complex relative permeability is 20 or more and the permeability More preferably, the magnetic loss term tan ⁇ is 0.5 or less.
  • the shield layer 13 has a real part ⁇ ′ of the complex relative permittivity of 20 or more and an imaginary part ⁇ ′′ of the complex relative permittivity of 300 or less with respect to the electromagnetic wave used for wireless communication.
  • FIG. 2 is an enlarged sectional view showing the internal structure of the shield layer 13.
  • Figure 2 shows an illustration. For the sake of simplicity, the hatching of the magnetic powder 21 and the magnetic fine particles 22 is omitted.
  • the shield layer 13 is made of a magnetic material for the binder 20 in order to obtain the material characteristic values as described above. It is formed by mixing powder (hereinafter referred to as “magnetic powder”) 21 and fine particles (hereinafter referred to as “magnetic fine particles”) 22 made of a magnetic material.
  • the shield layer 13 contains magnetic powder 21 and magnetic fine particles 22 as magnetic materials.
  • the binding material 20 is made of a polymer, for example, a non-norogen-based polymer, or a non-halogen-based mixed material obtained by mixing a non-norogen-based polymer and another polymer.
  • a polymer for example, a non-norogen-based polymer, or a non-halogen-based mixed material obtained by mixing a non-norogen-based polymer and another polymer.
  • the specific examples of the binder are merely examples, and are not limited to non-halogen polymers.
  • a halogen-based polymer can also be used as the binder 20.
  • any material such as polymer (resin, TPE, rubber) dies, oligomers, etc. can be used, regardless of whether they are organic or inorganic, and does not depend on the degree of polymerization.
  • Non-halogen materials can be preferably used from the environmental viewpoint.
  • a polymer material is suitable.
  • the materials exemplified below can be preferably used, but the types of materials not mentioned in the examples, materials with different blending methods, and alloyed materials can be used. All possible materials can be used.
  • various organic polymer materials can be used, and examples thereof include rubber, thermoplastic elastomer, and polymer materials containing various plastics.
  • the rubber include natural rubber, isoprene rubber, butadiene rubber, styrene butadiene rubber, ethylene propylene rubber, ethylene vinyl acetate rubber, butyl rubber, halogenated butyl rubber, chloroprene rubber, -tolyl rubber, acrylic rubber, and ethylene acrylic rubber.
  • Synthetic rubber such as rubber, epichlorohydrin rubber, fluoro rubber, urethane rubber, silicone rubber, chlorinated polyethylene rubber, hydrogenated-tolyl rubber (HNBR), their derivatives, or these modified by various modification treatments Things. Liquid rubber is also acceptable.
  • rubbers can be used alone or in combination.
  • rubbers are blended as appropriate with rubber additives such as vulcanization accelerators, anti-aging agents, softeners, plasticizers, fillers, and colorants. be able to.
  • rubber additives such as vulcanization accelerators, anti-aging agents, softeners, plasticizers, fillers, and colorants.
  • arbitrary additives can be used.
  • a predetermined amount of dielectric carbon black, graphite, titanium oxide, etc.
  • materials can be designed and added.
  • processing aids lubricants, dispersants may be appropriately selected and added.
  • Thermoplastic elastomers include, for example, chlorinated polyethylenes such as chlorinated polyethylene, ethylene copolymers, acrylics, ethylene acrylic copolymers, urethanes, esters, silicones, styrenes, amides, etc.
  • chlorinated polyethylenes such as chlorinated polyethylene, ethylene copolymers, acrylics, ethylene acrylic copolymers, urethanes, esters, silicones, styrenes, amides, etc.
  • thermoplastic elastomers and their derivatives are mentioned.
  • plastics for example, polyethylene, polypropylene, AS resin, ABS resin, polystyrene, polyvinyl chloride, polychlorinated resin such as polyvinylidene, polyvinyl acetate, ethylene vinyl acetate copolymer, Fluorine resin, silicone resin, talyl resin, nylon, polycarbonate, polyethylene terephthalate, alkyd resin, unsaturated polyester, polysulfone, urethane resin, phenol resin, urea resin, epoxy resin, polyimide resin
  • thermoplastic resins such as fats and biodegradable resins, or thermosetting resins and derivatives thereof.
  • these binders low molecular weight oligomer types and liquid types can be used. Any material can be selected as long as it becomes a sheet after being molded by heat, pressure, ultraviolet rays, radiation, electron beam, air drying, a curing agent, or the like.
  • the magnetic powder 21 is a flat soft magnetic metal powder, dispersed so as not to contact each other, and oriented so as to extend perpendicular to the thickness direction of the shield layer 13.
  • the magnetic powder 21 has a substantially disk shape, the average thickness dimension is, and the average outer diameter in the direction perpendicular to the thickness direction is 55 m.
  • the magnetic fine particles 22 are fine particles smaller than the thickness dimension of the metal powder, and are configured such that at least the outer surface portion has non-conductivity throughout and has low conductivity.
  • the average outer diameter of the magnetic fine particles 22 is: m.
  • HN BR which is a hydrogenated NBR rubber
  • the magnetic powder 21 is made of Sendust, which is an alloy of iron, silicon and aluminum (FeSi-A1), for example.
  • Sendust which is an alloy of iron, silicon and aluminum (FeSi-A1), for example.
  • magnetic fine particles suppress the overall conductivity. It has corrosion resistance, for example, acidite (magnetite) force.
  • the shapes, dimensions, and materials described above are merely examples and are not intended to be limiting.
  • the material configuration is not particularly limited.
  • a binder (20) in which soft magnetic powder 21 and Z or magnetic fine particles 22 are dispersed can be used to form a magnetic material (metal oxide, ceramics, dollar-yura thin film, flickering, metal organic compound). It is also possible to use a magnetic layer or the like as the shield layer 13 as it is.
  • Soft magnetic powder 21 and / or soft magnetic powder 22 materials include Sendust (Fe—Si—A1 alloy), Permalloy (Fe—Ni alloy), Cemented steel (Fe—Cu—Si alloy), Fe—Si alloy, Fe—Si—B (—Cu—Nb) alloy, Fe—Ni—Cr—Si alloy, Fe—Cr—Si alloy, Fe—Al—Ni—Cr alloy, Fe—Ni—Cr alloy, Fe-Cr-Al-Si alloys, Fe-based alloys, Co-based alloys, Si-based alloys, Ni-based alloys, amorphous metals, and the like. It is also possible to use ferrite or pure iron as the soft magnetic powder material.
  • ferrites examples include soft ferrites such as Mn-Zn ferrite, Ni-Zn ferrite, Mn-Mg ferrite, Mn ferrite, Cu-Zn ferrite, Cu-Mg-Zn ferrite, and hard ferrite that is a permanent magnet material. It is done.
  • An example of pure iron is carbo iron.
  • materials for soft magnetic powder these magnetic materials can be used alone or in combination.
  • the soft magnetic powder may be, for example, a flat soft magnetic powder such as a plate shape including a disk shape, a spheroid shape obtained by rotating an ellipse around a short axis, or a needle shape, a fiber shape, a sphere shape, for example.
  • a flat soft magnetic powder such as a shape, a polyhedron shape and a lump shape may be used.
  • a flat soft magnetic powder having a high magnetic permeability is used as the soft magnetic powder.
  • the soft magnetic powder it is possible to use only one type of powder, or a combination of multiple types of powder, but when combining multiple types of powder, At least one type is preferably flat.
  • the particle size of the soft magnetic powder is 1 nm to 1000 ⁇ m, preferably 10 nm to 300 ⁇ m.
  • the aspect ratio is 2 or more and 500 or less, preferably 10 or more and 100 or less.
  • nano-sized magnetic fine powder Therefore, in the shield layer in the UHF band and SHF band, the value of the real part, of the complex relative permeability is increased to, for example, 10 or more, and the value of the imaginary part of the complex relative permeability, is decreased to, for example, 5 or less. can do.
  • an organic or inorganic coating layer may be formed by coating treatment such as plating, welding, or electrodeposition.
  • the soft magnetic powder may have an acid coating on the surface in order to improve the corrosion resistance.
  • the surface of the magnetic powder is preferably subjected to a surface treatment.
  • a surface treatment agent a general treatment method using a coupling agent or a surfactant can be used.
  • all means for improving the wettability between the magnetic powder and the binder such as a resin coating and a dispersing agent, can be used.
  • the shield layer 13 is made of a material having or including at least one of a soft magnetic metal, a soft magnetic metal oxide, a magnetic metal, and a magnetic acid metal as a magnetic material. As described above, the shield layer 13 is made of at least one of a soft magnetic metal, a soft magnetic metal oxide, a magnetic metal, and a magnetic acid / metal, and at least one of powder and fine particles. Further, it may be configured to be dispersed, or may be formed into a film including a thin film by at least one of soft magnetic metal, soft magnetic metal oxide, magnetic metal, and magnetic metal oxide.
  • the group force of ferrite, iron alloy, and iron particles is also selected as the magnetic material with respect to 100 parts by weight of the organic polymer as the binder 1 1 or It is formed from a material containing a plurality of materials at a blending amount of 1 to 1500 parts by weight.
  • the blending amount of the magnetic material with respect to 100 parts by weight of the organic polymer is preferably 10 parts by weight or more and 1000 parts by weight or less.
  • Electromagnetic waves to be transmitted include electromagnetic waves with frequencies in the high MHz band and 2.4 GHz band.
  • the real part 'and the imaginary part' of the complex relative permeability tend to decrease as the frequency of the target electromagnetic wave increases. Therefore, including the electromagnetic wave in the high MHz band and 2.4 GHz band.
  • the real part ⁇ becomes particularly small.
  • the amount of the magnetic material force portion in the shield layer 13 is increased. If this is done, the amount of the magnetic material 21 can be increased and the nonmagnetic material force in the path of the magnetic force lines can be reduced. If they come into contact with each other, the shield layer 13 becomes conductive, and a current is generated in the shield layer 13, causing a loss due to resistance and absorbing the electromagnetic energy. It is not possible to increase the amount of.
  • the magnetic powders 21 are prevented from coming into contact with each other, and the magnetic fine particles 22 are interposed between the magnetic powders 21, thereby providing magnetism.
  • the complex relative permeability as described above can be obtained for electromagnetic waves in the high frequency band and 2.4 GHz band.
  • the real part ju ′ of the complex relative permeability with respect to the electromagnetic wave of 950 MHz of the shield layer 13 is 19.16
  • the permeability loss term tan ⁇ ⁇ is 0.58
  • the real part ⁇ ′ of the complex relative permittivity is 165. 8
  • the dielectric loss term tan ⁇ ⁇ is 0.15.
  • the shield layer 13 has a surface resistivity (IS K6911) of 10 6 ⁇ / mouth.
  • the magnetic powder 2 is added to the binder 20 rather than the magnetic metal sheet.
  • Both the real part ⁇ and the imaginary part ⁇ ′′ of the complex relative permeability may be high and values.
  • the real part of the complex relative permeability of the sheet 10 in which the magnetic powder 21 is dispersed in the binder 20 is, of course, the real number of the complex relative permeability of the sheet of magnetic metal alone. Each part is smaller than '. Comparing the decrease rate of the real part 'of the complex relative permeability due to the frequency increase, the decrease rate of the sheet 10 in which the magnetic powder 21 is dispersed in the binder 20 is smaller than the decrease rate of the sheet of magnetic metal alone. .
  • the inversion phenomenon may occur, and the complex of the sheet 10 in which the magnetic powder 21 is dispersed in the binder 20.
  • the real part, of the relative permeability may be larger than the real part 'of the complex relative permeability of the sheet of the magnetic metal alone. This phenomenon is caused by the magnetic powder 21 and 22 being dispersed apart from each other, resulting in magnetic loss due to the intervening material. Therefore, in the shield layer 13 of the sheet 10, the magnetic resonance frequency is higher on the higher frequency side.
  • the magnetic material has a tendency that as the real part 'of the complex relative permeability in the low frequency region is larger, the reduction rate of the real part' of the complex relative permeability due to the frequency increase is larger.
  • Sex can be secured. Furthermore, in a configuration in which the magnetic powder 21 is simply dispersed in the binder 20, the influence of the binder 20 existing between the magnetic powders 21 causes 300MHz or more, In particular, there is a limit to increasing the real part ⁇ of the complex relative permeability at high frequencies including the high MHz and GHz bands. Therefore, it is necessary to construct a path with a higher real part of the complex relative permeability called a magnetic field path at a micro level so that the magnetic field lines can easily pass through the shield layer 13 of the sheet body 10. In order to form this magnetic field path, magnetic fine particles 22 are mixed. Of course, the formation of the magnetic field path does not result in the shield layer 13 having a conductive configuration! It is necessary to ensure high electrical insulation between the magnetic powders 21.
  • This electrical insulation can be ensured, for example, by adopting a configuration in which the magnetic fine particles 22 are nonconductive at least on the entire outer surface.
  • ferrite nanoparticles are used as the magnetic fine particles 22. Since these particles are magnetic oxides, they do not exhibit electrical conductivity.
  • the resonance frequency at which the imaginary part of the complex relative permeability; ⁇ "reaches its peak value shifts to the high frequency side, and further increases to 5 GHz and 10 GHz, so that 300 MHz or more, especially in the high MHz band and 2.4 GHz It is possible to realize the shield layer 13 in which the real part of the complex relative permeability at the band is large and the imaginary part “of the complex relative permeability is small”.
  • a shield layer 13 in order to increase the filling rate of the magnetic material, two types of magnetic particles having different average particle diameter ratios of about 4: 1 are used as described above.
  • the same binder 20 is mixed, and magnetic fine particles and soft magnetic metal fibers are mixed.
  • electrically insulating fine particles are mixed.
  • the two types of magnetic particles are made of the same material as the magnetic powder 21, and the larger average particle diameter is about 20 m, and the smaller average particle diameter is about 5 m.
  • the magnetic fine particles and soft magnetic metal fibers are made of an iron-based material, and the average particle diameter of the magnetic fine particles and the average fiber diameter of the soft magnetic metal fibers are about 1 ⁇ m.
  • the electrically insulating fine particles are made of silicon oxide (SiO 2), and the average
  • the particle size is about 10nm.
  • the fine particles of this size also have a role of controlling the direction and interval when the magnetic powder 21 is dispersed in the shield layer 13.
  • the measured specific gravity value of the shield layer 13 is designed and manufactured so as to be close to the theoretical specific gravity value of the compounding power.
  • the resonance frequency at which the imaginary part “of the complex relative permeability becomes the peak value shifts to the high frequency side, and further, 5 GHz and 10 GHz.
  • the basic idea of the material design of the shield layer 13 of the present embodiment is to have a high resistance at the communication frequency and to increase the real part 'of the complex relative permeability at the communication frequency to shield the magnetic field component.
  • a flame retardant or a flame retardant aid is added to at least one of the layers 13 to 16.
  • flame resistance is imparted to the sheet body 10.
  • electronic devices such as mobile phones may be required to be flame retardant for the polymer material that is used in the interior.
  • the flame retardant for obtaining such flame retardancy is not particularly limited.
  • An oxide-based flame retardant, a metal compound-based flame retardant, or the like can be used as appropriate.
  • phosphorus compounds include phosphate esters and titanium phosphate.
  • the boron compound include zinc borate.
  • brominated flame retardants include hexabromobenzene, hexacyclodicyclohexane, decabromobenzyl phenol ether, decabromobenzyl phenol oxide, tetrabromobisphenol, and ammonium bromide.
  • Examples of zinc-based flame retardants include zinc carbonate, zinc oxide, and zinc borate.
  • Examples of the nitrogen-based flame retardant include triazine compound, hindered amine compound, melamine cyanurate, melamine jelly compound, and / or melamine compound.
  • Examples of the hydroxy flame retardant include magnesium hydroxide and hydroxyaluminum.
  • Examples of the metal compound flame retardant include antimony trioxide, molybdenum oxide, manganese oxide, chromium oxide, and iron oxide.
  • the sheet body 10 can be suitably used as a material constituting such an article or attached to the article. For example, it can be suitably used by attaching it to an article used in a space where it is desired to prevent combustion and generation of gas accompanying it, such as an aircraft, a ship, and a device in a vehicle. Further, the sheet body 10 has electrical insulation.
  • the surface resistivity (JIS K6911) of the sheet body 10 is 10 2 ⁇ or more because the layers 11 and 12 also have the material force as described above.
  • the surface resistivity of the shield layer 13 is preferably as large as possible. Therefore, the maximum value that can be realized is the upper limit of the surface resistivity. In this way, it has a high surface resistivity and electrical insulation.
  • the sheet body 10 has heat resistance. Specifically, when the crosslinking agent is added to rubber or resin material, the heat resistance temperature of the sheet body 10 is 150 ° C, and the sheet body 10 is at least at a temperature exceeding 150 ° C. Until then, there is no change in properties.
  • the sheet body 10 is given thermal conductivity.
  • the environment in which the sheet body 10 is used may be used in the vicinity of a means serving as a heat source, such as a communication means including an IC and a power supply means. Due to the excellent thermal conductivity of the sheet 10, heat generated by the means serving as the heat source can be released, and the temperature of the means serving as the heat source can be suppressed and exposed to high temperatures. It can prevent 'declining'.
  • At least one surface portion of the sheet body 10 has adhesiveness or adhesiveness.
  • the adhesive layer 15 is provided as described above, whereby the surface portion on the other side in the thickness direction has adhesiveness or adhesiveness.
  • the sheet body 10 can be attached to an article by the bonding force due to the adhesiveness or adhesiveness of the adhesive agent layer 15. Therefore, the sheet member 10 can be easily provided between the antenna element 11 and the communication disturbing member 12 or in the vicinity of the antenna element by sticking to the communication disturbing member 12, for example.
  • the sheet body 10 is provided such that one side in the thickness direction is disposed on the antenna element 11 side and the other side in the thickness direction is disposed on the communication disturbing member 12 side.
  • Nitto Denko's No. 5000N power can be used as a sticking agent!
  • Example 1 is 100 parts by weight of hydrogenated-tolyl rubber (HNBR, “Zeppol” manufactured by Nippon Zeon Co., Ltd.) as binder 20 and Sendust (Fe—Si—A 1-based alloy) as flat soft magnetic powder (magnetic metal) 21 DT made by Dowa Mining Co., Ltd. 690 parts by weight and 69 parts by weight of ultrafine iron powder (manufactured by JFE Chemical) were added (filled) as magnetic fine particles 22, and surfactants and dispersants were added.
  • HNBR hydrogenated-tolyl rubber
  • Sendust Fe—Si—A 1-based alloy
  • Manufactured product name “Permicle D”) was added as a cross-linking agent, and a shield layer 13 was formed by a hot press method, and a sheet body 10 having such a shield layer 13 was produced.
  • the polymer fraction is 45.3 vol.%
  • the magnetic fraction is 46.4 vol.%.
  • the measured specific gravity value was calculated by calculating the weight Z volume force of the sheet obtained above, and the theoretical specific gravity value was calculated by dividing the total specific gravity X content of each component by the volume.
  • the theoretical specific gravity value in this example was 3.89, and the measured specific gravity value was 3.53.
  • the material constants (the real part 'and the imaginary part' of the complex relative permeability and the real part ⁇ 'and the imaginary part ⁇ ' of the complex relative permittivity were measured by the coaxial tube method. Specifically, a ring-shaped sample having the same configuration as that of the shield layer 13 and having an outer diameter of 7 mm and an inner diameter of 3 mm is prepared, and a conductive paint is applied to the contact portion of the sample inside the coaxial tube and dried. The part is connected to an Agilent network analyzer 8720ES via a coaxial cable, and S 11 (reflection attenuation strength) and S21 (transmission attenuation strength) are measured.
  • FIG. 3 is a graph showing the measurement results of the material constants', ⁇ ⁇ ⁇ ”of Example 1.
  • the real part of the complex relative permeability is indicated by“ ⁇ ”and“ country ”.
  • the imaginary part "of the complex relative permittivity” is indicated by the mark
  • the real part ⁇ , of the complex relative permittivity is indicated by the " ⁇ ” mark
  • the imaginary part ⁇ "of the complex relative permittivity is indicated by the" X "mark.
  • FIG. 4 is a cross-sectional view showing the tag 30 including the sheet body 10 in a simplified manner.
  • FIG. 5 is a perspective view showing the tag 30.
  • the tag 30 is one of electronic information transmission devices that transmit information by wireless communication.
  • the tag 30 is used as a transbonder of an RFID (Radio Frequency ID entification) system used for automatic recognition of solid objects.
  • RFID Radio Frequency ID entification
  • the tag 30 includes an electric field type antenna element 11, an integrated circuit (hereinafter referred to as “IC”) 17 that is a communication means that is electrically connected to the antenna element 11 and communicates using the antenna element 11, and a sheet body 10. And.
  • the tag 30 may be configured to transmit a signal representing information stored in the IC 17 by the antenna element 11 when the antenna element 11 receives a request signal from the reader. Therefore, the reader can read the information held in the tag 30.
  • the tag 30 is attached to a product, for example, and is used for product management, such as prevention of product theft and grasping inventory status.
  • the antenna device is configured to include the antenna element 11 and the sheet body 10. Although not shown in FIG. 4, a matching circuit may be added.
  • the antenna element 11 which is an antenna means is a dipole antenna.
  • the antenna element 11 is realized by a pattern conductor formed on the surface portion on one side in the thickness direction of the base material 18 that also has a polyethylene terephthalate (PET) force.
  • PET polyethylene terephthalate
  • the IC 17 is disposed, for example, at the center of the antenna element 11 and is electrically connected.
  • the IC 17 has at least a storage unit and a control unit. Information can be stored in the storage unit, and the control unit can store information in the storage unit or read out storage unit force information. In response to a command represented by the electromagnetic wave signal received by the antenna element 11, the IC 17 stores information in the storage unit or reads information stored in the storage unit and sends a signal representing the information to the antenna element. Give to 11.
  • the base material 18 has a rectangular plate shape, and the antenna element 11 is provided at the center of the base material 18 so as to extend in the longitudinal direction.
  • the thickness dimension of the layers of the antenna element 11 and the IC 17 is 1 nm or more and 500 / zm or less, and the thickness dimension of the layer of the substrate 18 is 0.1 m or more and 2 mm or less.
  • the antenna element 11 may be printed and processed directly on the sheet body 10 so that the base material is not used.
  • the antenna body 11, the IC 17, and the base material 18 constitute a tag body 33.
  • the tag body 33 is packaged by being mounted on a flexible adhesive tape.
  • a tag 30 is configured by the tag body 33 and the sheet body 10.
  • Figure 4 shows a simplified The sheet body 10 is laminated in a state where the sheet body 10 is adhered to the tag body 33.
  • a force that uses an adhesive or an adhesive between the tag body 33 (some configurations do not include the base material 18) and the sheet body 10 includes the tag body 33 or the sheet body 10 In some cases, one or both of them may be attached because they are sticky or adhesive.
  • the tag body 33 has a surface portion opposite to the side on which the antenna element 11 and the IC 17 are provided facing the sheet body 10, and a force opposite to the layer such as the conductor layer 14 is coupled to the shield layer 13 of the sheet body 10. Is done.
  • the coupling structure between the sheet body 10 and the tag body 33 is not particularly limited, but may be coupled using a binder including an adhesive and an adhesive. In FIG. 3, a configuration for coupling the sheet body 10 and the tag main body 33 is omitted.
  • the tag 30 has an antenna element 11 and an IC17 layer, a base material 18 layer, a shield layer 13, a binder layer 16, a conductor layer 14 and an adhesive layer 15 in this order from one side to the other side in the thickness direction. Are stacked.
  • the sheet body 10 and the base material 18 are formed in the same rectangular shape. As described above, the tag body 33 may have the orientation shown in FIG. 4 or may be configured upside down on the drawing.
  • the antenna element 11 can transmit an electromagnetic wave signal in a direction intersecting with the direction in which the antenna element 11 extends, and can receive an electromagnetic wave signal coming from a direction intersecting with the direction in which the antenna element 11 extends.
  • an electromagnetic wave signal is transmitted in the direction of transmission / reception direction A on the opposite side of the base material 18 and the sheet body 10 with respect to the antenna element 11, and the electromagnetic wave signal in the direction of transmission / reception A is received.
  • Transmission / reception direction A indicates the main direction, but there is a case where communication is performed using a wraparound radio wave, and the direction is not limited to that direction.
  • the tag 30 has information to be stored in advance (hereinafter referred to as “main information” and “!”) And information for instructing to store the main information (hereinafter referred to as “storage command information”) from an information management device that is a reader, for example.
  • main information information to be stored in advance
  • storage command information information for instructing to store the main information
  • the antenna element 11 receives the electromagnetic wave signal representing the main information and the storage command information
  • the antenna element 11 provides the IC 17 with the electric signal.
  • the IC tag 17 causes the control unit to store main information in the storage unit based on the storage command information.
  • an electromagnetic wave signal representing information hereinafter referred to as “transmission command information” t ⁇ ⁇
  • transmitted information information stored in the storage unit
  • an electrical signal representing the transmission command information is transmitted to the antenna element 11.
  • the control unit reads information (stored information) stored in the storage unit based on the transmission command information, and gives an electric signal representing the stored information to the antenna element 11. As a result, an electromagnetic wave signal representing stored information is transmitted from the antenna element 11.
  • the tag 30 is an electronic information transmission device that transmits and receives an electromagnetic wave signal by the antenna element 11.
  • the tag 30 may be a battery-driven tag driven by a built-in battery, or may be a batteryless tag that returns an electromagnetic wave signal using the energy of the received electromagnetic wave signal.
  • Such a tag 30 includes a sheet body 10 so that the tag 30 can be used in the vicinity of the communication blocking member 12.
  • the sheet body 10 is provided on the side opposite to the transmission / reception direction A with respect to the antenna element 11.
  • the sheet body 10 is used by being attached to the communication hindering member 12 using the adhesive layer 15.
  • the sheet body 10 is disposed closer to the communication interference member 12 than the antenna element 11, and the sheet body 10 is interposed or disposed between the antenna element 11 and the communication interference member 12 or in the vicinity of the antenna element. It is provided as follows.
  • FIG. 6 is a cross-sectional view showing an electric field formed in the vicinity of the antenna element 11 in a state where the tag 30 is attached to the communication disturbing member 12.
  • FIG. 7 is a cross-sectional view showing an electric field formed in the vicinity of the antenna element 11 in a state where the antenna element 11 and the IC tag 17 are arranged in the vicinity of the communication disturbing member 12 without the sheet body 10 interposed.
  • FIG. 6 omits the configuration of the tag 30 except for the antenna element 11, the IC 17, and the shield layer 13.
  • the electric field force generated by the potential difference between both ends 11a and l ib of the antenna element 11 spreads as it is, and a magnetic field is formed by the change in the electric field strength.
  • An electric field is formed by a change in the strength of the magnetic field.
  • the antenna element 11 can transmit an electromagnetic wave by utilizing such a principle that the formation phenomenon of the electric field and the magnetic field is successively repeated.
  • the antenna element 11 can receive an electromagnetic wave having a resonance frequency by a principle opposite to the transmission principle.
  • the communication disturbing member 12 when the communication disturbing member 12 is present in the vicinity of the antenna element 11, the electric field generated at both ends of the antenna element 11 is affected by the electrical influence received from the communication disturbing member 12. Although it cannot be ignored and depends on the frequency, a short-circuit phenomenon occurs in the frequency range above the MHz band, and as a result, the impedance of the antenna element 11 is lowered.
  • both ends 11a and l ib of the antenna element 11 are charged positively or negatively, respectively.
  • An electric field is formed between both end portions 11a and l ib and both end portions 11a and 12b of antenna element 11 in communication jamming member 12, and both ends 11a and l ib of antenna element 11 are formed. It will be in the state of being charged oppositely.
  • An alternating voltage is applied to the antenna element 11 by the IC, and both end portions 11a and l ib are charged so that positive and negative are alternately switched, and in synchronization therewith, each portion 12a, 12a, 12b will also be charged so that positive or negative will alternate.
  • the left end of the antenna element 11 is defined as one end 11a
  • the right end is defined as the other end l ib
  • each of the portions 12a and 12b of the communication disturbing member 12 is The left part is the one part 12a and the right part is the other part 12b.
  • the gap between one end 11a of the antenna element 11 and one part 12a of the communication disturbing member 12 and between the other end l ib of the antenna element 11 and the other part 12b of the communication disturbing member 12 are The resulting force 10 is equivalent to a current 10 and is equivalent to a state where the current is generated between the one end 1 la of the antenna element 11 and the one portion 12a of the communication blocking member 12 and the other end l ib of the antenna element 11. It is equivalent to a short circuit between the other part 12b of the communication disturbing member 12. In other words, it becomes short-circuited at a high frequency.
  • This phenomenon of short-circuiting at a high frequency is the same phenomenon as when a high-frequency voltage is applied to the capacitor, it becomes the same state as when it is energized.
  • the antenna element 11 and the communication disturbing member 12 As a result, a closed circuit is formed, and the current value increases compared to the case where the communication disturbing member 12 does not exist in the vicinity. That is, the impedance is reduced as compared with the case where there is no communication blocking member 12 in the vicinity of the antenna element 11.
  • the impedance Z is an impedance of a circuit formed by the antenna element 11 and the communication disturbing member 12, but is also an input impedance of the antenna element 11 constituting the circuit.
  • the sheet body 10 is connected to the electric field type antenna element 11 and obstructs communication. If it is provided between the member 12 and the both end portions 11a and ib of the antenna element 11, the strength of the electric field formed between the member 12 and the communication disturbing member 12 is reduced. Therefore, the formation of a high-frequency short circuit is weakened, and a decrease in the input impedance of the antenna element 11 is suppressed. The suppression of the decrease in the input impedance is confirmed by the fact that the current value of the current generated in the antenna element 11 is close to the value in the absence of the communication disturbing member 12! /. By using the sheet body 10 in this way, it is possible to suppress a decrease in input impedance.
  • the present inventor uses the numerical values of the material constants ', ⁇ ⁇ ', ⁇ "of Example 1 shown in Table 1 and FIG. 3 to determine that the antenna element 11 that is a dipole antenna is in the vicinity of the metallic communication disturbing member 12.
  • the impedance recovery degree of the antenna element 11 was calculated by an electromagnetic field simulator (Sonnet) with the sheet 10 sandwiched between the antenna element 11 and the communication disturbing member 12 or in the vicinity of the antenna element.
  • the configuration used for the simulation is shown in Figure 4.
  • the conductor layer 14 has a copper (Cu) plate, which is a metal plate, and is provided with a 50 ⁇ m-thick adhesive layer 16 and a 500 ⁇ m-thick shield layer 13, and the substrate 18 is a 100 ⁇ m-thick PET film
  • the antenna element 11 which is an antenna element is arranged in As a result, the input impedance was 126 ⁇ (the frequency at which reactance was zero at 1 GHz), and the radiation efficiency was 3% (gain 12.6 dB).
  • the sheet body 10 is provided between the electric field type antenna element 11 and the communication disturbing member 12. Therefore, when the antenna element 11 is disposed in the vicinity of the communication disturbing member, it is possible to suppress a decrease in input impedance of the antenna element due to a member having a portion made of a conductive material. If the sheet member 10 is not used, the electric field type antenna element 11 hardly operates in the vicinity of the communication disturbing member 12, and cannot be used for wireless communication. This is because the input impedance of the electric field type antenna element 11 is significantly reduced. When the input impedance of the electric field type antenna element 11 is reduced, the electric field type antenna element 11 is used to diverge from the impedance of the IC 17 that communicates, and the signal is transferred between the electric field type antenna element 11 and the IC 17.
  • the sheet body 10 can suppress a decrease in input impedance of the antenna element 11 when the antenna element 11 is disposed in the vicinity of a member having a portion that also has a conductive material force.
  • the imaginary part ⁇ "of the complex relative permittivity becomes larger than necessary, the conductivity will increase, contributing to the direction of a short circuit.
  • the control of the magnetic permeability is selected as a means, and the impedance is efficiently recovered.
  • the communication improvement effect can be obtained. Therefore, by using the sheet member 10, wireless communication can be suitably performed even in the vicinity of the communication disturbing member 12 using the electric field type antenna element 11.
  • the antenna element 11 when the antenna element 11 is a dipole antenna, the force that connects the IC 17 to the center of the dipole antenna.
  • the impedance of the IC 17 is, for example, 40 ⁇ or 50 ⁇ . In order to match this impedance, at least the antenna impedance needs to be about 10 ⁇ .
  • the resistance decreases and the impedance also decreases.
  • the impedance is 0.85 ⁇ . This number is too small compared to 40 ⁇ .
  • the antenna element 11 and the IC 17 are directly attached to simplify the configuration. Impeder on the way There is no circuit for adjusting the resistance. Therefore, the impedance difference is fatal.
  • the sheet member 10 it is possible to suppress a decrease in the input impedance of the antenna element 11.
  • the frequency needs to be readjusted. Considering the effect of this shortening of wavelength, severe manufacturing conditions are required. In order to avoid this, the real part of the complex dielectric constant, which tends to be large, must be set to a very small value.
  • the sheet body 10 is provided with a shield layer 13, and the shield layer 13 has a real part 'of complex relative permeability and an imaginary part of complex relative permeability for electromagnetic waves used for wireless communication.
  • the real part ⁇ of the complex relative permeability is 5 or more and the permeability loss term tan ⁇ ⁇ 1, more preferably the real part of the complex relative permeability / ⁇ ′ is 20 The above is the permeability loss term tan ⁇ ⁇ 0.5.
  • the shield layer 13 has a real part ⁇ ′ of a complex relative dielectric constant of 20 or more with respect to electromagnetic waves used for wireless communication. Further, the shield layer 13 has an imaginary part ⁇ ′′ of a complex relative dielectric constant of 300 or less with respect to electromagnetic waves used for wireless communication.
  • the antenna element 11 is arranged in the vicinity of the communication disturbing member 12. Sometimes, it is possible to realize a sheet body that can suppress a decrease in input impedance of the antenna element 11 due to the communication disturbing member 12 and also can suppress a loss of electromagnetic energy due to the communication disturbing member 12.
  • FIG. 8 is a cross-sectional view showing the configuration of the sheet body 10 assumed in the simulation for confirming the effect of the sheet body 10 when a dipole antenna is used as the antenna element 11.
  • the sheet body 10 has only the shield layer 13, and the sheet body 10 (shield layer 13) is provided on the antenna element 11 via a dielectric layer corresponding to the base material 18.
  • the communication disturbing member 12 is directly laminated on the sheet body 10 (shield layer 13) so that the layer 13) is disposed between the antenna element 11 and the communication disturbing member 12 having a metal plate force.
  • the communication state was simulated.
  • FIG. 9 is a graph showing a simulation result by the configuration of FIG. 8 and showing a relationship between the frequency and the real part (Real) and the imaginary part (Imaginary) of the input impedance of the antenna element 11.
  • the frequency at which the imaginary part of this input impedance becomes zero indicates the resonance frequency (953 MHz in Fig. 9).
  • FIG. 10 is a graph showing the directivity gain, showing the simulation result of the configuration of FIG.
  • FIG. 11 is a graph showing a simulation result by the configuration of FIG. 8 and showing absolute gain.
  • Table 1 shows the material constants for each layer in the configuration of Fig. 8. Each material constant is a value at a frequency of 950 MHz.
  • a dielectric layer for example, a foam layer such as styrene foam
  • a dielectric layer (base material 18) is disposed on the antenna element 11 side, and a shield layer 13 is laminated on the dielectric layer as a sheet 10 on the side opposite to the antenna element 11.
  • the input impedance real part
  • the imaginary part (reactance) of the input impedance is zero
  • the radiation efficiency was 25.33%.
  • the use of a magnetic sheet has not been studied with respect to the metal-related problem of the electric field type antenna element 11, that is, the problem with respect to the communication disturbing member 12.
  • the electric field type antenna element mainly uses the electric field, and thus the dielectric constant that is naturally effective for the electric field has been discussed, and the effect of the magnetic permeability has not been sufficiently noted. That is, the impedance recovery effect of the sheet body 10 having magnetic permeability was not known.
  • the impedance recovery effect using magnetic permeability (which also uses the dielectric constant) is large, and the input impedance of the antenna element 11 due to being placed in the vicinity of the communication interference member 12 falls to near 0 ⁇ .
  • the real part of the complex relative permeability of the field 11 is 1 It recovers to several tens of ohms by setting it to 0 or more (high frequency band or 2.4 GHz band).
  • matching can be achieved with the impedance inherent to the IC connected to the communication means and the antenna element 11, for example, 30 ⁇ and 50 ⁇ , and it is possible to operate as a resonance circuit including the antenna element first.
  • the loss increases, and as a result, the radiation efficiency of the antenna element 11 decreases.
  • Complex relative permeability If the permeability loss term tan ⁇ ⁇ is less than 1 (in the high MHz band or 2.4 GHz band), the loss is slightly reduced, and the permeability loss term tan ⁇ of the complex relative permeability is less than 0.5 (high (In the MHz band or 2.4 GHz band), the loss of electromagnetic energy is further reduced and the radiation efficiency of the antenna element 11 is improved.
  • the real part ⁇ , of the complex relative permittivity of the shield layer 13 contributes to the wavelength shortening effect that determines the size of the antenna element together with the real part of the complex relative permeability.
  • the size of the antenna element 11 can be reduced to about 1/4.
  • the imaginary part ⁇ ′′ of the complex dielectric constant of the shield layer 13 is set to 300 or less.
  • the dielectric constant of the vacuum (8.841 X 10 12 [FZm], f
  • the shield layer of the present invention is not a conductive material but a dielectric material, it is calculated from the above equation that is made of a conductive material.
  • the conductivity is ⁇ ⁇ 15.9 SZm (resistivity p O. 06 ⁇ ⁇ )
  • conductivity ⁇ ⁇ 39.9 SZm resistivity p O. 02 ⁇ ⁇
  • the shield layer 13 is a material that includes at least one of a soft magnetic metal, a soft magnetic metal oxide, a magnetic metal, and a magnetic metal oxide, or a material containing it.
  • a soft magnetic metal a soft magnetic metal oxide
  • a magnetic metal a magnetic metal oxide
  • a magnetic metal oxide a material containing it.
  • the conductor layer 14 made of a conductive material is present in the vicinity of the antenna element 11, and in accordance with the frequency of the electromagnetic wave used for the above-described wireless communication, The real part and complex part / z "of the complex relative permeability of the shield layer 13 and the real part ⁇ 'and imaginary part ⁇ " of the complex relative permittivity are adjusted. As a result, suitable characteristics of the shield layer 13 can be realized. Therefore, more suitable wireless communication can be realized in the vicinity of the communication disturbing member 12.
  • the antenna element 11 can be reduced in size.
  • the wavelength shortening effect is added, and the size can be significantly reduced compared with the conventional product. it can.
  • the dipole antenna should be linear and have a total length of ⁇ ⁇ 2 even if it has curves and bending forces. For example, at 950 MHz, it is about 15.8 cm long, but this sheet body has a wavelength shortening effect, and a linear element of about 3 to 10 cm is possible. Sizes that can fit on labels are also possible. Further downsizing can be achieved, and a wide range of objects can be pasted.
  • the antenna that operates in the vicinity of the communication interference member 12 is a patch antenna.
  • the size of the patch antenna needs to be ⁇ ⁇ 2 on one side.
  • the maximum size is about 15.8 cm square, and it is too large for a tag.
  • the distance between the notch and the ground conductor also needs to be ⁇ 16 to ⁇ 64, and it cannot be used for applications that require small size and flexibility.
  • FIG. 12 is a perspective view schematically showing a tag 30 according to another embodiment of the present invention.
  • the tag 30 shown in FIG. 12 has a configuration similar to that of the tag 30 described in FIGS. 1 to 11, and the corresponding components are denoted by the same reference numerals, and only different points will be described.
  • the tag 30 described in FIGS. 1 to 11 uses a dipole antenna as the antenna element 11
  • the tag 30 shown in FIG. 12 uses a monopole antenna as the antenna element 11.
  • the IC 17 is provided in the center of the antenna element 11, that is, between the two element pieces constituting the antenna element 11.
  • the monopole antenna one of the two element pieces is grounded. It is a configuration that can be replaced by the plate 100.
  • the tag 30 configured using such a monopole antenna can obtain the same effects as the tag 30 configured using the dipole antenna as described above.
  • the effect of the sheet body 10 can be obtained in the same manner. Furthermore, a smaller size can be achieved than when a dipole antenna is used.
  • the tag 30 using the antenna element 11 is provided in the vicinity of the communication disturbing member 12, such as by sticking it to the communication disturbing member 12, thereby realizing preferable transmission and reception of electromagnetic wave signals.
  • the tag 30 can be used in a ready state. Therefore, for example, the tag 30 can be attached to a beverage 40 containing a beverage in a metal container that is a communication blocking member 12 as shown in FIG. .
  • the tag 30 includes a large number of communication blocking members 12 such as a board as shown in FIG. 14 and is built in an electronic device 41 such as a mobile phone device, for example, for product management or user authentication and antitheft. It can be used for such purposes. In this way, the tag 30 can be secured for a wide range of uses, highly convenient, and the tag 30 can be realized. Further, since the sheet body 10 has flexibility as described above, it can be freely deformed. As a result, it can be used in a wide range of applications with less restrictions on the installation location. For example, when it is used by being attached to an article, it can be provided following the shape of the article. For example, as shown in FIG.
  • the communication blocking member 12 is an article having a cylindrical outer surface, for example, a beverage container, it is possible to attach it following the shape of the surface. is there. Accordingly, it is possible to reduce the restriction on the mounting place of the sheet body 10 and facilitate the mounting work.
  • the material of the other configuration can be appropriately selected so that the tag 30 has a flexible structure as a whole, so that the tag 30 can be attached following the cylindrical surface. become able to.
  • the sheet body 10 is provided with adhesiveness on at least one surface portion, when the sheet body 10 is attached to an article, it can be attached to the article using the adhesiveness. As a result, the sheet member 10 can be easily attached to the article. Therefore, the work for using the sheet body 10 and the electronic information transmission device including the sheet body 10 can be facilitated. wear.
  • the sheet body 10 is flame retardant.
  • An electronic information transmission apparatus that performs radio communication using the antenna element 11 including the tag 30 may be required to be flame retardant.
  • the sheet body 10 can be suitably used for applications that require such flame retardancy.
  • the environment in which the sheet is used may be used in the vicinity of a means serving as a heat source, such as a communication means including the IC 17 and a power supply means. Due to the excellent thermal conductivity of the sheet body 10, the heat generated by the heat source means can be released, and the temperature rise of the heat source means is suppressed and the performance deteriorates due to exposure to high temperatures. Can be prevented.
  • a means serving as a heat source such as a communication means including the IC 17 and a power supply means. Due to the excellent thermal conductivity of the sheet body 10, the heat generated by the heat source means can be released, and the temperature rise of the heat source means is suppressed and the performance deteriorates due to exposure to high temperatures. Can be prevented.
  • the sheet body 10 has heat resistance and electrical insulation. With regard to heat resistance, it may be used at 120 ° C and 130 ° C, especially for automotive applications, and it must be able to be used without degrading performance at that temperature. Heat resistance can be achieved by adding a cross-linking material and cross-linking the binder. Any cross-linking means can be used, but it is of course possible to achieve heat resistance at a higher temperature (for example, 200 ° C.) by appropriately combining the type of the binder and the cross-linking material. Further, by covering the soft magnetic metal powder with an organic and inorganic insulating material as a binder, the electrical insulation of the sheet body 10 can be improved without direct contact with the soft magnetic metal dispersed in the sheet. it can.
  • the sheet body 10 If electricity is conducted, an eddy current is generated in itself and the magnetic energy is attenuated. Furthermore, since the circuit and the measuring housing (ground) are arranged in close proximity, if the sheet body 10 has conductivity, it will be conducted through it, which hinders operation. In order to prevent these, the sheet body 10 achieves a surface resistivity of 10 2 ⁇ / mouth or more.
  • FIG. 15 is a plan view schematically showing a tag 30 according to still another embodiment of the present invention.
  • the antenna element 11 also has a substantially annular loop antenna force, and the IC 17 is connected thereto.
  • FIG. 16 is a cross-sectional view showing the tag 30 of FIG.
  • the tag 30 shown in FIGS. 15 and 16 has a configuration similar to that of the tag 30 described in FIGS. 1 to 14, and the same reference numerals are given to the corresponding configurations, and only different points will be described.
  • a loop antenna is used as the antenna element 11 and is laminated on the base material 18.
  • the sheet body 10 has only the shield layer 13, and the antenna element 11 is provided with the sheet body 10 (shield layer 13) via the base material 18.
  • FIG. 15 and 16 show a state in which two tags 30 are arranged in a direction perpendicular to the thickness direction while being in contact with each other.
  • the two tags 30 shown in FIG. 15 have the same structure.
  • FIG. 15 shows the antenna element 11 and IC 17 of the left tag 30 with the subscript “a '', And the antenna element 11 and IC17 of the tag 30 on the right side are indicated with a subscript ⁇ b ''. If identification is required in the text, it is identified using a subscript. If unnecessary, explain without using a subscript.
  • the state in which the plurality of tags 30 are arranged close to each other is, for example, that a plurality of articles are provided in a dense state, and one tag 30 is attached to each of these articles.
  • the article in this case is, for example, a test tube in which a sample is stored, and is stored in each region of a test tube stand having regions partitioned in a matrix.
  • Each tag 30 is attached to each test tube or test tube lid.
  • the antenna elements 11 of the other tags 30 for one tag 30 become communication obstructing members, but the sheet body 10 is attached to each tag 30.
  • the sheet body 10 By providing the sheet body 10 in the vicinity of the antenna element 11, it is possible to prevent a communication failure from occurring in each tag 30. In this way, the sheet body 10 does not have to be provided between the antenna element 11 and the communication disturbing member, here the other antenna element 11, but if it is provided in the vicinity of the antenna element 11, the communication environment of the antenna element 11 can be reduced. Can be improved.
  • FIG. 17 is a graph showing a simulation result when two tags 30 are placed close to each other as shown in FIG. 15 and FIG.
  • FIG. 18 is a graph showing simulation results when the tag 30 shown in FIG. 15 and FIG. 16 is provided with a sheet member 10 for V! / ⁇ , and two tags are similarly placed close to each other.
  • Fig. 17 is a graph showing the relationship between frequency and S-parameter values. The unit of the S parameter value is dB, and the magnitude of the value is compared relatively.
  • “S11” represents the ratio of the reflected power
  • S21 represents the power propagated between the antenna elements 11 (between the ICs 17).
  • “S11” has two tags 30 as shown in FIG.
  • Sll, S21 when power is supplied from the IC17a of the left tag 30, and Sl1, when power is supplied from the IC17b of the right tag 30, S21 is the same value.
  • single coil S ll represents a value corresponding to “S 11” when the tag 30 as shown in FIG. 15 exists alone in free space.
  • Table 2 shows the material constants of each layer set in the simulation. Each material constant is a value at a frequency of 2.4 GHz.
  • the shield layer 13 was made by mixing chlorinated polyethylene 100 (part) with carbon iron 530 (part) and kneading it into a sheet.
  • This shield layer 13 has a material constant measured by the coaxial tube method of 2.4.
  • the two antenna elements 11 (tags 30) present in the vicinity are modeled after the reading of the dense tag 30 (transbonder) as described above, and each antenna element 11 serves as a communication blocking member.
  • each antenna element 11 serves as a communication blocking member.
  • This example is an example in which the sheet body 10 is not disposed between the antenna element 11 and the communication disturbing member but in the vicinity of the antenna element 11.
  • Figures 15 to 18 show an example of the ability to arrange two tags 30. Even if electronic information transmission devices such as card-type transponders are stacked, the communication environment is the same as described above. Is improved.
  • the laminated structure may be changed.
  • another adhesive layer having the same configuration as the adhesive layer 15 may be provided on the side opposite to the conductor layer 14 and the like with respect to the shield layer 13.
  • the sheet body 10 is attached to the tag body 33 on which the antenna element 11 and the IC 17 are mounted, and is separately bonded when the tag 30 is configured. Even if no adhesive is used, it can be applied using another adhesive layer, which makes the work easier. Thus, the installation and installation work of the sheet body 10 can be facilitated such that the sheet body 10 can be easily incorporated into the electronic information transmission device.
  • the adhesive layer 15 may be used for attaching the sheet body 10 to the tag body 33 when the adhesive layer 15 is incorporated into the tag 30.
  • the other adhesive layer may be used to adhere to the article, or another adhesive layer. If there is no adhesive, it may be attached to the article using an adhesive or an adhesive.
  • the adhesive layer 15 and the other adhesive layer form these layers that are not essential components. Instead, the pressure-sensitive adhesive or the adhesive may be added to a layer such as the shield layer 13 to give the surface of the sheet body 10 pressure-sensitive adhesiveness or adhesiveness.
  • the means for imparting flame retardancy may be another configuration instead of the configuration in which the flame retardant is added.
  • the minimum required performance of the sheet body 10 is the performance of blocking the magnetic field, and the other performance may be a configuration that is not an essential requirement.
  • the use of the sheet body 10 is not limited to the tag 30, but may be a trans bonder other than the tag 30! / Thanks to an electronic information transmission device other than the trans bonder! It can be configured as an antenna device using the antenna element 11 and the sheet body 10. Examples of electronic information transmission devices other than tag 30 include antennas, readers, reader Z writers, mobile phone devices, PDAs, and personal computers that form RFID systems together with tag 30.
  • Other anti-theft devices, robots can be any antenna functional component that uses wireless communication technology such as remote control of the remote control, in-vehicle ECU, and other radio waves.
  • the frequency is not limited to the radio wave range.
  • the use of the sheet 10 is not limited to the electronic information transmission device, and can be widely used in applications where there is a requirement to block at least the magnetic field.
  • the tag 30 may be an article having the communication blocking member 12 other than the aforementioned article.
  • a conductive conductor layer When a conductive conductor layer is laminated on the sheet body 10, it can function as an antenna even when wireless communication is performed in the vicinity of a member having a portion made of any conductive material by adjusting the resonance frequency of the antenna. become.
  • a known means can be used to adjust the resonance frequency of the antenna.
  • the antenna element is made of a conductive material by providing a sheet body.
  • the antenna is disposed in the vicinity of the member having the portion, it is possible to suppress a decrease in the input impedance of the antenna element. Therefore, by using the sheet member, wireless communication can be suitably performed even in the vicinity of a member having a portion made of a conductive material using an electric field type antenna element.
  • the sheet body by providing the sheet body, it is possible to suppress the loss of electromagnetic energy when the antenna element is disposed in the vicinity of the member having a portion made of a conductive material. Therefore, by using the sheet body, radio communication can be suitably performed in the vicinity of a member having a portion made of a conductive material using an electric field type antenna element.
  • At least one of a dipole antenna, a monopole antenna, a loop antenna, or an antenna loaded with a reactance structure portion on a simple and small configuration is made of a conductive material. It can be used for wireless communication near a member having a part.
  • wireless communication can be suitably performed using an electromagnetic wave having a frequency of 300 MHz to 300 GHz in the vicinity of a member having a portion made of a conductive material. Since electromagnetic waves of such frequency are used, a relatively long wireless communication distance can be realized with a small antenna.
  • the frequency force of electromagnetic waves used for wireless communication is a frequency included in the range of 860 MHz to 1 GHz, it can be applied to communication between relatively distant devices, and is a small electric field type. It is possible to enable communication using the antenna.
  • the frequency of electromagnetic waves used for wireless communication is a frequency included in the 2.4 GHz band, so that it can be applied to communication between relatively distant devices, and is an electric field type. It is possible to enable communication using a small antenna.
  • the impedance reduction can be controlled by using the shield layer that is a magnetic material, and it is used in the vicinity of a member having a portion made of a conductive material. Wireless communication is possible.
  • the real part / z ′ of the complex relative permeability of the shield layer is equal to or more than the imaginary part ⁇ ′′ of the complex relative permeability, the input impedance of the antenna element is reduced and the electric power is reduced.
  • seat body which can suppress the loss of magnetic energy is realizable.
  • the real part / z ′ of the complex relative permeability of the shield layer is 5 or more and the permeability loss term tan ⁇ ⁇ force ⁇ or less, the input impedance of the antenna element is reduced, and A sheet body capable of suppressing loss of electromagnetic energy can be realized.
  • the real part / ⁇ ′ of the complex relative permeability of the shield layer is 20 or more and the permeability loss term tan ⁇ ⁇ is 0.5 or less, the input impedance of the antenna element is reduced. It is possible to realize a sheet body that can suppress the decrease and the loss of electromagnetic energy.
  • the real part ⁇ ′ of the complex relative permittivity of the shield layer is 20 or more, a sheet body that can suppress a reduction in input impedance of the antenna element and a loss of electromagnetic energy is realized. can do.
  • the imaginary part ⁇ ′′ of the complex relative permittivity of the shield layer is 300 or less, a sheet body that can reduce the input impedance of the antenna element and suppress the loss of electromagnetic energy is realized. can do.
  • the real part 'and the imaginary part' of the complex relative permeability of the shield layer or the real part ⁇ 'of the complex relative permittivity is adjusted in the state where the conductor layer exists in the vicinity of the antenna element. Therefore, it is possible to realize a preferable characteristic of the shield layer, and it is possible to realize a more preferable wireless communication in the vicinity of a member having a portion made of a conductive material.
  • the material is a material that includes at least one of a soft magnetic metal, a soft magnetic metal oxide, a magnetic metal, and a magnetic metal oxide, or a material that includes the material.
  • a shield layer capable of obtaining characteristics can be formed. Therefore, it is possible to realize a sheet body that achieves the excellent effects described above.
  • one or more materials selected from the group consisting of ferrite, iron alloy, and iron particles as a magnetic material are 1 part by weight or more and 1500 parts by weight or less.
  • a blending amount of the shield layer is formed. Therefore, it is possible to realize a sheet body that achieves the above-described excellent effects. Further, according to the present invention, the flame retardancy of the sheet body can be obtained, and it can be suitably used for applications requiring flame retardancy.
  • the heat generated by the means serving as the heat source when used in the vicinity of the means serving as the heat source, the heat generated by the means serving as the heat source can be released, and the temperature rise of the means serving as the heat source can be suppressed and the temperature can be increased. Performance degradation due to exposure can be prevented.
  • At least one surface portion has adhesiveness or adhesiveness, and therefore can be attached to another article.
  • the sheet body can be easily used.
  • an antenna device that is provided in the vicinity of a member provided with a sheet body and having a portion made of a conductive material, and that can be suitably used for wireless communication.
  • an electronic information transmission device capable of suitably performing wireless communication even when provided in the vicinity of a member having a portion made of a conductive material cover.
  • the present invention even if a transbonder is attached to an article that is in a dense state, the influence of the electromagnetic coupling with other transbonders and other transbonders is suppressed, and the reading rate by the reader is improved. can do.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Details Of Aerials (AREA)

Abstract

A sheet body (10) includes a shield layer (13). The shield layer (13) is formed by a magnetic material. By using it between an antenna element and a conductive member or in the vicinity of the antenna element, it is possible to effectively recover the input impedance of the field type antenna and operate the field type antenna in the vicinity of the conductive member. Furthermore, by setting the real part μ’ of the complex specific permeability of the shield layer (13) to a high value and the permeability loss term tan δμ to a small value, it is possible to suppress the electromagnetic energy loss and increase the radiation efficiency when operating the field type antenna in the vicinity of the conductive member.

Description

シート体、アンテナ装置および電子情報伝達装置  Sheet body, antenna device, and electronic information transmission device
技術分野  Technical field
[0001] 本発明は、導電性材料から成る部分を有する部材の近傍で電界型のアンテナ素子 を用 、て無線通信するためのシート体およびこれを備える電子情報伝達装置に関す る。  The present invention relates to a sheet body for wireless communication using an electric field type antenna element in the vicinity of a member having a portion made of a conductive material, and an electronic information transmission apparatus including the sheet body.
本発明に於ける電界型のアンテナ素子とは、電波方式の無線通信に用いられる電 界型のアンテナ素子の機能を有するものであって、磁界型のアンテナ素子の機能を 並存するもの、もしくは磁界型のアンテナ素子と切替わるものでもよ 、。  The electric field type antenna element in the present invention has a function of an electric field type antenna element used for radio communication of radio wave type, and has a function of a magnetic field type antenna element or a magnetic field type element. It can be switched to a type antenna element.
背景技術  Background art
[0002] 図 19は、従来の技術のタグ 1を簡略化して示す断面図である。 RFID (Radio Frequ ency IDentification)システムは、固体の自動認識に用いられるシステムであり、基本 的にリーダとトランスボンダとを備えて 、る。この RFIDシステムのトランスボンダとして 、タグ 1が用いられる。タグ 1は、磁力線を検出する磁界型のアンテナであるコイル状 のループアンテナ 2と、アンテナ 2を用いて無線通信する集積回路 (IC) 3とを有して いる。タグ 1は、リーダからの要求信号を受信すると、 IC3内に記憶されている情報を 送信するように、換言すれば、リーダによってタグ 1に保持されている情報を読取るこ とができるように、構成される。タグ 1は、たとえば商品に貼着して設けられ、商品の盗 難防止および在庫状況の把握など、商品管理に利用されている。  FIG. 19 is a cross-sectional view showing a simplified tag 1 of the prior art. The RFID (Radio Frequency IDentification) system is a system used for automatic identification of solids, and basically includes a reader and a transbonder. Tag 1 is used as a transbonder for this RFID system. The tag 1 has a coiled loop antenna 2 that is a magnetic field type antenna that detects magnetic field lines, and an integrated circuit (IC) 3 that performs radio communication using the antenna 2. When tag 1 receives a request signal from the reader, tag 1 transmits the information stored in IC3, in other words, so that the information held in tag 1 can be read by the reader. Composed. Tag 1 is attached to a product, for example, and is used for product management, such as preventing product theft and checking inventory status.
このタグ 1は、金属製の商品に貼着して用いるなど、アンテナ 2の近傍に導電性材 料から成る部分を有する部材 4が存在すると、アンテナ 2によって送受信される電磁 波の信号が形成する磁界の磁力線が部材 4の導電性材料から成る部分の表面に沿 つて流れることになる。この場合、部材 4の導電性材料から成る部分に渦電流が誘導 され、その渦電流損により電磁波エネルギが熱エネルギに変換されて損失してしまう 。このようにエネルギが損失してしまうと、電磁波の信号が大きく減衰することになり、 タグ 1は、無線通信できなくなってしまう。また誘導される渦電流が、タグの通信用磁 界と逆向きの磁界を発生させることにより、磁界がキャンセルさせられてしまう現象も 生じる。この現象によっても、タグ 1は無線通信ができなくなる。したがってタグ 1は、 導電性材料力も成る部分を有する部材 4の近傍では、用いることができない。またタ グ 1の共振周波数が部材 4の影響を受けてシフトしてしまい、本来の通信周波数で通 信ができなくなる現象もあり、やはりタグ 1の無線通信が困難になってしまう。 When the tag 1 is used by sticking it to a metal product, and there is a member 4 having a portion made of a conductive material in the vicinity of the antenna 2, an electromagnetic wave signal transmitted and received by the antenna 2 is formed. The magnetic field lines of the magnetic field flow along the surface of the part 4 made of the conductive material. In this case, an eddy current is induced in the portion made of the conductive material of the member 4, and the electromagnetic wave energy is converted to heat energy and lost due to the eddy current loss. If energy is lost in this way, the electromagnetic wave signal is greatly attenuated, and tag 1 cannot communicate wirelessly. In addition, the induced eddy current generates a magnetic field in the opposite direction to the tag's communication magnetic field, thereby canceling the magnetic field. Arise. This phenomenon also prevents tag 1 from communicating wirelessly. Therefore, the tag 1 cannot be used in the vicinity of the member 4 having a portion that also has a conductive material force. In addition, the resonance frequency of tag 1 shifts due to the influence of member 4, and there is a phenomenon that communication cannot be performed at the original communication frequency, so that wireless communication of tag 1 becomes difficult.
図 20は、他の従来の技術であるタグ 1Aを簡略ィ匕して示す断面図である。図 20に 示すタグ 1Aは、図 19のタグ 1と類似しており、対応する部分に同一の符号を付し、異 なる構成についてだけ説明する。図 20のタグ 1Aは、図 19のタグ 1の課題を解決する ために、貼着される物品となる部材 4と、アンテナ 2との間に配置されるように設けられ る磁気吸収板 7を備えるように構成される。複素比透磁率を有するシートである磁気 吸収板 7は、センダスト、フェライトおよびカーボ-ル鉄などの高透磁率材料、したが つて複素比透磁率が高 、材料力 成る。  FIG. 20 is a cross-sectional view schematically showing a tag 1A as another conventional technique. The tag 1A shown in FIG. 20 is similar to the tag 1 shown in FIG. 19, and the same reference numerals are given to the corresponding parts, and only different configurations will be described. In order to solve the problem of tag 1 in FIG. 19, tag 1A in FIG. 20 has a magnetic absorption plate 7 provided so as to be disposed between member 4 as an article to be attached and antenna 2. Configured to provide. The magnetic absorption plate 7, which is a sheet having a complex relative permeability, has a high permeability material such as sendust, ferrite, and carbon iron, and therefore has a high complex relative permeability and material strength.
複素比透磁率は、実数部と虚数部とを有しており、実数部が高くなると複素比透磁 率が高くなる。換言すれば複素比透磁率が高い材料は、複素比透磁率における実 数部が高い。磁界中に複素比透磁率における実数部の高い材料が存在すると、磁 力線がその部材内を集中して通るようになる。磁力線を検出する磁界型のアンテナ 2 を用いるタグ 1Aでは、磁気吸収板 7を設けることによって、導電性材料から成る部分 を有する部材 4への磁界の漏れを防ぎ、導電性材料から成る部分を有する部材 4の 近傍で用いても、導電性材料カゝら成る部分を有する部材 4内を通る磁力線を少なくし 、磁界のエネルギの減衰を抑えて、無線通信することができる。このようなタグ 1Aは、 たとえば特開 2000— 113142号公報に示されている。  The complex relative permeability has a real part and an imaginary part, and the complex relative permeability increases as the real part increases. In other words, a material having a high complex relative permeability has a high real part in the complex relative permeability. If a material with a high real part in the complex relative permeability exists in the magnetic field, the magnetic lines of force pass through the member in a concentrated manner. In the tag 1A using the magnetic field type antenna 2 for detecting the magnetic field lines, the magnetic absorption plate 7 is provided to prevent leakage of the magnetic field to the member 4 having the portion made of the conductive material, and to have the portion made of the conductive material. Even when used in the vicinity of the member 4, wireless communication can be performed by reducing the lines of magnetic force passing through the member 4 having a portion made of a conductive material and suppressing the attenuation of magnetic field energy. Such a tag 1A is disclosed in, for example, Japanese Patent Application Laid-Open No. 2000-113142.
以上のように、これまでアンテナ通信の金属対応技術として検討されてきた複素比 透磁率を有するシートは、主に自己インダクタンスを改善するためのものである。この シートによる通信環境の改善効果は、電磁誘導方式の通信を行う場合の磁界型のァ ンテナであるコイルアンテナを用いる場合に得られる効果であった。  As described above, the sheet having complex relative permeability, which has been studied as a metal-compatible technology for antenna communication, is mainly for improving self-inductance. The effect of improving the communication environment by this sheet was the effect obtained when using a coil antenna, which is a magnetic field type antenna for electromagnetic induction communication.
図 20に示すタグ 1 Aのように、電磁誘導方式通信の場合のコイルアンテナなどの磁 界型のアンテナ 2を用いる場合には、磁界の漏れを防ぐことによって、導電性材料か ら成る部分を有する部材 4の近傍での無線通信を可能にすることはできる力 このよう な磁界の漏れを防ぐための構成は、電気力線を検出する電界型のアンテナを用いる 場合には、効果がないとみなされ、採用することが検討されていな力つた。 When using a magnetic field type antenna 2 such as a coil antenna in the case of electromagnetic induction communication, such as tag 1 A shown in FIG. 20, a portion made of a conductive material is prevented by preventing leakage of the magnetic field. Force that can enable wireless communication in the vicinity of the member 4 that has the configuration to prevent leakage of such a magnetic field uses an electric field type antenna that detects electric field lines In some cases, it was considered ineffective and was not considered for adoption.
発明の開示 Disclosure of the invention
本発明の目的は、電界型のアンテナ素子を用いて、導電性材料から成る部分を有 する部材の近傍で、好適に無線通信することを可能にするシート体ならびにそれを 備えるアンテナ装置および電子情報伝達装置を提供することである。  SUMMARY OF THE INVENTION An object of the present invention is to provide a sheet body capable of preferably performing wireless communication in the vicinity of a member having a portion made of a conductive material using an electric field type antenna element, an antenna device including the sheet body, and electronic information It is to provide a transmission device.
本発明は、電界型のアンテナ素子を用いて、導電性材料から成る部分を有する部 材の近傍で無線通信するにあたって、アンテナ素子と導電性材料から成る部分を有 する部材との間またはアンテナ素子近傍に設けられ、導電性材料から成る部分を有 する部材によるアンテナ素子の入力インピーダンスの低下を抑制することを特徴とす るシート体である。  The present invention relates to an antenna element and a member having a portion made of a conductive material, or an antenna element when performing wireless communication in the vicinity of a member having a portion made of a conductive material using an electric field type antenna element. A sheet body characterized by suppressing a decrease in input impedance of an antenna element by a member provided in the vicinity and having a portion made of a conductive material.
本発明に従えば、シート体は、電界型のアンテナ素子と導電性材料から成る部分を 有する部材との間またはアンテナ素子近傍に設けることによって、アンテナ素子が導 電性材料カゝら成る部分を有する部材の近傍に配置されるときに、導電性材料力ゝら成 る部分を有する部材によるアンテナ素子の入力インピーダンスの低下を抑制すること ができる。  According to the present invention, the sheet body is provided between the electric field type antenna element and the member having the portion made of the conductive material or in the vicinity of the antenna element, so that the portion of the antenna element made of the conductive material cover is provided. When arranged in the vicinity of the member having the member, it is possible to suppress a decrease in input impedance of the antenna element due to the member having a portion formed of a conductive material force.
シート体を用いなければ、電界型のアンテナ素子は、導電性材料から成る部分を 有する部材の近傍では、ほとんど動作しなくなり、無線通信に用いることができなくな る。この理由として、電界型のアンテナ素子の入力インピーダンスが大幅に低下する ことが挙げられる。入力インピーダンスの低下は、アンテナ素子と、導電性材料から成 る部分を有する部材との間で高周波数的に短絡 (ショート)する現象により生じるもの である。この現象は渦電流を介するものではなぐ電界型アンテナ特有のものである 電界型のアンテナ素子の入力インピーダンスが小さくなると、電界型のアンテナ素 子を用いて通信する通信手段のインピーダンスと乖離し、電界型のアンテナ素子と通 信手段との間で、信号を受渡しすることができなくなってしまう。シート体は、アンテナ 素子が導電性材料から成る部分を有する部材の近傍に配置されるときに、アンテナ 素子の入力インピーダンスの低下を抑制することができる。したがってシート体を用い ること〖こよって、電界型のアンテナ素子を用いて、導電性材料から成る部分を有する 部材の近傍であっても、好適に無線通信することができる。 If the sheet body is not used, the electric field type antenna element hardly operates in the vicinity of a member having a portion made of a conductive material, and cannot be used for wireless communication. This is because the input impedance of the electric field type antenna element is greatly reduced. The decrease in input impedance is caused by a phenomenon in which the antenna element and a member having a portion made of a conductive material are short-circuited at a high frequency. This phenomenon is peculiar to electric field type antennas that do not involve eddy currents. When the input impedance of an electric field type antenna element becomes small, it deviates from the impedance of the communication means that communicates using the electric field type antenna element. The signal cannot be passed between the antenna element of the mold and the communication means. The sheet member can suppress a decrease in input impedance of the antenna element when the antenna element is disposed in the vicinity of a member having a portion made of a conductive material. Therefore, by using a sheet body, it has a portion made of a conductive material using an electric field type antenna element. Even in the vicinity of the member, wireless communication can be suitably performed.
また本発明は、電界型のアンテナ素子を用いて、導電性材料から成る部分を有す る部材の近傍で無線通信するにあたって、アンテナ素子と導電性材料から成る部分 を有する部材との間またはアンテナ素子近傍に設けられ、導電性材料から成る部分 を有する部材による電磁エネルギの損失を抑制することを特徴とするシート体である 本発明に従えば、シート体は、電界型のアンテナ素子と導電性材料から成る部分を 有する部材との間またはアンテナ素子近傍に設けることによって、アンテナ素子が導 電性材料カゝら成る部分を有する部材の近傍に配置されるときに、導電性材料力ゝら成 る部分を有する部材よる電磁エネルギの損失を抑制することができる。シート体を用 いなければ、電界型のアンテナ素子は、導電性材料から成る部分を有する部材の近 傍では、ほとんど動作しなくなり、無線通信に用いることができなくなる。この理由は、 電界型のアンテナ素子であっても、アンテナ素子と導電性材料力 成る部分を有す る部材に電磁的結合が起こるため、電磁エネルギが消費されることから説明される。 導電性材料から成る部分を有する部材に、渦電流ではない電流が、高周波的な短 絡によって誘導され、この電流が生じるときの抵抗損による熱エネルギへの変化と、 電流によって発生する逆向きの磁界による通信用電磁波の磁界のキャンセルとによ つて、電磁エネルギが損失する。この対策としてシート体は、アンテナ素子が導電性 材料カゝら成る部分を有する部材の近傍に配置されるときに、電磁エネルギの損失を 抑制することができる。その理由は、まず短絡を生じにくくすること、およびシート体の 透磁率によって、電流が生じる導体部分である電界型のアンテナ素子と導電性材料 から成る部分を有する部材との近傍 (すなわちシート体内部)に磁界分布^^中させ 、且つその磁界を減衰させることなく通過させることによって、電磁エネルギの損失を 防ぐことになるからである。また前述したインピーダンス調整 (整合化)も電磁エネルギ 損失防止に重要な役割を担う。したがってシート体を用いることによって、電界型のァ ンテナ素子を用いて、導電性材料から成る部分を有する部材の近傍で、好適に無線 通信することができる。  In addition, the present invention provides an electric field type antenna element for performing wireless communication in the vicinity of a member having a portion made of a conductive material, or between an antenna element and a member having a portion made of a conductive material, or an antenna. According to the present invention, a sheet body is provided with an electric field type antenna element and a conductive material. The sheet body is characterized by suppressing loss of electromagnetic energy caused by a member having a portion made of a conductive material. When the antenna element is disposed in the vicinity of the member having the portion made of the conductive material by being provided between the member having the portion made of the material or in the vicinity of the antenna element, the conductive material force is generated. The loss of electromagnetic energy due to the member having the portion can be suppressed. If the sheet body is not used, the electric field type antenna element hardly operates near a member having a portion made of a conductive material and cannot be used for wireless communication. The reason for this is explained by the fact that even an electric field type antenna element consumes electromagnetic energy because electromagnetic coupling occurs between the antenna element and a member having a portion made of a conductive material. A current that is not an eddy current is induced in a member having a portion made of a conductive material by a high-frequency short-circuit, and the change to thermal energy due to resistance loss when this current occurs and the reverse direction generated by the current. The electromagnetic energy is lost due to the cancellation of the communication electromagnetic field by the magnetic field. As a countermeasure against this, the sheet body can suppress the loss of electromagnetic energy when the antenna element is arranged in the vicinity of a member having a portion made of a conductive material. The reason for this is that the short circuit is less likely to occur, and the vicinity of the electric field type antenna element, which is a conductor portion where current is generated, and a member having a portion made of a conductive material due to the magnetic permeability of the sheet body (that is, the interior of the sheet body). This is because the loss of electromagnetic energy can be prevented by allowing the magnetic field to pass through the magnetic field distribution without any attenuation. The impedance adjustment (matching) described above also plays an important role in preventing electromagnetic energy loss. Therefore, by using the sheet member, wireless communication can be suitably performed in the vicinity of a member having a portion made of a conductive material using an electric field type antenna element.
また本発明は、アンテナ素子は、ダイポールアンテナ、モノポールアンテナ、ループ アンテナまたはこれらにリアクタンス構造部を装荷したアンテナの少なくとも 1つを含 むことを特徴とする。 In the present invention, the antenna element includes a dipole antenna, a monopole antenna, and a loop. It includes at least one of an antenna or an antenna loaded with a reactance structure portion.
本発明に従えば、シート体を用いることによって、たとえば簡単な構成のダイポール アンテナを、導電性材料から成る部分を有する部材の近傍で用いて無線通信するこ とができる。まずダイポールアンテナとシート体を組合わせることにより、アンテナ素子 の小型化が実現できる。これは本シート体の複素比透磁率の実数部 'および複素 比誘電率の実数部 ε 'の高さにより相まって、波長短縮効果が加わり、従来製品に比 ベて格段に小型化を達成することができるためである。ダイポールアンテナは線状で 、カーブおよび折曲がりがあってもよく自由な形状でよい。たとえば馬蹄形状などが ある。全長が λ Ζ2あればよい。たとえば 950MHzでは、約 15. 8cm長である力 こ れに本シート体による波長短縮効果が加わり、約 3〜 10cmの線状素子が可能となり 、さらに曲折をカ卩えることで 2〜3cmのラベルにも収まるサイズが可能となる。さらに小 型化することもでき、貼れる対象は広範囲に及ぶことになる。モノポールアンテナはダ イポールアンテナの片側の素子とグラウンド板との間に給電するので、素子全長は λ According to the present invention, by using the sheet body, for example, a dipole antenna having a simple configuration can be used for wireless communication in the vicinity of a member having a portion made of a conductive material. First, the antenna element can be miniaturized by combining a dipole antenna and a sheet. This is coupled with the height of the real part 'of the complex relative permeability of this sheet and the real part ε' of the complex relative permittivity, which adds to the wavelength shortening effect and achieves a much smaller size than conventional products. It is because it can do. The dipole antenna is linear and may be curved or bent and may have a free shape. For example, there is a horseshoe shape. The total length should be λ Ζ2. For example, at 950MHz, a force of about 15.8cm length is added to the wavelength shortening effect of this sheet, and a linear element of about 3-10cm becomes possible. The size that fits in is also possible. Further downsizing is possible, and the range of objects that can be pasted is wide. Since the monopole antenna feeds power between the element on one side of the dipole antenna and the ground plane, the total element length is λ
Ζ4とさらに小型化できる。ループアンテナの場合、全周が 1波長に近いとき、半波長 ダイポールアンテナを 2個並べた構造に近似することができ、電界型のアンテナ素子 とみることができる。これらのアンテナも通信妨害部材の近傍で、好適に無線通信す ることができる。またこれらのアンテナ素子は、インダクタンス (L)成分、コンデンサ(C )成分による共振整合する部分 (リアクタンス整合部)を装荷してもよ 、し、しなくてもよ い。 It can be further downsized with Ζ4. In the case of a loop antenna, when the entire circumference is close to one wavelength, it can be approximated to a structure in which two half-wave dipole antennas are arranged, and can be regarded as an electric field antenna element. These antennas can also preferably perform wireless communication in the vicinity of the communication disturbing member. In addition, these antenna elements may or may not be loaded with a resonance matching portion (reactance matching portion) by an inductance (L) component and a capacitor (C) component.
また本発明は、無線通信に用いられる電磁波の周波数は、 300MHz以上 300GH z以下の範囲に含まれることを特徴とする。  In addition, the present invention is characterized in that the frequency of electromagnetic waves used for wireless communication is included in a range of 300 MHz to 300 GHz.
本発明に従えば、周波数が 300MHz以上 300GHz以下の範囲に含まれる電磁波 を利用することによって、比較的長距離の無線通信距離を小型アンテナで実現する ことができる。 300MHz以上 300GHz以下の範囲には、 UHF帯(300MHz〜3GH z)、 SHF帯(3GHz〜30GHz)および EHF帯(30GHz〜300GHz)が含まれる。 また本発明は、無線通信に用いられる電磁波の周波数は、 860MHz以上 1GHz 以下に含まれることを特徴とする。 本発明に従えば、無線通信に用いられる電磁波の周波数が、 860MHz以上 1GH z以下に含まれる周波数であるので、比較的離れた装置間での通信に適用すること ができる。さらに無線通信に用いられる電磁波の波長が比較的小さぐ電界型の小形 のアンテナを用いて通信を可能にすることができる。 According to the present invention, a relatively long wireless communication distance can be realized with a small antenna by using an electromagnetic wave included in a frequency range of 300 MHz to 300 GHz. The range from 300 MHz to 300 GHz includes UHF band (300 MHz to 3 GHz), SHF band (3 GHz to 30 GHz), and EHF band (30 GHz to 300 GHz). Further, the present invention is characterized in that the frequency of electromagnetic waves used for wireless communication is included in the range of 860 MHz to 1 GHz. According to the present invention, the frequency of electromagnetic waves used for wireless communication, since the frequency included below 860MHz above 1GH z, can be applied to a communication between relatively distant device. Furthermore, communication can be made possible by using a small electric field type antenna having a relatively small electromagnetic wave wavelength used for wireless communication.
また本発明は、無線通信に用いられる電磁波の周波数は、 2. 4GHz帯に含まれる ことを特徴とする。  Further, the present invention is characterized in that the frequency of electromagnetic waves used for wireless communication is included in the 2.4 GHz band.
本発明に従えば、無線通信に用いられる電磁波の周波数が、 2. 4GHz帯に含ま れる周波数であるので、比較的離れた装置間での通信に適用することができる。さら に無線通信に用いられる電磁波の波長が比較的小さぐ電界型の小形のアンテナを 用いて通信を可能にすることができる。  According to the present invention, since the frequency of the electromagnetic wave used for wireless communication is a frequency included in the 2.4 GHz band, it can be applied to communication between relatively distant devices. Furthermore, communication can be made possible by using a small electric field type antenna whose wavelength of electromagnetic waves used for wireless communication is relatively small.
また本発明は、磁性体であるシールド層を備えるシート体であることを特徴とする。 本発明に従えば、アンテナ素子と導電性材料から成る部分を有する部材との間ま たはアンテナ素子近傍に用いるシート体には、磁性体であるシールド層を備える。磁 性体であるシールド層は、電界型のアンテナ素子の近傍に存在する導電性材料から 成る部分を有する部材によるインピーダンス低下を抑制するために有効である。アン テナ素子の近傍の導電性材料力 成る部分を有する部材内に高周波的な短絡によ つて電流が誘導され、インピーダンスの低下がみられる力 電界型のアンテナであつ ても、磁性体を含むシールド層の存在によって、そのインピーダンス低下を抑制でき るものである。このインピーダンス調整は、磁性体の磁気特性に周波数依存性がある 場合、特定周波数のみに対応したものになる。  Further, the present invention is a sheet body including a shield layer that is a magnetic body. According to the present invention, the sheet used between the antenna element and the member having a portion made of a conductive material or in the vicinity of the antenna element is provided with a shield layer that is a magnetic substance. The shield layer, which is a magnetic material, is effective for suppressing a decrease in impedance caused by a member having a portion made of a conductive material that exists in the vicinity of the electric field type antenna element. A force in which a current is induced by a high-frequency short-circuit in a member having a conductive material force in the vicinity of the antenna element, and a decrease in impedance is observed. The presence of the layer can suppress the impedance drop. This impedance adjustment corresponds only to a specific frequency when the magnetic properties of the magnetic material are frequency-dependent.
また本発明は、無線通信に用いられる電磁波の周波数にて、複素比透磁率の実数 部 μ 'が、複素比透磁率の虚数部 μ "以上であるシールド層を備えることを特徴とす る。  In addition, the present invention is characterized by including a shield layer in which the real part μ ′ of the complex relative permeability is equal to or more than the imaginary part μ ″ of the complex relative permeability at the frequency of the electromagnetic wave used for wireless communication.
本発明に従えば、シート体には、シールド層が設けられ、シールド層は、無線通信 に用いられる電磁波の周波数にて複素比透磁率の実数部 'が、複素比透磁率の 虚数部 "以上、したがって ,≥ μ "である。これによつて、磁界の集め易さを示す 複素比透磁率の実数部 'が、磁界を熱変換 (ロス)する複素比透磁率の虚数部 " より大きくなり、導電性材料力 成る部分を有する部材よるアンテナ素子の入力インピ 一ダンスの低下を抑制することができるとともに、より効率的に導電性材料から成る部 分を有する部材よる電磁エネルギの損失を抑制することができるシート体を実現する ことができる。さらにシールド層の複素比透磁率の実数部 ,は、複素比誘電率の実 数部 ε 'と共にアンテナ素子の波長短縮効果を有し、アンテナ素子の小型化にも寄 与すること〖こなる。 According to the present invention, the sheet body is provided with a shield layer, and the shield layer has a real part 'of the complex relative permeability at the frequency of the electromagnetic wave used for wireless communication equal to or more than the imaginary part "of the complex relative permeability. Therefore, ≥ μ ". As a result, the real part 'of the complex relative permeability that indicates the ease of collecting the magnetic field is larger than the imaginary part of the complex relative permeability that thermally converts (losses) the magnetic field and has a portion that is made of conductive material force. Input impedance of antenna element by member It is possible to realize a sheet body that can suppress a decrease in dance and more efficiently suppress a loss of electromagnetic energy due to a member having a part made of a conductive material. Furthermore, the real part of the complex relative permeability of the shield layer, together with the real part ε ′ of the complex relative permittivity, has the effect of shortening the wavelength of the antenna element, which also contributes to the miniaturization of the antenna element.
また本発明は、無線通信に用いられる電磁波の周波数にて、複素比透磁率の実数 部 μ,が 5以上でありかつ透磁率損失項 tan δ μ ( = μ "/ μ,)力 1以下であるシー ルド層を備えることを特徴とする。  The present invention also provides that the real part μ of the complex relative permeability is 5 or more and the permeability loss term tan δ μ (= μ "/ μ,) force 1 or less at the frequency of the electromagnetic wave used for wireless communication. It is characterized by having a certain shield layer.
本発明に従えば、シート体には、シールド層が設けられ、シールド層は、無線通信 に用いられる電磁波の周波数にて、複素比透磁率の実数部/ ζ 'が 5以上でありかつ 透磁率損失項 tan δ μ力 ^以下である。これによつてアンテナ素子が導電性材料から 成る部分を有する部材の近傍に配置されるときに、導電性材料から成る部分を有す る部材よるアンテナ素子の入力インピーダンスの低下を抑制することができるとともに 、導電性材料力 成る部分を有する部材よる電磁エネルギの損失を抑制することが できるシート体を実現することができる。  According to the present invention, the sheet body is provided with a shield layer, and the shield layer has a real part / ζ ′ of the complex relative permeability of 5 or more at the frequency of the electromagnetic wave used for wireless communication, and the permeability. Loss term tan δ μ force ^ or less. As a result, when the antenna element is disposed in the vicinity of a member having a portion made of a conductive material, a decrease in input impedance of the antenna element due to the member having a portion made of a conductive material can be suppressed. At the same time, it is possible to realize a sheet body that can suppress loss of electromagnetic energy due to a member having a portion made of a conductive material force.
また本発明は、無線通信に用いられる電磁波の周波数にて、複素比透磁率の実数 部 ,が 20以上でありかつ透磁率損失項 tan δ が 0. 5以下であるシールド層を備 えることを特徴とする。  The present invention further comprises a shield layer in which the real part of the complex relative permeability is 20 or more and the permeability loss term tan δ is 0.5 or less at the frequency of the electromagnetic wave used for wireless communication. Features.
本発明に従えば、シート体には、シールド層が設けられ、シールド層は、無線通信 に用いられる電磁波の周波数にて、複素比透磁率の実数部/ ζ 'が 20以上でありかつ 透磁率損失項 tan δ μが 0. 5以下である。これによつてアンテナ素子が導電性材料 から成る部分を有する部材の近傍に配置されるときに、導電性材料から成る部分を 有する部材よるアンテナ素子の入力インピーダンスの低下を抑制することができるとと もに、導電性材料力 成る部分を有する部材よる電磁エネルギの損失を抑制すること ができるシート体を実現することができる。  According to the present invention, the sheet body is provided with a shield layer, and the shield layer has a real part of the complex relative permeability / ζ ′ of 20 or more at the frequency of the electromagnetic wave used for wireless communication, and the permeability. The loss term tan δ μ is 0.5 or less. As a result, when the antenna element is disposed in the vicinity of a member having a portion made of a conductive material, a decrease in input impedance of the antenna element due to the member having a portion made of a conductive material can be suppressed. In addition, it is possible to realize a sheet body that can suppress a loss of electromagnetic energy due to a member having a portion made of a conductive material force.
また本発明は、無線通信に用いられる電磁波の周波数にて、複素比誘電率の実数 部 ε 'が 20以上であるシールド層を備えることを特徴とする。  In addition, the present invention is characterized by including a shield layer having a real part ε ′ of a complex relative dielectric constant of 20 or more at the frequency of an electromagnetic wave used for wireless communication.
本発明に従えば、シート体には、シールド層が設けられ、シールド層は、無線通信 に用いられる電磁波の周波数にて、複素比誘電率の実数部 ε 'が 20以上である。こ れによってアンテナ素子が導電性材料力 成る部分を有する部材の近傍に配置され るときに、導電性材料から成る部分を有する部材よるアンテナ素子の入力インピーダ ンスの低下を抑制することができるとともに、導電性材料力 成る部分を有する部材ょ る電磁エネルギの損失を抑制することができるシート体を実現することができる。また 波長短縮効果によるアンテナ小型化が得られる。 According to the present invention, the sheet body is provided with a shield layer, and the shield layer is a wireless communication device. The real part ε ′ of the complex relative permittivity is 20 or more at the frequency of the electromagnetic wave used for. As a result, when the antenna element is arranged in the vicinity of a member having a portion made of a conductive material, it is possible to suppress a decrease in input impedance of the antenna element due to the member having a portion made of a conductive material. It is possible to realize a sheet body that can suppress a loss of electromagnetic energy of a member having a portion made of conductive material. Also, the antenna can be downsized due to the wavelength shortening effect.
また本発明は、無線通信に用いられる電磁波の周波数にて、複素比誘電率の虚数 部 ε "が 300以下であるシールド層を備えることを特徴とする。  In addition, the present invention is characterized by including a shield layer having an imaginary part ε ″ of a complex relative dielectric constant of 300 or less at the frequency of electromagnetic waves used for wireless communication.
本発明に従えば、シート体には、シールド層が設けられ、シールド層は、無線通信 に用いられる電磁波の周波数にて、複素比誘電率の虚数部 ε "が 300以下である。 これによつてアンテナ素子が導電性材料力 成る部分を有する部材の近傍に配置さ れるときに、導電性材料力 成る部分を有する部材よるアンテナ素子の入力インピー ダンスの低下を抑制することができるとともに、導電性材料から成る部分を有する部 材よる電磁エネルギの損失を抑制することができるシート体を実現することができる。 また本発明は、導電性を有する導体層を備えることを特徴とする。  According to the present invention, the sheet body is provided with a shield layer, and the shield layer has an imaginary part ε ″ of the complex relative dielectric constant of 300 or less at the frequency of the electromagnetic wave used for wireless communication. Therefore, when the antenna element is disposed in the vicinity of a member having a portion having a conductive material force, a decrease in the input impedance of the antenna element due to the member having a portion having a conductive material force can be suppressed, and the conductivity can be reduced. It is possible to realize a sheet body capable of suppressing loss of electromagnetic energy caused by a member having a part made of a material, and to provide a conductive layer having conductivity.
本発明に従えば、シート体が導体層を有しているので、アンテナ素子の近傍に導 電性材料から成る導体層が存在する状態で、前述の無線通信に用いる電磁波の周 波数に合わせて、シールド層の複素比透磁率の実数部 'および虚数部/ ζ "または 複素比誘電率の実数部 ε,が調整されており、シールド層の好適な特性を実現する ことができる。したがって導電性材料力 成る部分を有する部材の近傍で、さらに好 適な無線通信を実現することができる。  According to the present invention, since the sheet body has the conductor layer, the conductor layer made of a conductive material is present in the vicinity of the antenna element, so that the sheet body matches the frequency of the electromagnetic wave used for the wireless communication. , The real part 'and the imaginary part / ζ "of the complex relative permeability of the shield layer or the real part ε, of the complex relative permittivity are adjusted, so that a favorable characteristic of the shield layer can be realized. More suitable wireless communication can be realized in the vicinity of a member having a material force portion.
また本発明は、シールド層は、磁性材料として、軟磁性金属、軟磁性酸化金属、磁 性金属および磁性酸ィ匕金属のうちの少なくともいずれか 1つ力も成る材料、またはそ れを含有する材料であることを特徴とする。  According to the present invention, the shield layer is made of a material having at least one of a force of a soft magnetic metal, a soft magnetic oxide metal, a magnetic metal and a magnetic acid metal as a magnetic material, or a material containing the same. It is characterized by being.
本発明に従えば、シールド層には、軟磁性金属、軟磁性酸化金属、磁性金属およ び磁性酸化金属のうちの少なくともいずれか 1つから成る材料、またはそれを含有す る材料である。したがってシールド層は、これらの材料だけを用いて形成されるか、こ れらの材料を結合材中に分散させて実現される。この構成によって、前述の特性が 得られるシールド層を形成することができる。したがって前述の優れた効果を達成す るシート体を実現することができる。 According to the present invention, the shield layer is a material made of at least one of soft magnetic metal, soft magnetic metal oxide, magnetic metal and magnetic metal oxide, or a material containing the same. Therefore, the shield layer is formed using only these materials, or is realized by dispersing these materials in the binder. With this configuration, the aforementioned characteristics are The resulting shield layer can be formed. Therefore, it is possible to realize a sheet body that achieves the above-described excellent effects.
また本発明のシールド層は、有機重合体 100重量部に対して、磁性材料として、フ エライト、鉄合金および鉄粒子の群カゝら選ばれる 1または複数の材料を、 1重量部以 上 1500重量部以下の配合量で含む材料力も成ることを特徴とする。  In addition, the shield layer of the present invention comprises one or more materials selected from the group consisting of ferrite, iron alloy and iron particles as a magnetic material with respect to 100 parts by weight of the organic polymer. It is also characterized in that the material strength is contained with a blending amount of not more than parts by weight.
本発明に従えば、シールド層は、結合材となる有機重合体に磁性材料を配合した ものである。このような配合物であることで、安定した磁気特性を得ることができ、また 切断などの加工性と、可撓性とを付与することが可能となる。  According to the present invention, the shield layer is obtained by blending a magnetic material with an organic polymer serving as a binder. With such a blend, stable magnetic properties can be obtained, and processability such as cutting and flexibility can be imparted.
また本発明は、難燃性が付与されていることを特徴とする。  Further, the present invention is characterized in that flame retardancy is imparted.
本発明に従えば、シート体は、難燃性が得られる。たとえばタグ、リーダ、携帯電話 を含むアンテナ素子を用いて無線通信する電子情報伝達装置は、難燃性を要求さ れる場合がある。シート体は、このような難燃性が要求される用途にも好適に用いるこ とがでさる。  According to the present invention, the sheet body is flame retardant. For example, an electronic information transmission device that performs wireless communication using an antenna element including a tag, a reader, and a mobile phone may be required to be flame retardant. The sheet body can be suitably used for such applications that require flame retardancy.
また本発明は、熱伝導性が付与されていることを特徴とする。  Further, the present invention is characterized in that thermal conductivity is imparted.
本発明に従えば、シート体が用いられる環境は、たとえば ICを含む通信手段およ び電源手段など、発熱源となる手段の近傍で用いられる場合がある。シート体の熱伝 導性が優れて ヽること〖こよって、発熱源となる手段で発熱される熱を逃がすことがで き、その発熱源となる手段の昇温を抑え、高温に晒されることによる性能低下を防ぐ ことができる。  According to the present invention, the environment in which the sheet body is used may be used in the vicinity of a means serving as a heat source, such as a communication means including an IC and a power supply means. Since the heat conductivity of the sheet body is excellent, the heat generated by the heat source means can be released, and the temperature rise of the heat source means is suppressed and exposed to high temperatures. This can prevent performance degradation.
また本発明は、少なくとも一方の表面部が、粘着性または接着性を有することを特 徴とする。  Further, the present invention is characterized in that at least one surface portion has tackiness or adhesiveness.
本発明に従えば、少なくとも一表面部が、粘着性または接着性を有しているので、 たとえば前記導電性材料力 成る部分を有する部材など、他の物品に貼着させるこ とができる。これによつてシート体を容易に用いることができる。  According to the present invention, since at least one surface portion has adhesiveness or adhesiveness, it can be adhered to another article such as a member having a portion having the conductive material force. Accordingly, the sheet body can be easily used.
また本発明は、無線通信に用いられる周波数に合わされる共振周波数を有する電 界型のアンテナ素子と、  The present invention also provides an electric field antenna element having a resonance frequency matched to a frequency used for wireless communication,
前記シート体とを備えることを特徴とするアンテナ装置である。  An antenna device comprising the sheet body.
本発明に従えば、シート体が、アンテナ素子と導電性材料から成る部分を有する部 材との間またはアンテナ素子近傍に設けられる。これによつてアンテナ装置は、導電 性材料カゝら成る部分を有する部材の近傍に設けて、アンテナ素子を用いて好適に無 線通信し、電子情報を伝達するために用いることができる。このように導電性材料か ら成る部分を有する部材の近傍で好適に用いることができるアンテナ装置を実現す ることがでさる。 According to the present invention, the sheet body has a portion made of an antenna element and a conductive material. It is provided between the materials or in the vicinity of the antenna element. Accordingly, the antenna device can be provided in the vicinity of a member having a portion made of a conductive material cover, and can be used for suitably performing wireless communication using the antenna element and transmitting electronic information. Thus, an antenna device that can be suitably used in the vicinity of a member having a portion made of a conductive material can be realized.
また本発明は、前記アンテナ装置を備えることを特徴とする電子情報伝達装置であ る。  The present invention is also an electronic information transmission device comprising the antenna device.
本発明に従えば、導電性材料力も成る部分を有する部材の近傍に設けても、アン テナ素子を備えるアンテナ装置を用いて好適に無線通信可能な電子情報伝達装置 を実現することができる。  According to the present invention, it is possible to realize an electronic information transmission device capable of suitably performing wireless communication using an antenna device including an antenna element even when provided in the vicinity of a member having a portion having a conductive material force.
また本発明は、密集状態の物品に装着されるトランスボンダとして用いられることを 特徴とする。  In addition, the present invention is characterized in that it is used as a transbonder that is attached to a densely packed article.
本発明に従えば、シート体を備える電子情報伝達装置を、たとえばタグなどのァー ルエフアイディー(Radio Frequency Identification ;略称 RFID)システムのトランスポ ンダとして用いることによって、密集状態にある物品にトランスボンダを装着して用 Vヽ ても、近傍に存在する他のトランスボンダとの電磁気的な結合および他のトランスボン ダによる影響を抑制することができる。複数のトランスボンダを密集状態で用いると、 他のトランスボンダが、導電性材料から成る部分を有する部材となり、無線通信に影 響を受ける力 トランスボンダにシート体を設けておくことによって、他のトランスボンダ の影響を抑制し、リーダによる読取り率を向上することができる。  According to the present invention, an electronic information transmission device including a sheet body is used as a transponder of a radio frequency identification (RFID) system such as a tag, for example. Even when the V is installed, the electromagnetic coupling with other transponders in the vicinity and the influence of other transbonders can be suppressed. When multiple transponders are used in a dense state, the other transbonders become members having portions made of conductive materials, and the force that affects wireless communication. The influence of the transbonder can be suppressed and the reading rate by the reader can be improved.
図面の簡単な説明 Brief Description of Drawings
本発明の目的、特色、および利点は、下記の詳細な説明と図面とからより明確にな るであろう。  Objects, features and advantages of the present invention will become more apparent from the following detailed description and drawings.
図 1は、本発明の実施の一形態のシート体 10を簡略ィ匕して示す断面図である。 図 2は、シールド層 13の内部構造を拡大して示す断面図である。  FIG. 1 is a cross-sectional view schematically showing a sheet body 10 according to an embodiment of the present invention. FIG. 2 is an enlarged sectional view showing the internal structure of the shield layer 13.
図 3は、実施例 1の材料定数 '、 μ ε ε "の測定結果を示すグラフである。 図 4は、シート体 10を備えるタグ 30を簡略ィ匕して示す断面図である。  3 is a graph showing the measurement results of the material constants', μ ε ε "of Example 1. FIG. 4 is a cross-sectional view showing the tag 30 including the sheet body 10 in a simplified manner.
図 5は、タグ 30を示す斜視図である。 図 6は、タグ 30を通信妨害部材 12に貼着した状態で、アンテナ素子 11の近傍に形 成される電界を示す断面図である。 FIG. 5 is a perspective view showing the tag 30. FIG. 6 is a cross-sectional view showing an electric field formed in the vicinity of the antenna element 11 in a state where the tag 30 is attached to the communication disturbing member 12.
図 7は、シート体 10を介在させずに、アンテナ素子 11および ICタグ 17を通信妨害 部材 12近傍に配置した状態で、アンテナ素子 11の近傍に形成される電界を示す断 面図である。  FIG. 7 is a cross-sectional view showing an electric field formed in the vicinity of the antenna element 11 in a state where the antenna element 11 and the IC tag 17 are arranged in the vicinity of the communication disturbing member 12 without the sheet body 10 interposed.
図 8は、アンテナ素子 11としてダイポールアンテナを用いる場合のシート体 10の効 果を確認するためのシミュレーションにおいて想定したタグ 30の構成を示す断面図 である。  FIG. 8 is a cross-sectional view showing the configuration of the tag 30 assumed in the simulation for confirming the effect of the sheet 10 when a dipole antenna is used as the antenna element 11.
図 9は、図 8の構成によるシミュレーション結果を示し、周波数とアンテナ素子の入 力インピーダンスとの関係を示すグラフである。  FIG. 9 is a graph showing a simulation result by the configuration of FIG. 8 and showing a relationship between the frequency and the input impedance of the antenna element.
図 10は、図 8の構成によるシミュレーション結果を示し、指向性利得を示すグラフで ある。  FIG. 10 is a graph showing the directivity gain, showing the simulation result of the configuration of FIG.
図 11は、図 8の構成によるシミュレーション結果を示し、絶対利得を示すグラフであ る。  FIG. 11 is a graph showing a simulation result by the configuration of FIG. 8 and showing an absolute gain.
図 12は、本発明の実施の他の形態のタグ 30を簡略ィ匕して示す斜視図である。 図 13は、タグ 30が装着される飲料品 40を示す斜視図である。  FIG. 12 is a perspective view schematically showing a tag 30 according to another embodiment of the present invention. FIG. 13 is a perspective view showing the beverage 40 to which the tag 30 is attached.
図 14は、タグ 30が内蔵される電子装置 41を示す斜視図である。  FIG. 14 is a perspective view showing an electronic device 41 in which the tag 30 is built.
図 15は、本発明の実施のさらに他の形態のタグ 30を簡略ィ匕して示す平面図である 図 16は、図 15のタグ 30を示す断面図である。  FIG. 15 is a plan view schematically showing a tag 30 according to still another embodiment of the present invention. FIG. 16 is a cross-sectional view showing the tag 30 of FIG.
図 17は、図 15および図 16のように 2つのタグ 30力 近接して配置される場合のシミ ユレーシヨン結果を示すグラフである。  FIG. 17 is a graph showing a simulation result when two tags 30 are placed close to each other as shown in FIG. 15 and FIG.
図 18は、図 15および図 16に示すタグ 30においてシート体 10が設けられていない 2つのタグが、同様に近接して配置される場合のシミュレーション結果を示すグラフで ある。  FIG. 18 is a graph showing a simulation result when two tags that are not provided with the sheet member 10 in the tag 30 shown in FIGS. 15 and 16 are similarly arranged close to each other.
図 19は、従来の技術であるタグ 1を簡略ィ匕して示す断面図である。  FIG. 19 is a cross-sectional view schematically showing a tag 1 which is a conventional technique.
図 20は、他の従来の技術であるタグ 1Aを簡略ィ匕して示す断面図である。  FIG. 20 is a cross-sectional view schematically showing a tag 1A as another conventional technique.
発明を実施するための最良の形態 以下、図面を参照して、本発明の好適な実施の形態について説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
図 1は、本発明の実施の一形態のシート体 10を簡略ィ匕して示す断面図である。シ ート体 10は、電界型のアンテナ素子 11と、導電性材料から成る部分を有する部材( 以下「通信妨害部材」という) 12との間またはアンテナ素子近傍に設けられ、アンテナ 素子 11を用 、て通信妨害部材 12の近傍で無線通信するにあたって、アンテナ素子 11による通信環境が、通信妨害部材 12によって悪化することを抑制するシート体 10 である。ここで、近傍とは、アンテナ素子による無線通信の通信環境に影響を与える 近い位置を意味している。  FIG. 1 is a cross-sectional view schematically showing a sheet body 10 according to an embodiment of the present invention. The sheet body 10 is provided between the electric field type antenna element 11 and a member 12 having a portion made of a conductive material (hereinafter referred to as “communication blocking member”) 12 or in the vicinity of the antenna element. In the wireless communication in the vicinity of the communication disturbing member 12, the sheet body 10 suppresses the deterioration of the communication environment by the antenna element 11 due to the communication disturbing member 12. Here, the vicinity means a close position that affects the communication environment of the wireless communication by the antenna element.
通信環境の悪ィ匕には、アンテナ素子 11の入力インピーダンスの低下および電磁ェ ネルギの損失が含まれる。また通信妨害部材 12の影響により、アンテナ素子 11の共 振周波数がシフトすることもある。したがってシート体 10は、通信妨害部材 12による アンテナ素子 11の入力インピーダンスの低下を抑制し、通信妨害部材 12による電磁 エネルギの損失を抑制するシート体 10である。また共振周波数に関しては、シート体 10によって調整されるものでもよいし、さらに整合回路(リアクタンス装荷部)によって 整合されるものであってよ 、。  The bad communication environment includes a decrease in the input impedance of the antenna element 11 and a loss of electromagnetic energy. Further, the resonance frequency of the antenna element 11 may shift due to the influence of the communication disturbing member 12. Therefore, the sheet body 10 is the sheet body 10 that suppresses a decrease in input impedance of the antenna element 11 due to the communication interference member 12 and suppresses a loss of electromagnetic energy due to the communication interference member 12. The resonance frequency may be adjusted by the sheet body 10 or may be adjusted by a matching circuit (reactance loading portion).
アンテナ素子 11は、電界型のアンテナ素子であれば特に限定されるものではない 力 本実施の形態では、ダイポールアンテナ、モノポールアンテナ、またはループア ンテナである。ループアンテナの場合、周囲長が 1波長、または 1波長に近づくと電 界型の挙動を示す。ここで 、う 1波長ある!/、はダイポールアンテナの 1Z2波長やモノ ポールアンテナの 1Z4波長は実効的な意味であり、たとえば誘電率や透磁率にて 波長短縮効果を受けてその波長相当分の長さになった場合を含む。  The antenna element 11 is not particularly limited as long as it is an electric field type antenna element. In this embodiment, the antenna element 11 is a dipole antenna, a monopole antenna, or a loop antenna. In the case of a loop antenna, an electric field type behavior is exhibited when the perimeter is one wavelength or near one wavelength. Here, there is one wavelength! /, The 1Z2 wavelength of the dipole antenna and the 1Z4 wavelength of the monopole antenna are effective meanings. Including the case of length.
本発明で!/、う電界型のアンテナ素子とは、電磁誘導方式の磁界型のアンテナ素子 の機能、すなわち磁力線を検出する機能だけを有するものを除き、電界型のアンテ ナ素子の機能、すなわち電気力線を検出する機能を有するものであればよい。した 力 Sつて電界型のアンテナ素子には、電気力線を検出する機能だけを利用する素子、 電気力線を検出する機能および磁力線を検出する機能の両方を併用する素子、お よび電気力線を検出する機能と磁力線を検出する機能とを、交互に切替えて利用す る素子が、含まれる。 本発明で ヽぅ通信妨害部材としての導電性材料とは、導電性を有する材料だけか ら成る材料、および導電性を有する材料を含んだ材料である。この導電性材料は、た とえば金属、 Si系材料、黒鉛シートなどの導電性材料、 ITOおよび ZnOなどの酸ィ匕 物ならびに水、薬品、油などの液体、含水性材料などを含み、アンテナ素子との間で 高周波数的に短絡、結合または干渉を引き起こす可能性のあるレベルの導電率を有 する材料をいう。導電性材料は、導電性を有する材料であり、金属など、抵抗率が 10 "6 Ω cm以上 10_1 Ω cm未満である比較的抵抗率が低 ヽ材料と、水および海水など の液体ならびに半導体など、抵抗率が 10_1 Ω cm以上 106 Ω cm以下である比較的 抵抗率が高!ヽ材料とを含む。 In the present invention, the electric field type antenna element means the function of the electric field type antenna element except for the function of the electromagnetic induction type magnetic field type antenna element, that is, only the function of detecting the magnetic field lines. Any device having a function of detecting electric lines of force may be used. For the electric field type antenna element, an element that uses only the function of detecting electric lines of force, an element that uses both the function of detecting electric lines of force and the function of detecting lines of magnetic force, and electric lines of force An element that alternately switches between a function of detecting the magnetic field and a function of detecting the lines of magnetic force is included. In the present invention, a conductive material as a communication blocking member is a material including only a conductive material and a material including a conductive material. This conductive material includes, for example, conductive materials such as metals, Si-based materials, graphite sheets, oxides such as ITO and ZnO, liquids such as water, chemicals, and oils, water-containing materials, and the like. A material that has a level of conductivity that can cause short-circuiting, coupling, or interference with the device at high frequencies. The conductive material is a conductive material, such as a metal, which has a resistivity of 10 " 6 Ωcm or more and less than 10 _1 Ωcm, a relatively low resistivity material, a liquid such as water and seawater, and a semiconductor In other words , the resistivity is 10_1 Ωcm or more and 10 6 Ωcm or less, and the resistivity is relatively high!
また導電性材料力 成る部分を有する部材とは、少なくとも一部分が導電性材料か ら成る部材であり、全体が導電性材料力も成る部材、および一部分だけが導電性材 料から成る部材を含む。したがつてこの部材は、少なくとも一部が導電性を示す部材 であり、たとえば表面部だけが導電性を有していてもよいし、全体が導電性を有して いてもよぐ具体的には、他のアンテナ体、他のアンテナ素子、金属板、金属容器、 筐体、シールド材、導電性繊維、液体が収容された容器、液体が収容された試験管 、ペーストが収容された容器などを含む。  The member having a portion made of a conductive material includes at least a member made of a conductive material, and includes a member made entirely of a conductive material force and a member made only of a conductive material. Therefore, this member is a member that is at least partially conductive. For example, only the surface portion may have conductivity, or the whole may have conductivity. Other antenna bodies, other antenna elements, metal plates, metal containers, housings, shield materials, conductive fibers, containers containing liquids, test tubes containing liquids, containers containing pastes, etc. including.
アンテナ素子 11とシート体 10とは、粘接着剤層を介して貼着されても、粘接着剤層 を介さず直接設けられてもよい。粘接着剤層は、粘着性または接着性を有し、接合剤 から成る層であり、その粘着性または接着性によって、アンテナ素子 11とシート体 10 とが貼着される。接合剤は一般に誘電体であり、粘接着剤層は、誘電体層でもある。 直接設ける構成は、アンテナ素子 11およびシールド層 13のうちの少なくとも 、ずれ か一方が有する粘着性または接着性によって、相互に貼着する構成であってもよい し、シールド層 13にアンテナ素子 11を印刷、描写、蒸着などによって、直接加工して 設ける構成であってもよ 、し、アンテナ素子 11またはアンテナ素子 11を支持する支 持体にシールド層 13を塗工、溶着、固着、埋め込み、挟み込み、吹きつけなどによつ て、付加する構成であってもよい。支持体は、たとえば PETフィルムである。  The antenna element 11 and the sheet body 10 may be attached via an adhesive layer or directly provided without an adhesive layer. The adhesive layer is a layer having adhesiveness or adhesiveness and made of a bonding agent, and the antenna element 11 and the sheet body 10 are attached by the adhesiveness or adhesiveness. The bonding agent is generally a dielectric, and the adhesive layer is also a dielectric layer. The structure directly provided may be a structure in which at least one of the antenna element 11 and the shield layer 13 is adhered to each other by the adhesiveness or adhesiveness of the antenna element 11 and the shield layer 13, and the antenna element 11 is attached to the shield layer 13. The shield element 13 may be coated, welded, fixed, embedded, or sandwiched between the antenna element 11 or the support body that supports the antenna element 11. Alternatively, it may be added by spraying or the like. The support is, for example, a PET film.
シート体 10は、電磁界を遮蔽する効果を有するシート体であり、無線通信に用いら れる電磁波によって形成される電磁界を遮蔽する効果を有するシート体である。つま り、アンテナ素子 11の近傍にある通信妨害部材 12によるインピーダンス低下等の影 響を抑えるために、アンテナ素子 11からの電磁界を通信妨害部材 12に届きに《す るためのシートである。ここでは遮蔽と表現しているが、完全でなく一部を遮蔽する場 合も、磁界魏中させて通過させる場合も含む。したがってシート体 10は、無線通信 に用いられる電磁波を遮断する構成であり、これによつて前述の通信環境の悪ィ匕を 抑制する。 The sheet body 10 is a sheet body having an effect of shielding an electromagnetic field, and is a sheet body having an effect of shielding an electromagnetic field formed by an electromagnetic wave used for wireless communication. Tsuma In other words, the sheet is used to reduce the electromagnetic field from the antenna element 11 to reach the communication disturbing member 12 in order to suppress the influence of impedance reduction or the like caused by the communication disturbing member 12 in the vicinity of the antenna element 11. Although it is expressed as shielding here, it includes not only complete shielding but also partial shielding and passing through a magnetic field. Therefore, the sheet body 10 is configured to block electromagnetic waves used for wireless communication, thereby suppressing the above-described adverse effects of the communication environment.
遮断の対象とする電磁波は、どうような用途で利用される電磁波であってもよぐ遮 断の対象とする電磁波の周波数は、電磁波の用途によって決定されるものである。 遮断の対象とする電磁波は、たとえば RFIDシステムで利用される電磁波であり、 U HF帯に属する 860MHz以上 1GHz以下の範囲(以下「高 MHz帯」と 、う)に含まれ る周波数の電磁波であって、さらに具体的には、日本国内では 950MHz以上 956 MHz以下の範囲に含まれる周波数の電磁波である。  The electromagnetic wave to be blocked may be an electromagnetic wave used for any purpose. The frequency of the electromagnetic wave to be blocked is determined by the use of the electromagnetic wave. The electromagnetic waves to be blocked are, for example, electromagnetic waves used in RFID systems, and are electromagnetic waves having a frequency included in the range of 860 MHz to 1 GHz belonging to the UHF band (hereinafter referred to as “high MHz band”). More specifically, it is an electromagnetic wave having a frequency within the range of 950 MHz to 956 MHz in Japan.
前記遮断の対象とする電磁波の周波数は例示であり、例示の周波数以外の周波 数の電磁波を遮断する構成でも本発明に含まれる。シールド層の材料特性はこれら の周波数範囲ではほとんど差がなく推移し、本発明での数値をそのまま使うことがで きる。  The frequency of the electromagnetic wave to be blocked is an exemplification, and a configuration for blocking electromagnetic waves having a frequency other than the illustrated frequency is also included in the present invention. The material characteristics of the shield layer change little in these frequency ranges, and the numerical values in the present invention can be used as they are.
また 2. 4GHz帯の周波数の電磁波を遮断の対象とすることがある。 2. 4GHz帯は 、 2400MHz以上 2500MHz未満の周波数範囲である。 RFIDシステムで用いられ る電磁波の周波数は、 2400MHz以上 2483. 5MHz以下の範囲に含まれる。 遮断の対象とする電磁波の周波数は、特に限定されるものではないが、 300MHz 以上 300GHz以下の範囲を含み、任意の単数または複数の周波数を選択すること ができる。この 300MHz以上 300GHz以下の範囲には、 UHF帯(300MHz〜3G Hz)、 SHF帯(3GHz〜30GHz)および EHF帯(30GHz〜300GHz)が含まれる。 シート体 10は、シールド層 13と、導体層 14と、貼着用剤層 15とが積層される積層 体に構成される。シールド層 13は、電磁界を遮断するための層であり、電磁波を遮 断するための層である。  In addition, electromagnetic waves with a frequency in the 4 GHz band may be targeted for blocking. 2. The 4 GHz band is a frequency range from 2400 MHz to less than 2500 MHz. The frequency of electromagnetic waves used in RFID systems is in the range of 2400MHz to 2483.5MHz. The frequency of the electromagnetic wave to be blocked is not particularly limited, but any single or plural frequencies can be selected, including a range from 300 MHz to 300 GHz. The range from 300 MHz to 300 GHz includes UHF band (300 MHz to 3 GHz), SHF band (3 GHz to 30 GHz), and EHF band (30 GHz to 300 GHz). The sheet body 10 is configured as a laminated body in which the shield layer 13, the conductor layer 14, and the adhesive agent layer 15 are laminated. The shield layer 13 is a layer for blocking electromagnetic fields, and is a layer for blocking electromagnetic waves.
導体層 14は、導電性材料から成る層であり、本実施の形態では銅から成る。導体 層 14は、通信妨害部材としてアンテナ素子 11に影響する可能性があるため、シール ド層 13によりその影響を抑えることになる。導体層 14はまた中間アンテナとして機能 することもある。導体層 14のインピーダンスを向上させるため、スリットを入れたり、分 割したり、導電率に分布を持たせたりすることができる。なお導体層 14の大きさに制 限はない。 The conductor layer 14 is a layer made of a conductive material, and is made of copper in this embodiment. Since the conductor layer 14 may affect the antenna element 11 as a communication disturbing member, This effect is suppressed by the layer 13. Conductor layer 14 may also function as an intermediate antenna. In order to improve the impedance of the conductor layer 14, it is possible to make slits, to divide them, or to distribute the conductivity. The size of the conductor layer 14 is not limited.
貼着用剤層 15は、シールド層 13を含むシート体 10を物品に貼着するための貼着 用剤カゝら成る層である。貼着用剤は、粘着剤および接着剤の少なくとも 1種類を含み 、粘着性または接着性による結合力を有している。  The sticking agent layer 15 is a layer composed of a sticking agent cover for sticking the sheet body 10 including the shield layer 13 to an article. The sticking agent includes at least one of a pressure-sensitive adhesive and an adhesive, and has a bonding force due to stickiness or adhesiveness.
シールド層 13、導体層 14および貼着用剤層 15は、厚み方向一方側から他方側に 、この順で積層されている。シールド層 13と導体層 14との間またはアンテナ素子近 傍には、粘着剤または接着剤から成る結着層 16が介在され、この結着層 16によって 、シールド層 13と導体層 14とが互いに結合されている。貼着用剤層 15は、自己の粘 着力または接着力で導体層 14に結合されている。以下、シールド層 13、導体層 14、 貼着用剤層 15および結着層 16を総称するとき、各構成層 13〜16という。  The shield layer 13, the conductor layer 14, and the sticking agent layer 15 are laminated in this order from one side in the thickness direction to the other side. A binder layer 16 made of an adhesive or an adhesive is interposed between the shield layer 13 and the conductor layer 14 or in the vicinity of the antenna element. By this binder layer 16, the shield layer 13 and the conductor layer 14 are mutually connected. Are combined. The adhesive layer 15 is bonded to the conductor layer 14 by its own adhesive force or adhesive force. Hereinafter, the shield layer 13, the conductor layer 14, the adhesive layer 15 and the binder layer 16 are collectively referred to as the constituent layers 13 to 16.
導体層 14および貼着用剤層 15は、必ずしも必要な構成材料ではなぐシールド層 13を通信妨害部材 12に結着層 16を介して貼着したり、結着層 16を介さずに直接積 層することも可能である。シート体 10の各構成層 13〜16は、それぞれ多層化されて いてもよぐたとえばシールド層 13を多層化して透磁率に傾斜性を持たせたり、単層 でも透磁率に傾斜性を持たせたものを用いることが可能である。  The conductor layer 14 and the adhesive layer 15 are not necessarily required constituent materials, but the shield layer 13 is attached to the communication blocking member 12 via the binder layer 16, or directly without the binder layer 16. It is also possible to do. Each of the constituent layers 13 to 16 of the sheet body 10 may be multi-layered. For example, the shield layer 13 may be multi-layered to give the magnetic permeability a gradient, or even a single layer to give the magnetic permeability a gradient. Can be used.
各層 13〜16の厚み寸法およびシート体 10全の厚み寸法は、特に限定されるもの ではないが、例を挙げるならば、本実施の形態では、シールド層 13の厚み寸法は、 1 m以上 10mm以下であり、導体層 14の厚み寸法は、 ΙΟθΑ (1 X 10_8m)以上 50 0 m以下であり、貼着用剤層 15は、 1 m以上 lmm以下であり、結着層 16は、 1 μ m以上 lmm以下であり、シート体 10の全体の厚み寸法は、 3 μ m以上 12mm以 下である。シート体 10は、全体の厚み寸法が、小さくすることが可能で、かつ各層 13 〜16が前述のような材料力 成っており、可撓性を有している。したがってシート体 1 0は、自在に変形させることができる。 The thickness dimension of each layer 13 to 16 and the total thickness dimension of the sheet body 10 are not particularly limited. However, for example, in this embodiment, the thickness dimension of the shield layer 13 is 1 m or more and 10 mm. The thickness dimension of the conductor layer 14 is ΙΟθΑ (1 X 10 _8 m) or more and 500 0 m or less, the adhesive layer 15 is 1 m or more and lmm or less, and the binder layer 16 is 1 The total thickness of the sheet 10 is 3 μm or more and 12 mm or less. The sheet body 10 can be reduced in overall thickness dimension, and the layers 13 to 16 are made of the material force as described above, and have flexibility. Therefore, the sheet body 10 can be freely deformed.
シールド層 13は、複素比透磁率および複素比誘電率を含む材料特性値を選択す ること〖こよって、無線通信に用いられる電磁波を遮断している。複素比透磁率の実数 部 'が大きいほど、磁力線が集中して通過するようになって電磁波の遮断効果が 高くなり、複素比透磁率の虚数部 "および透磁率損失項 tan δ μ ( = μ ,'/ μ ' )が 小さいほど、磁界エネルギの損失が小さくなる。したがって複素比透磁率の実数部 'は、大きいほど好ましぐ複素比透磁率の虚数部 μ "および透磁率損失項 tan δ μ は、小さいほど好ましい。また複素比誘電率の実数部 ε,が大きいほど、電気力線が 集中して通過するようになって電磁波の遮断効果が高くなり、複素比誘電率の虚数 部 ε "が小さいほど、電界エネルギの損失が小さくなる。したがって複素比誘電率の 実数部 ε 'は、大きいほど好ましぐまた複素比誘電率の虚数部 ε "は、小さいほど好 ましい。 The shield layer 13 blocks electromagnetic waves used for wireless communication by selecting material characteristic values including complex relative permeability and complex relative permittivity. Real number of complex relative permeability The larger the part 'is, the more the magnetic field lines pass through, and the higher the shielding effect of the electromagnetic wave, the imaginary part of the complex relative permeability "and the permeability loss term tan δ μ (= μ , ' / μ ') The smaller the, the smaller the loss of magnetic field energy, so the smaller the real part 'of the complex relative permeability, the more preferable the imaginary part μ "of the complex relative permeability and the permeability loss term tan δ μ, the better. . In addition, the larger the real part ε, of the complex relative permittivity is, the more the electric force lines pass through, and the higher the electromagnetic wave blocking effect is. The smaller the imaginary part ε "of the complex relative permittivity is, the smaller the electric field energy is. Therefore, the larger the real part ε 'of the complex relative permittivity, the better. The smaller the imaginary part ε "of the complex relative permittivity, the better.
また本発明において、複素比透磁率の実数部 'および虚数部 'ならびに複素 比誘電率の実数部 ε 'および虚数部 ε "の数値は、無線通信に用いられる電磁波の 周波数に対応する数値である。無線通信に用いられる電磁波の周波数は、特に限 定されるものではないが、 UHF帯、 SHF帯および EHF帯を含む 300MHz以上 300 GHz以下の範囲の周波数であってもよぐたとえば 860MHz以上 1GHz以下の高 M Hz帯または 2. 4GHz帯の周波数であってもよい。  In the present invention, the real part 'and imaginary part' of the complex relative permeability and the real part ε 'and imaginary part ε "of the complex relative permittivity are values corresponding to the frequency of the electromagnetic wave used for wireless communication. The frequency of electromagnetic waves used for wireless communication is not particularly limited, but may be in the range of 300 MHz to 300 GHz including UHF, SHF and EHF bands, for example 860 MHz to 1 GHz. The following high MHz band or 2.4 GHz band frequency may be used.
本実施の形態では、シールド層 13は、無線通信に用いられる電磁波に対して、複 素比透磁率の実数部 μ,と複素比透磁率の虚数部 μ "とは、 μ '≥μ "の関係を有し 、したがって複素比透磁率の実数部/ ζ 'が複素比透磁率の虚数部 "以上である。 またシールド層 13は、無線通信に用いられる電磁波に対して、複素比透磁率の実数 部 μ,が 5以上でありかつ透磁率損失項 tan δ μが 1以下である。またシールド層 13 は、無線通信に用いられる電磁波に対して、複素比透磁率の実数部/ ζ 'が 10以上で ありかつ透磁率損失項 tan δ μが 1以下である構成とすることが好ましぐ無線通信 に用いられる電磁波に対して、複素比透磁率の実数部 'が 20以上でありかつ透磁 率損失項 tan δ μが 0. 5以下である構成とすることが、さらに好ましい。  In the present embodiment, the shield layer 13 is configured such that the real part μ of the complex relative permeability and the imaginary part μ ″ of the complex relative permeability are μ′≥μ ”with respect to the electromagnetic wave used for wireless communication. Therefore, the real part / ζ ′ of the complex relative permeability is equal to or greater than the imaginary part “of the complex relative permeability. The shield layer 13 has a complex relative permeability with respect to electromagnetic waves used for wireless communication. The real part μ is 5 or more and the permeability loss term tan δ μ is 1 or less, and the shield layer 13 has a real part / ζ ′ of complex relative permeability for electromagnetic waves used in wireless communication. For the electromagnetic wave used for wireless communication, which is preferably 10 or more and the permeability loss term tan δ μ is 1 or less, the real part 'of the complex relative permeability is 20 or more and the permeability More preferably, the magnetic loss term tan δμ is 0.5 or less.
また本実施の形態では、シールド層 13は、無線通信に用いられる電磁波に対して 、複素比誘電率の実数部 ε 'が 20以上であり、複素比誘電率の虚数部 ε "が 300以 下であって、誘電率損失項 tan δ ε ( = ε V ε ' )が 15以下である。  In the present embodiment, the shield layer 13 has a real part ε ′ of the complex relative permittivity of 20 or more and an imaginary part ε ″ of the complex relative permittivity of 300 or less with respect to the electromagnetic wave used for wireless communication. And the dielectric loss term tan δ ε (= ε V ε ') is 15 or less.
図 2は、シールド層 13の内部構造を拡大して示す断面図である。図 2には、図解を 容易にするために、磁性粉末 21および磁性微粒子 22のハッチングを省略して示す oシールド層 13は、前述のような材料特性値を得るために、結合材 20に、磁性を有 する材料から成る粉末 (以下「磁性粉末」 、う) 21と、磁性を有する材料から成る微 粒子 (以下「磁性微粒子」という) 22とが混合されて形成される。シールド層 13は、磁 性材料として、磁性粉末 21および磁性微粒子 22を含有している。本実施の形態で は、結合材 20は、ポリマーから成り、たとえばノンノヽロゲン系ポリマー、またはノンノヽロ ゲン系ポリマーと他のポリマーなどの材料とを混合したノンハロゲン系混合材料から 成る。結合材の具体例は、あくまでも一例であり、ノンハロゲン系ポリマーに限定され るものではない。 FIG. 2 is an enlarged sectional view showing the internal structure of the shield layer 13. Figure 2 shows an illustration. For the sake of simplicity, the hatching of the magnetic powder 21 and the magnetic fine particles 22 is omitted. O The shield layer 13 is made of a magnetic material for the binder 20 in order to obtain the material characteristic values as described above. It is formed by mixing powder (hereinafter referred to as “magnetic powder”) 21 and fine particles (hereinafter referred to as “magnetic fine particles”) 22 made of a magnetic material. The shield layer 13 contains magnetic powder 21 and magnetic fine particles 22 as magnetic materials. In the present embodiment, the binding material 20 is made of a polymer, for example, a non-norogen-based polymer, or a non-halogen-based mixed material obtained by mixing a non-norogen-based polymer and another polymer. The specific examples of the binder are merely examples, and are not limited to non-halogen polymers.
結合材 20として、ハロゲン系ポリマーを用いることも可能である。結合材 20に関して は、ポリマー (榭脂、 TPE、ゴム)ジエル、オリゴマーなど、有機系および無機系を問わ ず、また重合度などに依存することなぐあらゆる材質の材料を用いることができる。ノ ンハロゲン系の材料は、環境面で好ましく用いることができるものである。シート化す るためにはポリマー材料が適し、たとえば以下に例示するものを好ましく用いることが できるが、例に挙げていない種類の材料およびブレンドのし方が異なる材料、ァロイ 化した材料など、シートィ匕できる材料は全て用いることが可能である。  A halogen-based polymer can also be used as the binder 20. As for the binder 20, any material such as polymer (resin, TPE, rubber) dies, oligomers, etc. can be used, regardless of whether they are organic or inorganic, and does not depend on the degree of polymerization. Non-halogen materials can be preferably used from the environmental viewpoint. For forming a sheet, a polymer material is suitable. For example, the materials exemplified below can be preferably used, but the types of materials not mentioned in the examples, materials with different blending methods, and alloyed materials can be used. All possible materials can be used.
結合剤 20の材料としては、各種の有機重合体材料を用いることが可能であり、たと えばゴム、熱可塑性エラストマ一、各種プラスチックを含む高分子材料などが挙げら れる。前記ゴムとしては、たとえば天然ゴムのほ力、イソプレンゴム、ブタジエンゴム、 スチレン ブタジエンゴム、エチレン プロピレンゴム、エチレン 酢酸ビニノレ系ゴム 、ブチルゴム、ハロゲン化ブチルゴム、クロロプレンゴム、 -トリルゴム、アクリルゴム、 エチレンアクリル系ゴム、ェピクロロヒドリンゴム、フッ素ゴム、ウレタンゴム、シリコーン ゴム、塩素化ポリエチレンゴム、水素添加-トリルゴム (HNBR)などの合成ゴム単独、 それらの誘導体、もしくはこれらを各種変性処理にて改質したものなどが挙げられる。 また液状ゴムでも構わな 、。  As the material of the binder 20, various organic polymer materials can be used, and examples thereof include rubber, thermoplastic elastomer, and polymer materials containing various plastics. Examples of the rubber include natural rubber, isoprene rubber, butadiene rubber, styrene butadiene rubber, ethylene propylene rubber, ethylene vinyl acetate rubber, butyl rubber, halogenated butyl rubber, chloroprene rubber, -tolyl rubber, acrylic rubber, and ethylene acrylic rubber. Synthetic rubber such as rubber, epichlorohydrin rubber, fluoro rubber, urethane rubber, silicone rubber, chlorinated polyethylene rubber, hydrogenated-tolyl rubber (HNBR), their derivatives, or these modified by various modification treatments Things. Liquid rubber is also acceptable.
これらのゴムは、単独で用いるほか、複数をブレンドして用いることができる。ゴムに は、加硫剤のほか、加硫促進剤、老化防止剤、軟化剤、可塑剤、充填剤、着色剤な どの従来カゝらゴムの配合剤として用いられていたものを適宜配合することができる。こ れら以外にも、任意の添加剤を用いることができる。たとえば、誘電率および導電率 を制御するために所定量の誘電体 (カーボンブラック、黒鉛、酸化チタンなど)を、用 途の 1つである電子機器内に発生する不要電磁波へのインピーダンスマッチングお よび温度環境に応じて、材料設計して添加することができる。さらに加工助剤(滑剤、 分散剤)も適宜選択して添加してもよ 、。 These rubbers can be used alone or in combination. In addition to vulcanizing agents, rubbers are blended as appropriate with rubber additives such as vulcanization accelerators, anti-aging agents, softeners, plasticizers, fillers, and colorants. be able to. This In addition to these, arbitrary additives can be used. For example, in order to control the dielectric constant and conductivity, a predetermined amount of dielectric (carbon black, graphite, titanium oxide, etc.) is used for impedance matching to unwanted electromagnetic waves generated in electronic equipment, which is one of the applications. Depending on the temperature environment, materials can be designed and added. Furthermore, processing aids (lubricants, dispersants) may be appropriately selected and added.
熱可塑性エラストマ一としては、たとえば塩素化ポリエチレンのような塩素系、ェチ レン系共重合体、アクリル系、エチレンアクリル共重合体系、ウレタン系、エステル系 、シリコーン系、スチレン系、アミド系などの各種熱可塑性エラストマ一およびそれら の誘導体が挙げられる。  Thermoplastic elastomers include, for example, chlorinated polyethylenes such as chlorinated polyethylene, ethylene copolymers, acrylics, ethylene acrylic copolymers, urethanes, esters, silicones, styrenes, amides, etc. Various thermoplastic elastomers and their derivatives are mentioned.
さらに、各種プラスチックとしては、たとえばポリエチレン、ポリプロピレン、 AS榭脂、 ABS榭脂、ポリスチレン、ポリ塩化ビニル、ポリ塩ィ匕ビユリデンなどの塩素系榭脂、ポ リ酢酸ビニル、エチレン 酢酸ビニル共重合体、フッ素榭脂、シリコーン榭脂、アタリ ル系榭脂、ナイロン、ポリカーボネート、ポリエチレンテレフタレート、アルキド榭脂、不 飽和ポリエステル、ポリスルホン、ウレタン系榭脂、フエノール榭脂、尿素樹脂、ェポキ シ榭脂、ポリイミド榭脂、生分解性榭脂などの熱可塑性榭脂または熱硬化性榭脂お よびこれらの誘導体が挙げられる。これらの結合剤として、低分子量のオリゴマータイ プおよび液状タイプを用いることができる。熱、圧力、紫外線、放射線、電子線、風乾 、硬化剤などにより成型後にシート状になるものであれば、任意の材料を選択するこ とがでさる。  Furthermore, as various plastics, for example, polyethylene, polypropylene, AS resin, ABS resin, polystyrene, polyvinyl chloride, polychlorinated resin such as polyvinylidene, polyvinyl acetate, ethylene vinyl acetate copolymer, Fluorine resin, silicone resin, talyl resin, nylon, polycarbonate, polyethylene terephthalate, alkyd resin, unsaturated polyester, polysulfone, urethane resin, phenol resin, urea resin, epoxy resin, polyimide resin Examples thereof include thermoplastic resins such as fats and biodegradable resins, or thermosetting resins and derivatives thereof. As these binders, low molecular weight oligomer types and liquid types can be used. Any material can be selected as long as it becomes a sheet after being molded by heat, pressure, ultraviolet rays, radiation, electron beam, air drying, a curing agent, or the like.
磁性粉末 21は、扁平な軟磁性金属粉末であり、互いに接触しないように分散され、 かつシールド層 13の厚み方向に対して垂直に延びるように配向されて 、る。磁性粉 末 21は、略円板状であり、平均厚み寸法は、 であり、厚み方向に垂直な方向 の平均外径は、 55 mである。磁性微粒子 22は、金属粉末の厚み寸法よりも小さい 微粒子であり、少なくとも外表面部が全体にわたって非導電性を有し、導電性が低く なるように構成されている。磁性微粒子 22の平均外径は、: mである。  The magnetic powder 21 is a flat soft magnetic metal powder, dispersed so as not to contact each other, and oriented so as to extend perpendicular to the thickness direction of the shield layer 13. The magnetic powder 21 has a substantially disk shape, the average thickness dimension is, and the average outer diameter in the direction perpendicular to the thickness direction is 55 m. The magnetic fine particles 22 are fine particles smaller than the thickness dimension of the metal powder, and are configured such that at least the outer surface portion has non-conductivity throughout and has low conductivity. The average outer diameter of the magnetic fine particles 22 is: m.
シールド層 13を形成する結合材 20は、たとえば水素添カ卩した NBRゴムである HN BRが用いられる。また磁性粉末 21は、たとえば鉄、珪素およびアルミニウムの合金( Fe Si— A1)であるセンダストから成る。また磁性微粒子は、全体の導電性を抑えて 耐食性を有する、たとえば酸ィ匕鉄 (マグネタイト)力も成る。前述の形状、寸法および 材料は、例示に過ぎず、これに限定されるものではない。 As the binding material 20 forming the shield layer 13, for example, HN BR, which is a hydrogenated NBR rubber, is used. The magnetic powder 21 is made of Sendust, which is an alloy of iron, silicon and aluminum (FeSi-A1), for example. In addition, magnetic fine particles suppress the overall conductivity. It has corrosion resistance, for example, acidite (magnetite) force. The shapes, dimensions, and materials described above are merely examples and are not intended to be limiting.
シールド層 13は、適切な複素比透磁率および複素比誘電率を有するものであるな ら、その材料構成はとくに限定されない。本実施例の様に結合材 20に軟磁性粉末 2 1および Zまたは磁性微粒子 22を分散させたものでも ヽし、磁性体 (金属酸化物、 セラミックス、ダラ-ユラ薄膜、フ ライトメツキ、金属有機化合物、磁性メツキなど)をそ のままシールド層 13として使うことも可能である。  As long as the shield layer 13 has an appropriate complex relative permeability and complex relative permittivity, the material configuration is not particularly limited. As in this example, a binder (20) in which soft magnetic powder 21 and Z or magnetic fine particles 22 are dispersed can be used to form a magnetic material (metal oxide, ceramics, dollar-yura thin film, flickering, metal organic compound). It is also possible to use a magnetic layer or the like as the shield layer 13 as it is.
軟磁性粉末 21および/または磁性微粒子 22である軟磁性粉末の材料としては、 センダスト(Fe— Si— A1合金)、パーマロイ(Fe— Ni合金)、ケィ素鋼(Fe— Cu— Si 合金)、 Fe— Si合金、 Fe— Si—B (— Cu—Nb)合金、 Fe—Ni—Cr—Si合金、 Fe— Cr— Si合金、 Fe— Al— Ni— Cr合金、 Fe— Ni— Cr合金、 Fe— Cr— Al— Si合金、 Fe系合金、 Co系合金、 Si系合金、 Ni系合金、アモルファス金属などが挙げられる。 また軟磁性粉末の材料としてフェライトまたは純鉄を用いてもょ ヽ。フェライトとして は、たとえば Mn— Znフェライト、 Ni— Znフェライト、 Mn— Mgフェライト、 Mnフェライ ト、 Cu—Znフェライト、 Cu—Mg—Znフェライトなどのソフトフェライト、あるいは永久 磁石材料であるハードフェライトが挙げられる。純鉄としてはたとえばカルボ-ル鉄な どが挙げられる。軟磁性粉末の材料としては、これら磁性材料を単体で用いるほか、 複数をブレンドしても構わな 、。  Soft magnetic powder 21 and / or soft magnetic powder 22 materials include Sendust (Fe—Si—A1 alloy), Permalloy (Fe—Ni alloy), Cemented steel (Fe—Cu—Si alloy), Fe—Si alloy, Fe—Si—B (—Cu—Nb) alloy, Fe—Ni—Cr—Si alloy, Fe—Cr—Si alloy, Fe—Al—Ni—Cr alloy, Fe—Ni—Cr alloy, Fe-Cr-Al-Si alloys, Fe-based alloys, Co-based alloys, Si-based alloys, Ni-based alloys, amorphous metals, and the like. It is also possible to use ferrite or pure iron as the soft magnetic powder material. Examples of ferrites include soft ferrites such as Mn-Zn ferrite, Ni-Zn ferrite, Mn-Mg ferrite, Mn ferrite, Cu-Zn ferrite, Cu-Mg-Zn ferrite, and hard ferrite that is a permanent magnet material. It is done. An example of pure iron is carbo iron. As materials for soft magnetic powder, these magnetic materials can be used alone or in combination.
軟磁性粉末としては、たとえば円板状を含む板状、楕円形を短軸まわりに回転させ た回転楕円体状などの扁平軟磁性粉末であってもよいし、たとえば針状、繊維状、球 状、多面体状、塊状などの非扁平軟磁性粉末であってもよい。好ましくは、軟磁性粉 末として透磁率の高い扁平軟磁性粉末を用いることがよい。軟磁性粉末として、 1種 類の形状の粉末だけを用いてもょ 、し、複数種類の形状の粉末を組合せて混合して 用いてもよいが、複数種類の形状の粉末を組合せる場合、少なくとも 1種類は扁平状 であることが好ましい。  The soft magnetic powder may be, for example, a flat soft magnetic powder such as a plate shape including a disk shape, a spheroid shape obtained by rotating an ellipse around a short axis, or a needle shape, a fiber shape, a sphere shape, for example. Non-flat soft magnetic powders such as a shape, a polyhedron shape and a lump shape may be used. Preferably, a flat soft magnetic powder having a high magnetic permeability is used as the soft magnetic powder. As the soft magnetic powder, it is possible to use only one type of powder, or a combination of multiple types of powder, but when combining multiple types of powder, At least one type is preferably flat.
軟磁性粉末の粒径は lnm以上 1000 μ m以下、好ましくは 10nm以上 300 μ m以 下であるのがよい。また扁平軟磁性粉末の場合、アスペクト比は 2以上 500以下、好 ましくは 10以上 100以下であることがよい。特にナノサイズの磁性微粉末を使用する ことで、 UHF帯および SHF帯でのシールド層において、複素比透磁率の実数部 , の値をたとえば 10以上と高くし、かつ複素比透磁率の虚数部 "の値をたとえば 5以 下と低くすることができる。 The particle size of the soft magnetic powder is 1 nm to 1000 μm, preferably 10 nm to 300 μm. In the case of flat soft magnetic powder, the aspect ratio is 2 or more and 500 or less, preferably 10 or more and 100 or less. Especially use nano-sized magnetic fine powder Therefore, in the shield layer in the UHF band and SHF band, the value of the real part, of the complex relative permeability is increased to, for example, 10 or more, and the value of the imaginary part of the complex relative permeability, is decreased to, for example, 5 or less. can do.
また軟磁性粉末は、その表面に絶縁性を増すために有機物または無機物の被覆 層を、メツキ、溶着、電着などの被覆処理によって形成してもよい。また軟磁性粉末は 、その表面に耐食性を向上させるために酸ィ匕被膜を有していてもよい。磁性粉末の 表面は、表面処理が施されていることが好ましい。表面処理剤はカップリング剤およ び界面活性剤などによる一般的な処理法を用いることができる。また磁性粉末と結合 材の濡れ性を向上させる全ての手段、たとえば榭脂被覆、分散剤などを用いることが できる。  In addition, in order to increase the insulating property of the soft magnetic powder, an organic or inorganic coating layer may be formed by coating treatment such as plating, welding, or electrodeposition. The soft magnetic powder may have an acid coating on the surface in order to improve the corrosion resistance. The surface of the magnetic powder is preferably subjected to a surface treatment. As the surface treatment agent, a general treatment method using a coupling agent or a surfactant can be used. Further, all means for improving the wettability between the magnetic powder and the binder, such as a resin coating and a dispersing agent, can be used.
シールド層 13は、磁性材として、軟磁性金属、軟磁性酸化金属、磁性金属および 磁性酸ィ匕金属のうちの少なくともいずれ力 1つ力も成る材料である、またはそれを含 有する材料から成る。シールド層 13は、軟磁性金属、軟磁性酸化金属、磁性金属お よび磁性酸ィ匕金属のうちの少なくともいずれか 1つ力 成る粉末および微粒子の少な くとも一方を、前述のように結合材 20に、分散させる構成でもよいし、軟磁性金属、軟 磁性酸化金属、磁性金属および磁性酸化金属のうちの少なくともいずれか 1つによ つて薄膜を含む膜に形成されてもょ ヽ。  The shield layer 13 is made of a material having or including at least one of a soft magnetic metal, a soft magnetic metal oxide, a magnetic metal, and a magnetic acid metal as a magnetic material. As described above, the shield layer 13 is made of at least one of a soft magnetic metal, a soft magnetic metal oxide, a magnetic metal, and a magnetic acid / metal, and at least one of powder and fine particles. Further, it may be configured to be dispersed, or may be formed into a film including a thin film by at least one of soft magnetic metal, soft magnetic metal oxide, magnetic metal, and magnetic metal oxide.
磁性材料を結合材 20に分散させる構成のシールド層 13は、結合材 20としての有 機重合体 100重量部に対して、磁性材料として、フェライト、鉄合金および鉄粒子の 群力も選ばれる 1または複数の材料を、 1重量部以上 1500重量部以下の配合量で 含む材料から形成される。有機重合体 100重量部に対する磁性材料の配合量は、 好ましくは 10重量部以上 1000重量部以下である。有機重合体 100重量部に対する 磁性材料の配合量が、 1重量部未満である場合、十分な透磁率が得られず、 1500 重量部を超えると加工性が劣り、シート体 10を製造できなくなる力、または製造が困 難になる。  For the shield layer 13 configured to disperse the magnetic material in the binder 20, the group force of ferrite, iron alloy, and iron particles is also selected as the magnetic material with respect to 100 parts by weight of the organic polymer as the binder 1 1 or It is formed from a material containing a plurality of materials at a blending amount of 1 to 1500 parts by weight. The blending amount of the magnetic material with respect to 100 parts by weight of the organic polymer is preferably 10 parts by weight or more and 1000 parts by weight or less. When the blending amount of the magnetic material with respect to 100 parts by weight of the organic polymer is less than 1 part by weight, sufficient magnetic permeability cannot be obtained, and when it exceeds 1500 parts by weight, the workability is inferior and the sheet body 10 cannot be produced. Or manufacturing becomes difficult.
シールド層 13の構成が同一である場合、複素比透磁率の実数部 'および虚数部 μ "は、対象となる電磁波の周波数によって異なり、対象となる電磁波の周波数が高 くなるにつれて、小さくなる傾向を有している。本実施の形態において、遮断の対象と する電磁波は、高 MHz帯および 2. 4GHz帯の周波数の電磁波を含んでいる。複素 比透磁率の実数部 'および虚数部 "は、対象となる電磁波の周波数が高くなるに つれて、小さくなる傾向を有している。したがって高 MHz帯および 2. 4GHz帯の電 磁波を含めて遮断可能な構成とするためには、たとえば 1以上 10MHz以下程度の 低い周波数の電磁波の遮断を目的とする構成と比べて、全体的に複素比透磁率の 実数部 μ,および虚数部 μ "が、特に実数部 μ,が小さくなつてしまう。 When the configuration of the shield layer 13 is the same, the real part 'and the imaginary part μ' of the complex relative permeability vary depending on the frequency of the target electromagnetic wave, and tend to decrease as the frequency of the target electromagnetic wave increases. In this embodiment, the object to be blocked is Electromagnetic waves to be transmitted include electromagnetic waves with frequencies in the high MHz band and 2.4 GHz band. The real part 'and the imaginary part' of the complex relative permeability tend to decrease as the frequency of the target electromagnetic wave increases. Therefore, including the electromagnetic wave in the high MHz band and 2.4 GHz band. For example, the real part μ and imaginary part μ "of the complex relative permeability compared to the structure aiming to cut off low frequency electromagnetic waves of 1 to 10 MHz, for example. However, the real part μ becomes particularly small.
シールド層 13における複素比透磁率の実数部 ,を大きくするためには、シールド 層 13における磁性を有する材料力 成る部分の量を多くする必要がある。また複素 比透磁率の虚数部 "を小さくするためには、磁力線の経路 25における非磁性材料 力も成る部分を少なくすればよい。単純に考えると、シールド層 13における磁性粉末 21の配合量を多くすれば、磁性を有する材料から成る部分の量を多くし、磁力線の 経路における非磁性材料力も成る部分を少なくすることができるが、磁性粉末 21の 配合量を多くしすぎて、磁性粉末 21同士が接触してしまうと、シールド層 13が導電 性を有してしまい、シールド層 13内に電流を生じ、抵抗による損失が発生して電磁ェ ネルギが吸収されてしまう。したがって単純に磁性粉末 21の配合量を多くすることは できない。  In order to increase the real part of the complex relative permeability in the shield layer 13, it is necessary to increase the amount of the magnetic material force portion in the shield layer 13. In order to reduce the imaginary part of the complex relative permeability, it is only necessary to reduce the portion of the magnetic field line 25 that also has a nonmagnetic material force. In simple terms, the amount of the magnetic powder 21 in the shield layer 13 is increased. If this is done, the amount of the magnetic material 21 can be increased and the nonmagnetic material force in the path of the magnetic force lines can be reduced. If they come into contact with each other, the shield layer 13 becomes conductive, and a current is generated in the shield layer 13, causing a loss due to resistance and absorbing the electromagnetic energy. It is not possible to increase the amount of.
本実施の形態では、磁性粉末 21とともに、磁性微粒子 22を混合することによって、 磁性粉末 21が互いに接触してしまうことを防ぎ、かつ各磁性粉末 21間に磁性微粒 子 22を介在させ、磁性を有する材料カゝら成る部分の量を多くするとともに、磁力線の 経路 25における非磁性材料力も成る部分を少なくすることができる。したがって高 Μ Hz帯および 2. 4GHz帯の電磁波に対して、前述のような複素比透磁率が得られる。 たとえばシールド層 13の 950MHzの電磁波に対する複素比透磁率の実部 ju 'が 19 . 16であり、透磁率損失項 tan δ μが 0. 58であり、複素比誘電率の実部 ε 'が 165 . 8であり、誘電率損失項 tan δ εが 0. 15である。またシールド層 13の表面抵抗率( IS K6911)は、 106 Ω /口である。 In the present embodiment, by mixing the magnetic fine particles 22 together with the magnetic powder 21, the magnetic powders 21 are prevented from coming into contact with each other, and the magnetic fine particles 22 are interposed between the magnetic powders 21, thereby providing magnetism. In addition to increasing the amount of the material portion having the non-magnetic material force in the path 25 of the magnetic field lines, it is possible to reduce the portion. Therefore, the complex relative permeability as described above can be obtained for electromagnetic waves in the high frequency band and 2.4 GHz band. For example, the real part ju ′ of the complex relative permeability with respect to the electromagnetic wave of 950 MHz of the shield layer 13 is 19.16, the permeability loss term tan δ μ is 0.58, and the real part ε ′ of the complex relative permittivity is 165. 8 and the dielectric loss term tan δ ε is 0.15. The shield layer 13 has a surface resistivity (IS K6911) of 10 6 Ω / mouth.
高 MHz帯および 2. 4GHz帯を含む高周波数域では、たとえ磁性金属であっても 複素比透磁率の実数部 ,の低下が大きぐ高い値を得ることは難しい。また 1000 MHz以上である GHz帯では、磁性金属単体のシートよりも、結合材 20に磁性粉末 2 1を分散させたシールド層 13を備えるシート体 10の方力 複素比透磁率の実数部 μ ,および虚数部 μ "共に高 、値を示すことがある。 In the high frequency range including the high MHz band and 2.4 GHz band, it is difficult to obtain a high value with a large decrease in the real part of the complex relative permeability, even for magnetic metals. In the GHz band, which is 1000 MHz or higher, the magnetic powder 2 is added to the binder 20 rather than the magnetic metal sheet. The direction force of the sheet body 10 including the shield layer 13 in which 1 is dispersed. Both the real part μ and the imaginary part μ ″ of the complex relative permeability may be high and values.
1MHz以上 10MHz以下程度の低い周波数では、結合材 20に磁性粉末 21を分 散させたシート体 10の複素比透磁率の実数部 ,は、もちろん磁性金属単体のシー トの複素比透磁率の実数部 'よりもそれぞれ小さい。周波数上昇による複素比透磁 率の実数部 'の低下率を比べると、結合材 20に磁性粉末 21を分散させたシート体 10の低下率は、磁性金属単体のシートの低下率に比べて小さい。したがって 300M Hz以上、特に高 MHz帯および GHz帯(1GHz以上 ITHz未満)を含む高周波数域 では、逆転現象が生じることもある程、結合材 20に磁性粉末 21を分散させたシート 体 10の複素比透磁率の実数部 ,は、磁性金属単体のシートの複素比透磁率の実 数部 'よりもそれぞれ大きくなる場合がある。この現象は、磁性体である磁性粉末 2 1、 22同士が離れて分散する結果、間に介在する材料による磁気ロスが生じるため、 シート体 10のシールド層 13では、磁気共鳴周波数が高周波数側に、したがって MH z帯(1MHz以上 1GHz未満)側力も GHz帯側にシフトすることによる現象である。 さらに Snoekの限界則に示されるように複素比透磁率の実数部 μ,の周波数上昇 による低下もあり、複素比透磁率の実数部 'の周波数上昇対する低下率に連動し て、複素比透磁率の虚数部 "が大きくなつている。 300MHz以上、特に高 MHz帯 および GHz帯を含む高周波数域では、磁性金属単体のシートなどでは、複素比透 磁率の実数部 μ 'および虚数部 μ "が共に大き 、か、複素比透磁率の実数部 μ 'が 小さくかつ複素透磁率の虚数部 "が大きいという特性を有している。 300MHz以上 、特に高 MHz帯および GHz帯を含む高周波数域では、複素比透磁率の実数部; z ' が大きくかつ複素比透磁率の虚数部 μ "が小さいという特性を得ることは難しい。 磁性材料は、低周波数域における複素比透磁率の実数部 'が大きいほど、周波 数上昇による複素比透磁率の実数部 'の低下率が大きいという傾向を有する。この ような傾向を有する磁性材料の粉末 (磁性粉末) 21を、結合材 20に分散させることで 、周波数上昇による複素比透磁率の実数部 'の低下率を抑えるとともに、磁性粉末 21同士の絶縁性を確保することができる。さらに磁性粉末 21を結合材 20に分散させ るだけの構成では、磁性粉末 21間に存在する結合材 20の影響で、 300MHz以上、 特に高 MHz帯および GHz帯を含む高周波数域での複素比透磁率の実数部 μ,を 大きくすることに限界がある。したがって磁力線がシート体 10のシールド層 13を通り やすくなるように磁界パスともよばれる複素比透磁率の実数部 'の高い経路をさら にミクロなレベルで構築する必要がある。この磁界パスを形成するために磁性微粒子 22が混合される。もちろんこの磁界パスの形成によって、シールド層 13が導電性を 有する構成となることがな!、ように、磁性粉末 21間の高 、電気絶縁性を確保する必 要がある。この電気絶縁性の確保は、たとえば磁性微粒子 22を、少なくとも外表面部 が全体にわたって非導電性を有する構成として実現される。本実施の形態では、この 磁性微粒子 22としては、フェライトのナノ粒子を用いている。この粒子は、酸化物磁 性体であるため導電性を発現することはな 、。 At a low frequency of about 1 MHz to 10 MHz, the real part of the complex relative permeability of the sheet 10 in which the magnetic powder 21 is dispersed in the binder 20 is, of course, the real number of the complex relative permeability of the sheet of magnetic metal alone. Each part is smaller than '. Comparing the decrease rate of the real part 'of the complex relative permeability due to the frequency increase, the decrease rate of the sheet 10 in which the magnetic powder 21 is dispersed in the binder 20 is smaller than the decrease rate of the sheet of magnetic metal alone. . Therefore, in a high frequency range of 300 MHz or higher, particularly in the high MHz band and GHz band (1 GHz or higher and less than ITHz), the inversion phenomenon may occur, and the complex of the sheet 10 in which the magnetic powder 21 is dispersed in the binder 20. The real part, of the relative permeability may be larger than the real part 'of the complex relative permeability of the sheet of the magnetic metal alone. This phenomenon is caused by the magnetic powder 21 and 22 being dispersed apart from each other, resulting in magnetic loss due to the intervening material. Therefore, in the shield layer 13 of the sheet 10, the magnetic resonance frequency is higher on the higher frequency side. Therefore, this is due to the fact that the side force of the MH z band (1 MHz or more and less than 1 GHz) is also shifted to the GHz band side. Furthermore, as indicated by Snoek's limit law, there is a decrease due to the frequency increase of the real part μ, of the complex relative permeability, and the complex relative permeability is linked to the decrease rate of the real part 'of the complex relative permeability with respect to the frequency increase. The imaginary part of the complex metal permeability is higher than 300 MHz, especially in the high frequency range including the high MHz band and the GHz band. Both are large or have a characteristic that the real part μ ′ of the complex relative permeability is small and the imaginary part of the complex permeability is large. In the high frequency range including 300 MHz or higher, particularly including the high MHz band and the GHz band. It is difficult to obtain the characteristics that the real part of the complex relative permeability; z ′ is large and the imaginary part μ ″ of the complex relative permeability is small. The magnetic material has a tendency that as the real part 'of the complex relative permeability in the low frequency region is larger, the reduction rate of the real part' of the complex relative permeability due to the frequency increase is larger. By dispersing the powder (magnetic powder) 21 of the magnetic material having such a tendency in the binder 20, the reduction rate of the real part 'of the complex relative permeability due to the frequency increase is suppressed, and the insulation between the magnetic powders 21 is suppressed. Sex can be secured. Furthermore, in a configuration in which the magnetic powder 21 is simply dispersed in the binder 20, the influence of the binder 20 existing between the magnetic powders 21 causes 300MHz or more, In particular, there is a limit to increasing the real part μ of the complex relative permeability at high frequencies including the high MHz and GHz bands. Therefore, it is necessary to construct a path with a higher real part of the complex relative permeability called a magnetic field path at a micro level so that the magnetic field lines can easily pass through the shield layer 13 of the sheet body 10. In order to form this magnetic field path, magnetic fine particles 22 are mixed. Of course, the formation of the magnetic field path does not result in the shield layer 13 having a conductive configuration! It is necessary to ensure high electrical insulation between the magnetic powders 21. This electrical insulation can be ensured, for example, by adopting a configuration in which the magnetic fine particles 22 are nonconductive at least on the entire outer surface. In the present embodiment, ferrite nanoparticles are used as the magnetic fine particles 22. Since these particles are magnetic oxides, they do not exhibit electrical conductivity.
このようにして複素比透磁率の虚数部; ζ "がピーク値となる共鳴周波数が高周波数 側にシフトし、さらに 5GHzおよび 10GHzと上げることで、 300MHz以上、特に高 M Hz帯および 2. 4GHz帯での複素比透磁率の実数部 ,が大きくかつ複素比透磁率 の虚数部 "が小さい、シールド層 13を実現することが可能となる。  In this way, the resonance frequency at which the imaginary part of the complex relative permeability; ζ "reaches its peak value shifts to the high frequency side, and further increases to 5 GHz and 10 GHz, so that 300 MHz or more, especially in the high MHz band and 2.4 GHz It is possible to realize the shield layer 13 in which the real part of the complex relative permeability at the band is large and the imaginary part “of the complex relative permeability is small”.
また本発明の実施の他の形態のシールド層 13として、磁性材料の充填率を高くす るために、平均粒子径比が約 4 : 1の大きさの異なる 2種類の磁性粒子を、前述と同様 の結合材 20に混合し、磁性微粒子および軟磁性金属繊維を混合する。さらに電気 絶縁性を確保するために、電気絶縁性微粒子を混合する。前記 2種類の磁性粒子 は、前記磁性粉末 21と同一の材料から成り、大きい方の平均粒子径は約 20 mで あり、小さい方の平均粒子径は約 5 mである。また磁性微粒子および軟磁性金属 繊維は、鉄系材料から成り、磁性微粒子の平均粒径および軟磁性金属繊維の平均 繊維径は、約 1 μ mである。電気絶縁性微粒子は、酸化ケィ素(SiO )から成り、平均  In addition, as a shield layer 13 according to another embodiment of the present invention, in order to increase the filling rate of the magnetic material, two types of magnetic particles having different average particle diameter ratios of about 4: 1 are used as described above. The same binder 20 is mixed, and magnetic fine particles and soft magnetic metal fibers are mixed. Furthermore, in order to ensure electrical insulation, electrically insulating fine particles are mixed. The two types of magnetic particles are made of the same material as the magnetic powder 21, and the larger average particle diameter is about 20 m, and the smaller average particle diameter is about 5 m. The magnetic fine particles and soft magnetic metal fibers are made of an iron-based material, and the average particle diameter of the magnetic fine particles and the average fiber diameter of the soft magnetic metal fibers are about 1 μm. The electrically insulating fine particles are made of silicon oxide (SiO 2), and the average
2  2
粒子径は約 10nmである。またこのサイズの微粒子は、磁性粉末 21のシールド層 13 における分散時の方向および間隔を制御する役割も有する。 The particle size is about 10nm. The fine particles of this size also have a role of controlling the direction and interval when the magnetic powder 21 is dispersed in the shield layer 13.
さらにシールド層 13内の空隙をできるだけなくすために、シールド層 13の実測比重 値が、配合力もの理論比重値になるベく近い値を取るように設計、製造している。図 2 に示す構成に変えて、前述のような構成であっても、同様に、複素比透磁率の虚数 部 "がピーク値となる共鳴周波数が高周波数側にシフトし、さらに 5GHzおよび 10 GHzと上げることで、 300MHz以上、特に高 MHz帯および 2. 4GHz帯での複素比 透磁率の実数部 ,が大きくかつ複素比透磁率の虚数部 "が小さい、シールド層 1Furthermore, in order to eliminate the voids in the shield layer 13 as much as possible, the measured specific gravity value of the shield layer 13 is designed and manufactured so as to be close to the theoretical specific gravity value of the compounding power. In the configuration shown in FIG. 2 instead of the configuration shown in FIG. 2, similarly, the resonance frequency at which the imaginary part “of the complex relative permeability becomes the peak value shifts to the high frequency side, and further, 5 GHz and 10 GHz. By increasing the frequency to GHz, the real part of the complex relative permeability of 300 MHz or higher, especially in the high MHz band and 2.4 GHz band, is large, and the imaginary part of the complex relative permeability is small, and the shield layer 1
3を実現することが可能となる。 3 can be realized.
また本実施の形態のシールド層 13の材料設計の基本的思想は、通信周波数にて 高抵抗を有し、通信周波数での複素比透磁率の実数部 'を高くして磁界成分をシ 一ルド層 13内に呼び込み、扁平形状の磁性粉末をミクロに配向、配列させることで 任意の方向に磁気が流れ易くなることで磁気異方性を付与し、複素比透磁率の虚数 部 "を低くして磁気的損失を抑えることである。これにより本発明の効果を得ること 可能となる。  In addition, the basic idea of the material design of the shield layer 13 of the present embodiment is to have a high resistance at the communication frequency and to increase the real part 'of the complex relative permeability at the communication frequency to shield the magnetic field component. By drawing into the layer 13 and aligning and arranging the flat magnetic powder microscopically, magnetic anisotropy is imparted by facilitating the flow of magnetism in any direction, and the imaginary part "of the complex relative permeability is lowered. Thus, the magnetic loss can be suppressed, and the effect of the present invention can be obtained.
またシート体 10は、各層 13〜16の少なくともいずれか 1つの層に、たとえば難燃剤 または難燃助剤が添加されている。これによつてシート体 10に、難燃性が付与されて いる。たとえば携帯電話などのエレクトロニクス機器も、内装するポリマー材料に難燃 '性を要求されることがある。  In the sheet body 10, for example, a flame retardant or a flame retardant aid is added to at least one of the layers 13 to 16. As a result, flame resistance is imparted to the sheet body 10. For example, electronic devices such as mobile phones may be required to be flame retardant for the polymer material that is used in the interior.
このような難燃性を得るための難燃剤としては、特に限定されることはないが、たと えばリンィ匕合物、ホウ素化合物、臭素系難燃剤、亜鉛系難燃剤、窒素系難燃剤、水 酸化物系難燃剤、金属化合物系難燃剤などを適宜用いることができる。リン化合物と しては、リン酸エステル、リン酸チタンなどが挙げられる。ほう素化合物としては、ホウ 酸亜鉛などが挙げられる。臭素系難燃剤としては、へキサブロモベンゼン、へキサブ 口モシクロドデカン、デカブロモベンジルフエ-ルエーテル、デカブロモベンジルフエ -ルオキサイド、テトラブロモビスフエノール、臭化アンモ-ゥムなどが挙げられる。亜 鉛系難燃剤としては、炭酸亜鉛、酸ィ匕亜鉛若しくはホウ酸亜鉛などが挙げられる。窒 素系難燃剤としては、たとえばトリアジンィ匕合物、ヒンダードァミン化合物、若しくはメ ラミンシァヌレート、メラミングァ-ジンィ匕合物と!/、つたようなメラミン系化合物などが挙 げられる。水酸ィ匕物系難燃剤としては、水酸化マグネシウム、水酸ィ匕アルミニウムなど が挙げられる。金属化合物系難燃剤としては、たとえば 3酸ィ匕アンチモン、酸化モリブ デン、酸化マンガン、酸化クロム、酸化鉄などが挙げられる。  The flame retardant for obtaining such flame retardancy is not particularly limited. For example, phosphorus compound, boron compound, bromine flame retardant, zinc flame retardant, nitrogen flame retardant, water An oxide-based flame retardant, a metal compound-based flame retardant, or the like can be used as appropriate. Examples of phosphorus compounds include phosphate esters and titanium phosphate. Examples of the boron compound include zinc borate. Examples of brominated flame retardants include hexabromobenzene, hexacyclodicyclohexane, decabromobenzyl phenol ether, decabromobenzyl phenol oxide, tetrabromobisphenol, and ammonium bromide. Examples of zinc-based flame retardants include zinc carbonate, zinc oxide, and zinc borate. Examples of the nitrogen-based flame retardant include triazine compound, hindered amine compound, melamine cyanurate, melamine jelly compound, and / or melamine compound. Examples of the hydroxy flame retardant include magnesium hydroxide and hydroxyaluminum. Examples of the metal compound flame retardant include antimony trioxide, molybdenum oxide, manganese oxide, chromium oxide, and iron oxide.
本実施例では、重量比において、結合材を 100として、臭素系難燃剤を 20、三酸 化アンチモンを 10、リン酸エステルを 14の比で、それぞれ添加することによって、 UL 94難燃試験において VO相当の難燃性を得ることができる。シート体 10は、このよう な物品を構成する素材として、または物品に装着して好適に用いることができる。たと えば航空機、船舶および車両内の装置など、燃焼およびこれに伴うガスの発生を防 止したい空間などで用いられる物品に装着するなどして、好適に用いることができる。 またシート体 10は、電気絶縁性を有している。具体的には、各層 11, 12が前述の ような材料力も成ることによって、シート体 10の表面抵抗率 (JIS K6911)が 102 Ω Ζ口以上である。シールド層 13の表面抵抗率は、大きいほど好ましい。したがって実 現可能な最大値が、表面抵抗率の上限値となる。このように高い表面抵抗率を有し、 電気絶縁性を有している。 In this example, by adding a binder of 100, a brominated flame retardant of 20, an antimony trioxide of 10, and a phosphate ester of 14 in a weight ratio, UL was added. 94 Flame retardant equivalent to VO can be obtained in the flame retardant test. The sheet body 10 can be suitably used as a material constituting such an article or attached to the article. For example, it can be suitably used by attaching it to an article used in a space where it is desired to prevent combustion and generation of gas accompanying it, such as an aircraft, a ship, and a device in a vehicle. Further, the sheet body 10 has electrical insulation. Specifically, the surface resistivity (JIS K6911) of the sheet body 10 is 10 2 Ω or more because the layers 11 and 12 also have the material force as described above. The surface resistivity of the shield layer 13 is preferably as large as possible. Therefore, the maximum value that can be realized is the upper limit of the surface resistivity. In this way, it has a high surface resistivity and electrical insulation.
またシート体 10は、耐熱性を有している。具体的には、ゴムあるいは榭脂材料に架 橋剤を添カ卩した場合のシート体 10の耐熱温度は、 150°Cであり、シート体 10は、少 なくとも 150°Cを超える温度になるまでは、特性に変化を生じない。  Further, the sheet body 10 has heat resistance. Specifically, when the crosslinking agent is added to rubber or resin material, the heat resistance temperature of the sheet body 10 is 150 ° C, and the sheet body 10 is at least at a temperature exceeding 150 ° C. Until then, there is no change in properties.
またシート体 10は、熱伝導性が付与されている。シート体 10が用いられる環境は、 たとえば ICを含む通信手段および電源手段など、発熱源となる手段の近傍で用いら れる場合がある。シート体 10の熱伝導性が優れていることによって、発熱源となる手 段で発熱される熱を逃がすことができ、その発熱源となる手段の昇温を抑え、高温に 晒されること〖こよる'性會低下を防ぐことができる。  The sheet body 10 is given thermal conductivity. The environment in which the sheet body 10 is used may be used in the vicinity of a means serving as a heat source, such as a communication means including an IC and a power supply means. Due to the excellent thermal conductivity of the sheet 10, heat generated by the means serving as the heat source can be released, and the temperature of the means serving as the heat source can be suppressed and exposed to high temperatures. It can prevent 'declining'.
シート体 10は、少なくとも一方の表面部が、粘着性または接着性を有している。本 実施の形態では、前述のように貼着用剤層 15を有しており、これによつて厚み方向 他方側の表面部が粘着性または接着性を有している。シート体 10は、貼着用剤層 1 5の粘着性または接着性による結合力によって、物品に貼着することができる。したが つてシート体 10は、たとえば通信妨害部材 12に貼着することによって、アンテナ素子 11と通信妨害部材 12との間またはアンテナ素子近傍に、容易に設けることができる 。シート体 10は、厚み方向一方側がアンテナ素子 11側に配置され、厚み方向他方 側が通信妨害部材 12側に配置されて設けられる。貼着用剤は、たとえば日東電工 ネ土製 No. 5000N力用!ヽられる。  At least one surface portion of the sheet body 10 has adhesiveness or adhesiveness. In the present embodiment, the adhesive layer 15 is provided as described above, whereby the surface portion on the other side in the thickness direction has adhesiveness or adhesiveness. The sheet body 10 can be attached to an article by the bonding force due to the adhesiveness or adhesiveness of the adhesive agent layer 15. Therefore, the sheet member 10 can be easily provided between the antenna element 11 and the communication disturbing member 12 or in the vicinity of the antenna element by sticking to the communication disturbing member 12, for example. The sheet body 10 is provided such that one side in the thickness direction is disposed on the antenna element 11 side and the other side in the thickness direction is disposed on the communication disturbing member 12 side. For example, Nitto Denko's No. 5000N power can be used as a sticking agent!
以下、実施例を挙げて本発明の評価方法を詳細に説明するが、本発明は以下の 実施例に限定されるものではな 、。 実施例 1は、結合剤 20として水素添加-トリルゴム (HNBR、日本ゼオン製「ゼット ポール」) 100重量部、扁平軟磁性粉末 (磁性金属) 21としてセンダスト (Fe— Si—A 1系合金)(同和鉱業製 DT) 690重量部および磁性微粒子 22として、超微粒子鉄粉( JFEケミカル製) 69重量部を添加(充填)し、界面活性剤、分散剤を加え、さらに過酸 化物(日本油脂社製の商品名「パーミクル D」)を架橋剤として加え、熱プレス法により シールド層 13を形成し、このようなシールド層 13を備えるシート体 10を作製した。配 合に於ける、ポリマー分率は 45. 3vol.%、磁性体分率は 46. 4vol. %である。 EXAMPLES Hereinafter, although an Example is given and the evaluation method of this invention is demonstrated in detail, this invention is not limited to the following Examples. Example 1 is 100 parts by weight of hydrogenated-tolyl rubber (HNBR, “Zeppol” manufactured by Nippon Zeon Co., Ltd.) as binder 20 and Sendust (Fe—Si—A 1-based alloy) as flat soft magnetic powder (magnetic metal) 21 DT made by Dowa Mining Co., Ltd. 690 parts by weight and 69 parts by weight of ultrafine iron powder (manufactured by JFE Chemical) were added (filled) as magnetic fine particles 22, and surfactants and dispersants were added. Manufactured product name “Permicle D”) was added as a cross-linking agent, and a shield layer 13 was formed by a hot press method, and a sheet body 10 having such a shield layer 13 was produced. In the composition, the polymer fraction is 45.3 vol.% And the magnetic fraction is 46.4 vol.%.
実測比重値は、上記で得られたシートの重量 Z体積力 算出し、理論比重値は、 各構成成分の比重 X含有量の総和を体積で除して算出した。本実施例での理論比 重値は 3. 89であり、実測比重値は 3. 53であった。  The measured specific gravity value was calculated by calculating the weight Z volume force of the sheet obtained above, and the theoretical specific gravity value was calculated by dividing the total specific gravity X content of each component by the volume. The theoretical specific gravity value in this example was 3.89, and the measured specific gravity value was 3.53.
上記で得られたシールド層 13について、同軸管法によりその材料定数 (複素比透 磁率の実数部 'および虚数部 "、複素比誘電率の実数部 ε 'および虚数部 ε " を測定した。具体的には、シールド層 13と同一構成である外形が 7mmかつ内径が 3 mmのリング状試料を作成し、試料の同軸管内部への接触部分に導電性塗料を塗 布および乾燥し、同軸管部分を、同軸ケーブルを介してアジレント社製のネットワーク アナライザー 8720ESに接続し、 S 11 (反射減衰強度)および S21 (透過減衰強度) を測定し、ここ力 複素比透磁率の実数部 'および虚数部 "を決定した。また複 素比誘電率の実数部 ε 'および複素比誘電率の虚数部 ε "は、複素比透磁率の実 数部 'および虚数部 "と同様にして測定される。複素比透磁率の実数部 'およ び虚数部 "ならびに複素比誘電率の実数部 ε 'および虚数部 ε "の 1または複数 を不特定に指す場合、材料定数という場合ある。  With respect to the shield layer 13 obtained above, the material constants (the real part 'and the imaginary part' of the complex relative permeability and the real part ε 'and the imaginary part ε' of the complex relative permittivity were measured by the coaxial tube method. Specifically, a ring-shaped sample having the same configuration as that of the shield layer 13 and having an outer diameter of 7 mm and an inner diameter of 3 mm is prepared, and a conductive paint is applied to the contact portion of the sample inside the coaxial tube and dried. The part is connected to an Agilent network analyzer 8720ES via a coaxial cable, and S 11 (reflection attenuation strength) and S21 (transmission attenuation strength) are measured. This is the real part 'and imaginary part of the complex relative permeability. "The real part ε 'of the complex relative permittivity and the imaginary part ε" of the complex relative permittivity are measured in the same manner as the real part' and the imaginary part "of the complex relative permittivity. Real part 'and imaginary part' of relative permeability and complex ratio induction When one or more of the real part ε 'and imaginary part ε "of the electric power are unspecified, it is called a material constant.
図 3は、実施例 1の材料定数 '、 μ ε ε "の測定結果を示すグラフである。 図 1には、「♦」印によって、複素比透磁率の実数部 ,を示し、「國」印によって、複 素比透磁率の虚数部 "を示し、「△」印によって、複素比誘電率の実数部 ε,を示 し、「X」印によって、複素比誘電率の虚数部 ε "を示す。表 1および図 3に示すように 、 950MHzの電磁波に対する複素比透磁率の実部 ,は 19. 16であり、透磁率損 失項 tan δ μが 0. 58であり、複素比誘電率の実部 ε 'が 165. 8であり、誘電率損失 項 tan S εが 0. 15である。また表面抵抗率 (JIS K6911)は、 106 Ω /口である。 図 4は、シート体 10を備えるタグ 30を簡略ィ匕して示す断面図である。図 5は、タグ 3 0を示す斜視図である。タグ 30は、無線通信によって情報を伝達する電子情報伝達 装置の 1つであり、たとえば固体の自動認識に利用される RFID (Radio Frequency ID entification)システムのトランスボンダとして用いられる。タグ 30は、電界型のアンテナ 素子 11と、アンテナ素子 11に電気的に接続され、アンテナ素子 11を用いて通信す る通信手段である集積回路(以下「IC」という) 17と、シート体 10とを備えている。タグ 30は、リーダからの要求信号をアンテナ素子 11によって受信すると、 IC17内に記憶 されて ヽる情報を表す信号をアンテナ素子 11によって送信するように構成されて ヽ る。したがってリーダは、タグ 30に保持されている情報を読取ることができる。タグ 30 は、たとえば商品に貼着して設けられ、商品の盗難防止および在庫状況の把握など 、商品管理に利用されている。アンテナ素子 11とシート体 10とを含んでアンテナ装 置が構成される。図 4には図示していないが、整合回路を付加していることもある。 アンテナ手段であるアンテナ素子 11は、前述のように、ダイポールアンテナである。 アンテナ素子 11は、ポリエチレンテレフタレート(PET)力も成る基材 18の厚み方向 一方側の表面部に形成されるパターン導体によって実現される。 IC17は、アンテナ 素子 11のたとえば中央部に配置され、電気的に接続されている。 IC17は、少なくと も記憶部と制御部とを有している。記憶部には情報を記憶することが可能であり、制 御部は、記憶部に情報を記憶させ、または記憶部力 情報を読出すことができる。こ の IC17は、アンテナ素子 11によって受信される電磁波信号が表す指令に応答して 、情報を記憶部に記憶し、または記憶部に記憶される情報を読出して、その情報を 表す信号をアンテナ素子 11に与える。基材 18は、長方形板状であり、アンテナ素子 11は、基材 18の中央部に長手方向に延びて設けられる。アンテナ素子 11および IC 17の層の厚み寸法は、 lnm以上 500 /z m以下であり、基材 18の層の厚み寸法は、 0. 1 m以上 2mm以下である。シート体 10に直接アンテナ素子 11を印刷、加工す ることで基材を用いな 、構成であってもよ 、。 FIG. 3 is a graph showing the measurement results of the material constants', μ ε ε ”of Example 1. In FIG. 1, the real part of the complex relative permeability is indicated by“ ♦ ”and“ country ”. The imaginary part "of the complex relative permittivity" is indicated by the mark, the real part ε, of the complex relative permittivity is indicated by the "△" mark, and the imaginary part ε "of the complex relative permittivity is indicated by the" X "mark. As shown in Table 1 and Fig. 3, the real part of the complex relative permeability for electromagnetic waves of 950 MHz is 19.16, the permeability loss term tan δ μ is 0.58, and the complex relative permittivity The real part ε 'is 165.8, the dielectric loss term tan S ε is 0.15, and the surface resistivity (JIS K6911) is 10 6 Ω / mouth. FIG. 4 is a cross-sectional view showing the tag 30 including the sheet body 10 in a simplified manner. FIG. 5 is a perspective view showing the tag 30. The tag 30 is one of electronic information transmission devices that transmit information by wireless communication. For example, the tag 30 is used as a transbonder of an RFID (Radio Frequency ID entification) system used for automatic recognition of solid objects. The tag 30 includes an electric field type antenna element 11, an integrated circuit (hereinafter referred to as “IC”) 17 that is a communication means that is electrically connected to the antenna element 11 and communicates using the antenna element 11, and a sheet body 10. And. The tag 30 may be configured to transmit a signal representing information stored in the IC 17 by the antenna element 11 when the antenna element 11 receives a request signal from the reader. Therefore, the reader can read the information held in the tag 30. The tag 30 is attached to a product, for example, and is used for product management, such as prevention of product theft and grasping inventory status. The antenna device is configured to include the antenna element 11 and the sheet body 10. Although not shown in FIG. 4, a matching circuit may be added. As described above, the antenna element 11 which is an antenna means is a dipole antenna. The antenna element 11 is realized by a pattern conductor formed on the surface portion on one side in the thickness direction of the base material 18 that also has a polyethylene terephthalate (PET) force. The IC 17 is disposed, for example, at the center of the antenna element 11 and is electrically connected. The IC 17 has at least a storage unit and a control unit. Information can be stored in the storage unit, and the control unit can store information in the storage unit or read out storage unit force information. In response to a command represented by the electromagnetic wave signal received by the antenna element 11, the IC 17 stores information in the storage unit or reads information stored in the storage unit and sends a signal representing the information to the antenna element. Give to 11. The base material 18 has a rectangular plate shape, and the antenna element 11 is provided at the center of the base material 18 so as to extend in the longitudinal direction. The thickness dimension of the layers of the antenna element 11 and the IC 17 is 1 nm or more and 500 / zm or less, and the thickness dimension of the layer of the substrate 18 is 0.1 m or more and 2 mm or less. The antenna element 11 may be printed and processed directly on the sheet body 10 so that the base material is not used.
アンテナ素子 11、 IC17および基材 18によって、タグ本体 33が構成される。タグ本 体 33は、可撓性を有する接着テープに搭載されるなどしてパッケージングされて!/、る 。タグ本体 33とシート体 10とによって、タグ 30が構成されている。図 4には、簡略化し て示している力 タグ本体 33にシート体 10が貼着される状態で積層される。図 4には 示されていないが、タグ本体 33 (基材 18が含まれない構成もある)とシート体 10の間 には粘着剤もしくは接着剤を用いられる力 タグ本体 33かシート体 10のどちらかまた は双方が粘着性もしくは接着性を有することにより貼付けられる場合もある。タグ本体 33は、アンテナ素子 11および IC17が設けられる側とは反対側の表面部をシート体 1 0に対向させ、シート体 10のシールド層 13に導体層 14などの層とは反対側力も結合 される。シート体 10とタグ本体 33との結合構造は、特に限定されるものではないが、 粘着剤および接着剤を含む結着剤を用いて結合してもよい。図 3には、シート体 10と タグ本体 33とを結合するための構成は省略して示す。タグ 30は、厚み方向一方側か ら他方側に、アンテナ素子 11および IC17の層、基材 18の層、シールド層 13、結着 層 16、導体層 14ならびに貼着用剤層 15がこの順で積層されている。シート体 10と 基材 18とは、同一の長方形状に形成されている。タグ本体 33は、図 4の向きでもよい し、図面上で上下反対にした構成でもよいことは、前述のとおりである。 The antenna body 11, the IC 17, and the base material 18 constitute a tag body 33. The tag body 33 is packaged by being mounted on a flexible adhesive tape. A tag 30 is configured by the tag body 33 and the sheet body 10. Figure 4 shows a simplified The sheet body 10 is laminated in a state where the sheet body 10 is adhered to the tag body 33. Although not shown in FIG. 4, a force that uses an adhesive or an adhesive between the tag body 33 (some configurations do not include the base material 18) and the sheet body 10 includes the tag body 33 or the sheet body 10 In some cases, one or both of them may be attached because they are sticky or adhesive. The tag body 33 has a surface portion opposite to the side on which the antenna element 11 and the IC 17 are provided facing the sheet body 10, and a force opposite to the layer such as the conductor layer 14 is coupled to the shield layer 13 of the sheet body 10. Is done. The coupling structure between the sheet body 10 and the tag body 33 is not particularly limited, but may be coupled using a binder including an adhesive and an adhesive. In FIG. 3, a configuration for coupling the sheet body 10 and the tag main body 33 is omitted. The tag 30 has an antenna element 11 and an IC17 layer, a base material 18 layer, a shield layer 13, a binder layer 16, a conductor layer 14 and an adhesive layer 15 in this order from one side to the other side in the thickness direction. Are stacked. The sheet body 10 and the base material 18 are formed in the same rectangular shape. As described above, the tag body 33 may have the orientation shown in FIG. 4 or may be configured upside down on the drawing.
アンテナ素子 11は、アンテナ素子 11が延びる方向と交差する方向へ向けて電磁 波信号を送信し、アンテナ素子 11が延びる方向と交差する方向から到来する電磁波 信号を受信することができる。本実施の形態では、アンテナ素子 11を基準にして、基 材 18およびシート体 10とは反対側に向力 送受信方向 Aへ電磁波信号を送信し、 送受信方向 A力 到来する電磁波信号を受信することができる。送受信方向 Aは主 な方向を示しているが、回り込んだ電波で通信する場合もあるため、その方向に限定 されるものではない。  The antenna element 11 can transmit an electromagnetic wave signal in a direction intersecting with the direction in which the antenna element 11 extends, and can receive an electromagnetic wave signal coming from a direction intersecting with the direction in which the antenna element 11 extends. In the present embodiment, an electromagnetic wave signal is transmitted in the direction of transmission / reception direction A on the opposite side of the base material 18 and the sheet body 10 with respect to the antenna element 11, and the electromagnetic wave signal in the direction of transmission / reception A is received. Can do. Transmission / reception direction A indicates the main direction, but there is a case where communication is performed using a wraparound radio wave, and the direction is not limited to that direction.
タグ 30は、たとえばリーダである情報管理装置から、予め定める記憶すべき情報( 以下「主情報」と!、う)と、その主情報を記憶するように指令する情報 (以下「記憶指令 情報」という)とを表す電磁波信号が、アンテナ素子 11によって受信されると、主情報 および記憶指令情報を表す電気信号がアンテナ素子 11から IC17に与えられる。 IC タグ 17は、制御部が、記憶指令情報に基づいて、主情報を記憶部に記憶させる。 また情報管理装置から、記憶部に記憶される情報 (以下「記憶情報」 t 、う)を送信 するように指令する情報 (以下「送信指令情報」 t ヽぅ)を表す電磁波信号が、アンテ ナ素子 11によって受信されると、送信指令情報を表す電気信号がアンテナ素子 11 から IC17に与えられる。 ICタグ 17は、制御部が、送信指令情報に基づいて、記憶部 に記憶される情報 (記憶情報)を読出し、その記憶情報を表す電気信号をアンテナ 素子 11に与える。これによつてアンテナ素子 11から、記憶情報を表す電磁波信号が 送信される。 The tag 30 has information to be stored in advance (hereinafter referred to as “main information” and “!”) And information for instructing to store the main information (hereinafter referred to as “storage command information”) from an information management device that is a reader, for example. When the antenna element 11 receives the electromagnetic wave signal representing the main information and the storage command information, the antenna element 11 provides the IC 17 with the electric signal. The IC tag 17 causes the control unit to store main information in the storage unit based on the storage command information. In addition, an electromagnetic wave signal representing information (hereinafter referred to as “transmission command information” t ヽ ぅ) that instructs the information management device to transmit information stored in the storage unit (hereinafter referred to as “stored information” t) is an antenna. When received by the element 11, an electrical signal representing the transmission command information is transmitted to the antenna element 11. To IC17. In the IC tag 17, the control unit reads information (stored information) stored in the storage unit based on the transmission command information, and gives an electric signal representing the stored information to the antenna element 11. As a result, an electromagnetic wave signal representing stored information is transmitted from the antenna element 11.
このようにタグ 30は、アンテナ素子 11によって電磁波信号を送受信する電子情報 伝達装置である。タグ 30は、内蔵するバッテリによって駆動されるノ ッテリ駆動タグで あってもよ!ヽし、受信した電磁波信号のエネルギを利用して電磁波信号を返信する バッテリレスタグであってもよい。  Thus, the tag 30 is an electronic information transmission device that transmits and receives an electromagnetic wave signal by the antenna element 11. The tag 30 may be a battery-driven tag driven by a built-in battery, or may be a batteryless tag that returns an electromagnetic wave signal using the energy of the received electromagnetic wave signal.
このようなタグ 30は、通信妨害部材 12の近傍で用いることができるようにするため に、シート体 10を備えている。シート体 10は、一例としてアンテナ素子 11に対して、 送受信方向 Aと反対側に設けられる。シート体 10は、貼着用剤層 15を用いて通信妨 害部材 12に貼着して用いられる。このタグ 30は、アンテナ素子 11よりもシート体 10を 通信妨害部材 12側に配置して、アンテナ素子 11と通信妨害部材 12との間またはァ ンテナ素子近傍にシート体 10が介在もしくは配置されるように設けられる。  Such a tag 30 includes a sheet body 10 so that the tag 30 can be used in the vicinity of the communication blocking member 12. As an example, the sheet body 10 is provided on the side opposite to the transmission / reception direction A with respect to the antenna element 11. The sheet body 10 is used by being attached to the communication hindering member 12 using the adhesive layer 15. In the tag 30, the sheet body 10 is disposed closer to the communication interference member 12 than the antenna element 11, and the sheet body 10 is interposed or disposed between the antenna element 11 and the communication interference member 12 or in the vicinity of the antenna element. It is provided as follows.
図 6は、タグ 30を通信妨害部材 12に貼着した状態で、アンテナ素子 11の近傍に形 成される電界を示す断面図である。図 7は、シート体 10を介在させずに、アンテナ素 子 11および ICタグ 17を通信妨害部材 12近傍に配置した状態で、アンテナ素子 11 の近傍に形成される電界を示す断面図である。図 6は、理解を容易にするために、タ グ 30の構成のうち、アンテナ素子 11、 IC17およびシールド層 13以外の構成を省略 して示す。アンテナ素子 11の近傍に通信妨害部材 12が存在しない自由空間では、 アンテナ素子 11の両端部 11a, l ibの電位差によって生じる電界力 そのまま空間 に広がり、電界の強度変化によって磁界が形成され、さらにその磁界の強度の変化 によって電界が形成される。アンテナ素子 11は、このような電界および磁界の形成現 象が順次連続的に繰返される原理を利用して、電磁波を送信することができる。また アンテナ素子 11は、送信原理と逆の原理によって、共振周波数の電磁波を受信する ことができる。  FIG. 6 is a cross-sectional view showing an electric field formed in the vicinity of the antenna element 11 in a state where the tag 30 is attached to the communication disturbing member 12. FIG. 7 is a cross-sectional view showing an electric field formed in the vicinity of the antenna element 11 in a state where the antenna element 11 and the IC tag 17 are arranged in the vicinity of the communication disturbing member 12 without the sheet body 10 interposed. For ease of understanding, FIG. 6 omits the configuration of the tag 30 except for the antenna element 11, the IC 17, and the shield layer 13. In free space where the communication interference member 12 does not exist in the vicinity of the antenna element 11, the electric field force generated by the potential difference between both ends 11a and l ib of the antenna element 11 spreads as it is, and a magnetic field is formed by the change in the electric field strength. An electric field is formed by a change in the strength of the magnetic field. The antenna element 11 can transmit an electromagnetic wave by utilizing such a principle that the formation phenomenon of the electric field and the magnetic field is successively repeated. The antenna element 11 can receive an electromagnetic wave having a resonance frequency by a principle opposite to the transmission principle.
図 7に示すように、アンテナ素子 11の近傍に通信妨害部材 12が存在する場合、ァ ンテナ素子 11の両端に生じる電界は、通信妨害部材 12から受ける電気的な影響を 無視することができず、周波数にも依存するが MHz帯以上の周波数域では短絡 (シ ョート)現象が生じ、結果的にアンテナ素子 11の持つインピーダンスがそれにより低 下してしまうことになる。 As shown in FIG. 7, when the communication disturbing member 12 is present in the vicinity of the antenna element 11, the electric field generated at both ends of the antenna element 11 is affected by the electrical influence received from the communication disturbing member 12. Although it cannot be ignored and depends on the frequency, a short-circuit phenomenon occurs in the frequency range above the MHz band, and as a result, the impedance of the antenna element 11 is lowered.
つまりアンテナ素子 11の両端部 11a, l ibに電位差が生じる状態では、アンテナ素 子 11の両端部 11a, l ibが、正または負にそれぞれ帯電された状態となり、これによ つてアンテナ素子 11の両端部 11a, l ibと、通信妨害部材 12におけるアンテナ素子 11の両端部 11a, l ibとそれぞれ対向する部分 12a, 12bとの間に電界が形成され 、アンテナ素子 11の両端部 11a, l ibと正負反対に帯電された状態となる。アンテナ 素子 11には、 ICによって交番電圧が印加され、両端部 11a, l ibは、正または負が 交互に入替わるように帯電され、これと同期して通信妨害部材 12における各部分 12 a, 12bも、正または負が交互に入替わるように帯電されることになる。以下、図 6およ び図 7において、アンテナ素子 11の左側の端部を一端部 11aとし、右側の端部を他 端部 l ibとし、通信妨害部材 12における各部分 12a, 12bのうち、左側の部分を一 方部分 12aとし、右側の部分を他方部分 12bとする。  That is, in a state where a potential difference is generated at both ends 11a and l ib of the antenna element 11, both ends 11a and l ib of the antenna element 11 are charged positively or negatively, respectively. An electric field is formed between both end portions 11a and l ib and both end portions 11a and 12b of antenna element 11 in communication jamming member 12, and both ends 11a and l ib of antenna element 11 are formed. It will be in the state of being charged oppositely. An alternating voltage is applied to the antenna element 11 by the IC, and both end portions 11a and l ib are charged so that positive and negative are alternately switched, and in synchronization therewith, each portion 12a, 12a, 12b will also be charged so that positive or negative will alternate. Hereinafter, in FIG. 6 and FIG. 7, the left end of the antenna element 11 is defined as one end 11a, the right end is defined as the other end l ib, and each of the portions 12a and 12b of the communication disturbing member 12 is The left part is the one part 12a and the right part is the other part 12b.
微小時間につ 、て観察すると、アンテナ素子 11の他端部 1 lbから一端部 1 laに向 力う電流 111が生じるとともに、通信妨害部材 12内に、一方部分 12aから他方部分 1 2bに向力 電流 112が生じる。このように逆向きの電流が生じる。前述のようにアンテ ナ素子 11には、 ICによって交番電圧が印加されるので、図 7に示す向きの電流が生 じる状態と、図 7と反対向きの電流が生じる状態とが交互に発生する。周波数が高く なると、アンテナ素子 11の一端部 11aと通信妨害部材 12の一方部分 12aとの間、お よびアンテナ素子 11の他端部 l ibと通信妨害部材 12の他方部分 12bとの間に、あ た力も電流 10が生じて 、るのと等価の状態となり、アンテナ素子 11の一端部 1 laと通 信妨害部材 12の一方部分 12aとの間、およびアンテナ素子 11の他端部 l ibと通信 妨害部材 12の他方部分 12bとの間力 短絡しているのと等価の状態になる。いわば 高周波的に短絡した状態となる。この高周波的に短絡する現象は、コンデンサに高 周波の電圧を印加した場合に、通電しているのと同様の状態になることと同じ現象で ある。  When observed for a short time, a current 111 is generated from the other end 1 lb of the antenna element 11 to the one end 1 la, and the communication disturbing member 12 is directed from the one part 12a to the other part 12b. Force current 112 is generated. In this way, a reverse current is generated. As described above, since an alternating voltage is applied to the antenna element 11 by the IC, a state in which a current in the direction shown in FIG. 7 is generated and a state in which a current in the direction opposite to that in FIG. 7 is generated alternately occur. To do. When the frequency is increased, the gap between one end 11a of the antenna element 11 and one part 12a of the communication disturbing member 12 and between the other end l ib of the antenna element 11 and the other part 12b of the communication disturbing member 12 are The resulting force 10 is equivalent to a current 10 and is equivalent to a state where the current is generated between the one end 1 la of the antenna element 11 and the one portion 12a of the communication blocking member 12 and the other end l ib of the antenna element 11. It is equivalent to a short circuit between the other part 12b of the communication disturbing member 12. In other words, it becomes short-circuited at a high frequency. This phenomenon of short-circuiting at a high frequency is the same phenomenon as when a high-frequency voltage is applied to the capacitor, it becomes the same state as when it is energized.
このような高周波的な短絡が生じると、アンテナ素子 11と通信妨害部材 12とによつ て閉回路が形成され、通信妨害部材 12が近傍に存在しない場合に比べて電流値が 増加する。つまりアンテナ素子 11の近傍に通信妨害部材 12がない場合に比べて、 インピーダンスが低下する。インピーダンスを Zとし、電圧値を Vとし、電流値を Iとする と、インピーダンス Zは、 Z=VZlとなり、電流値 Iが増加することからも、インピーダン ス Zが低下していること力も確認されている。このインピーダンス Zは、アンテナ素子 1 1と通信妨害部材 12とによって形成される回路のインピーダンスであるが、回路を構 成するアンテナ素子 11の入力インピーダンスでもある。したがってアンテナ近傍に通 信妨害部材 12が存在すると、アンテナ素子 11の入力インピーダンスが低下してしま これに対して図 6に示すように、シート体 10は、電界型のアンテナ素子 11と通信妨 害部材 12との間に設けると、アンテナ素子 11の両端部 11a, l ibが帯電されることに よって、通信妨害部材 12との間に形成される電界の強度が小さくなる。したがって高 周波的な短絡回路の形成が弱まり、アンテナ素子 11の入力インピーダンスの低下が 抑制される。入力インピーダンスの低下抑制は、アンテナ素子 11に生じる電流の電 流値が、通信妨害部材 12が存在しな 、場合に近 ヽ小さ!/、値となることから確認され て 、る。このようにシート体 10を用いることによって入力インピーダンスの低下を抑制 することができる。 When such a high-frequency short circuit occurs, the antenna element 11 and the communication disturbing member 12 As a result, a closed circuit is formed, and the current value increases compared to the case where the communication disturbing member 12 does not exist in the vicinity. That is, the impedance is reduced as compared with the case where there is no communication blocking member 12 in the vicinity of the antenna element 11. If the impedance is Z, the voltage value is V, and the current value is I, the impedance Z is Z = VZl, and since the current value I increases, the force that the impedance Z is reduced is also confirmed. ing. The impedance Z is an impedance of a circuit formed by the antenna element 11 and the communication disturbing member 12, but is also an input impedance of the antenna element 11 constituting the circuit. Therefore, if the communication obstruction member 12 is present in the vicinity of the antenna, the input impedance of the antenna element 11 is lowered. On the other hand, as shown in FIG. 6, the sheet body 10 is connected to the electric field type antenna element 11 and obstructs communication. If it is provided between the member 12 and the both end portions 11a and ib of the antenna element 11, the strength of the electric field formed between the member 12 and the communication disturbing member 12 is reduced. Therefore, the formation of a high-frequency short circuit is weakened, and a decrease in the input impedance of the antenna element 11 is suppressed. The suppression of the decrease in the input impedance is confirmed by the fact that the current value of the current generated in the antenna element 11 is close to the value in the absence of the communication disturbing member 12! /. By using the sheet body 10 in this way, it is possible to suppress a decrease in input impedance.
本件発明者は、表 1および図 3に示す実施例 1の材料定数 '、 μ ε '、 ε "の数 値を用いて、金属製の通信妨害部材 12近傍にダイポールアンテナであるアンテナ 素子 11がある場合に、アンテナ素子 11と通信妨害部材 12との間またはアンテナ素 子近傍にシート体 10を挟込む状態で、アンテナ素子 11のインピーダンス回復度合を 電磁界シミュレータ(Sonnet)により計算した。  The present inventor uses the numerical values of the material constants ', μ ε', ε "of Example 1 shown in Table 1 and FIG. 3 to determine that the antenna element 11 that is a dipole antenna is in the vicinity of the metallic communication disturbing member 12. In some cases, the impedance recovery degree of the antenna element 11 was calculated by an electromagnetic field simulator (Sonnet) with the sheet 10 sandwiched between the antenna element 11 and the communication disturbing member 12 or in the vicinity of the antenna element.
シミュレーションに用いた構成は、図 4のとおりである。導体層 14として金属板であ る銅(Cu)板を有し、 50 μ m厚の粘着層 16および 500 μ m厚のシールド層 13を設け 、基材 18である 100 μ m厚の PETフィルムにアンテナ ·エレメントであるアンテナ素子 11を配置している。この結果、入力インピーダンスは 126 Ω (1GHzの場合、リアクタ ンスがゼロの周波数)、放射効率は 3% (利得 12. 6dB)となった。  The configuration used for the simulation is shown in Figure 4. The conductor layer 14 has a copper (Cu) plate, which is a metal plate, and is provided with a 50 μm-thick adhesive layer 16 and a 500 μm-thick shield layer 13, and the substrate 18 is a 100 μm-thick PET film The antenna element 11 which is an antenna element is arranged in As a result, the input impedance was 126 Ω (the frequency at which reactance was zero at 1 GHz), and the radiation efficiency was 3% (gain 12.6 dB).
シート体 10は、電界型のアンテナ素子 11と通信妨害部材 12との間に設けることに よって、アンテナ素子 11が通信妨害部材の近傍に配置されるときに、導電性材料か ら成る部分を有する部材よるアンテナ素子の入力インピーダンスの低下を抑制するこ とができる。シート体 10を用いなければ、電界型のアンテナ素子 11は、通信妨害部 材 12の近傍では、ほとんど動作しなくなり、無線通信に用いることができなくなる。こ の理由として、電界型のアンテナ素子 11の入力インピーダンスが大幅に小さくなるこ とが挙げられる。電界型のアンテナ素子 11の入力インピーダンスが小さくなると、電 界型のアンテナ素子 11を用 、て通信する IC 17のインピーダンスと乖離し、電界型の アンテナ素子 11と IC17との間で、信号を受渡しすることができなくなってしまう。シー ト体 10は、アンテナ素子 11が導電性材料力も成る部分を有する部材の近傍に配置 されるときに、アンテナ素子 11の入力インピーダンスの低下を抑制することができる。 電界型アンテナであるため誘電率および誘電損失を大きくしたいところである力 誘 電損失 (tan δ ε = ε V ε ' )を大きくするには、複素比誘電率の虚数部 ε "を大き くする必要があるものの、複素比誘電率の虚数部 ε "が必要以上に大きくなると導電 率が上がってしまい、短絡を進める方向に寄与することになる。本発明では誘電率以 外に透磁率を制御することを手段として選択し、インピーダンスを効率的に回復させ たものである。つまり誘電率と透磁率を併用して、導電性を上げすぎないことによって 、通信改善効果を得ることができている。したがってシート体 10を用いることによって 、電界型のアンテナ素子 11を用いて、通信妨害部材 12の近傍であっても、好適に 無線通信することができる。 The sheet body 10 is provided between the electric field type antenna element 11 and the communication disturbing member 12. Therefore, when the antenna element 11 is disposed in the vicinity of the communication disturbing member, it is possible to suppress a decrease in input impedance of the antenna element due to a member having a portion made of a conductive material. If the sheet member 10 is not used, the electric field type antenna element 11 hardly operates in the vicinity of the communication disturbing member 12, and cannot be used for wireless communication. This is because the input impedance of the electric field type antenna element 11 is significantly reduced. When the input impedance of the electric field type antenna element 11 is reduced, the electric field type antenna element 11 is used to diverge from the impedance of the IC 17 that communicates, and the signal is transferred between the electric field type antenna element 11 and the IC 17. You will not be able to. The sheet body 10 can suppress a decrease in input impedance of the antenna element 11 when the antenna element 11 is disposed in the vicinity of a member having a portion that also has a conductive material force. In order to increase the force induced loss (tan δ ε = ε V ε '), where the dielectric constant and dielectric loss are to be increased because of the electric field antenna, it is necessary to increase the imaginary part ε "of the complex relative permittivity However, if the imaginary part ε "of the complex relative permittivity becomes larger than necessary, the conductivity will increase, contributing to the direction of a short circuit. In the present invention, in addition to the dielectric constant, the control of the magnetic permeability is selected as a means, and the impedance is efficiently recovered. In other words, by using the dielectric constant and the magnetic permeability together and not increasing the conductivity too much, the communication improvement effect can be obtained. Therefore, by using the sheet member 10, wireless communication can be suitably performed even in the vicinity of the communication disturbing member 12 using the electric field type antenna element 11.
具体的には、アンテナ素子 11がダイポールアンテナである場合、ダイポールアンテ ナの中央部に IC17を接続させる力 IC17のインピーダンスは、たとえば 40 Ωであつ たり、 50 Ωであったりする。このインピーダンスと整合を取るには、少なくともアンテナ のインピーダンスが 10 Ω程度必要となる。  Specifically, when the antenna element 11 is a dipole antenna, the force that connects the IC 17 to the center of the dipole antenna. The impedance of the IC 17 is, for example, 40 Ω or 50 Ω. In order to match this impedance, at least the antenna impedance needs to be about 10 Ω.
アンテナ素子 11に金属を近づけると、レジスタンスが下がり、インピーダンスも小さく なってしまうためである。計算例を示すと、シート体 10を用いない場合、アンテナ素子 11と通信妨害部材 12との間に、 0. 53mm厚の誘電体のみあるとすると、インピーダ ンスは 0. 85 Ωとなる。この数字はたとえ 40 Ωに比べて小さすぎる。タグ 30では、構 成の簡略ィ匕のために、アンテナ素子 11と IC17とは直づけされる。途中にインピーダ ンス調整用の回路は設けられな 、。したがって前記インピーダンスの差は致命的で ある。これに対してシート体 10を設けることによって、アンテナ素子 11の入力インピー ダンスの低下を抑制することができる。 This is because when a metal is brought close to the antenna element 11, the resistance decreases and the impedance also decreases. As shown in the calculation example, when the sheet body 10 is not used, if there is only a dielectric having a thickness of 0.53 mm between the antenna element 11 and the communication disturbing member 12, the impedance is 0.85 Ω. This number is too small compared to 40 Ω. In the tag 30, the antenna element 11 and the IC 17 are directly attached to simplify the configuration. Impeder on the way There is no circuit for adjusting the resistance. Therefore, the impedance difference is fatal. On the other hand, by providing the sheet member 10, it is possible to suppress a decrease in the input impedance of the antenna element 11.
さらに電磁エネルギの減衰を抑えるため、エネルギ減衰中の磁界成分の発生に着 目し、シート体 10の複素比透磁率の調整によって、実数部; z 'を大きくすることで磁 界を集め、且つ "を小さくすることで集めた磁界のエネルギが熱エネルギに変換し ないようにする。このようにシート体 10の複素透磁率を調整する場合、シート体 10の 複素比誘電率を調整する場合に比べて、電磁エネルギの減衰を抑える効果を得や すい。この理由は、磁界は発生源に近い程強くなるため、薄型シートであっても複素 比透磁率を調整すれば、効果的に働くためである。  In order to further suppress the attenuation of electromagnetic energy, attention is focused on the generation of magnetic field components during energy attenuation, and the magnetic field is collected by increasing the real part; z ′ by adjusting the complex relative permeability of the sheet body 10, and The energy of the collected magnetic field is prevented from being converted into thermal energy by reducing “.” When adjusting the complex magnetic permeability of the sheet body 10 in this way, when adjusting the complex relative permittivity of the sheet body 10 In comparison, it is easier to obtain an effect of suppressing the attenuation of electromagnetic energy because the magnetic field becomes stronger as it is closer to the source, so even if it is a thin sheet, it works effectively if the complex relative permeability is adjusted. It is.
さらに電磁エネルギの損失を抑えることによって、アンテナ素子 11のアンテナ特性 としては、放射効率を大きくすることができる。放射効率 7? = 10 (利得—指向性利得 10で表 すことができる。指向性利得は、金属などの損失を含まない利得である。利得 (通常 G ainとだけ書かれている場合はこちらを指す。)は、損失を含んだ「いわば真の利得」と いえる。計算結果、放射効率を良くする(上げる)ためには、損失を少なくすればよい ことがわ力つた。また、アンテナの放射抵抗を Rrad、損失抵抗を Rlossとすると、放射 効率 7? =RradZ (Rrad+ Rloss)である。 Rradは無損失アンテナの入力インピーダン スのレジスタンスに相当するため、アンテナ素子 11に金属を近づけてレジスタンスが 下がると、放射効率が低下することになる。このため、アンテナ素子 11の入力インピ 一ダンスの低下を抑制することで放射効率を大きくすることができる。 Further, by suppressing the loss of electromagnetic energy, the radiation efficiency of the antenna characteristics of the antenna element 11 can be increased. Radiation efficiency 7? = 10 ( Gain—Directional gain can be expressed as 10. Directivity gain is a gain that does not include loss of metals, etc. Gain (usually, if only Gain is written, click here) Is a true gain that includes loss.The calculation results show that it is necessary to reduce the loss to improve (increase) the radiation efficiency. If the radiation resistance is Rrad and the loss resistance is Rloss, the radiation efficiency is 7? = RradZ (Rrad + Rloss) Since Rrad corresponds to the resistance of the input impedance of the lossless antenna, resistance is set by bringing a metal closer to the antenna element 11. Therefore, the radiation efficiency decreases, and therefore, the radiation efficiency can be increased by suppressing the decrease in the input impedance of the antenna element 11.
さらにアンテナ素子 11の長さは、シート体 10の複素比誘電率および複素比透磁率 による波長短縮効果の影響を受けるため、周波数の再調整が必要である。この波長 短縮の影響を考慮するとシビアな製造条件が要求される。これを回避するためには、 大きな数値をとる傾向にある複素比誘電率の実部をなるベく小さい値とすることが求 められる。  Furthermore, since the length of the antenna element 11 is affected by the wavelength shortening effect due to the complex relative permittivity and the complex relative permeability of the sheet member 10, the frequency needs to be readjusted. Considering the effect of this shortening of wavelength, severe manufacturing conditions are required. In order to avoid this, the real part of the complex dielectric constant, which tends to be large, must be set to a very small value.
またアンテナ素子 11がとして、ダイポールアンテナを用いることができる。これによ つて、簡単、小型な構成のダイポールアンテナを、通信妨害部材 12の近傍で用いて 無線通信することができる。 またシート体 10には、シールド層 13が設けられ、シールド層 13は、無線通信に用 いられる電磁波に対して、複素比透磁率の実数部 'と複素比透磁率の虚数部 " が ,≥ "であり、好ましくは、複素比透磁率の実数部 μ,が 5以上でありかつ透磁 率損失項 tan δ ≤1であり、さらに好ましくは、複素比透磁率の実数部/ ζ 'が 20以 上でありかつ透磁率損失項 tan δ μ≤0. 5である。またシールド層 13は、無線通信 に用いられる電磁波に対して、複素比誘電率の実数部 ε 'が 20以上である。さらに シールド層 13は、無線通信に用いられる電磁波に対して、複素比誘電率の虚数部 ε "が 300以下である。これによつてアンテナ素子 11が通信妨害部材 12の近傍に配 置されるときに、通信妨害部材 12よるアンテナ素子 11の入力インピーダンスの低下 を抑制することができるとともに、通信妨害部材 12よる電磁エネルギの損失を抑制す ることができるシート体を実現することができる。 As the antenna element 11, a dipole antenna can be used. Thus, wireless communication can be performed using a dipole antenna having a simple and small configuration in the vicinity of the communication disturbing member 12. Further, the sheet body 10 is provided with a shield layer 13, and the shield layer 13 has a real part 'of complex relative permeability and an imaginary part of complex relative permeability for electromagnetic waves used for wireless communication. Preferably, the real part μ of the complex relative permeability is 5 or more and the permeability loss term tan δ ≤1, more preferably the real part of the complex relative permeability / ζ ′ is 20 The above is the permeability loss term tan δ μ≤0.5. The shield layer 13 has a real part ε ′ of a complex relative dielectric constant of 20 or more with respect to electromagnetic waves used for wireless communication. Further, the shield layer 13 has an imaginary part ε ″ of a complex relative dielectric constant of 300 or less with respect to electromagnetic waves used for wireless communication. Thereby, the antenna element 11 is arranged in the vicinity of the communication disturbing member 12. Sometimes, it is possible to realize a sheet body that can suppress a decrease in input impedance of the antenna element 11 due to the communication disturbing member 12 and also can suppress a loss of electromagnetic energy due to the communication disturbing member 12.
グラフなどは省略する力 950MHz帯の複素比透磁率の実数部 ,が 50でありか つ透磁率損失項 tan δ μ = 0. 1である場合の放射効率のシミュレーション結果の一 例を述べると、入力インピーダンスは 13 Ω ( 1GHzの場合、リアクタンスがゼロの周波 数)、放射効率は 8% (利得 5. ldB)となった。  An example of the radiation efficiency simulation results when the power of the complex relative permeability in the 950 MHz band is 50 and the permeability loss term tan δ μ = 0.1 is omitted from the graph. The input impedance was 13 Ω (at 1 GHz, the frequency with zero reactance), and the radiation efficiency was 8% (gain 5. ldB).
図 8は、アンテナ素子 11としてダイポールアンテナを用いる場合のシート体 10の効 果を確認するためのシミュレーションにおいて想定したシート体 10の構成を示す断 面図である。このシミュレーションでは、シート体 10は、シールド層 13だけを有し、ァ ンテナ素子 11に基材 18に相当する誘電体層を介してシート体 10 (シールド層 13)を 設け、シート体 10 (シールド層 13)がアンテナ素子 11と金属板力も成る通信妨害部 材 12との間に配置されるように、シート体 10 (シールド層 13)に通信妨害部材 12を 直接積層した構成にっ 、て、通信状態をシミュレーションした。  FIG. 8 is a cross-sectional view showing the configuration of the sheet body 10 assumed in the simulation for confirming the effect of the sheet body 10 when a dipole antenna is used as the antenna element 11. In this simulation, the sheet body 10 has only the shield layer 13, and the sheet body 10 (shield layer 13) is provided on the antenna element 11 via a dielectric layer corresponding to the base material 18. The communication disturbing member 12 is directly laminated on the sheet body 10 (shield layer 13) so that the layer 13) is disposed between the antenna element 11 and the communication disturbing member 12 having a metal plate force. The communication state was simulated.
図 9は、図 8の構成によるシミュレーション結果を示し、周波数とアンテナ素子 11の 入力インピーダンスの実数部(Real)及び虚数部(Imaginary)との関係を示すグラフで ある。この入力インピーダンスの虚数部がゼロになる周波数が共振周波数(図 9では 953MHz)を示す。図 10は、図 8の構成によるシミュレーション結果を示し、指向性 利得を示すグラフである。図 11は、図 8の構成によるシミュレーション結果を示し、絶 対利得を示すグラフである。 表 1は、図 8の構成の各層の材料定数を示す。各材料定数は、 950MHzの周波数 における値である。 FIG. 9 is a graph showing a simulation result by the configuration of FIG. 8 and showing a relationship between the frequency and the real part (Real) and the imaginary part (Imaginary) of the input impedance of the antenna element 11. The frequency at which the imaginary part of this input impedance becomes zero indicates the resonance frequency (953 MHz in Fig. 9). FIG. 10 is a graph showing the directivity gain, showing the simulation result of the configuration of FIG. FIG. 11 is a graph showing a simulation result by the configuration of FIG. 8 and showing absolute gain. Table 1 shows the material constants for each layer in the configuration of Fig. 8. Each material constant is a value at a frequency of 950 MHz.
[表 1] [table 1]
Figure imgf000037_0001
このシミュレーションでは、基材 18に相当する誘電体層として、 950MHz帯の複素 比誘電率の実数部 ε 'が 1. 1でありかつ誘電率損失項 tan δ ε = 0. 01である層厚 lmmの誘電体層(たとえば発泡スチロールなどの発泡体層)を想定し、 950MHz帯 の複素比誘電率の実数部 ε 'が 100でありかつ誘電率損失項 tan δ ε = 0. 01、複 素比透磁率の実数部 ,が 50でありかつ透磁率損失項 tan δ μ = 0. 01、導電率 1 0_4[SZm]であるシールド層 13を想定した。アンテナ素子 11側に誘電体層(基材 1 8)が配置され、この誘電体層に、アンテナ素子 11と反対側でシート体 10としてシー ルド層 13が積層されている。このようなシミュレーションの結果、入力インピーダンス( 実数部)は、入力インピーダンスの虚数部 (リアクタンス)がゼロの周波数である 953M Hzにおいて 30 Ωとなり、指向性利得は、 6. 696dBi (図 10の Θ (Theta) = 0の場合 の値)、絶対利得は、 0. 266dBi (図 11の Θ (Theta) = 0の場合の値)となり、放射効 率は 22. 53%となった。
Figure imgf000037_0001
In this simulation, the dielectric layer corresponding to the base material 18 has a layer thickness lmm where the real part ε ′ of the complex dielectric constant in the 950 MHz band is 1.1 and the dielectric loss term tan δ ε = 0.01. Assuming a dielectric layer (for example, a foam layer such as styrene foam), the real part ε ′ of the complex relative permittivity in the 950 MHz band is 100 and the permittivity loss term tan δ ε = 0.01, and the complex relative permeability A shield layer 13 is assumed in which the real part of the magnetic permeability is 50, the permeability loss term tan δ μ = 0.01, and the conductivity 1 0 _4 [SZm]. A dielectric layer (base material 18) is disposed on the antenna element 11 side, and a shield layer 13 is laminated on the dielectric layer as a sheet 10 on the side opposite to the antenna element 11. As a result of such a simulation, the input impedance (real part) is 30 Ω at 953 MHz where the imaginary part (reactance) of the input impedance is zero, and the directional gain is 6.696 dBi (see Θ ( Theta) = 0), the absolute gain was 0.266dBi (value in the case of Θ (Theta) = 0 in Fig. 11), and the radiation efficiency was 25.33%.
電界型のアンテナ素子 11の金属対応の課題、つまり通信妨害部材 12に対する課 題に対して、従来の技術では磁性を有するシートを用いることは検討されて 、なかつ た。この理由は、電界型のアンテナ素子では電界を主に利用するため、電界に対し ては当然に効果がある誘電率が議論され、透磁率の効果は十分に着目されなかつ た。つまり透磁率を有するシート体 10によるインピーダンス回復効果は知られていな かった。  In the conventional technology, the use of a magnetic sheet has not been studied with respect to the metal-related problem of the electric field type antenna element 11, that is, the problem with respect to the communication disturbing member 12. This is because the electric field type antenna element mainly uses the electric field, and thus the dielectric constant that is naturally effective for the electric field has been discussed, and the effect of the magnetic permeability has not been sufficiently noted. That is, the impedance recovery effect of the sheet body 10 having magnetic permeability was not known.
透磁率を利用した (誘電率も併用することになる)インピーダンス回復効果は大きく 、通信妨害部材 12の近傍に配置されることによるアンテナ素子 11の入力インピーダ ンスが 0 Ω近くまで落ち込んだもの力 シート体 11の複素比透磁率の実数部 ,を 1 0以上(高 MHz帯または 2. 4GHz帯にぉ 、て)とすることで数 10 Ω付近まで回復す る。これにより通信手段およびアンテナ素子 11に接続される IC固有のインピーダンス 、たとえば、 30 Ωおよび 50 Ωと整合がとれることになり、まずアンテナ素子を含む共 振回路として動作可能となる。 The impedance recovery effect using magnetic permeability (which also uses the dielectric constant) is large, and the input impedance of the antenna element 11 due to being placed in the vicinity of the communication interference member 12 falls to near 0 Ω. The real part of the complex relative permeability of the field 11 is 1 It recovers to several tens of ohms by setting it to 0 or more (high frequency band or 2.4 GHz band). As a result, matching can be achieved with the impedance inherent to the IC connected to the communication means and the antenna element 11, for example, 30 Ω and 50 Ω, and it is possible to operate as a resonance circuit including the antenna element first.
次に、電磁エネルギの損失である力 シールド層 13の複素比透磁率の虚数部 " の数値が大きければその損失が大きくなり、結果的にアンテナ素子 11の放射効率が 低下する。複素比透磁率の透磁率損失項 tan δ μが 1以下(高 MHz帯または 2. 4G Hz帯において)であると損失がやや少なくなり、複素比透磁率の透磁率損失項 tan δ が 0. 5以下(高 MHz帯または 2. 4GHz帯において)となれば、さらに電磁エネ ルギの損失が小さくなり、アンテナ素子 11の放射効率を改善する。  Next, if the value of the imaginary part “of the complex relative permeability of the force shield layer 13, which is a loss of electromagnetic energy, is large, the loss increases, and as a result, the radiation efficiency of the antenna element 11 decreases. Complex relative permeability. If the permeability loss term tan δ μ is less than 1 (in the high MHz band or 2.4 GHz band), the loss is slightly reduced, and the permeability loss term tan δ of the complex relative permeability is less than 0.5 (high (In the MHz band or 2.4 GHz band), the loss of electromagnetic energy is further reduced and the radiation efficiency of the antenna element 11 is improved.
シールド層 13の複素比誘電率の実数部 ε,は、アンテナ素子の大きさを決める波 長短縮効果に複素比透磁率の実数部 'と共に寄与する。複素比誘電率の実数部 ε,を 20以上とすることで、アンテナ素子 11の大きさを約 4. 4分の 1に短縮すること ができる。  The real part ε, of the complex relative permittivity of the shield layer 13 contributes to the wavelength shortening effect that determines the size of the antenna element together with the real part of the complex relative permeability. By setting the real part ε, of the complex relative permittivity to 20 or more, the size of the antenna element 11 can be reduced to about 1/4.
シールド層 13の複素比誘電率の虚数部 ε "を 300以下としている。  The imaginary part ε ″ of the complex dielectric constant of the shield layer 13 is set to 300 or less.
[数 1] [Number 1]
" _ _ 1_ _ _σ "_ _ 1_ _ _σ
ωε0ρ ωε0 ここで ωは角周波数(ω = 2 π ί)、 ε は真空の誘電率(8. 8541 X 1012 [FZm]、 f ωε 0 ρ ωε 0 where ω is the angular frequency (ω = 2 π ί), ε is the dielectric constant of the vacuum (8.841 X 10 12 [FZm], f
0  0
は周波数 [Hz]である。本発明のシールド層は導電性材料ではなく誘電性材料である が、導電性材料にて成り立つ上の式より計算すると、周波数が 950MHzでは導電率 σ ^ 15. 9SZm (抵抗率 p O. 06 Ω ηι)、周波数が 2. 4GHzでは導電率 σ ^ 39 . 9SZm (抵抗率 p O. 02 Ω πι)が得られる。これら以下の導電率、これ以上の抵 抗率を有して 、ると概略考えてょ 、。 Is the frequency [Hz]. Although the shield layer of the present invention is not a conductive material but a dielectric material, it is calculated from the above equation that is made of a conductive material. When the frequency is 950 MHz, the conductivity is σ ^ 15.9 SZm (resistivity p O. 06 Ω ηι), and at a frequency of 2.4 GHz, conductivity σ ^ 39.9 SZm (resistivity p O. 02 Ω πι) is obtained. Think of it as having a conductivity below this, and a resistivity above this.
またシールド層 13には、軟磁性金属、軟磁性酸化金属、磁性金属、磁性酸化金属 のうちの少なくともいずれか 1つ力 成る材料、またはそれが含有されている材料であ る。磁性を発現するための手法にとくに限定はないが、これらの材料を直接用いるか 、結合材中に分散させるかの方向により実現される。この構成によって、前述の特性 が得られるシールド層を形成することができる。したがって前述の優れた効果を達成 するシート体 10を実現することができる。 In addition, the shield layer 13 is a material that includes at least one of a soft magnetic metal, a soft magnetic metal oxide, a magnetic metal, and a magnetic metal oxide, or a material containing it. There are no particular restrictions on the method used to develop magnetism, but are these materials used directly? This is realized by the direction of dispersion in the binder. With this configuration, it is possible to form a shield layer that can obtain the above-described characteristics. Therefore, the sheet body 10 that achieves the above-described excellent effect can be realized.
またシート体 10は、導体層 14を有しているので、アンテナ素子 11の近傍に導電性 材料から成る導体層 14が存在する状態で、前述の無線通信に用いる電磁波の周波 数に合わせて、シールド層 13の複素比透磁率の実数部 ,および虚数部/ z "ならび に複素比誘電率の実数部 ε 'および虚数部 ε "が調整されている。これによつてシー ルド層 13の好適な特性を実現することができる。したがって通信妨害部材 12の近傍 で、さらに好適な無線通信を実現することができる。  Further, since the sheet body 10 has the conductor layer 14, the conductor layer 14 made of a conductive material is present in the vicinity of the antenna element 11, and in accordance with the frequency of the electromagnetic wave used for the above-described wireless communication, The real part and complex part / z "of the complex relative permeability of the shield layer 13 and the real part ε 'and imaginary part ε" of the complex relative permittivity are adjusted. As a result, suitable characteristics of the shield layer 13 can be realized. Therefore, more suitable wireless communication can be realized in the vicinity of the communication disturbing member 12.
またアンテナ素子 11としてダイポールアンテナとシート体 10を組合わせることにより 、アンテナ素子 11の小型化が実現できる。本シート体 10の複素比透磁率の実数部 μ 'および複素比誘電率の実数部 ε 'の高さにより相まって、波長短縮効果が加わり 、従来製品に比べて格段に小型化を達成することができる。ダイポールアンテナは線 状で、カーブおよび折曲力 Sりがあってもよぐ全長が λ Ζ2あればよい。たとえば 950 MHzでは、約 15. 8cm長であるが、これに本シート体による波長短縮効果が加わり 、約 3〜 10cmの線状素子が可能となり、さらに曲折をカ卩えることで 2〜3cmのラベル にも収まるサイズが可能となる。さらに小型化することもでき、貼れる対象は広範囲に 及ぶことになる。  Further, by combining the dipole antenna and the sheet body 10 as the antenna element 11, the antenna element 11 can be reduced in size. Combined with the height of the real part μ ′ of the complex relative permeability and the real part ε ′ of the complex relative permittivity of the sheet body 10, the wavelength shortening effect is added, and the size can be significantly reduced compared with the conventional product. it can. The dipole antenna should be linear and have a total length of λ Ζ2 even if it has curves and bending forces. For example, at 950 MHz, it is about 15.8 cm long, but this sheet body has a wavelength shortening effect, and a linear element of about 3 to 10 cm is possible. Sizes that can fit on labels are also possible. Further downsizing can be achieved, and a wide range of objects can be pasted.
従来製品は、通信妨害部材 12の近傍で動作するアンテナはパッチアンテナがある 。ただし、パッチアンテナのサイズは一辺 λ Ζ2必要となり、たとえば 950MHzでは、 最大約 15. 8cm角の正方形状と大きくなり、具体的にはカードサイズには収まらず、 タグとしても大きすぎる。ノツチとグランド導体間の距離も一般に λ Ζ16〜 λ Ζ64必 要であり、小型、柔軟性を要求される用途には用いることができな力つた。  In the conventional product, the antenna that operates in the vicinity of the communication interference member 12 is a patch antenna. However, the size of the patch antenna needs to be λ Ζ2 on one side. For example, at 950 MHz, the maximum size is about 15.8 cm square, and it is too large for a tag. In general, the distance between the notch and the ground conductor also needs to be λλ16 to λΖ64, and it cannot be used for applications that require small size and flexibility.
図 12は、本発明の実施の他の形態のタグ 30を簡略ィ匕して示す斜視図である。図 1 2に示すタグ 30は、図 1〜図 11で説明したタグ 30と類似の構成を有しており、対応 する構成に同一の符号を付し、異なる点についてだけ説明する。図 1〜図 11で説明 したタグ 30は、アンテナ素子 11としてダイポールアンテナが用いられたけれども、図 12に示すタグ 30は、アンテナ素子 11としてモノポールアンテナが用いられる。ダイポ 一ルアンテナでは、アンテナ素子 11の中央部に、つまりアンテナ素子 11を構成する 2つの素子片の間に IC17が設けられる構成であるけれども、モノポールアンテナは、 前記 2つの素子片の一方が、グラウンド板 100に置き換えられる構成である。このよう なモノポールアンテナを用いる構成のタグ 30は、前述のようなダイポールアンテナを 用いる構成のタグ 30と同様の効果を得ることができる。シート体 10の効果は、同様に 得られる。さらにダイポールアンテナを用 、る場合よりもさらに小形ィ匕が可能である。 このように、シート体 10を用いることによって、アンテナ素子 11を用いるタグ 30を、 通信妨害部材 12に貼着するなどして、通信妨害部材 12の近傍に設け、電磁波信号 の好適な送受信を実現できる状態で、タグ 30を用いることができる。したがってたとえ ば、タグ 30は、たとえば図 13に示すような通信妨害部材 12である金属製の容器に 飲料を収容した飲料品 40に貼着して、たとえば商品管理などの目的で用いることが できる。またタグ 30は、たとえば図 14に示すような基板など通信妨害部材 12が多数 用いられて 、る携帯電話装置などの電子装置 41に内蔵するようにして、たとえば商 品管理またはユーザ認証、盗難防止などの目的で用いることができる。このようにタグ 30の広 、用途を確保することができ、利便性を高!、タグ 30を実現することができる。 またシート体 10は、前述のように可撓性を有しているので、自在に変形させることが できる。これによつて設置場所の制限が少なぐ広い用途で用いることが可能になる。 たとえば物品に貼着して用いる場合に、物品の形状に倣わせて設けることが可能に なる。たとえば、図 13に示すように、通信妨害部材 12が、円筒状の外表面を有する 物品、たとえば飲料の容器である場合にも、その表面の形状に倣わせて貼着するこ とが可能である。したがってシート体 10の装着場所の制限を少なくするとともに、装着 作業を容易にすることができる。タグ 30として用いる場合には、他の構成の材料を適 宜選択して、タグ 30が全体として可撓性を有する構成にしておくことによって、円筒 面状の表面に倣って貼着することができるようになる。 FIG. 12 is a perspective view schematically showing a tag 30 according to another embodiment of the present invention. The tag 30 shown in FIG. 12 has a configuration similar to that of the tag 30 described in FIGS. 1 to 11, and the corresponding components are denoted by the same reference numerals, and only different points will be described. Although the tag 30 described in FIGS. 1 to 11 uses a dipole antenna as the antenna element 11, the tag 30 shown in FIG. 12 uses a monopole antenna as the antenna element 11. Daipo In the single antenna, the IC 17 is provided in the center of the antenna element 11, that is, between the two element pieces constituting the antenna element 11. However, in the monopole antenna, one of the two element pieces is grounded. It is a configuration that can be replaced by the plate 100. The tag 30 configured using such a monopole antenna can obtain the same effects as the tag 30 configured using the dipole antenna as described above. The effect of the sheet body 10 can be obtained in the same manner. Furthermore, a smaller size can be achieved than when a dipole antenna is used. As described above, by using the sheet body 10, the tag 30 using the antenna element 11 is provided in the vicinity of the communication disturbing member 12, such as by sticking it to the communication disturbing member 12, thereby realizing preferable transmission and reception of electromagnetic wave signals. The tag 30 can be used in a ready state. Therefore, for example, the tag 30 can be attached to a beverage 40 containing a beverage in a metal container that is a communication blocking member 12 as shown in FIG. . In addition, the tag 30 includes a large number of communication blocking members 12 such as a board as shown in FIG. 14 and is built in an electronic device 41 such as a mobile phone device, for example, for product management or user authentication and antitheft. It can be used for such purposes. In this way, the tag 30 can be secured for a wide range of uses, highly convenient, and the tag 30 can be realized. Further, since the sheet body 10 has flexibility as described above, it can be freely deformed. As a result, it can be used in a wide range of applications with less restrictions on the installation location. For example, when it is used by being attached to an article, it can be provided following the shape of the article. For example, as shown in FIG. 13, even when the communication blocking member 12 is an article having a cylindrical outer surface, for example, a beverage container, it is possible to attach it following the shape of the surface. is there. Accordingly, it is possible to reduce the restriction on the mounting place of the sheet body 10 and facilitate the mounting work. When used as the tag 30, the material of the other configuration can be appropriately selected so that the tag 30 has a flexible structure as a whole, so that the tag 30 can be attached following the cylindrical surface. become able to.
またシート体 10は、少なくとも一表面部に粘着性が付与されているので、物品に装 着して用いる場合、粘着性を利用して、物品に粘着させて装着することができる。こ れによってシート体 10を物品に容易に装着することができる。したがってシート体 10 およびそれを備える電子情報伝達装置を利用するための作業を容易にすることがで きる。 Further, since the sheet body 10 is provided with adhesiveness on at least one surface portion, when the sheet body 10 is attached to an article, it can be attached to the article using the adhesiveness. As a result, the sheet member 10 can be easily attached to the article. Therefore, the work for using the sheet body 10 and the electronic information transmission device including the sheet body 10 can be facilitated. wear.
またシート体 10は、難燃性が得られる。タグ 30を含む、アンテナ素子 11を用いて無 線通信する電子情報伝達装置は、難燃性を要求される場合がある。シート体 10は、 このような難燃性が要求される用途にも好適に用いることができる。  Further, the sheet body 10 is flame retardant. An electronic information transmission apparatus that performs radio communication using the antenna element 11 including the tag 30 may be required to be flame retardant. The sheet body 10 can be suitably used for applications that require such flame retardancy.
またシート体が用いられる環境は、たとえば IC17を含む通信手段および電源手段 など、発熱源となる手段の近傍で用いられる場合がある。シート体 10の熱伝導性が 優れていることによって、発熱源となる手段で発熱される熱を逃がすことができ、その 発熱源となる手段の昇温を抑え、高温に晒されることによる性能低下を防ぐことがで きる。  In addition, the environment in which the sheet is used may be used in the vicinity of a means serving as a heat source, such as a communication means including the IC 17 and a power supply means. Due to the excellent thermal conductivity of the sheet body 10, the heat generated by the heat source means can be released, and the temperature rise of the heat source means is suppressed and the performance deteriorates due to exposure to high temperatures. Can be prevented.
またシート体 10は、耐熱性および電気絶縁性を有している。耐熱性に関しては、特 に自動車用途にて 120°Cおよび 130°Cでの用いることがあり、その温度でも性能劣 化することなく用いることができることが要求される。架橋材を添加し、結合材を架橋 することでその耐熱性が実現できる。架橋の手段は問わないが、たとえば結合材の 種類および架橋材を適宜に組み合わせることにより、それ以上の高温 (たとえば 200 °C)の耐熱性を実現することももちろん可能である。さらに有機および無機系の絶縁 性材料を結合材として、軟磁性金属粉を被覆することで、シート内に分散する軟磁性 金属が直接接触することなくシート体 10の電気絶縁性を向上させることができる。電 気が導通するようではそれ自体に渦電流が発生し、磁気エネルギを減衰させてしまう 。さらに回路およびメツキ筐体 (グラウンド)が極近接して配置されるため、シート体 10 に導電性があればそれを介して導通してしまうことになり、動作に支障をきたすことに なる。これらを防ぐためにシート体 10には表面抵抗率として 102 Ω /口以上を達成し ている。 Further, the sheet body 10 has heat resistance and electrical insulation. With regard to heat resistance, it may be used at 120 ° C and 130 ° C, especially for automotive applications, and it must be able to be used without degrading performance at that temperature. Heat resistance can be achieved by adding a cross-linking material and cross-linking the binder. Any cross-linking means can be used, but it is of course possible to achieve heat resistance at a higher temperature (for example, 200 ° C.) by appropriately combining the type of the binder and the cross-linking material. Further, by covering the soft magnetic metal powder with an organic and inorganic insulating material as a binder, the electrical insulation of the sheet body 10 can be improved without direct contact with the soft magnetic metal dispersed in the sheet. it can. If electricity is conducted, an eddy current is generated in itself and the magnetic energy is attenuated. Furthermore, since the circuit and the measuring housing (ground) are arranged in close proximity, if the sheet body 10 has conductivity, it will be conducted through it, which hinders operation. In order to prevent these, the sheet body 10 achieves a surface resistivity of 10 2 Ω / mouth or more.
図 15は、本発明の実施のさらに他の形態のタグ 30を簡略ィ匕して示す平面図である 。この場合のアンテナ素子 11は、略円環状のループアンテナ力も成り、 IC17が接続 される。図 16は、図 15のタグ 30を示す断面図である。図 15および図 16に示すタグ 3 0は、図 1〜図 14で説明したタグ 30と類似の構成を有しており、対応する構成に同一 の符号を付し、異なる点についてだけ説明する。図 15および図 16に示すタグ 30で は、アンテナ素子 11としてループアンテナが用いられ、基材 18に積層されている。ま た図 15および図 16のタグ 30では、シート体 10は、シールド層 13だけを有し、アンテ ナ素子 11に基材 18を介してシート体 10 (シールド層 13)が設けられて ヽる。 FIG. 15 is a plan view schematically showing a tag 30 according to still another embodiment of the present invention. In this case, the antenna element 11 also has a substantially annular loop antenna force, and the IC 17 is connected thereto. FIG. 16 is a cross-sectional view showing the tag 30 of FIG. The tag 30 shown in FIGS. 15 and 16 has a configuration similar to that of the tag 30 described in FIGS. 1 to 14, and the same reference numerals are given to the corresponding configurations, and only different points will be described. In the tag 30 shown in FIGS. 15 and 16, a loop antenna is used as the antenna element 11 and is laminated on the base material 18. Ma 15 and FIG. 16, the sheet body 10 has only the shield layer 13, and the antenna element 11 is provided with the sheet body 10 (shield layer 13) via the base material 18.
図 15および図 16には、 2つのタグ 30が、互いに当接する状態で、厚み方向と垂直 な方向に並べて設けられる状態を示している。図 15に示す 2つのタグ 30は、同一の 構成である力 以下の説明での理解を助ける目的で、図 15には、左側のタグ 30のァ ンテナ素子 11および IC17には、添え字「a」を添えて示し、右側のタグ 30のアンテナ 素子 11および IC17には、添え字「b」を添えて示し、文章中において、識別が必要な 場合には添え字を用いて識別し、識別が不要な場合は、添え字を用いることなく説明 する。  15 and 16 show a state in which two tags 30 are arranged in a direction perpendicular to the thickness direction while being in contact with each other. The two tags 30 shown in FIG. 15 have the same structure. For the purpose of facilitating understanding in the following description, FIG. 15 shows the antenna element 11 and IC 17 of the left tag 30 with the subscript “a '', And the antenna element 11 and IC17 of the tag 30 on the right side are indicated with a subscript `` b ''. If identification is required in the text, it is identified using a subscript. If unnecessary, explain without using a subscript.
図 15および図 16に示すように、複数のタグ 30が互いに近接して配置される状態は 、たとえば複数の物品が密集状態で設けられ、これらの各物品に 1つずつタグ 30が 装着される場合の状態である。この場合の物品は、たとえば試料が収納される試験 管であり、行列状に区切られる領域を有する試験管立ての各領域に収容されている 。各タグ 30は、各試験菅または試験管の蓋に、それぞれ装着されている。  As shown in FIG. 15 and FIG. 16, the state in which the plurality of tags 30 are arranged close to each other is, for example, that a plurality of articles are provided in a dense state, and one tag 30 is attached to each of these articles. The state of the case. The article in this case is, for example, a test tube in which a sample is stored, and is stored in each region of a test tube stand having regions partitioned in a matrix. Each tag 30 is attached to each test tube or test tube lid.
このように複数のタグ 30が密集状態で設けられる場合に、 1つのタグ 30とって他の タグ 30のアンテナ素子 11は、通信妨害部材となってしまうが、各タグ 30にシート体 1 0が設けられ、アンテナ素子 11の近傍にシート体 10が設けられることによって、各タ グ 30に通信不良が生じることを防ぐことができる。このようにシート体 10は、アンテナ 素子 11と通信妨害部材、ここでは他のアンテナ素子 11との間に設けなくても、アンテ ナ素子 11の近傍に設けていれば、アンテナ素子 11の通信環境を改善することがで きる。  Thus, when a plurality of tags 30 are provided in a dense state, the antenna elements 11 of the other tags 30 for one tag 30 become communication obstructing members, but the sheet body 10 is attached to each tag 30. By providing the sheet body 10 in the vicinity of the antenna element 11, it is possible to prevent a communication failure from occurring in each tag 30. In this way, the sheet body 10 does not have to be provided between the antenna element 11 and the communication disturbing member, here the other antenna element 11, but if it is provided in the vicinity of the antenna element 11, the communication environment of the antenna element 11 can be reduced. Can be improved.
図 17は、図 15および図 16のように 2つのタグ 30力 近接して配置される場合のシミ ユレーシヨン結果を示すグラフである。図 18は、図 15および図 16に示すタグ 30にお Vヽてシート体 10が設けられて!/ヽな 、2つのタグが、同様に近接して配置される場合の シミュレーション結果を示すグラフである。図 17には、周波数と Sパラメータ値の関係 を示すグラフである。 Sパラメータ値の単位は dBであり、値の大きさを相対比較してい る。ここで「S11」は反射電力の割合を、「S21」はアンテナ素子 11間(IC17間)を伝 播した電力を表している。具体的には、「S11」は、図 15に示すように 2つのタグ 30が 並べて設けられる場合、いずれか一方、たとえば左側(または右側)のタグ 30の IC17 a (または IC17b)に供給された電力のうち、左側(または右側)のタグ 30の IC17a (ま たは IC17b)で反射された電力の割合を表し、「S21」は、左側(または右側)のタグ 3 0の IC17a (または IC17b)から供給された電力のうち、右側(または左側)のタグ 30 の IC17b (または IC17a)に伝わった電力の割合を表す。このように一方の IC17から 他方の IC17に電力が伝わる状態を、本発明では結合という。図 15の場合は、 2つの タグ 30が同一の構成であるので、左側のタグ 30の IC17aで給電した場合の S l l、 S 21と、右側のタグ 30の IC17bで給電した場合の Sl l、 S21とは、同一の値となる。ま た「単体コイル S l l」は、図 15に示すようなタグ 30が、単体で自由空間に存在する場 合の「S 11」に相当する値を表して 、る。 FIG. 17 is a graph showing a simulation result when two tags 30 are placed close to each other as shown in FIG. 15 and FIG. FIG. 18 is a graph showing simulation results when the tag 30 shown in FIG. 15 and FIG. 16 is provided with a sheet member 10 for V! / ヽ, and two tags are similarly placed close to each other. It is. Fig. 17 is a graph showing the relationship between frequency and S-parameter values. The unit of the S parameter value is dB, and the magnitude of the value is compared relatively. Here, “S11” represents the ratio of the reflected power, and “S21” represents the power propagated between the antenna elements 11 (between the ICs 17). Specifically, “S11” has two tags 30 as shown in FIG. When arranged side by side, for example, out of the power supplied to IC17a (or IC17b) of the left (or right) tag 30 on the left (or right) tag 30 IC17a (or IC17b), Represents the percentage of reflected power, and “S21” is the power supplied from the left (or right) tag 30 IC17a (or IC17b), the right (or left) tag 30 IC17b (or IC17a ) Represents the percentage of power transmitted to). Such a state where electric power is transmitted from one IC 17 to the other IC 17 is referred to as coupling in the present invention. In the case of FIG. 15, since the two tags 30 have the same configuration, Sll, S21 when power is supplied from the IC17a of the left tag 30, and Sl1, when power is supplied from the IC17b of the right tag 30, S21 is the same value. In addition, “single coil S ll” represents a value corresponding to “S 11” when the tag 30 as shown in FIG. 15 exists alone in free space.
表 2は、シミュレーションにあたって設定した各層の材料定数を示す。各材料定数 は、 2. 4GHzの周波数における値である。  Table 2 shows the material constants of each layer set in the simulation. Each material constant is a value at a frequency of 2.4 GHz.
[表 2] [Table 2]
Figure imgf000043_0001
このシミュレーションでは、本発明のシート体 10を用い、近くに存在する 2個のルー プアンテナのアンテナ素子 11間の結合特性を評価している。シミュレーションにあた り、シールド層 13は、塩素化ポリエチレン 100 (部)にカルボ-ル鉄 530 (部)をカ卩えて 混練しシート化して作成した。このシールド層 13は、同軸管法で測定した材料定数 は、 2. 4GHzにおいて複素比誘電率の実数部 ε 'が 12. 31でありかつ誘電率損失 項 tan S ε =0. 07、複素比透磁率の実数部 ,が 3. 0でありかつ透磁率損失項 ta η δ =0. 43であった。シミュレーションでは、この材料定数を用いた。
Figure imgf000043_0001
In this simulation, the coupling characteristics between the antenna elements 11 of two loop antennas existing in the vicinity are evaluated using the sheet 10 of the present invention. In the simulation, the shield layer 13 was made by mixing chlorinated polyethylene 100 (part) with carbon iron 530 (part) and kneading it into a sheet. This shield layer 13 has a material constant measured by the coaxial tube method of 2.4. The real part ε 'of the complex relative permittivity is 12.31 at 2.4 GHz, and the permittivity loss term tan S ε = 0.07. The real part of the permeability was 3.0 and the permeability loss term ta η δ = 0.43. This material constant was used in the simulation.
図 18に示すとおり、シート体 10が無い場合、 2つのアンテナ素子 11を近づけて配 置すると、 S 11および S21の各放物線が双峰状になり、本来の通信周波数の前後に ピークを有することになり、通信周波数での通信特性は低下する。通信電磁エネルギ の損失の一例である。これはアンテナ素子 11同士の結合によるものである。これに対 して図 17に示すように、シート体 10を積層させると双峰性が消えて、通信特性が改 善されてくる。このメカニズムは、あくまでも推測ではある力 シート体 10による電磁波 の放射パターン変更、シールド層による波長短縮によるアンテナ動作の変更や、シ 一ルド層の損失成分による影響などが考えられる。いずれにしても、シート体 10によ つて通信環境が改善されることは明らかである。 As shown in FIG. 18, in the absence of the sheet body 10, when the two antenna elements 11 are placed close to each other, the parabolas of S11 and S21 have a bimodal shape and have peaks before and after the original communication frequency. Thus, the communication characteristics at the communication frequency are deteriorated. It is an example of communication electromagnetic energy loss. This is due to the coupling between the antenna elements 11. Against this As shown in FIG. 17, when the sheet bodies 10 are laminated, the bimodality disappears and the communication characteristics are improved. This mechanism may be due to changes in the radiation pattern of the electromagnetic wave by the force sheet body 10, which is a guess, changes in the antenna operation by shortening the wavelength by the shield layer, and the influence of the loss component of the shield layer. In any case, it is clear that the communication environment is improved by the sheet 10.
この近くに存在する 2個のアンテナ素子 11 (タグ 30)は、前述のように、密集状態の タグ 30 (トランスボンダ)の読み取りをモデリングしたものであり、互いのアンテナ素子 11が通信妨害部材となり、特に結合による影響が懸念されている。本発明のシート 体 10をアンテナ素子 11に積層することにより、アンテナ素子 11同士の結合を緩和で きる可能性を有することを見出したものである。本例は、アンテナ素子 11と通信妨害 部材の間にシート体 10を配置するのではなぐアンテナ素子 11近傍に配置した例と なる。  The two antenna elements 11 (tags 30) present in the vicinity are modeled after the reading of the dense tag 30 (transbonder) as described above, and each antenna element 11 serves as a communication blocking member. In particular, there are concerns about the effects of binding. It has been found that by laminating the sheet body 10 of the present invention on the antenna element 11, the coupling between the antenna elements 11 can be relaxed. This example is an example in which the sheet body 10 is not disposed between the antenna element 11 and the communication disturbing member but in the vicinity of the antenna element 11.
図 15〜図 18では、 2つのタグ 30が並べられる例を挙げている力 たとえばカード型 のトランスボンダなどの電子情報伝達装置が、積層される状態にあっても、前述と同 様に通信環境が改善される。  Figures 15 to 18 show an example of the ability to arrange two tags 30. Even if electronic information transmission devices such as card-type transponders are stacked, the communication environment is the same as described above. Is improved.
前述の実施の形態は、本発明の例示に過ぎず、構成を変更することができる。たと えば積層構成を変更するようにしてもよい。具体的には、シールド層 13に対して導体 層 14などと反対側に、貼着用剤層 15同様の構成を有するもう 1つの貼着用剤層が 設けられる構成であってもよい。このようなシート体 10を、タグ 30に用いる場合、アン テナ素子 11と IC17とが搭載されるタグ本体 33に、シート体 10を貼着して、タグ 30を 構成するときに、別途に接着剤を用いなくてももう 1つの貼着用剤層を用いて貼着可 能となり、作業が容易になる。このようにシート体 10の電子情報伝達装置への組込み が容易になるなど、シート体 10の設置および装着作業を容易にすることができる。 また貼着用剤層 15は、タグ 30に組込むときに、タグ本体 33に、シート体 10を貼着 するために用いられてもよい。この場合、前記もう 1つの貼着剤層が設けられるのであ れば、このもう 1つの貼着用剤層を用いて物品に貼着するようにしてもよいし、もう 1つ の貼着用剤層がなければ、粘着剤または接着剤を用いて物品に貼着すればよい。ま た貼着用剤層 15およびもう 1つの貼着用剤層は、必須構成ではなぐこれらの層を形 成せずに、粘着剤または接着剤をシールド層 13などの層に添加して、シート体 10の 表面に粘着性または接着性を付与する構成であってもよい。 The above-described embodiment is merely an example of the present invention, and the configuration can be changed. For example, the laminated structure may be changed. Specifically, another adhesive layer having the same configuration as the adhesive layer 15 may be provided on the side opposite to the conductor layer 14 and the like with respect to the shield layer 13. When such a sheet body 10 is used for the tag 30, the sheet body 10 is attached to the tag body 33 on which the antenna element 11 and the IC 17 are mounted, and is separately bonded when the tag 30 is configured. Even if no adhesive is used, it can be applied using another adhesive layer, which makes the work easier. Thus, the installation and installation work of the sheet body 10 can be facilitated such that the sheet body 10 can be easily incorporated into the electronic information transmission device. Further, the adhesive layer 15 may be used for attaching the sheet body 10 to the tag body 33 when the adhesive layer 15 is incorporated into the tag 30. In this case, if the other adhesive layer is provided, the other adhesive layer may be used to adhere to the article, or another adhesive layer. If there is no adhesive, it may be attached to the article using an adhesive or an adhesive. Also, the adhesive layer 15 and the other adhesive layer form these layers that are not essential components. Instead, the pressure-sensitive adhesive or the adhesive may be added to a layer such as the shield layer 13 to give the surface of the sheet body 10 pressure-sensitive adhesiveness or adhesiveness.
また難燃性を与えるための手段は、難燃剤を添加する構成に代えて、他の構成で あってもよい。またシート体 10に最低限必要な性能は、磁界を遮断する性能であり、 その他の性能に関しては、必須要件ではなぐ有していない構成であってもよい。 またシート体 10の用途は、タグ 30に限定されるものではなぐタグ 30以外のトランス ボンダであってもよ!/ヽし、トランスボンダ以外の電子情報伝達装置であってもよ!/ヽし、 アンテナ素子 11とシート体 10とを用いてアンテナ装置として構成されてもょ 、。タグ 3 0以外の電子情報伝達装置としては、たとえばタグ 30とともに RFIDシステムを構築 するアンテナ、リーダ、リーダ Zライタ、携帯電話装置、 PDAおよびパソコンなどが挙 げられる力 これ以外の盗難防止装置、ロボット類の遠隔操作などの通信、車載の E CU、その他の電波による無線技術が用いられる一切のアンテナ機能部品であって もよい。周波数がラジオ波域に限定しないことも前述のとおりである。またシート体 10 の用途は、電子情報伝達装置に限定されるものではなぐ少なくとも磁界を遮断すベ き要求がある用途で、広く用いることができる。またタグ 30は、前述の物品以外の通 信妨害部材 12を有する物品であってもよい。  Further, the means for imparting flame retardancy may be another configuration instead of the configuration in which the flame retardant is added. Further, the minimum required performance of the sheet body 10 is the performance of blocking the magnetic field, and the other performance may be a configuration that is not an essential requirement. Further, the use of the sheet body 10 is not limited to the tag 30, but may be a trans bonder other than the tag 30! / Thanks to an electronic information transmission device other than the trans bonder! It can be configured as an antenna device using the antenna element 11 and the sheet body 10. Examples of electronic information transmission devices other than tag 30 include antennas, readers, reader Z writers, mobile phone devices, PDAs, and personal computers that form RFID systems together with tag 30. Other anti-theft devices, robots It can be any antenna functional component that uses wireless communication technology such as remote control of the remote control, in-vehicle ECU, and other radio waves. As described above, the frequency is not limited to the radio wave range. The use of the sheet 10 is not limited to the electronic information transmission device, and can be widely used in applications where there is a requirement to block at least the magnetic field. Further, the tag 30 may be an article having the communication blocking member 12 other than the aforementioned article.
シート体 10に導電性を有する導体層を積層した場合、アンテナの共振周波数を調 整すれば、どのような導電性材料から成る部分を有する部材の近傍で無線通信する 場合でもアンテナとして機能することになる。アンテナの共振周波数の調整は公知の 手段を用いることができる。  When a conductive conductor layer is laminated on the sheet body 10, it can function as an antenna even when wireless communication is performed in the vicinity of a member having a portion made of any conductive material by adjusting the resonance frequency of the antenna. become. A known means can be used to adjust the resonance frequency of the antenna.
これらの変更例以外の構成の変更であってもよ 、。  It may be a configuration change other than these change examples.
本発明は、その精神または主要な特徴力 逸脱することなぐ他のいろいろな形態 で実施できる。したがって、前述の実施形態はあらゆる点で単なる例示に過ぎず、本 発明の範囲は特許請求の範囲に示すものであって、明細書本文には何ら拘束され ない。さらに、特許請求の範囲に属する変形や変更は全て本発明の範囲内のもので ある。  The present invention can be implemented in various other forms without departing from the spirit or main characteristic power thereof. Therefore, the above-described embodiment is merely an example in all respects, and the scope of the present invention is shown in the claims, and is not restricted by the text of the specification. Further, all modifications and changes belonging to the scope of claims are within the scope of the present invention.
産業上の利用可能性 Industrial applicability
本発明によれば、シート体を設けることによって、アンテナ素子が導電性材料から 成る部分を有する部材の近傍に配置されるときに、アンテナ素子の入力インピーダン スの低下を抑制することができる。したがってシート体を用いることによって、電界型 のアンテナ素子を用いて、導電性材料力 成る部分を有する部材の近傍であっても 、好適に無線通信することができる。 According to the present invention, the antenna element is made of a conductive material by providing a sheet body. When the antenna is disposed in the vicinity of the member having the portion, it is possible to suppress a decrease in the input impedance of the antenna element. Therefore, by using the sheet member, wireless communication can be suitably performed even in the vicinity of a member having a portion made of a conductive material using an electric field type antenna element.
また本発明によれば、シート体を設けることによって、アンテナ素子が導電性材料か ら成る部分を有する部材の近傍に配置されるときに、電磁エネルギの損失を抑制す ることができる。したがってシート体を用いることによって、電界型のアンテナ素子を用 いて、導電性材料から成る部分を有する部材の近傍で、好適に無線通信することが できる。  Further, according to the present invention, by providing the sheet body, it is possible to suppress the loss of electromagnetic energy when the antenna element is disposed in the vicinity of the member having a portion made of a conductive material. Therefore, by using the sheet body, radio communication can be suitably performed in the vicinity of a member having a portion made of a conductive material using an electric field type antenna element.
また本発明によれば、シート体を用いることによって、簡単、小型な構成のダイポー ルアンテナ、モノポールアンテナ、ループアンテナまたはこれらにリアクタンス構造部 を装荷したアンテナの少なくとも 1つを、導電性材料から成る部分を有する部材の近 傍で用いて無線通信することができる。  Further, according to the present invention, by using a sheet body, at least one of a dipole antenna, a monopole antenna, a loop antenna, or an antenna loaded with a reactance structure portion on a simple and small configuration is made of a conductive material. It can be used for wireless communication near a member having a part.
また本発明によれば、導電性材料から成る部分を有する部材の近傍で、 300MHz 以上 300GHz以下の周波数の電磁波を用いて、好適に無線通信することができる。 このような周波数の電磁波を利用するため、比較的長距離の無線通信距離を小型ァ ンテナで実現することができる。  According to the present invention, wireless communication can be suitably performed using an electromagnetic wave having a frequency of 300 MHz to 300 GHz in the vicinity of a member having a portion made of a conductive material. Since electromagnetic waves of such frequency are used, a relatively long wireless communication distance can be realized with a small antenna.
また本発明によれば、無線通信に用いられる電磁波の周波数力 860MHz以上 1 GHz以下に含まれる周波数であるので、比較的離れた装置間での通信に適用する ことができ、かつ電界型の小形のアンテナを用いて通信を可能にすることができる。 また本発明によれば、無線通信に用いられる電磁波の周波数が、 2. 4GHz帯に含 まれる周波数であるので、比較的離れた装置間での通信に適用することができ、か つ電界型の小形のアンテナを用いて通信を可能にすることができる。  Further, according to the present invention, since the frequency force of electromagnetic waves used for wireless communication is a frequency included in the range of 860 MHz to 1 GHz, it can be applied to communication between relatively distant devices, and is a small electric field type. It is possible to enable communication using the antenna. In addition, according to the present invention, the frequency of electromagnetic waves used for wireless communication is a frequency included in the 2.4 GHz band, so that it can be applied to communication between relatively distant devices, and is an electric field type. It is possible to enable communication using a small antenna.
また本発明によれば、磁性体であるシールド層を用いることによって、電界型アンテ ナであっても、そのインピーダンス低下を制御でき、導電性材料から成る部分を有す る部材の近傍で用いて無線通信することができる。  Further, according to the present invention, even when the electric field type antenna is used, the impedance reduction can be controlled by using the shield layer that is a magnetic material, and it is used in the vicinity of a member having a portion made of a conductive material. Wireless communication is possible.
また本発明によれば、シールド層の複素比透磁率の実数部/ z 'が、複素比透磁率 の虚数部 μ "以上であるので、アンテナ素子の入力インピーダンスの低下、および電 磁エネルギの損失を抑制することができるシート体を実現することができる。 Further, according to the present invention, since the real part / z ′ of the complex relative permeability of the shield layer is equal to or more than the imaginary part μ ″ of the complex relative permeability, the input impedance of the antenna element is reduced and the electric power is reduced. The sheet | seat body which can suppress the loss of magnetic energy is realizable.
また本発明によれば、シールド層の複素比透磁率の実数部/ z 'が 5以上でありかつ 透磁率損失項 tan δ μ力^以下であるので、アンテナ素子の入力インピーダンスの低 下、および電磁エネルギの損失を抑制することができるシート体を実現することがで きる。  Further, according to the present invention, since the real part / z ′ of the complex relative permeability of the shield layer is 5 or more and the permeability loss term tan δ μforce ^ or less, the input impedance of the antenna element is reduced, and A sheet body capable of suppressing loss of electromagnetic energy can be realized.
また本発明によれば、シールド層の複素比透磁率の実数部/ ζ 'が 20以上でありか つ透磁率損失項 tan δ μが 0. 5以下であるので、アンテナ素子の入力インピーダン スの低下、および電磁エネルギの損失を抑制することができるシート体を実現するこ とがでさる。  Further, according to the present invention, since the real part / ζ ′ of the complex relative permeability of the shield layer is 20 or more and the permeability loss term tan δ μ is 0.5 or less, the input impedance of the antenna element is reduced. It is possible to realize a sheet body that can suppress the decrease and the loss of electromagnetic energy.
また本発明によれば、シールド層の複素比誘電率の実数部 ε 'が 20以上であるの で、アンテナ素子の入力インピーダンスの低下、および電磁エネルギの損失を抑制 することができるシート体を実現することができる。  Further, according to the present invention, since the real part ε ′ of the complex relative permittivity of the shield layer is 20 or more, a sheet body that can suppress a reduction in input impedance of the antenna element and a loss of electromagnetic energy is realized. can do.
また本発明によれば、シールド層の複素比誘電率の虚数部 ε "が 300以下である ので、アンテナ素子の入力インピーダンスの低下、および電磁エネルギの損失を抑 制することができるシート体を実現することができる。  In addition, according to the present invention, since the imaginary part ε ″ of the complex relative permittivity of the shield layer is 300 or less, a sheet body that can reduce the input impedance of the antenna element and suppress the loss of electromagnetic energy is realized. can do.
また本発明によれば、アンテナ素子の近傍に導体層が存在する状態で、シールド 層の複素比透磁率の実数部 'および虚数部 "または複素比誘電率の実数部 ε ' が調整されており、シールド層の好適な特性を実現することができる。したがって導 電性材料から成る部分を有する部材の近傍で、さらに好適な無線通信を実現するこ とがでさる。  According to the present invention, the real part 'and the imaginary part' of the complex relative permeability of the shield layer or the real part ε 'of the complex relative permittivity is adjusted in the state where the conductor layer exists in the vicinity of the antenna element. Therefore, it is possible to realize a preferable characteristic of the shield layer, and it is possible to realize a more preferable wireless communication in the vicinity of a member having a portion made of a conductive material.
また本発明によれば、軟磁性金属、軟磁性酸化金属、磁性金属および磁性酸化金 属のうちの少なくともいずれ力 1つ力も成る材料である、またはそれを含有する材料で ある構成とし、前述の特性が得られるシールド層を形成することができる。したがって 前述の優れた効果を達成するシート体を実現することができる。  Further, according to the present invention, the material is a material that includes at least one of a soft magnetic metal, a soft magnetic metal oxide, a magnetic metal, and a magnetic metal oxide, or a material that includes the material. A shield layer capable of obtaining characteristics can be formed. Therefore, it is possible to realize a sheet body that achieves the excellent effects described above.
また本発明によれば、有機重合体 100重量部に対して、磁性材料としてフェライト、 鉄合金および鉄粒子の群カゝら選ばれる 1または複数の材料を、 1重量部以上 1500 重量部以下の配合量のシールド層が形成される。したがって前述の優れた効果を達 成するシート体を実現することができる。 また本発明によれば、シート体の難燃性が得られ、難燃性が要求される用途にも好 適に用いることができる。 Further, according to the present invention, with respect to 100 parts by weight of the organic polymer, one or more materials selected from the group consisting of ferrite, iron alloy, and iron particles as a magnetic material are 1 part by weight or more and 1500 parts by weight or less. A blending amount of the shield layer is formed. Therefore, it is possible to realize a sheet body that achieves the above-described excellent effects. Further, according to the present invention, the flame retardancy of the sheet body can be obtained, and it can be suitably used for applications requiring flame retardancy.
また本発明によれば、発熱源となる手段の近傍で用いられる場合に、発熱源となる 手段で発熱される熱を逃がすことができ、その発熱源となる手段の昇温を抑え、高温 に晒されることによる性能低下を防ぐことができる。  Further, according to the present invention, when used in the vicinity of the means serving as the heat source, the heat generated by the means serving as the heat source can be released, and the temperature rise of the means serving as the heat source can be suppressed and the temperature can be increased. Performance degradation due to exposure can be prevented.
また本発明によれば、少なくとも一表面部が、粘着性または接着性を有しているの で、他の物品に貼着させることができる。これによつてシート体を容易に用いることが できる。  Further, according to the present invention, at least one surface portion has adhesiveness or adhesiveness, and therefore can be attached to another article. Thus, the sheet body can be easily used.
また本発明によれば、シート体が設けられ、導電性材料から成る部分を有する部材 の近傍に設けて、無線通信に好適に用いることができるアンテナ装置を実現すること ができる。  Further, according to the present invention, it is possible to realize an antenna device that is provided in the vicinity of a member provided with a sheet body and having a portion made of a conductive material, and that can be suitably used for wireless communication.
また本発明によれば、導電性材料カゝら成る部分を有する部材の近傍に設けても、 好適に無線通信可能な電子情報伝達装置を実現することができる。  Further, according to the present invention, it is possible to realize an electronic information transmission device capable of suitably performing wireless communication even when provided in the vicinity of a member having a portion made of a conductive material cover.
また本発明によれば、密集状態にある物品にトランスボンダを装着して用いても、他 のトランスボンダとの電磁気的な結合および他のトランスボンダによる影響を抑制し、 リーダによる読取り率を向上することができる。  In addition, according to the present invention, even if a transbonder is attached to an article that is in a dense state, the influence of the electromagnetic coupling with other transbonders and other transbonders is suppressed, and the reading rate by the reader is improved. can do.

Claims

請求の範囲 The scope of the claims
[1] 電界型のアンテナ素子を用いて、導電性材料から成る部分を有する部材の近傍で 無線通信するにあたって、アンテナ素子と導電性材料から成る部分を有する部材と の間またはアンテナ素子近傍に設けられ、導電性材料から成る部分を有する部材に よるアンテナ素子の入力インピーダンスの低下を抑制する構成を備えることを特徴と するシート体。  [1] When wireless communication is performed in the vicinity of a member having a portion made of a conductive material using an electric field type antenna element, it is provided between the antenna element and a member having a portion made of a conductive material or in the vicinity of the antenna element. And a structure that suppresses a decrease in input impedance of the antenna element due to a member having a portion made of a conductive material.
[2] 電界型のアンテナ素子を用いて、導電性材料から成る部分を有する部材の近傍で 無線通信するにあたって、アンテナ素子と導電性材料から成る部分を有する部材と の間またはアンテナ素子近傍に設けられ、導電性材料から成る部分を有する部材に よる電磁エネルギの損失を抑制する構成を備えることを特徴とするシート体。  [2] When performing wireless communication in the vicinity of a member having a portion made of a conductive material using an electric field type antenna element, it is provided between the antenna element and a member having a portion made of a conductive material or in the vicinity of the antenna element. And a structure that suppresses electromagnetic energy loss caused by a member having a portion made of a conductive material.
[3] アンテナ素子は、ダイポールアンテナ、モノポールアンテナ、ループアンテナまたは これらにリアクタンス構造部を装荷したアンテナの少なくとも 1つを含むことを特徴とす る請求項 1または 2記載のシート体。  [3] The sheet body according to claim 1 or 2, wherein the antenna element includes at least one of a dipole antenna, a monopole antenna, a loop antenna, and an antenna loaded with a reactance structure portion.
[4] 無線通信に用いられる電磁波の周波数は、 300MHz以上 300GHz以下の範囲に 含まれることを特徴とする請求項 1〜3のいずれか 1つに記載のシート体。  [4] The sheet body according to any one of claims 1 to 3, wherein the frequency of the electromagnetic wave used for wireless communication is included in a range of 300 MHz to 300 GHz.
[5] 無線通信に用いられる電磁波の周波数は、 860MHz以上 1GHz以下の範囲に含 まれることを特徴とする請求項 4記載のシート体。  5. The sheet body according to claim 4, wherein the frequency of the electromagnetic wave used for wireless communication is included in a range of 860 MHz to 1 GHz.
[6] 無線通信に用いられる電磁波の周波数は、 2. 4GHz帯に含まれることを特徴とす る請求項 4記載のシート体。  [6] The sheet body according to [4], wherein the frequency of electromagnetic waves used for wireless communication is included in the 2.4 GHz band.
[7] 磁性体であるシールド層を備えることを特徴とする請求項 1〜6のいずれか 1つに記 載のシート体。  [7] The sheet body according to any one of [1] to [6], further comprising a shield layer that is a magnetic body.
[8] 無線通信に用いられる電磁波の周波数にて、複素比透磁率の実数部/ z 'が、複素 比透磁率の虚数部 μ "以上であるシールド層を備えることを特徴とする請求項 1〜7 のいずれ力 1つに記載のシート体。  [8] The method according to claim 1, further comprising: a shield layer in which a real part / z ′ of the complex relative permeability is not less than an imaginary part μ ″ of the complex relative permeability at the frequency of the electromagnetic wave used for wireless communication. The sheet body according to any one of? 7.
[9] 無線通信に用いられる電磁波の周波数にて、複素比透磁率の実数部/ ζ 'が 5以上 でありかつ透磁率損失項 tan δ 1以下であるシールド層を備えることを特徴と する請求項 1〜8のいずれか 1つに記載のシート体。 [9] A shield layer having a real part / ζ ′ of a complex relative permeability of 5 or more and a permeability loss term tan δ 1 or less at a frequency of an electromagnetic wave used for wireless communication is provided. Item 10. The sheet body according to any one of items 1 to 8.
[10] 無線通信に用いられる電磁波の周波数にて、複素比透磁率の実数部/ z 'が 20以 上でありかつ透磁率損失項 tan δ が 0. 5以下であるシールド層を備えることを特徴 とする請求項 1〜8のいずれ力 1つに記載のシート体。 [10] The real part / z 'of the complex relative permeability is 20 or less at the frequency of the electromagnetic wave used for wireless communication. The sheet body according to any one of claims 1 to 8, further comprising a shielding layer having a magnetic permeability loss term tan δ of 0.5 or less.
[11] 無線通信に用いられる電磁波の周波数にて、複素比誘電率の実数部 ε 'が 20以 上であるシールド層を備えることを特徴とする請求項 1〜10のいずれか 1つに記載の シート体。 [11] The method according to any one of claims 1 to 10, further comprising a shield layer having a real part ε 'of a complex relative permittivity of 20 or more at a frequency of an electromagnetic wave used for wireless communication. Sheet body.
[12] 無線通信に用いられる電磁波の周波数にて、複素比誘電率の虚数部 ε "が 300以 下であるシールド層を備えることを特徴とする請求項 1〜: L 1のいずれか 1つに記載の シート体。  12. A shield layer having an imaginary part ε ″ of a complex relative dielectric constant of 300 or less at a frequency of an electromagnetic wave used for wireless communication is provided. The sheet body described in 1.
[13] 導電性を有する導体層を備えることを特徴とする請求項 1〜12のいずれか 1つに記 載のシート体。  [13] The sheet body according to any one of [1] to [12], further comprising a conductive layer having conductivity.
[14] シールド層は、磁性材料として、軟磁性金属、軟磁性酸化金属、磁性金属および 磁性酸化金属のうちの少なくともいずれか 1つから成る材料、またはそれを含有する 材料力も成ることを特徴とする請求項 1〜13のいずれ力 1つに記載のシート体。  [14] The shield layer is characterized in that as a magnetic material, a material composed of at least one of soft magnetic metal, soft magnetic metal oxide, magnetic metal and magnetic metal oxide, or a material force containing the material is also provided. The sheet body according to any one of claims 1 to 13.
[15] シールド層は、有機重合体 100重量部に対して、磁性材料として、フェライト、鉄合 金および鉄粒子の群力も選ばれる 1または複数の材料を、 1重量部以上 1500重量 部以下の配合量で含む材料力も成ることを特徴とする請求項 1〜14のうちの 1つに 記載のシート体。  [15] The shield layer is composed of one or more materials selected from the group strength of ferrite, iron alloy and iron particles as a magnetic material with respect to 100 parts by weight of the organic polymer. The sheet body according to any one of claims 1 to 14, characterized in that the material strength included in the blending amount is also included.
[16] 難燃性が付与されていることを特徴とする請求項 1〜15のいずれか 1つに記載のシ ート体。  [16] The sheet according to any one of claims 1 to 15, wherein flame retardancy is imparted.
[17] 熱伝導性が付与されていることを特徴とする請求項 1〜16のいずれか 1つに記載 のシート体。  [17] The sheet body according to any one of [1] to [16], wherein thermal conductivity is imparted.
[18] 少なくとも一方の表面部が、粘着性または接着性を有することを特徴とする請求項 [18] The at least one surface portion is sticky or adhesive.
1〜17のいずれ力 1つに記載のシート体。 The sheet body according to any one of 1 to 17.
[19] 無線通信に用いられる周波数に合わされる共振周波数を有する電界型のアンテナ 素子と、 [19] An electric field antenna element having a resonance frequency matched to a frequency used for wireless communication;
請求項 1〜18のいずれか 1つに記載のシート体とを備えることを特徴とするアンテ ナ装置。  An antenna device comprising the sheet body according to any one of claims 1 to 18.
[20] 請求項 19記載のアンテナ装置を備えることを特徴とする電子情報伝達装置。 密集状態の物品に装着されるトランスボンダとして用いられることを特徴とする請求 20記載の電子情報伝達装置。 20. An electronic information transmission device comprising the antenna device according to claim 19. 21. The electronic information transmission apparatus according to claim 20, wherein the electronic information transmission apparatus is used as a transbonder attached to an article in a dense state.
PCT/JP2006/319738 2005-09-30 2006-10-02 Sheet body, antenna device, and electronic information transmission device WO2007037494A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005289365 2005-09-30
JP2005-289365 2005-09-30

Publications (1)

Publication Number Publication Date
WO2007037494A1 true WO2007037494A1 (en) 2007-04-05

Family

ID=37899904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/319738 WO2007037494A1 (en) 2005-09-30 2006-10-02 Sheet body, antenna device, and electronic information transmission device

Country Status (2)

Country Link
TW (1) TW200731919A (en)
WO (1) WO2007037494A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013138186A (en) * 2011-11-30 2013-07-11 Toray Ind Inc Sheet material for electric wave absorber, and electric wave absorber using the same
US10411324B2 (en) 2017-08-03 2019-09-10 Quanta Computer Inc. Antenna structure of a communications device
US10594018B2 (en) 2017-08-03 2020-03-17 Quanta Computer Inc. Antenna structure of a communications device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6622649B2 (en) * 2015-12-21 2019-12-18 ホシデン株式会社 Non-contact communication module
TWI816134B (en) 2021-06-09 2023-09-21 財團法人工業技術研究院 Antenna module

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03171385A (en) * 1989-11-30 1991-07-24 Sony Corp Information card
JPH07212079A (en) * 1994-01-20 1995-08-11 Tokin Corp Electromagnetic wave interference suppressor
JP2001085212A (en) * 1999-09-10 2001-03-30 Tokin Corp Composite magnetic body and electromagnetic interference suppressor provided therewith
JP2001284109A (en) * 2000-04-03 2001-10-12 Tokin Corp Composite magnetic material and electromagnetic interference suppressor using the same
JP2002246828A (en) * 2001-02-15 2002-08-30 Mitsubishi Materials Corp Antenna for transponder
JP2002271127A (en) * 2001-03-13 2002-09-20 Mitsubishi Materials Corp Antenna for transponder
JP2002290092A (en) * 2001-03-28 2002-10-04 Daido Steel Co Ltd Heat resistant electromagnetic wave absorber
JP2002368644A (en) * 2002-03-22 2002-12-20 Hitachi Kokusai Electric Inc Card-type wireless unit
WO2003010486A2 (en) * 2001-07-25 2003-02-06 Koninklijke Philips Electronics N.V. Object sensing
JP3647446B1 (en) * 2004-05-14 2005-05-11 ニッタ株式会社 Magnetic shield sheet for tag and tag
JP2005159337A (en) * 2003-10-31 2005-06-16 Nitta Ind Corp Electromagnetic interference suppressor and electromagnetic suppressing method using the same
JP2005252876A (en) * 2004-03-05 2005-09-15 Sony Corp Antenna device and radio communication apparatus
JP5088004B2 (en) * 2007-06-13 2012-12-05 東洋製罐株式会社 Multi-chamber plastic pouch with peelable seal

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03171385A (en) * 1989-11-30 1991-07-24 Sony Corp Information card
JPH07212079A (en) * 1994-01-20 1995-08-11 Tokin Corp Electromagnetic wave interference suppressor
JP2001085212A (en) * 1999-09-10 2001-03-30 Tokin Corp Composite magnetic body and electromagnetic interference suppressor provided therewith
JP2001284109A (en) * 2000-04-03 2001-10-12 Tokin Corp Composite magnetic material and electromagnetic interference suppressor using the same
JP2002246828A (en) * 2001-02-15 2002-08-30 Mitsubishi Materials Corp Antenna for transponder
JP2002271127A (en) * 2001-03-13 2002-09-20 Mitsubishi Materials Corp Antenna for transponder
JP2002290092A (en) * 2001-03-28 2002-10-04 Daido Steel Co Ltd Heat resistant electromagnetic wave absorber
WO2003010486A2 (en) * 2001-07-25 2003-02-06 Koninklijke Philips Electronics N.V. Object sensing
JP2002368644A (en) * 2002-03-22 2002-12-20 Hitachi Kokusai Electric Inc Card-type wireless unit
JP2005159337A (en) * 2003-10-31 2005-06-16 Nitta Ind Corp Electromagnetic interference suppressor and electromagnetic suppressing method using the same
JP2005252876A (en) * 2004-03-05 2005-09-15 Sony Corp Antenna device and radio communication apparatus
JP3647446B1 (en) * 2004-05-14 2005-05-11 ニッタ株式会社 Magnetic shield sheet for tag and tag
JP5088004B2 (en) * 2007-06-13 2012-12-05 東洋製罐株式会社 Multi-chamber plastic pouch with peelable seal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013138186A (en) * 2011-11-30 2013-07-11 Toray Ind Inc Sheet material for electric wave absorber, and electric wave absorber using the same
US10411324B2 (en) 2017-08-03 2019-09-10 Quanta Computer Inc. Antenna structure of a communications device
US10594018B2 (en) 2017-08-03 2020-03-17 Quanta Computer Inc. Antenna structure of a communications device

Also Published As

Publication number Publication date
TWI334670B (en) 2010-12-11
TW200731919A (en) 2007-08-16

Similar Documents

Publication Publication Date Title
JP4796469B2 (en) Sheet body, antenna device, and electronic information transmission device
JP4927625B2 (en) Magnetic shield sheet, non-contact IC card communication improving method, and non-contact IC card container
JP5036342B2 (en) Transponder, communication device, information management system, and container provided with transponder
JP4249227B2 (en) Electromagnetic interference suppressor, antenna device, and electronic information transmission device
JP4917484B2 (en) Magnetic sheet, antenna device using the same, and electronic information transmission device
JP4181197B2 (en) Sheet body and antenna apparatus and electronic information transmission apparatus including the same
US8564472B2 (en) Sheet member for improving communication, and antenna device and electronic information transmitting apparatus provided therewith
CN107836062B (en) Heat sink and wireless power transmission module including the same
JP4764220B2 (en) Thermally conductive sheet
CN108292804B (en) Multifunctional composite module and portable equipment comprising same
JP2007295558A (en) Antenna transmission improving sheet body and electronic apparatus
JP3728320B1 (en) Magnetic shield sheet for tag and tag
KR20170010868A (en) A wireless charging receiver module
KR20170017416A (en) antenna unit for wireless power transfer and a wireless charging receiver module having the same
US20180359885A1 (en) Magnetic isolator, method of making the same, and device containing the same
CN213951063U (en) Noise-suppressing graphite articles and assemblies
WO2007037494A1 (en) Sheet body, antenna device, and electronic information transmission device
JP3647446B1 (en) Magnetic shield sheet for tag and tag
KR20170010734A (en) Shielding unit for wireless charging
WO2017100029A1 (en) Magnetic isolator, method of making the same, and device containing the same
JP3754446B2 (en) Magnetic shield sheet and communication device
JP2006127424A (en) Radio tag
JP2007019287A (en) Dielectric loss material and electromagnetic wave absorber using it
JP2008270793A (en) Electromagnetic wave absorber, building material, and electromagnetic absorption method
JP2005327245A (en) Magnetic shield sheet for tag and tag

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06811086

Country of ref document: EP

Kind code of ref document: A1