WO2007037431A1 - Sintered body and method for producing same; sliding member, film-forming material and die for hot extrusion molding each using such sintered body; and hot extrusion molding apparatus and hot extrusion molding method each using such die for hot extrusion molding - Google Patents

Sintered body and method for producing same; sliding member, film-forming material and die for hot extrusion molding each using such sintered body; and hot extrusion molding apparatus and hot extrusion molding method each using such die for hot extrusion molding Download PDF

Info

Publication number
WO2007037431A1
WO2007037431A1 PCT/JP2006/319577 JP2006319577W WO2007037431A1 WO 2007037431 A1 WO2007037431 A1 WO 2007037431A1 JP 2006319577 W JP2006319577 W JP 2006319577W WO 2007037431 A1 WO2007037431 A1 WO 2007037431A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot extrusion
sintered body
die
mass
extrusion molding
Prior art date
Application number
PCT/JP2006/319577
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Hamashima
Original Assignee
Kyocera Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corporation filed Critical Kyocera Corporation
Priority to EP06810940A priority Critical patent/EP1930457A4/en
Priority to CN2006800350687A priority patent/CN101273150B/en
Priority to JP2007537741A priority patent/JP4709223B2/en
Publication of WO2007037431A1 publication Critical patent/WO2007037431A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C25/00Profiling tools for metal extruding
    • B21C25/02Dies
    • B21C25/025Selection of materials therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C25/00Profiling tools for metal extruding
    • B21C25/02Dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/10Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/04Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbonitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/241Chemical after-treatment on the surface
    • B22F2003/242Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/247Removing material: carving, cleaning, grinding, hobbing, honing, lapping, polishing, milling, shaving, skiving, turning the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Definitions

  • Sintered body manufacturing method thereof, sliding member using the sintered body, film forming material, hot extrusion die and hot extrusion molding device using the hot extrusion die and hot Extrusion method
  • the present invention relates to a sintered body, a manufacturing method thereof, a sliding member using the sintered body, a film-forming material, a hot extrusion die, and a heat using the hot extrusion die.
  • the present invention relates to a hot extrusion molding apparatus and a hot extrusion molding method.
  • the material of the hot extrusion die 101 is usually cemented carbide (hereinafter referred to as cemented carbide) or SKD61.
  • cemented carbide has high hardness and is comparable to a metal material.
  • SKD61 is widely used because the hardness at high temperature is difficult to deteriorate.
  • carbide or SKD61 is used as the material for the above-described hot extrusion die for aluminum alloy such as aluminum alloy at a high temperature described above, the carbide is used at a high temperature of about 400 to 500 ° C. Due to thermal degradation, hardness and strength are significantly reduced. In addition, SKD61 does not provide high hardness enough to withstand use, and, for example, aluminum adheres to the inner peripheral surface 101b of the through hole 101a that becomes the guiding portion when the extruded material 6 of aluminum alloy is formed. . As a result, carbide and SKD61 cannot withstand long-time molding, and the hot extrusion die 101 is damaged or worn. Had occurred.
  • Patent Document 1 discloses a technique in which a ceramic is coated on the inner peripheral surface 101b of the through hole 101a of the hot extrusion forming die 101 that becomes a bearing portion used for hot extrusion molding of an aluminum alloy. It is disclosed in Document 2 and Patent Document 3.
  • the base material of the hot extrusion die 101 is a high-speed steel, and TiC is coated at a thickness of 1 ⁇ m on at least a portion that becomes a sliding surface with the extruded material. It is disclosed that the sliding resistance of the inner peripheral surface 101b of the through hole 101a serving as the guiding portion of the extruded material 6 and the hot extrusion molding die 101 can be reduced, and the extrusion speed can be improved by 20% compared to the conventional technique.
  • Patent Document 3 a ceramic layer such as TiC, VC, TaC, WC, etc. is formed on the inner peripheral surface 101b of the through-hole 101a, which serves as a guide portion of the hot extrusion die 101, by a discharge hardening process.
  • the cermet is thickened in the range of 4 to 15 mm in thickness on the inner peripheral surface 101b of the through hole 101a serving as the guiding portion of the hot extrusion molding die 101 of SKD material.
  • the composition of cermet is Cr C, NbC, WC, TiC, SiC
  • One type or two or more types of carbide-based ceramics are selected, and they also have a Ni-based or NiCr-based alloy matrix strength, and the ceramics are contained in an amount of 10 to 30 wt%.
  • the surface force of the inner peripheral surface 101b of the through-hole 101a during hot extrusion molding can secure hardness and prevent wear even if it is assumed that the surface force reaches 700 ° C at a depth of 4mm. It is disclosed that cracking due to thermal shock during extrusion molding can be suppressed and peeling of the reinforced portion can be prevented.
  • Patent Document 5 the main body of the hot extrusion die 101 is referred to as ZrO—YO, ZrO.
  • zirconium oxide ceramics such as MgO or ceramics such as Si N silicon nitride.
  • Patent Document 6 a titanium carbonitride (TiCN) sintered body is proposed as a material suitable for an injection-molded material and die-cast sleeve that require high-temperature pressure strength in the fabrication of molten aluminum.
  • Patent Document 1 JP 2000-63972 A
  • Patent Document 2 Japanese Patent Laid-Open No. 2000-63973
  • Patent Document 3 Japanese Patent Laid-Open No. 2000-102816
  • Patent Document 4 Japanese Unexamined Patent Publication No. 2000-63975
  • Patent Document 5 Japanese Patent No. 2535025
  • Patent Document 6 Japanese Unexamined Patent Publication No. 2003-321718
  • the composition of the carbide cermet is Cr. C, NbC, WC, TiC
  • SiC carbide ceramics Force selected Power of high sliding characteristics with an aluminum alloy can be obtained even if only 10 to 30 wt% of any of these carbide ceramics is used. I can't. Therefore
  • the aluminum alloy extruded material 6 has a problem that the aluminum tends to adhere to the inner peripheral surface 101b of the through-hole 101a, which becomes the guiding portion during molding, and breaks or is pressed due to wear. It was not possible to avoid problems such as scratches on the output material 6 and defective dimensions.
  • the hot extrusion die 101 main body proposed in Patent Document 5 is made of a zircoure ceramic or silicon nitride ceramic, sufficient strength to withstand hot extrusion of an aluminum alloy is obtained.
  • the reason why it cannot be obtained was that the inner peripheral surface 101b of the through-hole 101a was damaged or had a bad dimension on the extruded material 6 formed by wear or was not able to avoid the problem!
  • Patent Document 6 discloses a method of manufacturing a TiCN-TiC cermet sintered body as a material suitable for molten aluminum forging material.
  • TiC is an acidic solution in an environment of 450 ° C or higher. The TiC force of high-hardness materials is prone to occur and the hardness is significantly deteriorated.
  • the present invention is a sintered body having high strength, high hardness, high toughness, and high slidability, and a slide using the same, particularly in an environment of about 400 to 600 ° C. It is an object of the present invention to provide a moving member, a film forming material, a hot extrusion die, and a hot extrusion molding apparatus using the hot extrusion die.
  • the sintered body of the present invention has a TiCN force of 8 to 92.5 mass% and Ti of 0.01 to 1 mass. / 0 , TiC is 0.01-2 mass%, TiN is 0.01-2 mass%, and the balance is TaC, Ni, Cr. And 1 to Ta C: L 1 Mass 0/0, Ni 3 to 13 mass 0/0, may have 3 to 13 mass% of Cr.
  • the sintered body preferably has two peaks in its particle size distribution.
  • One peak has a particle size range of 1.0 to 1.3 m, and the other peak has a particle size of 1.4 to 1.
  • crystal grains in the particle size range of 1.0 to 1.3 / zm and crystal particles in the particle size range of 1.4 to 1.7 ⁇ are 3: 2 to 1 :
  • the weight ratio should be 1.
  • the crystal grains of the sintered body are preferably spherical.
  • the sliding member and the film forming material of the present invention are formed using the sintered body, and examples thereof include a slider and a target material.
  • the hot extrusion die of the present invention is formed using the sintered body.
  • the hot extrusion molding die preferably has a through hole in the vicinity of the center of the plate shape, and at least an amorphous film is formed on the inner peripheral surface of the through hole. Further, it is preferable that the amorphous film is made of alumina or silicon carbide, and the amorphous film has a thickness of 0.2 to 1.2 m.
  • the hot extrusion molding die is attached to one end side of a cylindrical die case, and the other end side of the die case is connected to one end side of the cylindrical container. And an extrusion mechanism for extruding the extruded material into the container is placed in the container.
  • the method for producing a hot extrusion die of the present invention comprises an average particle size of 0.3 to 0.7 ⁇ ⁇ ( ⁇ powder, an average particle size of 1.2 to 2 111 7: 3 to 9: 1, add TaC powder with an average particle size of 1.5 ⁇ m or less, Ni powder and Cr powder with an average particle size of 2 ⁇ m or less, and grind with solvent It has the process of mixing and making it a slurry.
  • the sintered body of the present invention has a TiCN force of 8 to 92.5 mass% and Ti of 0.01 to 1 mass. / 0 , TiC is 0.01 to 2% by mass, and TiN is 0.01 to 2% by mass. Therefore, the hot extrusion die of the present invention formed using the sintered body is particularly about 400 Even in a high temperature environment of ⁇ 600 ° C., it is possible to maintain high strength and high toughness and to suppress the sliding resistance of the extruded material to a low level.
  • the hot extrusion die 1 has a through hole in the vicinity of the center of the plate shape, and at least an amorphous film is formed on the inner peripheral surface of the through hole.
  • the amorphous film prevents oxidation of the inner peripheral surface of the through-holes, so the strength of the hot extrusion die before hot extrusion is reduced (the bond strength between particles is reduced). ) Can be prevented.
  • the amorphous film is made of alumina or silicon carbide, it has an acid resistance action up to about 600 ° C, so that a hot extrusion die for preheating before hot extrusion molding is used. The effect of preventing oxidization of the inner peripheral surface of the through hole can be further improved.
  • the preferred thickness of the amorphous film is 0.2-1.2 ⁇ m, and the thickness is small. If both are 0.2 m or more, the surface of the hot extrusion die can be protected without unevenness, and the problem of acidification from the surface layer at high temperatures can be prevented. And since it is originally intended to prevent oxidation during preheating, 1. is sufficient. 1. If the film thickness is significantly greater than 2 m, the adhesion of the film will decrease due to internal stress, especially for thick films exceeding 2 m. There is a risk of peeling.
  • the preheating temperature is about 500 ° C or less, an amorphous film of silicon carbide is formed, and when the preheating temperature is about 650 ° C or less, an alumina amorphous film is formed to prevent oxidation of the inner peripheral surface of the through hole. it can.
  • the hot extrusion molding die is attached to one end side of a cylindrical die case, the other end side of the die case is attached to one end side of the cylindrical container, and the extruded material is If an extrusion mechanism for container force extrusion is arranged in the container and used as a hot extrusion molding device, the hot extrusion die has excellent strength, hardness and toughness at high temperatures. It is possible to prevent wear and breakage of the extrusion die, and to suppress scratches and dimensional problems on the extruded material, and to greatly improve the continuous molding time of hot extrusion molding.
  • a raw material powder to be a TiCN cermet material is obtained by using a TiCN powder having an average particle size of 0.3 to 0.7 m and an average particle size of 1 2—2 ⁇ m (mixed with Ti CN powder in a ratio of 7: 3 to 9: 1, and further with a TaC powder with an average particle size of 1. Since the raw powder is pulverized and mixed with a solvent to form a slurry, the coarse TiCN crystal particles are filled with the fine TiCN crystal particles so that they are covalently bonded.
  • TiCN crystal particles can be sintered with low decomposition of Ti, TiC and TiN.
  • the inclusion of Ti, TiC and TiN is kept low. It has the effect of suppressing acid resistance, and as a result, high slidability can be secured.
  • FIG. 1 shows an example of a hot extrusion molding apparatus incorporating the hot extrusion die of the present invention. It is sectional drawing shown.
  • FIG. 2 is a perspective view of a test piece of the present invention.
  • FIG. 3 is a cross-sectional view showing a method for measuring a three-point bending strength.
  • FIG. 4 (a) is a plan view of a hot extrusion die of the present invention, and (b) is a cross-sectional view thereof.
  • FIG. 5 is a cross-sectional view of a conventional hot extrusion die.
  • FIG. 6 is a TG-DTA differential thermal analysis chart of a TiCN cermet material used as a hot extrusion die of the present invention.
  • FIG. 7 is a TG-DTA differential thermal analysis chart of an alumina amorphous film.
  • FIG. 8 is a TG-DTA differential thermal analysis chart of a silicon carbide amorphous film.
  • FIG. 9 is a cross-sectional view of a conventional hot extrusion molding apparatus.
  • FIG. 10 is a diagram showing the composition of Ti, TiC, and TiN of the hot extrusion die of the present invention.
  • the sintered body of the present invention is composed of TiCN 58-92.5% by mass, TiO. 01-1% by mass, TiCO. 01-2% by mass, TiNO. 01-2% by mass, the balance being TaC, Ni, Cr. is important. Further, it is desirable to have TaCl ⁇ : L 1% by mass. Further, it is desirable to have 3 to 13% by mass of Ni and 3 to 13% by mass of Cr. The balance becomes inevitable impurities such as Fe.
  • the sintered body has two peaks in the particle size distribution, and the peaker is within a particle size range of 1.0 to 1.3 111 and 1.4 to 1.7 / zm, respectively. There is power.
  • the peak is less than 1.0 m, agglomeration of only fine particles occurs immediately and the aggregation of fine particles immediately becomes the core of abnormal particle growth, so there is a problem that the toughness and strength deteriorate.
  • it is larger than 1.3 m, there is a problem that TiCN crystal particles decompose into Ti, TiC and TiN due to insufficient covalent sintering or solid phase bonding.
  • the ratio of the peak in the range of 1.0 to 1.3 m and the peak in the range of 1.4 to 1.7 m is 3: 2 to A weight ratio of 1: 1 is preferred. 1.
  • the peak at 0 to 1.3 m is 60% or more, aggregation of fine particles tends to occur, and slidability cannot be ensured because it becomes the core of abnormal particle growth and degranulation and strength deterioration.
  • the two peaks in the particle size distribution of the sintered body are those in the desired particle size range by using TiCN raw material powder in which a fine powder having a predetermined particle size and a coarse powder are mixed at a predetermined mixing ratio. Can be obtained.
  • the crystal grains of the sintered body are preferably spherical.
  • the slippage at the time of raw material extrusion on the die surface using the sintered body is stabilized.
  • the sintered body of the present invention can be used as a film forming material, such as a sliding member.
  • a film forming material such as a sliding member.
  • the sliding member formed using the sintered body is used for a hot extrusion die or a hot drawing die, high slidability can be obtained.
  • the film forming material formed using the sintered body is formed on the sliding portion of a hot extrusion die or a hot drawing die, high slidability can be obtained.
  • FIG. 1 is a schematic longitudinal sectional view of a hot extrusion molding apparatus 11 in which a hot extrusion molding die 1 of the present invention is fitted in a cylindrical die case 2.
  • the extrusion 6 of aluminum alloy is formed by hot extrusion, which is a die, by placing a billet 5 in which a columnar lump such as an aluminum alloy is heated in a cylindrical container 3 and extruding it by an extrusion mechanism 4.
  • a desired extruded material 6 is formed from the forming die 1.
  • the hot extrusion die 1 of the present invention is formed using the sintered body.
  • TiO. 01-1 mass 0/0, TiCO. 01-2 mass 0/0, TiNO. was a 01-2 mass%, the Ti is 1 wt%, TiC is 2 mass%, This is because when TiN exceeds 2% by mass, TiC, TiN and Ti metal are present in more than desired amounts, and the acid resistance is reduced. As a result, the high slidability is significantly reduced.
  • this sintered body is used as a hot extrusion die 1, thermal degradation and slidability in a high temperature environment of about 400 to 600 ° C are achieved. A problem arises that is disturbed.
  • Ti, TiC, and TiN are less than 0.01% by mass, local crystal growth proceeds, and the crystal grain state becomes non-uniform and the strength may deteriorate. It is important that the content of both TiN is 0.01% by mass or more.
  • TiCN Ti, TiC and TiN described above, by sintering using a predetermined amount of TiCN raw material powder in which a predetermined fine powder and a coarse powder are mixed at a predetermined mixing ratio, Ti, TiC and TiN produced by the decomposition of TiCN can be obtained at the desired ratio.
  • the inner peripheral surface lb of the through-hole la serving as the induction part of the hot extrusion molding die 1 is alkali-washed with NaOH or the like to obtain aluminum.
  • carbide or SKD61 which has been used as a conventional die material, may corrode the surface layer by these cleaning solutions, resulting in a significant reduction in surface hardness.
  • the sintered body of TiCN-TaC-Ni-Cr as the main component of the hot extrusion die 1 of the present invention can be used any number of times until it can no longer be used due to wear that is not corroded by alkaline cleaning such as NaOH. Can be used repeatedly.
  • the preferable surface roughness Ra of the inner peripheral surface lb of the through-hole la is 0.05 ⁇ m or less, and when Ra exceeds 0.05 m, the smoothness of the surface of the extruded material 6 is obtained. It becomes impossible.
  • the through-hole la is preferably formed near the center of the plate-shaped hot extrusion die 1 and an amorphous film lc is preferably formed at least on the inner peripheral surface lb of the through-hole la. .
  • the TiCN cermet of the present invention is a material that is difficult to oxidize at a high temperature as compared with conventional carbide, SKD61, and carbide cermet, but a certain amount of oxidization cannot be suppressed. Therefore, it is desirable to form the amorphous film lc on the inner peripheral surface lb of the through hole la in order to prevent the bonding force between particles due to the acid salt from decreasing.
  • the amorphous film lc is preferably formed of alumina or silicon carbide. Since the thermal oxidation reaction of alumina and silicon carbide starts at over about 600 ° C, if the preheating temperature at the time of hot extrusion is about 600 ° C or less, the acid on the inner peripheral surface lb at the time of preheating is used. It is possible to prevent a decrease in strength due to the ⁇ . More specifically, when the preheating temperature before forming the extruded material 6 is about 550 ° C or lower, a silicon carbide amorphous film lc is formed, and when it is about 600 ° C or lower, an alumina amorphous film lc is formed. Therefore, it is possible to prevent acidification of the inner peripheral surface lb of the through-hole la, and the material of the amorphous film lc can be appropriately selected depending on the preheating temperature.
  • the amorphous film lc is not necessarily limited to alumina or silicon carbide, but may be silicon nitride, titanium nitride, and titanium for hot extrusion molding for aluminum refrigerant tubes for heat exchangers. There is no problem even if it is used.
  • the thickness t of the amorphous film lc is 0.2 to 1.2 ⁇ m. If the thickness t of the amorphous film lc is at least 0.2 m or more, there is no unevenness. The inner surface lb of the through-hole la can be protected, and the problem of oxidation from the surface layer at high temperatures can be prevented. On the other hand, if the thickness t of the amorphous film lc exceeds 1.2 ⁇ m, the adhesion of the film decreases particularly when the film thickness exceeds 2 ⁇ m. , Amorphous membrane lc may be peeled off during setting work. A more preferable thickness t of the amorphous film lc is 0.5 to 1. O / zm.
  • the hot extrusion molding apparatus 11 of the present invention attaches the hot extrusion molding die 1 of the present invention to one end side of a cylindrical die case 2, and The other end side of the die case 2 is attached to one end side of the cylindrical container 3, and an extrusion mechanism 4 for extruding the extruded material 6 from the container 3 is arranged in the container 3.
  • the hot extrusion molding apparatus 11 is used for hot extrusion molding at a high temperature of about 400 to 600 ° C.
  • the most damaging hot extrusion die 1 has excellent strength, hardness and toughness at high temperatures. Therefore, there is little risk of wear or breakage, so that the occurrence of scratches and dimensional problems on the extruded material 6 can be suppressed, and the continuous molding time can be greatly improved.
  • the method for producing the hot extrusion die 1 according to the present invention comprises a fine powder having an average particle size of 0.3 to 0.7 111 and an average particle size of 1.2 to 2 as a raw material powder.
  • 1 coarse powder of 111? ⁇ Powder is mixed in a predetermined amount at a ratio of 7: 3 to 9: 1, and 1 ⁇ powder with an average particle size of 1.5 or less and Ni with an average particle size of 2 m or less
  • a predetermined amount of powder and Cr powder are added and pulverized and mixed with a solvent to form a slurry.
  • the fine TiCN powder having an average particle size of 0.3 to 0.7 ⁇ m and the coarse TiCN powder having an average particle size of 1.2 to 2 ⁇ m are mixed with 7: 3 to 9 :
  • the reason why the predetermined amount is mixed at a ratio of 1 is that the coarse TiCN crystal particles are filled with fine TiCN crystal particles in the sintering stage, thereby promoting covalent bonding sintering or solid phase bonding. This is because TiCN crystal particles can be sintered without being decomposed into Ti, Ti C, or TiN.
  • the obtained slurry is dried and granulated by a known spray dryer.
  • the powder produced by the above method is formed into a plate-like molded body by a known rubber press, and a desired shape is obtained by a known cutting process. If a through hole is formed in the vicinity of the center of the plate-shaped molded body in advance, the desired penetration can be achieved by wire electric discharge machining after the molded body is fired. Can be processed into through holes.
  • the molded body is fired in a known vacuum furnace in an atmosphere reduced to 1.33 Pa or less at a maximum keep temperature of 1350 to 1500 ° C. for 1 hour (hr).
  • the calcination temperature is 1350 ° C or less, it is not sufficiently densified, and when it exceeds 1500 ° C, the metal component sublimes and the TiCN composition starts to decompose, so the preferred calcination temperature is 1350-1500 ° C.
  • the obtained sintered body is formed into a desired shape by wire electric discharge machining and grinding, and then the inner peripheral surface lb of the through hole la of the extruded material 6 has a surface roughness Ra of 0.05 m. Polish with fluid barrels so that:
  • alumina or silicon carbide is formed by sputtering. It is desirable to form a film with a thickness t in the range of 0.2 to 1.2 m.
  • the amorphous film lc may be formed not only on the inner peripheral surface lb of the through-hole la but also on the side surface Id. In this case, the amorphous film lc may be applied on both side surfaces Id.
  • the hot extrusion die 1 of the present invention and the hot extrusion molding device 11 of the present invention using the die 1 have high strength and wear resistance at high temperatures. It is suitable for hot extrusion molding of aluminum alloy extruded materials for home use and household use, but it can be suitably used particularly for molding refrigerant pipes such as in-vehicle radiators, intercoolers, and air conditioner condensers.
  • the use is not limited to the above-described hot extrusion molding of an aluminum alloy, but is also suitable for hot extrusion molding of a copper alloy or a titanium alloy.
  • a sintered body made of TiCN cermet which is the base material of the hot extrusion die 1 of the present invention, was prepared by dividing each powder into 6 levels.
  • TiCN powder is a fine TiCN powder with an average particle size of 0.5 ⁇ m and a coarse TiCN powder with an average particle size of 1.7 ⁇ m mixed at a ratio of 8: 2, and the remaining amount of Put the average particle size of 1.2 111 clove powder and 1. 6 111 ⁇ powder and 1.4 m Cr powder into a SUS ball mill.
  • a slurry was prepared by adding 3% of ethanol and paraffin wax in the same volume as the total powder, and paraffin wax in a total powder mass ratio of 48% (hr) for 48 hours (hr).
  • the average particle size of the TiCN raw material powder and the ratio of the fine TiCN powder to the coarse TiCN powder were set to 8: 2 in the same manner as in the present invention example.
  • the obtained slurry was granulated by high-speed drying with a spray dryer at a temperature of 120 ° C and an exposure time of 1 second.
  • the compact was fired at a maximum temperature of 1450 ° C for 1 hour (hr) in a vacuum oven using a vacuum furnace at a reduced pressure of 1.33 Pa to produce a sintered body of TiCN cermet did.
  • a surface grinder using a # 400 standard resin diamond
  • the piece 12 was processed into a rectangular parallelepiped with a short side dimension 12a of 3mm, a long side dimension 12b of 4mm, and a length 12c of 40mm.
  • Samples Nos. 1 to 3, 8, and 9 of Examples of the present invention of the test piece 12 and Samples Nos. 4 to 7, and 10 of Comparative Examples outside the scope of the present invention were fired after firing.
  • composition analysis was performed using an X-ray diffractometer RINT1100 manufactured by Rigaku Corporation with X-rays of 40 kV and 40 mA.
  • the composition ratio of each component was determined by separately creating the diffraction peak force of each component when the sample was measured with an X-ray diffractometer. Calculated value The ratio of each component was calculated.
  • the measurement limit value is 0.01 mass%, “less than 0.01 mass%” is described as “ ⁇ ”.
  • the Vickers hardness was measured according to JIS-R1610 using an AVK-A type hardness meter manufactured by Akashi Manufacturing Co., Ltd., HvLoad 10kg.
  • the hardness meter is AVK-A type manufactured by Akashi Seisakusho
  • the universal testing machine is M ODEL1125 type manufactured by Instron
  • Autograph The AGS-500B type manufactured by Shimadzu Corporation and the optical length meter were measured using a Mitutoyo measuring machine.
  • the three-point bending strength is 1150 MPa or more
  • the Vickers hardness is 1400 GPa or more
  • the fracture toughness value is 10 MPa'm 1
  • the overall evaluation was good ( ⁇ ) for those satisfying / 2 or more, and the ones satisfying one or more of them were considered unusable (X). The reason for this is that if the three-point bending strength is less than 1150 MPa, cracking due to insufficient strength is likely to occur during hot extrusion.
  • the Vickers hardness is less than 1400 GPa, the wear resistance becomes insufficient, wear and deformation are likely to occur, and if the fracture toughness value is less than 10 MPa'm 1/2 , it will be missing during hot extrusion. It is a force that easily causes cracks.
  • the results are shown in Table 1.
  • the composition and characteristic values are average values of 5 samples.
  • the sintered compact samples No. 1, 2, and 3 used in the hot extrusion die 1 of the present invention have composition range forces TiCN58 to 92.5 mass 0 / 0, TaCl ⁇ : L 1 mass 0/0, Ni3 ⁇ 13 mass%, in Cr3 ⁇ 13 mass%, appearance from 0.01 to 1 mass% of Ti by the TiCN is decomposed, TiC, appearance of TiN are both In the range of 0.01 to 2% by mass, the surface of the sintered body does not decrease the interparticle bonding force due to the acid even after the sintered body is heated to 550 ° C.
  • Sample No. 4 which is outside the scope of the present invention, was promoted by acidification on the surface of the sintered body after heat treatment at 550 ° C, resulting in a decrease in interparticle bonding force. Therefore, the three-point bending strength was 1040 MPa and the Vickers hardness was 1030 GPa. Sample No. 5 also showed that TaC was less than 1% by mass due to the appearance of Ti, TiC, and TiN due to the decomposition of TiCN, that Ti significantly exceeded 1% by mass, and that TiN was 2 Since it exceeded the mass%, the acidity of the surface of the sintered body was promoted after heat treatment at 550 ° C, and the bonding force between particles was reduced, and there was also low sinterability.
  • the three-point bending strength was 900MPa
  • the Vickers hardness was 1040GPa
  • the fracture toughness was 7MPa'm 1/2 .
  • the appearance of Ti, TiC, and TiN due to the decomposition of TiCN was less than 0.01% by mass, especially because TaC was less than 1% by mass.
  • the three-point bending strength is 890 MPa
  • Vickers hardness is 1180 GPa
  • fracture toughness is 7 MPa'm V2. It was a low value, and the overall evaluation was bad for Sample Nos. 4, 5, and 6 and could not be used.
  • the mixing ratio of the fine TiCN powder and the coarse TiCN powder of the TiCN powder was set to 7: 3 and 9: 1.
  • Samples Nos. 8 and 9 in the examples of the present invention promoted activation of sinterability and suppressed abnormal grain growth during sintering, so that the appearance of Ti, TiC and TiN could be suppressed.
  • oxidation did not proceed under high temperature conditions, and the three-point bending strength, Vickers hardness, and fracture toughness values did not decrease, and the overall evaluation was good.
  • the mixing ratio of fine TiCN powder and coarse TiCN powder of TiCN powder is 6: 4, 9.5:
  • Sample Nos. 7 and 10 which are outside the scope of the present invention as 0.5, in Sample No. 7, the crystal particles locally decomposed and enlarged, so that Ti, TiC, and TiN appeared at the time of sintering.
  • Sample No. 7 has a three-point bending strength of less than 1150 MPa, Vickers hardness of less than 1400 GPa, and fracture toughness of 10 MPa'm 1/2
  • Sample No. 10 had a Vickers hardness of less than 1400 GPa and a fracture toughness value of less than 10 M Pa'm 1/2 .
  • Dies for hot extrusion molding 1 and 101 shown in Fig. 4 (a) and (b) are manufactured and attached to a hot extrusion molding machine 11 and 111 to perform hot extrusion molding. Evaluation was conducted. Samples Nos. 11 to 13 of Example of the present invention and Sample No. 4 of Example 1 were produced by using the sintered bodies of Sample Nos. 1 to 3 of Example 1 to produce hot extrusion dies 1. Sample Nos. 14 and 15 using the sintered body of No. 6 are outside the scope of the present invention.
  • the hot extrusion molding die 101 is made of 94% by mass of ZrO and 6% by mass of Y2O.
  • Sample No. 16 was made of zirco-yure ceramics with 2 2 3 force.
  • the body of the hot extrusion die 101 is SKD 61, and the inner peripheral surface 101b of the through hole 101a is made of a cermet material made of NiCrZCr C ZNbC.
  • Reinforced part 7 with a thickness t of 5 mm made of Cr C—NbC with a composition of 25% by mass
  • Sample No. 17 This was designated as Sample No. 17. Note that the reinforced portion 7 of the cermet material is a discharge fusion method. Formed by the method.
  • the thickness T of the hot extrusion dies 1, 101 is 20 mm, and the outer diameter ⁇ 1 is a disk-shaped force of 30 mm, and the vicinity of the center of the disk-shaped Through-holes la and 10 la are formed, and the through-holes la and 101a are rectangular slits having a width d of 1.5 mm and a length of 1 15 mm, and the four corners are formed from a C-plane c of about 0.5 mm. Yes.
  • the hot extrusion dies 1 and 101 are attached to the hot extrusion molding apparatuses 11 and 111, subjected to a preheating treatment at 500 ° C for 1 hour (hr), and then a temperature of 460 ° C. Then, hot extrusion of aluminum alloy was carried out.
  • the molding conditions were such that the pressing force of the extrusion mechanism 4 was controlled so that the extrusion speed was 30 mZmin. Continuous molding was performed until abnormal flaws occurred on the surface of the extruded material 6.
  • the criteria for judging the abnormality of the scratches generated on the surface of the extruded material 6 were a scratch depth of 10 m and a width of 20 / z m or more.
  • This standard is not based on industry standards, but for example, aluminum refrigerant pipes for high-power air conditioners are more stringent because they are higher in pressure and use gas than before when they become free of CFCs! / It is predicted to become a scratch standard. The scratch was measured using a surface roughness meter manufactured by Kosaka Laboratory.
  • the abnormality first appears as the surface state of the extruded material 6.
  • the hot extrusion dies 1, 101 are damaged, or the inner peripheral surface lb, 10 Peeling may occur in the lb, and confirmation including this breakage and peeling was performed. In all cases, the number of samples is one.
  • the sample Nos. 11 to 13 of the examples of the present invention can perform the continuous forming time of the aluminum alloy extruded material 6 for at least 42 hours (hr) or more.
  • the reasons for the occurrence were all scratches on the extruded material 6. At that time, cracks in the hot extrusion die 1 and cracking of the inner peripheral surface lb were not observed, and the overall evaluation was good. Met.
  • Samples Nos. 14 and 15 that fall outside the scope of the present invention are found to be about 40% shorter than the examples of the present invention, with the continuous molding time being 27 hours (hr) and 29 hours (hr). . All of these abnormalities are scratches on the extruded material 6, and cracks, breakage, peeling, etc. of the hot extrusion die 1 are not observed at that time, but the decrease in strength, hardness, and toughness at high temperatures has an effect. This is because the inner peripheral surface lb of the through hole la, which is the guiding portion, has deteriorated. In addition, the overall evaluation was acceptable because continuous molding for at least one day was possible.
  • Comparative Sample No. 16 in which the body of the hot extrusion die 101 was made of a zircoure-based ceramic, had a continuous molding time of only 5 hours (hr). This is because the inter-extrusion die 101 is damaged. As a result, zirconia ceramics have the advantage of having a smooth surface and high slidability. However, the high-temperature strength due to the increase in monotly (monoclinic phase) is low, and as a material for hot extrusion dies, The overall rating was X, not appropriate.
  • the NiCrZ Cr C ZNbC cermet is composed of a carbide cermet.
  • the sintered body to be the hot extrusion die 1 was the same in composition and shape as the sample No. 12 in Example 2. Then, an amorphous film lc of alumina and silicon carbide is formed on the inner peripheral surface lb of the through hole la shown in FIG. 1, and the thickness t is set to 0.1, 0.2, 0.5, 1.0, 1 2 and 1.5 m, each of which was made into one of 6 levels, was attached to a hot extrusion molding machine 11 and after lhr preheating, aluminum alloy extruded material 6 was continuously formed at a speed of 30 mZmin. did.
  • the sample in which the amorphous film lc was not formed was Sample No. 12 of Example 2 and compared based on this.
  • the preheating temperature of Sample No. 12 where the amorphous film lc is not formed on the inner peripheral surface lb of the through hole la is 500 ° C for 1 hour (hr), and the forming temperature of the aluminum alloy is 460 ° C.
  • the preheating temperature was 550 ° C and the molding temperature was 480 ° C.
  • the preheating temperature was 500 ° C. and the molding temperature was 460 ° C.
  • the preheating temperature is generally lower than the molding temperature, in order to prevent deterioration of the inner peripheral surface of the through-hole due to oxidation during preheating.
  • the preheating temperature was set higher than the molding temperature.
  • the method for forming the amorphous film lc of alumina and silicon carbide was a sputtering method, and the condition was 250 ° C.
  • the amorphous film lc is made of alumina and has a thickness t of 0.1, 0.2, 0.5, 1.0, 1.2, 1.5 m. It was set as sample Nos. 21 to 26 in the examples.
  • the material of the amorphous film lc is silicon carbide, and the thickness t is 0.1, 0.
  • FIGS. Fig. 6 is an analysis chart of TiCN cermet without an amorphous film lc formed on the inner peripheral surface lb of the through hole la
  • Fig. 7 is an analysis of an alumina amorphous film lc formed on the inner peripheral surface lb of the through hole la
  • FIG. 8 is an analysis chart of the silicon carbide amorphous film lc formed on the inner peripheral surface lb of the through hole la.
  • the relationship between the thickness t of the amorphous film lc and the continuous molding time is as follows. Samples Nos. 21, 22, and 23 of the amorphous film lc of alumina and Samples Nos. 27, 28, and 23 of the amorphous film lc of silicon carbide As can be seen from Fig. 29, the continuous molding time is improved as the thickness t force becomes SO. 1, 0.2, 0.5 m. In particular, in Sample Nos. 22 to 26 where the thickness t of the amorphous film lc of alumina is 0 or more, the continuous molding time is improved by about 55% or more compared to Sample No. 12 where the amorphous film lc is not formed. Thus, sample Nos.
  • 22 to 26 of the examples of the present invention can be continuously molded for about 3 to 3.5 days, and the conventional hot die or SKD61 material die 101 for hot extrusion molding can be used. This is a remarkable effect compared to the generally-mentioned half-life.
  • sample Nos. 21 and 27 with an amorphous film lc thickness t of 0.1 ⁇ m improved the continuous forming time compared with the case where the amorphous film lc was not formed, but the effect was less. Is too thin, the surface force during preheating is thought to be due to the start of acidification.
  • Sample Nos. 26 and 32 in which the thickness t of the amorphous film lc is 1.5 ⁇ m, have a shorter continuous molding time than when the thickness t is 1.0 and 1.2 m. I understand. The reason for this is presumed to be due to acidification due to slight peeling of the amorphous film lc. If this thickness t is made thick, for example, about 2 m or more, it will not be described in this example, but it will be easy to cause contact with objects when setting the hot extrusion die 1 etc.
  • the thickness t of the amorphous film lc is preferably 0.2 to 1.2 / zm. Yes, more preferably 0.5 to 1.2 m.
  • the acid-oxidation reaction of the TiCN cermet material used in the hot extrusion die 1 of the present invention is about 550.
  • the results showed that the acid-acid reaction of C and alumina amorphous film lc was 600 ° C or higher, and that of silicon carbide amorphous film lc was 600 ° C or higher.
  • the hot extrusion die 1 of the present invention has a through-hole in the extruded material 6. Even if an amorphous film 1c is formed on the inner peripheral surface lb of 1a, even if the preheating temperature is set to around 500 ° C, there is no fear of deterioration. Furthermore, when the amorphous or silicon carnoid amorphous film lc is formed, there is no risk of deterioration of the inner peripheral surface lb of the through-hole la due to thermal oxidation even if the preheating temperature is increased to about 600 ° C. Wow.
  • the hot extrusion die 1 of the present invention when used for hot extrusion molding, it is not necessary to limit the preheating temperature to a temperature lower than the molding temperature as in the conventional case. As a result, it is possible to obtain a product with stable dimensions and surface quality immediately after the start of molding of the extruded material 6 and to significantly improve the continuous molding time.
  • Table 4 shows the critical significance of the composition of TiCN, Ti, TiC, and TiN.
  • TiCN TiN, TiN, and TiC which are decomposition products of TiCN, should not exceed the upper limit. If Ti, TiN, and TiC are not contained to some extent as impurities, TiCN will locally crystallize, and the die surface will become unstable.
  • Table 5 shows the critical significance of the TaC composition.
  • the surface area ratio was compared by analysis.
  • Table 6 shows the critical significance of the composition of Ni and Cr.
  • Table 7 shows the critical significance of the particle size range and weight ratio for the two peaks in the particle size distribution of the sintered body of the present invention.
  • the sintered bodies to be evaluated were those having the same composition as Sample No. 1 in Example 1, and were prepared by adjusting the same method as above. Sample Nos. 62 to 73 with two different peaks in the particle size distribution were obtained. Was used. Sample Nos. 74 to 78 are obtained by changing the ratio of crystal grains of the two peaks.
  • Standard value of the toughness is more than 10 MPa'm V2
  • the 10MPa'm 1/2 or good ( ⁇ ) was 7MPa'm 1/2 or more 10MPa'm 1/2 less than the usable ( ⁇ ).
  • the standard value of strength is 1150 MPa or more, 1150 MPa or more is good ( ⁇ ), lOOOMPa or more and less than 1150 MPa is usable ( ⁇ ).
  • slidability it was determined that the aluminum material was not damaged by the presence or absence of scratches 24 hours after the aluminum material was actually extruded. .
  • the other peak in the particle size distribution is smaller than the lower limit of the range of the present invention, this is because if the particle size distribution is too weak, TiCN will be easily decomposed, resulting in poor slidability and larger than the upper limit. Since the effect of coarse particles is likely to occur, the strength is deteriorated.
  • the ratio of the crystal grains of the two peaks is smaller than the lower limit value of the range of the present invention, the strength is deteriorated.
  • the ratio is larger than the upper limit value, the slidability is deteriorated. This is because if the ratio is small, the effect of degranulation is likely to occur, and if the ratio is large, TiCN is likely to be decomposed.
  • FIG. 10 is a diagram showing the composition of Ti, TiC, and TiN of the hot extrusion die of the present invention. For convenience, each vertex of Ti, TiC, and TiN is 3%.
  • CL1 The hexagonal shaded portion indicated as "CL1" is a range related to Ti, TiC, and TiN in claim 1 of the present application.

Abstract

By using a sintered body composed of 58-92.5% by mass of TiCN, 0.01-1% by mass of Ti, 0.01-2% by mass of TiC, 0.01-2% by mass of TiN and the balance of TaC, Ni and Cr, there can be obtained a sliding member, film-forming material and die for hot extrusion molding which exhibit high strength, high hardness, high toughness and high sliding properties in an environment of about 400-600˚C, and a hot extrusion molding apparatus using such a die for hot extrusion molding.

Description

焼結体とその製造方法とその焼結体を用いた摺動部材、成膜用材料並 びに熱間押出成形用ダイスとその熱間押出成形用ダイスを用いた熱間押出成形 装置及び熱間押出成形方法  Sintered body, manufacturing method thereof, sliding member using the sintered body, film forming material, hot extrusion die and hot extrusion molding device using the hot extrusion die and hot Extrusion method
技術分野  Technical field
[0001] 本発明は、焼結体とその製造方法とその焼結体を用いた摺動部材、成膜用材料並 びに熱間押出成形用ダイスとその熱間押出成形用ダイスを用いた熱間押出成形装 置及び熱間押出成形方法に関する。  [0001] The present invention relates to a sintered body, a manufacturing method thereof, a sliding member using the sintered body, a film-forming material, a hot extrusion die, and a heat using the hot extrusion die. The present invention relates to a hot extrusion molding apparatus and a hot extrusion molding method.
背景技術  Background art
[0002] 従来、アルミニウム合金などの熱間押出により押出材を成形する場合、図 5及び 9に 示すような、熱間押出成形装置 111のダイケース 102に組み込まれたベアリング部と なる熱間押出成形用ダイス 101の誘導部となる貫通孔 101aから、約 400〜500°Cに 加熱されたアルミニウム合金のビレット 5を押出成形することにより、所望の形状の押 出材 6が成形されてきた。  Conventionally, when an extruded material is formed by hot extrusion of an aluminum alloy or the like, as shown in FIGS. 5 and 9, hot extrusion that becomes a bearing portion incorporated in a die case 102 of a hot extrusion molding apparatus 111 An extrusion material 6 having a desired shape has been formed by extruding an aluminum alloy billet 5 heated to about 400 to 500 ° C. from a through-hole 101a serving as a guiding portion of the forming die 101.
[0003] そして、熱間押出成形用ダイス 101の材質としては、通常、超硬合金(以下で、超 硬という)や SKD61が用いられていて、超硬は、高硬度で且つ金属材に匹敵する高 強度が得られること、 SKD61は高温下での硬度 '強度の劣化が出難いという理由で 広く使用されている。  [0003] The material of the hot extrusion die 101 is usually cemented carbide (hereinafter referred to as cemented carbide) or SKD61. The cemented carbide has high hardness and is comparable to a metal material. SKD61 is widely used because the hardness at high temperature is difficult to deteriorate.
[0004] し力しながら、前述した高温下によるアルミニウム合金等の熱間押出成形用ダイス 1 01の材質として超硬や SKD61を用いると、超硬では約 400〜500°Cの高温下での 熱劣化により、著しく硬度および強度が低下する。また SKD61では使用上十分に耐 えうるだけの高硬度が得られず、更には例えば、アルミニウム合金の押出材 6を成形 時に誘導部となる貫通孔 101aの内周面 101bにアルミニウムが凝着する。これらのこ とにより、超硬や SKD61は長時間の成形に耐えるものではなぐ熱間押出成形用ダ イス 101が破損または摩耗により成形された押出材 6への傷の発生や寸法不良とい つた問題が発生していた。  [0004] However, when carbide or SKD61 is used as the material for the above-described hot extrusion die for aluminum alloy such as aluminum alloy at a high temperature described above, the carbide is used at a high temperature of about 400 to 500 ° C. Due to thermal degradation, hardness and strength are significantly reduced. In addition, SKD61 does not provide high hardness enough to withstand use, and, for example, aluminum adheres to the inner peripheral surface 101b of the through hole 101a that becomes the guiding portion when the extruded material 6 of aluminum alloy is formed. . As a result, carbide and SKD61 cannot withstand long-time molding, and the hot extrusion die 101 is damaged or worn. Had occurred.
[0005] 最近では、このような問題を解決するために、従来の超硬や SKD61で作製した熱 間押出成形用ダイス 101の誘導部となる貫通孔 101aの内周面 101bの部分にセラミ ックゃサーメットをコ一ティングまたは厚くすることや、熱間押出成形用ダイス 101をセ ラミックで作製することが模索されている。し力しながら、多くの問題が解決されないこ とから一般に普及して 、な 、のが現状である。 [0005] Recently, in order to solve such problems, heat produced with conventional carbide or SKD61 is used. The ceramic cermet is coated or thickened on the inner peripheral surface 101b of the through-hole 101a, which is the guiding portion of the hot-extrusion die 101, and the hot-extrusion die 101 is made of ceramic. That is being sought. However, since many problems cannot be solved, it is popularized to the general public.
[0006] 例えば、アルミニウム合金の熱間押出成形に使用されるベアリング部となる熱間押 出成形用ダイス 101の貫通孔 101aの内周面 101bにセラミックスをコーティングする ことが、特許文献 1、特許文献 2、特許文献 3に開示されている。  [0006] For example, Patent Document 1 discloses a technique in which a ceramic is coated on the inner peripheral surface 101b of the through hole 101a of the hot extrusion forming die 101 that becomes a bearing portion used for hot extrusion molding of an aluminum alloy. It is disclosed in Document 2 and Patent Document 3.
[0007] 特許文献 1、 2では、熱間押出成形用ダイス 101の母材をハイス鋼とし、少なくとも 押出材料との摺動面となる部分に TiCを 1 μ mの厚みでコーティングすることにより、 押出材 6と熱間押出成形用ダイス 101の誘導部となる貫通孔 101aの内周面 101bの 摺動抵抗が低減でき、押出速度を従来比 20%向上できたことが開示されている。  [0007] In Patent Documents 1 and 2, the base material of the hot extrusion die 101 is a high-speed steel, and TiC is coated at a thickness of 1 μm on at least a portion that becomes a sliding surface with the extruded material. It is disclosed that the sliding resistance of the inner peripheral surface 101b of the through hole 101a serving as the guiding portion of the extruded material 6 and the hot extrusion molding die 101 can be reduced, and the extrusion speed can be improved by 20% compared to the conventional technique.
[0008] また、特許文献 3では、熱間押出成形用ダイス 101の誘導部となる貫通孔 101aの 内周面 101bに TiC、 VC、 TaC、 WCなどのセラミックス層を放電硬化処理により厚み 2〜: LO mの範囲で被覆することが提案されており、熱間押出成形用ダイス 101の 母材については触れられてはいないが、被覆されたセラミックス層により、耐摩耗性 が向上することが開示されている。  [0008] Further, in Patent Document 3, a ceramic layer such as TiC, VC, TaC, WC, etc. is formed on the inner peripheral surface 101b of the through-hole 101a, which serves as a guide portion of the hot extrusion die 101, by a discharge hardening process. : It is proposed to cover in the range of LO m, and the base material of the hot extrusion die 101 is not mentioned, but it is disclosed that the wear resistance is improved by the coated ceramic layer Has been.
[0009] また、特許文献 4では、 SKD材の熱間押出成形用ダイス 101の誘導部となる貫通 孔 101aの内周面 101bの表面にサーメットを厚み 4〜15mmの範囲で厚くすることが 提案されている。そこではサーメットの組成として、 Cr C、 NbC、 WC、 TiC、 SiCの  [0009] Further, in Patent Document 4, it is proposed that the cermet is thickened in the range of 4 to 15 mm in thickness on the inner peripheral surface 101b of the through hole 101a serving as the guiding portion of the hot extrusion molding die 101 of SKD material. Has been. There, the composition of cermet is Cr C, NbC, WC, TiC, SiC
3 2  3 2
炭化物系セラミックスの一種または二種以上力 選択され、 Ni基または NiCr基の合 金マトリックス力もなり、前記セラミックスが 10〜30wt%含有してなるものである。これ により熱間押出成形時における貫通孔 101aの内周面 101bの表面力も深さ 4mmの 位置で 700°Cに達したと仮定しても硬度を確保でき摩耗を防止できることと、さらに、 熱間押出成形時の熱衝撃によるクラックを抑制し補強した部分の剥離を防止できるこ とが開示されている。  One type or two or more types of carbide-based ceramics are selected, and they also have a Ni-based or NiCr-based alloy matrix strength, and the ceramics are contained in an amount of 10 to 30 wt%. As a result, the surface force of the inner peripheral surface 101b of the through-hole 101a during hot extrusion molding can secure hardness and prevent wear even if it is assumed that the surface force reaches 700 ° C at a depth of 4mm. It is disclosed that cracking due to thermal shock during extrusion molding can be suppressed and peeling of the reinforced portion can be prevented.
[0010] さらに、特許文献 5では、熱間押出成形用ダイス 101の本体を、 ZrO— Y O、 ZrO  [0010] Further, in Patent Document 5, the main body of the hot extrusion die 101 is referred to as ZrO—YO, ZrO.
2 2 3 MgO等のジルコユア系セラミックスまたは、 Si N窒化珪素等のセラミックスにする 2 2 3 Use zirconium oxide ceramics such as MgO or ceramics such as Si N silicon nitride.
2 3 4 2 3 4
ことが提案されている。そこではアルミニウムの熱間押出成形時の押出材 6への表面 欠陥の発生を抑止しつつ、押出速度の増大を図ることが開示されている。 It has been proposed. There, the surface to the extruded material 6 during hot extrusion of aluminum It has been disclosed to increase the extrusion speed while suppressing the occurrence of defects.
[0011] 一方、特許文献 6では、アルミニウム溶湯の铸造等における高温加圧強度が要求さ れる射出成形材ゃダイキャストスリーブに適した材質として、炭窒化チタン (TiCN)焼 結体が提案されていて、炭窒化チタン (TiCN)粉体 64重量部、炭化チタン (TiC)粉 体 30重量部、助剤として AMF合金鉄粉体 6重量部を使用し炭窒化チタン系サーメ ット焼結体を作製することが開示されている。  [0011] On the other hand, in Patent Document 6, a titanium carbonitride (TiCN) sintered body is proposed as a material suitable for an injection-molded material and die-cast sleeve that require high-temperature pressure strength in the fabrication of molten aluminum. A titanium carbonitride cermet sintered body using 64 parts by weight of titanium carbonitride (TiCN) powder, 30 parts by weight of titanium carbide (TiC) powder, and 6 parts by weight of AMF alloy iron powder as an auxiliary agent. Making is disclosed.
特許文献 1 :特開 2000— 63972号公報  Patent Document 1: JP 2000-63972 A
特許文献 2 :特開 2000— 63973号公報  Patent Document 2: Japanese Patent Laid-Open No. 2000-63973
特許文献 3 :特開 2000— 102816号公報  Patent Document 3: Japanese Patent Laid-Open No. 2000-102816
特許文献 4:特開 2000— 63975号公報  Patent Document 4: Japanese Unexamined Patent Publication No. 2000-63975
特許文献 5:特許第 2535025号公報  Patent Document 5: Japanese Patent No. 2535025
特許文献 6:特開 2003— 321718号公報  Patent Document 6: Japanese Unexamined Patent Publication No. 2003-321718
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0012] し力しながら、特許文献 1、 2で提案されたハイス鋼力もなる貫通孔 101aの内周面 1 01bに TiCを 1 μ mコーティングした場合、母材のハイス鋼とコーティングされた TiC の熱膨張係数差が大きいことからコーティングの剥離が生じやすい。また、 TiCは 45 0°C以上の環境下で酸ィ匕現象が起こり易くなり、高硬度材の TiC力 著しく硬度劣化 となる TiOに置換反応が生じる熱劣化の問題があった。 [0012] However, when TiC is coated on the inner peripheral surface 101b of the through-hole 101a proposed in Patent Documents 1 and 2 with 1 μm, which is proposed in Patent Documents 1 and 2, TiC coated with the base material, high-speed steel Because of the large difference in thermal expansion coefficient, the coating is easily peeled off. In addition, TiC is prone to an acid-oxidation phenomenon in an environment of 450 ° C. or higher, and there is a problem of thermal deterioration in which a substitution reaction occurs in TiO, which causes a significant deterioration in the TiC force of high-hardness materials.
2  2
[0013] また、特許文献 3で提案されたセラミックス層を貫通孔 101aの内周面 101bに放電 加工処理により厚み 2〜 10 μ mの範囲でコーティングしたものにおいては、母材とコ 一ティングされたセラミック層の熱膨張係数差が大きいことからコーティングの剥離の 発生を回避出来るものではな力つた。  [0013] In addition, when the ceramic layer proposed in Patent Document 3 is coated on the inner peripheral surface 101b of the through-hole 101a in a thickness range of 2 to 10 μm by electric discharge machining, it is coated with the base material. In addition, since the difference in thermal expansion coefficient between the ceramic layers was large, it was difficult to avoid the occurrence of coating peeling.
[0014] また、特許文献 4で提案された SKD材の貫通孔 101aの内周面 101bに炭化物系 のサーメットを厚み 4〜15mmの範囲で厚くしたものにおいては、炭化物系サーメット の組成として、 Cr C、 NbC、 WC、 TiC  [0014] Further, in the case where the carbide cermet is thickened in the thickness range of 4 to 15 mm on the inner peripheral surface 101b of the through hole 101a of the SKD material proposed in Patent Document 4, the composition of the carbide cermet is Cr. C, NbC, WC, TiC
3 2 、 SiCの炭化物系セラミックスの一種または二 種以上力 選択される力 これらの何れの炭化物系セラミックを僅か 10〜30wt%含 有使用しても、例えばアルミニウム合金との高い摺動特性が得られない。そのためァ ルミ-ゥム合金の押出材 6の成形時に誘導部となる貫通孔 101aの内周面 101bにァ ルミ-ゥムが凝着し易くなり、破損するという問題や、または摩耗により成形された押 出材 6への傷の発生や寸法不良といった問題を回避出来るものではな力つた。 3 2, One or more types of SiC carbide ceramics Force selected Power of high sliding characteristics with an aluminum alloy, for example, can be obtained even if only 10 to 30 wt% of any of these carbide ceramics is used. I can't. Therefore The aluminum alloy extruded material 6 has a problem that the aluminum tends to adhere to the inner peripheral surface 101b of the through-hole 101a, which becomes the guiding portion during molding, and breaks or is pressed due to wear. It was not possible to avoid problems such as scratches on the output material 6 and defective dimensions.
[0015] また、特許文献 5で提案された熱間押出成形用ダイス 101本体をジルコユア系セラ ミックス或いは窒化珪素セラミックスで作製したものにおいては、アルミニウム合金の 熱間押出成形に耐えられる十分な高強度が得られないと言う理由力も貫通孔 101a の内周面 101bが破損または摩耗により成形された押出材 6への傷の発生や寸法不 良と!/、つた問題を回避出来るものではなかった。  [0015] Further, in the case where the hot extrusion die 101 main body proposed in Patent Document 5 is made of a zircoure ceramic or silicon nitride ceramic, sufficient strength to withstand hot extrusion of an aluminum alloy is obtained. The reason why it cannot be obtained was that the inner peripheral surface 101b of the through-hole 101a was damaged or had a bad dimension on the extruded material 6 formed by wear or was not able to avoid the problem!
[0016] また、特許文献 6では、アルミニウム溶湯铸造材に適した材質として、 TiCN—TiC 系サーメット焼結体の製造方法が開示されているものの、 TiCは 450°C以上の環境 下で酸ィ匕現象が起こり易くなり、高硬度材の TiC力 著しく硬度劣化となる TiOに置  [0016] Further, Patent Document 6 discloses a method of manufacturing a TiCN-TiC cermet sintered body as a material suitable for molten aluminum forging material. However, TiC is an acidic solution in an environment of 450 ° C or higher. The TiC force of high-hardness materials is prone to occur and the hardness is significantly deteriorated.
2 換反応が生じる熱劣化の理由から、アルミニウム合金等の熱間押出成形用のダイス 材としては相応し 、ものではなかった。  2 Due to the thermal deterioration that causes the conversion reaction, it was not suitable as a die material for hot extrusion molding such as aluminum alloy.
[0017] 本発明は、上記課題に鑑み、特に約 400〜600°Cの環境下において、高強度、高 硬度、高靭性、高摺動性を備えた焼結体、およびこれを用いた摺動部材、成膜用材 料並びに熱間押出成形用ダイスとその熱間押出成形用ダイスを用いた熱間押出成 形装置を提供することを目的とする。 [0017] In view of the above problems, the present invention is a sintered body having high strength, high hardness, high toughness, and high slidability, and a slide using the same, particularly in an environment of about 400 to 600 ° C. It is an object of the present invention to provide a moving member, a film forming material, a hot extrusion die, and a hot extrusion molding apparatus using the hot extrusion die.
課題を解決するための手段  Means for solving the problem
[0018] 本発明の焼結体は、 TiCN力 8〜92. 5質量%、 Tiが 0. 01〜1質量。 /0、 TiCが 0 . 01〜2質量%、 TiNが 0. 01〜2質量%、残部が TaC、 Ni、 Crからなる。そして Ta Cを 1〜: L 1質量0 /0、 Niを 3〜13質量0 /0、 Crを 3〜13質量%有するのがよい。 [0018] The sintered body of the present invention has a TiCN force of 8 to 92.5 mass% and Ti of 0.01 to 1 mass. / 0 , TiC is 0.01-2 mass%, TiN is 0.01-2 mass%, and the balance is TaC, Ni, Cr. And 1 to Ta C: L 1 Mass 0/0, Ni 3 to 13 mass 0/0, may have 3 to 13 mass% of Cr.
[0019] また、前記焼結体はその粒度分布に 2つのピークを有することが好ましぐ 1つのピ ークは 1. 0〜1. 3 mの粒度範囲、他のピークは 1. 4〜1. の粒度範囲にあり 、前記粒度分布における 1. 0〜1. 3 /z mの粒度範囲の結晶粒と 1. 4〜1. 7 μ ΐηの 粒度範囲の結晶粒とが 3 : 2〜1 : 1の重量比率であるのがよい。さらに、前記焼結体 の結晶粒は球状であるのがよい。  [0019] The sintered body preferably has two peaks in its particle size distribution. One peak has a particle size range of 1.0 to 1.3 m, and the other peak has a particle size of 1.4 to 1. In the above particle size distribution, crystal grains in the particle size range of 1.0 to 1.3 / zm and crystal particles in the particle size range of 1.4 to 1.7 μΐη are 3: 2 to 1 : The weight ratio should be 1. Furthermore, the crystal grains of the sintered body are preferably spherical.
[0020] 本発明の摺動部材および成膜用材料は、前記焼結体を用いて形成されており、例 えばスライダーやターゲット材などがある。 [0021] そして、本発明の熱間押出成形用ダイスは、前記焼結体を用いて形成されている。 そして、この熱間押出成形用ダイスは、板形状の中心付近に貫通孔を有し、少なくと も該貫通孔の内周面にアモルファス膜を形成されているのがよい。さらに、前記ァモ ルファス膜がアルミナもしくはシリコンカーバイドカゝらなり、該アモルファス膜が厚み 0. 2〜1. 2 mであるのがよい。 [0020] The sliding member and the film forming material of the present invention are formed using the sintered body, and examples thereof include a slider and a target material. [0021] The hot extrusion die of the present invention is formed using the sintered body. The hot extrusion molding die preferably has a through hole in the vicinity of the center of the plate shape, and at least an amorphous film is formed on the inner peripheral surface of the through hole. Further, it is preferable that the amorphous film is made of alumina or silicon carbide, and the amorphous film has a thickness of 0.2 to 1.2 m.
[0022] 本発明の熱間押出成形装置は、前記熱間押出成形用ダイスを筒状のダイケースの 一方端側に装着し、上記ダイケースの他方端側を筒状のコンテナの一方端側に装着 し、押出材をコンテナ力 押出すための押し出し機構を上記コンテナに配置したもの である。  [0022] In the hot extrusion molding apparatus of the present invention, the hot extrusion molding die is attached to one end side of a cylindrical die case, and the other end side of the die case is connected to one end side of the cylindrical container. And an extrusion mechanism for extruding the extruded material into the container is placed in the container.
[0023] 本発明の熱間押出成形用ダイスの製造方法は、平均粒径 0. 3〜0. 7 ^ πι( ΤίΟΝ 粉末と、平均粒径 1. 2〜2 111の1じ?^粉末とを7 : 3〜9 : 1の比率で混合し、さらに 平均粒径 1. 5 μ m以下の TaC粉末と、平均粒径 2 μ m以下の Ni粉末及び Cr粉末と を加えて、溶媒とともに粉砕混合してスラリーとする工程を有する。  [0023] The method for producing a hot extrusion die of the present invention comprises an average particle size of 0.3 to 0.7 ^ πι (ΤίΟΝ powder, an average particle size of 1.2 to 2 111 7: 3 to 9: 1, add TaC powder with an average particle size of 1.5 μm or less, Ni powder and Cr powder with an average particle size of 2 μm or less, and grind with solvent It has the process of mixing and making it a slurry.
発明の効果  The invention's effect
[0024] 本発明の焼結体は、 TiCN力 8〜92. 5質量%、 Tiが 0. 01〜1質量。 /0、 TiCが 0 . 01〜2質量%、 TiNが 0. 01〜2質量%からなるので、前記焼結体を用いて形成し た本発明の熱間押出成形用ダイスは、特に約 400〜600°Cの高温環境下において も、高強度、高靭性が保持できるとともに、押出材の摺動抵抗を低く抑制できるという 効果がある。 [0024] The sintered body of the present invention has a TiCN force of 8 to 92.5 mass% and Ti of 0.01 to 1 mass. / 0 , TiC is 0.01 to 2% by mass, and TiN is 0.01 to 2% by mass. Therefore, the hot extrusion die of the present invention formed using the sintered body is particularly about 400 Even in a high temperature environment of ˜600 ° C., it is possible to maintain high strength and high toughness and to suppress the sliding resistance of the extruded material to a low level.
[0025] また、前記熱間押出成形用ダイス 1は、板形状の中心付近に貫通孔を有し、少なく とも該貫通孔の内周面にアモルファス膜を形成したことから、熱間押出成形における 約 400〜600°C付近の予備加熱時に、前記アモルファス膜が貫通孔の内周面の酸 化を防止するので熱間押出成形前の熱間押出成形用ダイスの強度低下 (粒子間結 合力低下)を防止できる。  [0025] Further, the hot extrusion die 1 has a through hole in the vicinity of the center of the plate shape, and at least an amorphous film is formed on the inner peripheral surface of the through hole. When preheating at around 400 to 600 ° C, the amorphous film prevents oxidation of the inner peripheral surface of the through-holes, so the strength of the hot extrusion die before hot extrusion is reduced (the bond strength between particles is reduced). ) Can be prevented.
[0026] さらに、前記アモルファス膜をアルミナもしくはシリコンカーバイドとすることにより約 6 00°C程度までの耐酸ィ匕作用があることから、熱間押出成形前の予備加熱時の熱間 押出成形用ダイスの貫通孔の内周面の酸ィ匕防止効果をさらに向上できる。  [0026] Further, since the amorphous film is made of alumina or silicon carbide, it has an acid resistance action up to about 600 ° C, so that a hot extrusion die for preheating before hot extrusion molding is used. The effect of preventing oxidization of the inner peripheral surface of the through hole can be further improved.
[0027] そして、前記アモルファス膜の好ましい厚みは 0. 2- 1. 2 μ mであり、厚みが少なく とも 0. 2 m以上であれば、ムラなく熱間押出成形用ダイスの表面を保護でき、高温 下での表層からの酸ィ匕の問題を防止出来る。そして本来予備加熱時の酸化防止が 目的であるので 1. あれば十分である。 1. 2 mを大幅に超える程の厚膜にし てしまうと、殊に 2 mを超える様な厚膜では内部応力により膜の密着性が低下して しまい、セッティング時などの作業でアモルファス膜が剥がれる虞がある。そして、予 備加熱温度が約 500°C以下の場合はシリコンカーバイドのアモルファス膜、約 650°C 以下の場合はアルミナのアモルファス膜を形成することにより、貫通孔の内周面の酸 化を防止できる。 [0027] The preferred thickness of the amorphous film is 0.2-1.2 μm, and the thickness is small. If both are 0.2 m or more, the surface of the hot extrusion die can be protected without unevenness, and the problem of acidification from the surface layer at high temperatures can be prevented. And since it is originally intended to prevent oxidation during preheating, 1. is sufficient. 1. If the film thickness is significantly greater than 2 m, the adhesion of the film will decrease due to internal stress, especially for thick films exceeding 2 m. There is a risk of peeling. When the preheating temperature is about 500 ° C or less, an amorphous film of silicon carbide is formed, and when the preheating temperature is about 650 ° C or less, an alumina amorphous film is formed to prevent oxidation of the inner peripheral surface of the through hole. it can.
[0028] そして、前記熱間押出成形用ダイスを筒状のダイケースの一方端側に装着し、上 記ダイケースの他方端側を筒状のコンテナの一方端側に装着し、押出材をコンテナ 力 押出すための押し出し機構を上記コンテナに配置して熱間押出成形装置として 用いれば、前記熱間押出成形用ダイスは、高温時における強度、硬度、靭性が優れ ていることから、熱間押出成形用ダイスの摩耗や破損を防止できるとともに、押出材 への傷や寸法の問題が抑えられ、熱間押出成形の連続成形時間の大幅な向上が図 れる。  [0028] Then, the hot extrusion molding die is attached to one end side of a cylindrical die case, the other end side of the die case is attached to one end side of the cylindrical container, and the extruded material is If an extrusion mechanism for container force extrusion is arranged in the container and used as a hot extrusion molding device, the hot extrusion die has excellent strength, hardness and toughness at high temperatures. It is possible to prevent wear and breakage of the extrusion die, and to suppress scratches and dimensional problems on the extruded material, and to greatly improve the continuous molding time of hot extrusion molding.
[0029] また、本発明の熱間押出成形用ダイスの製造方法は、 TiCN系サーメット材となる 原料粉体を、平均粒径 0. 3〜0. 7 mの TiCN粉末と、平均粒径 1. 2—2 μ m( Ti CN粉末とを 7 : 3〜9 : 1の比率で混合し、さらに平均粒径 1. 以下の TaC粉末と 、平均粒径 2 m以下の Ni粉末及び Cr粉末とを加えてなる。そして、該原料粉体を 溶媒とともに粉砕混合してスラリーとする工程としたことから、前記粗粒 TiCN結晶粒 子の周囲を前記微細 TiCN結晶粒子で埋め尽くされることによって共有結合焼結ま たは固相結合が促進されるために、 TiCN結晶粒子が Ti, TiC, TiNへ分解すること を低く抑えて焼結させることができる。このようにして得られた焼結体を用いて本発明 の熱間押出成形用ダイスを作製すると Ti, TiC, TiNの介在が低く抑えられているこ とから、高温時における耐酸ィ匕性の抑制効果があり、その結果、高摺動性が確保で きるのである。  [0029] Further, in the method for producing a hot extrusion die according to the present invention, a raw material powder to be a TiCN cermet material is obtained by using a TiCN powder having an average particle size of 0.3 to 0.7 m and an average particle size of 1 2—2 μm (mixed with Ti CN powder in a ratio of 7: 3 to 9: 1, and further with a TaC powder with an average particle size of 1. Since the raw powder is pulverized and mixed with a solvent to form a slurry, the coarse TiCN crystal particles are filled with the fine TiCN crystal particles so that they are covalently bonded. Sintering or solid-phase bonding is promoted, so that the TiCN crystal particles can be sintered with low decomposition of Ti, TiC and TiN. When the die for hot extrusion molding of the present invention is used, the inclusion of Ti, TiC and TiN is kept low. It has the effect of suppressing acid resistance, and as a result, high slidability can be secured.
図面の簡単な説明  Brief Description of Drawings
[0030] [図 1]本発明の熱間押出成形用ダイスが組み込まれた熱間押出成形装置の一例を 示す断面図である。 [0030] FIG. 1 shows an example of a hot extrusion molding apparatus incorporating the hot extrusion die of the present invention. It is sectional drawing shown.
[図 2]本発明の試験片の斜視図である。  FIG. 2 is a perspective view of a test piece of the present invention.
[図 3]3点曲げ抗折強度の測定方法を示す断面図である。  FIG. 3 is a cross-sectional view showing a method for measuring a three-point bending strength.
[図 4] (a)は本発明の熱間押出成形用ダイスの平面図、(b)はその断面図である。  FIG. 4 (a) is a plan view of a hot extrusion die of the present invention, and (b) is a cross-sectional view thereof.
[図 5]従来の熱間押出成形用ダイスの断面図である。  FIG. 5 is a cross-sectional view of a conventional hot extrusion die.
[図 6]本発明の熱間押出成形用ダイスとなる TiCN系サーメット材の TG— DTA示差 熱分析チャートである。  FIG. 6 is a TG-DTA differential thermal analysis chart of a TiCN cermet material used as a hot extrusion die of the present invention.
[図 7]アルミナアモルファス膜の TG— DTA示差熱分析チャートである。  FIG. 7 is a TG-DTA differential thermal analysis chart of an alumina amorphous film.
[図 8]シリコンカーバイドアモルファス膜の TG— DTA示差熱分析チャートである。  FIG. 8 is a TG-DTA differential thermal analysis chart of a silicon carbide amorphous film.
[図 9]従来の熱間押出成形装置の断面図である。  FIG. 9 is a cross-sectional view of a conventional hot extrusion molding apparatus.
[図 10]本発明の熱間押出成形用ダイスの Ti、 TiC、 TiNの組成を示すダイアグラムで ある。  FIG. 10 is a diagram showing the composition of Ti, TiC, and TiN of the hot extrusion die of the present invention.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0031] 以下、本発明の実施形態について図面を用いて説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
本発明の焼結体は、 TiCN58〜92. 5質量%、 TiO. 01〜1質量%、 TiCO. 01〜 2質量%、 TiNO. 01〜2質量%、残部が TaC、 Ni、 Crからなることが重要である。さ らに TaCl〜: L 1質量%を有することが望ましい。さらに Ni3〜13質量%、 Cr3〜13 質量%を有することが望ましい。なお残部は Feなどの不可避不純物になる。  The sintered body of the present invention is composed of TiCN 58-92.5% by mass, TiO. 01-1% by mass, TiCO. 01-2% by mass, TiNO. 01-2% by mass, the balance being TaC, Ni, Cr. is important. Further, it is desirable to have TaCl˜: L 1% by mass. Further, it is desirable to have 3 to 13% by mass of Ni and 3 to 13% by mass of Cr. The balance becomes inevitable impurities such as Fe.
[0032] 前記焼結体は、粒度分布において 2つのピークを有することが好ましぐまた該ピー タカそれぞれ 1. 0〜1. 3 111と1. 4〜1. 7 /z mの粒度範囲内であること力 子まし!/、。 一方のピークが 1. 0 m未満だと微細粒子のみの凝集が起こりやすぐ微細粒子 の凝集は異常粒子成長の核となって来るために、脱粒ゃ靭性および強度かが劣化 するという不具合があり、 1. 3 mより大きいと共有結合焼結または固相結合が不十 分であるために TiCN結晶粒子が Ti, TiC, TiNへ分解するという不具合がある。 また他方のピークが 1. 4 m未満だと粒径が大きくなりすぎて摺動性が確保できな いという不具合があり、 1. 7 mより大きいと共有結合焼結または固相結合が不十分 であるために TiCN結晶粒子が Ti, TiC, TiNへ分解するという不具合がある。  [0032] It is preferable that the sintered body has two peaks in the particle size distribution, and the peaker is within a particle size range of 1.0 to 1.3 111 and 1.4 to 1.7 / zm, respectively. There is power. On the other hand, if the peak is less than 1.0 m, agglomeration of only fine particles occurs immediately and the aggregation of fine particles immediately becomes the core of abnormal particle growth, so there is a problem that the toughness and strength deteriorate. If it is larger than 1.3 m, there is a problem that TiCN crystal particles decompose into Ti, TiC and TiN due to insufficient covalent sintering or solid phase bonding. On the other hand, if the other peak is less than 1.4 m, there is a problem that the particle size becomes too large to ensure slidability, and if it exceeds 1.7 m, covalent bonding sintering or solid phase bonding is insufficient. Therefore, there is a problem that TiCN crystal particles decompose into Ti, TiC, TiN.
[0033] また、 1. 0〜1. 3 mの範囲でのピークと 1. 4〜1. 7 mでのピークの比が 3 : 2〜 1 : 1の重量比率であることが好ましい。 1. 0〜1. 3 mでのピークが 60%以上である と微細粒子同士の凝集が起こりやすくなり、異常粒子成長の核となって脱粒や強度 劣化するために摺動性が確保できないという不具合があり、 50%未満であると共有 結合焼結または固相結合が不十分であるために TiCN結晶粒子が Ti, TiC, TiNへ 分解するという不具合がある。 [0033] The ratio of the peak in the range of 1.0 to 1.3 m and the peak in the range of 1.4 to 1.7 m is 3: 2 to A weight ratio of 1: 1 is preferred. 1. When the peak at 0 to 1.3 m is 60% or more, aggregation of fine particles tends to occur, and slidability cannot be ensured because it becomes the core of abnormal particle growth and degranulation and strength deterioration. There is a defect, and if it is less than 50%, there is a defect that TiCN crystal particles decompose into Ti, TiC and TiN due to insufficient covalent bonding sintering or solid phase bonding.
なお、前記焼結体の粒度分布における 2つのピークは、所定の粒度をもった微細粉 末と粗粒粉末を所定の配合比で混合した TiCN原料粉体を用いることにより所望の 粒度範囲のものを得ることができる。  The two peaks in the particle size distribution of the sintered body are those in the desired particle size range by using TiCN raw material powder in which a fine powder having a predetermined particle size and a coarse powder are mixed at a predetermined mixing ratio. Can be obtained.
[0034] また、前記焼結体の結晶粒は球状であることが好ま 、。前記結晶粒が球状である と、焼結体を使ったダイス表面での原料押出時の滑りが安定する。  [0034] The crystal grains of the sintered body are preferably spherical. When the crystal grains are spherical, the slippage at the time of raw material extrusion on the die surface using the sintered body is stabilized.
[0035] 本発明の焼結体は、摺動部材ゃ成膜用材料に用いることができる。前記焼結体を 用いて形成された摺動部材を熱間押出成形用ダイスや熱間絞りダイスに用いた場合 、高摺動性を得ることができる。また、前記焼結体を用いて形成された成膜用材料を 熱間押出成形用ダイスや熱間絞りダイスの摺動部に形成した場合、高摺動性を得る ことができる。  [0035] The sintered body of the present invention can be used as a film forming material, such as a sliding member. When the sliding member formed using the sintered body is used for a hot extrusion die or a hot drawing die, high slidability can be obtained. Further, when the film forming material formed using the sintered body is formed on the sliding portion of a hot extrusion die or a hot drawing die, high slidability can be obtained.
[0036] 図 1に、本発明の熱間押出成形用ダイス 1が筒状のダイケース 2に嵌入された熱間 押出成形装置 11の概略の縦断面図を示した。例えば、アルミニウム合金の押出材 6 の成形は、アルミニウム合金等の柱状铸塊を加熱したビレット 5を筒状のコンテナ 3の 中に入れ、押出機構 4で押し出すことにより口金金型である熱間押出成形用ダイス 1 から所望の押出材 6が成形される。  FIG. 1 is a schematic longitudinal sectional view of a hot extrusion molding apparatus 11 in which a hot extrusion molding die 1 of the present invention is fitted in a cylindrical die case 2. For example, the extrusion 6 of aluminum alloy is formed by hot extrusion, which is a die, by placing a billet 5 in which a columnar lump such as an aluminum alloy is heated in a cylindrical container 3 and extruding it by an extrusion mechanism 4. A desired extruded material 6 is formed from the forming die 1.
本発明の熱間押出成形用ダイス 1は、前記焼結体を用いて形成されている。前記 熱間押出成形用ダイス 1を形成する焼結体の成分含有量を、 TiCN58〜92. 5質量 %、 TaCl〜: L 1質量0 /0、 Ni3〜13質量0 /0、 Cr3〜13質量0 /0としたのは、 TiCNが 58 質量%未満の場合は、高い滑り性 (高摺動性)を得ることができず、 TiCNが 92. 5質 量%を超えると焼結性が著しく低下し、高硬度、高強度が得られないからである。 The hot extrusion die 1 of the present invention is formed using the sintered body. The component content of the sintered body forming the hot extrusion die 1, TiCN58~92 5 wt%, TaCl~:. L 1 mass 0/0, Ni3~13 mass 0/0, Cr3~13 mass 0/0 was the, if TiCN is less than 58 wt%, it is impossible to obtain a high slip properties (high sliding property), and sinterability is remarkably TiCN exceeds 5 mass% 92. This is because the hardness decreases and high hardness and high strength cannot be obtained.
[0037] また、 TaCが 1質量%未満の場合は、高温下での耐酸ィ匕性及び焼結性が低下し、 11質量%を超えると摺動特性が低下してしまう。また、 Niと Crがそれぞれに於いて 3 質量%未満の場合は、焼結性の低下及び緻密化が確保できなくなり、 Niと Crがそれ ぞれに於いて 13質量%を超えると高硬度の確保ができず耐磨耗性が低下する。 [0037] Further, when TaC is less than 1% by mass, the acid resistance and sinterability at high temperatures are deteriorated, and when it exceeds 11% by mass, the sliding characteristics are deteriorated. Also, if Ni and Cr are less than 3% by mass in each case, the sinterability cannot be lowered and densification cannot be ensured. In each case, if it exceeds 13% by mass, high hardness cannot be ensured and wear resistance is reduced.
[0038] そして、 TiO. 01〜1質量0 /0、 TiCO. 01〜2質量0 /0、 TiNO. 01〜2質量%としたの は、前記 Tiが 1質量%、 TiCが 2質量%、 TiNが 2質量%を超えると TiC、 TiN及び Ti 金属が所望量以上で介在することとなり耐酸ィ匕性が低下するからである。その結果、 高摺動性が著しく低下することになり、本焼結体を熱間押出成形用ダイス 1として用 いた場合、約 400〜600°Cの高温環境下での熱劣化と摺動性が阻害されると言った 問題が生ずる。 [0038] Then, TiO. 01-1 mass 0/0, TiCO. 01-2 mass 0/0, TiNO. Was a 01-2 mass%, the Ti is 1 wt%, TiC is 2 mass%, This is because when TiN exceeds 2% by mass, TiC, TiN and Ti metal are present in more than desired amounts, and the acid resistance is reduced. As a result, the high slidability is significantly reduced. When this sintered body is used as a hot extrusion die 1, thermal degradation and slidability in a high temperature environment of about 400 to 600 ° C are achieved. A problem arises that is disturbed.
[0039] また、 Ti、 TiC、 TiNが 0. 01質量%未満であれば、局所的な結晶増大化が進み、 結晶粒子状態が不均一となり強度が劣化する虞があることから、 Ti、 TiC、 TiNのい ずれの含有量も 0. 01質量%以上であることが重要である。  [0039] If Ti, TiC, and TiN are less than 0.01% by mass, local crystal growth proceeds, and the crystal grain state becomes non-uniform and the strength may deteriorate. It is important that the content of both TiN is 0.01% by mass or more.
[0040] 上記した TiCN、 Ti、 TiCおよび TiNによれば、所定の微細粉末と粗粉末を所定の 配合比で混合した所定量の TiCN原料粉体を用いて焼結させることにより、 TiCNと、 TiCNの分解により生成される Ti、 TiCおよび TiNがそれぞれ所望の割合となるもの を得ることができる。  [0040] According to TiCN, Ti, TiC and TiN described above, by sintering using a predetermined amount of TiCN raw material powder in which a predetermined fine powder and a coarse powder are mixed at a predetermined mixing ratio, Ti, TiC and TiN produced by the decomposition of TiCN can be obtained at the desired ratio.
[0041] なお、通常押出材 6の成形を一旦中断した際は、熱間押出成形用ダイス 1の誘導 部となる貫通孔 laの内周面 lbを NaOHなどを用いてアルカリ洗浄をし、アルミニウム 合金等の付着物を除去し再度使用する場合、従来ダイス素材として使用されていた 超硬や SKD61ではこれらの洗浄液により表面層が腐食されてしまい表面硬度が著 しく低下することがある。しかしながら、本発明の熱間押出成形用ダイス 1の TiCN— TaC— Ni— Crを主成分とする焼結体は NaOHなどのアルカリ洗浄では腐食されるこ とはなぐ摩耗で使えなくなるまで何度でも繰り返し使用することができる。  [0041] Normally, once the molding of the extruded material 6 is interrupted, the inner peripheral surface lb of the through-hole la serving as the induction part of the hot extrusion molding die 1 is alkali-washed with NaOH or the like to obtain aluminum. When removing deposits such as alloys and reusing them, carbide or SKD61, which has been used as a conventional die material, may corrode the surface layer by these cleaning solutions, resulting in a significant reduction in surface hardness. However, the sintered body of TiCN-TaC-Ni-Cr as the main component of the hot extrusion die 1 of the present invention can be used any number of times until it can no longer be used due to wear that is not corroded by alkaline cleaning such as NaOH. Can be used repeatedly.
[0042] また、前記貫通孔 laの内周面 lbの好ましい表面粗さ Raは 0. 05 μ m以下であり、 前記 Raが 0. 05 mを超えると押出材 6の表面の平滑性が得られなくなる。  [0042] Further, the preferable surface roughness Ra of the inner peripheral surface lb of the through-hole la is 0.05 μm or less, and when Ra exceeds 0.05 m, the smoothness of the surface of the extruded material 6 is obtained. It becomes impossible.
[0043] また、前記貫通孔 laは、板形状の熱間押出成形用ダイス 1の中心付近に形成され ていて、少なくとも前記貫通孔 laの内周面 lbにアモルファス膜 lcを形成することが 好ましい。アルミニウム合金等の熱間押出成形においては、ビレット 5の均一加熱と内 部に介在する空気脱泡の目的から、約 400〜600°Cの温度で熱間押出成形装置 11 の内面の予備加熱を約 1時間(hr)程度行う。そのため、この予備加熱時の貫通孔 la の内周面 lbの酸ィ匕を防止する目的でアモルファス膜 lcを形成する。 [0043] The through-hole la is preferably formed near the center of the plate-shaped hot extrusion die 1 and an amorphous film lc is preferably formed at least on the inner peripheral surface lb of the through-hole la. . In hot extrusion of aluminum alloys, etc., preheating the inner surface of the hot extrusion molding device 11 at a temperature of about 400 to 600 ° C for the purpose of uniform heating of the billet 5 and air defoaming interposed inside. Perform for about 1 hour (hr). Therefore, the through-hole la during this preheating An amorphous film lc is formed for the purpose of preventing acidity of the inner peripheral surface lb.
[0044] 即ち、本発明の TiCN系サーメットは、従来の超硬、 SKD61、さらには、炭化物系 サーメットに比べ高温において酸ィ匕し難い材質であるものの、ある程度の酸ィ匕は抑止 できない。したがって酸ィ匕による粒子間結合力が低下することを防止するために、前 記貫通孔 laの内周面 lbにアモルファス膜 lcを形成するのが望ましい。  [0044] That is, the TiCN cermet of the present invention is a material that is difficult to oxidize at a high temperature as compared with conventional carbide, SKD61, and carbide cermet, but a certain amount of oxidization cannot be suppressed. Therefore, it is desirable to form the amorphous film lc on the inner peripheral surface lb of the through hole la in order to prevent the bonding force between particles due to the acid salt from decreasing.
[0045] さらに、前記アモルファス膜 lcはアルミナ若しくは、シリコンカーバイドで形成するこ とが好まし ヽ。アルミナやシリコンカーバイドの熱酸化反応は約 600°C超から始まるこ とから、熱間押出成形時の予備加熱温度が約 600°C以下であれば予備加熱時にお ける前記内周面 lbの酸ィ匕による強度低下の防止ができる。より具体的には、押出材 6の成形前の予備加熱温度が約 550°C以下の場合はシリコンカーバイドのァモルフ ァス膜 lc、約 600°C以下の場合はアルミナのアモルファス膜 lcを形成することにより 貫通孔 laの内周面 lbの酸ィ匕を防止できるものであり、予備加熱温度によりァモルフ ァス膜 lcの材質を適宜選択すれば良!、。  [0045] Further, the amorphous film lc is preferably formed of alumina or silicon carbide. Since the thermal oxidation reaction of alumina and silicon carbide starts at over about 600 ° C, if the preheating temperature at the time of hot extrusion is about 600 ° C or less, the acid on the inner peripheral surface lb at the time of preheating is used. It is possible to prevent a decrease in strength due to the 匕. More specifically, when the preheating temperature before forming the extruded material 6 is about 550 ° C or lower, a silicon carbide amorphous film lc is formed, and when it is about 600 ° C or lower, an alumina amorphous film lc is formed. Therefore, it is possible to prevent acidification of the inner peripheral surface lb of the through-hole la, and the material of the amorphous film lc can be appropriately selected depending on the preheating temperature.
[0046] 尚、前記アモルファス膜 lcは、必ずしもアルミナまたはシリコンカーバイドに限るの ではなぐ熱交換機用のアルミ冷媒管用の熱間押出成形用であればシリコンナイトラ イド、チタンナイトライド、チタ-ァを用いても何ら問題はない。  [0046] The amorphous film lc is not necessarily limited to alumina or silicon carbide, but may be silicon nitride, titanium nitride, and titanium for hot extrusion molding for aluminum refrigerant tubes for heat exchangers. There is no problem even if it is used.
[0047] さらに、前記アモルファス膜 lcの厚み tは 0. 2~ 1. 2 μ mであることが望ましぐァモ ルファス膜 lcの厚み tが少なくとも 0. 2 m以上であれば、ムラなく貫通孔 laの内周 面 lbを保護でき、高温下での表層からの酸化の問題を防止出来る。一方で、前記ァ モルファス膜 lcの厚み tが 1. 2 μ mを超える程の厚膜にしてしまうと、特には 2 μ mを 超える様な厚膜では膜の密着性が低下してしま 、、セッティング時などの作業でァモ ルファス膜 lcが剥がれてしまうことがある。尚、より好ましいアモルファス膜 lcの厚み t は、 0. 5〜1. O /z mである。  [0047] Further, it is desirable that the thickness t of the amorphous film lc is 0.2 to 1.2 μm. If the thickness t of the amorphous film lc is at least 0.2 m or more, there is no unevenness. The inner surface lb of the through-hole la can be protected, and the problem of oxidation from the surface layer at high temperatures can be prevented. On the other hand, if the thickness t of the amorphous film lc exceeds 1.2 μm, the adhesion of the film decreases particularly when the film thickness exceeds 2 μm. , Amorphous membrane lc may be peeled off during setting work. A more preferable thickness t of the amorphous film lc is 0.5 to 1. O / zm.
[0048] そして、前記アモルファス膜 lcは、熱間押出成形用ダイス 1の貫通孔 laの内周面 1 bのみならず、側面 Idに形成すると周囲からの酸ィ匕による劣化を抑止できる。  [0048] When the amorphous film lc is formed not only on the inner peripheral surface 1b of the through-hole la of the hot extrusion molding die 1, but also on the side surface Id, deterioration due to acid and soot from the surroundings can be suppressed.
[0049] また、押出材 6の熱間押出成形を開始するとアモルファス膜 lcはビレット 5との摺動 抵抗で直ぐに剥離消滅してしまうが、押出材 6が酸素と熱を吸収することにより誘導部 の接触温度が低下し、酸ィ匕が問題となるようなレベルに達しな 、。 [0050] しかし、前述したように押出材 6の成形をー且中断し、再度成形を開始する場合、 貫通孔 laの内周面 lbを NaOHなどのアルカリ洗浄をし、アルミニウム合金の付着物 を除去し再度使用することもある。その際は再度予備加熱時の酸化を防止するため に、剥離したアモルファス膜 lcを再度付与すれば、何ら問題なく繰り返し使用するこ とが可能である。 [0049] In addition, when hot extrusion molding of the extruded material 6 is started, the amorphous film lc immediately peels and disappears due to the sliding resistance with the billet 5, but when the extruded material 6 absorbs oxygen and heat, the induction part 6 The contact temperature will drop and will not reach a level where acid will become a problem. [0050] However, as described above, when the molding of the extruded material 6 is interrupted and the molding is started again, the inner peripheral surface lb of the through-hole la is washed with an alkali such as NaOH to remove the adhered aluminum alloy. It may be removed and used again. In that case, in order to prevent oxidation at the time of preheating again, if the peeled amorphous film lc is reapplied, it can be used repeatedly without any problem.
[0051] つぎに、図 1に示すように、本発明の熱間押出成形装置 11は本発明の熱間押出成 形用ダイス 1を筒状のダイケース 2の一方端側に装着し、上記ダイケース 2の他方端 側を筒状のコンテナ 3の一方端側に装着し、押出材 6をコンテナ 3から押出すための 押し出し機構 4を上記コンテナ 3に配置してなる。該熱間押出成形装置 11を約 400 〜600°Cの高温下の熱間押出成形に用いると、もっともダメージの力かる熱間押出 成形用ダイス 1が高温時における強度、硬度、靭性に優れていることからその摩耗や 破損の虞が少なぐしたがって押出材 6への傷や寸法の問題の発生を抑えられ、連 続成形時間の大幅な向上が図れる。  Next, as shown in FIG. 1, the hot extrusion molding apparatus 11 of the present invention attaches the hot extrusion molding die 1 of the present invention to one end side of a cylindrical die case 2, and The other end side of the die case 2 is attached to one end side of the cylindrical container 3, and an extrusion mechanism 4 for extruding the extruded material 6 from the container 3 is arranged in the container 3. When the hot extrusion molding apparatus 11 is used for hot extrusion molding at a high temperature of about 400 to 600 ° C., the most damaging hot extrusion die 1 has excellent strength, hardness and toughness at high temperatures. Therefore, there is little risk of wear or breakage, so that the occurrence of scratches and dimensional problems on the extruded material 6 can be suppressed, and the continuous molding time can be greatly improved.
[0052] 次に、本発明の熱間押出成形用ダイス 1の製造方法について説明する。 [0052] Next, a method for producing the hot extrusion die 1 of the present invention will be described.
[0053] 本発明の熱間押出成形用ダイス 1の製造方法は、原料粉体として平均粒径 0. 3〜 0. 7 111の微細1じ?^粉末と、平均粒径1. 2〜2 111の粗粒1じ?^粉末とを7 : 3〜9 : 1の比率で所定量を混合し、さらに平均粒径 1. 5 111以下の1^粉末と、平均粒径 2 m以下の Ni粉末及び Cr粉末とを所定量加えて、溶媒とともに粉砕混合してスラリ 一とする工程を有してなるものである。 [0053] The method for producing the hot extrusion die 1 according to the present invention comprises a fine powder having an average particle size of 0.3 to 0.7 111 and an average particle size of 1.2 to 2 as a raw material powder. 1 coarse powder of 111? ^ Powder is mixed in a predetermined amount at a ratio of 7: 3 to 9: 1, and 1 ^ powder with an average particle size of 1.5 or less and Ni with an average particle size of 2 m or less A predetermined amount of powder and Cr powder are added and pulverized and mixed with a solvent to form a slurry.
[0054] ここで、 TiCN原料粉体の平均粒径 0. 3〜0. 7 μ mの微細 TiCN粉末と平均粒径 1 . 2〜2 μ mの粗粒 TiCN粉末とを 7: 3〜9: 1の比率で所定量を混合する理由は、焼 結段階において、粗粒 TiCN結晶粒子の周囲が微細 TiCN結晶粒子で埋め尽くされ ることによって、共有結合焼結または固相結合が促進され、 TiCN結晶粒子が Ti, Ti C, TiNへ分解することを抑制して焼結させることができるからである。 [0054] Here, the fine TiCN powder having an average particle size of 0.3 to 0.7 μm and the coarse TiCN powder having an average particle size of 1.2 to 2 μm are mixed with 7: 3 to 9 : The reason why the predetermined amount is mixed at a ratio of 1 is that the coarse TiCN crystal particles are filled with fine TiCN crystal particles in the sintering stage, thereby promoting covalent bonding sintering or solid phase bonding. This is because TiCN crystal particles can be sintered without being decomposed into Ti, Ti C, or TiN.
[0055] そして、得られたスラリーを公知のスプレードライヤーにて乾燥し造粒する。 [0055] Then, the obtained slurry is dried and granulated by a known spray dryer.
[0056] つぎに、前記の方法で作製した粉体を公知のラバープレスにて、板状の成形体を 成形し、公知の切削加工にて所望の形状を得る。尚、板状の成形体の中心付近に 予め貫通孔を形成しておくと、成形体の焼成後にワイヤー放電加工により所望の貫 通孔に加工することができる。 [0056] Next, the powder produced by the above method is formed into a plate-like molded body by a known rubber press, and a desired shape is obtained by a known cutting process. If a through hole is formed in the vicinity of the center of the plate-shaped molded body in advance, the desired penetration can be achieved by wire electric discharge machining after the molded body is fired. Can be processed into through holes.
[0057] つぎに、前記成形体を公知の真空炉にて 1. 33Pa以下に減圧した雰囲気下にて 最高キープ温度 1350〜1500°Cにて 1時間(hr)焼成する。焼成温度が 1350°C以 下では十分に緻密化せず、 1500°Cを超えると金属成分が昇華し、また TiCN組成が 分解し始めることから、好ましい焼成温度は 1350〜1500°Cである。  Next, the molded body is fired in a known vacuum furnace in an atmosphere reduced to 1.33 Pa or less at a maximum keep temperature of 1350 to 1500 ° C. for 1 hour (hr). When the calcination temperature is 1350 ° C or less, it is not sufficiently densified, and when it exceeds 1500 ° C, the metal component sublimes and the TiCN composition starts to decompose, so the preferred calcination temperature is 1350-1500 ° C.
[0058] つぎに、得られた焼結体をワイヤー放電加工及び研削加工にて所望の形状にした 後、押出材 6の貫通孔 laの内周面 lbを表面粗さ Raが 0. 05 m以下となるように流 体砲粒にて磨き仕上げる。  [0058] Next, the obtained sintered body is formed into a desired shape by wire electric discharge machining and grinding, and then the inner peripheral surface lb of the through hole la of the extruded material 6 has a surface roughness Ra of 0.05 m. Polish with fluid barrels so that:
[0059] 以上の工程で本発明の熱間押出成形用ダイス 1が作製される力 貫通孔 laの内周 面 lbにアモルファス膜 lcを形成する場合は、スパッタ法にて、アルミナまたはシリコン カーバイドを厚み tが 0. 2〜1. 2 mの範囲で成膜するのが望ましい。尚、ァモルフ ァス膜 lcは、貫通孔 laの内周面 lbのみならず、側面 Idに形成しても何ら問題はなく 、その場合、両側面 Idから施しても良い。  [0059] The force for producing the hot-extrusion die 1 of the present invention through the above steps When forming an amorphous film lc on the inner peripheral surface lb of the through-hole la, alumina or silicon carbide is formed by sputtering. It is desirable to form a film with a thickness t in the range of 0.2 to 1.2 m. The amorphous film lc may be formed not only on the inner peripheral surface lb of the through-hole la but also on the side surface Id. In this case, the amorphous film lc may be applied on both side surfaces Id.
[0060] 以上のように、本発明の熱間押出成形用ダイス 1およびこれを用いた本発明の熱間 押出成形装置 11は、高温下において高い強度と耐摩耗性を備えたことから、産業用 や家庭用のアルミニウム合金押出材の熱間押出成形用として適するが、殊に、車載 用のラジエーター、インタークーラー、エアコンコンデンサーなどの冷媒管ゃフィンの 成形用に好適に用 、ることができる。  [0060] As described above, the hot extrusion die 1 of the present invention and the hot extrusion molding device 11 of the present invention using the die 1 have high strength and wear resistance at high temperatures. It is suitable for hot extrusion molding of aluminum alloy extruded materials for home use and household use, but it can be suitably used particularly for molding refrigerant pipes such as in-vehicle radiators, intercoolers, and air conditioner condensers.
[0061] また、その用途は、前記アルミニウム合金熱間押出成形用に限らず、銅合金やチタ ン合金熱間押出成形用としても好適である。 [0061] Further, the use is not limited to the above-described hot extrusion molding of an aluminum alloy, but is also suitable for hot extrusion molding of a copper alloy or a titanium alloy.
[0062] 以下本発明の実施例を具体的に説明するが、本発明はこれらの実施例により限定 されるものではない。 Examples of the present invention will be specifically described below, but the present invention is not limited to these examples.
[0063] [実施例 1] [0063] [Example 1]
本発明の熱間押出成形用ダイス 1の母材である TiCN系サーメットからなる焼結体 を、各々の粉体を 6水準の含有量に分けて作製した。 TiCN粉末は、平均粒径で 0. 5 μ mの微細 TiCN粉末と平均粒径で 1. 7 μ mの粗粒 TiCN粉末を 8: 2の比率で所 定量を混合し、残りを所定量の平均粒径で 1. 2 111の丁&じ粉末と、 1. 6 111の^粉 末及び 1. 4 mの Cr粉末を SUS製のボールミルに入れ、 SUS製の 2Φ 5サイズの 粉砕用ボールを総粉体相当分と同容量、 2倍相当容量のエタノール及びパラフィン 系ワックスを総粉体質量比で 3%加算して 48時間 (hr)粉砕混合しスラリーを作製し た。 A sintered body made of TiCN cermet, which is the base material of the hot extrusion die 1 of the present invention, was prepared by dividing each powder into 6 levels. TiCN powder is a fine TiCN powder with an average particle size of 0.5 μm and a coarse TiCN powder with an average particle size of 1.7 μm mixed at a ratio of 8: 2, and the remaining amount of Put the average particle size of 1.2 111 clove powder and 1. 6 111 ^ powder and 1.4 m Cr powder into a SUS ball mill. A slurry was prepared by adding 3% of ethanol and paraffin wax in the same volume as the total powder, and paraffin wax in a total powder mass ratio of 48% (hr) for 48 hours (hr).
[0064] ここで、上記 TiCN、 TaC、 Ni、 Crの合計含有量を 100質量%としたときの各含有 量を、 TiCN = 63質量%、丁&じ= 11質量%、?^= 13質量%、 0:= 13質量%とした ものが試料 No. 1、 TiCN = 79質量0 /0、 TaC = 6質量0 /0、 Ni= 7質量0 /0、 Cr=8質 量0 /0としたものが試料 No. 2、 TiCN = 93質量0 /0、 TaC= l質量0 /0、 Ni = 3質量0 /0、 Cr= 3質量%としたものを試料 No. 3とした。 [0064] Here, when the total content of TiCN, TaC, Ni, and Cr is 100% by mass, the respective content is TiCN = 63% by mass, Ding & Ji = 11% by mass,? ^ = 13 wt%, 0 = 13 that the mass% Sample No. 1, TiCN = 79 mass 0/0, TaC = 6 mass 0/0, Ni = 7 mass 0/0, Cr = 8 Weight 0/0 and those that the sample No. 2, TiCN = 93 mass 0/0, TaC = l weight 0/0, Ni = 3 mass 0/0, Cr = 3 wt% as sample No. 3 of those did.
[0065] また、本発明の範囲外の比較例として、 TiCN原料粉体の平均粒径ならびに微細 T iCN粉末と粗粒 TiCN粉末の比率を本発明実施例と同等で 8: 2とし、上記各成分含 有量は、 TiCN = 60質量%、 TaC= 12質量%、 Ni= 14質量%、 Cr= 14質量%と したものを試料 No. 4、 TiCN = 63質量0 /0、 TaC= l質量0 /0、 Ni= 18質量0 /0、 Cr= 18質量0 /0としたものを試料 No. 5、 TiCN= 96質量0 /0、 TaC = 0質量0 /0、 Ni= 2質 量。 /0、 Cr= 2質量%としたものを試料 No. 6とした。 [0065] As a comparative example outside the scope of the present invention, the average particle size of the TiCN raw material powder and the ratio of the fine TiCN powder to the coarse TiCN powder were set to 8: 2 in the same manner as in the present invention example. component containing Yuryou is, TiCN = 60 wt%, TaC = 12 wt%, Ni = 14 wt%, Cr = 14 wt% and sample No. 4 things, TiCN = 63 mass 0/0, TaC = l weight 0/0, Ni = 18 mass 0/0, Cr = 18 wt 0/0, and sample No. 5 what was, TiCN = 96 mass 0/0, TaC = 0 mass 0/0, Ni = 2 mass. Sample No. 6 was obtained with 0 / Cr and Cr = 2% by mass.
[0066] さらに、微細 TiCN粉末と粗粒 TiCN粉末の配合比率を変更した試料も追加した。  [0066] Further, a sample in which the mixing ratio of fine TiCN powder and coarse TiCN powder was changed was also added.
[0067] TiCN粉末は、平均粒径 0. 5 μ mの微細 TiCN粉末と平均粒径 1. 7 μ mの粗粒 Ti CN粉末とし、残りを所定量の平均粒径で 1. の TaC粉末と、 1. 6 mの Ni粉 末及び 1. の Cr粉末を用い、 TiCN = 79質量0 /0、 TaC = 6質量0 /0、 Ni= 7質量 %、 Cr=8質量%とし、前記微細 TiCN粉末と粗粒 TiCN粉末の配合比を 7 : 3、 9 : 1 としたものを本発明の実施例の試料 No. 8、 9とした。そして、前記配合比を 6 :4、 9. 5 : 0. 5としたものを本発明の範囲外の試料 No. 7、 10とした。その他の添加剤およ び調合方法は前述したものと同一である。 [0067] The TiCN powder is a fine TiCN powder with an average particle size of 0.5 μm and a coarse TiCN powder with an average particle size of 1.7 μm, and the rest is a TaC powder with an average particle size of 1. If, 1. using Cr powder of Ni powder and 1. 6 m, and TiCN = 79 mass 0/0, TaC = 6 mass 0/0, Ni = 7 wt%, and Cr = 8% by weight, the fine Samples Nos. 8 and 9 of the examples of the present invention were prepared by setting the mixing ratio of TiCN powder and coarse TiCN powder to 7: 3 and 9: 1, respectively. Samples Nos. 7 and 10 outside the scope of the present invention were prepared with the blending ratios of 6: 4 and 9.5: 0.5. Other additives and preparation methods are the same as described above.
[0068] つぎに、得られたスラリーをスプレードライヤーにて、温度 120°C、曝露時間 1秒で 高速乾燥し造粒した。  [0068] Next, the obtained slurry was granulated by high-speed drying with a spray dryer at a temperature of 120 ° C and an exposure time of 1 second.
[0069] その後、油圧ハンドプレス機にて、焼結後の 3点曲げ抗折強度の試験片となる直方 体の成形体を作製した。  [0069] Thereafter, a rectangular parallelepiped molded body serving as a test piece for three-point bending strength after sintering was produced by a hydraulic hand press.
[0070] そして、前記成形体を真空炉を用いて、真空度 1. 33Paに減圧した環境下にて最 高温度 1450°Cで 1時間(hr)焼成し TiCN系サーメットの焼結体を作製した。 [0071] そして、前記焼結体を平面研削盤 ( # 400番定のレジンダイヤ使用)を用いて研削 することにより、図 2に示すように、 JIS— R1601に基づく 3点曲げ試験方法の試験片 12となる短辺寸法 12aが 3mm、長辺寸法 12bが 4mm、長さ 12cが 40mmの直方体 に加工した。 [0070] Then, the compact was fired at a maximum temperature of 1450 ° C for 1 hour (hr) in a vacuum oven using a vacuum furnace at a reduced pressure of 1.33 Pa to produce a sintered body of TiCN cermet did. [0071] Then, by grinding the sintered body using a surface grinder (using a # 400 standard resin diamond), as shown in Fig. 2, the test of the three-point bending test method based on JIS-R1601 The piece 12 was processed into a rectangular parallelepiped with a short side dimension 12a of 3mm, a long side dimension 12b of 4mm, and a length 12c of 40mm.
[0072] 前記試験片 12の本発明の実施例の試料 No. 1〜3、 8、 9および、本発明の範囲 外となる比較例の試料 No. 4〜7、 10について、焼成後の焼結体の組成分析ならび に、大気雰囲気にて 550°Cにて 1時間(hr)加熱処理した後の 3点曲げ抗折強度、ビ ッカース硬度、破壊靱性値をそれぞれ試料数 5個につ 、て測定した。  [0072] Samples Nos. 1 to 3, 8, and 9 of Examples of the present invention of the test piece 12 and Samples Nos. 4 to 7, and 10 of Comparative Examples outside the scope of the present invention were fired after firing. The composition analysis of the body and the three-point bending strength, Vickers hardness, and fracture toughness values after heat treatment at 550 ° C for 1 hour (hr) in an air atmosphere for each of 5 samples. Measured.
[0073] 組成分析は理学電気株式会社製の X線回折装置 RINT1100型を用い X線 40kV , 40mAで実施した。ここで、各成分の組成比は、試料を X線回折装置にて測定した ときの各成分の回折ピーク力 別途作成してぉ 、た検量線に基づ 、て定量値を求め 、それらを合算した値力 各成分の比率を求め算出した。また測定限界値が 0. 01質 量%であるために、 0. 01質量%未満については、—と記載した。  [0073] The composition analysis was performed using an X-ray diffractometer RINT1100 manufactured by Rigaku Corporation with X-rays of 40 kV and 40 mA. Here, the composition ratio of each component was determined by separately creating the diffraction peak force of each component when the sample was measured with an X-ray diffractometer. Calculated value The ratio of each component was calculated. In addition, since the measurement limit value is 0.01 mass%, “less than 0.01 mass%” is described as “−”.
[0074] 尚、 3点曲げ抗折強度 ¾JIS— R1601による 3点曲げ試験方法に基づき、アイコ一 エンジニアリング株式会社製デジタル荷重試験機を用い、図 3に示すように、スパン 1 3力 30mm、クロスヘッド 14のスピードが 0. 5mm/min.で試験片 12が破断する強 度を測定した。  [0074] Three-point bending strength ¾ Based on the three-point bending test method according to JIS-R1601, using a digital load tester manufactured by Aikoichi Engineering Co., Ltd., as shown in Fig. 3, span 1 3 force 30mm, cross The strength at which the test piece 12 breaks when the speed of the head 14 was 0.5 mm / min was measured.
[0075] また、ビッカース硬度は、 JIS— R1610により明石製作所製 AVK— A型硬度計を 用!ヽ、 HvLoad 10kg【こて実施した。  [0075] Further, the Vickers hardness was measured according to JIS-R1610 using an AVK-A type hardness meter manufactured by Akashi Manufacturing Co., Ltd., HvLoad 10kg.
[0076] また、破壊靭性値 ίお IS— R1607による SEPB法(Single Edge Precracked B earn)により、硬度計を明石製作所製 AVK— A型、万能試験機をインストロン社製 M ODEL1125型、オートグラフを島津製作所社製 AGS— 500B型、光学式測長計は ミツトヨ社製測定機を用いて測定した。  [0076] Also, according to the SEPB method (Single Edge Precracked B earn) according to fracture toughness value ίO IS-R1607, the hardness meter is AVK-A type manufactured by Akashi Seisakusho, and the universal testing machine is M ODEL1125 type manufactured by Instron, Autograph The AGS-500B type manufactured by Shimadzu Corporation and the optical length meter were measured using a Mitutoyo measuring machine.
[0077] 前記 3点曲げ抗折強度、ビッカース硬度、破壊靭性値の判定基準にっ ヽては、 3点 曲げ抗折強度が 1150MPa以上、ビッカース硬度が 1400GPa以上、破壊靭性値が 10MPa'm1/2以上でいずれも満足したものを総合評価は良(〇)とし、そのひとつ以 上を満足しな力 たものを使用不可(X )とした。また、その理由は 3点曲げ抗折強度 が 1150MPa未満であると熱間押出成形作業時に強度不足による割れが発生し易く なり、またビッカース硬度が 1400GPa未満であると耐摩耗性が不十分となり、摩耗や 変形が発生し易くなる、また破壊靭性値が 10MPa'm1/2未満であると熱間押出成形 作業時に欠けや割れが発生し易くなる力 である。 [0077] According to the criteria for determining the three-point bending strength, Vickers hardness, and fracture toughness value, the three-point bending strength is 1150 MPa or more, the Vickers hardness is 1400 GPa or more, and the fracture toughness value is 10 MPa'm 1 The overall evaluation was good (○) for those satisfying / 2 or more, and the ones satisfying one or more of them were considered unusable (X). The reason for this is that if the three-point bending strength is less than 1150 MPa, cracking due to insufficient strength is likely to occur during hot extrusion. Also, if the Vickers hardness is less than 1400 GPa, the wear resistance becomes insufficient, wear and deformation are likely to occur, and if the fracture toughness value is less than 10 MPa'm 1/2 , it will be missing during hot extrusion. It is a force that easily causes cracks.
以上の結果を表 1に示す。尚、組成、特性値は試料数 5個の平均値である。  The results are shown in Table 1. The composition and characteristic values are average values of 5 samples.
[表 1] [table 1]
Figure imgf000017_0001
Figure imgf000017_0001
。 注)" HCNの配合比 (微細粉末:粗粒粉末) . Note) "HCN mixing ratio (fine powder: coarse powder)
[0079] 表 1からわ力るように、本発明の熱間押出成形用ダイス 1に用いる焼結体の試料 No . 1, 2, 3は、組成の範囲力TiCN58〜92. 5質量0 /0、 TaCl〜: L 1質量0 /0、 Ni3〜13 質量%、 Cr3〜13質量%で、 TiCNが分解することによる Tiの出現が 0. 01〜1質量 %、 TiC、 TiNの出現がいずれも 0. 01〜2質量%の範囲であることから、前記焼結 体を 550°Cに加熱処理した後でも焼結体の表面が酸ィ匕による粒子間結合力が低下 することは無く、本来の高強度 ·高硬度 ·高靱性の特性が維持できることから 3点曲げ 抗折強度は 1180MPa以上、ビッカース硬度は 1460GPa以上、破壊靭性値は 10M Pa 'm1/2以上といずれも、高温における表面の劣化が認められず総合評価は良好で めつに。 [0079] As shown in Table 1, the sintered compact samples No. 1, 2, and 3 used in the hot extrusion die 1 of the present invention have composition range forces TiCN58 to 92.5 mass 0 / 0, TaCl~: L 1 mass 0/0, Ni3~13 mass%, in Cr3~13 mass%, appearance from 0.01 to 1 mass% of Ti by the TiCN is decomposed, TiC, appearance of TiN are both In the range of 0.01 to 2% by mass, the surface of the sintered body does not decrease the interparticle bonding force due to the acid even after the sintered body is heated to 550 ° C. 3 points bending Fracture strength is 1180MPa or more, Vickers hardness is 1460GPa or more, and fracture toughness value is 10M Pa 'm 1/2 or more at high temperature because original high strength, high hardness and high toughness can be maintained. The overall evaluation is good as there is no surface degradation.
[0080] これに対し、本発明の範囲外である試料 No. 4は、 550°Cに加熱処理した後で焼 結体の表面の酸ィ匕が促進されて、粒子間結合力が低下したことから 3点曲げ抗折強 度は 1040MPa、ビッカース硬度は 1030GPaと低い値であった。また、試料 No. 5 は、 TiCNが分解することによる Ti、 TiC、 TiNの出現により特に TaCが 1質量%未満 であったことと、 Tiが 1質量%を大きく超えたことと、 TiNも 2質量%を超えたことから、 550°Cに加熱処理した後で焼結体の表面の酸ィ匕が促進されて、粒子間結合力が低 下したことおよび、焼結性の低さもあることから、 3点曲げ抗折強度は 900MPa、ビッ カース硬度は 1040GPa、破壊靭性値は 7MPa'm1/2といずれも低い値であった。ま た、試料 No. 6は、 TiCNが分解することによる Ti、 TiC、 TiNの出現がいずれも 0. 0 1質量%未満であった力 特に TaCが 1質量%未満であつたがために、 550°Cにカロ 熱処理した後で耐熱劣化やそもそもの焼結性の低さがあることから 3点曲げ抗折強 度は 890MPa、ビッカース硬度は 1180GPa、破壊靭性値は 7MPa'mV2といずれも 低い値であり、総合評価は試料 No. 4、 5、 6共に悪く使用不可であった。 [0080] On the other hand, Sample No. 4, which is outside the scope of the present invention, was promoted by acidification on the surface of the sintered body after heat treatment at 550 ° C, resulting in a decrease in interparticle bonding force. Therefore, the three-point bending strength was 1040 MPa and the Vickers hardness was 1030 GPa. Sample No. 5 also showed that TaC was less than 1% by mass due to the appearance of Ti, TiC, and TiN due to the decomposition of TiCN, that Ti significantly exceeded 1% by mass, and that TiN was 2 Since it exceeded the mass%, the acidity of the surface of the sintered body was promoted after heat treatment at 550 ° C, and the bonding force between particles was reduced, and there was also low sinterability. Therefore, the three-point bending strength was 900MPa, the Vickers hardness was 1040GPa, and the fracture toughness was 7MPa'm 1/2 . In Sample No. 6, the appearance of Ti, TiC, and TiN due to the decomposition of TiCN was less than 0.01% by mass, especially because TaC was less than 1% by mass. After heat treatment at 550 ° C, heat resistance deterioration and low sinterability are all, so the three-point bending strength is 890 MPa, Vickers hardness is 1180 GPa, and fracture toughness is 7 MPa'm V2. It was a low value, and the overall evaluation was bad for Sample Nos. 4, 5, and 6 and could not be used.
[0081] 尚、不可避不純物として試料 No. 2〜4、 6において Feが 0. 45〜0. 97質量%検 出された。不可避不純物は 0に近いのが望ましいが、酸ィ匕による周りに与える劣化の 温度が 800°Cと高い。よって熱間押出成形用のダイスとして用いるときの温度力 約 4 00〜600°Cである場合においては強度劣化等の要因にならないので、 1質量%程 度の含有は問題とならな 、。  [0081] In addition, 0.4 to 0.47 mass% of Fe was detected in sample Nos. 2 to 4 and 6 as inevitable impurities. The inevitable impurities are preferably close to 0, but the temperature of deterioration caused by acid is high at 800 ° C. Therefore, when the temperature force when used as a die for hot extrusion molding is about 400 to 600 ° C, it does not cause deterioration of strength, etc. Therefore, the content of about 1% by mass is not a problem.
[0082] さらに、 TiCN粉末の微細 TiCN粉末と粗粒 TiCN粉末の配合比を 7: 3、 9: 1とした 本発明の実施例の試料 No. 8、 9は、焼結性を活性促進させ、焼結時に異常粒成長 が抑制できたことから、 Ti、 TiC、 TiNの出現を抑えることができ、その結果、高温環 境下での酸化が進行せず、 3点曲げ抗折強度ならびに、ビッカース硬度、破壊靭性 値ともに低下することはなく総合評価は良好であった。 [0082] Furthermore, the mixing ratio of the fine TiCN powder and the coarse TiCN powder of the TiCN powder was set to 7: 3 and 9: 1. Samples Nos. 8 and 9 in the examples of the present invention promoted activation of sinterability and suppressed abnormal grain growth during sintering, so that the appearance of Ti, TiC and TiN could be suppressed. In addition, oxidation did not proceed under high temperature conditions, and the three-point bending strength, Vickers hardness, and fracture toughness values did not decrease, and the overall evaluation was good.
[0083] これに対し、 TiCN粉末の微細 TiCN粉末と粗粒 TiCN粉末の配合比を 6 :4, 9. 5 :  [0083] On the other hand, the mixing ratio of fine TiCN powder and coarse TiCN powder of TiCN powder is 6: 4, 9.5:
0. 5とした本発明の範囲外の試料 No. 7、 10において、試料 No. 7は、局所的に結 晶粒子が分解肥大化したことから、焼結時点において Ti、 TiC、 TiNの出現量が多く 、その結果、高温環境下での酸ィ匕が進行したため、試料 No. 7は 3点曲げ抗折強度 は 1150MPa未満、ビッカース硬度は 1400GPa未満、破壊靭性値は 10MPa'm1/2 未満となり、試料 No. 10は、ビッカース硬度が 1400GPa未満、破壊靭性値が 10M Pa'm1/2未満となり、いずれも総合評価は悪く使用不可であった。 In Samples Nos. 7 and 10, which are outside the scope of the present invention as 0.5, in Sample No. 7, the crystal particles locally decomposed and enlarged, so that Ti, TiC, and TiN appeared at the time of sintering. As a result, as a result of the progress of acidification in a high temperature environment, Sample No. 7 has a three-point bending strength of less than 1150 MPa, Vickers hardness of less than 1400 GPa, and fracture toughness of 10 MPa'm 1/2 Sample No. 10 had a Vickers hardness of less than 1400 GPa and a fracture toughness value of less than 10 M Pa'm 1/2 .
[0084] 以上の結果より、 TiCN58〜92. 5質量%、 TaCl〜: L 1質量%、 Ni3〜13質量0 /0、 Cr3〜13質量%で、 TiCNが分解することによる Tiの出現が 0. 01〜1質量。 /0、 TiC 、 TiNの出現がいずれも 0. 01〜2質量%である TiCN系サーメット材は、高温環境 下における強度、硬度、靭性の低下を招くことが無いことから、熱間押出成形用ダイ ス 1の母材として相応しい材質であることが解る。 From [0084] As a result, TiCN58~92 5 wt%, TaCl~:. L 1 wt%, Ni3~13 mass 0/0, with Cr3~13 mass%, appearance of Ti due to the TiCN is decomposed 0 01-1 mass. / 0 , TiC, and TiN all appear in 0.01-2 mass% TiCN cermet material does not cause deterioration in strength, hardness, and toughness under high temperature environment. It can be seen that this is a suitable material for the die 1 base material.
[0085] [実施例 2]  [0085] [Example 2]
図 4 (a)、(b)に示す、熱間押出成形用ダイス 1、 101を作製し、熱間押出成形装置 11, 111に取り付け熱間押出成形を行い熱間押出成形用ダイス 1, 101の評価を実 施した。実施例 1の試料 No. 1〜3の焼結体を用いて熱間押出成形用ダイス 1を作製 したものが本発明の実施例の試料 No. 11〜13、実施例 1の試料 No. 4、 6の焼結体 を用いたものが本発明の範囲外となる試料 No. 14、 15である。  Dies for hot extrusion molding 1 and 101 shown in Fig. 4 (a) and (b) are manufactured and attached to a hot extrusion molding machine 11 and 111 to perform hot extrusion molding. Evaluation was conducted. Samples Nos. 11 to 13 of Example of the present invention and Sample No. 4 of Example 1 were produced by using the sintered bodies of Sample Nos. 1 to 3 of Example 1 to produce hot extrusion dies 1. Sample Nos. 14 and 15 using the sintered body of No. 6 are outside the scope of the present invention.
[0086] 比較例として、熱間押出成形用ダイス 101の材質を ZrO 94質量%、 Y O 6質量% [0086] As a comparative example, the hot extrusion molding die 101 is made of 94% by mass of ZrO and 6% by mass of Y2O.
2 2 3 力もなるジルコユア系セラミックスを用いたものを試料 No. 16とした。  Sample No. 16 was made of zirco-yure ceramics with 2 2 3 force.
さらに、比較例として、図 5に示すように、熱間押出成形用ダイス 101の本体を SKD 61とし、貫通孔 101aの内周面 101bに NiCrZCr C ZNbCからなるサーメット材で  Further, as a comparative example, as shown in FIG. 5, the body of the hot extrusion die 101 is SKD 61, and the inner peripheral surface 101b of the through hole 101a is made of a cermet material made of NiCrZCr C ZNbC.
3 2  3 2
Cr C—NbCを 25質量%の組成としたものを厚み tが 5mmの補強した部分 7を形成 Reinforced part 7 with a thickness t of 5 mm made of Cr C—NbC with a composition of 25% by mass
3 2 3 2
したものを試料 No. 17とした。尚、上記サーメット材の補強した部分 7は放電融着方 法により形成した。 This was designated as Sample No. 17. Note that the reinforced portion 7 of the cermet material is a discharge fusion method. Formed by the method.
[0087] 尚、本発明の実施例、比較例ともに、熱間押出成形用ダイス 1、 101の厚み Tは 20 mmで、外径 Φ 1が 30mmの円盤状力 なり、該円盤状の中心付近に貫通孔 la、 10 laが形成され、該貫通孔 la、 101aは幅 dが 1. 5mm、長さ 1が 15mmの長方形状の スリットで 4コーナーは約 0. 5mmの C面 cからなつている。  [0087] It should be noted that in both the examples and comparative examples of the present invention, the thickness T of the hot extrusion dies 1, 101 is 20 mm, and the outer diameter Φ 1 is a disk-shaped force of 30 mm, and the vicinity of the center of the disk-shaped Through-holes la and 10 la are formed, and the through-holes la and 101a are rectangular slits having a width d of 1.5 mm and a length of 1 15 mm, and the four corners are formed from a C-plane c of about 0.5 mm. Yes.
[0088] 前記熱間押出成形用ダイス 1、 101を熱間押出成形装置 11、 111に取り付けて、 5 00°Cで 1時間(hr)の予備加熱処理を施したあと、 460°Cの温度でアルミニウム合金 の熱間押出成形を実施した。その成形条件は、押出速度を 30mZmin.となるように 押出機構 4の押圧力を制御し成形した。そして、押出材 6の表面に異常な傷が発生 するまで連続成形を実施した。  [0088] The hot extrusion dies 1 and 101 are attached to the hot extrusion molding apparatuses 11 and 111, subjected to a preheating treatment at 500 ° C for 1 hour (hr), and then a temperature of 460 ° C. Then, hot extrusion of aluminum alloy was carried out. The molding conditions were such that the pressing force of the extrusion mechanism 4 was controlled so that the extrusion speed was 30 mZmin. Continuous molding was performed until abnormal flaws occurred on the surface of the extruded material 6.
[0089] ここで、押出材 6の表面に発生する傷の異常の判定基準は、傷の深さが 10 m、 幅が 20 /z m以上とした。この基準は、業界標準に基づくものではないが、例えば、力 一エアコン用アルミニウム冷媒管は、フロンガスフリーとなるに際し、従来以上に圧力 の高 、ガスを用いる方向にあることから、より厳し!/、傷規格となることを予測したもので ある。なお、傷の測定は、小坂研究所社製表面粗さ計を用いて行った。  Here, the criteria for judging the abnormality of the scratches generated on the surface of the extruded material 6 were a scratch depth of 10 m and a width of 20 / z m or more. This standard is not based on industry standards, but for example, aluminum refrigerant pipes for high-power air conditioners are more stringent because they are higher in pressure and use gas than before when they become free of CFCs! / It is predicted to become a scratch standard. The scratch was measured using a surface roughness meter manufactured by Kosaka Laboratory.
[0090] 熱間押出成形において、異常の発生は、まず押出材 6の表面状態となって現れる 力 同時に熱間押出成形用ダイス 1, 101が破損することや、または、内周面 lb, 10 lbに剥離が発生することもあり、この破損や剥離も含めて確認を実施した。尚、いず れも試料数は 1個である。  [0090] In the hot extrusion molding, the abnormality first appears as the surface state of the extruded material 6. At the same time, the hot extrusion dies 1, 101 are damaged, or the inner peripheral surface lb, 10 Peeling may occur in the lb, and confirmation including this breakage and peeling was performed. In all cases, the number of samples is one.
[0091] そして、上記 、ずれかの異常が発生するまでの連続成形時間が 24時間(hr)未満 の場合の総合評価を使用不可(X )、 24時間 (hr)以上、 36時間 (hr)未満を使用可 (△)、 36時間(hr)以上、 48時間(hr)未満を良(〇)とした。その理由は、現状品の 超硬や SKD61で作製された熱間押出成形用ダイス 101の寿命が半日〜 1日未満し 力ないことから連続成形時間が従来レベルの 24時間(hr)未満を使用不可とし、また 期待値である 1. 5日〜 2日を良、その中間を使用可としたものである。以上の結果を 表 2に示す。  [0091] Then, the comprehensive evaluation when the continuous molding time until the occurrence of any of the above errors is less than 24 hours (hr) cannot be used (X), 24 hours (hr) or more, 36 hours (hr) Less than acceptable (△), 36 hours (hr) or more, and less than 48 hours (hr) as good (◯). The reason is that the continuous extrusion time of less than 24 hours (hr), which is the conventional level, is used because the hot-extrusion molding die 101 made of current carbide or SKD61 has a life of less than half a day to less than one day. It is not possible and is the expected value. 1. 5 to 2 days are good and the middle is acceptable. The results are shown in Table 2.
[表 2] [Table 2]
Figure imgf000021_0001
Figure imgf000021_0001
*:本発明の 囲外の 示  *: An indication outside the scope of the present invention
1)異常は押出材への傷  1) Abnormalities are scratches on the extruded material
2)異常は熱間押出成形用ダイスの破損 2) Abnormality is damage to the hot extrusion die
[0092] 表 2の結果からわ力るように、本発明実施例の試料 No. 11〜13は、アルミニウム合 金の押出材 6の連続成形時間が少なくとも 42時間 (hr)以上実施でき、異常発生理 由は全て押出材 6への傷であり、その時点において、熱間押出成形用ダイス 1のクラ ックゃ破損、および内周面 lbの剥離の発生は見られず、総合評価は良であった。 [0092] As can be seen from the results in Table 2, the sample Nos. 11 to 13 of the examples of the present invention can perform the continuous forming time of the aluminum alloy extruded material 6 for at least 42 hours (hr) or more. The reasons for the occurrence were all scratches on the extruded material 6. At that time, cracks in the hot extrusion die 1 and cracking of the inner peripheral surface lb were not observed, and the overall evaluation was good. Met.
[0093] また、本発明の範囲外となる試料 No. 14, 15は、上記連続成形時間が 27時間(h r) , 29時間(hr)と本発明実施例より約 40%程度少ないことが解る。この異常はいず れも押出材 6への傷であり、その時点における熱間押出成形用ダイス 1のクラックや 破損、剥離等は見られないものの、高温下における強度、硬度、靭性の低下が影響 し、誘導部である貫通孔 laの内周面 lbが劣化したためである。尚、総合評価は少な くとも 1日以上の連続成形ができたことから使用可とした。  [0093] Samples Nos. 14 and 15 that fall outside the scope of the present invention are found to be about 40% shorter than the examples of the present invention, with the continuous molding time being 27 hours (hr) and 29 hours (hr). . All of these abnormalities are scratches on the extruded material 6, and cracks, breakage, peeling, etc. of the hot extrusion die 1 are not observed at that time, but the decrease in strength, hardness, and toughness at high temperatures has an effect. This is because the inner peripheral surface lb of the through hole la, which is the guiding portion, has deteriorated. In addition, the overall evaluation was acceptable because continuous molding for at least one day was possible.
[0094] さらに、熱間押出成形用ダイス 101の本体をジルコユア系セラミックスで作製した比 較例の試料 No. 16は、前記連続成形時間が僅か 5時間(hr)であり、その原因は、 熱間押出成形用ダイス 101が破損したことによるものである。このことから、ジルコ- ァ系セラミックスは表面が滑らかで摺動性が高いと言う長所もあるが、モノタリ(単斜相 )増加による高温強度が低いことから、熱間押出成形用ダイスの材質として相応しい ものではなく総合評価は Xであった。  [0094] Further, Comparative Sample No. 16, in which the body of the hot extrusion die 101 was made of a zircoure-based ceramic, had a continuous molding time of only 5 hours (hr). This is because the inter-extrusion die 101 is damaged. As a result, zirconia ceramics have the advantage of having a smooth surface and high slidability. However, the high-temperature strength due to the increase in monotly (monoclinic phase) is low, and as a material for hot extrusion dies, The overall rating was X, not appropriate.
[0095] さらに、熱間押出成形用ダイス 101の本体が SKD材で、押出材 6の貫通孔 101aの 内周面 101bに NiCrZCr C ZNbCからなるサーメットを厚くした比較例の試料 No.  [0095] Furthermore, the sample No. of the comparative example in which the main body of the hot extrusion die 101 is an SKD material, and the cermet made of NiCrZCr C ZNbC is thickened on the inner peripheral surface 101b of the through hole 101a of the extruded material 6.
3 2  3 2
17は、連続成形時間が 18時間 (hr)において押出材 6に異常な傷が発生し、その原 因は内周面 101bの補強した部分 7の剥離であった。この補強した部分 7の剥離は、 SKD61材と NiCrZCr C ZNbC系サーメット材の熱膨張係数の差が約 6 X 10— 6In No. 17, an abnormal flaw occurred in the extruded material 6 when the continuous molding time was 18 hours (hr), and the cause was peeling of the reinforced portion 7 of the inner peripheral surface 101b. Peeling of the reinforcing portion 7, the difference in the thermal expansion coefficient of the SKD61 material and NiCrZCr C ZNbC cermet materials, about 6 X 10- 6
3 2  3 2
大きいことが大きな要因であると見られる。また、前記剥離が発生しなくても、 NiCrZ Cr C ZNbC系サーメットは炭化物系サーメットからなるものであることから、本発明 It seems that big is a big factor. Further, even if the exfoliation does not occur, the NiCrZ Cr C ZNbC cermet is composed of a carbide cermet.
3 2 3 2
の TiCN系サーメットより高温環境下での酸ィ匕による劣化が生じやすい。  It is more susceptible to degradation by acid in high temperature environments than TiCN cermets.
[0096] 以上の結果から、アルミニウム合金等の熱間押出成形に本発明の TiCN系サーメッ ト材カゝらなる熱間押出成形用ダイス 1を用いると、従来の超硬、 SKD61、ジルコユア 系セラミックス、サーメット材ならびに炭化物系サーメット等により作製したものと比較 すると少なくとも 1〜2日以上の高寿命が期待できることが解る。 [0097] [実施例 3] [0096] From the above results, when the hot extrusion die 1 made of TiCN cermet material of the present invention is used for hot extrusion of aluminum alloy or the like, conventional carbide, SKD61, zirconia ceramics It can be seen that a life expectancy of at least 1 to 2 days or more can be expected when compared with those made of cermet and carbide cermet. [0097] [Example 3]
本発明の熱間押出成形用ダイス 1の貫通孔 laの内周面 lbへアモルファス膜 lcを 形成したものと形成して!/ヽな 、ものならびに、アモルファス膜 lcをアルミナあるいはシ リコンカーノイドとした場合、さらにその厚み tを 0. 1〜1. 5 mの範囲で作製した場 合における高温環境下での連続成形時間への効果を確認した。  Form an amorphous film lc on the inner peripheral surface lb of the through-hole la of the hot extrusion die 1 of the present invention and form an amorphous film lc with alumina or a silicon carnoid. In this case, the effect on the continuous molding time in a high temperature environment when the thickness t was produced in the range of 0.1 to 1.5 m was confirmed.
[0098] 熱間押出成形用ダイス 1となる焼結体は実施例 2の試料 No. 12と同一組成、同一 形状のものを使用した。そして、図 1に示す、貫通孔 laの内周面 lbにアルミナおよび シリコンカーバイドのアモルファス膜 lcを形成し、その厚み tを、 0. 1、 0. 2、 0. 5、 1. 0、 1. 2、 1. 5 mの 6水準として各々 1個作製したものを、熱間押出成形装置 11に 取り付け、 lhrの予備加熱後、アルミニウム合金の押出材 6を 30mZmin.の速度で 連続成形を実施した。因みに、アモルファス膜 lcを形成していないものは実施例 2の 試料 No. 12で、これを基準として比較した。  [0098] The sintered body to be the hot extrusion die 1 was the same in composition and shape as the sample No. 12 in Example 2. Then, an amorphous film lc of alumina and silicon carbide is formed on the inner peripheral surface lb of the through hole la shown in FIG. 1, and the thickness t is set to 0.1, 0.2, 0.5, 1.0, 1 2 and 1.5 m, each of which was made into one of 6 levels, was attached to a hot extrusion molding machine 11 and after lhr preheating, aluminum alloy extruded material 6 was continuously formed at a speed of 30 mZmin. did. Incidentally, the sample in which the amorphous film lc was not formed was Sample No. 12 of Example 2 and compared based on this.
[0099] ここで、貫通孔 laの内周面 lbにアモルファス膜 lcを形成していない試料 No. 12 の予備加熱温度は 500°Cで 1時間(hr)、アルミニウム合金の成形温度は 460°C、前 記アモルファス膜 lcがアルミナのものは、予備加熱温度を 550°Cとして成形温度を 4 80°Cでおこなった。また、前記アモルファス膜 lcがシリコンカーバイドのものは、予備 加熱温度を 500°Cとし成形温度は 460°Cでおこなった。従来は予備加熱温度が成 形温度より低いのが一般的であり、その理由は予備加熱時の前記貫通孔の内周面 の酸ィ匕による劣化を防止するためである。しかし、本来は成形開始直後の押出材 6の 寸法精度、表面状態の品質を保持するための予備加熱であることから成形時の温度 より予備加熱の温度を同等以上に設定することが望ましいため、本実施例では成形 温度より予備加熱温度を高く設定した。  [0099] Here, the preheating temperature of Sample No. 12 where the amorphous film lc is not formed on the inner peripheral surface lb of the through hole la is 500 ° C for 1 hour (hr), and the forming temperature of the aluminum alloy is 460 ° C. When the amorphous film lc was alumina, the preheating temperature was 550 ° C and the molding temperature was 480 ° C. When the amorphous film lc was silicon carbide, the preheating temperature was 500 ° C. and the molding temperature was 460 ° C. Conventionally, the preheating temperature is generally lower than the molding temperature, in order to prevent deterioration of the inner peripheral surface of the through-hole due to oxidation during preheating. However, since it is originally preheating to maintain the dimensional accuracy and surface quality of the extruded material 6 immediately after the start of molding, it is desirable to set the preheating temperature to be equal to or higher than the molding temperature. In this example, the preheating temperature was set higher than the molding temperature.
[0100] 尚、アルミナ、シリコンカーバイドのアモルファス膜 lcの形成方法は、スパッタ法で、 その条件を 250°Cとした。  [0100] The method for forming the amorphous film lc of alumina and silicon carbide was a sputtering method, and the condition was 250 ° C.
[0101] 前記アモルファス膜 lcの材質がアルミナで、その厚み tが 0. 1, 0. 2、 0. 5、 1. 0、 1. 2, 1. 5 mとしたものがいずれも本発明の実施例で試料 No. 21〜26とした。  [0101] The amorphous film lc is made of alumina and has a thickness t of 0.1, 0.2, 0.5, 1.0, 1.2, 1.5 m. It was set as sample Nos. 21 to 26 in the examples.
[0102] また、前記アモルファス膜 lcの材質がシリコンカーバイドで、その厚み tが 0. 1, 0.  [0102] The material of the amorphous film lc is silicon carbide, and the thickness t is 0.1, 0.
2、 0. 5、 1. 0、 1. 2, 1. 5 /z mとしたもの力本発明の実施 f列で試料 No. 27〜32とし た。 2, 0.5, 1.0, 1. 2, 1.5 / zm Force of execution of the present invention Sample No. 27 to 32 in row f It was.
[0103] そして、前述したように所定の予備加熱後、アルミニウム合金の連続成形を実施し、 押出材 6の表面に傷の深さが 10 μ m、幅が 20 μ m以上のものが現れた時点の連続 成形時間を測定した。そして、総合評価は、実施例 2と同様に、連続成形時間が 24 時間 (hr)未満の場合の総合評価を使用不可( X )、 24時間 (hr)以上、 36時間 (hr) 未満を使用可(Δ)、 36時間(hr)以上、 48時間(hr)未満を良(〇)、 48時間(hr)以 上のものを優良(◎)とした。  [0103] Then, as described above, after predetermined preheating, continuous forming of the aluminum alloy was performed, and the surface of the extruded material 6 had a scratch depth of 10 μm and a width of 20 μm or more. The continuous molding time at the time was measured. As in Example 2, the comprehensive evaluation cannot be used when the continuous molding time is less than 24 hours (hr) (X), 24 hours (hr) or more, and less than 36 hours (hr). Good (Δ), 36 hours (hr) or more, less than 48 hours (hr) as good (◯), and more than 48 hours (hr) as good (().
[0104] 以上の結果を表 3に示す。  [0104] Table 3 shows the above results.
[0105] 因みに、本発明の TiCN系サーメット材の熱間押出成形用ダイス 1の TG— DTA示 差熱分析結果を図 6, 7, 8に示した。図 6は、貫通孔 laの内周面 lbにアモルファス 膜 lcを形成していない TiCN系サーメットの分析チャート、図 7は貫通孔 laの内周面 lbに形成されたアルミナのアモルファス膜 lcの分析チャート、図 8は貫通孔 laの内 周面 lbに形成されたシリコンカーバイドのアモルファス膜 lcの分析チャートである。  Incidentally, the results of TG-DTA differential thermal analysis of the die 1 for hot extrusion molding of the TiCN cermet material of the present invention are shown in FIGS. Fig. 6 is an analysis chart of TiCN cermet without an amorphous film lc formed on the inner peripheral surface lb of the through hole la, and Fig. 7 is an analysis of an alumina amorphous film lc formed on the inner peripheral surface lb of the through hole la. FIG. 8 is an analysis chart of the silicon carbide amorphous film lc formed on the inner peripheral surface lb of the through hole la.
[0106] 尚、 TG— DTA示差熱分析は、セイコー電子工業株式会社製 SSC5000型示差熱 分析装置を用いた。  [0106] For the TG-DTA differential thermal analysis, an SSC5000 differential thermal analyzer manufactured by Seiko Denshi Kogyo Co., Ltd. was used.
[表 3] [Table 3]
Figure imgf000025_0001
Figure imgf000025_0001
*: の の *: Of
[0107] 表 3の結果からわ力るように、熱間押出成形用ダイス 1の押出材 6の貫通孔 laの内 周面 lbにアモルファス膜 lcを形成していない試料 No. 12と比較し、前記ァモルファ ス膜 lcを形成したものは、連続成形時間が約 25〜80%向上していることがわかる。 [0107] As can be seen from the results in Table 3, compared with Sample No. 12 in which the amorphous film lc was not formed on the inner peripheral surface lb of the through hole la of the extruded material 6 of the hot extrusion die 1 It can be seen that in the case where the amorphous film lc is formed, the continuous molding time is improved by about 25 to 80%.
[0108] そして、前記アモルファス膜 lcがアルミナで形成された試料 NO. 21〜26は、シリ コンカーバイドの試料 No. 27〜32より予備加熱温度が 50°C高いにも拘わらず、連 続成形時間は約 10%前後向上している。このことから、予備加熱温度ならびに成形 温度が約 400〜600°Cでおこなわれるアルミニウム合金等の熱間押出成形において 、比較的高温領域ではアルミナのアモルファス膜 lc、低温領域においてはシリコン力 ーバイドのアモルファス膜 lcを形成した熱間押出成形用ダイス 1を用いること好まし い。  [0108] Samples Nos. 21 to 26 in which the amorphous film lc was formed of alumina were continuously formed even though the preheating temperature was 50 ° C higher than that of silicon carbide samples Nos. 27 to 32. Time has improved by about 10%. Therefore, in the hot extrusion molding of aluminum alloys and the like performed at a preheating temperature and a molding temperature of about 400 to 600 ° C., an amorphous amorphous film lc in a relatively high temperature region, and a silicon force-bid amorphous in a low temperature region. It is preferable to use a hot extrusion die 1 on which a film lc is formed.
[0109] そして、アモルファス膜 lcの厚み tと連続成形時間の関係は、アルミナのァモルファ ス膜 lcの試料 No. 21, 22, 23ならびに、シリコンカーバイドのアモルファス膜 lcの 試料 No. 27, 28, 29に見られるように、その厚み t力 SO. 1, 0. 2, 0. 5 mと厚くなる に従い連続成形時間も向上している。特に、前記アルミナのアモルファス膜 lcの厚 み tが 0. 以上の試料 No. 22〜26においては、アモルファス膜 lcを形成してい ない試料 No. 12に比べ連続成形時間は約 55%以上の向上となり、本発明の実施 例の試料 No. 22〜26は、約 3〜3. 5日の連続成形が可能であり、従来の超硬や S KD61材カもなる熱間押出成形用ダイス 101の一般に言われている寿命約半日に 比較し著しい効果である。  [0109] The relationship between the thickness t of the amorphous film lc and the continuous molding time is as follows. Samples Nos. 21, 22, and 23 of the amorphous film lc of alumina and Samples Nos. 27, 28, and 23 of the amorphous film lc of silicon carbide As can be seen from Fig. 29, the continuous molding time is improved as the thickness t force becomes SO. 1, 0.2, 0.5 m. In particular, in Sample Nos. 22 to 26 where the thickness t of the amorphous film lc of alumina is 0 or more, the continuous molding time is improved by about 55% or more compared to Sample No. 12 where the amorphous film lc is not formed. Thus, sample Nos. 22 to 26 of the examples of the present invention can be continuously molded for about 3 to 3.5 days, and the conventional hot die or SKD61 material die 101 for hot extrusion molding can be used. This is a remarkable effect compared to the generally-mentioned half-life.
[0110] し力し、アモルファス膜 lcの厚み tが 0. 1 μ mの試料 No. 21, 27はアモルファス膜 lcを形成していない場合より連続成形時間は向上するもののその効果が少なぐこ れは薄過ぎるがために、予備加熱時に表面力も酸ィ匕が起こり始めたことによるものと 考える。  [0110] However, sample Nos. 21 and 27 with an amorphous film lc thickness t of 0.1 μm improved the continuous forming time compared with the case where the amorphous film lc was not formed, but the effect was less. Is too thin, the surface force during preheating is thought to be due to the start of acidification.
[0111] また、アモルファス膜 lcの厚み tが 1. 5 μ mの試料 No. 26, 32は、前記厚み tが 1 . 0、 1. 2 mの場合よりも連続成形時間が落ちていることがわかる。その理由は、ァ モルファス膜 lcの微々たる剥離による酸ィ匕が起因するものと推測される。この厚み t をたとえば、 2 m程度以上と厚く形成すると、今回の実施例には記載しな力つたが、 熱間押出成形用ダイス 1をセッティングする際などに、物当たり等を起こすと容易にァ モルファス膜 lcが剥がれることがあり、また、スパッタによるアモルファス膜 lcの形成 時間が長くなるだけであることを考慮すると、前記アモルファス膜 lcの好ま 、厚み t は 0. 2〜1. 2 /z mであり、より好ましくは 0. 5〜1. 2 mであること力 Sわ力る。 [0111] In addition, Sample Nos. 26 and 32, in which the thickness t of the amorphous film lc is 1.5 μm, have a shorter continuous molding time than when the thickness t is 1.0 and 1.2 m. I understand. The reason for this is presumed to be due to acidification due to slight peeling of the amorphous film lc. If this thickness t is made thick, for example, about 2 m or more, it will not be described in this example, but it will be easy to cause contact with objects when setting the hot extrusion die 1 etc. A Considering that the morphous film lc may be peeled off and only the formation time of the amorphous film lc by sputtering is increased, the thickness t of the amorphous film lc is preferably 0.2 to 1.2 / zm. Yes, more preferably 0.5 to 1.2 m.
[0112] そして、図 6、 7、 8に示す、 TG— DTA示差熱分析チャートから解るように、本発明 の熱間押出成形用ダイス 1に用いている TiCN系サーメット材の酸ィ匕反応は約 550 。C、アルミナのアモルファス膜 lcの酸ィ匕反応は最高 600°C以上、また、シリコンカー バイドのアモルファス膜 lcの酸ィ匕反応は約 600°C以上という結果であった。  [0112] Then, as can be seen from the TG-DTA differential thermal analysis charts shown in Figs. 6, 7, and 8, the acid-oxidation reaction of the TiCN cermet material used in the hot extrusion die 1 of the present invention is About 550. The results showed that the acid-acid reaction of C and alumina amorphous film lc was 600 ° C or higher, and that of silicon carbide amorphous film lc was 600 ° C or higher.
[0113] 図 6に示す TG— DTA示差熱分析チャートにおいて、酸化反応は約 550°Cで始ま ることが確認出来ることから、本発明の熱間押出成形用ダイス 1は押出材 6の貫通孔 1 aの内周面 lbにァモルファス膜 1 cを形成して 、な 、場合でも、予備加熱温度を 50 0°C付近としても何ら劣化の心配もな 、。さらにアルミナまたはシリコンカーノイドのァ モルファス膜 lcを形成したものは、予備加熱温度を 600°C程度まで上げても熱酸ィ匕 による貫通孔 laの内周面 lbの劣化の虞がないことがわ力る。  [0113] In the TG-DTA differential thermal analysis chart shown in FIG. 6, it can be confirmed that the oxidation reaction starts at about 550 ° C. Therefore, the hot extrusion die 1 of the present invention has a through-hole in the extruded material 6. Even if an amorphous film 1c is formed on the inner peripheral surface lb of 1a, even if the preheating temperature is set to around 500 ° C, there is no fear of deterioration. Furthermore, when the amorphous or silicon carnoid amorphous film lc is formed, there is no risk of deterioration of the inner peripheral surface lb of the through-hole la due to thermal oxidation even if the preheating temperature is increased to about 600 ° C. Wow.
[0114] このように、本発明の熱間押出成形用ダイス 1を熱間押出成形用として用いると、従 来のように成形温度より低い温度での予備加熱温度に制限する必要がないことから、 押出材 6の成形開始直後から安定した寸法、表面状態の品質のものが得られるととも に、その連続成形時間を著しく向上できるのである。  [0114] Thus, when the hot extrusion die 1 of the present invention is used for hot extrusion molding, it is not necessary to limit the preheating temperature to a temperature lower than the molding temperature as in the conventional case. As a result, it is possible to obtain a product with stable dimensions and surface quality immediately after the start of molding of the extruded material 6 and to significantly improve the continuous molding time.
[0115] なお各糸且成の臨界的意義を以下に説明する。  [0115] The critical significance of each yarn is described below.
[0116] まず TiCN、 Ti、 TiC、 TiNの組成の臨界的意義を表 4に示す。  [0116] Table 4 shows the critical significance of the composition of TiCN, Ti, TiC, and TiN.
[表 4] [Table 4]
Figure imgf000028_0001
ここでは摺動性の評価として押し出し速度を従来のダイスと比較する試験をおこな つた o
Figure imgf000028_0001
Here, as an evaluation of slidability, a test was conducted to compare the extrusion speed with a conventional die. I
[0118] なお試料 No. 43については焼結性を満たさないので作製できな力つた。  [0118] Note that Sample No. 43 did not satisfy the sinterability, and thus was unable to be produced.
[0119] TiCNが多ければ摺動性は高ぐまた TiCNの分解生成物である Ti、 TiN、 TiCは 上限をこえてはいけないが、適量含まれている方が高い摺動性を示した。これは Ti、 TiN、 TiCが不純物としてある程度含有されていないと、 TiCNが局所的に結晶化す る部分が発生し、ダイス表面の状態が不安定になる力もである。 [0119] When there is more TiCN, the slidability is higher, and TiCN TiN, TiN, and TiC, which are decomposition products of TiCN, should not exceed the upper limit. If Ti, TiN, and TiC are not contained to some extent as impurities, TiCN will locally crystallize, and the die surface will become unstable.
[0120] 次に TaCの組成の臨界的意義を表 5に示す。 [0120] Table 5 shows the critical significance of the TaC composition.
[表 5] [Table 5]
〔〕y(ppy0121) φxra Photoelectron sectroscol [] Y (ppy0121) φxra Photoelectron sectroscol
Figure imgf000030_0002
Figure imgf000030_0002
注)ただし、 動 低下 り。 Note) However, the movement decreases.
Figure imgf000030_0001
Figure imgf000030_0001
析により表面の酸ィ匕面積比を比較した。 The surface area ratio was compared by analysis.
[0122] TaCは多い方が耐酸ィ匕性は高いが、上限を超えると摺動性が低下してダイスとして は使用できなくなる傾向がある。  [0122] The more TaC is, the higher the acid resistance is, but if the upper limit is exceeded, the slidability tends to deteriorate and the die cannot be used.
[0123] 次に Ni、 Crの組成の臨界的意義を表 6に示す。 [0123] Table 6 shows the critical significance of the composition of Ni and Cr.
[表 6] [Table 6]
Figure imgf000032_0001
Figure imgf000032_0001
1 し、 下 。 注 2)ただし、耐庫耗性低下あリ< 1 and below. Note 2) However, if the wear resistance is reduced
[0124] ここでは緻密性に対する評価として、相対密度 (アルキメデス法による)、即ち理想 密度に対する比を評価した。 [0124] Here, as an evaluation of the denseness, the relative density (according to Archimedes method), that is, the ratio to the ideal density was evaluated.
[0125] Ni、 Crが適量含まれていると理想密度に近くなるが上限を超えると耐摩耗性が低 下し、下限を下回ると焼結性が低下するという傾向があった。 [0125] When appropriate amounts of Ni and Cr are included, the density is close to the ideal density, but when the upper limit is exceeded, the wear resistance tends to decrease, and when the lower limit is exceeded, the sinterability tends to decrease.
[0126] 次に本発明の焼結体の粒度分布における 2つのピークについての粒度範囲および 重量比率の臨界的意義を表 7に示す。 [0126] Next, Table 7 shows the critical significance of the particle size range and weight ratio for the two peaks in the particle size distribution of the sintered body of the present invention.
[表 7] [Table 7]
Figure imgf000034_0001
Figure imgf000034_0001
[0127] ここでは摺動性、 TiCNの分解性の評価する試験を行った。 [0127] Here, tests for evaluating sliding properties and TiCN decomposability were performed.
評価する焼結体は実施例 1の試料 No. 1と同一組成のものを使用し、これと同様の 方法により調整して得た、粒度分布における 2つのピークがそれぞれ異なる試料 No . 62〜73を用いた。また、試料 No. 74〜78は 2つのピークの結晶粒の比率を変え たものである。  The sintered bodies to be evaluated were those having the same composition as Sample No. 1 in Example 1, and were prepared by adjusting the same method as above. Sample Nos. 62 to 73 with two different peaks in the particle size distribution were obtained. Was used. Sample Nos. 74 to 78 are obtained by changing the ratio of crystal grains of the two peaks.
評価は、焼結体の靭性、強度および摺動性について行った。靭性の規格値は 10 MPa'mV2以上あり、 10MPa'm1/2以上を良(〇)、 7MPa'm1/2以上 10MPa'm1/2未 満を使用可(△)とした。強度の規格値は 1150MPa以上であり、 1150MPa以上を 良(〇)、 lOOOMPa以上 1150MPa未満を使用可(△)とした。摺動性についてはァ ルミ材を実際に押し出した 24時間後のアルミ材の傷の有無により、傷が出ないものを 良(〇)、少し傷が生じたものを使用可 (△)とした。 Evaluation was performed about the toughness, strength, and slidability of the sintered body. Standard value of the toughness is more than 10 MPa'm V2, the 10MPa'm 1/2 or good (〇) was 7MPa'm 1/2 or more 10MPa'm 1/2 less than the usable (△). The standard value of strength is 1150 MPa or more, 1150 MPa or more is good (◯), lOOOMPa or more and less than 1150 MPa is usable (△). With regard to slidability, it was determined that the aluminum material was not damaged by the presence or absence of scratches 24 hours after the aluminum material was actually extruded. .
[0128] 表 7に示したように、本発明の焼結体の粒度分布における 2つのピークについての 粒度範囲および比率が本発明の範囲内にある場合、 TiCNの分解が起こらず、摺動 性は良好であることが示された。 [0128] As shown in Table 7, when the particle size range and the ratio for the two peaks in the particle size distribution of the sintered body of the present invention are within the range of the present invention, TiCN does not decompose and slidability Was shown to be good.
粒度分布における 1つのピークが本発明の範囲の下限値より小さいと、粒度分布が 細力べなり過ぎて脱粒による強度劣化ゃ靱性低下により摺動性が悪くなり、上限値よ り大きいと、強度 '靱性が低くなる傾向となっている。  If one peak in the particle size distribution is smaller than the lower limit of the range of the present invention, the particle size distribution becomes too weak and the strength deteriorates due to degranulation. 'Toughness tends to be low.
また、粒度分布における他のピークが本発明の範囲の下限値より小さいと、これは 粒度分布が細力べなり過ぎると TiCNの分解が起こり易くなるため摺動性が悪くなり、 上限値より大きいと粗大粒の影響が出易くなるため強度劣化となっている。  In addition, if the other peak in the particle size distribution is smaller than the lower limit of the range of the present invention, this is because if the particle size distribution is too weak, TiCN will be easily decomposed, resulting in poor slidability and larger than the upper limit. Since the effect of coarse particles is likely to occur, the strength is deteriorated.
そして、 2つのピークの結晶粒の比率が本発明の範囲の下限値より小さいと、強度 劣化となり、上限値より大きいと、摺動性が悪くなつている。これは比率が小さいと脱 粒などの影響が出易くなり、比率が大きいと TiCNの分解が起こりやすくなるためであ る。  When the ratio of the crystal grains of the two peaks is smaller than the lower limit value of the range of the present invention, the strength is deteriorated. When the ratio is larger than the upper limit value, the slidability is deteriorated. This is because if the ratio is small, the effect of degranulation is likely to occur, and if the ratio is large, TiCN is likely to be decomposed.
[0129] 尚、図 10は本発明の熱間押出成形用ダイスの Ti、 TiC、 TiNに関する組成を示す ダイアグラムであり、便宜上 Ti、 TiC、 TiNの各頂点を 3%としているものである。  [0129] FIG. 10 is a diagram showing the composition of Ti, TiC, and TiN of the hot extrusion die of the present invention. For convenience, each vertex of Ti, TiC, and TiN is 3%.
[0130] 「CL1」と示された 6角形の網掛け部分が、本願の請求項 1の Ti、 TiC、 TiNに関す る範囲である。  [0130] The hexagonal shaded portion indicated as "CL1" is a range related to Ti, TiC, and TiN in claim 1 of the present application.

Claims

請求の範囲  The scope of the claims
[I] TiCN力 8〜92. 5質量%、 Tiが 0. 01〜1質量。 /0、 TiCが 0. 01〜2質量。 /0、 TiN が 0. 01〜2質量%、残部が TaC、 Ni、 Crからなることを特徴とする焼結体。 [I] TiCN force 8-92.5 mass%, Ti 0.01-1 mass. / 0 , TiC is 0.01-2 mass. / 0 , TiN is 0.01 to 2% by mass, and the balance is TaC, Ni, Cr.
[2] TaCを 1〜11質量%有することを特徴とする請求項 1に記載の焼結体。  [2] The sintered body according to claim 1, having 1 to 11% by mass of TaC.
[3] Niを 3〜13質量%、 Crを 3〜13質量%有することを特徴とする請求項 1または 2に 記載の焼結体。  [3] The sintered body according to claim 1 or 2, comprising 3 to 13% by mass of Ni and 3 to 13% by mass of Cr.
[4] 前記焼結体の粒度分布が 2つのピークを有することを特徴とする請求項 1〜3の ヽ ずれかに記載の焼結体。  [4] The sintered body according to any one of claims 1 to 3, wherein a particle size distribution of the sintered body has two peaks.
[5] 前記粒度分布における 1つのピークは 1. 0〜1. 3 μ mの粒度範囲、他のピークは 1[5] One peak in the particle size distribution is a particle size range of 1.0 to 1.3 μm, the other peak is 1
. 4〜1. 7 mの粒度範囲にあることを特徴とする請求項 4に記載の焼結体。 The sintered body according to claim 4, wherein the sintered body is in a particle size range of 4 to 1.7 m.
[6] 前記粒度分布における 1. 0〜1. 3 mの粒度範囲のピークと 1. 4〜1. 7 mの粒 度範囲のピークとが 3: 2〜1: 1の比率であることを特徴とする請求項 5に記載の焼結 体。 [6] In the particle size distribution, the peak in the particle size range of 1.0 to 1.3 m and the peak in the particle size range of 1.4 to 1.7 m are in a ratio of 3: 2 to 1: 1. 6. The sintered body according to claim 5, wherein the sintered body is characterized in that:
[7] 前記焼結体の結晶粒が球状であることを特徴とする請求項 1〜6の 、ずれかに記 載の焼結体。  7. The sintered body according to any one of claims 1 to 6, wherein crystal grains of the sintered body are spherical.
[8] 請求項 1〜7のいずれかに記載の焼結体を用いて形成されていることを特徴とする 摺動部材。  [8] A sliding member, characterized by being formed using the sintered body according to any one of claims 1 to 7.
[9] 請求項 1〜7のいずれかに記載の焼結体を用いて形成されていることを特徴とする 成膜用材料。  [9] A film-forming material, characterized by being formed using the sintered body according to any one of claims 1 to 7.
[10] 請求項 1〜7のいずれかに記載の焼結体を用いて形成されていることを特徴とする 熱間押出成形用ダイス。  [10] A hot extrusion die, which is formed using the sintered body according to any one of claims 1 to 7.
[II] 板形状の中心付近に貫通孔を有し、少なくとも該貫通孔の内周面にアモルファス 膜を形成したことを特徴とする請求項 10に記載の熱間押出成形用ダイス。  [II] The die for hot extrusion molding according to claim 10, wherein the die has a through hole in the vicinity of the center of the plate shape, and an amorphous film is formed at least on the inner peripheral surface of the through hole.
[12] 前記アモルファス膜がアルミナもしくはシリコンカーバイドからなることを特徴とする 請求項 11に記載の熱間押出成形用ダイス。  12. The hot extrusion die according to claim 11, wherein the amorphous film is made of alumina or silicon carbide.
[13] 前記アモルファス膜が厚み 0. 2〜1. 2 mであることを特徴とする請求項 11に記 載の熱間押出成形用ダイス。 [13] The hot extrusion die according to [11], wherein the amorphous film has a thickness of 0.2 to 1.2 m.
[14] 請求項 10〜13のいずれかに記載の熱間押出成形用ダイスを筒状のダイケースの 一方端側に装着し、上記ダイケースの他方端側を筒状のコンテナの一方端側に装着 し、押出材をコンテナ力 押出すための押し出し機構を上記コンテナに配置したこと を特徴とする熱間押出成形装置。 [14] The hot extrusion molding die according to any one of claims 10 to 13 is used in a cylindrical die case. It is mounted on one end side, the other end side of the die case is mounted on one end side of a cylindrical container, and an extrusion mechanism for extruding the extruded material is disposed in the container. Inter-extrusion molding equipment.
[15] 請求項 10〜13のいずれかに記載の熱間押出成形用ダイスを用いたことを特徴と する熱間押出成形方法。  [15] A hot extrusion molding method using the hot extrusion die according to any one of [10] to [13].
[16] 請求項 10〜13のいずれかに記載の熱間押出成形用ダイスを用いてアルミニウム 合金を成形することを特徴とする熱間押出成形方法。  [16] A hot extrusion molding method comprising molding an aluminum alloy using the hot extrusion die according to any one of [10] to [13].
[17] 請求項 1〜7のいずれかに記載の焼結体の製造方法であって、平均粒径 0. 3〜0 . の TiCN粉末と、平均粒径 1. 2〜2 111の1じ?^粉末とを7 : 3〜9 : 1の重量 比率で混合し、さらに平均粒径 1. 5 μ m以下の TaC粉末と、平均粒径 2 μ m以下の Ni粉末及び Cr粉末とを加えて、溶媒とともに粉砕混合してスラリーとする工程を有す ることを特徴とする焼結体の製造方法。  [17] A method for producing a sintered body according to any one of claims 1 to 7, wherein the TiCN powder has an average particle size of 0.3 to 0 and one of the average particle sizes of 1.2 to 2 111. Mix ^^ powder with a weight ratio of 7: 3 to 9: 1, and then add TaC powder with an average particle size of 1.5 μm or less and Ni powder and Cr powder with an average particle size of 2 μm or less. And a method of producing a sintered body, comprising a step of grinding and mixing together with a solvent to form a slurry.
PCT/JP2006/319577 2005-09-29 2006-09-29 Sintered body and method for producing same; sliding member, film-forming material and die for hot extrusion molding each using such sintered body; and hot extrusion molding apparatus and hot extrusion molding method each using such die for hot extrusion molding WO2007037431A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP06810940A EP1930457A4 (en) 2005-09-29 2006-09-29 Sintered body and method for producing same; sliding member, film-forming material and die for hot extrusion molding each using such sintered body; and hot extrusion molding apparatus and hot extrusion molding method each using such die for hot extrusion molding
CN2006800350687A CN101273150B (en) 2005-09-29 2006-09-29 Sintered body and die for hot extrusion molding each using such sintered body
JP2007537741A JP4709223B2 (en) 2005-09-29 2006-09-29 Sintered body, manufacturing method thereof, sliding member using the sintered body, film forming material, hot extrusion die, hot extrusion molding apparatus and hot extrusion using the hot extrusion die Molding method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005283384 2005-09-29
JP2005-283384 2005-09-29
JP2005371016 2005-12-22
JP2005-371016 2005-12-22

Publications (1)

Publication Number Publication Date
WO2007037431A1 true WO2007037431A1 (en) 2007-04-05

Family

ID=37899851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/319577 WO2007037431A1 (en) 2005-09-29 2006-09-29 Sintered body and method for producing same; sliding member, film-forming material and die for hot extrusion molding each using such sintered body; and hot extrusion molding apparatus and hot extrusion molding method each using such die for hot extrusion molding

Country Status (4)

Country Link
EP (1) EP1930457A4 (en)
JP (1) JP4709223B2 (en)
CN (1) CN101273150B (en)
WO (1) WO2007037431A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010024377A1 (en) * 2008-08-29 2010-03-04 昭和電工株式会社 Surface-covered cermet member and method for manufacturing same
WO2011093250A1 (en) * 2010-01-27 2011-08-04 昭和電工株式会社 Extrusion method
JP2013075814A (en) * 2011-09-14 2013-04-25 Toyota Central R&D Labs Inc High heat-resistant member, method for producing the same, graphite crucible and method for producing single crystal ingot
JP2016053589A (en) * 2013-01-17 2016-04-14 オメガ・エス アー Component for timepiece movement
JP2017508620A (en) * 2013-12-13 2017-03-30 コンステリウム イソワールConstellium Issoire Aluminum-copper-lithium alloy aircraft floor extrusions

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104018017B (en) * 2014-05-27 2016-02-24 南京航空航天大学 The recovery of waste and old Ti (C, N) base metal-ceramic material and renovation process
CN104889186B (en) * 2015-06-18 2017-09-22 燕山大学 A kind of positive and negative Compound Extrusion manufacturing process of ZrTiAlV alloys electric field-assisted
RU2680630C1 (en) * 2018-05-08 2019-02-25 федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский государственный авиационный технический университет" Method of ion-implantation treatment of compressor monowheel with titanium alloys blades
CN109226757B (en) * 2018-10-18 2021-11-02 湖南德润有色焊材科技股份有限公司 Preparation method and application of material blocking block material for extrusion

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51103914A (en) * 1975-03-12 1976-09-14 Mitsubishi Metal Corp Kyojinsaametsuto

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1085041A (en) * 1965-01-27 1967-09-27 Hitachi Ltd Heat-resisting cemented carbide
JPS51101007A (en) * 1975-03-04 1976-09-07 Mitsubishi Metal Corp Saametsuto
JPS51114411A (en) * 1975-04-01 1976-10-08 Mitsubishi Metal Corp Tough cermet
DE3503105A1 (en) * 1985-01-30 1986-07-31 Leybold-Heraeus GmbH, 5000 Köln METHOD FOR COATING MACHINE PARTS AND TOOLS WITH CARBIDE MATERIAL AND MACHINE PARTS AND TOOLS PRODUCED BY THE METHOD
KR950014351B1 (en) * 1993-12-24 1995-11-25 포항종합제철주식회사 Method of manufacturing complex chrome carbide system
DE19704242C1 (en) * 1997-02-05 1998-08-27 Starck H C Gmbh Co Kg Carbonitride powder, process for their preparation and their use
DE19711642C2 (en) * 1997-03-20 2000-09-21 Nwm De Kruithoorn Bv Method for producing a steel matrix composite material and composite material, produced by such a method
JP2001181775A (en) * 1999-12-24 2001-07-03 Ngk Spark Plug Co Ltd Cermet sintered body
JP2003236707A (en) * 2001-12-11 2003-08-26 Mitsubishi Materials Corp Cutting tip made of cubic crystal boron nitride group ultrahigh pressure sintered material having excellent resistance to chipping
CN1632150A (en) * 2003-12-22 2005-06-29 山东大学 Titanium carbonitride base ceramic bearing materials
CN1239397C (en) * 2004-03-02 2006-02-01 山东大学 Preparation process for three elemental compound powder material of titanium carbonitride

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51103914A (en) * 1975-03-12 1976-09-14 Mitsubishi Metal Corp Kyojinsaametsuto

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010024377A1 (en) * 2008-08-29 2010-03-04 昭和電工株式会社 Surface-covered cermet member and method for manufacturing same
JP4574745B2 (en) * 2008-08-29 2010-11-04 昭和電工株式会社 Surface-coated cermet member and manufacturing method thereof
JPWO2010024377A1 (en) * 2008-08-29 2012-01-26 昭和電工株式会社 Surface-coated cermet member and manufacturing method thereof
WO2011093250A1 (en) * 2010-01-27 2011-08-04 昭和電工株式会社 Extrusion method
JP2011152554A (en) * 2010-01-27 2011-08-11 Showa Denko Kk Extrusion method
KR101376358B1 (en) 2010-01-27 2014-03-20 쇼와 덴코 가부시키가이샤 Extrusion Method
JP2013075814A (en) * 2011-09-14 2013-04-25 Toyota Central R&D Labs Inc High heat-resistant member, method for producing the same, graphite crucible and method for producing single crystal ingot
JP2016053589A (en) * 2013-01-17 2016-04-14 オメガ・エス アー Component for timepiece movement
JP2017508620A (en) * 2013-12-13 2017-03-30 コンステリウム イソワールConstellium Issoire Aluminum-copper-lithium alloy aircraft floor extrusions

Also Published As

Publication number Publication date
CN101273150B (en) 2010-10-06
JP4709223B2 (en) 2011-06-22
EP1930457A1 (en) 2008-06-11
JPWO2007037431A1 (en) 2009-04-16
CN101273150A (en) 2008-09-24
EP1930457A4 (en) 2012-08-22

Similar Documents

Publication Publication Date Title
WO2007037431A1 (en) Sintered body and method for producing same; sliding member, film-forming material and die for hot extrusion molding each using such sintered body; and hot extrusion molding apparatus and hot extrusion molding method each using such die for hot extrusion molding
EP2860273B1 (en) Heat-resistant molybdenum alloy
KR101831754B1 (en) Tough coated hard particles consolidated in a tough matrix material
JP6193207B2 (en) Ceramic parts and cutting tools
KR101361986B1 (en) Rotation tool
WO2006104004A1 (en) Super hard alloy and cutting tool
WO2011118576A1 (en) Sprayed coating of jig for producing glass sheet, and jig for producing glass sheet
JP3916465B2 (en) Molten metal member made of sintered alloy having excellent corrosion resistance and wear resistance against molten metal, method for producing the same, and machine structure member using the same
JP4953762B2 (en) Hot extrusion dies
CN114457303A (en) Carbon steel thermal barrier ceramic coating and preparation method thereof
JP2011062743A (en) Rotary tool and sintered compact
US6551954B1 (en) WC-base composite ceramic sintered compact
KR101807629B1 (en) Cermet tool
JP4976626B2 (en) Sintered alloy material, method for producing the same, and mechanical structural member using the same
JP2000053463A (en) Jig for can manufacturing
WO2022208766A1 (en) Superhard alloy and mold
JP2009209022A (en) WC-SiC-Mo2C-BASED SINTERED BODY AND ITS MANUFACTURING METHOD
JP7160670B2 (en) Thermal spray coating that suppresses adhesion of boron-containing oxide and metal article provided with the same
JP2007145642A (en) Immersion member for hot-dip metal plating bath, and manufacturing method of the same
JP4081574B2 (en) Method for manufacturing heat-resistant coated member
JP2006336091A (en) Powder for thermal spray, thermally sprayed coating, and layered body
JP4690553B2 (en) Mating ring for shift side guide roll
JP3205070B2 (en) Heat-resistant crack-resistant ceramic sintered body and method for producing the same
JP2015131347A (en) Rotating tool
JP2007008776A (en) Chromium-containing sintered compact

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680035068.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007537741

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2006810940

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE