WO2007037364A1 - Optical module - Google Patents

Optical module Download PDF

Info

Publication number
WO2007037364A1
WO2007037364A1 PCT/JP2006/319449 JP2006319449W WO2007037364A1 WO 2007037364 A1 WO2007037364 A1 WO 2007037364A1 JP 2006319449 W JP2006319449 W JP 2006319449W WO 2007037364 A1 WO2007037364 A1 WO 2007037364A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
optical module
optical fiber
lid
mounting board
Prior art date
Application number
PCT/JP2006/319449
Other languages
French (fr)
Japanese (ja)
Inventor
Takaharu Ohyama
Ikuo Ogawa
Akimasa Kaneko
Katsutoshi Takatoi
Yoshiyuki Doi
Yuji Akahori
Original Assignee
Nippon Telegraph And Telephone Corporation
Ntt Electronics Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph And Telephone Corporation, Ntt Electronics Corporation filed Critical Nippon Telegraph And Telephone Corporation
Publication of WO2007037364A1 publication Critical patent/WO2007037364A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4248Feed-through connections for the hermetical passage of fibres through a package wall
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4236Fixing or mounting methods of the aligned elements
    • G02B6/424Mounting of the optical light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4266Thermal aspects, temperature control or temperature monitoring
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02208Mountings; Housings characterised by the shape of the housings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02251Out-coupling of light using optical fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar

Definitions

  • the present invention relates to an optical module, and more particularly to an optical module that is mounted on a mounting board together with a PLC on which functional elements are formed, and constitutes an optical transceiver.
  • PLC Planar Lightwave Circuit
  • a PLC is an optical circuit in which optical waveguides and optical elements with optical waveguide power are integrated on a silicon substrate or quartz substrate, and is excellent in terms of integration and high functionality with high productivity and reliability.
  • the optical transceiver at the transmission terminal station is equipped with a light emitting element such as an LD, a light receiving element such as a PD, and a PLC on which functional elements such as a multiplexer / demultiplexer, branching coupler, and optical modulator are formed.
  • the light emitting / receiving element and the PLC are connected by optically connecting the light emitting element module and Z or the light receiving element module (hereinafter referred to as an optical module) and the PLC with an optical disc component. Bonding to or direct bonding.
  • Figure 1 shows a method of directly joining a conventional optical module and a PLC.
  • FIG. 2 shows the configuration of a conventional optical module.
  • the optical module 11 includes four light emitting elements or light receiving elements (hereinafter referred to as optical elements) 15 having a light emitting surface or a light receiving surface (hereinafter referred to as a light receiving / emitting surface) 14.
  • the optical element 15 is sealed by a box-shaped housing 12 and a lid 13 having a sapphire glass force that enables input / output of an optical signal to / from the light emitting / receiving surface 14 (see, for example, Non-Patent Document 1). . Since the casing 12 and the lid 13 are joined by metal solder and have high airtightness, they are protected from the external environment and the reliability of the optical element 15 is ensured.
  • the optical element 15 is fixed to the housing 12 with metal solder or the like with the light emitting / receiving surface 14 facing the lid 13, and connected to the metal wiring 17 of the housing 12 by bonding wires 16.
  • the metal wiring 17 extends through the housing 12 to the back and side surfaces of the housing 12.
  • the PLC 21 has an optical waveguide 24 formed on a silicon substrate 22.
  • the optical waveguide 24 formed in the PLC 21 and the light receiving / emitting surface 14 of the optical element 15 are arranged so as to be optically coupled.
  • a short plate 23 as a reinforcing plate is joined to the PLC 21 and joined to the lid 13 of the optical module 11 on the surface including the end face of the optical waveguide 24 of the PLC 21.
  • a UV curable adhesive or the like is used for bonding between the optical module 11 and PLC21.
  • the optical module 11 and the PLC 21 are fixed on the mounting board 31, and the metal wiring 17 of the optical module 11 and the electrode 32 connected to the metal wiring 34 formed on the mounting board 31 are connected by the bonding wire 33.
  • the optical element 15 is fixed to the housing 12 in order to optically couple the light receiving / emitting surface 14 of the optical element 15 and the optical waveguide 24 of the PLC 21.
  • the optical element 15 is fixed to the housing 12 in order to optically couple the light receiving / emitting surface 14 of the optical element 15 and the optical waveguide 24 of the PLC 21.
  • An object of the present invention is to provide an optical module that can connect a PLC force without being affected by heat, and can ensure mechanical strength while ensuring electrical connection with a mounting board. There is to do.
  • Non-patent literature 1 A. Kaneko, et al, Ultra small and low power consumption 8ch variabl e optical attenuator multiplexer (V- AWG) using multi-chip PLC integration technol ogy ", Proc. OFC'2005, OTuD3
  • the present invention provides a housing having at least one opening, a lid that transmits light and closes and seals the opening of the housing, and a light receiving / emitting surface of the lid.
  • An optical module including an optical element fixed to face the optical fiber holds an optical fiber optically coupled to the light receiving and emitting surface of the optical element, and is bonded to the lid on a surface including the end face of the optical fiber.
  • an optical fiber connecting means which is fixed to the mounting board so that the mounting surface of the mounting board and the optical axis of the optical element are parallel to each other.
  • the optical module holds an optical fiber that is optically coupled to the light receiving and emitting surface of the optical element, and an optical fiber connecting means that is bonded to the lid on the surface including the end surface of the optical fiber. And a metal wiring that is electrically connected to the optical element and penetrates from the inside of the housing to the outside of the housing, and a lead pin joined to the metal wiring outside the housing,
  • the mounting board is fixed to the mounting board so that the mounting surface of the mounting board and the optical axis of the optical element are parallel to each other.
  • the lead pin and the electrode formed on the mounting board can be fixed by solder. Further, the lead pin may be fixed to the mounting board by fitting with a connector fixed on the mounting board.
  • the optical fiber connecting means has a glass blocking force, and one of a convex portion and a concave portion is formed on a surface including an end surface of the optical fiber, and the lid includes the optical element and the optical fiber.
  • either one of the concave portion and the convex portion is formed so as to be fitted to either one of the convex portion and the concave portion.
  • the optical fiber connecting means has a glass block force, and a surface where the lid and the glass block are joined is inclined with respect to the optical axis.
  • the optical fiber connecting means may be a connector that fits with either one of the optical ferrule and the optical connector.
  • a marker pattern may be formed on the metal wiring so as to determine a mounting position where the optical element is optically coupled to the optical fiber! /.
  • FIG. 1 is a cross-sectional view showing a method of directly joining a conventional optical module and a PLC.
  • FIG. 2 is a perspective view showing a configuration of a conventional optical module.
  • FIG. 3 is a side view showing a method of joining the optical module and the PLC, which is useful in the first embodiment of the present invention.
  • FIG. 4 is a cross-sectional view showing a configuration of an optical module that works on one embodiment of the present invention.
  • FIG. 5 is a perspective view showing an optical module mounting method.
  • FIG. 6A is a front view showing another application example of the configuration of the optical module.
  • FIG. 6B is a side view showing another application example of the configuration of the optical module.
  • FIG. 7 is a side view showing a method of joining the optical module and the PLC, which is useful in the second embodiment of the present invention.
  • FIG. 8 is a top view showing a method for joining an optical module and a glass block.
  • FIG. 9 is a top view showing a configuration of an optical transceiver according to an embodiment of the present invention.
  • FIG. 10 is a side view showing the method for joining the optical module and the glass block according to Example 1.
  • FIG. 11A is a perspective view showing a method of joining an optical module and a glass block according to a second embodiment and joining them using a ferrule.
  • FIG. 11B is a perspective view showing a method of joining the optical module and the glass block according to the second embodiment and joining them using an optical connector.
  • FIG. 12 is a side view showing a method for joining an optical module and a glass block according to Example 3.
  • FIG. 13 is a side view showing a method for joining an optical module and a glass block according to Example 4.
  • FIG. 14 is a top view showing a method for joining an optical module and a glass block according to Example 5.
  • FIG. 15 is a top view showing a method for joining an optical module and a glass block according to Example 6.
  • FIG. 16 is a top view showing the arrangement of optical elements in the optical module.
  • FIG. 3 shows a method of joining the optical module and the PLC, which is useful in the first embodiment of the present invention.
  • the optical module 51 has the same structure as the optical module 11 shown in FIG. 1, and has an optical element 55 sealed by a box-shaped housing 52 and a lid 53 having sapphire glass power.
  • a functional element that generates heat is mounted and a PLC and an optical module are joined, they can be joined directly as shown in FIG.
  • a PLC equipped with a functional element that generates heat and an optical module are joined, the following method is used.
  • the optical module 51 is fixed so that the mounting surface of the mounting board 81 and the optical axis of the optical element 55 of the optical module 51 are parallel to each other. Since the metal wiring 57 of the optical module 51 and the electrode 82 formed on the mounting board 81 are fixed by metal solder or the like, the optical module 51 can be firmly fixed on the mounting board 81.
  • the optical element 55 of the optical module 51 has its light emitting / receiving surface 54 optically coupled to an optical fiber 92 fixed to the glass block 91.
  • the glass block 91 as the optical fiber connecting means is bonded to the lid 53 of the optical module 51 using an adhesive or the like on the surface including the end surface of the optical fiber 92.
  • the PLC 21 is bonded to the substrate 22, and the optical waveguide formed in the PLC 21 is optically coupled to the optical fiber 92 fixed to the glass block 93.
  • the optical fiber 92 is bonded to the PLC 21 as a reinforcing plate.
  • the optical fiber 92 is bonded to the glass block 93 on the surface including the optical waveguide end face of the PLC 21. In this way, since the optical module 51 and the PLC 21 are connected via the optical fiber 92, the optical module 51 is not affected by the heat of the PLC 21.
  • the mounting surface of the mounting board 81 and the optical axis of the optical element 55 of the optical module 51 are fixed in parallel, it is possible to suppress the component height on the mounting board 81.
  • a thin optical transceiver can be configured.
  • FIG. 4 shows the configuration of an optical module that is useful in one embodiment of the present invention.
  • the optical module 51 includes an optical element 55 sealed by a box-shaped casing 52 and a lid 53 having a sapphire glass power that transmits light.
  • alumina ceramics are used as the material of the casing 52.
  • the outer periphery of the case 52 and the lid 53 is formed by metal power for bonding metal vapor deposition.
  • metal solder is used as the bonding agent for bonding the casing 52 and the lid 53. Since the casing 52 and the lid 53 have high airtightness, they are protected from the external environment, and the reliability of the optical element 55 can be ensured.
  • the optical element 55 is a light emitting element such as an LD or a light receiving element such as a PD.
  • the optical element 55 is fixed to the casing 52 with metal solder or the like with the light emitting / receiving surface 54 facing the lid 53, and is connected to the metal wiring 57 of the casing 52 by a bonding wire 56.
  • the metal wiring 57 extends through the housing 52 to the back and side surfaces of the housing 52.
  • a lead pin 58 is fixed to the metal wiring 57 on the back surface of the casing 52 with metal solder or the like.
  • FIG. 5 shows an example of an optical module mounting method.
  • the electrical connector may be the connector 60 fixed to the mounting board, or the connector 61 connected to the flexible cable 62 or the like.
  • the characteristic evaluation or operation test of the optical module 51 can be easily performed. According to this method, the inspection process before shipment of the optical module 51 can be easily performed, which leads to cost reduction.
  • FIG. 6 shows another application example of the configuration of the optical module.
  • the optical module 71 includes a box-shaped casing 72 that is open in two directions, and lids 73a and 73b that also have sapphire glass power to seal the openings in the two directions.
  • the optical element 75 has light receiving / emitting surfaces 74a and 74b in two directions, facing the lids 73a and 73b, respectively, and fixed to the casing 72 with metal solder or the like, and the bonding wires 76a and 76b It is connected to 72 metal wires 77a and 77b.
  • the metal wirings 77 a and 77 b extend through the casing 72 to the side surface of the casing 72.
  • Lead pins 78a and 78b are fixed to metal wirings 77a and 77b on the side surface of the housing 72 by metal solder or the like.
  • FIG. 7 shows a method of joining an optical module and a PLC, which is useful in the second embodiment of the present invention.
  • the optical module 51 has the same structure as the optical module 51 shown in FIG. 3, and includes an optical element 55 sealed by a box-shaped housing 52 and a lid 53 having sapphire glass power.
  • a functional element that generates heat is mounted and the PLC and the optical module are bonded, the bonding can be performed directly as shown in FIG.
  • the following method is used.
  • the optical module 51 is fixed so that the mounting surface of the mounting board 81 and the optical axis of the optical element 55 of the optical module 51 are parallel to each other. Since the metal wiring 57 of the optical module 51 and the electrode 82 formed on the mounting board 81 are fixed by metal solder or the like via the lead pins 58, the optical module 51 can be firmly fixed on the mounting board 81. .
  • the fixing agent for fixing the lead pin 58 to the mounting board 81 is not limited to metal solder but may be a conductive adhesive. It is preferable to use a solder that has a sufficient mechanical strength and can be repaired.
  • the light receiving / emitting surface 54 of the optical element 55 of the optical module 51 is optically coupled to the optical fiber 92 fixed to the glass block 91.
  • the glass block 91 as the optical fiber connecting means is bonded to the lid 53 of the optical module 51 using an adhesive or the like on the surface including the end surface of the optical fiber 92.
  • the PLC 21 is bonded to the substrate 22, and the optical waveguide formed in the PLC 21 is optically coupled to the optical fiber 92 fixed to the glass block 93.
  • a short plate 23 as a reinforcing plate is bonded onto the PLC 21 and bonded to the glass block 93 on the surface including the optical waveguide end face of the PLC 21. In this way, since the optical module 51 and the PLC 21 are connected via the optical fiber 92, the optical module 51 is not affected by the heat of the PLC 21.
  • the mounting surface of the mounting board 81 and the optical axis of the optical element 55 of the optical module 51 are fixed in parallel, the component height on the mounting board 81 can be suppressed. Become. Therefore, a thin optical transceiver can be configured.
  • FIG. 8 shows a method for joining the optical module and the glass block.
  • the optical module 51 integrates four optical elements 55, and the optical fiber 92 that optically couples them is a four-core tape-type optical fiber array.
  • the arrangement pitch of the cores of the optical fiber 92 and the arrangement pitch of the light receiving / emitting surface 54 of the optical element 55 are the same.
  • the connection between the metal wiring 57 of the optical module 51 and the electrode 82 formed on the mounting board 81 is fixed with metal solder or the like via the lead pin 58.
  • the driving electrodes 82a to 82d of the optical element 55 but also the ground pins 82e and 82f are used to fix the lead pins 58a to 58f, for example.
  • the optical module 51 can be more firmly fixed. If more strength is required, the number of lead pins may be increased. Further, the lead pins may be arranged in four directions, which are only three directions in FIG.
  • FIG. 9 shows a configuration of an optical transmitter / receiver according to an embodiment of the present invention.
  • the optical transceiver 100 includes an optical module 112 containing a plurality of light emitting elements, a mounting board 111 on which an optical module 113 containing a plurality of light receiving elements is fixed, and an AWG type optical multiplexer / demultiplexer 131. .
  • the optical module 112 and the optical module 113 are optically coupled to the tape type optical fibers 121 and 122 by the glass blocks 114a and 114b, and are connected to the AWG type optical multiplexer / demultiplexer 1131.
  • the AWG type optical multiplexer / demultiplexer 131 is temperature controlled by a Peltier element 132. Since the AWG type optical multiplexer / demultiplexer 131 and the optical modules 112 and 113 are connected via the optical fibers 112 and 122, the optical modules 112 and 113 are not affected by heat.
  • the optical modules 112 and 113 are fixed so that the mounting surface of the mounting board 111 and the optical axes of the light emitting elements and the light receiving elements of the optical modules 112 and 113 are parallel to each other.
  • the height of the vessel 100 can be reduced.
  • FIG. 10 shows a method of joining the optical module and the glass block according to the first example.
  • the optical module 51 has the same structure as the optical module 51 shown in FIG. 4, and includes an optical element 55 sealed by a box-shaped casing 52 and a lid 53 having sapphire glass power. 7 differs from the joining method shown in FIG. 7 in that the optical module 51 is mounted and fixed to the mounting board 81 by fitting the connector 60 fixed to the mounting surface of the mounting board 81 and the lead pin 58. . According to this method, it is possible to easily mount the optical module 51 in the assembly process of the optical transceiver.
  • the bonding method shown in Fig. 7 requires a process of reflowing the solder and fixing the optical module after aligning with the electrodes on the mounting board.
  • the optical module In the solder reflow process, the optical module directly receives heat during reflow, which may deteriorate the characteristics of the optical element. Therefore, by attaching to the connector 60 arranged on the mounting board 81, the problem of heat during solder reflow can be avoided.
  • the optical module 51 can be easily removed and attached.
  • the optical module 92 is attached to the optical module 51.
  • the power optical module 51 can be applied even when the PLC is directly attached.
  • FIGS. 11A and 11B show a method of joining an optical module and a glass block according to Example 2.
  • the MT ferrule 302 is used to optically couple the optical element of the optical module 51 and the optical fiber.
  • a connector 301 having connection pins 31 la and 31 lb is joined to the optical module 51.
  • Connection pin 311a, 31 lb force Connect so that it fits with the connection pin hole 321a, 32 lb of MT ferrule 302, and crimp with metal leaf spring 303.
  • FIG. 11B optically couples the optical element of the optical module 51 and the optical fiber using an optical connector 304 such as an MPO connector or an MPX connector.
  • the optical module 51 is joined by a connector 305 having connection pins 351a and 351b.
  • Connection pin 351a, 351b 1S Connect so that it fits into the connection pin hole 341a, 341b of the optical connector 304.
  • the number of optical fiber cores of the ferrule or optical connector is the number of optical elements built in the optical module. There are no restrictions on the number of core wires.
  • the end face of the ferrule may be directly joined to the lid of the optical module using an adhesive.
  • FIG. 12 shows a method for joining an optical module and a glass block according to the third embodiment.
  • the optical element 155 of the optical module 151 is optically coupled to the optical fiber 162 fixed to the glass block 161.
  • the glass block 161 is bonded to the lid 153 of the optical module 151 on the surface including the end surface of the optical fiber 162.
  • a convex portion 163 is provided on the end face of the glass block 161, and a concave portion 155 is provided on the lid 153.
  • the convex portion 163 and the concave portion 155 are fitted so as to be optically coupled to the light emitting / receiving surface 154 of the optical element 155 and the core of the optical fiber 162. In this way, alignment between the optical element 155 and the optical fiber 162 can be facilitated.
  • a concave portion may be provided on the end surface of the glass block 161, and a convex portion may be provided on the end surface of the lid 153.
  • a convex portion (or on the end face of the PLC is connected so that the light emitting / receiving surface of the optical element and the optical waveguide of the PLC are optically coupled. If the concave portion is formed, alignment between the light emitting / receiving surface and the optical waveguide can be facilitated.
  • FIG. 13 shows a method for joining an optical module and a glass block according to Example 4.
  • the optical element 175 of the optical module 171 is optically coupled to an optical fiber 182 fixed to the glass block 181.
  • the glass block 181 is bonded to the lid 173 of the optical module 171 on the surface including the end surface of the optical fiber 182.
  • an inclined surface of, for example, 8 degrees is provided on the end surface of the glass block 181 and the lid 173. This inclined surface can prevent return light to the optical element 175 and return light to the optical fiber 182.
  • a thin film filter may be bonded to the surface of the lid 173.
  • FIG. 14 shows a method of joining the optical module and the glass block according to the fifth example.
  • the glass block 212 fixes three four-core tape type optical fibers 213a to 213c, and is bonded to the three optical modules 201a to 201c on the surface including the end face of the optical fiber 213.
  • the three optical modules 201a to 201c are fixed to the mounting board 212 as shown in FIGS.
  • the optical modules 201a to 201c are optical modules in which a plurality of optical elements are integrated, and are connected to the plurality of optical modules in one block, so that the mounting space on the mounting board can be reduced. it can. Since the optical modules 201a to 201c are fixed to the mounting board 212 via lead pins, they can be firmly fixed.
  • the plurality of optical modules are connected to the end face of the PLC so that the light receiving and emitting surfaces of the optical element and the optical waveguide are optically coupled.
  • FIG. 15 shows a method for joining an optical module and a glass block according to Example 6.
  • the glass block 232 has the same structure as in Example 5.
  • the optical module 221 has 12 optical elements integrated in one housing. All the optical elements can be hermetically sealed, and as shown in the second embodiment, it is possible to reduce the size of the optical elements as compared to arranging the optical elements individually hermetically sealed.
  • Figure 16 shows the arrangement of the optical elements in the optical module.
  • the optical module 401 is formed with metal wiring for connecting the optical element 400 and the electrode pattern on the mounting board. Using this metal wiring, the position of the optical element is determined.
  • the metal wirings 41 la and 41 lb electrically connected to the optical element 405 are formed, for example, marker patterns 412a4 to 12f are formed. With the marker patterns 412a4 to 12f, the center of the light receiving / emitting surface 404 of the optical element 405 can always be aligned with a constant accuracy and fixed to the housing 402.
  • other ceramics such as silicon carbide, silicon nitride, aluminum nitride, and zirconium may be used as a material for the casing.
  • glass such as quartz or sapphire may be used.
  • the bonding agent for bonding the housing and the lid is not limited to metal solder such as gold tin, gold germanium, and tin lead, and for example, a low melting point glass wax agent or the like can be used.
  • the material of the lid is not limited to sapphire described above, and for example, quartz glass, borate glass, or the like can be used. If the airtightness can be ensured such that the characteristics of the optical element disposed inside the optical module are not deteriorated by the housing and the lid, the material's member is not limited.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Light Receiving Elements (AREA)

Abstract

Disclosed is an optical module which enables a connection without being affected by heat from a PLC while securing mechanical strength and electrical connection with a mounting board. Specifically disclosed is an optical module comprising a glass block (91) which holds an optical fiber (92) that is optically coupled with a light receiving/emitting surface (54) of an optical element (55), and is joined to a lid (53) at a surface including an end face of the optical fiber (92), a metal wiring (57) which is electrically connected with the optical element (55) and so formed as to penetrate a case (51) from the inside to the outside thereof, and a lead pin (58) which is joined with the metal wiring (57) outside the case (51). This optical module is fixed to a mounting board (81) so that the mounting surface of the mounting board (81) and the optical axis of the optical element (55) are parallel to each other.

Description

明 細 書  Specification
光モシユール  Light Mossyur
技術分野  Technical field
[0001] 本発明は、光モジュールに関し、より詳細には、機能素子が形成された PLCととも に実装ボードに実装され、光送受信器を構成する光モジュールに関する。  The present invention relates to an optical module, and more particularly to an optical module that is mounted on a mounting board together with a PLC on which functional elements are formed, and constitutes an optical transceiver.
背景技術  Background art
[0002] 近年、光ファイバ伝送の普及に伴い、多数の光素子を高密度に集積する技術が求 められている。その一つとして、平面光波回路(以下、 PLC : Planar Lightwave Circuit という)が知られている。 PLCは、シリコン基板または石英基板上に、光導波路、光導 波路力 なる光素子を集積した光回路であり、生産性、信頼性が高ぐ集積化、高機 能化の点で優れている。伝送端局における光送受信器には、 LDなどの発光素子、 P Dなどの受光素子と、合分波器、分岐'結合器、光変調器などの機能素子が形成さ れた PLCとが実装されて 、る。  In recent years, with the widespread use of optical fiber transmission, a technique for integrating a large number of optical elements at high density is required. One of them is a planar lightwave circuit (hereinafter referred to as PLC: Planar Lightwave Circuit). A PLC is an optical circuit in which optical waveguides and optical elements with optical waveguide power are integrated on a silicon substrate or quartz substrate, and is excellent in terms of integration and high functionality with high productivity and reliability. The optical transceiver at the transmission terminal station is equipped with a light emitting element such as an LD, a light receiving element such as a PD, and a PLC on which functional elements such as a multiplexer / demultiplexer, branching coupler, and optical modulator are formed. And
[0003] 光送受信器にお!、て、受発光素子と PLCとの接続は、発光素子モジュールおよび Zまたは受光素子モジュール(以下、光モジュールという)と PLCとを、光ディスクリー ト部品によって光学的に結合させたり、直接接合することが行われている。図 1に、従 来の光モジュールと PLCとを直接接合する方法を示す。  [0003] In an optical transceiver, the light emitting / receiving element and the PLC are connected by optically connecting the light emitting element module and Z or the light receiving element module (hereinafter referred to as an optical module) and the PLC with an optical disc component. Bonding to or direct bonding. Figure 1 shows a method of directly joining a conventional optical module and a PLC.
[0004] また、図 2に、従来の光モジュールの構成を示す。光モジュール 11は、一例として、 発光面または受光面 (以下、受発光面) 14を有する 4つの発光素子または受光素子 (以下、光素子という) 15を備えている。光素子 15は、箱型の筐体 12と、受発光面 14 への光信号の入出力を可能にするサファイアガラス力もなる蓋 13とにより封止されて いる (例えば、非特許文献 1参照)。筐体 12と蓋 13とは、金属半田により接合され、高 い気密性を有していることから、外部環境から保護され、光素子 15の信頼性を確保 している。光素子 15は、受発光面 14を蓋 13に対向させ、筐体 12に金属半田等によ り固定され、ボンディングワイヤ 16により、筐体 12の金属配線 17に接続されている。 金属配線 17は、筐体 12を貫通して、筐体 12の裏面および側面にまで延長されてい る。 [0005] 一方、 PLC21は、シリコン基板 22上に形成された光導波路 24を有している。 PLC 21に形成されている光導波路 24と、光素子 15の受発光面 14とが光学的に結合す るように配置される。補強板としてのやとい 23が PLC21上に接合され、 PLC21の光 導波路 24の端面を含む面において、光モジュール 11の蓋 13に接合される。光モジ ユール 11と PLC21との接合には、 UV硬化性接着剤等が用いられる。光モジュール 11と PLC21とは、実装ボード 31上に固定され、光モジュール 11の金属配線 17と、 実装ボード 31上に形成された金属配線 34につながる電極 32とが、ボンディングワイ ャ 33により接続される。 FIG. 2 shows the configuration of a conventional optical module. As an example, the optical module 11 includes four light emitting elements or light receiving elements (hereinafter referred to as optical elements) 15 having a light emitting surface or a light receiving surface (hereinafter referred to as a light receiving / emitting surface) 14. The optical element 15 is sealed by a box-shaped housing 12 and a lid 13 having a sapphire glass force that enables input / output of an optical signal to / from the light emitting / receiving surface 14 (see, for example, Non-Patent Document 1). . Since the casing 12 and the lid 13 are joined by metal solder and have high airtightness, they are protected from the external environment and the reliability of the optical element 15 is ensured. The optical element 15 is fixed to the housing 12 with metal solder or the like with the light emitting / receiving surface 14 facing the lid 13, and connected to the metal wiring 17 of the housing 12 by bonding wires 16. The metal wiring 17 extends through the housing 12 to the back and side surfaces of the housing 12. On the other hand, the PLC 21 has an optical waveguide 24 formed on a silicon substrate 22. The optical waveguide 24 formed in the PLC 21 and the light receiving / emitting surface 14 of the optical element 15 are arranged so as to be optically coupled. A short plate 23 as a reinforcing plate is joined to the PLC 21 and joined to the lid 13 of the optical module 11 on the surface including the end face of the optical waveguide 24 of the PLC 21. A UV curable adhesive or the like is used for bonding between the optical module 11 and PLC21. The optical module 11 and the PLC 21 are fixed on the mounting board 31, and the metal wiring 17 of the optical module 11 and the electrode 32 connected to the metal wiring 34 formed on the mounting board 31 are connected by the bonding wire 33. The
[0006] 光送受信器において、光モジュールと PLCとの接続を、光ディスクリート部品によつ て行うと、実装スペースが大きくなつてしまう。そこで、上述したように、光モジュールと PLCとを直接接合することが行われている。しかし、上述した従来の方法では、 PLC 21に、熱光学効果をも用いた光スィッチなどの機能素子を搭載している場合には、 多量の熱を発生する。特に、 PLC21のシリコン基板 22は、熱伝導率が高いために、 PLC21に接合された光モジュール 11は、 PLC 21の熱の影響を受けやすい。従って 、光モジュール 11に実装されて 、る光素子 15の特性を劣化させると 、う問題もあつ た。  [0006] In an optical transceiver, if an optical module and a PLC are connected by an optical disc component, the mounting space becomes large. Therefore, as described above, the optical module and the PLC are directly joined. However, in the conventional method described above, when a functional element such as an optical switch that also uses the thermo-optic effect is mounted on the PLC 21, a large amount of heat is generated. In particular, since the silicon substrate 22 of the PLC 21 has a high thermal conductivity, the optical module 11 bonded to the PLC 21 is easily affected by the heat of the PLC 21. Therefore, when the characteristics of the optical element 15 mounted on the optical module 11 are deteriorated, there is a problem.
[0007] また、光モジュール 11の金属配線 17と、実装ボード 31上に形成された電極 32との 接続を、ボンディングワイヤ 33により行うため、機械的強度を確保することが難しぐ 断線しやすいという問題があった。特に、振動に対する信頼性が劣るという問題があ つた o  [0007] In addition, since the metal wiring 17 of the optical module 11 and the electrode 32 formed on the mounting board 31 are connected by the bonding wire 33, it is difficult to ensure mechanical strength and it is easy to break. There was a problem. In particular, there was a problem that the reliability against vibration was inferior o
[0008] さらに、光送受信器の組立工程において、光素子 15の受発光面 14と PLC21の光 導波路 24との間を光学的に結合するためには、光素子 15を筐体 12に固定するェ 程と、光モジュール 11と PLC21とを接合する工程とにおいて、取り付け位置精度を 確保することが難し 、と 、う問題もあった。  Further, in the optical transceiver assembly process, the optical element 15 is fixed to the housing 12 in order to optically couple the light receiving / emitting surface 14 of the optical element 15 and the optical waveguide 24 of the PLC 21. In this process and in the process of joining the optical module 11 and the PLC 21, it is difficult to ensure the mounting position accuracy.
[0009] 本発明の目的は、 PLC力も熱の影響を受けずに接続することができ、実装ボードと の電気的な接続を確保しつつ機械的な強度を確保することのできる光モジュールを 提供することにある。  [0009] An object of the present invention is to provide an optical module that can connect a PLC force without being affected by heat, and can ensure mechanical strength while ensuring electrical connection with a mounting board. There is to do.
[0010] 非特干文献 1: A. Kaneko, et al, Ultra small and low power consumption 8ch variabl e optical attenuator multiplexer (V- AWG) using multi-chip PLC integration technol ogy", Proc. OFC'2005, OTuD3 [0010] Non-patent literature 1: A. Kaneko, et al, Ultra small and low power consumption 8ch variabl e optical attenuator multiplexer (V- AWG) using multi-chip PLC integration technol ogy ", Proc. OFC'2005, OTuD3
発明の開示  Disclosure of the invention
[0011] 本発明は、上述の目的を達成するために、少なくとも一方が開口した筐体と、光を 透過し、前記筐体の開口部を塞いで密封する蓋と、受発光面を前記蓋と対向させて 固定された光素子を含む光モジュールが、前記光素子の受発光面と光学的に結合 する光ファイバを保持し、前記光ファイバの端面を含む面において、前記蓋に接合さ れた光ファイバ接続手段を備え、実装ボードの実装面と前記光素子の光軸とが平行 となるように、前記実装ボードに固定されたことを特徴とする。  [0011] In order to achieve the above-mentioned object, the present invention provides a housing having at least one opening, a lid that transmits light and closes and seals the opening of the housing, and a light receiving / emitting surface of the lid. An optical module including an optical element fixed to face the optical fiber holds an optical fiber optically coupled to the light receiving and emitting surface of the optical element, and is bonded to the lid on a surface including the end face of the optical fiber. And an optical fiber connecting means, which is fixed to the mounting board so that the mounting surface of the mounting board and the optical axis of the optical element are parallel to each other.
[0012] また、光モジュールが、前記光素子の受発光面と光学的に結合する光ファイバを保 持し、前記光ファイバの端面を含む面において、前記蓋に接合された光ファイバ接 続手段と、前記光素子と電気的に接続され、前記筐体内部から前記筐体外部に貫 通して形成された金属配線と、前記筐体外部の前記金属配線に接合されたリードピ ンとを備え、実装ボードの実装面と前記光素子の光軸とが平行となるように、前記実 装ボードに固定されたことを特徴とする。  [0012] Further, the optical module holds an optical fiber that is optically coupled to the light receiving and emitting surface of the optical element, and an optical fiber connecting means that is bonded to the lid on the surface including the end surface of the optical fiber. And a metal wiring that is electrically connected to the optical element and penetrates from the inside of the housing to the outside of the housing, and a lead pin joined to the metal wiring outside the housing, The mounting board is fixed to the mounting board so that the mounting surface of the mounting board and the optical axis of the optical element are parallel to each other.
[0013] 前記光モジュールにおいて、前記リードピンと前記実装ボード上に形成された電極 とを、半田により固定することができる。また、前記リードピンを、前記実装ボード上に 固定されたコネクタと勘合して、前記実装ボードに固定してもよい。  [0013] In the optical module, the lead pin and the electrode formed on the mounting board can be fixed by solder. Further, the lead pin may be fixed to the mounting board by fitting with a connector fixed on the mounting board.
[0014] 前記光ファイバ接続手段は、ガラスブロック力 なり、前記光ファイバの端面を含む 面に凸部と凹部のいずれか一方が形成され、前記蓋は、前記光素子と前記光フアイ バとが光学的に結合するために、前記凸部と凹部の!/、ずれか一方に勘合するように 凹部と凸部のいずれか一方が形成されている。または、前記光ファイバ接続手段は、 ガラスブロック力 なり、前記蓋と前記ガラスブロックとが接合される面が、前記光軸に 対して傾斜していることを特徴とする。または、前記光ファイバ接続手段は、光フェル 一ルと光コネクタの 、ずれか一方と勘合するコネクタであってもよ 、。  [0014] The optical fiber connecting means has a glass blocking force, and one of a convex portion and a concave portion is formed on a surface including an end surface of the optical fiber, and the lid includes the optical element and the optical fiber. In order to optically couple, either one of the concave portion and the convex portion is formed so as to be fitted to either one of the convex portion and the concave portion. Alternatively, the optical fiber connecting means has a glass block force, and a surface where the lid and the glass block are joined is inclined with respect to the optical axis. Alternatively, the optical fiber connecting means may be a connector that fits with either one of the optical ferrule and the optical connector.
[0015] さらに、前記金属配線に、前記光素子が前記光ファイバと光学的に結合する搭載 位置を確定するようにマーカパターンを形成してもよ!/、。  Further, a marker pattern may be formed on the metal wiring so as to determine a mounting position where the optical element is optically coupled to the optical fiber! /.
図面の簡単な説明 [図 1]図 1は従来の光モジュールと PLCとを直接接合する方法を示す横断面図である Brief Description of Drawings [FIG. 1] FIG. 1 is a cross-sectional view showing a method of directly joining a conventional optical module and a PLC.
[図 2]図 2は従来の光モジュールの構成を示す斜視図である。 FIG. 2 is a perspective view showing a configuration of a conventional optical module.
圆 3]図 3は本発明の第 1の実施形態に力かる光モジュールと PLCの接合方法を示 す側面図である。 3) FIG. 3 is a side view showing a method of joining the optical module and the PLC, which is useful in the first embodiment of the present invention.
圆 4]図 4は本発明の一実施形態に力かる光モジュールの構成を示す断面図である [4] FIG. 4 is a cross-sectional view showing a configuration of an optical module that works on one embodiment of the present invention.
[図 5]図 5は光モジュールの実装方法を示す斜視図である。 FIG. 5 is a perspective view showing an optical module mounting method.
[図 6A]図 6Aは光モジュールの構成の他の応用例を示す正面図である。  FIG. 6A is a front view showing another application example of the configuration of the optical module.
[図 6B]図 6Bは光モジュールの構成の他の応用例を示す側面図である。  FIG. 6B is a side view showing another application example of the configuration of the optical module.
圆 7]図 7は本発明の第 2の実施形態に力かる光モジュールと PLCの接合方法を示 す側面図である。 [7] FIG. 7 is a side view showing a method of joining the optical module and the PLC, which is useful in the second embodiment of the present invention.
[図 8]図 8は光モジュールとガラスブロックの接合方法を示す上面図である。  FIG. 8 is a top view showing a method for joining an optical module and a glass block.
圆 9]図 9は本発明の一実施形態に力かる光送受信器の構成を示す上面図である。 [9] FIG. 9 is a top view showing a configuration of an optical transceiver according to an embodiment of the present invention.
[図 10]図 10は実施例 1にかかる光モジュールとガラスブロックの接合方法を示す側 面図である。 FIG. 10 is a side view showing the method for joining the optical module and the glass block according to Example 1.
[図 11 A]図 11 Aは実施例 2にかかる光モジュールとガラスブロックの接合方法を示し、 フエルールを用いて結合する方法を示す斜視図である。  [FIG. 11A] FIG. 11A is a perspective view showing a method of joining an optical module and a glass block according to a second embodiment and joining them using a ferrule.
[図 11B]図 11Bは実施例 2にかかる光モジュールとガラスブロックの接合方法を示し、 光コネクタを用いて結合する方法を示す斜視図である。  FIG. 11B is a perspective view showing a method of joining the optical module and the glass block according to the second embodiment and joining them using an optical connector.
[図 12]図 12は実施例 3にかかる光モジュールとガラスブロックの接合方法を示す側 面図である。  FIG. 12 is a side view showing a method for joining an optical module and a glass block according to Example 3.
[図 13]図 13は実施例 4にかかる光モジュールとガラスブロックの接合方法を示す側 面図である。  FIG. 13 is a side view showing a method for joining an optical module and a glass block according to Example 4.
[図 14]図 14は実施例 5にかかる光モジュールとガラスブロックの接合方法を示す上 面図である。  FIG. 14 is a top view showing a method for joining an optical module and a glass block according to Example 5.
[図 15]図 15は実施例 6にかかる光モジュールとガラスブロックの接合方法を示す上 面図である。 [図 16]図 16は光モジュールにおける光素子の配置を示す上面図である。 FIG. 15 is a top view showing a method for joining an optical module and a glass block according to Example 6. FIG. 16 is a top view showing the arrangement of optical elements in the optical module.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0017] 以下、図面を参照しながら本発明の実施形態について詳細に説明する。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0018] (光モジュールと PLCの接合方法 1)  [0018] (Optical module and PLC bonding method 1)
図 3に、本発明の第 1の実施形態に力かる光モジュールと PLCの接合方法を示す。 光モジュール 51は、図 1に示した光モジュール 11と同じ構造を有しており、箱型の筐 体 52とサファイアガラス力もなる蓋 53とにより封止された光素子 55を有する。熱を発 生する機能素子を搭載して 、な 、PLCと光モジュールとを接合する場合には、図 1 に示したように、直接接合することができる。しかし、熱を発生する機能素子を搭載し ている PLCと光モジュールとを接合する場合には、以下に説明する方法により行う。  FIG. 3 shows a method of joining the optical module and the PLC, which is useful in the first embodiment of the present invention. The optical module 51 has the same structure as the optical module 11 shown in FIG. 1, and has an optical element 55 sealed by a box-shaped housing 52 and a lid 53 having sapphire glass power. When a functional element that generates heat is mounted and a PLC and an optical module are joined, they can be joined directly as shown in FIG. However, when a PLC equipped with a functional element that generates heat and an optical module are joined, the following method is used.
[0019] 光モジュール 51は、実装ボード 81の実装面と、光モジュール 51の光素子 55の光 軸とが平行になるように固定される。光モジュール 51の金属配線 57と実装ボード 81 上に形成された電極 82とを、金属半田等で固定するので、光モジュール 51を実装 ボード 81上に強固に固定することができる。  The optical module 51 is fixed so that the mounting surface of the mounting board 81 and the optical axis of the optical element 55 of the optical module 51 are parallel to each other. Since the metal wiring 57 of the optical module 51 and the electrode 82 formed on the mounting board 81 are fixed by metal solder or the like, the optical module 51 can be firmly fixed on the mounting board 81.
[0020] 光モジュール 51の光素子 55は、その受発光面 54が、ガラスブロック 91に固定され た光ファイバ 92と光学的に結合する。光ファイバ接続手段としてのガラスブロック 91 は、光ファイバ 92の端面を含む面において、光モジュール 51の蓋 53に、接着剤等 を用いて接合される。  The optical element 55 of the optical module 51 has its light emitting / receiving surface 54 optically coupled to an optical fiber 92 fixed to the glass block 91. The glass block 91 as the optical fiber connecting means is bonded to the lid 53 of the optical module 51 using an adhesive or the like on the surface including the end surface of the optical fiber 92.
[0021] 一方、 PLC21は、基板 22に接合され、 PLC21に形成されている光導波路は、ガラ スブロック 93に固定された光ファイバ 92と光学的に結合する。光ファイバ 92は、補強 板としてのやと 、23が PLC21上に接合され、 PLC21の光導波路端面を含む面に おいて、ガラスブロック 93に接合される。このようにして、光モジュール 51と PLC21と を、光ファイバ 92を介して接続するので、光モジュール 51は、 PLC21の熱の影響を 受けることはない。  On the other hand, the PLC 21 is bonded to the substrate 22, and the optical waveguide formed in the PLC 21 is optically coupled to the optical fiber 92 fixed to the glass block 93. The optical fiber 92 is bonded to the PLC 21 as a reinforcing plate. The optical fiber 92 is bonded to the glass block 93 on the surface including the optical waveguide end face of the PLC 21. In this way, since the optical module 51 and the PLC 21 are connected via the optical fiber 92, the optical module 51 is not affected by the heat of the PLC 21.
[0022] また、実装ボード 81の実装面と、光モジュール 51の光素子 55の光軸とが平行にな るように固定されるので、実装ボード 81上の部品高さを抑えることが可能となり、例え ば、薄型の光送受信器を構成することができる。  [0022] Further, since the mounting surface of the mounting board 81 and the optical axis of the optical element 55 of the optical module 51 are fixed in parallel, it is possible to suppress the component height on the mounting board 81. For example, a thin optical transceiver can be configured.
[0023] (光モジュール) 図 4に、本発明の一実施形態に力かる光モジュールの構成を示す。光モジュール 5 1は、箱型の筐体 52と光を透過するサファイアガラス力もなる蓋 53とにより封止された 光素子 55を有する。筐体 52の材質として、例えば、アルミナ系セラミックスが使用さ れる。筐体 52と蓋 53の周縁の外側には接合用の金属力 金属蒸着によって形成さ れている。筐体 52と蓋 53とを接合するための接合剤は、金属半田が用いられる。筐 体 52と蓋 53とにより高い気密性を有していることから、外部環境から保護され、光素 子 55の信頼性を確保することができる。 [0023] (Optical module) FIG. 4 shows the configuration of an optical module that is useful in one embodiment of the present invention. The optical module 51 includes an optical element 55 sealed by a box-shaped casing 52 and a lid 53 having a sapphire glass power that transmits light. As the material of the casing 52, for example, alumina ceramics are used. The outer periphery of the case 52 and the lid 53 is formed by metal power for bonding metal vapor deposition. As the bonding agent for bonding the casing 52 and the lid 53, metal solder is used. Since the casing 52 and the lid 53 have high airtightness, they are protected from the external environment, and the reliability of the optical element 55 can be ensured.
[0024] 光素子 55は、 LDなどの発光素子または PDなどの受光素子である。光素子 55は、 受発光面 54を蓋 53に対向させ、筐体 52に金属半田等により固定され、ボンディング ワイヤ 56により、筐体 52の金属配線 57に接続されている。金属配線 57は、筐体 52 を貫通して、筐体 52の裏面および側面にまで延長されている。筐体 52の裏面の金 属配線 57には、リードピン 58が金属半田等により固定されている。  The optical element 55 is a light emitting element such as an LD or a light receiving element such as a PD. The optical element 55 is fixed to the casing 52 with metal solder or the like with the light emitting / receiving surface 54 facing the lid 53, and is connected to the metal wiring 57 of the casing 52 by a bonding wire 56. The metal wiring 57 extends through the housing 52 to the back and side surfaces of the housing 52. A lead pin 58 is fixed to the metal wiring 57 on the back surface of the casing 52 with metal solder or the like.
[0025] 図 5に、光モジュールの実装方法の一例を示す。あら力じめリードピン 58と嵌合す る電気コネクタを用意する。電気コネクタは、実装ボードに固定されるコネクタ 60であ つてもよいし、フレキシブルケーブル 62等と接続されるコネクタ 61を用いてもよい。例 えば、コネクタ 61を用いて、フレキシブルケーブル 62の一方に測定器等を接続すれ ば、光モジュール 51の特性評価または動作試験を簡単に実施することができる。こ の方法によれば、光モジュール 51の出荷前検査工程を簡便に実施することできるよ うになり、コスト削減につながる。  FIG. 5 shows an example of an optical module mounting method. Prepare an electrical connector that mates with the lead pin 58. The electrical connector may be the connector 60 fixed to the mounting board, or the connector 61 connected to the flexible cable 62 or the like. For example, if a measuring instrument or the like is connected to one of the flexible cables 62 using the connector 61, the characteristic evaluation or operation test of the optical module 51 can be easily performed. According to this method, the inspection process before shipment of the optical module 51 can be easily performed, which leads to cost reduction.
[0026] 図 6に、光モジュールの構成の他の応用例を示す。光モジュール 71は、 2方向が開 口している箱型の筐体 72と、 2方向の開口を封止するサファイアガラス力もなる蓋 73 a, 73bとを有する。光素子 75は、受発光面 74a, 74bを 2方向に有し、それぞれ蓋 7 3a, 73bに対向させて、筐体 72に金属半田等により固定され、ボンディングワイヤ 76 a, 76bにより、筐体 72の金属配線 77a, 77bに接続されている。金属配線 77a, 77b は、筐体 72を貫通して、筐体 72の側面にまで延長されている。筐体 72の側面の金 属配線 77a, 77bには、リードピン 78a, 78bが金属半田等により固定されている。  FIG. 6 shows another application example of the configuration of the optical module. The optical module 71 includes a box-shaped casing 72 that is open in two directions, and lids 73a and 73b that also have sapphire glass power to seal the openings in the two directions. The optical element 75 has light receiving / emitting surfaces 74a and 74b in two directions, facing the lids 73a and 73b, respectively, and fixed to the casing 72 with metal solder or the like, and the bonding wires 76a and 76b It is connected to 72 metal wires 77a and 77b. The metal wirings 77 a and 77 b extend through the casing 72 to the side surface of the casing 72. Lead pins 78a and 78b are fixed to metal wirings 77a and 77b on the side surface of the housing 72 by metal solder or the like.
[0027] (光モジュールと PLCの接合方法 2)  [0027] (Method of joining optical module and PLC 2)
図 7に、本発明の第 2の実施形態に力かる光モジュールと PLCの接合方法を示す。 光モジュール 51は、図 3に示した光モジュール 51と同じ構造を有しており、箱型の筐 体 52とサファイアガラス力もなる蓋 53とにより封止された光素子 55を有する。熱を発 生する機能素子を搭載して 、な 、PLCと光モジュールとを接合する場合には、図 1 に示したように、直接接合することができる。しかし、熱を発生する機能素子を搭載し ている PLCと光モジュールとを接合する場合には、以下に説明する方法により行う。 FIG. 7 shows a method of joining an optical module and a PLC, which is useful in the second embodiment of the present invention. The optical module 51 has the same structure as the optical module 51 shown in FIG. 3, and includes an optical element 55 sealed by a box-shaped housing 52 and a lid 53 having sapphire glass power. When a functional element that generates heat is mounted and the PLC and the optical module are bonded, the bonding can be performed directly as shown in FIG. However, when a PLC equipped with a functional element that generates heat and an optical module are joined, the following method is used.
[0028] 光モジュール 51は、実装ボード 81の実装面と、光モジュール 51の光素子 55の光 軸とが平行になるように固定される。光モジュール 51の金属配線 57と実装ボード 81 上に形成された電極 82とを、リードピン 58を介して金属半田等で固定するので、光 モジュール 51を実装ボード 81上に強固に固定することができる。リードピン 58を実 装ボード 81に固定するための固定剤は、金属半田に限らず、導電性接着剤でもよい 。好ましくは、機械的強度が確保され、リペア可能な半田を用いる。  The optical module 51 is fixed so that the mounting surface of the mounting board 81 and the optical axis of the optical element 55 of the optical module 51 are parallel to each other. Since the metal wiring 57 of the optical module 51 and the electrode 82 formed on the mounting board 81 are fixed by metal solder or the like via the lead pins 58, the optical module 51 can be firmly fixed on the mounting board 81. . The fixing agent for fixing the lead pin 58 to the mounting board 81 is not limited to metal solder but may be a conductive adhesive. It is preferable to use a solder that has a sufficient mechanical strength and can be repaired.
[0029] 光モジュール 51の光素子 55は、その受発光面 54が、ガラスブロック 91に固定され た光ファイバ 92と光学的に結合する。光ファイバ接続手段としてのガラスブロック 91 は、光ファイバ 92の端面を含む面において、光モジュール 51の蓋 53に、接着剤等 を用いて接合される。  The light receiving / emitting surface 54 of the optical element 55 of the optical module 51 is optically coupled to the optical fiber 92 fixed to the glass block 91. The glass block 91 as the optical fiber connecting means is bonded to the lid 53 of the optical module 51 using an adhesive or the like on the surface including the end surface of the optical fiber 92.
[0030] 一方、 PLC21は、基板 22に接合され、 PLC21に形成されている光導波路は、ガラ スブロック 93に固定された光ファイバ 92と光学的に結合する。補強板としてのやとい 23が PLC21上に接合され、 PLC21の光導波路端面を含む面において、ガラスブロ ック 93に接合される。このようにして、光モジュール 51と PLC21とを、光ファイバ 92を 介して接続するので、光モジュール 51は、 PLC21の熱の影響を受けることはない。  On the other hand, the PLC 21 is bonded to the substrate 22, and the optical waveguide formed in the PLC 21 is optically coupled to the optical fiber 92 fixed to the glass block 93. A short plate 23 as a reinforcing plate is bonded onto the PLC 21 and bonded to the glass block 93 on the surface including the optical waveguide end face of the PLC 21. In this way, since the optical module 51 and the PLC 21 are connected via the optical fiber 92, the optical module 51 is not affected by the heat of the PLC 21.
[0031] また、実装ボード 81の実装面と、光モジュール 51の光素子 55の光軸とが平行にな るように固定されるので、実装ボード 81上の部品高さを抑えることが可能となる。従つ て、薄型の光送受信器を構成することができる。  [0031] Further, since the mounting surface of the mounting board 81 and the optical axis of the optical element 55 of the optical module 51 are fixed in parallel, the component height on the mounting board 81 can be suppressed. Become. Therefore, a thin optical transceiver can be configured.
[0032] 図 8に、光モジュールとガラスブロックの接合方法を示す。光モジュール 51は、 4つ の光素子 55を集積し、光学的に結合する光ファイバ 92は、 4心のテープ型光フアイ バアレイである。光ファイバ 92の心線の配列ピッチと、光素子 55の受発光面 54の配 列ピッチとがー致している。光モジュール 51の金属配線 57と、実装ボード 81上に形 成された電極 82との接続は、リードピン 58を介して金属半田等で固定する。 [0033] ここでは、光素子 55の駆動用の電極 82a〜82dのみならず、例えば、アース電極 8 2e, 82fを使用して、リードピン 58a〜58fを固定する。これにより、光モジュール 51を 、より強固に固定することができる。より強度を必要とする場合には、リードピンの数を 増やしてもよい。また、リードピンの配置は、図 8において、 3方向のみとしている力 4 方向に配置してもよい。 FIG. 8 shows a method for joining the optical module and the glass block. The optical module 51 integrates four optical elements 55, and the optical fiber 92 that optically couples them is a four-core tape-type optical fiber array. The arrangement pitch of the cores of the optical fiber 92 and the arrangement pitch of the light receiving / emitting surface 54 of the optical element 55 are the same. The connection between the metal wiring 57 of the optical module 51 and the electrode 82 formed on the mounting board 81 is fixed with metal solder or the like via the lead pin 58. Here, not only the driving electrodes 82a to 82d of the optical element 55 but also the ground pins 82e and 82f are used to fix the lead pins 58a to 58f, for example. Thereby, the optical module 51 can be more firmly fixed. If more strength is required, the number of lead pins may be increased. Further, the lead pins may be arranged in four directions, which are only three directions in FIG.
[0034] (光送受信器)  [0034] (Optical transceiver)
図 9に、本発明の一実施形態にカゝかる光送受信器の構成を示す。光送受信器 100 は、複数の発光素子が内蔵された光モジュール 112および複数の受光素子が内蔵 された光モジュール 113が固定された実装ボード 111と、 AWG型光合分波器 131と を備えている。光モジュール 112および光モジュール 113は、ガラスブロック 114a, 1 14bにより、テープ型光ファイバ 121, 122と光学的に結合し、 AWG型光合分波器 1 31に接続されている。 AWG型光合分波器 131は、ペルチェ素子 132により温度制 御されている。 AWG型光合分波器 131と光モジュール 112, 113とは、光ファイバ 1 21, 122を介して接続されているので、光モジュール 112, 113に熱の影響を与える ことはない。  FIG. 9 shows a configuration of an optical transmitter / receiver according to an embodiment of the present invention. The optical transceiver 100 includes an optical module 112 containing a plurality of light emitting elements, a mounting board 111 on which an optical module 113 containing a plurality of light receiving elements is fixed, and an AWG type optical multiplexer / demultiplexer 131. . The optical module 112 and the optical module 113 are optically coupled to the tape type optical fibers 121 and 122 by the glass blocks 114a and 114b, and are connected to the AWG type optical multiplexer / demultiplexer 1131. The AWG type optical multiplexer / demultiplexer 131 is temperature controlled by a Peltier element 132. Since the AWG type optical multiplexer / demultiplexer 131 and the optical modules 112 and 113 are connected via the optical fibers 112 and 122, the optical modules 112 and 113 are not affected by heat.
[0035] また、光モジュール 112, 113は、実装ボード 111の実装面と、光モジュール 112, 113の発光素子および受光素子の光軸とが平行になるように固定されて 、るので、 光送受信器 100の高さを抑えることができる。また、光モジュール 112, 丄!^と八^^。 型光合分波器 131との接続は、光送受信器 100に予め設けられているファイバ余長 処理部 141を介して行うので、実装スペースを効率的に利用することができる。  In addition, the optical modules 112 and 113 are fixed so that the mounting surface of the mounting board 111 and the optical axes of the light emitting elements and the light receiving elements of the optical modules 112 and 113 are parallel to each other. The height of the vessel 100 can be reduced. Optical module 112, 丄! ^ And eight ^^. Since the connection with the optical multiplexer / demultiplexer 131 is performed via the fiber extra length processing unit 141 provided in the optical transceiver 100 in advance, the mounting space can be used efficiently.
[0036] 以下、光モジュールとガラスブロックの接合方法にっ 、て、具体的な実施例を挙げ て説明する。  Hereinafter, the method for joining the optical module and the glass block will be described with reference to specific examples.
実施例 1  Example 1
[0037] 図 10に、実施例 1にかかる光モジュールとガラスブロックの接合方法を示す。光モ ジュール 51は、図 4に示した光モジュール 51と同じ構造を有しており、箱型の筐体 5 2とサファイアガラス力もなる蓋 53とにより封止された光素子 55を有する。図 7に示し た接合方法と異なる点は、実装ボード 81の実装面に固定されたコネクタ 60と、リード ピン 58とを嵌合して、光モジュール 51を実装ボード 81に装着固定した点である。 [0038] この方法によれば、光送受信器の組立工程において、光モジュール 51の実装を容 易〖こすることができる。図 7に示した接合方法では、実装ボード上の電極と位置あわ せを行った後、半田をリフローして光モジュールを固定する工程が必要である。半田 リフロー工程は、リフロー時の熱を直接光モジュールが被ってしまうため、光素子の特 性が劣化してしまう場合もある。そこで、実装ボード 81上に配したコネクタ 60に装着 することより、半田リフロー時の熱の問題を回避することができる。 FIG. 10 shows a method of joining the optical module and the glass block according to the first example. The optical module 51 has the same structure as the optical module 51 shown in FIG. 4, and includes an optical element 55 sealed by a box-shaped casing 52 and a lid 53 having sapphire glass power. 7 differs from the joining method shown in FIG. 7 in that the optical module 51 is mounted and fixed to the mounting board 81 by fitting the connector 60 fixed to the mounting surface of the mounting board 81 and the lead pin 58. . According to this method, it is possible to easily mount the optical module 51 in the assembly process of the optical transceiver. The bonding method shown in Fig. 7 requires a process of reflowing the solder and fixing the optical module after aligning with the electrodes on the mounting board. In the solder reflow process, the optical module directly receives heat during reflow, which may deteriorate the characteristics of the optical element. Therefore, by attaching to the connector 60 arranged on the mounting board 81, the problem of heat during solder reflow can be avoided.
[0039] さらに、光送受信器の組立後において、光モジュール 51が故障した場合であって も、光モジュール 51の交換を容易に脱着して行うことができる。実施例 1では、光モジ ユール 51に光ファイバ 92が取り付けられた例を示した力 光モジュール 51に PLCを 直接取り付けた場合でも適用できることは 、うまでもな 、。  Furthermore, even if the optical module 51 fails after the optical transceiver is assembled, the optical module 51 can be easily removed and attached. In the first embodiment, the optical module 92 is attached to the optical module 51. The power optical module 51 can be applied even when the PLC is directly attached.
実施例 2  Example 2
[0040] 図 11A, 11Bに、実施例 2にかかる光モジュールとガラスブロックの接合方法を示 す。実施例 2においては、ガラスブロックの代わりに、フエルールまたは光コネクタを 用いる。光モジュール 51にリードピン 58を備えたことにより、実装ボードへの固定が 強固になったため、フェルールまたは光コネクタの度重なる挿抜にも耐える機械的強 度を有している。従って、実装ボードに光モジュールを固定する場合に、取り扱いが 煩雑であった光ファイバ等の光コードを、後工程で取り付けることが可能となる。これ により、光送受信器の組立工程における工数を大幅に削減することができ、製造コス トを低減することが可能となる。  [0040] FIGS. 11A and 11B show a method of joining an optical module and a glass block according to Example 2. FIG. In Example 2, a ferrule or an optical connector is used instead of the glass block. Since the optical module 51 is provided with the lead pin 58, it is firmly fixed to the mounting board, so that it has a mechanical strength that can withstand repeated insertion and removal of the ferrule or optical connector. Therefore, when fixing the optical module to the mounting board, it becomes possible to attach an optical cord such as an optical fiber, which has been complicated to handle, in a later process. As a result, the number of steps in the assembly process of the optical transceiver can be greatly reduced, and the manufacturing cost can be reduced.
[0041] 図 11Aは、 MTフエルール 302を用いて、光モジュール 51の光素子と光ファイバと を光学的に結合する。光モジュール 51には、接続ピン 31 la, 31 lbを有するコネクタ 301が接合されている。接続ピン 311a, 31 lb力 MTフェルール 302の接続ピンホ ール 321a, 32 lbと勘合するように接続して、金属性の板ばね 303により圧着する。  In FIG. 11A, the MT ferrule 302 is used to optically couple the optical element of the optical module 51 and the optical fiber. A connector 301 having connection pins 31 la and 31 lb is joined to the optical module 51. Connection pin 311a, 31 lb force Connect so that it fits with the connection pin hole 321a, 32 lb of MT ferrule 302, and crimp with metal leaf spring 303.
[0042] 図 11Bは、 MPOコネクタまたは MPXコネクタなどの光コネクタ 304を用いて、光モ ジュール 51の光素子と光ファイバとを光学的に結合する。光モジュール 51には、接 続ピン 351a, 351bを有するコネクタ 305力接合されている。接続ピン 351a, 351b 1S 光コネクタ 304の接続ピンホール 341a, 341bと勘合するように接続する。  FIG. 11B optically couples the optical element of the optical module 51 and the optical fiber using an optical connector 304 such as an MPO connector or an MPX connector. The optical module 51 is joined by a connector 305 having connection pins 351a and 351b. Connection pin 351a, 351b 1S Connect so that it fits into the connection pin hole 341a, 341b of the optical connector 304.
[0043] フェルールまたは光コネクタの光ファイバ芯線数は、光モジュールに内蔵した光素 子と同数であり、芯線数には制限はない。また、フエルールまたは光コネクタによる着 脱が必要でない場合には、光モジュールの蓋に直接フエルール端面を、接着剤を用 いて接合してもよい。 [0043] The number of optical fiber cores of the ferrule or optical connector is the number of optical elements built in the optical module. There are no restrictions on the number of core wires. In addition, when attachment / detachment with a ferrule or optical connector is not necessary, the end face of the ferrule may be directly joined to the lid of the optical module using an adhesive.
実施例 3  Example 3
[0044] 図 12に、実施例 3にかかる光モジュールとガラスブロックの接合方法を示す。光モ ジュール 151の光素子 155は、ガラスブロック 161に固定された光ファイバ 162と光 学的に結合する。ガラスブロック 161は、光ファイバ 162の端面を含む面において、 光モジュール 151の蓋 153に接合される。  FIG. 12 shows a method for joining an optical module and a glass block according to the third embodiment. The optical element 155 of the optical module 151 is optically coupled to the optical fiber 162 fixed to the glass block 161. The glass block 161 is bonded to the lid 153 of the optical module 151 on the surface including the end surface of the optical fiber 162.
[0045] ガラスブロック 161の端面に凸部 163を設け、蓋 153には凹部 155を設ける。凸部 1 63と凹部 155とは、光素子 155の受発光面 154と光ファイバ 162のコアと力 光学的 に結合するように勘合される。このようにして、光素子 155と光ファイバ 162とのァライ メントを容易にすることができる。もちろん、ガラスブロック 161の端面に凹部を設け、 蓋 153の端面に凸部を設けてもよい。  A convex portion 163 is provided on the end face of the glass block 161, and a concave portion 155 is provided on the lid 153. The convex portion 163 and the concave portion 155 are fitted so as to be optically coupled to the light emitting / receiving surface 154 of the optical element 155 and the core of the optical fiber 162. In this way, alignment between the optical element 155 and the optical fiber 162 can be facilitated. Of course, a concave portion may be provided on the end surface of the glass block 161, and a convex portion may be provided on the end surface of the lid 153.
[0046] なお、光モジュールと PLCとを直接接続する場合にぉ 、て、光素子の受発光面と P LCの光導波路とが光学的に結合するように、 PLCの端面に凸部 (または凹部)を形 成すれば、受発光面と光導波路とのァライメントを容易にすることができる。  [0046] When the optical module and the PLC are directly connected, a convex portion (or on the end face of the PLC is connected so that the light emitting / receiving surface of the optical element and the optical waveguide of the PLC are optically coupled. If the concave portion is formed, alignment between the light emitting / receiving surface and the optical waveguide can be facilitated.
実施例 4  Example 4
[0047] 図 13に、実施例 4にかかる光モジュールとガラスブロックの接合方法を示す。光モ ジュール 171の光素子 175は、ガラスブロック 181に固定された光ファイバ 182と光 学的に結合する。ガラスブロック 181は、光ファイバ 182の端面を含む面において、 光モジュール 171の蓋 173に接合される。  FIG. 13 shows a method for joining an optical module and a glass block according to Example 4. The optical element 175 of the optical module 171 is optically coupled to an optical fiber 182 fixed to the glass block 181. The glass block 181 is bonded to the lid 173 of the optical module 171 on the surface including the end surface of the optical fiber 182.
[0048] 光ファイバ 182からの光入出力により、端面において反射が生じるため、ガラスプロ ック 181の端面と蓋 173とに、例えば、 8度の傾斜面を設ける。この傾斜面によって光 素子 175への戻り光、および光ファイバ 182への戻り光を防止することができる。なお 、蓋 173の表面に、薄膜フィルタを接着してもよい。  [0048] Since light is input / output from the optical fiber 182 and reflection occurs at the end surface, an inclined surface of, for example, 8 degrees is provided on the end surface of the glass block 181 and the lid 173. This inclined surface can prevent return light to the optical element 175 and return light to the optical fiber 182. A thin film filter may be bonded to the surface of the lid 173.
[0049] なお、光モジュールと PLCとを直接接続する場合にぉ 、て、端面にお!、て発生す る戻り光を防止するために、 PLCの端面と光モジュールの蓋とに傾斜面を設けてもよ ぐ蓋 173の表面に、薄膜フィルタを接着してもよい。 実施例 5 [0049] When the optical module and the PLC are directly connected, in order to prevent the return light generated on the end face, inclined faces are provided on the end face of the PLC and the lid of the optical module. A thin film filter may be adhered to the surface of the lid 173 which may be provided. Example 5
[0050] 図 14に、実施例 5にかかる光モジュールとガラスブロックの接合方法を示す。ガラス ブロック 212は、 3本の 4心テープ型光ファイバ 213a〜213cを固定し、光ファイバ 21 3の端面を含む面において、 3つの光モジュール 201a〜201cに接合される。 3つの 光モジュール 201a〜201cは、図 7, 8に示したように、実装ボード 212に固定される  FIG. 14 shows a method of joining the optical module and the glass block according to the fifth example. The glass block 212 fixes three four-core tape type optical fibers 213a to 213c, and is bonded to the three optical modules 201a to 201c on the surface including the end face of the optical fiber 213. The three optical modules 201a to 201c are fixed to the mounting board 212 as shown in FIGS.
[0051] 光モジュール 201a〜201cは、複数の光素子を集積した光モジュールであり、複数 個の光モジュールに対して一つのブロックで接続することから、実装ボード上の実装 スペースを小さくすることができる。光モジュール 201a〜201cは、リードピンを介して 実装ボード 212に固定されることから、強固に固定することができる。 [0051] The optical modules 201a to 201c are optical modules in which a plurality of optical elements are integrated, and are connected to the plurality of optical modules in one block, so that the mounting space on the mounting board can be reduced. it can. Since the optical modules 201a to 201c are fixed to the mounting board 212 via lead pins, they can be firmly fixed.
[0052] 複数個の光モジュールと PLCを直接接続する場合にも、光素子の受発光面と光導 波路とが光学的に結合するように、 PLCの端面において、複数個の光モジュールを 接続してちょい。  [0052] Even when a plurality of optical modules and a PLC are directly connected, the plurality of optical modules are connected to the end face of the PLC so that the light receiving and emitting surfaces of the optical element and the optical waveguide are optically coupled. Hey.
実施例 6  Example 6
[0053] 図 15に、実施例 6にかかる光モジュールとガラスブロックの接合方法を示す。ガラス ブロック 232は、実施例 5と同じ構造である。光モジュール 221は、 1つの筐体に 12個 の光素子を集積している。全ての光素子を気密封止することができるとともに、実施 例 2に示したように、個別に気密封止した光素子をアレイ化して配設するよりも小型化 することができる。  FIG. 15 shows a method for joining an optical module and a glass block according to Example 6. The glass block 232 has the same structure as in Example 5. The optical module 221 has 12 optical elements integrated in one housing. All the optical elements can be hermetically sealed, and as shown in the second embodiment, it is possible to reduce the size of the optical elements as compared to arranging the optical elements individually hermetically sealed.
[0054] (光素子の配置)  [0054] (Arrangement of optical element)
光モジュールとガラスブロックとのァライメントの精度を確保するためには、光モジュ ール内部において、光素子を正確に配置しなければならない。図 16に、光モジユー ルにおける光素子の配置を示す。上述したように、光モジュール 401には、光素子 4 05と実装ボード上の電極パターンとを接続するための金属配線が形成されている。 この金属配線を利用して、光素子の位置を確定する。光素子 405に電気的に接続さ れる金属配線 41 la, 41 lbを形成するときに、例えば、マーカパターン 412a4〜12f を形成する。マーカパターン 412a4〜12fにより、光素子 405の受発光面 404の中 心を、常に一定の精度でァライメントして、筐体 402に固定することができる。 本実施形態にぉ 、て、筐体の材質としてアルミナ系セラミックスを用いた力 例えば 、炭化珪素、窒化珪素、窒化アルミ、ジルコユア等の他のセラミックスを用いてもよい 。また、石英、サファイア等のガラスを用いてもよい。また、筐体と蓋とを接合する接合 剤は、金錫や金ゲルマニウム、錫鉛といった金属半田に限らず、例えば、低融点ガラ スゃロウ剤などを用いることができる。蓋の材質は、上述したサファイアに限らず、例 えば、石英ガラス、ホウ酸塩ガラスなどを用いることができる。筐体と蓋とにより、光モ ジュール内部に配置した光素子の特性が劣化しな 、ように気密性が確保できれば、 その材料'部材を問わない。 In order to ensure the alignment accuracy between the optical module and the glass block, the optical elements must be accurately arranged inside the optical module. Figure 16 shows the arrangement of the optical elements in the optical module. As described above, the optical module 401 is formed with metal wiring for connecting the optical element 400 and the electrode pattern on the mounting board. Using this metal wiring, the position of the optical element is determined. When the metal wirings 41 la and 41 lb electrically connected to the optical element 405 are formed, for example, marker patterns 412a4 to 12f are formed. With the marker patterns 412a4 to 12f, the center of the light receiving / emitting surface 404 of the optical element 405 can always be aligned with a constant accuracy and fixed to the housing 402. In this embodiment, other ceramics such as silicon carbide, silicon nitride, aluminum nitride, and zirconium may be used as a material for the casing. Further, glass such as quartz or sapphire may be used. Further, the bonding agent for bonding the housing and the lid is not limited to metal solder such as gold tin, gold germanium, and tin lead, and for example, a low melting point glass wax agent or the like can be used. The material of the lid is not limited to sapphire described above, and for example, quartz glass, borate glass, or the like can be used. If the airtightness can be ensured such that the characteristics of the optical element disposed inside the optical module are not deteriorated by the housing and the lid, the material's member is not limited.

Claims

請求の範囲 The scope of the claims
[1] 少なくとも一方が開口した筐体と、光を透過し、前記筐体の開口部を塞いで密封す る蓋と、受発光面を前記蓋と対向させて固定された光素子を含む光モジュールにお いて、  [1] A light including a housing having at least one opening, a lid that transmits light and closes and seals the opening of the housing, and an optical element fixed with a light emitting / receiving surface facing the lid In the module,
前記光素子の受発光面と光学的に結合する光ファイバを保持し、前記光ファイバ の端面を含む面において、前記蓋に接合された光ファイバ接続手段を備え、 実装ボードの実装面と前記光素子の光軸とが平行となるように、前記実装ボードに 固定されたことを特徴とする光モジュール。  An optical fiber optically coupled to the light receiving / emitting surface of the optical element is held, and an optical fiber connecting means joined to the lid is provided on a surface including the end surface of the optical fiber, and the mounting surface of the mounting board and the light An optical module, wherein the optical module is fixed to the mounting board so that the optical axis of the element is parallel.
[2] 少なくとも一方が開口した筐体と、光を透過し、前記筐体の開口部を塞いで密封す る蓋と、受発光面を前記蓋と対向させて固定された光素子を含む光モジュールにお いて、  [2] A light including a housing having at least one opening, a lid that transmits light and closes and seals the opening of the housing, and an optical element that is fixed with a light emitting / receiving surface facing the lid In the module,
前記光素子の受発光面と光学的に結合する光ファイバを保持し、前記光ファイバ の端面を含む面において、前記蓋に接合された光ファイバ接続手段と、  An optical fiber connecting means that holds an optical fiber that is optically coupled to the light receiving and emitting surface of the optical element, and that is joined to the lid on the surface including the end face of the optical fiber;
前記光素子と電気的に接続され、前記筐体内部から前記筐体外部に貫通して形 成された金属配線と、  A metal wiring electrically connected to the optical element and formed from the inside of the casing to the outside of the casing;
前記筐体外部の前記金属配線に接合されたリードピンとを備え、  A lead pin joined to the metal wiring outside the housing;
実装ボードの実装面と前記光素子の光軸とが平行となるように、前記実装ボードに 固定されたことを特徴とする光モジュール。  An optical module, which is fixed to the mounting board so that a mounting surface of the mounting board and an optical axis of the optical element are parallel to each other.
[3] 前記リードピンと前記実装ボード上に形成された電極とが、半田により固定されてい ることを特徴とする請求項 2に記載の光モジュール。 [3] The optical module according to [2], wherein the lead pin and the electrode formed on the mounting board are fixed by solder.
[4] 前記リードピンは、前記実装ボード上に固定されたコネクタと勘合して、前記実装ボ ードに固定されていることを特徴とする請求項 2に記載の光モジュール。 4. The optical module according to claim 2, wherein the lead pin is fixed to the mounting board by fitting with a connector fixed on the mounting board.
[5] 前記光ファイバ接続手段は、ガラスブロック力 なり、前記光ファイバの端面を含む 面に凸部と凹部のいずれか一方が形成され、 [5] The optical fiber connecting means has a glass blocking force, and one of a convex portion and a concave portion is formed on a surface including an end surface of the optical fiber,
前記蓋は、前記光素子と前記光ファイバとが光学的に結合するために、前記凸部と 凹部の 、ずれか一方に勘合するように凹部と凸部の!/ヽずれか一方が形成されて ヽる ことを特徴とする請求項 1な 、し 4の 、ずれかに記載の光モジュール。  Since the optical element and the optical fiber are optically coupled to each other, the lid is formed with either a concave portion or a convex portion! / ヽ misalignment so as to be fitted to the convex portion or the concave portion. 5. The optical module according to claim 1, wherein the optical module is misaligned.
[6] 前記光ファイバ接続手段は、ガラスブロック力 なり、前記蓋と前記ガラスブロックと が接合される面力 前記光軸に対して傾斜していることを特徴とする請求項 1ないし 4 の!、ずれかに記載の光モジュール。 [6] The optical fiber connecting means has a glass block force, and the lid and the glass block The surface force to be bonded is inclined with respect to the optical axis. The optical module according to any one of the above.
[7] 前記光ファイバ接続手段は、光フエルールと光コネクタのいずれか一方と勘合する コネクタであることを特徴とする請求項 1な 、し 4の 、ずれかに記載の光モジュール。 7. The optical module according to any one of claims 1 and 4, wherein the optical fiber connecting means is a connector that engages with one of an optical ferrule and an optical connector.
[8] 前記金属配線は、前記光素子が前記光ファイバと光学的に結合する搭載位置を確 定するようにマーカパターンが形成されて 、ることを特徴とする請求項 1な 、し 7の ヽ ずれかに記載の光モジュール。 [8] The metal wiring according to claim 1, wherein a marker pattern is formed so as to determine a mounting position where the optical element is optically coupled to the optical fiber.光 The optical module described in any one.
PCT/JP2006/319449 2005-09-29 2006-09-29 Optical module WO2007037364A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005285064A JP4699155B2 (en) 2005-09-29 2005-09-29 Optical module
JP2005-285064 2005-09-29

Publications (1)

Publication Number Publication Date
WO2007037364A1 true WO2007037364A1 (en) 2007-04-05

Family

ID=37899785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/319449 WO2007037364A1 (en) 2005-09-29 2006-09-29 Optical module

Country Status (2)

Country Link
JP (1) JP4699155B2 (en)
WO (1) WO2007037364A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009001958A1 (en) * 2007-06-28 2008-12-31 Nippon Telegraph And Telephone Corporation Optical module
WO2012141333A1 (en) * 2011-04-12 2012-10-18 Sumitomo Electric Industries, Ltd. Optical transceiver implementing with flexible printed circuit connecting optical subassembly to circuit board

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009008952A (en) * 2007-06-28 2009-01-15 Nippon Telegr & Teleph Corp <Ntt> Optical module
JP4599569B2 (en) * 2008-01-16 2010-12-15 日本電信電話株式会社 Array type optical element connection method
CN103885141A (en) * 2012-12-19 2014-06-25 深圳新飞通光电子技术有限公司 Planar optical waveguide type parallel optical assembly and optical module
CN106483609A (en) * 2015-08-25 2017-03-08 青岛海信宽带多媒体技术有限公司 A kind of optical module

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002359426A (en) * 2001-06-01 2002-12-13 Hitachi Ltd Optical module and optical communication system
JP2003227968A (en) * 2002-02-01 2003-08-15 Sony Corp Optical link device
JP2004294905A (en) * 2003-03-27 2004-10-21 Fdk Corp Fiber collimator array and manufacturing method therefor
WO2005010580A1 (en) * 2003-07-24 2005-02-03 Reflex Photonique Inc./Reflex Photonics Inc. Encapsulated optical package

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3380733B2 (en) * 1998-01-08 2003-02-24 日本電信電話株式会社 Optical module and method of manufacturing the same
KR100677065B1 (en) * 1999-04-29 2007-02-01 삼성전자주식회사 Optical connector module
JP2002202440A (en) * 2000-12-28 2002-07-19 Japan Aviation Electronics Industry Ltd Structure and method of mounting optical module
JP2002313973A (en) * 2001-04-11 2002-10-25 Sumitomo Metal Electronics Devices Inc Package for optical communication
JP4028270B2 (en) * 2002-03-19 2007-12-26 古河電気工業株式会社 Optical module
JP2004253783A (en) * 2003-01-31 2004-09-09 Fuji Photo Film Co Ltd Laser module

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002359426A (en) * 2001-06-01 2002-12-13 Hitachi Ltd Optical module and optical communication system
JP2003227968A (en) * 2002-02-01 2003-08-15 Sony Corp Optical link device
JP2004294905A (en) * 2003-03-27 2004-10-21 Fdk Corp Fiber collimator array and manufacturing method therefor
WO2005010580A1 (en) * 2003-07-24 2005-02-03 Reflex Photonique Inc./Reflex Photonics Inc. Encapsulated optical package

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009001958A1 (en) * 2007-06-28 2008-12-31 Nippon Telegraph And Telephone Corporation Optical module
JP5094860B2 (en) * 2007-06-28 2012-12-12 日本電信電話株式会社 Optical module
US8545111B2 (en) 2007-06-28 2013-10-01 Nippon Telegraph And Telephone Corporation Optical module
WO2012141333A1 (en) * 2011-04-12 2012-10-18 Sumitomo Electric Industries, Ltd. Optical transceiver implementing with flexible printed circuit connecting optical subassembly to circuit board
US9063310B2 (en) 2011-04-12 2015-06-23 Sumitomo Electric Industries, Ltd. Optical transceiver implementing with flexible printed circuit connecting optical subassembly to circuit board

Also Published As

Publication number Publication date
JP2007094145A (en) 2007-04-12
JP4699155B2 (en) 2011-06-08

Similar Documents

Publication Publication Date Title
US11803020B2 (en) Optical bench subassembly having integrated photonic device
AU668031B2 (en) Optical fiber array
US8737784B2 (en) Optical communication module and optical communication connector
US20030091301A1 (en) Miniaturized parallel optical transmitter and receiver module
US9151916B2 (en) Compact optical package made with planar structures
KR20140146648A (en) Hermetic optical fiber alignment assembly
JPH08254635A (en) Optical interconnection device
JP5246136B2 (en) Optical transceiver
US6685363B2 (en) Passive self-alignment technique for array laser transmitters and receivers for fiber optic applications
WO2009107671A1 (en) Photoelectric conversion device
JP4699155B2 (en) Optical module
US7366367B2 (en) Optical data link and method of manufacturing optical data link
JP5404564B2 (en) Optical module and connection structure thereof
US6491446B1 (en) Passive self-alignment technique for array laser transmitters and receivers for fiber optic applications
JP4203837B2 (en) Optical transmission module
EP1306703A1 (en) Optical devices for communication
JPH11287930A (en) Structure of receptacle type optical module
RU2717374C2 (en) Optical bench subassembly having integrated photonic device
JP2009253176A (en) Photoelectric conversion module and optical subassembly
WO2020218171A1 (en) Optical module
JP4779919B2 (en) Photoelectric conversion device
JP2008046367A (en) Optical transceiver and optical module
JP4936581B2 (en) Optical module connection structure
JPH0933765A (en) Optical module
JP2009025433A (en) Armor of optical element and method of armoring

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06810855

Country of ref document: EP

Kind code of ref document: A1