WO2007037021A1 - Liquid crystal display device and process for producing the same - Google Patents

Liquid crystal display device and process for producing the same Download PDF

Info

Publication number
WO2007037021A1
WO2007037021A1 PCT/JP2005/021030 JP2005021030W WO2007037021A1 WO 2007037021 A1 WO2007037021 A1 WO 2007037021A1 JP 2005021030 W JP2005021030 W JP 2005021030W WO 2007037021 A1 WO2007037021 A1 WO 2007037021A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal display
display device
array substrate
counter substrate
Prior art date
Application number
PCT/JP2005/021030
Other languages
French (fr)
Japanese (ja)
Inventor
Toshimasa Eguchi
Shigenori Yamaoka
Shigeyoshi Ootsuki
Toshiyuki Ikariya
Original Assignee
Kuraray Co., Ltd.
Jsr Corporation
Sumitomo Chemical Company, Limited
Sumitomo Bakelite Co., Ltd.
Dai Nippon Printing Co., Ltd.
Toppan Printing Co., Ltd.
Nec Corporation
Hitachi Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co., Ltd., Jsr Corporation, Sumitomo Chemical Company, Limited, Sumitomo Bakelite Co., Ltd., Dai Nippon Printing Co., Ltd., Toppan Printing Co., Ltd., Nec Corporation, Hitachi Chemical Co., Ltd. filed Critical Kuraray Co., Ltd.
Priority to JP2007537523A priority Critical patent/JPWO2007037021A1/en
Publication of WO2007037021A1 publication Critical patent/WO2007037021A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1341Filling or closing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters

Definitions

  • Liquid crystal display device and manufacturing method thereof
  • the present invention relates to a liquid crystal display device used for display of a personal computer, a mobile phone, and the like, and a method of manufacturing the same.
  • a liquid crystal display device for example, there is a TN (TwistedNematic) element having a wide application field, and this TN element is composed of one liquid crystal panel and polarizing plates disposed on both sides thereof.
  • TN TransmissionNematic
  • Patent Literature 1 Non-Patent Literature 2
  • Non-Patent Document 1 “FPD Guidebook” edited by Japan Electronics and Information Technology Industries Association (2003) (pp. 20-21)
  • Patent Document 1 Japanese Patent Laid-Open No. 4 208925 (first page)
  • Non-Patent Document 2 Techno Times “Monthly Display” March 2003 (Pages 55-61) Disclosure of Invention
  • the LCD of the glass substrate on both sides is apt to break before the polarizing plate in the manufacturing process is pasted, so it is difficult to reduce the thickness of the glass substrate to 0.3 mm or less.
  • plastic LCDs on both sides have not been able to manufacture high-definition liquid crystal display devices using active matrix.
  • polysilicon thin film transistors p-SiTFT
  • p-SiTFT polysilicon thin film transistors
  • the present invention has been made in view of the strong point, and an object of the present invention is to provide a liquid crystal display device capable of manufacturing a thin, light, and high-definition device that can be easily cracked with high yield, and a method for manufacturing the same. It is said.
  • the present invention is configured as follows.
  • An array substrate having a thin film switching element formed on glass
  • liquid crystal display device wherein a ratio of a linear expansion coefficient between the array substrate and the counter substrate is 1 to 10 or less.
  • liquid crystal display device wherein the thin film switching element is a polysilicon thin film transistor.
  • the invention according to claim 5 provides:
  • the liquid crystal display device according to claim 1, wherein the sealing material is an ultraviolet curable resin.
  • An array substrate having a thin film switching element formed on glass
  • the present invention has the following effects.
  • the array substrate in which a thin film switching element is formed on glass, a counter substrate having a specified plastic film, and the array substrate and the counter substrate are bonded together. It is a high-definition liquid crystal display device that is thinner and lighter than both glass substrate liquid crystal display devices on both sides.
  • the ratio of the linear expansion coefficient between the array substrate and the counter substrate is 1 to 10 or less, and the liquid crystal display device becomes hot due to the definition of the ratio of the linear expansion coefficient. At this time, the liquid crystal display device is less likely to be warped due to a difference in thermal expansion between the array substrate and the counter substrate or to be destroyed due to peeling.
  • the thin film switching element is a polysilicon thin film transistor, and the mobility is high and the switching element can be formed in a small area, or it can be formed up to a driving circuit.
  • the counter substrate is a color filter substrate, and colorization can be easily performed.
  • the sealing material is an ultraviolet curable resin
  • the curing time is short, and it can be cured in a room temperature environment by irradiating with ultraviolet rays. is there.
  • the array substrate in which the thin film switching element is formed on the glass and the counter substrate having the specified plastic film are bonded to each other by using the specified sealing material.
  • High-definition liquid crystal display devices that are thinner and lighter than glass substrate liquid crystal display devices can be manufactured with good yield.
  • FIG. 1 is a schematic cross-sectional view showing a configuration of a liquid crystal display device.
  • Liquid crystal display device of the present invention 1 01 includes an array substrate 110, a counter substrate 120, a liquid crystal 130 interposed between the array substrate 110 and the counter substrate 120, and a sealing material 140 that bonds the array substrate 110 and the counter substrate 120 together.
  • the array substrate 110 has a configuration in which a thin film switching element 112 is formed on a glass 111.
  • the thin film switching element 112 include a thin film diode, an amorphous silicon thin film transistor, and a polysilicon thin film transistor. Of these, it is preferable to use a polysilicon thin film transistor because the mobility is high and the switching element can be formed in a small area and a driving circuit can be formed.
  • the counter substrate 120 has a plastic film 121 having a linear expansion coefficient of 40 ppmZ ° C or less from 30 ° C to 100 ° C and a thickness of 5 m or more and less than 300 ⁇ m.
  • the plastic film 121 include polyethylene naphthalate, aromatic polyamide, polyimide, polybenzothiazole, polybenzoxazole, and the like.
  • the counter substrate 120 may or may not have a transparent electrode depending on the driving mode of the liquid crystal 130.
  • the liquid crystal 130 has a counter electrode when the driving mode is twisted nematic (TN), vertical alignment, polymer dispersion, etc., and has a counter electrode when in-plane switching (IPS). Not done.
  • the counter electrode may be a color filter substrate or a transparent substrate, but it is preferable to use a color filter substrate because it can be easily colored.
  • the counter substrate 20 can be colored without using a color filter substrate.
  • the array substrate 110 can be converted to a color filter (color filter “on” array method) or the color of the knocklight can be switched (field sequential method). ).
  • Sealing material 140 undergoes a curing reaction at 30 ° C. or lower to bond array substrate 110 and counter substrate 120 together, and seal material 140 is interposed between array substrate 110 and counter substrate 120. Spacer beads 131 and liquid crystal 130 are sealed.
  • the sealing material 140 include a two-component mixed curable resin in which a curing reaction proceeds by mixing a main agent and a curing agent, and an ultraviolet curable resin in which a curing reaction proceeds by irradiation with ultraviolet rays. Can be used. Since the curing time is short, it is preferable to use an ultraviolet curable resin, and it is possible to cure in a room temperature environment by irradiating ultraviolet rays.
  • the ratio of the linear expansion coefficient between the array substrate 110 and the counter substrate 120 is the warpage of the liquid crystal display device 101 due to the difference in thermal expansion between the array substrate 110 and the counter substrate 120 when the liquid crystal display device 101 is heated. It is preferable that the ratio is 1 to 10 or less because breakage due to or peeling occurs.
  • the liquid crystal 130 is interposed between the array substrate 110 in which the thin film switching element is formed on the glass and the counter substrate 120 made of the specified plastic film 121, and is bonded by the specified sealant 140.
  • the high-definition liquid crystal display device 101 that is thinner and lighter than the glass substrate liquid crystal display device on both sides can be manufactured with a high yield.
  • FIG. 2 is a schematic cross-sectional view showing the configuration of the liquid crystal display device 101 of the first embodiment.
  • a-SiTFT thin film transistor that also has an amorphous silicon switch is used as a switching element 2, and the diagonal number is 50 mm.
  • a 320 ⁇ 240 array substrate 110 was prepared.
  • the non-alkali glass 1 had a linear expansion coefficient of 4 ppm / ° C, and the array substrate 110 on which the switching element 2 was formed was the same.
  • a 125 ⁇ m thick polyethylene naphthalate film (Teonex Q-65, manufactured by Teijin DuPont Films Ltd.) 3 is also oxidized by reactive sputtering using silicon as a reaction gas with silicon as a target.
  • a gas noble layer 4 was formed, and then a transparent conductive film 5 having an ITO force was formed by sputtering using an indium tin oxide (hereinafter abbreviated as ITO) target.
  • ITO indium tin oxide
  • ITO indium tin oxide
  • ITO indium tin oxide
  • sealant 140 was used as the sealant 140 with an ultraviolet curable resin having an acid aluminum with a maximum particle size of 2 ⁇ m or less and an acid key with a maximum particle size of 0.5 m or less as a filler. .
  • This sealant 140 could be cured in a temperature environment of 25 ° C by irradiating with 2000 mjZcm 2 of ultraviolet light from a high pressure mercury lamp.
  • the sealing material 140 was drawn on the periphery of the array substrate 110 using a drawing device (dispenser). On the other hand, spacer beads 7 having a particle diameter of 5.0 m were sprayed on the counter substrate 120. Subsequently, the array substrate 110 and the counter substrate 120 are bonded by a bonding apparatus having a positioning device, and the sealing material 140 is cured by irradiating a high-pressure mercury lamp while pressing using a quartz press plate. Was made.
  • a liquid crystal vacuum injection device is used to inject a polymer-dispersed liquid crystal composition comprising an talyl monomer and a fluorine-based liquid crystal into the cell, and the inlet is sealed with a sealing agent, and then the whole surface is irradiated with ultraviolet rays.
  • Acrylic monomers were polymerized to obtain high molecular dispersion type liquid crystal 8.
  • a liquid crystal display device 101 was produced.
  • the liquid crystal display device 101 was stored in a constant temperature bath at 80 ° C. for 500 hours. After that, when the test pattern was displayed, it was displayed well.
  • FIG. 3 is a schematic cross-sectional view showing the configuration of the liquid crystal display device 101 of the second embodiment.
  • 0.5mm-thick alkali-free glass (1737 manufactured by Corning Co., Ltd.) 11
  • a thin film diode with tantalum Z tantalum oxide Z tantalum power is used as a switching element 12, and the diagonal size is 50 mm and the number of pixels is 320 X 240
  • An array substrate 110 was prepared.
  • the non-alkali glass 11 has a linear expansion coefficient of 4 ppmZ ° C, and the same applies to the array substrate 110 on which the switching elements 12 are formed.
  • a color filter 14 corresponding to the array substrate 110 was produced on a 125 ⁇ m thick polyethylene naphthalate film (Teonex Q-65 manufactured by Teijin DuPont Films, Inc.) 13 using a pigment-dispersed photoresist.
  • a gas noble layer 15 that also serves as an oxide layer was formed by reactive sputtering using silicon as a target and oxygen as a reaction gas.
  • a transparent conductive film 16 having ITO force was formed by a sputtering method using an ITO target.
  • ITO was patterned by photolithography using a positive photoresist and etching with hydrochloric acid to produce a color filter substrate.
  • the polyethylene naphthalate film 13 had a linear expansion coefficient of 18 ppm / ° C., and the counter substrate 120 on which the power filter 14, gas nozzle layer 15 and transparent conductive film 16 were formed was the same.
  • Bisphenol A type epoxy resin (Epicoat manufactured by Yuka Shell Epoxy Co., Ltd.), both-end epoxy ethylene glycol oligomer (PTG manufactured by Hodogaya Chemical Co., Ltd.), acid aluminum with maximum particle size of 2 ⁇ m or less, maximum particle size 0
  • a two-pack type sealant 140 that hardens when mixed with a hardener comprising aluminum and a silicon oxide having a maximum particle size of 0.5 ⁇ m or less. This sealant 140 can be cured in a 72 hour environment at 25 ° C after mixing.
  • the base material of the sealing material 140 and the curing agent were mixed around the periphery of the array substrate 110, and then the sealing material 140 was printed using a screen printing apparatus.
  • the spacer beads 18 having a particle diameter of 5. O / zm were sprayed on the counter substrate 120. Subsequently, the array substrate 110 and the counter substrate 120 are bonded together by a bonding apparatus having a positioning device, pressed using a metal press plate, and then left to stand at 25 ° C. for 72 hours, and the sealing material 140 Curing was performed to produce a cell.
  • a high-molecular dispersion type liquid crystal composition composed of an acrylic monomer and a fluorine-based liquid crystal is injected into this cell using a liquid crystal vacuum injection device, and the injection port is sealed with a sealing agent, and then the entire surface is irradiated with ultraviolet rays. Irradiation was performed to polymerize the acrylic monomer to obtain polymer dispersed liquid crystal 19. Thus, a liquid crystal display device 101 was produced.
  • the liquid crystal display device 101 was stored in a constant temperature bath at 80 ° C. for 500 hours. After that, when the test pattern was displayed, it was displayed well.
  • FIG. 4 is a schematic cross-sectional view showing the configuration of the liquid crystal display device 101 of the third embodiment.
  • An array substrate with a diagonal of 50 mm and a pixel number of 320 ⁇ 240 was prepared using a thin film transistor made of polysilicon as a switching element 22 on a 0.5 mm-thick alkali-free glass (Corning 1737) 21.
  • the non-alkali glass 21 had a linear expansion coefficient of 4 ppmZ ° C., and the array substrate 110 on which the switching elements 22 were formed was the same.
  • a power filter 24 corresponding to the array substrate 110 was prepared using a pigment-dispersed photoresist.
  • a gas noble layer 25 that also serves as an oxide layer was formed by a reactive sputtering method using silicon as a target and oxygen as a reaction gas.
  • a transparent conductive film 26 having ITO force was formed by a sputtering method using an ITO target.
  • ITO was patterned by photolithography using a positive photoresist and etching with hydrochloric acid to produce a color filter substrate, which was used as a counter substrate.
  • This transparent organic / inorganic composite plastic film 23 had a linear expansion coefficient of 14 ppmZ ° C., and the counter substrate 120 on which the color filter 24, the gas noble layer 25 and the transparent conductive film 26 were formed was the same.
  • liquid crystal display device 101 A liquid crystal alignment film made of polyimide was formed on each of the array substrate 110 and the counter substrate 120, and a 90 ° twist alignment process was performed. Next, the sealing material 140 was drawn on the peripheral portion on the array substrate 110 using a drawing device (dispenser). On the other hand, spacer beads 28 having a particle diameter of 5.0 m were sprayed on the counter substrate 120. Subsequently, the array substrate 110 and the counter substrate 120 are bonded by a bonding device having a positioning device, and the sealing material 140 is cured by irradiating a high-pressure mercury lamp while pressing using a quartz press plate. Was made.
  • a nematic liquid crystal composition composed of fluorine-based liquid crystal 29 was injected into this cell using a liquid crystal vacuum injection device, and the injection port was sealed with a sealing agent. Finally, polarizing plates 30 were bonded to the respective surfaces of the array substrate side and the counter substrate side with the absorption axis aligned in the same direction as the alignment treatment. Thus, a liquid crystal display device 101 was produced.
  • the liquid crystal display device 101 was stored in a constant temperature bath at 80 ° C. for 500 hours. After that, when the test pattern was displayed, it was displayed well.
  • Example 2 The same procedure as in Example 1 was conducted, except that a polyethylene naphthalate film having a thickness of 125 m was replaced with a polyether sulfone film having a thickness of 200 ⁇ m (FS-1300, manufactured by Sumitomo Bakelite Co., Ltd.).
  • the linear expansion coefficient of this film was 55 ppmZ ° C, and the same was true for the counter substrate on which the gas barrier layer and the transparent conductive film were formed.
  • thermosetting resin A sealing material (XN-21S manufactured by Mitsui Engineering Co., Ltd.) made of thermosetting resin was used.
  • a sealant was printed on the periphery of the array substrate using a screen printer, and then pre-beta was performed at 80 ° C for 30 minutes in the oven to evaporate the solvent component.
  • spacer beads having a particle size of 5.0 m were sprayed on the counter substrate.
  • the array substrate and the counter substrate are bonded by a bonding device having a positioning device, pressed using a metal press plate, and then allowed to stand at 150 ° C. for 2 hours to cure the sealing material.
  • a cell was produced. When the cell was returned to room temperature, a deformation in which the central part was slightly thick was observed.
  • a liquid crystal vacuum injection device is used to inject a polymer-dispersed liquid crystal composition comprising an acrylic monomer and a fluorine-based liquid crystal into the cell, and the inlet is sealed with a sealing agent, and then the whole surface is irradiated with ultraviolet rays. Acrylic monomers were polymerized to form polymer dispersed liquid crystals. Thus, a liquid crystal display device was produced.
  • the present invention can be applied to a liquid crystal display device used for display of a personal computer, a mobile phone, and the like and a manufacturing method thereof, and a high-definition device that is thin, light, and easy to crack can be manufactured with high yield.
  • FIG. 1 is a schematic cross-sectional view showing a configuration of a liquid crystal display device.
  • FIG. 2 is a schematic cross-sectional view showing the configuration of the liquid crystal display device of Example 1.
  • FIG. 3 is a schematic cross-sectional view showing a configuration of a liquid crystal display device of Example 2.
  • FIG. 4 is a schematic sectional view showing a configuration of a liquid crystal display device of Example 3. Explanation of symbols

Abstract

[PROBLEMS] To provide a device having good display properties and reliability, produced by laminating an array substrate comprising a thin-film switching element provided on glass onto a counter substrate formed of a plastic film. [MEANS FOR SOLVING PROBLEMS] This liquid crystal display device (101) is produced by laminating an array substrate (110) comprising a thin-film switching element provided on glass onto a counter substrate (120) comprising a plastic film having a thickness of not less than 5 μm and less than 300 μm and having a coefficient of linear expansion of not more than 40 ppm/°C as determined from 30°C to 100°C with the aid of a sealing material (140) which causes a curing reaction at 30°C or below.

Description

明 細 書  Specification
液晶表示装置及びその製造方法  Liquid crystal display device and manufacturing method thereof
技術分野  Technical field
[0001] この発明は、パーソナルコンピュータや携帯電話などの表示に用いられる液晶表示 装置及びその製造方法に関するものである。  [0001] The present invention relates to a liquid crystal display device used for display of a personal computer, a mobile phone, and the like, and a method of manufacturing the same.
背景技術  Background art
[0002] このような液晶表示装置として、例えば応用分野の広い TN(TwistedNematic)素 子があり、この TN素子は、 1枚の液晶パネルとその両側に配置された偏光板により構 成され、この両側の偏光板がともにガラス基板である LCDによる光シャツタがある(非 特許文献 1)。  [0002] As such a liquid crystal display device, for example, there is a TN (TwistedNematic) element having a wide application field, and this TN element is composed of one liquid crystal panel and polarizing plates disposed on both sides thereof. There is a light shirt using an LCD where both polarizing plates are glass substrates (Non-patent Document 1).
[0003] また、両側の偏光板ともプラスチックフィルムの LCDが提案されており、スイッチング 素子を形成したアレイ基板を使用しな 、、 V、わゆるノッシブマトリクスの液晶表示装 置が製造されている (特許文献 1,非特許文献 2)。  [0003] In addition, a plastic film LCD has been proposed for both polarizing plates, and a liquid crystal display device of V, a so-called noisy matrix is manufactured without using an array substrate on which switching elements are formed. (Patent Literature 1, Non-Patent Literature 2).
非特許文献 1 :社団法人電子情報技術産業協会編「FPDガイドブック」(2003年) ( 第 20— 21頁)  Non-Patent Document 1: “FPD Guidebook” edited by Japan Electronics and Information Technology Industries Association (2003) (pp. 20-21)
特許文献 1:特開平 4 208925号公報 (第 1頁)  Patent Document 1: Japanese Patent Laid-Open No. 4 208925 (first page)
非特許文献 2:テクノタイムズ社「月刊ディスプレイ」 2003年 3月号 (第 55— 61頁) 発明の開示  Non-Patent Document 2: Techno Times “Monthly Display” March 2003 (Pages 55-61) Disclosure of Invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] ところで、両側ともガラス基板の LCDは、造工程中の偏光板を貼る前に割れやすい ので、ガラス基板の厚さをそれぞれ 0. 3mm以下に薄型化するのが困難である。 [0004] By the way, the LCD of the glass substrate on both sides is apt to break before the polarizing plate in the manufacturing process is pasted, so it is difficult to reduce the thickness of the glass substrate to 0.3 mm or less.
[0005] また、両側ともプラスチックフィルムの LCDは、アクティブマトリクス型による高精細な 液晶表示装置が製造できていない。特に、ポリシリコン薄膜トランジスタ (p— SiTFT) は、一般的には 400°C以上の高温の加工が必要となるため、プラスチック上に形成 するのは困難である。 [0005] Also, plastic LCDs on both sides have not been able to manufacture high-definition liquid crystal display devices using active matrix. In particular, polysilicon thin film transistors (p-SiTFT) are generally difficult to form on plastic because they require processing at a high temperature of 400 ° C or higher.
[0006] この発明は、力かる点に鑑みてなされたもので、薄くて軽く割れにくぐ高精細の装 置が歩留まり良く製造できる液晶表示装置及びその製造方法を提供することを目的 としている。 [0006] The present invention has been made in view of the strong point, and an object of the present invention is to provide a liquid crystal display device capable of manufacturing a thin, light, and high-definition device that can be easily cracked with high yield, and a method for manufacturing the same. It is said.
課題を解決するための手段  Means for solving the problem
[0007] 前記課題を解決し、かつ目的を達成するために、この発明は、以下のように構成さ れている。  In order to solve the above problems and achieve the object, the present invention is configured as follows.
[0008] 請求項 1に記載の発明は、 [0008] The invention of claim 1 provides
ガラス上に薄膜スイッチング素子を形成したアレイ基板と、  An array substrate having a thin film switching element formed on glass;
30°Cから 100°Cにおける線膨張係数が 40ppmZ°C以下である厚さ 5 μ m以上 30 0 μ m未満のプラスチックフィルムを有する対向基板と、  A counter substrate having a plastic film with a thickness of 5 μm or more and less than 300 μm, whose linear expansion coefficient at 30 ° C to 100 ° C is 40 ppmZ ° C or less,
30°C以下で硬化反応が進行して前記アレイ基板と前記対向基板とを貼り合わせる シール材と、  A sealant that bonds the array substrate and the counter substrate by curing reaction at 30 ° C or lower;
を有することを特徴とする液晶表示装置である。  It is a liquid crystal display device characterized by having.
[0009] 請求項 2に記載の発明は、 [0009] The invention according to claim 2
前記アレイ基板と前記対向基板との線膨張係数の比率が、 1対 10以下であることを 特徴とする請求項 1に記載の液晶表示装置である。  2. The liquid crystal display device according to claim 1, wherein a ratio of a linear expansion coefficient between the array substrate and the counter substrate is 1 to 10 or less.
[0010] 請求項 3に記載の発明は、 [0010] The invention according to claim 3
前記薄膜スイッチング素子が、ポリシリコン薄膜トランジスタであることを特徴とする 請求項 1または請求項 2に記載の液晶表示装置である。  3. The liquid crystal display device according to claim 1, wherein the thin film switching element is a polysilicon thin film transistor.
[0011] 請求項 4に記載の発明は、 [0011] The invention of claim 4 provides
前記対向基板が、カラーフィルタ基板であることを特徴とする請求項 1乃至請求項 3 の!、ずれか 1項に記載の液晶表示装置である。  4. The liquid crystal display device according to claim 1, wherein the counter substrate is a color filter substrate.
[0012] 請求項 5に記載の発明は、 [0012] The invention according to claim 5 provides:
前記シール材が、紫外線硬化型榭脂である請求項 1乃至請求項 4の ゝずれか 1項 に記載の液晶表示装置である。  The liquid crystal display device according to claim 1, wherein the sealing material is an ultraviolet curable resin.
[0013] 請求項 6に記載の発明は、 [0013] The invention of claim 6 provides
ガラス上に薄膜スイッチング素子を形成したアレイ基板と、  An array substrate having a thin film switching element formed on glass;
30°Cから 100°Cにおける線膨張係数が 40ppmZ°C以下である厚さ 5 μ m以上 30 0 μ m未満のプラスチックフィルムを有する対向基板とを、  A counter substrate having a plastic film with a thickness of 5 μm or more and less than 300 μm, whose linear expansion coefficient at 30 ° C to 100 ° C is 40 ppmZ ° C or less,
30°C以下で硬化反応が進行するシール材を用いて貼り合わせることを特徴とする 液晶表示装置の製造方法である。 It is characterized by sticking together using a sealant that progresses at 30 ° C or less. It is a manufacturing method of a liquid crystal display device.
発明の効果  The invention's effect
[0014] 前記構成により、この発明は、以下のような効果を有する。  [0014] With the above configuration, the present invention has the following effects.
[0015] 請求項 1に記載の発明では、ガラス上に薄膜スイッチング素子を形成したアレイ基 板と、規定のプラスチックフィルムを有する対向基板と、アレイ基板と対向基板とを貼 り合わせる規定のシール材とを有し、両側ともガラス基板の液晶表示装置より薄くて 軽く割れにくぐ高精細の液晶表示装置である。  [0015] In the invention according to claim 1, in the specified sealing material, the array substrate in which a thin film switching element is formed on glass, a counter substrate having a specified plastic film, and the array substrate and the counter substrate are bonded together. It is a high-definition liquid crystal display device that is thinner and lighter than both glass substrate liquid crystal display devices on both sides.
[0016] 請求項 2に記載の発明では、アレイ基板と対向基板との線膨張係数の比率が、 1対 10以下であり、この線膨張係数の比率の規定により、液晶表示装置が高温になった ときにアレイ基板と対向基板の熱膨張の差による液晶表示装置の反りや剥離による 破壊が発生しにくくなる。  [0016] In the invention according to claim 2, the ratio of the linear expansion coefficient between the array substrate and the counter substrate is 1 to 10 or less, and the liquid crystal display device becomes hot due to the definition of the ratio of the linear expansion coefficient. At this time, the liquid crystal display device is less likely to be warped due to a difference in thermal expansion between the array substrate and the counter substrate or to be destroyed due to peeling.
[0017] 請求項 3に記載の発明では、薄膜スイッチング素子が、ポリシリコン薄膜トランジスタ であり、移動度が高くスイッチング素子が小さな面積で済むことや、駆動用の回路ま で形成することができる。  [0017] In the invention according to claim 3, the thin film switching element is a polysilicon thin film transistor, and the mobility is high and the switching element can be formed in a small area, or it can be formed up to a driving circuit.
[0018] 請求項 4に記載の発明では、対向基板が、カラーフィルタ基板であり、カラー化が 容易にできる。  [0018] In the invention according to claim 4, the counter substrate is a color filter substrate, and colorization can be easily performed.
[0019] 請求項 5に記載の発明では、シール材が、紫外線硬化型榭脂であり、硬化時間が 短時間で済み、かつ紫外線を照射することにより常温の温度環境で硬化することが 可能である。  [0019] In the invention according to claim 5, the sealing material is an ultraviolet curable resin, the curing time is short, and it can be cured in a room temperature environment by irradiating with ultraviolet rays. is there.
[0020] 請求項 6に記載の発明では、ガラス上に薄膜スイッチング素子を形成したアレイ基 板と、規定のプラスチックフィルムを有する対向基板とを規定のシール材により貼り合 わせることで、両側ともガラス基板の液晶表示装置より薄くて軽く割れにくぐ高精細 の液晶表示装置が歩留まり良く製造できる。  [0020] In the invention described in claim 6, the array substrate in which the thin film switching element is formed on the glass and the counter substrate having the specified plastic film are bonded to each other by using the specified sealing material. High-definition liquid crystal display devices that are thinner and lighter than glass substrate liquid crystal display devices can be manufactured with good yield.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0021] 以下、この発明の液晶表示装置及びその製造方法の実施の形態について説明す る力 この発明の実施の形態は、発明の最も好ましい形態を示すものであり、この発 明はこれに限定されない。 [0021] Hereinafter, the power to describe the embodiments of the liquid crystal display device and the manufacturing method thereof according to the present invention. The embodiment of the present invention shows the most preferable embodiment of the present invention, and the present invention is not limited thereto. Not.
[0022] 図 1は液晶表示装置の構成を示す概略断面図である。この発明の液晶表示装置 1 01は、アレイ基板 110と、対向基板 120と、アレイ基板 110と対向基板 120との間に 介在する液晶 130と、アレイ基板 110と対向基板 120とを貼り合わせるシール材 140 とを有する。 FIG. 1 is a schematic cross-sectional view showing a configuration of a liquid crystal display device. Liquid crystal display device of the present invention 1 01 includes an array substrate 110, a counter substrate 120, a liquid crystal 130 interposed between the array substrate 110 and the counter substrate 120, and a sealing material 140 that bonds the array substrate 110 and the counter substrate 120 together.
[0023] アレイ基板 110は、ガラス上 111に薄膜スイッチング素子 112を形成した構成であ る。この薄膜スイッチング素子 112として、例えば、薄膜ダイオード、アモルファスシリ コン薄膜トランジスタ、ポリシリコン薄膜トランジスタなどが挙げられる。移動度が高くス イッチング素子が小さな面積で済むことや、駆動用の回路まで形成することができる ことから、前記のうちポリシリコン薄膜トランジスタを用いることが好ましい。  The array substrate 110 has a configuration in which a thin film switching element 112 is formed on a glass 111. Examples of the thin film switching element 112 include a thin film diode, an amorphous silicon thin film transistor, and a polysilicon thin film transistor. Of these, it is preferable to use a polysilicon thin film transistor because the mobility is high and the switching element can be formed in a small area and a driving circuit can be formed.
[0024] 対向基板 120は、 30°Cから 100°Cにおける線膨張係数が 40ppmZ°C以下である 厚さ 5 m以上 300 μ m未満のプラスチックフィルム 121を有する。このプラスチックフ イルム 121は、例えば、ポリエチレンナフタレート、芳香族ポリアミド、ポリイミド、ポリべ ンゾチアゾール、ポリべンゾォキサゾールなどが挙げられる。  [0024] The counter substrate 120 has a plastic film 121 having a linear expansion coefficient of 40 ppmZ ° C or less from 30 ° C to 100 ° C and a thickness of 5 m or more and less than 300 μm. Examples of the plastic film 121 include polyethylene naphthalate, aromatic polyamide, polyimide, polybenzothiazole, polybenzoxazole, and the like.
[0025] 対向基板 120は、液晶 130の駆動モードにより、透明電極を有していても有してい なくても良い。また、液晶 130の駆動モードがッイステツドネマチック (TN)、垂直配向、 高分子分散などの場合は対向電極を有しており、インプレーンスイッチング (IPS)の場 合には対向電極を有していない。また、対向電極は、カラーフィルタ基板であっても 透明基板であっても力まわな 、が、カラーフィルタ基板を用いるとカラー化が容易に できるので好ましい。対向基板 20にカラーフィルタ基板を用いずにカラー化する方法 としては、アレイ基板 110をカラーフィルタ化する方法 (カラーフィルタ'オン'アレイ方 式)や、ノ ックライトの色を切り替える方法 (フィールドシーケンシャル方式)などが挙げ られる。  The counter substrate 120 may or may not have a transparent electrode depending on the driving mode of the liquid crystal 130. In addition, the liquid crystal 130 has a counter electrode when the driving mode is twisted nematic (TN), vertical alignment, polymer dispersion, etc., and has a counter electrode when in-plane switching (IPS). Not done. The counter electrode may be a color filter substrate or a transparent substrate, but it is preferable to use a color filter substrate because it can be easily colored. The counter substrate 20 can be colored without using a color filter substrate. For example, the array substrate 110 can be converted to a color filter (color filter “on” array method) or the color of the knocklight can be switched (field sequential method). ).
[0026] シール材 140は、 30°C以下で硬化反応が進行してアレイ基板 110と対向基板 120 とを貼り合わせ、このシール材 140はアレイ基板 110と対向基板 120との間に介在す るスぺーサービーズ 131、液晶 130のシールを行う。このシール材 140としては、主 剤と硬化剤を混合することで硬化反応が進行する 2液混合型の硬化性榭脂や、紫外 線を照射することで硬化反応が進行する紫外線硬化榭脂などを用いることができる。 硬化時間が短時間で済むことから紫外線硬化榭脂を用いることが好ましぐかつ紫外 線を照射することにより常温の温度環境で硬化することが可能である。 [0027] アレイ基板 110と対向基板 120との線膨張係数の比率は、液晶表示装置 101が高 温になったときにアレイ基板 110と対向基板 120の熱膨張の差による液晶表示装置 101の反りや剥離による破壊が発生しに《なるので、 1対 10以下であることが好まし い。 [0026] Sealing material 140 undergoes a curing reaction at 30 ° C. or lower to bond array substrate 110 and counter substrate 120 together, and seal material 140 is interposed between array substrate 110 and counter substrate 120. Spacer beads 131 and liquid crystal 130 are sealed. Examples of the sealing material 140 include a two-component mixed curable resin in which a curing reaction proceeds by mixing a main agent and a curing agent, and an ultraviolet curable resin in which a curing reaction proceeds by irradiation with ultraviolet rays. Can be used. Since the curing time is short, it is preferable to use an ultraviolet curable resin, and it is possible to cure in a room temperature environment by irradiating ultraviolet rays. [0027] The ratio of the linear expansion coefficient between the array substrate 110 and the counter substrate 120 is the warpage of the liquid crystal display device 101 due to the difference in thermal expansion between the array substrate 110 and the counter substrate 120 when the liquid crystal display device 101 is heated. It is preferable that the ratio is 1 to 10 or less because breakage due to or peeling occurs.
[0028] このように、ガラス上に薄膜スイッチング素子を形成したアレイ基板 110と、規定の プラスチックフィルム 121からなる対向基板 120との間に液晶 130を介在して規定の シール材 140により貼り合わせることで、両側ともガラス基板の液晶表示装置より薄く て軽く割れにくぐ高精細の液晶表示装置 101が歩留まり良く製造できる。  [0028] In this manner, the liquid crystal 130 is interposed between the array substrate 110 in which the thin film switching element is formed on the glass and the counter substrate 120 made of the specified plastic film 121, and is bonded by the specified sealant 140. Thus, the high-definition liquid crystal display device 101 that is thinner and lighter than the glass substrate liquid crystal display device on both sides can be manufactured with a high yield.
[実施例]  [Example]
(実施例 1)  (Example 1)
図 2は実施例 1の液晶表示装置 101の構成を示す概略断面図である。  FIG. 2 is a schematic cross-sectional view showing the configuration of the liquid crystal display device 101 of the first embodiment.
(1)アレイ基板 110  (1) Array substrate 110
厚さ 0. 5mmの無アルカリガラス(コ一-ング社製 1737) 1上に、アモルファスシリコ ンカもなる薄膜トランジスタ(以下、 a— SiTFTと略す)をスイッチング素子 2とした、対 角 50mm、画素数 320 X 240のアレイ基板 110を準備した。この無アルカリガラス 1の 線膨張係数は 4ppm/°Cであり、スイッチング素子 2を形成したアレイ基板 110も同 様であった。  0.5mm-thick alkali-free glass (Corning 1737) 1 A thin film transistor (hereinafter abbreviated as “a-SiTFT”) that also has an amorphous silicon switch is used as a switching element 2, and the diagonal number is 50 mm. A 320 × 240 array substrate 110 was prepared. The non-alkali glass 1 had a linear expansion coefficient of 4 ppm / ° C, and the array substrate 110 on which the switching element 2 was formed was the same.
(2)対向基板 120  (2) Counter substrate 120
厚さ 125 μ mのポリエチレンナフタレートフィルム(帝人デュポンフィルム社製テオネ ックス Q— 65) 3上に、シリコンをターゲットとして酸素を反応ガスに用いたリアクティブ スパッタリング法により酸ィ匕ケィ素カもなるガスノ リア層 4を形成し、続けて酸化インジ ゥム錫(以下、 ITOと略す)ターゲットを用いたスパッタリング法により ITO力 なる透 明導電膜 5を形成した。次にポジ型フォトレジストを用いたフォトリソグラフィ一と塩酸 によるエッチングにより ITOをパターユングし、対向基板 120とした。このポリエチレン ナフタレートフィルムの線膨張係数は 18ppmZ°Cであり、ガスバリア層 4と透明導電 膜 5を形成した対向基板 120も同様であった。  A 125 μm thick polyethylene naphthalate film (Teonex Q-65, manufactured by Teijin DuPont Films Ltd.) 3 is also oxidized by reactive sputtering using silicon as a reaction gas with silicon as a target. A gas noble layer 4 was formed, and then a transparent conductive film 5 having an ITO force was formed by sputtering using an indium tin oxide (hereinafter abbreviated as ITO) target. Next, ITO was patterned by photolithography using a positive photoresist and etching with hydrochloric acid to obtain the counter substrate 120. This polyethylene naphthalate film had a linear expansion coefficient of 18 ppmZ ° C., and the opposite substrate 120 on which the gas barrier layer 4 and the transparent conductive film 5 were formed was the same.
(3)シール材 140  (3) Seal material 140
硬化性榭脂成分として両末端アタリロイルビスフエノール Aオリゴマー、イソシァヌル 酸トリアタリレート、テトラエチレングリコールジアタリレートを、開始剤として 1—ヒドロキ シ シクロへキシル フエニルーケトン(チバスぺシャリティケミカル社製ィルガキュアBoth end taliloyl bisphenol A oligomer, isocyanur as curable resin component 1-hydroxy cyclohexyl phenyl-ketone (Irgacure manufactured by Ciba Specialty Chemicals Co., Ltd.)
184)を、充填材として最大粒径 2 μ m以下の酸ィ匕アルミニウムと最大粒径 0. 5 m 以下の酸ィ匕ケィ素を有してなる紫外線硬化型榭脂をシール材 140とした。このシー ル材 140は高圧水銀灯により 2000mjZcm2の紫外線を照射することにより 25°Cの 温度環境で硬化することが可能であった。 184) was used as the sealant 140 with an ultraviolet curable resin having an acid aluminum with a maximum particle size of 2 μm or less and an acid key with a maximum particle size of 0.5 m or less as a filler. . This sealant 140 could be cured in a temperature environment of 25 ° C by irradiating with 2000 mjZcm 2 of ultraviolet light from a high pressure mercury lamp.
(4)液晶表示装置 101の作製  (4) Fabrication of liquid crystal display device 101
アレイ基板 110上の周辺部に、描画装置(デイスペンサ)を用いてシール材 140を 描画した。一方、対向基板 120上には粒径 5. 0 mのスぺーサービーズ 7を散布し た。続いて、位置決め装置を有する貼合装置によりアレイ基板 110と対向基板 120を 貼合し、石英製のプレス板を用いてプレスしながら高圧水銀灯を照射してシール材 1 40の硬化を行い、セルを作製した。このセルに、液晶真空注入装置を用いて、アタリ ル系モノマーとフッ素系液晶からなる高分子分散型液晶組成物を注入し、注入口を 封口剤で封口した後、全面に紫外線を照射してアクリル系モノマーを重合させて高 分子分散型液晶 8とした。以上により液晶表示装置 101を作製した。  The sealing material 140 was drawn on the periphery of the array substrate 110 using a drawing device (dispenser). On the other hand, spacer beads 7 having a particle diameter of 5.0 m were sprayed on the counter substrate 120. Subsequently, the array substrate 110 and the counter substrate 120 are bonded by a bonding apparatus having a positioning device, and the sealing material 140 is cured by irradiating a high-pressure mercury lamp while pressing using a quartz press plate. Was made. A liquid crystal vacuum injection device is used to inject a polymer-dispersed liquid crystal composition comprising an talyl monomer and a fluorine-based liquid crystal into the cell, and the inlet is sealed with a sealing agent, and then the whole surface is irradiated with ultraviolet rays. Acrylic monomers were polymerized to obtain high molecular dispersion type liquid crystal 8. Thus, a liquid crystal display device 101 was produced.
(5)性能の評価  (5) Performance evaluation
この液晶表示装置 101に駆動用 ICを接続し、テストパターンを表示させたところ、 良好に表示することができた。  When a driving IC was connected to the liquid crystal display device 101 and a test pattern was displayed, a good display was obtained.
次に、この液晶表示装置 101を 80°Cの恒温槽で 500時間保存した。その後、テスト ノ ターンを表示させたところ、良好に表示することができた。  Next, the liquid crystal display device 101 was stored in a constant temperature bath at 80 ° C. for 500 hours. After that, when the test pattern was displayed, it was displayed well.
(実施例 2) (Example 2)
図 3は実施例 2の液晶表示装置 101の構成を示す概略断面図である。  FIG. 3 is a schematic cross-sectional view showing the configuration of the liquid crystal display device 101 of the second embodiment.
(1)アレイ基板 110 (1) Array substrate 110
厚さ 0. 5mmの無アルカリガラス(コ一-ング社製 1737) 11上に、タンタル Z酸化タ ンタル Zタンタル力もなる薄膜ダイオードをスイッチング素子 12とした、対角 50mm、 画素数 320 X 240のアレイ基板 110を準備した。この無アルカリガラス 11の線膨張 係数は 4ppmZ°Cであり、スイッチング素子 12を形成したアレイ基板 110も同様であ つた o (2)対向基板 120 0.5mm-thick alkali-free glass (1737 manufactured by Corning Co., Ltd.) 11 A thin film diode with tantalum Z tantalum oxide Z tantalum power is used as a switching element 12, and the diagonal size is 50 mm and the number of pixels is 320 X 240 An array substrate 110 was prepared. The non-alkali glass 11 has a linear expansion coefficient of 4 ppmZ ° C, and the same applies to the array substrate 110 on which the switching elements 12 are formed. (2) Counter substrate 120
厚さ 125 μ mのポリエチレンナフタレートフィルム(帝人デュポンフィルム社製テオネ ックス Q— 65) 13上に、顔料分散フォトレジストを用いて、アレイ基板 110に対応した カラーフィルタ 14を作製した。次に、シリコンをターゲットとして酸素を反応ガスに用い たリアクティブスパッタリング法により酸ィ匕ケィ素カもなるガスノ リア層 15を形成した。 続けて ITOターゲットを用いたスパッタリング法により ITO力もなる透明導電膜 16を形 成した。次にポジ型フォトレジストを用いたフォトリソグラフィ一と塩酸によるエッチング により ITOをパターユングしてカラーフィルタ基板を作製し、これを対向基板 120とし た。このポリエチレンナフタレートフィルム 13の線膨張係数は 18ppm/°Cであり、力 ラーフィルタ 14、ガスノ リア層 15および透明導電膜 16を形成した対向基板 120も同 様であった。  A color filter 14 corresponding to the array substrate 110 was produced on a 125 μm thick polyethylene naphthalate film (Teonex Q-65 manufactured by Teijin DuPont Films, Inc.) 13 using a pigment-dispersed photoresist. Next, a gas noble layer 15 that also serves as an oxide layer was formed by reactive sputtering using silicon as a target and oxygen as a reaction gas. Subsequently, a transparent conductive film 16 having ITO force was formed by a sputtering method using an ITO target. Next, ITO was patterned by photolithography using a positive photoresist and etching with hydrochloric acid to produce a color filter substrate. The polyethylene naphthalate film 13 had a linear expansion coefficient of 18 ppm / ° C., and the counter substrate 120 on which the power filter 14, gas nozzle layer 15 and transparent conductive film 16 were formed was the same.
(3)シール材 140  (3) Seal material 140
ビスフエノール A型エポキシ榭脂(油化シェルエポキシ社製ェピコート)、両末端ェ ポキシエチレングリコールオリゴマー (保土谷化学社製 PTG)、最大粒径 2 μ m以下の 酸ィ匕アルミニウム、最大粒径 0. 5 m以下の酸ィ匕ケィ素とを有してなる主剤と、イソシ ァヌレート構造を有する 3官能チオールィ匕合物 (淀化学社製 THEIC— BMPA)、最 大粒径 2 μ m以下の酸ィ匕アルミニウム、最大粒径 0. 5 μ m以下の酸化ケィ素とを有し てなる硬化剤とを、使用時に混合することにより硬化する 2液型のシール材 140とした 。このシール材 140は、混合後、 25°Cの温度環境下 72時間で硬化することが可能で あつ 7こ。  Bisphenol A type epoxy resin (Epicoat manufactured by Yuka Shell Epoxy Co., Ltd.), both-end epoxy ethylene glycol oligomer (PTG manufactured by Hodogaya Chemical Co., Ltd.), acid aluminum with maximum particle size of 2 μm or less, maximum particle size 0 A main agent having an acid chain of 5 m or less, a trifunctional thiol compound having an isocyanurate structure (THEIC-BMPA manufactured by Sakai Chemical Co., Ltd.), an acid having a maximum particle size of 2 μm or less A two-pack type sealant 140 that hardens when mixed with a hardener comprising aluminum and a silicon oxide having a maximum particle size of 0.5 μm or less. This sealant 140 can be cured in a 72 hour environment at 25 ° C after mixing.
(4)液晶表示装置 101の作製  (4) Fabrication of liquid crystal display device 101
アレイ基板 110上の周辺部に、シール材 140の主剤と硬化剤を混合した後、スクリ ーン印刷装置を用いてシール材 140を印刷した。一方、対向基板 120上には粒径 5 . O /z mのスぺーサービーズ 18を散布した。続いて、位置決め装置を有する貼合装 置によりアレイ基板 110と対向基板 120を貼合し、金属製のプレス板を用いてプレス した後、 25°Cで 72時間静置してシール材 140の硬化を行い、セルを作製した。この セルに、液晶真空注入装置を用いて、アクリル系モノマーとフッ素系液晶からなる高 分子分散型液晶組成物を注入し、注入口を封口剤で封口した後、全面に紫外線を 照射してアクリル系モノマーを重合させて高分子分散型液晶 19とした。以上により液 晶表示装置 101を作製した。 The base material of the sealing material 140 and the curing agent were mixed around the periphery of the array substrate 110, and then the sealing material 140 was printed using a screen printing apparatus. On the other hand, the spacer beads 18 having a particle diameter of 5. O / zm were sprayed on the counter substrate 120. Subsequently, the array substrate 110 and the counter substrate 120 are bonded together by a bonding apparatus having a positioning device, pressed using a metal press plate, and then left to stand at 25 ° C. for 72 hours, and the sealing material 140 Curing was performed to produce a cell. A high-molecular dispersion type liquid crystal composition composed of an acrylic monomer and a fluorine-based liquid crystal is injected into this cell using a liquid crystal vacuum injection device, and the injection port is sealed with a sealing agent, and then the entire surface is irradiated with ultraviolet rays. Irradiation was performed to polymerize the acrylic monomer to obtain polymer dispersed liquid crystal 19. Thus, a liquid crystal display device 101 was produced.
(5)性能の評価 (5) Performance evaluation
この液晶表示装置 101に駆動用 ICを接続し、テストパターンを表示させたところ、 良好に表示することができた。  When a driving IC was connected to the liquid crystal display device 101 and a test pattern was displayed, a good display was obtained.
次に、この液晶表示装置 101を 80°Cの恒温槽で 500時間保存した。その後、テスト ノ ターンを表示させたところ、良好に表示することができた。  Next, the liquid crystal display device 101 was stored in a constant temperature bath at 80 ° C. for 500 hours. After that, when the test pattern was displayed, it was displayed well.
(実施例 3) (Example 3)
図 4は実施例 3の液晶表示装置 101の構成を示す概略断面図である。  FIG. 4 is a schematic cross-sectional view showing the configuration of the liquid crystal display device 101 of the third embodiment.
(1)アレイ基板 110  (1) Array substrate 110
厚さ 0. 5mmの無アルカリガラス(コ一-ング社製 1737) 21上に、ポリシリコンから なる薄膜トランジスタをスイッチング素子 22とした、対角 50mm、画素数 320 X 240の アレイ基板を準備した。この無アルカリガラス 21の線膨張係数は 4ppmZ°Cであり、 スイッチング素子 22を形成したアレイ基板 110も同様であった。  An array substrate with a diagonal of 50 mm and a pixel number of 320 × 240 was prepared using a thin film transistor made of polysilicon as a switching element 22 on a 0.5 mm-thick alkali-free glass (Corning 1737) 21. The non-alkali glass 21 had a linear expansion coefficient of 4 ppmZ ° C., and the array substrate 110 on which the switching elements 22 were formed was the same.
(2)対向基板 120  (2) Counter substrate 120
厚さ 100 μ mの透明有機無機複合プラスチックフィルム (住友ベークライト社製 FST — XA067) 23上に、顔料分散フォトレジストを用いて、アレイ基板 110に対応した力 ラーフィルタ 24を作製した。次に、シリコンをターゲットとして酸素を反応ガスに用いた リアクティブスパッタリング法により酸ィ匕ケィ素カもなるガスノ リア層 25を形成した。続 けて ITOターゲットを用いたスパッタリング法により ITO力もなる透明導電膜 26を形成 した。次にポジ型フォトレジストを用いたフォトリソグラフィ一と塩酸によるエッチングに より ITOをパターユングしてカラーフィルタ基板を作製し、これを対向基板とした。この 透明有機無機複合プラスチックフィルム 23の線膨張係数は 14ppmZ°Cであり、カラ 一フィルタ 24、ガスノ リア層 25および透明導電膜 26を形成した対向基板 120も同様 であった。  On a transparent organic / inorganic composite plastic film (FST — XA067, manufactured by Sumitomo Bakelite Co., Ltd.) 23 having a thickness of 100 μm, a power filter 24 corresponding to the array substrate 110 was prepared using a pigment-dispersed photoresist. Next, a gas noble layer 25 that also serves as an oxide layer was formed by a reactive sputtering method using silicon as a target and oxygen as a reaction gas. Subsequently, a transparent conductive film 26 having ITO force was formed by a sputtering method using an ITO target. Next, ITO was patterned by photolithography using a positive photoresist and etching with hydrochloric acid to produce a color filter substrate, which was used as a counter substrate. This transparent organic / inorganic composite plastic film 23 had a linear expansion coefficient of 14 ppmZ ° C., and the counter substrate 120 on which the color filter 24, the gas noble layer 25 and the transparent conductive film 26 were formed was the same.
(3)シール材 140  (3) Seal material 140
実施例 1と同一の紫外線硬化型シール材を用 、た。  The same UV curable sealing material as in Example 1 was used.
(4)液晶表示装置 101の作製 アレイ基板 110と対向基板 120のそれぞれにポリイミドからなる液晶配向膜を成膜 し、 90度ツイストの配向処理を行った。次に、アレイ基板 110上の周辺部に、描画装 置 (デイスペンサ)を用いてシール材 140を描画した。一方、対向基板 120上には粒 径 5. 0 mのスぺーサービーズ 28を散布した。続いて、位置決め装置を有する貼合 装置によりアレイ基板 110と対向基板 120を貼合し、石英製のプレス板を用いてプレ スしながら高圧水銀灯を照射してシール材 140の硬化を行い、セルを作製した。この セルに、液晶真空注入装置を用いて、フッ素系液晶 29からなるネマチック液晶組成 物を注入し、注入口を封口剤で封口した。最後に、アレイ基板側と対向基板側のそ れぞれの面に、配向処理と同じ方向に吸収軸を合わせて偏光板 30を貼合した。以 上により液晶表示装置 101を作製した。 (4) Fabrication of liquid crystal display device 101 A liquid crystal alignment film made of polyimide was formed on each of the array substrate 110 and the counter substrate 120, and a 90 ° twist alignment process was performed. Next, the sealing material 140 was drawn on the peripheral portion on the array substrate 110 using a drawing device (dispenser). On the other hand, spacer beads 28 having a particle diameter of 5.0 m were sprayed on the counter substrate 120. Subsequently, the array substrate 110 and the counter substrate 120 are bonded by a bonding device having a positioning device, and the sealing material 140 is cured by irradiating a high-pressure mercury lamp while pressing using a quartz press plate. Was made. A nematic liquid crystal composition composed of fluorine-based liquid crystal 29 was injected into this cell using a liquid crystal vacuum injection device, and the injection port was sealed with a sealing agent. Finally, polarizing plates 30 were bonded to the respective surfaces of the array substrate side and the counter substrate side with the absorption axis aligned in the same direction as the alignment treatment. Thus, a liquid crystal display device 101 was produced.
(5)性能の評価 (5) Performance evaluation
この液晶表示装置 101に駆動用 ICを接続し、テストパターンを表示させたところ、 良好に表示することができた。  When a driving IC was connected to the liquid crystal display device 101 and a test pattern was displayed, a good display was obtained.
次に、この液晶表示装置 101を 80°Cの恒温槽で 500時間保存した。その後、テスト ノターンを表示させたところ、良好に表示することができた。  Next, the liquid crystal display device 101 was stored in a constant temperature bath at 80 ° C. for 500 hours. After that, when the test pattern was displayed, it was displayed well.
(比較例 1) (Comparative Example 1)
(1)アレイ基板  (1) Array substrate
実施例 1と同様に準備した。  Prepared in the same manner as in Example 1.
(2)対向基板  (2) Counter substrate
厚さ 125 mのポリエチレンナフタレートフィルムを厚さ 200 μ mのポリエーテルス ルホンフィルム (住友ベークライト社製 FS— 1300)に換えた以外は実施例 1と同様に 行った。このフィルムの線膨張係数は 55ppmZ°Cであり、ガスバリア層と透明導電膜 を形成した対向基板も同様であった。  The same procedure as in Example 1 was conducted, except that a polyethylene naphthalate film having a thickness of 125 m was replaced with a polyether sulfone film having a thickness of 200 μm (FS-1300, manufactured by Sumitomo Bakelite Co., Ltd.). The linear expansion coefficient of this film was 55 ppmZ ° C, and the same was true for the counter substrate on which the gas barrier layer and the transparent conductive film were formed.
(3)シール材および液晶表示装置の作製  (3) Fabrication of sealing materials and liquid crystal display devices
実施例 1と同様に行った。  The same operation as in Example 1 was performed.
(4)性能の評価  (4) Performance evaluation
この液晶表示装置に駆動用 ICを接続し、テストパターンを表示させたところ、良好 に表示することができた。 [0032] 次に、この液晶表示装置を 80°Cの恒温槽で 500時間保存した。その後、恒温槽か ら取り出したところ、シールに剥離が発生し、液晶表示装置が破壊されていた。 (比較例 2) When a driving IC was connected to this liquid crystal display and a test pattern was displayed, it was possible to display well. Next, this liquid crystal display device was stored in a constant temperature bath at 80 ° C. for 500 hours. After that, when it was taken out from the thermostatic bath, the seal peeled off and the liquid crystal display device was destroyed. (Comparative Example 2)
(1)アレイ基板および対向基板  (1) Array substrate and counter substrate
実施例 1と同様に準備した。  Prepared in the same manner as in Example 1.
(2)シーノレ材  (2) Sinore wood
熱硬化性榭脂からなるシール材 (三井ィ匕学社製 XN— 21S)を用いた。  A sealing material (XN-21S manufactured by Mitsui Engineering Co., Ltd.) made of thermosetting resin was used.
(3)液晶表示装置の作製  (3) Fabrication of liquid crystal display device
アレイ基板上の周辺部に、スクリーン印刷装置を用いてシール材を印刷した後、ォ 一ブン中 80°C30分のプリベータを行い、溶剤成分を蒸発させた。一方、対向基板上 には粒径 5. 0 mのスぺーサービーズを散布した。続いて、位置決め装置を有する 貼合装置によりアレイ基板と対向基板を貼合し、金属製のプレス板を用いてプレスし た後、 150°Cで 2時間静置してシール材の硬化を行い、セルを作製した。セルを室温 に戻したところ、中央部がやや厚くなる変形が認められた。このセルに、液晶真空注 入装置を用いて、アクリル系モノマーとフッ素系液晶からなる高分子分散型液晶組成 物を注入し、注入口を封口剤で封口した後、全面に紫外線を照射してアクリル系モノ マーを重合させて高分子分散型液晶とした。以上により液晶表示装置を作製した。 A sealant was printed on the periphery of the array substrate using a screen printer, and then pre-beta was performed at 80 ° C for 30 minutes in the oven to evaporate the solvent component. On the other hand, spacer beads having a particle size of 5.0 m were sprayed on the counter substrate. Subsequently, the array substrate and the counter substrate are bonded by a bonding device having a positioning device, pressed using a metal press plate, and then allowed to stand at 150 ° C. for 2 hours to cure the sealing material. A cell was produced. When the cell was returned to room temperature, a deformation in which the central part was slightly thick was observed. A liquid crystal vacuum injection device is used to inject a polymer-dispersed liquid crystal composition comprising an acrylic monomer and a fluorine-based liquid crystal into the cell, and the inlet is sealed with a sealing agent, and then the whole surface is irradiated with ultraviolet rays. Acrylic monomers were polymerized to form polymer dispersed liquid crystals. Thus, a liquid crystal display device was produced.
(4)性能の評価 この液晶表示装置に駆動用 ICを接続し、テストパターンを表示させ たところ、中央部のセルギャップが厚くなり表示ムラが発生して良好な表示ができなか つた o (4) Performance evaluation When a driving IC was connected to this liquid crystal display and a test pattern was displayed, the cell gap in the center became thick and display unevenness occurred, resulting in poor display.
産業上の利用可能性  Industrial applicability
[0033] この発明は、パーソナルコンピュータや携帯電話などの表示に用いられる液晶表示 装置及びその製造方法に適用でき、薄くて軽く割れにくぐ高精細の装置が歩留まり 良く製造できる。  [0033] The present invention can be applied to a liquid crystal display device used for display of a personal computer, a mobile phone, and the like and a manufacturing method thereof, and a high-definition device that is thin, light, and easy to crack can be manufactured with high yield.
図面の簡単な説明  Brief Description of Drawings
[0034] [図 1]液晶表示装置の構成を示す概略断面図である。  FIG. 1 is a schematic cross-sectional view showing a configuration of a liquid crystal display device.
[図 2]実施例 1の液晶表示装置の構成を示す概略断面図である。  2 is a schematic cross-sectional view showing the configuration of the liquid crystal display device of Example 1. FIG.
[図 3]実施例 2の液晶表示装置の構成を示す概略断面図である。 [図 4]実施例 3の液晶表示装置の構成を示す概略断面図である。 符号の説明 FIG. 3 is a schematic cross-sectional view showing a configuration of a liquid crystal display device of Example 2. FIG. 4 is a schematic sectional view showing a configuration of a liquid crystal display device of Example 3. Explanation of symbols
101 液晶表示装置  101 liquid crystal display
110 アレイ基板  110 Array substrate
120 対向基板  120 Counter substrate
130 液晶  130 LCD
140 シール材  140 Sealant

Claims

請求の範囲 The scope of the claims
[1] ガラス上に薄膜スイッチング素子を形成したアレイ基板と、  [1] an array substrate having a thin film switching element formed on glass;
30°Cから 100°Cにおける線膨張係数が 40ppmZ°C以下である厚さ 5 μ m以上 30 0 μ m未満のプラスチックフィルムを有する対向基板と、  A counter substrate having a plastic film with a thickness of 5 μm or more and less than 300 μm, whose linear expansion coefficient at 30 ° C to 100 ° C is 40 ppmZ ° C or less,
30°C以下で硬化反応が進行して前記アレイ基板と前記対向基板とを貼り合わせる シール材と、  A sealant that bonds the array substrate and the counter substrate by curing reaction at 30 ° C or lower;
を有することを特徴とする液晶表示装置。  A liquid crystal display device comprising:
[2] 前記アレイ基板と前記対向基板との線膨張係数の比率が、 1対 10以下であることを 特徴とする請求項 1に記載の液晶表示装置。 2. The liquid crystal display device according to claim 1, wherein a ratio of a linear expansion coefficient between the array substrate and the counter substrate is 1 to 10 or less.
[3] 前記薄膜スイッチング素子が、ポリシリコン薄膜トランジスタであることを特徴とする 請求項 1または請求項 2に記載の液晶表示装置。 3. The liquid crystal display device according to claim 1, wherein the thin film switching element is a polysilicon thin film transistor.
[4] 前記対向基板が、カラーフィルタ基板であることを特徴とする請求項 1乃至請求項 3 の!、ずれか 1項に記載の液晶表示装置。 [4] The liquid crystal display device according to any one of [1] to [3], wherein the counter substrate is a color filter substrate.
[5] 前記シール材が、紫外線硬化型榭脂である請求項 1乃至請求項 4のいずれか 1項 に記載の液晶表示装置。 5. The liquid crystal display device according to any one of claims 1 to 4, wherein the sealing material is an ultraviolet curable resin.
[6] ガラス上に薄膜スイッチング素子を形成したアレイ基板と、 [6] An array substrate having a thin film switching element formed on glass;
30°Cから 100°Cにおける線膨張係数が 40ppmZ°C以下である厚さ 5 μ m以上 30 0 μ m未満のプラスチックフィルムを有する対向基板とを、  A counter substrate having a plastic film with a thickness of 5 μm or more and less than 300 μm, whose linear expansion coefficient at 30 ° C to 100 ° C is 40 ppmZ ° C or less,
30°C以下で硬化反応が進行するシール材を用いて貼り合わせることを特徴とする 液晶表示装置の製造方法。  A method for producing a liquid crystal display device, characterized in that bonding is performed using a sealing material that undergoes a curing reaction at 30 ° C or lower.
PCT/JP2005/021030 2005-09-27 2005-11-16 Liquid crystal display device and process for producing the same WO2007037021A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007537523A JPWO2007037021A1 (en) 2005-09-27 2005-11-16 Liquid crystal display device and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-279806 2005-09-27
JP2005279806 2005-09-27

Publications (1)

Publication Number Publication Date
WO2007037021A1 true WO2007037021A1 (en) 2007-04-05

Family

ID=37899460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/021030 WO2007037021A1 (en) 2005-09-27 2005-11-16 Liquid crystal display device and process for producing the same

Country Status (2)

Country Link
JP (1) JPWO2007037021A1 (en)
WO (1) WO2007037021A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220009202A1 (en) * 2019-04-02 2022-01-13 Toppan Printing Co., Ltd. Transparent conductive gas barrier laminate, a method for ufacturing the same, and a device using the transparent conductive gas barrier laminate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH086039A (en) * 1994-06-24 1996-01-12 Sharp Corp Production of liquid crystal display element and liquid crystal display element
JPH0973090A (en) * 1995-09-04 1997-03-18 Toshiba Corp Liquid crystal display device
JP2005208185A (en) * 2004-01-21 2005-08-04 Sony Corp Liquid crystal display device and manufacturing method of liquid crystal display device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH086039A (en) * 1994-06-24 1996-01-12 Sharp Corp Production of liquid crystal display element and liquid crystal display element
JPH0973090A (en) * 1995-09-04 1997-03-18 Toshiba Corp Liquid crystal display device
JP2005208185A (en) * 2004-01-21 2005-08-04 Sony Corp Liquid crystal display device and manufacturing method of liquid crystal display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220009202A1 (en) * 2019-04-02 2022-01-13 Toppan Printing Co., Ltd. Transparent conductive gas barrier laminate, a method for ufacturing the same, and a device using the transparent conductive gas barrier laminate

Also Published As

Publication number Publication date
JPWO2007037021A1 (en) 2009-04-02

Similar Documents

Publication Publication Date Title
KR100970791B1 (en) Method of manufacturing semiconductor device
US6628365B1 (en) LCD with UV shielding part at dummy sealant region
WO2014024455A1 (en) Display panel
JP2003216059A (en) Indicating element and method of manufacturing the same
JPH09244004A (en) Liquid crystal display element and its production
KR20060126338A (en) Liquid crystal display device and method for manufacturing the same
KR20090021001A (en) Making method of display device and composition of sealant therefor
US7218374B2 (en) Liquid crystal display device and method of manufacturing the same
JP2007148449A (en) Liquid crystal display device
CN112099125B (en) Method for manufacturing liquid crystal polymer multidirectional film
WO2010109682A1 (en) Display device manufacturing method
KR20030075436A (en) Substrate for Liquid Crystal Display Device, Liquid Crystal Display, and Method of manufacturing the same
WO2004083950A1 (en) Display device producing method and display device producing device
KR20040060341A (en) In Plane Switching mode liquid crystal display device and method for manufacturing the same
WO2007037021A1 (en) Liquid crystal display device and process for producing the same
JP2004069925A (en) Liquid crystal device and manufacturing method of liquid crystal device, and electronic equipment
JPH08278489A (en) Production of liquid crystal display panel
JP4092192B2 (en) Manufacturing method of display panel
JP2004094117A (en) Liquid crystal display device
JP2007047240A (en) Temporarily fixing member and method for manufacturing liquid crystal display device using the same
JP2006084906A (en) Panel for optical modulator, and method for manufacturing same
JP2001305553A (en) Liquid crystal display device and method for manufacturing the same
KR100672638B1 (en) Method of manufacturing Liquid Crystal Display Device
JP2006106036A (en) Method for manufacturing panel
JP2002098975A (en) Liquid crystal device and method of manufacture

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007537523

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC - FORM EPO 1205A DATED 11-07-2008

122 Ep: pct application non-entry in european phase

Ref document number: 05807033

Country of ref document: EP

Kind code of ref document: A1