WO2007036134A1 - Transmitting device, receiving device and method based on multiple sub-bands filters set - Google Patents

Transmitting device, receiving device and method based on multiple sub-bands filters set Download PDF

Info

Publication number
WO2007036134A1
WO2007036134A1 PCT/CN2006/002347 CN2006002347W WO2007036134A1 WO 2007036134 A1 WO2007036134 A1 WO 2007036134A1 CN 2006002347 W CN2006002347 W CN 2006002347W WO 2007036134 A1 WO2007036134 A1 WO 2007036134A1
Authority
WO
WIPO (PCT)
Prior art keywords
data block
sequence
waveform
subband
parallel
Prior art date
Application number
PCT/CN2006/002347
Other languages
English (en)
French (fr)
Inventor
Xiaodong Zhang
Mingqi Li
Bin Zhou
Zhiyong Bu
Original Assignee
Shanghai Institute of Microsystem and Information Technology Chinese Academy of Sciences
Shanghai Research Centre For Wireless Communications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Microsystem and Information Technology Chinese Academy of Sciences, Shanghai Research Centre For Wireless Communications filed Critical Shanghai Institute of Microsystem and Information Technology Chinese Academy of Sciences
Publication of WO2007036134A1 publication Critical patent/WO2007036134A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload

Definitions

  • the present invention relates to a transmitting and receiving apparatus and method thereof, and more particularly to a transmitting and receiving apparatus based on a multi-subband filter group of a time domain cyclic structure. Background technique
  • Frequency division multiple access technology is to distribute user information to carrier channels of different frequencies for transmission.
  • Time division multiple access technology distributes different information to different time slots for transmission.
  • One carrier can transmit information of multiple users in time slots, and the number of users transmitted depends on the number of time slots.
  • the code division multiple access technology adopts a spread spectrum communication method, which can transmit signals of multiple users modulated by different pseudo random codes at the same time and on the same carrier. According to recent studies, in order to effectively improve the throughput of the system, the combined multiple access technology of Frequency Division Multiple Access (FDMA) and Time Division Multiple Access (TDMA) will become the main multiple access technology for future mobile communication technologies.
  • FDMA Frequency Division Multiple Access
  • TDMA Time Division Multiple Access
  • MC-FDMA multi-carrier frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • Single-carrier frequency division multiple access is a new frequency division multiple access communication system that has the characteristics of low-power peak-to-average ratio of single-carrier communication and simple multi-carrier communication and flexible resource scheduling.
  • the single-carrier frequency division multiple access system is synchronized with the time-frequency. The requirements are also much lower than for multi-carrier frequency division multiple access systems. Therefore, single carrier frequency division multiple access (OFDM) technology is more suitable for uplink solutions for wideband mobile communications.
  • Cyclic prefix-based block transmission can use simple single-point frequency domain equalization to reduce receiver complexity, and can effectively support multi-antenna transmit/transmit transmission methods, such as single-carrier-frequency division multiple access systems using frequency domain equalization ( SC-FDMA) and Orthogonal Frequency Division Multiplexing Multi-carrier-frequency division multiple access system (0FDMA) with multiple access technology.
  • SC-FDMA single-carrier-frequency division multiple access systems using frequency domain equalization
  • 0FDMA Orthogonal Frequency Division Multiplexing Multi-carrier-frequency division multiple access system
  • the channel equalization can be implemented in the subband, that is, the received signals of the respective subbands after the multi-subband matched filtering are separately equalized; Sub-band implementation, that is, the received signal is first equalized, and then multi-subband matched filtering is used to recover the transmitted signals of each sub-band.
  • the transmitted data blocks within each subband are typically subband shaped filtered after the addition of CP (Cycle Prefix). Since the sub-band signal is a narrowband signal, the time-domain roll-off rising and falling edges of the shaping filter will approach or even exceed the length of the CP. Therefore, the effective length of the CP is greatly reduced.
  • the signals transmitted by each sub-band are combined with the multi-subband filter to add a CP, so the sub-band shaping filter does not reduce the effective length of the CP, thereby improving the spectral efficiency of the system.
  • the transition band of the frequency response of the sub-band should be as steep as possible. At this time, the prototype filter coefficients corresponding to the multi-subband filter group will be long, resulting in a long tail of the signal output from the multi-subband filter bank.
  • the multi-subband filtered signal can be truncated before being sent out. If the tailing in the multi-subband filtered signal is directly intercepted, on the one hand, the signal is distorted, and on the other hand, the spectrum of the transmitted signal leaks, causing out-of-band interference of the signal. Summary of the invention
  • the technical problem to be solved by the present invention is to provide a transmitting and receiving device based on a multi-subband filter bank and a method thereof, which can improve the system by cyclically superimposing a truncated signal that is filtered by a multi-subband filter at a transmitting end.
  • Spectrum utilization reduces signal distortion.
  • the technical solution adopted by the present invention is:
  • a transmitting device based on a multi-subband filter bank comprising:
  • a multi-subband filter bank which performs sub-band polyphase filtering processing on each sub-band parallel symbol data block sequence, and synthesizes the plurality of sub-band multi-phase filtered parallel symbol data block sequences to generate Serial output symbol data sequence; characterized in that it further includes:
  • the waveform buffer truncating device is configured to buffer the waveform sequence synthesized by the waveform, and truncate the tail signal of the data header and the tail to obtain a truncated signal;
  • the length of the truncated signal is a prototype adopted by the multi-subband filter bank An integer multiple of the shifting orthogonal spacing of the filter;
  • the cyclic waveform forming device performs a head-to-tail cyclic superposition on the truncated signal so that the obtained signal is a continuous loop signal.
  • the multi-subband filter bank based transmitting device further includes protection connected to the cyclic waveform forming device An interval adding means for adding a guard interval of a specific length to the head or tail of the cyclic waveform sequence.
  • the guard interval adding means can reduce inter-channel interference.
  • the present invention adopts sub-band outer frequency domain equalization, and the signals transmitted by each sub-band are combined by the multi-subband filter to add a cyclic prefix, so that the sub-band shaping filters do not reduce the effective length of the cyclic prefix, thereby Improve the spectral efficiency of the system.
  • the present invention further provides a receiving device based on a multi-subband filter bank, including:
  • a multi-subband matched filter bank performing waveform decomposition operations on each of the serial input symbol data block sequences to generate a plurality of shorter length symbol data blocks, and for the plurality of shorter symbols
  • the data block respectively performs a sub-band matching filtering operation corresponding to sub-band filtering at the transmitting device end to generate a plurality of symbol sequences subjected to the sub-band matching filtering operation, and further connected before the multi-sub-band filter group:
  • the waveform cyclic expansion device is configured to cyclically expand the first and second ends of the input data block to restore the orthogonality of the transmitted signal. It can reduce the distortion of the signal.
  • the present invention further provides a transmission method based on a multi-subband filter bank, comprising the following steps:
  • a multi-subband filtering step which performs sub-band polyphase filtering processing on each sub-band parallel symbol data block sequence, and synthesizes the plurality of sub-band multi-phase filtered parallel symbol data block sequences to generate a string Line output symbol data sequence;
  • the waveform buffer truncation step buffers the data sequence synthesized by the waveform, and truncates the tail signal of the data header and the tail to obtain a truncated signal;
  • the length of the truncated signal is a prototype filter used by the multi-subband filter bank Shifts an integer multiple of the orthogonal interval;
  • the cyclic waveform forming step performs a first-to-last cycle superposition on the truncated signal, so that the obtained signal is a continuous cyclic signal.
  • a receiving method based on the multi-subband filter bank comprising the following steps:
  • a waveform loop expansion step which is used for cyclically expanding the first and last ends of the input data block to restore orthogonality of the transmitted signal; and multi-subband matching filtering step, performing waveform decomposition on each data block in the serial input symbol data block sequence Manipulating to generate a plurality of symbol data blocks having a shorter length, and performing subband matching filtering operations corresponding to subband filtering at the transmitting device end on the plurality of shorter symbol data blocks to generate a plurality of mesons A sequence of symbols with matched filtering operations.
  • the present invention further provides a transmitting device based on a multi-subband filter bank, including:
  • a multi-subband filter bank which performs sub-band polyphase filtering processing on each sub-band parallel symbol data block sequence, and synthesizes the plurality of sub-band multi-phase filtered parallel symbol data block sequences to generate Serial output symbol data sequence;
  • a waveform buffer truncating device disposed after the multi-subband filter bank, wherein the waveform buffer truncating device buffers data, and truncates the trailing signal of the header and the tail of the buffer waveform to obtain a truncated signal and a truncated signal
  • the length of the prototype filter is shifted by an integer multiple of the orthogonal interval N, so that the truncated signal becomes a continuous loop signal.
  • the present invention also provides a transmission method based on a multi-subband filter bank, comprising the following steps:
  • a cyclic extension step of performing a data block cyclic expansion operation on the input D parallel symbol data blocks that is, adding the last C1 symbol data blocks in the D data blocks to the D data blocks before the D data blocks C2 symbol data blocks are added after D data blocks to form D+C parallel symbol data blocks;
  • the waveform buffer truncation step buffers the data and truncates the trailing signal of the header and the tail of the buffer waveform to obtain a truncated signal, and the length of the truncated signal is an integer multiple of the orthogonal interval N of the prototype filter shift, thereby Make the truncated signal a continuous loop signal.
  • FIG. 1 is a schematic structural view of a multi-subband filter bank-based transmitting apparatus of the present invention.
  • Fig. 2 is a view showing the waveform cutoff and the loop waveform formation in the cycle waveform forming step of the present invention.
  • FIG 3 is a schematic structural view of a receiving device based on a multi-subband filter bank of the present invention.
  • Figure 4 is a schematic illustration of the waveform cycle expansion step of the present invention.
  • Fig. 5 is a block diagram showing the simulation of the transmission and reception method based on the multi-subband filter bank of the present invention.
  • Fig. 6 is a schematic structural view of a transmitting device according to another embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a cyclic extension of another embodiment of the present invention.
  • Figure 8 is a schematic illustration of a waveform cutoff of another embodiment of the present invention.
  • 9 is a schematic diagram showing the simulation result of the system bit error performance of the present invention.
  • FIG. 10 is a schematic diagram showing the simulation results of the system single subband spectrum of the present invention. detailed description
  • FIG. 1 shows a block diagram of a transmitter of a frequency division multiple access system based on a time domain cyclic structure multi-subband filter bank in accordance with an embodiment of the present invention. It includes a data block dividing device 10, a serial to parallel conversion device 11, a ⁇ point FFT conversion device 12, a subband mapping device 13, an M point IFFT conversion device 14, and M upsampling devices (for simplicity) Only three 150, 151 and 152), M polyphase filter devices are shown in FIG. 1 (only three 160, 161 and 162 are shown in FIG.
  • a parallel/serial conversion device 17 A waveform synthesizing device 18, a waveform buffer truncating device 19, a cyclic waveform forming device 20, and a cyclic prefix adding device 21.
  • the M point IFFT conversion device 14 the M upsampling devices (for simplicity, only three 150, 151 and 152 are shown in FIG. 1), M polyphase filter devices (for simplicity, in FIG. 1 Only three 160, 161 and 162), one parallel/serial conversion device 17 and one waveform synthesis device 18 are combined to form a multi-subband filter bank which will each block sub-parallel symbol data block.
  • the sequence performs sub-band polyphase filtering processing separately, and synthesizes the plurality of sub-band polyphase-filtered parallel symbol data block sequences to generate a serial output symbol data sequence.
  • the channel coding apparatus, the digital modulation apparatus, the RF frequency conversion apparatus and a transmission antenna which are essential components of the digital communication system transmitter are not directly related to the object of the present invention and are not described herein.
  • 0,1,...,D-1 ⁇ , where a column vector representing the same number of elements as the FFT transform size K;
  • the FFT transform size K is equal to the number of subbands required for transmission and can be adaptively adjusted according to the transmission rate required by the communication system.
  • the sub-band mapping device 13 is configured to map each element in the data block outputted by the FFT transform to the corresponding sub-band for transmission, and transmit 0 to the sub-band without data mapping.
  • the mapping method may be a continuous mapping manner, that is, mapping each element in the data block to a plurality of sub-bands in which the frequency is continuously arranged on the frequency spectrum, or may be a discrete mapping manner, that is, mapping each element in the data block to a frequency interval arrangement on the frequency spectrum. Multiple sub-bands.
  • the number of IFFT transform points M is equal to the total number of subbands, and M is greater than or equal to the number of FFT transform points in the FFT transforming device 11, preferably M is an integer multiple of K.
  • the M upsampling devices 150, 151, 152 ⁇ are respectively used for R-upsampling operations on the elements in the IFFT-transformed data block &, that is, adding R-1 zeros after each element.
  • R L / M
  • L the length of the prototype filter corresponding to the polyphase filters 160, 161, 162, and M is the total number of sub-bands.
  • M polyphase shaping filter devices 160, 161 and 162 are respectively used for subband filtering forming operations on the upsampled sequence.
  • the parallel/serial conversion means 17 is for parallel-converting data from the M polyphase filter banks input in parallel.
  • the prototype filter corresponding to the wave device is a sequence of data blocks output by the sub-band mapping device 13.
  • the sequence is buffered, and the tail signal of the data header and the tail is truncated to obtain a truncated signal; the length of the truncated signal is an integer multiple of the shift orthogonal interval of the prototype filter used by the multi-subband filter bank.
  • the cyclic waveform forming means 20 performs the end-to-end cyclic superposition of the truncated signals so that the signals are obtained as the end-to-end continuous loop signals.
  • the operation of the waveform buffer truncating means 19 and the cyclic waveform forming means 20 is as shown in FIG.
  • the output sequence of the waveform is synthesized with a buffer length of E.
  • Q DxN. Select D and N so that Q ⁇ F1 + F2, and F1 and F2 should be as equal as possible.
  • the three segments of the data block are vertically and vertically superimposed, and the pre-F1 point data to be intercepted is superimposed with the last F1 point data of the intercepted Q-point data block, and the intercepted F2 point data and the intercepted Q-point data are simultaneously captured.
  • the guard interval adding means is used for the loop waveform A certain length of guard interval is added to the header or trailer of the sequence to reduce inter-channel interference (preferably, the length of the guard interval should be greater than the channel maximum delay spread length).
  • the guard interval adding means may employ a cyclic prefix (CP) adding means 21, that is, copy a part of the tail of the data block to its front end to form a final data block symbol with CP.
  • CP cyclic prefix
  • FIG. 3 is a block diagram showing a receiving apparatus of a frequency division multiple access system based on a time domain cyclic structure multi-subband filter bank according to an embodiment of the present invention. It includes a cyclic prefix removal device 30, a waveform cycle expansion device 31, a waveform decomposition device 32, a serial/parallel conversion device 33, and M polyphase matched filter devices (for simplicity, only three are shown in FIG. 340, 341 and 342), M downsampling devices (only three 350, 351 and 352 are shown in Fig. 1 for simplicity), an M point FFT transforming device 36, a subband demapping device 37, A K-point IFFT conversion device 38 and a parallel/serial conversion device 39.
  • M polyphase matched filter devices for simplicity, only three are shown in FIG. 340, 341 and 342
  • M downsampling devices only three 350, 351 and 352 are shown in Fig. 1 for simplicity
  • an M point FFT transforming device 36 a subband dema
  • a waveform decomposition device 32 a serial/parallel conversion device 33, M multi-phase matched filter devices (for simplicity, only three 340, 341 and 342 are shown in FIG. 1), M down sampling devices ( For simplicity, only three 350, 351 and 352) and one M-point FFT converter 36 are shown in FIG.
  • Each data block in the sequence of input symbol data blocks performs a waveform decomposition operation to generate a plurality of symbol data blocks of shorter length, and respectively performs the sub-band filtering corresponding to the transmitting device end on the plurality of shorter symbol data blocks
  • the subbands match the filtering operation to generate a sequence of symbols for a plurality of subband matched filtering operations.
  • the synchronizing means, the channel estimating means, the equalizing means, the channel decoding means and the digital demodulating means which are essential components of the digital communication system receiver are not directly related to the object of the present invention, and are not described herein.
  • the waveform cyclic expansion device 31 is configured to complete the inverse operation corresponding to the loop-forming waveform forming device 19 of the transmitting end, that is, the end and the end of the data block whose input length is Q are cyclically expanded, and the operation thereof is as shown in FIG. 4. It is assumed here that the data block of length Q has passed channel equalization.
  • the waveform decomposing device 32 is configured to complete the inverse operation corresponding to the transmitting end waveform synthesizing device 18, that is, from the input data block sequence of length E, according to the shifting orthogonal interval of the prototype filter corresponding to the transmitting end polyphase filter N, shift out the serial data of the L point.
  • Downsampling means 350, 351 and 352 for performing an R-fold downsampling operation on the multi-phase matched filtered data sequence.
  • R L / M.
  • the downsampling means takes the R-1th value of each of the multiphase matched filtered output data sequences and sets the shift register in the polyphase matched filtering means to zero.
  • the sub-band demapping means 37 is for performing the inverse of the inverse operation of the transmitting terminal strip mapping means 13. That is, fetches the corresponding data from a K-point FFT transformed data block after 3 ⁇ 4 1 according to the embodiment of the transmission terminal with the mapping.
  • the multi-subband filter bank based transmit and receive method of the present invention includes the following steps:
  • a multi-subband filter bank based transmit method includes the following steps:
  • a multi-subband filtering step which performs sub-band polyphase filtering processing on each sub-band parallel symbol data block sequence, and synthesizes the plurality of sub-band multi-phase filtered parallel symbol data block sequences to generate a string Line output symbol data sequence;
  • the waveform buffer truncation step buffers the data sequence synthesized by the waveform, and truncates the tail signal of the data header and the tail to obtain a truncated signal;
  • the length of the truncated signal is a prototype filter used by the multi-subband filter bank Shifts an integer multiple of the orthogonal interval;
  • the cyclic waveform forming step performs a first-to-last cycle superposition on the truncated signal, so that the obtained signal is a continuous cyclic signal.
  • the multi-subband filtering step includes -
  • An IFFT transform step of the M point performing an IFFT transform of the M point for each input parallel symbol data block sequence
  • M multi-phase shaping filtering step respectively performing sub-band filtering forming operation on the upsampled sequence, and the coefficients of the multi-phase filtering are obtained by shift sampling by the same prototype filter coefficient;
  • the parallel/serial conversion step performs parallel-to-serial conversion of data from the M polyphase filter banks input in parallel;
  • the waveform synthesis step shifts the data block sequence of the parallel-serial conversion output by the orthogonal interval of the displacement of the prototype filter The bit is superimposed to form an L-point data sequence.
  • the waveform buffer truncation step and the loop waveform forming step specifically include: first, buffering the output sequence after the waveform of length E is synthesized, and then dividing the data sequence of the buffer length E into lengths of F1, Q, and F2, respectively.
  • the intercepted post F2 point data is superimposed with the pre-F2 point data of the intercepted Q point data block to form a cyclic waveform sequence of length Q.
  • the Q Dx N, select D and N, so that Q ⁇ L - N, and F1 and F2 should be as equal as possible, where D is the number of waveforms superimposed in the waveform synthesis step, and N is the prototype filter shift orthogonal interval .
  • a receiving method based on a multi-subband filter bank includes the following steps: a waveform loop expanding step for cyclically expanding the first and last ends of the input data block to restore orthogonality of the transmitted signal; and multi-subband matching filtering step,
  • Each data block in the serial input symbol data block sequence performs a waveform decomposition operation to generate a plurality of shorter length symbol data blocks, and respectively performs the sub-transmitter end of the plurality of shorter symbol data blocks
  • the sub-band matched filtering operation corresponding to the filtering is performed to generate a plurality of symbol sequences of the sub-band matched filtering operations.
  • the multi-subband matching filtering step includes the following steps:
  • the waveform decomposition step completes the inverse operation corresponding to the waveform synthesizing device of the transmitting end, that is, from the input data block sequence, the serial shift of the prototype filter corresponding to the transmitting end polyphase filter is shifted to take the serial of the L point.
  • a serial/parallel conversion step for converting a row vector of each L in a serially input data block sequence into L/M parallel data blocks, and each data block has M elements;
  • M-time multi-phase matching filtering step respectively performing sub-band matching filtering operation on the serial/parallel converted sequence
  • the M-point FFT transforming means is configured to perform an M-point FFT transform on the symbol sequence output by each of the input downlink devices.
  • the waveform loop expansion step specifically adds the F2 sample values of the Q point data block to the tail of the Q point data block, and adds the F1 sample values of the Q point data block tail to the head of the Q point data block;
  • a data block cyclic extension device 22 is provided between the serial to parallel conversion device 11 and the FFT conversion device 12 for inputting D parallel symbol data blocks.
  • A; 0,1,...,D-1 ⁇ for data block loop expansion operation, about D
  • the last CI symbol data blocks in the data block are added before the D data blocks, and the first C2 symbol data blocks of the D data blocks are added to the D data blocks to form D+C parallel symbol data blocks. 0,l,...,D+Cl ⁇ .
  • a waveform buffer truncating device 19 is provided between the waveform synthesizing device 18 and the cyclic prefix adding device 21 (there is less cyclic waveform forming device 20 than in the first embodiment), and the waveform buffer is truncated.
  • the device buffers the data and truncates the trailing signals of the header and tail of the buffer waveform to obtain a truncated signal.
  • the length of the truncated signal is an integer multiple of the orthogonal interval N of the prototype filter shift, so that the truncated signal becomes a continuous loop signal.
  • the operation process is shown in Figure 8.
  • D + C parallel symbol data blocks ⁇ O 0, l, ..., D + Cl ⁇ are formed.
  • a waveform buffer truncation step is provided between the waveform synthesizing device step and the cyclic prefix adding step (there is no loop waveform forming step compared to the embodiment 1), and the waveform buffer truncation step is performed on the data
  • the buffer is buffered, and the trailing signal of the header and tail of the buffer waveform is truncated to obtain a truncated signal.
  • the length of the truncated signal is an integer multiple of the orthogonal interval N of the prototype filter shift, so that the truncated signal becomes a continuous loop signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Description

基于多子带滤波器组的发射、 接收装置及其方法 技术领域
本发明涉及一种发射、 接收装置及其方法, 尤其涉及一种基于时域循环结构多子带滤波 器组的发射、 接收装置。 背景技术
近年来, 无线通信系统向着宽带方向迅速发展; 伴随着这种发展趋势, 无线通信系统占 有的带宽越来越高, 传输速率越来越高, 频谱效率也要求越来越高。 在宽带无线移动通信系 统和宽带无线接入网中要求多个用户同时接入, 需要采用多址技术。 通常采用的多址技术主 要有三种: 频分多址、 时分多址和码分多址。 频分多址技术是将用户的信息分配到不同频率 的载波信道进行传输.。 时分多址技术是将不同的信息分配到不同的时隙进行传输, 一个载波 可以按时隙传输多个用户的信息, 传输的用户数取决于时隙的数目。 码分多址技术采用扩频 通信方式, 它可以在同一时间和同一载波上传输不同的伪随机码调制的多个用户的信号。 根 据近几年的研究发现, 为了有效提升系统的吞吐量, 频分多址技术 (FDMA) 和时分多址技术 (TDMA) 的组合多址技术将成为未来移动通信技术的主要多址技术。
目前, 常用的频分多址系统有两种, 一种是多载波频分多址 (MC-FDMA)系统, 另一种是 单载波频分多址(SC-FDMA)系统。基于多载波调制技术的频分多址系统, 具有实现复杂度低, 时频颗粒度小, 频域均衡复杂度小等优点。 其主要缺点是发射信号功率峰均比高, 时频同步 精度要求高, 容易因为同步不好造成用户间干扰, 影响通信的总体性能。 因此, 多载波频分 多址(MC-FDMA)技术一般用于宽带无线移动通信的下行链路。 单载波频分多址是近年来国际 上提出来的一种既具备单载波通信低功率峰均比特性, 又具备多载波通信实现简单和资源调 度灵活特性的新型频分多址通信系统。 一般而言, 由于单载波频分多址系统中各载波相对独 立, 同时各载波的带宽远大于多载波频分多址系统中子载波的带宽, 使得单载波频分多址系 统对时频同步的要求也远低于多载波频分多址系统。 因此, 单载波频分多址技术更适合于宽 带移动通信的上行链路解决方案。
在通信系统中, 为补偿衰落信道造成的接收信号的失真, 通常在接收端利用估计的信道 响应, 均衡接收的信号。 在基于分组交换的多址通信系统中, 一般采用块传输方式。 基于循 环前缀的块传输可以釆用简单的单点频域均衡以降低接收机复杂度, 同时可以有效支持多天 线收 /发传输方式, 如采用频域均衡的单载波-频分多址系统(SC- FDMA)和釆用正交频分复用 多址技术的多载波-频分多址系统 (0FDMA)。
现有的基于多子带滤波器组的频分多址技术中, 信道均衡可以在子带内实现, 即对经过 多子带匹配滤波后的各个子带的接收信号分别进行均衡; 也可以在子带外实现, 即对接收信 号先进行均衡后, 然后经过多子带匹配滤波恢复出各个子带的发送信号。 对于子带内频域均 衡系统, 每个子带内的传输的数据块通常在添加 CP (循环前缀)后进行子带成型滤波。 由于 子带内信号为窄带信号,成型滤波器的时域滚降上升沿和下降沿将会接近甚至超过 CP的长度。 因此大大降低 CP的有效长度。这样, 在给定的信道时延扩展条件下, 需要更长的 CP, 从而降 低系统的频谱利用率。 对于子带外频域均衡的系统, 各个子带传输的信号经过多子带滤波器 组成型后再添加 CP, 因此子带成型滤波器不会降低 CP的有效长度,从而可以提高系统的频谱 效率。 然而, 为降低子带间的干扰, 子带的频率响应的过渡带应尽量陡峭。 此时, 多子带滤 波器组对应的原型滤波器系数将很长, 从而导致多子带滤波器组输出的信号有很长的拖尾。 如果将该信号直接发送出去, 将极大降低系统的频谱利用率。 为提高频谱效率, 经过多子带 滤波的信号可以先经过波形截短后再发送出去。 如果直接将经过多子带滤波的信号中的拖尾 截取, 则一方面会导致信号失真, 另一方面导致发射信号的频谱泄漏, 造成信号的带外干扰。 发明内容
本发明所要解决的技术问题在于提供一种基于多子带滤波器组的发射、 接收装置及其方 法, 通过对发射端经过多子带滤波的截短信号进行循环叠加, 一方面可以提高系统的频谱利 用率, 另一方面可减小信号失真。
为了解决上述技术问题, 本发明所采用的技术方案是:
一种基于多子带滤波器组的发射装置, 包括:
多子带滤波器组, 其将每路子带并行符号数据块序列分别进行子带多相滤波处理, 并对 所述多个经过子带多相滤波的并行符号数据块序列进行合成处理, 以生成串行输出符号数据 序列; 其特征在于, 还包括:
波形缓存截短装置, 用于对经过波形合成后的数据序列进行缓存, 截去数据首部和尾部 的拖尾信号, 获得截短信号; 截短信号的长度为多子带滤波器组采用的原型滤波器的移位正 交间隔的整数倍; ·
循环波形形成装置, 对截短信号进行首尾循环叠加, 使得获得信号为首尾连续的循环信 号。
进一步地, 该基于多子带滤波器组的发射装置还包括连接于循环波形形成装置后的保护 间隔添加装置, 用于在循环波形序列的头或尾部添加一个特定长度的保护间隔。 该保护间隔 添加装置可减少信道间干扰。 这样, 本发明采用子带外频域均衡, 各个子带传输的信号经过 多子带滤波器组成型后再添加循环前缀, 因些子带成型滤波器不会降低循环前缀的有效长度, 从而可以提高系统的频谱效率。
相应地, 本发明还提供一种基于多子带滤波器组的接收装置, 包括:
多子带匹配滤波器组, 将所述串行输入符号数据块序列中每个数据块进行波形分解操作, 以生成多个长度较短的符号数据块, 并对所述多个较短的符号数据块分别进行与发射装置端 的子带滤波相对应的子带匹配滤波操作, 以生成多个经子带匹配滤波操作的符号序列, 以及 在该多子带滤波器组前还连接有:
波形循环扩展装置, 用于对输入数据块首尾两端循环扩展, 恢复发射信号的正交性。 可 减少信号的失真。
对应地, 本发明还提供一种基于多子带滤波器组的发射方法, 包括如下步骤:
多子带滤波步骤, 其将每路子带并行符号数据块序列分别进行子带多相滤波处理, 并对 所述多个经过子带多相滤波的并行符号数据块序列进行合成处理, 以生成串行输出符号数据 序列;
波形缓存截短步骤, 对经过波形合成后的数据序列进行缓存, 截去数据首部和尾部的拖 尾信号, 获得截短信号; 截短信号的长度为多子带滤波器组采用的原型滤波器的移位正交间 隔的整数倍;
循环波形形成步骤, 对截短信号进行首尾循环叠加, 使得获得信号为首尾连续的循环信 号。
以及, 一种基于多子带滤波器组的接收方法, 包括如下步骤:
波形循环扩展步骤, 用于对输入数据块首尾两端循环扩展, 恢复发射信号的正交性; 多子带匹配滤波步骤, 将所述串行输入符号数据块序列中每个数据块进行波形分解操作, 以生成多个长度较短的符号数据块, 并对所述多个较短的符号数据块分别进行与发射装置端 的子带滤波相对应的子带匹配滤波操作, 以生成多个经子带匹配滤波操作的符号序列。
进一步地, 本发明还提供一种基于多子带滤波器组的发射装置, 包括:
多子带滤波器组, 其将每路子带并行符号数据块序列分别进行子带多相滤波处理, 并对 所述多个经过子带多相滤波的并行符号数据块序列进行合成处理, 以生成串行输出符号数据 序列; 以及
设于多子带滤波器组之前的数据块循环扩展装置, 用于对输入的 D个并行符号数据块 , = 0,l,...,D- 1}进行数据块循环扩展操作,即将在 D个数据块内的后 C1个符号数据块添加 到 D个数据块之前,而将 D个数据块的前 C2个符号数据块添加到 D个数据块之后,以形成 D+C 个并行符号数据块;
设于多子带滤波器组之后的波形缓存截短装置, 所述的波形缓存截短装置对数据进行缓 存, 并且截去缓存波形首部和尾部的拖尾信号, 获得截短信号, 截短信号的长度为原型滤波 器移位正交间隔 N的整数倍, 从而使截短信号成为首尾连续的循环信号。
相应地, 本发明还提供一种基于多子带滤波器组的发射方法, 包括如下步骤:
循环扩展步骤, 对输入的 D个并行符号数据块进行数据块循环扩展操作, 即将在 D个数 据块内的后 C1个符号数据块添加到 D个数据块之前, 而将 D个数据块的前 C2个符号数据块 添加到 D个数据块之后, 以形成 D+C个并行符号数据块;
多子带滤波步骤, 将每路子带并行符号数据块序列分别进行子带多相滤波处理, 并对所 述多个经过子带多相滤波的并行符号数据块序列进行合成处理, 以生成串行输出符号数据序 列;
. 波形缓存截短步骤, 对数据进行缓存, 并且截去缓存波形首部和尾部的拖尾信号, 获得 截短信号, 截短信号的长度为原型滤波器移位正交间隔 N 的整数倍, 从而使截短信号成为首 尾连续的循环信号。
从图 9 的仿真图可以看出: 采用本发明的多子带滤波器组的频分多址系统可取得较好的 误比特性能。 从图 10的单子带信号的频谱图可以看出: 采用本发明的时域循环信号的频谱带 外衰减明显好于直接截短的时域非循环信号的带外衰减。 附图说明
图 1是本发明的基于多子带滤波器组的发射装置的结构示意图。
图 2是本发明的循环波形形成步骤的波形截断及循环波形形成示意图。
图 3是本发明的基于多子带滤波器组的接收装置的结构示意图。
图 4是本发明的波形循环扩展步骤的示意图。图 5是本发明基于多子带滤波器组的发射、 接收方法的仿真框图。
图 6是本发明的另一实施例的发射装置的结构示意图。
图 7是本发明的另一实施例循环扩展示意图
图 8是本发明的另一实施例的波形截断示意图。 图 9是本发明的系统比特误码性能仿真结果示意图。
图 10是本发明的系统单子带频谱仿真结果示意图。 具体实施方式
图 1示出一种根据本发明一个具体实施方式的基于时域循环结构多子带滤波器组的频分 多址系统的发射机的框图。 其中包括一个数据块分割装置 10、 一个串并转换装置 11、 一个 κ 点的 FFT变换装置 12, 一个子带映射装置 13、 一个 M点的 IFFT变换装置 14、 M个上采样装 置 (为简明起见, 图 1中仅示出三个 150, 151和 152)、 M个多相滤波器装置 (为简明起见, 图 1中仅示出三个 160, 161和 162)、一个并 /串转换装置 17, 一个波形合成装置 18, 一个波 形缓存截短装置 19, 一个循环波形形成装置 20和一个循环前缀添加装置 21。 其中, M点的 IFFT变换装置 14、 M个上采样装置(为简明起见, 图 1中仅示出三个 150, 151和 152)、 M个 多相滤波器装置(为简明起见, 图 1中仅示出三个 160, 161和 162)、 一个并 /串转换装置 17 和一个波形合成装置 18共同构成多子带滤波器组, 该多子带滤波器组其将每路子带并行符号 数据块序列分别进行子带多相滤波处理, 并对所述多个经过子带多相滤波的并行符号数据块 序列进行合成处理, 以生成串行输出符号数据序列。 需要说明的是, 作为数字通信系统发射 机必要组成部分的信道编码装置, 数字调制装置, RF变频装置和一个发射天线与本发明的目 的并无直接关系, 在此未进行描述。
假定 {«,,,« = 0,1,2....}为输入到发射机的数据块分割装置 10的串行已调制符号序列; 数据块分割装置 10, 用于将符号已调制串行符号数据序列 ,« = 0,l,2....}, 分割为串行 符号数据块序列¾„,«¾ = 0,1,2....} , 这里, 6„,表示一个元素数量等于 Dx K的行向量, 其中 D为 其后波形合成装置 18中叠加的波形数目, K为其后 FFT变换装置 12中 FFT变换的点数。 由于 发射装置对输入的每个串行符号数据块的操作是相同而且是独立的, 因此在其后的方案描述 中仅描述发射及接收装置对一个串行数据块的操作。
串并转换装置 11 , 用于将串行符号数据块序列 {b„,, = 0,l,2....}中每个数据块进行串并转 换操作, 以形成 D个并行符号数据块 { = 0,1,...,D- 1}, 这里, 表示一个元素数量和 FFT 变换大小 K一样的列向量;
FFT变换装置 12, 用于对输入的每个并行符号数据块 A., ; = 0,1,...,D- 1}进行 K点 FFT变 换, 生成相应的多个符号数据块。 经过 FFT 变换模块, 输入并行的数据块序列 , t = 0,l,...,D- 1}变换成相应的数据块序列 ,A: = 0,1,...,D- 1}, 相互之间的关系服从 dk = FFT(ck) , 这里, 也表示一个元素数量和 FFT变换大小一样的列向量。 FFT变换大小 K 等于传输所需子带数目, 并且可根据通信系统所需传输速率进行自适应调整。
子带映射装置 13, 用于将经过 FFT变换输出的数据块 中的每个元素分别映射到相应的 子带上进行传输, 对于没有数据映射的子带传输 0。映射的方式可以是连续映射方式, 即将数 据块中的各元素映射到频谱上频率连续排列的多个子带上, 也可以是离散映射方式, 即将数 据块中的各元素映射到频谱上频率间隔排列的多个子带上。 经过子带映射装置, 输入并行的 数据块序列、dk ,k = 0,1,..., D-1}变换成相应的数据块序列 [ek,k = 0,1,...,D-1}, ¾也表示一个元 素数量为 M的列向量, 其中 M为 IFFT变换装置 14中 IFFT变换的大小, 亦即多子带滤波器组 总的子带数目。
M点的 IFFT变换装置 14,用于对输入的每个并行符号数据块序列 ,A: = 0,1,...,D- 1}进行 点的 IFFT变换。 IFFT变换点数 M等于子带总数, M大于等于 FFT变换装置 11中 FFT变换点 数1, 优选地, M为 K的整数倍。 经过 IFFT变换模块, 输入并行的数据块序列变换成相应的 数据块序列 {& = 0,1,..., D- 1}, 相互之间的关系服从 = T ), 这里, &也表示一个元 素数量和 IFFT变换大小 M—样的列向量。
M个上采样装置 150, 151, 152···, 分别用于对经过 IFFT变换的数据块&中的各元素进 行 R倍上采样操作, 即在各元素后面添 R-1个零。 其中, R=L/M, L为多相滤波器 160, 161, 162对应的原型滤波器的长度, M为子带总数。 经过上采样, 第 ^个上釆样装置的第 k个并行 数据块时刻的输出序列为 { (")," = 0,l,2...,R-l;w=0,l,...,M-l;A:=0,l,...,D-l}。
M个多相成型滤波器装置 160, 161和 162, 分别用于对经过上采样的序列 进行子 带滤波成型操作。 其中各个多相滤波器装置的系数由同一个原型滤波器系数通过移位抽样而 得。 具体地, 假设成型原型滤波器系数 (亦即冲激响应) 为 = 0,l'2'"'L_l}, 其中 L 为滤波器长度, 其频率响应为单子带低通滤波器的频率响应。 该滤波器满足移位正交条件:
Figure imgf000008_0001
, 其中 L为滤波器长度, N为滤波器移位正交间隔, 亦即多子带滤 波器组的上釆样率。 则第 w ( ^ - U ^M-1 )个多相滤波器系数为该原型滤波器系数起始值 移位 m点后 M倍下釆样而得, 即 {/。 (") = /P("M+ )," = 0,l,2.„,L/M-l}, (其中 M为子带总 数, L为 M的整数倍。经过多相滤波器装置后, 第 ^个多相滤波器的第 k个时刻的输出序列为 {4"' (")," = 0,1,2...5L/M-1;^ = 0,1,.."D- 1}。
并 /串转换装置 17,用于将并行输入的来自 M个多相滤波器组的数据进行并串转换。经过 并串转换装置,输出的串行数据块序列为 {厶 )^ = 0,1,2... -1; = 0,1,...,0-1},这里 /4(^ 表示为块长为 L的串行数据块。
波形合成装置 18, 用于将并串转换输出的数据块序列按多相滤波器对应的原型滤波器的 移位正交间隔 N进行移位叠加。具体地, 在 k时刻, 将 k-1时刻波形合成装置生成的长度为 L 的数据序列的前 N点数据发送出去, 再取剩余的 L- N点数据, 在尾部添 N个零后, 与 k时刻 并串转换输出的 L点数据块 /A.(«),« = 0,1,2...,L- 1}相加, 构成新的 L点数据序列; 而 k+1时 刻又将该新生成的 L点序列的前 N点数据发送出去, 再取剩余的 L-N点数据, 在尾部添 N个 零后, 与 k+1时刻并串转换输出的 L点数据块 +» = 0,l,2...,L- 1}相加, 构成更新的数 据序列。 如此周而复始。 经过波形合成装置, 输出序列为 (« = 0,1,2...,E- 1}。 其中,
D-l M-1
k(n)^ Jek(m)fp( ^k^)exp(j2πm(n^k^)/M) , {/ρ = 0,l,2...,L-l}为多相成型滤 k-0 m^O
波器对应的原型滤波器, ¾为子带映射装置 13输出的数据块序列。显然, 序列 的长度为 E = (D-l)xN+L, 其中 L为原型滤波器长度, N为原型滤波器移位正交间隔; 波形缓存截短装置 19, 用于对经过波形合成后的数据序列进行缓存, 截去数据首部和尾 部的拖尾信号, 获得截短信号; 截短信号的长度为多子带滤波器组采用的原型滤波器的移位 正交间隔的整数倍。
循环波形形成装置 20, 对截短信号进行首尾循环叠加, 使得获得信号为首尾连续的循环 的信号, 所述波形缓存截短装置 19及循环波形形成装置 20的操作如图 2所示。 首先, 缓存 长度为 E的波形合成后输出序列。然后将缓存的长度为 E的数据序列分割为长度分别为 Fl, Q 和 F2的三段数据块,使得 E = F1 + Q+F2。优选地, Q = DxN。选择 D和 N,使得 Q≥F1 + F2, 并且 F1和 F2应尽量相等。 最后将分成的三段数据块首尾循环叠加, 即将截取的前 F1点数据 与截取的 Q点数据块的最后 F1点数据叠加, 同时, 将截取的后 F2点数据与截取的 Q点数据 块的前 F2点数据叠加, 形成长度为 Q的循环波形序列 {/,,,n = 0,l,...,Q-l}。 由于 Q为原型滤波 器移位正交间隔 N的整数倍, 序列 ,《 = 0,1,...,Q- 1}为一首尾连续的循环序列; 保护间隔添加装置, 用于在循环波形序列的头或尾部添加一个特定长度的保护间隔, 用 于减少信道间干扰(优选地, 该保护间隔的长度应大于信道最大时延扩展长度)。 优选地, 保 护间隔添加装置可采用循环前缀(CP)添加装置 21, 也即将所述数据块尾部的一部分复制到 其的前端, 形成最终的带 CP 的数据块符号。 经过循环前缀添加装置, 输入数据序列 ,/7 = 0,l,...,Q- 1}变换成完整的数据块符号序列 { „," = 0,l,...,P-l}, 其中, P=Q+C, C为循环 前缀长度。
图 3示出一种根据本发明一个具体实施方式的基于时域循环结构多子带滤波器组的频分 多址系统的接收装置的框图。 其中包括一个循环前缀去除装置 30, 一个波形循环扩展装置 31, 一个波形分解装置 32, 一个串 /并转换装置 33, M个多相匹配滤波器装置 (为简明起见, 图 1中 仅示出三个 340, 341和 342), M个下采样装置(为简明起见, 图 1中仅示出三个 350, 351和 352), 一个 M点的 FFT变换装置 36, 一个子带解映射装置 37, 一个 K点的 IFFT变换装置 38和一个并 /串 转换装置 39。 其中, 一个波形分解装置 32, 一个串 /并转换装置 33, M个多相匹配滤波器装置 (为简明起见, 图 1中仅示出三个 340, 341和 342), M个下采样装置 (为简明起见, 图 1中仅示 出三个 350, 351和 352)和一个 M点的 FFT变换装置 36共同构成多子带匹配滤波器组, 该多子带 匹配滤波器组将所述串行输入符号数据块序列中每个数据块进行波形分解操作, 以生成多个 长度较短的符号数据块, 并对所述多个较短的符号数据块分别进行与发射装置端的子带滤波 相对应的子带匹配滤波操作, 以生成多个经子带匹配滤波操作的符号序列。
需要说明的是, 作为数字通信系统接收机必要组成部分的同步装置, 信道估计装置, 均 衡装置, 信道解码装置和数字解调装置与本发明的目的并无直接关系, 在此未进行描述。
假定接收机理想同步, 并且假定 («)," = ο,ι,...,ρ-ι}为输入到接收机的循环前缀去除装 置 30的串行符号序列;
循环前缀去除装置 30, 用于按照发射端循环前缀添加规则, 将数据块中前 C个采样值舍 去, 形成长度为 Q的串行数据序列 {o(A) = 0,l,2,...,Q - 1} ; 波形循环扩展装置 31,用于完成发射端循环波形形成装置 19相对应的逆操作, 即对输入 的长度为 Q的数据块首尾两端循环扩展,其操作如图 4。此处假设长度为 Q的数据块已经过信 道均衡。 数据块循环扩展就是将 Q点数据块的首部 F2个釆样值添加到 Q点数据块的尾部, 再 将 Q点数据块尾部的 Fl个采样值添加到 Q点数据块的首部, 形成一个长度为 E (E=F1+Q+F2) 的串行符号数据序列 X")," = ( 2,...,E- ;
波形分解装置 32,用于完成发射端波形合成装置 18相对应的逆操作, 即从输入的长度为 E的数据块序列, 按发射端多相滤波器对应的原型滤波器的移位正交间隔 N, 移位取出 L点的 串行数据。具体地,假设在第 0个时刻,从第 0点开始,取出数据块 (π),« = 0,1,2,...,Ε - 1}中 最前面 L点数据, 则第 1个时刻, 从第 Ν点幵始, 取出数据块 {/^^,π^^Ο,Ι,^.,Ε-ΐ}中 L点 数据, 依次类推, 第 n个时刻, 从第 nXN点开始, 取出数据块中 L点数据。 第 D- 1个时刻, 从第 (D-l) XN点开始, 取出数据块中最后的 L点数据。 经过波形分解装置, 形成串行符号 数据块序列 { ,it = 0,l,...,D-l}。 这里, 表示一个元素数量为 L的行向量;
串 /并转换装置 33, 用于将串行输入的数据块序列 fe = 0,l,...,D-l}中的每个长度为 L 的行向量转换为 L/M个并行数据块, 并且每个数据块具有 M个元素。 经过串并转换, 输出为 并行数据块序列 {r (m),n = Ο,Ι,.,.,Μ— 1;" = 0,1,...,L/M-1;A; = 0,l,...,D-l}; 多相匹配滤波器装置 340, 341和 342, 分别用于对经过串 /并转换的序列 ^,„}进行子带匹配 滤波操作。 其中各个多相匹配滤波器 '„» = 0,1,2...,L/M- l, =0,l,...,M- 1}为发射端各个 多相成型滤波器 {/fl„» = 0,l,2...,L/M-l, =0,l,...,M-l}相对应的匹配滤波器。 经过多相匹 配 滤 波 , 第 ^ 个 多 相 匹 配 滤 波 器 的 输 出 序 列 为 {t m (") , " = 0, 1, ..·, L / M- 1; m=0,...,M - 1 ;k=0, 1 ."D - 1}。
下采样装置 350, 351和 352,用于对经过多相匹配滤波的数据序列进行 R倍下采样操作。 其中, R=L/M。 具体地, 下采样装置取出各个多相匹配滤波输出数据序列中第 R - 1个值, 并且 将多相匹配滤波装置中的移位寄存器置零。 经过下采样装置, 第 ^个下采样装置的输出序列 为 {ukm , m=0,...,M - 1 ;k=0, 1 ."D - 1}。
FFT 变换装置 36, 用于对输入的各个下釆样装置输出的符号序列 {ukm,m=0,...M- k=0,l,...,O-l}进行 M点 FFT变换。 经过 FFT变换, 输入并行的数据序列变 换成相应的数据块序列 ^t = 0,l,...,D- 1}, 相互之间的关系服从 =F7T(^), 这里, 上标 " Τ"表示转置, 表示一个元素数量和 FFT变换大小 Μ—
Figure imgf000011_0001
样的列向量。
子带解映射装置 37,用于完成发射端子带映射装置 13相反的逆操作。即根据发射端子带 映射的方式, 从经过 FFT变换的数据块1 ¾中取出相应的 K点数据。 经过子带解映射装置, 输 出为数据块序列 ,^ = 0,1,...,0- 1}, 这里, 也表示一个元素数量为 K的列向量。
IFFT变换装置 38,用于对输入的数据块序列 ,/t = 0,l,...,D-l},进行 K点的 IFFT变换。 经过 IFFT 变换装置, 输入并行的数据块序列{¾^ = 0,1,...,0- 1}变换成相应的数据块序列
{yk ,k = 0,l, ..., O-l} , 相互之间的关系服从 A = T( ), 这里, A也表示一个元素数量和 IFFT变换大小 K一样的列向量。 并 /串转换装置 39, 用于对输入的数据块序列 ,^ ^,1,…,13— 进行并 /串转换操作。经 过并 /串转换装置, 输出为串行数据符号序列 {Z'"' = ( '''''DX K— , 用于接收端的符号解调 和解码, 以恢复发射的信息比特。
结合图 5所示, 本发明的基于多子带滤波器组的发射及接收方法包括如下步骤: 一种基于多子带滤波器组的发射方法, 包括如下步骤:
多子带滤波步骤, 其将每路子带并行符号数据块序列分别进行子带多相滤波处理, 并对 所述多个经过子带多相滤波的并行符号数据块序列进行合成处理, 以生成串行输出符号数据 序列;
波形缓存截短步骤, 对经过波形合成后的数据序列进行缓存, 截去数据首部和尾部的拖 尾信号, 获得截短信号; 截短信号的长度为多子带滤波器组采用的原型滤波器的移位正交间 隔的整数倍;
循环波形形成步骤, 对截短信号进行首尾循环叠加, 使得获得信号为首尾连续的循环信 号。
所述的多子带滤波步骤包括-
M点的 IFFT变换步骤, 对输入的每个并行符号数据块序列进行 M点的 IFFT变换;
M次上釆样步骤, 分别对经过 IFFT变换的数据块中的各元素进行 R倍上采样操作, 即在 各元素后面添 R-1个零;
M次多相成型滤波步骤,分别对经过上采样的序列进行子带滤波成型操作,其多相滤波的 系数由同一个原型滤波器系数通过移位抽样而得; 并 /串转换步骤, 将并行输入的来自 M个多相滤波器组的数据进行并串转换; 波形合成步骤, 将并串转换输出的数据块序列按原型滤波器的移位正交间隔进行移位叠 加, 构成 L点数据序列。
所述的波形缓存截短步骤及循环波形形成步骤具体包括: 首先, 缓存长度为 E的波形合 成后的输出序列, 然后将缓存的长度为 E的数据序列分割为长度分别为 Fl, Q和 F2的三段数 据块, 使得 E = F1 + Q+ F2 ; 最后将分成的三段数据块首尾循环叠加, 即将截取的前 F1 点数 据与截取的 Q点数据块的最后 F1点数据叠加, 同时, 将截取的后 F2点数据与截取的 Q点数 据块的前 F2点数据叠加, 形成长度为 Q的循环波形序列。
所述的 Q = Dx N, 选择 D和 N, 使得 Q≥L— N, 并且 F1和 F2应尽量相等, 其中 D为波 形合成步骤中叠加的波形数目, N为原型滤波器移位正交间隔。
一种基于多子带滤波器组的接收方法, 包括如下步骤- 波形循环扩展步骤, 用于对输入数据块首尾两端循环扩展, 恢复发射信号的正交性; 多子带匹配滤波步骤, 将所述串行输入符号数据块序列中每个数据块进行波形分解操作, 以生成多个长度较短的符号数据块, 并对所述多个较短的符号数据块分别进行与发射装置端 的子带滤波相对应的子带匹配滤波操作, 以生成多个经子带匹配滤波操作的符号序列。
所述的多子带匹配滤波步骤包括如下步骤:
波形分解步骤, 完成发射端波形合成装置相对应的逆操作, 即从输入的数据块序列, 按 发射端多相滤波器对应的原型滤波器的移位正交间隔移位取出 L点的串行数据;
串 /并转换步骤, 用于将串行输入的数据块序列中的每个 L的行向量转换为由 L/M个并行 数据块, 并且每个数据块具有 M个元素;
M次多相匹配滤波步骤, 分别对经过串 /并转换的序列进行子带匹配滤波操作;
M次下采样步骤, 用于对经过多相匹配滤波的数据序列进行 R倍下采样操作;
M点 FFT变换装置, 用于对输入的各个下釆样装置输出的符号序列进行 M点 FFT变换。 所述的波形循环扩展步骤具体为将 Q点数据块的首部 F2个采样值添加到 Q点数据块的尾 部, 再将 Q点数据块尾部的 F1个采样值添加到 Q点数据块的首部;
如图 6、 7、 8所示的是本发明的另一实施例, 在本实施例中仅循环波形形成的方案与实 施例 1不同, 其他结构及方法均与实施例 1相同, 在此与实施例 1相同的部分就不再赘述了: 本实施例中, 在串并转换装置 11与 FFT变换装置 12之间设有数据块循环扩展装置 22, 用于对输入的 D个并行符号数据块 ,A; = 0,1,...,D-1}进行数据块循环扩展操作, 即将在 D个 数据块内的后 CI个符号数据块添加到 D个数据块之前, 而将 D个数据块的前 C2个符号数据 块添加到 D个数据块之后, 以形成 D+C个并行符号数据块 = 0,l,...,D+C-l}。具体的操作 过程如图 7所示。 其中 Cl=C2=C/2, C小于 D; 这里, ^表示一个元素数量和 FFT变换大小 K 一样的列向量;
相应地, 在波形合成装置 18与循环前缀添加装置 21之间设有波形缓存截短装置 19 (与 实施例 1相比, 此处少了循环波形形成装置 20), 所述的波形缓存截短装置对数据进行缓存, 并且截去缓存波形首部和尾部的拖尾信号, 获得截短信号。 截短信号的长度为原型滤波器移 位正交间隔 N的整数倍, 从而使截短信号成为首尾连续的循环信号。 其操作过程如图 8所示。
首先, 缓存长度为 E' 的波形合成后输出序列。 然后将缓存的长度为 E' 的数据序列分割 为长度分别为 F1 ' , Q和 F2' 的三段数据块, 使得 E' = F1'+ Q+F2'。 显然, 由于数据块循环 扩展装置 22中将传输的 D个并行符号数据块循环扩展为 D+C个并行符号数据块, 因此, 波形 合成装置 18 输出的序列^: 的长度为 E' = (D+ C- l)xN+L。 选择 Q = DxN, 这样
Fl'+F2' = (C-l)x N+ L。选择 D和 N, 使得 Q≥L— N禾口选择 F1' = F2'或 F1'和 F2'取值尽量接 近。 由于 Q为原型滤波器移位正交间隔 N的整数倍, 并且多子带滤波器组输入的信号为循环 扩展的信号, 从而使得截取的长度为 Q 的数据序列 ,M = 0,1,...,Q- 1}为一首尾连续的循环序 列;
对应地, 在本实施例中串并转换步骤与 FFT变换步骤之间设有数据块循环扩展步骤, 对 输入的 D个并行符号数据块 { ,A: = 0,1,...,D-1}进行数据块循环扩展操作, 即将在 D个数据块 内的后 C1个符号数据块添加到 D个数据块之前, 而将 D个数据块的前 C2个符号数据块添加 到 D个数据块之后, 以形成 D+C个并行符号数据块 {O = 0,l,...,D+ C-l}。 对应地, 在波形合成装置步骤与循环前缀添加步骤之间设有波形缓存截短步骤 (与实施 例 1相比, 此处少了循环波形形成步骤), 所述的波形缓存截短步骤对数据进行缓存, 并且截 去缓存波形首部和尾部的拖尾信号, 获得截短信号。 截短信号的长度为原型滤波器移位正交 间隔 N的整数倍, 从而使截短信号成为首尾连续的循环信号。
本实施例中由于发射端发射的数据与实施例 1 完全相同, 所以在接收端其结构与接收方 法也与实施例 1相同。

Claims

1、 一种基于多子带滤波器组的发射装置, 包括:
多子带滤波器组, 其将每路子带并行符号数据块序列分别进行子带多相滤波处理, 并对 所述多个经过子带多相滤波的并行符号数据块序列进行合成处理, 以生成串行输出符号数据 序列; 其特征在于, 还包括- 波形缓存截短装置, 用于对经过波形合成后的数据序列进行缓存, 截去数据首部和尾部 的拖尾信号, 获得截短信号; 截短信号的长度为多子带滤波器组采用的原型滤波器的移位正 交间隔的整数倍;
循环波形形成装置, 对截短信号进行首尾循环叠加, 使得获得信号为首尾连续的循环信 号。
2、 根据权利要求 1所述的基于多子带滤波器组的发射装置, 其特征在于, 还包括连接于 循环波形形成装置后的保护间隔添加装置, 其用于在循环波形序列的头或尾部添加一个特定 长度的保护间隔。
3、 根据权利要求 2所述的基于多子带滤波器组的发射装置, 其特征在于, 所述的保护间 隔添加装置为循环前缀添加装置, 其用于将所述数据块尾部的一部分复制到其前端, 形成带 循环前缀的数据块符号。
4、 根据权利要求 1或 2或 3所述的基于多子带滤波器组的发射装置, 其特征在于, 所述 的多子带滤波器组包括-
M点的 IFFT变换装置, 用于对输入的每个并行符号数据块序列进行 M点的 IFFT变换; M个上采样装置, 分别用于对经过 IFFT变换的数据块中的各元素进行 R倍上釆样操作, 即在各元素后面添 R-1个零, 其中 R=L/M, L为多相成型滤波器对应的原型滤波器的长度; M个多相成型滤波器装置,分别用于对经过上采样的序列进行子带滤波成型操作,其中各 个多相滤波器装置的系数由同一个原型滤波器系数通过移位抽样而得;
并 /串转换装置, 用于将并行输入的来自 M个多相滤波器组的数据进行并串转换; 波形合成装置, 用于将并串转换输出的数据块序列按多相成型滤波器对应的原型滤波器 的移位正交间隔进行移位叠加, 构成 E点数据序列。
5、 根据权利要求 1或 2或 3所述的基于多子带滤波器组的发射装置, 其特征在于, 所述 的多子带滤波器组前还包括:
数据块分割装置, 用于将符号已调制串行符号数据序列分割为串行符号数据块序列; 串并转换装置, 用于将串行符号数据块序列中每个数据块进行串并转换操作, 以形成并 行符号数据块序列; FFT变换装置,用于对输入的每个并行符号数据块进行 K点 FFT变换, 生成相应的多个符 号数据块;
子带映射装置, 用于将经过 FFT变换输出的数据块中的每个元素分别映射到相应的子带 上进行传输, 对于没有数据映射的子带传输 0。
6、 一种基于多子带滤波器组的接收装置, 包括- 多子带匹配滤波器组, 将所述串行输入符号数据块序列中每个数据块进行波形分解操作, 以生成多个长度较短的符号数据块, 并对所述多个较短的符号数据块分别进行与发射装置端 的子带滤波相对应的子带匹配滤波操作, 以生成多个经子带匹配滤波操作的符号序列, 其特 征在于, 在该多子带匹配滤波器组前还连接有:
波形循环扩展装置用于对输入数据块首尾两端循环扩展, 恢复发射信号的正交性。
7、 根据权利要求 6所述的基于多子带滤波器组的接收装置, 其特征在于, 还包括一连接 于波形循环扩展装置前的循环前缀去除装置, 用于按照发射端循环前缀添加规则, 将数据块 中前一定长度采样值舍去, 形成串行数据序列。
8、 根据权利要求 6或 7所述的基于多子带滤波器组的接收装置, 其特征在于, 所述的多 子带匹配滤波器组包括依次连接的:
波形分解装置, 用于完成发射端波形合成装置相对应的逆操作, 即从输入的数据块序列, 按发射端多相滤波器对应的原型滤波器的移位正交间隔移位取出 L点的串行数据;
串 /并转换装置, 用于将串行输入的数据块序列中的每个长度为 L的行向量转换为 L/M个 并行数据块, 并且每个数据块具有 M个元素;
M个多相匹配滤波器装置, 分别用于对经过串 /并转换的序列进行子带匹配滤波操作;
M个下采样装置, 用于对经过多相匹配滤波的数据序列进行 R倍下采样操作;
M点 FFT变换装置, 用于对输入的各个下采样装置输出的符号序列进行 M点 FFT变换。
9、根据权利要求 8所述的基于多子带滤波器组的接收装置,其特征在于,所述的 M点 FFT 变换装置后还依次连接有:
子带解映射装置, 用于完成发射端子带映射装置相反的逆操作, 从经过 FFT变换的数据 块中取出相应的 K点数据;
IFFT变换装置, 用于对输入的数据块序列进行 K点的 IFFT变换;
并 /串转换装置, 用于对输入的数据块序列进行并 /串转换操作。
10、 一种基于多子带滤波器组的发射装置, 包括:
多子带滤波器组, 其将每路子带并行符号数据块序列分别进行子带多相滤波处理, 并对 所述多个经过子带多相滤波的并行符号数据块序列进行合成处理, 以生成串行输出符号数据 序列; 其特征在于, 还包括:
设于多子带滤波器组之前的数据块循环扩展装置, 用于对输入的 D个并行符号数据块进 行数据块循环扩展操作, 即将在 D个数据块内的后 C1个符号数据块添加到 D个数据块之前, 而将 D个数据块的前 C2个符号数据块添加到 D个数据块之后,以形成 D+C个并行符号数据块; 以及, 设于多子带滤波器组之后的波形缓存截短装置, 所述的波形缓存截短装置对数据 进行缓存, 并且截去缓存波形首部和尾部的拖尾信号, 获得截短信号, 截短信号的长度为原 型滤波器移位正交间隔 N的整数倍, 从而使截短信号成为首尾连续的循环信号。
11、 一种基于多子带滤波器组的发射方法, 包括如下步骤:
多子带滤波步骤, 其将每路子带并行符号数据块序列分别进行子带多相滤波处理, 并对 所述多个经过子带多相滤波的并行符号数据块序列进行合成处理, 以生成串行输出符号数据 序列;
波形缓存截短步骤, 对经过波形合成后的数据序列进行缓存, 截去数据首部和尾部的拖 尾信号, 获得截短信号; 截短信号的长度为多子带滤波器组采用的原型滤波器的移位正交间 隔的整数倍;
循环波形形成步骤, 对截短信号进行首尾循环叠加, 使得获得信号为首尾连续的循环信 号。
12、 根据权利要求 11所述的基于多子带滤波器组的发射方法, 其特征在于, 所述的多子 带滤波步骤包括:
M点的 IFFT变换步骤, 对输入的每个并行符号数据块序列进行 M点的 IFFT变换;
M次上采样步骤, 分别对经过 IFFT变换的数据块中的各元素进行 R倍上采样操作, 即在 各元素后面添 R- 1个零;
M次多相成型滤波步骤, 分别对经过上采样的序列进行子带滤波成型操作,其多相滤波的 系数由同一个原型滤波器系数通过移位抽样而得;
并 /串转换步骤, 将并行输入的来自 M个多相滤波器的数据进行并串转换;
波形合成步骤, 将并串转换输出的数据块序列按多相成型滤波器对应的原型滤波器的移 位正交间隔进行移位叠加, 构成 L点数据序列。
13、 根据权利要求 11或 12所述的基于多子带滤波器组的发射方法, 其特征在于, 所述 的波形缓存截短步骤及循环波形形成步骤具体包括: 首先, 将缓存长度为 E的波形合成后输 出序列, 然后将缓存的长度为 E的数据序列分割为长度分别为 Fl, Q和 F2的三段数据块, 使 i# E = Fl + Q+ F2 ; 最后将分成的三段数据块首尾循环叠加, 即将截取的前 F1 点数据与截取 的 Q点数据块的最后 F1点数据叠加, 同时, 将截取的后 F2点数据与截取的 Q点数据块的前 F2点数据叠加, 形成长度为 Q的首尾连续的循环波形序列。
14、 根据权利要求 13 所述的基于多子带滤波器组的发射方法, 其特征在于, 所述的
Q = Dx N , 选择 1)和^ 使得 Q≥F1 + F2, 并且 F1和 F2应尽量相等, 其中 D为波形合成步 骤中叠加的波形数目, N为原型滤波器移位正交间隔。
15、 一种基于多子带滤波器组的接收方法, 包括如下步骤:
波形循环扩展步骤用于对输入数据块首尾两端循环扩展, 恢复发射信号的正交性; 多子带匹配滤波步骤, 将所述串行输入符号数据块序列中每个数据块进行波形分解操作, 以生成多个长度较短的符号数据块, 并对所述多个较短的符号数据块分别进行与发射装置端 的子带滤波相对应的子带匹配滤波操作, 以生成多个经子带匹配滤波操作的符号序列。
16、 根据权利要求 15所述的基于多子带滤波器组的接收方法, 其特征在于, 所述的多子 带匹配滤波步骤包括如下步骤:
波形分解步骤, 完成发射端波形合成装置相对应的逆操作, 即从输入的数据块序列, 按 发射端多相滤波器对应的原型滤波器的移位正交间隔移位取出 L点的串行数据;
串 /并转换步骤, 用于将串行输入的数据块序列中的每个 L的行向量转换为 L/M个并行数 据块, 并且每个数据块具有 M个元素;
M次多相匹配滤波步骤, 分别对经过串 /并转换的序列进行子带匹配滤波操作;
次下采样步骤, 用于对经过多相匹配滤波的数据序列进行 R倍下采样操作;
M点 FFT变换装置, 用于对输入的各个下釆样装置输出的符号序列进行 M点 FFT变换。
17、 根据权利要求 15或 16所述的基于多子带滤波器组的接收方法, 其特征在于, 所述 的波形循环扩展步骤具体为: 将 Q点数据块的首部 F2个采样值添加到 Q点数据块的尾部, 再 将 Q点数据块尾部的 F1个采样值添加到 Q点数据块的首部。
18、 一种基于多子带滤波器组的发射方法, 包括如下步骤:
数据块循环扩展步骤, 对输入的 D个并行符号数据块进行循环扩展操作, 即将在 D个数 据块内的后 C1个符号数据块添加到 D个数据块之前, 而将 D个数据块的前 C2个符号数据块 添加到 D个数据块之后, 以形成 D+C个并行符号数据块;
多子带滤波步骤, 将每路子带并行符号数据块序列分别进行子带多相滤波处理, 并对所 述多个经过子带多相滤波的并行符号数据块序列进行合成处理, 以生成串行输出符号数据序 列;
波形缓存截短步骤, 对数据进行缓存, 并且截去缓存波形首部和尾部的拖尾信号, 获得 截短信号, 截短信号的长度为原型滤波器移位正交间隔 N的整数倍, 从而使截短信号成为首 尾连续的循环信号。
19、根据权利要求 18所述的基于多子带滤波器组的发射方法, 其特征在于, 所述的波形 缓存截短步骤, 将缓存的长度为 E' 的数据序列分割为长度分别为 F1 ' , Q和 F2' 的三段数 据块, 使得 E' = F1'+Q+F2', 选择 Q = DxN, 这样 Fl'+F2' = (C— l)xN+L。 选择 D和 N, 使 得 Q≥L— N, 选择 F1' = F2'或 F1'和 F2'取值尽量接近。
PCT/CN2006/002347 2005-09-30 2006-09-11 Transmitting device, receiving device and method based on multiple sub-bands filters set WO2007036134A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200510030276.5 2005-09-30
CNB2005100302765A CN100568863C (zh) 2005-09-30 2005-09-30 基于多子带滤波器组的发射、接收装置及其方法

Publications (1)

Publication Number Publication Date
WO2007036134A1 true WO2007036134A1 (en) 2007-04-05

Family

ID=37899368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2006/002347 WO2007036134A1 (en) 2005-09-30 2006-09-11 Transmitting device, receiving device and method based on multiple sub-bands filters set

Country Status (2)

Country Link
CN (1) CN100568863C (zh)
WO (1) WO2007036134A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190030741A (ko) * 2016-07-22 2019-03-22 션전 수퍼 데이타 링크 테크놀로지 엘티디. OvXDM 시스템에 적용하는 일종의 변조방법, 장치 및 OvXDM 시스템

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101557372B (zh) * 2008-04-11 2014-11-12 展讯通信(上海)有限公司 子带波形生成方法及其装置
TWI662788B (zh) 2009-02-18 2019-06-11 瑞典商杜比國際公司 用於高頻重建或參數立體聲之複指數調變濾波器組
CN105379215B (zh) * 2013-09-09 2018-10-09 华为技术有限公司 一种数据接收方法以及接收机
CN106464628B (zh) * 2014-10-24 2019-08-09 华为技术有限公司 发送和接收滤波器组多载波信号的方法及装置
CN107645364B (zh) * 2016-07-22 2022-12-09 山东壹号方舟机器人智能科技有限公司 互补编码方法及装置、互补译码方法及装置、OvXDM系统
CN107204947B (zh) * 2017-06-21 2020-05-15 中国科学院上海高等研究院 一种ftn预均衡传输方法、发射机、接收机及系统
CN108234368B (zh) * 2018-01-15 2020-07-24 哈尔滨工业大学 一种高谱效安全截短正交频分复用传输方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1344066A (zh) * 2000-09-21 2002-04-10 华为技术有限公司 宽带码分多址通信系统中的数字成形滤波器
US20030080981A1 (en) * 2001-10-26 2003-05-01 Koninklijke Philips Electronics N.V. Polyphase filter combining vertical peaking and scaling in pixel-processing arrangement
CN1514558A (zh) * 2002-12-31 2004-07-21 中国科学技术大学 一种控制峰值功率的发射机和接收机

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5710763A (en) * 1995-07-31 1998-01-20 Motorola, Inc. Filtered fast Fourier transmultiplexer and method
CA2464408C (en) * 2002-08-01 2012-02-21 Matsushita Electric Industrial Co., Ltd. Audio decoding apparatus and method for band expansion with aliasing suppression

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1344066A (zh) * 2000-09-21 2002-04-10 华为技术有限公司 宽带码分多址通信系统中的数字成形滤波器
US20030080981A1 (en) * 2001-10-26 2003-05-01 Koninklijke Philips Electronics N.V. Polyphase filter combining vertical peaking and scaling in pixel-processing arrangement
CN1514558A (zh) * 2002-12-31 2004-07-21 中国科学技术大学 一种控制峰值功率的发射机和接收机

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190030741A (ko) * 2016-07-22 2019-03-22 션전 수퍼 데이타 링크 테크놀로지 엘티디. OvXDM 시스템에 적용하는 일종의 변조방법, 장치 및 OvXDM 시스템
EP3490206A4 (en) * 2016-07-22 2020-02-19 Shen Zhen Kuang-Chi Hezhong Technology Ltd. MODULATION METHOD, DEVICE APPLICABLE TO OVXDM SYSTEM AND OVXDM SYSTEM
KR102227331B1 (ko) 2016-07-22 2021-03-11 선전 쾅-츠 허종 테크놀로지 엘티디. OvXDM 시스템에 적용하는 일종의 변조방법, 장치 및 OvXDM 시스템

Also Published As

Publication number Publication date
CN1941755A (zh) 2007-04-04
CN100568863C (zh) 2009-12-09

Similar Documents

Publication Publication Date Title
CN101030845B (zh) 频分多址系统的发射、接收装置及其方法
Siohan et al. Analysis and design of OFDM/OQAM systems based on filterbank theory
CN1947398B (zh) 使用缩减的傅里叶变换对基于ofdm的通信系统的基于子带的解调
CN101090386B (zh) 一种基于滤波器组的分块传输系统频域解调装置及其方法
US6563786B1 (en) Orthogonal frequency division multiplexing system with selectable rate
US8867587B2 (en) Double-layer multi-carrier ultra-wideband wireless communication method
JP4237784B2 (ja) 送信装置及び受信装置並びに無線通信システム
WO2007036134A1 (en) Transmitting device, receiving device and method based on multiple sub-bands filters set
JP3796221B2 (ja) 直交周波数分割多重接続に基づくデータ通信装置及び方法
CN100571238C (zh) 多载波系统的发射、接收装置及其发射、接收方法
CN101355538B (zh) 基于滤波器组的分块传输系统频域调制系统及方法
US7936851B2 (en) Channel equalization
CN106941465B (zh) 超奈奎斯特率块的传输方法、发射机、接收机及系统
KR20060102185A (ko) 주파수 공간 블록 부호화 기법과 단일 반송파 주파수 영역등화 방식을 이용한 송수신 장치 및 방법
CN105659551B (zh) 传送复数据符号块的方法和设备、接收方法和设备
CN108270713B (zh) 一种多应用场景信号多址接入方法及系统
CN107483378B (zh) 基于dft的ftn块传输方法、发射机、接收机及系统
JP2016513402A (ja) 直交周波数分割多重−オフセット直交振幅変調のためのシステムおよび方法
WO2016154911A1 (zh) 一种多载波时分复用调制/解调方法及系统
CN102752253A (zh) 时频域联合处理抑制正交频分复用系统子载波间干扰的方法
CN101119350A (zh) 正交频分复用系统、快速同步的方法和发送端设备
CN101807954A (zh) 上行多用户时域同步频分多址接入方法
CN1925474B (zh) 基于多子带滤波器组的单载波频分多址发射、接收装置及其方法
CN109617840B (zh) 一种基于重叠保留法的部分fft通信信号检测方法
CN1885844B (zh) 基于正交复用多载波传输降低峰均比的装置及其方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06775647

Country of ref document: EP

Kind code of ref document: A1