WO2007035758A1 - Aube d'eolienne comprenant un systeme de controle de couche limitrophe - Google Patents

Aube d'eolienne comprenant un systeme de controle de couche limitrophe Download PDF

Info

Publication number
WO2007035758A1
WO2007035758A1 PCT/US2006/036526 US2006036526W WO2007035758A1 WO 2007035758 A1 WO2007035758 A1 WO 2007035758A1 US 2006036526 W US2006036526 W US 2006036526W WO 2007035758 A1 WO2007035758 A1 WO 2007035758A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
fluid
flow passage
wind turbine
air
Prior art date
Application number
PCT/US2006/036526
Other languages
English (en)
Inventor
Pasquale Michael Sforza
Original Assignee
University Of Florida Research Foundation, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University Of Florida Research Foundation, Inc. filed Critical University Of Florida Research Foundation, Inc.
Publication of WO2007035758A1 publication Critical patent/WO2007035758A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/0608Rotors characterised by their aerodynamic shape
    • F03D1/0633Rotors characterised by their aerodynamic shape of the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • F03D15/05Transmission of mechanical power using hollow exhausting blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15DFLUID DYNAMICS, i.e. METHODS OR MEANS FOR INFLUENCING THE FLOW OF GASES OR LIQUIDS
    • F15D1/00Influencing flow of fluids
    • F15D1/10Influencing flow of fluids around bodies of solid material
    • F15D1/12Influencing flow of fluids around bodies of solid material by influencing the boundary layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/10Stators
    • F05B2240/13Stators to collect or cause flow towards or away from turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05B2240/32Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor with roughened surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/50Inlet or outlet
    • F05B2250/501Inlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/50Inlet or outlet
    • F05B2250/502Outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/97Reducing windage losses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • Helicopters, wind turbines and other mechanical devices include rotating blades that are attached to a rotating hub and that extend in a radial, outward direction from the hub.
  • Figure 1 illustrates a wind turbine with blades 10 attached to a hub 20
  • Figure 2 illustrates the outer profile of one of the turbine's blades 10.
  • each blade 10 includes a leading edge 12, a trailing edge 14, a pressure surface 16, and a suction surface 18.
  • radial momentum causes the air pressure on the blade 10 to increase as the radius from the hub 20 increases, which gives rise to centrifugal effects on the blade 10.
  • p is the density of the air adjacent the blade
  • is the angular velocity of the blade 10
  • the pressure, p increases as the radial distance, r, from the hub 20 increases.
  • centrifugal effects often disturb the boundary layer on the rotating blade 10, particularly at: (1) the blade's proximal end 24, which is adjacent to the hub 20; and (2) the blade's distal end 22.
  • Figure 1 is a schematic illustration of a wind turbine.
  • Figure 2 depicts the outer profile of the blade shown in Figure 1.
  • FIG. 3 illustrates a blade according to one embodiment of the invention.
  • Figure 4 illustrates a blade according to a further embodiment of the invention.
  • FIG. 5 illustrates a blade according to yet another embodiment of the invention.
  • Figure 6a depicts a turbine blade coordinate system according to a particular embodiment of the invention.
  • Figure 6b shows the location of an exemplary separation boundary on a rotating wind turbine blade.
  • Figure 7 is a schematic diagram of a rotating blade having a passive boundary layer control system. The thickness of the blade is not shown in this figure.
  • Figure 8 is a schematic diagram of an internal compressor passage through a rotating blade. This figure shows axial inlet flow through the blade's porous inboard surface and the velocity triangle at the blade's outlet.
  • Blades e.g., turbine blades
  • the blade 10 includes: (1) an air inlet 101; (2) an air outlet 103; and (3) a centrifugal flow passage 105 extending within the blade's interior between the air inlet 101 and the air outlet 103.
  • the air inlet 101 is disposed between the proximal end 24 of the blade 10 and a portion of the blade that is halfway between the blade's proximal and distal ends
  • the air outlet 103 is disposed between the distal end 22 of the blade 10 and a portion of the blade 10 that is halfway between the blades proximal and distal ends.
  • the air inlet 101 is disposed on the blade's suction surface 18 adjacent (e.g., immediately adjacent) to the blade's proximal end 24, and (2) the air outlet 103 is disposed on (or adjacent to) the blade's trailing edge 14 adjacent to the blades' distal end 22.
  • the blade 10 is configured so that when the blade 10 rotates about a hub, air is drawn into the air inlet 101, passes through the flow passage 105, and is expelled out of the blade 10 adjacent the blade's distal end 22 through the air outlet 103.
  • Air Inlet Air Inlet
  • the air inlet 101 can take any suitable shape for allowing air to be drawn air into the blade 10.
  • the air inlet 101 comprises a porous surface that is positioned on or adjacent the blade's suction surface 18 (e.g., in various embodiments of the invention, the air inlet 101 is defined within the blade's suction surface 18.)
  • the air inlet 101 may, for example, comprise a slit, a hole, or a series of slits or holes.
  • the surface area of the air inlet 101 may be any suitable size for drawing in air as the air passes over the surface of the blade 10.
  • the surface area of the air inlet 101 is less than or equal to about one-half of the size of the surface area of the blade's suction surface 18 or pressure surface 16.
  • the surface area of the air inlet 101 is less than about one-third of the size of the surface area of the blade's suction or pressure surface.
  • the surface area of the air inlet 101 is less than or equal to about one-eighth of the size of the surface area of the blade's suction surface 18.
  • the air inlet 101 may be placed in any suitable position on the blade 10.
  • the air inlet 101 is disposed between the proximal end 24 of the blade 10 and a portion of the blade that is positioned half way between the blade's proximal and distal ends.
  • the air inlet 101 is spaced apart from the proximal end 24 of the blade 10 by a distance that is less than about one-third of the length of the blade 10.
  • the air inlet 101 may be spaced apart from the proximal end 24 of the blade 10 by a distance that is less than about one-quarter of the length of the blade 10.
  • the air outlet 103 may be of any suitable size or shape.
  • the air outlet 103 comprises an elongated, substantially rectangular, slot-shaped opening.
  • Figures 4 and 5 illustrate alternative embodiments in which the air outlet 103 comprises a hole having a substantially circular shape.
  • the surface area of the air outlet 103 can be of any suitable size.
  • the air outlet 103 has a surface area that is less than about 1/5 of the surface area of the blade's suction surface 18.
  • Figures 4 and 5 illustrate an air outlet 103 that has a surface area that is less than or equal to about 1/32 of the size of the surface of the blade's suction surface 18.
  • the air outlet 103 can be disposed in any appropriate location on or adjacent the blade 10.
  • the air outlet 103 is disposed between the distal end 22 of the blade 10 and a portion of the blade 10 that is halfway between the blade's proximal and distal ends.
  • the air outlet 103 is disposed adjacent (and, preferably, immediately adjacent) the blade's trailing edge 14.
  • the air outlet 103 is spaced apart from the distal end 22 by a distance that is less than or equal to about one-sixteenth of the length of the blade 10 and is disposed on the blade's trailing edge 14.
  • Figure 4 illustrates an alternative embodiment in which the air outlet 103 is spaced apart from the blade's distal end 22 by a distance that is less than or equal to about one-third of the length of the blade 10.
  • the distal end 22 of the blade 10 defines a winglet 28, and the air outlet 103 is positioned on the trailing edge 14 of the winglet 28.
  • the blade's flow passage 105 (which is preferably defined within the blade's interior) may be of any suitable size and shape.
  • the flow passage 105 is substantially tubular.
  • the internal passage is a duct with a cross-sectional area equal to (or less than) that of a circular pipe having diameter that is equal to the blade's maximum thickness.
  • ⁇ duct cross-sectional area of compressor blade passage
  • the local Reynolds number Rei based on the chord c and the local relative velocity q of the rotating blade of radius R is given approximately by (z/R) ⁇ Re.
  • is the tip speed ratio of the blade
  • Re is the Reynolds number of the blade based on the chord and the oncoming wind speed U, i.e., the Reynolds number corresponding to the non-rotating state.
  • U IOnVs
  • the normal momentum equation merely notes that the pressure is constant across the boundary layer, as is typical in thin boundary layer theory.
  • the quantities ⁇ , ⁇ , and ⁇ are the non- dimensional surface coordinates in the stream-wise, normal, and span-wise directions of the blade, respectively, and u, v, and w are the corresponding non- dimensional velocity components, whiles is a non-dimensional pressure and Re is the Reynolds number. Lengths are referred to a reference chord length c, velocities to the free stream velocity U, and the pressure to pU 2 .
  • Both methods may require a means for suction or blowing situated within the wing itself. This may be merely appropriate duct work within the wing connected to a suitable pump located elsewhere.
  • Blades rotating in free space experience centrifugal effects that often disturb the boundary layer, particularly near the hub and near the tip.
  • blade motion makes implementation of conventional boundary layer control methods impractical.
  • blades rotating within a casing take advantage of these effects to add or extract work from a fluid.
  • the centrifugal compressor for example, exploits centrifugal effects to ingest fluid at one pressure, compress it to a higher pressure, and exhaust it into a receiver.
  • Various embodiments of the present flow control technique combine both the suction and injection strategies mentioned above into an integrated passive boundary layer control system.
  • At least one rotating blade (and preferably a plurality of blades e.g., of a wind turbine) includes a centrifugal compressor residing inside (or at least substantially inside) the rotating blade.
  • This compressor supplies combined suction and blowing for the control of the boundary layer over the outside of the rotating blade, as shown in Fig. 2.
  • the centrifugal compressor may be positioned outside the rotating blade.
  • the intent of the new passive boundary layer control system is to apply suction to the inboard surface region so as to aid in maintaining attached flow under a broader range of operating conditions and thereby permitting the flow enhancement due to rotation to remain undisturbed.
  • Computations for various non-rotating symmetric airfoils (including the NACA 0006 and 0007 airfoils) consider sinusoidal suction velocity distributions as shown below:
  • a w is a constant; x is the streamwise distance over which the suction is applied, starting at X 1 and ending at X 2 .
  • the quantity AcIc denotes the length of the suction gap as a function of the actual chord length and this should recover the appropriate magnitude of ⁇ w in the more general requirement of Eq. 3. Then the suction flow rate is
  • the area through which the suction acts is A wa ⁇ and has a streamwise extent denoted by Ac and a spanwise extent denoted by s.
  • the internal passage may be considered a duct with a cross-sectional area equal to that of a circular pipe of diameter t, the airfoil maximum thickness.
  • the integral internal compressor shown in Fig. 2 is essentially a standard centrifugal compressor with approximately axial entry and backward curved blades.
  • the ideal static pressure rise across this compressor 26 is given by
  • variable W denotes the velocity relative to the blade passage.
  • the ideal total pressure rise is equal to the static pressure rise plus the external effect as given below:
  • denotes the cross-sectional area of the passage and ⁇ is the angle between the velocity vector due to rotation and the relative velocity W and is set primarily by the local shape of the internal blade passage (i.e.,, forward or backward swept blades).
  • the ideal power required for the typical wind turbine conditions considered is likewise very modest, on the order of a kilowatt, though of course taking account realistic efficiencies this may run up to 4 or 5 kilowatts.
  • the second term on the right-hand side of Eq. 8 is zero and, using the expression for the magnitude of Q in Eq. 5, we may form the ratio of power required by the internal compressor portion of the blade to the power generated (P aVa ⁇ i) by the external turbine portion as follows:
  • This integral centrifugal compressor is thereby capable of controlling the boundary layer over the outside of the rotating blade by providing surface suction near the hub and jet blowing near the tip, as shown by the schematic diagram in Fig.2. Since the centrifugal effects increase for both the outer flow over the blade and the inner flow within the blade, in various embodiments, there need not be any external control. That is, the control is automatic and passive ensuring not only improved performance, but increased reliability as well.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Wind Motors (AREA)

Abstract

Aube (telle qu'une aube d'éolienne) conçue pour être fixée en position contiguë à un moyeu rotative et définissant (1) une entrée de liquide contiguë à une partie proximale de l'aube, (2) une sortie de liquide contiguë à une partie distale de l'aube et (3) un passage d'écoulement centrifuge s'étendant à l'intérieur d'une partie interne de l'aube entre l'entrée et la sortie de liquide. L'entrée de liquide se trouve, de préférence, en communication gazeuse avec la sortie de liquide par l'intermédiaire du passage d'écoulement centrifuge et l'aube est conçue de sorte que, quand elle est en rotation autour du moyeu à une vitesse déterminée, le liquide est attiré dans l'entrée, déplacé à travers le passage d'écoulement centrifuge et expulsé par la sortie de liquide. Ce liquide est, de préférence, comprimé simultanément à son déplacement à travers le passage d'écoulement centrifuge.
PCT/US2006/036526 2005-09-19 2006-09-19 Aube d'eolienne comprenant un systeme de controle de couche limitrophe WO2007035758A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US71866205P 2005-09-19 2005-09-19
US60/718,662 2005-09-19

Publications (1)

Publication Number Publication Date
WO2007035758A1 true WO2007035758A1 (fr) 2007-03-29

Family

ID=37487633

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2006/036526 WO2007035758A1 (fr) 2005-09-19 2006-09-19 Aube d'eolienne comprenant un systeme de controle de couche limitrophe

Country Status (1)

Country Link
WO (1) WO2007035758A1 (fr)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008080407A1 (fr) * 2007-01-05 2008-07-10 Lm Glasfiber A/S Pale d'éolienne avec moyens de régulation de portance sous la forme de fentes ou de trous
EP2031244A1 (fr) * 2007-08-31 2009-03-04 Lm Glasfiber A/S Moyens pour le maintien d'un flux d'un agent fluide fixé à l'extérieur d'un élément de contrôle de flux par le croisement de sous-canaux
EP2031243A1 (fr) * 2007-08-31 2009-03-04 Lm Glasfiber A/S Moyens pour le maintien d'un flux fixe à l'extérieur d'un élément de contrôle de flux
US20100266382A1 (en) * 2007-10-22 2010-10-21 Actiflow B.V. Wind turbine with boundary layer control
WO2011053119A1 (fr) * 2009-10-28 2011-05-05 Actiflow B.V. Pale de turbine éolienne
WO2011159091A2 (fr) * 2010-06-14 2011-12-22 삼성중공업(주) Pale pour système éolien de production d'électricité et système éolien de production d'électricité l'utilisant
CN102562461A (zh) * 2010-12-21 2012-07-11 通用电气公司 操纵横跨风力涡轮机转子叶片的空气的边界层的主动流动控制系统和方法
EP2527642A3 (fr) * 2011-05-26 2013-11-13 BayWa r.e. Rotor Service GmbH Pale de rotor d'une éolienne
CN103410656A (zh) * 2013-08-13 2013-11-27 河海大学常州校区 一种叶根部位转捩延迟控制的风力机叶片
EP2998572A1 (fr) 2014-09-22 2016-03-23 Best Blades GmbH Pale de rotor d'éoliennes
ES2569724R1 (es) * 2014-11-11 2016-05-27 Gimenez Ramon Robles Helice
US9617865B2 (en) 2013-04-02 2017-04-11 MTU Aero Engines AG Guide vane for a turbomachine, guide vane cascade, and method for manufacturing a guide vane or a guide vane cascade
CN107740748A (zh) * 2011-10-17 2018-02-27 科哈纳技术有限公司 具有向前喷吹槽的涡轮机叶片和系统
DE102016123412A1 (de) * 2016-12-05 2018-06-07 Wobben Properties Gmbh Rotorblatt für eine Windenergieanlage und Windenergieanlage
CN108468619A (zh) * 2018-03-26 2018-08-31 南京航空航天大学 一种离心式风力机叶片射流增功装置
WO2018224225A1 (fr) * 2017-06-09 2018-12-13 Wobben Properties Gmbh Pale de rotor pour éolienne et éolienne
CN109281798A (zh) * 2018-10-15 2019-01-29 东北电力大学 聚风助推风力发电机用高效转子叶片
WO2019086069A1 (fr) * 2017-10-30 2019-05-09 clean energy one gmbh Aérogénérateur avec collecteur de co2 et procédé de commande ou de fonctionnement de collecteur de co2 d'aérogénérateur
CN110748452A (zh) * 2018-07-23 2020-02-04 西门子歌美飒可再生能源公司 复合材料、风力涡轮机叶片、风力涡轮机和用于产生复合材料的方法
IT201900001907A1 (it) * 2019-02-11 2020-08-11 Daniel Guariglia Turbina
CN113357080A (zh) * 2021-06-10 2021-09-07 中科宇能科技发展有限公司 一种风电叶片吹气环量控制系统
US11920617B2 (en) 2019-07-23 2024-03-05 Coflow Jet, LLC Fluid systems and methods that address flow separation
US11987352B2 (en) 2017-10-31 2024-05-21 Coflow Jet, LLC Fluid systems that include a co-flow jet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1300552A (en) * 1918-05-18 1919-04-15 Lester S Barr Airplane-propeller.
GB1532815A (en) * 1976-09-27 1978-11-22 Rolls Royce Rotor blades for ducted fans
GB2186033A (en) * 1986-02-28 1987-08-05 Nei International Research & D Wind turbine
WO2002025109A1 (fr) * 2000-09-20 2002-03-28 Georges Boulisset Pales creuses reactives pour eolienne

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1300552A (en) * 1918-05-18 1919-04-15 Lester S Barr Airplane-propeller.
GB1532815A (en) * 1976-09-27 1978-11-22 Rolls Royce Rotor blades for ducted fans
GB2186033A (en) * 1986-02-28 1987-08-05 Nei International Research & D Wind turbine
WO2002025109A1 (fr) * 2000-09-20 2002-03-28 Georges Boulisset Pales creuses reactives pour eolienne

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100014970A1 (en) * 2007-01-05 2010-01-21 Lm Glasfiber A/S Wind turbine blade with lift-regulating means in form of slots or holes
US8807940B2 (en) 2007-01-05 2014-08-19 Lm Glasfiber A/S Wind turbine blade with lift-regulating means in form of slots or holes
WO2008080407A1 (fr) * 2007-01-05 2008-07-10 Lm Glasfiber A/S Pale d'éolienne avec moyens de régulation de portance sous la forme de fentes ou de trous
WO2009026928A2 (fr) * 2007-08-31 2009-03-05 Lm Glasfiber A/S Pale d'éolienne équipée de moyens de commande de couche limite submergés
WO2009026926A1 (fr) * 2007-08-31 2009-03-05 Lm Glasfiber A/S Pale d'éolienne avec un moyen de contrôle de couche limite immergée comprenant des sous-canaux de croisement
WO2009026928A3 (fr) * 2007-08-31 2009-09-17 Lm Glasfiber A/S Pale d'éolienne équipée de moyens de commande de couche limite submergés
US8550787B2 (en) 2007-08-31 2013-10-08 Lm Glasfiber A/S Wind turbine blade with submerged boundary layer control means comprising crossing sub-channels
CN101883922A (zh) * 2007-08-31 2010-11-10 Lm玻璃纤维制品有限公司 具有包括交叉子通道的凹陷式边界层控制装置的风力涡轮机叶片
EP2031243A1 (fr) * 2007-08-31 2009-03-04 Lm Glasfiber A/S Moyens pour le maintien d'un flux fixe à l'extérieur d'un élément de contrôle de flux
EP2031244A1 (fr) * 2007-08-31 2009-03-04 Lm Glasfiber A/S Moyens pour le maintien d'un flux d'un agent fluide fixé à l'extérieur d'un élément de contrôle de flux par le croisement de sous-canaux
US8579594B2 (en) 2007-08-31 2013-11-12 Lm Glasfiber A/S Wind turbine blade with submerged boundary layer control means
US20100266382A1 (en) * 2007-10-22 2010-10-21 Actiflow B.V. Wind turbine with boundary layer control
WO2011053119A1 (fr) * 2009-10-28 2011-05-05 Actiflow B.V. Pale de turbine éolienne
WO2011159091A2 (fr) * 2010-06-14 2011-12-22 삼성중공업(주) Pale pour système éolien de production d'électricité et système éolien de production d'électricité l'utilisant
WO2011159091A3 (fr) * 2010-06-14 2012-03-29 삼성중공업(주) Pale pour système éolien de production d'électricité et système éolien de production d'électricité l'utilisant
CN102562461A (zh) * 2010-12-21 2012-07-11 通用电气公司 操纵横跨风力涡轮机转子叶片的空气的边界层的主动流动控制系统和方法
EP2469076A3 (fr) * 2010-12-21 2014-08-06 General Electric Company Système et procédé de fonctionnement d'un système de contrôle de flux actif afin de manipuler une couche limite dans une pale de rotor d'une éolienne
EP2527642A3 (fr) * 2011-05-26 2013-11-13 BayWa r.e. Rotor Service GmbH Pale de rotor d'une éolienne
CN107740748A (zh) * 2011-10-17 2018-02-27 科哈纳技术有限公司 具有向前喷吹槽的涡轮机叶片和系统
US10060439B2 (en) 2013-04-02 2018-08-28 MTU Aero Engines AG Guide vane for a turbomachine, guide vane cascade, and method for manufacturing a guide vane or a guide vane cascade
US9617865B2 (en) 2013-04-02 2017-04-11 MTU Aero Engines AG Guide vane for a turbomachine, guide vane cascade, and method for manufacturing a guide vane or a guide vane cascade
CN103410656A (zh) * 2013-08-13 2013-11-27 河海大学常州校区 一种叶根部位转捩延迟控制的风力机叶片
WO2016045656A1 (fr) 2014-09-22 2016-03-31 Best Blades Gmbh Pale de rotor d'éolienne
CN105658954B (zh) * 2014-09-22 2019-06-14 最优叶片有限公司 风能设备转子叶片
EP2998572A1 (fr) 2014-09-22 2016-03-23 Best Blades GmbH Pale de rotor d'éoliennes
CN105658954A (zh) * 2014-09-22 2016-06-08 最优叶片有限公司 风能设备转子叶片
ES2569724R1 (es) * 2014-11-11 2016-05-27 Gimenez Ramon Robles Helice
DE102016123412A1 (de) * 2016-12-05 2018-06-07 Wobben Properties Gmbh Rotorblatt für eine Windenergieanlage und Windenergieanlage
WO2018103904A1 (fr) 2016-12-05 2018-06-14 Wobben Properties Gmbh Pale de rotor pour une éolienne et éolienne
CN110036196A (zh) * 2016-12-05 2019-07-19 乌本产权有限公司 用于风能设施的转子叶片和风能设施
US11415100B2 (en) 2017-06-09 2022-08-16 Wobben Properties Gmbh Rotor blade for a wind turbine and wind turbine
WO2018224225A1 (fr) * 2017-06-09 2018-12-13 Wobben Properties Gmbh Pale de rotor pour éolienne et éolienne
WO2019086069A1 (fr) * 2017-10-30 2019-05-09 clean energy one gmbh Aérogénérateur avec collecteur de co2 et procédé de commande ou de fonctionnement de collecteur de co2 d'aérogénérateur
US11987352B2 (en) 2017-10-31 2024-05-21 Coflow Jet, LLC Fluid systems that include a co-flow jet
CN108468619A (zh) * 2018-03-26 2018-08-31 南京航空航天大学 一种离心式风力机叶片射流增功装置
CN110748452A (zh) * 2018-07-23 2020-02-04 西门子歌美飒可再生能源公司 复合材料、风力涡轮机叶片、风力涡轮机和用于产生复合材料的方法
US11761420B2 (en) 2018-07-23 2023-09-19 Siemens Games Renewable Energy A/S Composite material, a wind turbine blade, a wind turbine and a method for producing a composite material
CN109281798A (zh) * 2018-10-15 2019-01-29 东北电力大学 聚风助推风力发电机用高效转子叶片
IT201900001907A1 (it) * 2019-02-11 2020-08-11 Daniel Guariglia Turbina
WO2020165663A1 (fr) * 2019-02-11 2020-08-20 Guariglia Daniel Éolienne
US11920617B2 (en) 2019-07-23 2024-03-05 Coflow Jet, LLC Fluid systems and methods that address flow separation
CN113357080A (zh) * 2021-06-10 2021-09-07 中科宇能科技发展有限公司 一种风电叶片吹气环量控制系统
CN113357080B (zh) * 2021-06-10 2023-02-28 中科宇能科技发展有限公司 一种风电叶片吹气环量控制系统

Similar Documents

Publication Publication Date Title
WO2007035758A1 (fr) Aube d'eolienne comprenant un systeme de controle de couche limitrophe
Tangler Insight into wind turbine stall and post‐stall aerodynamics
Gur et al. Comparison between blade-element models of propellers
Du et al. The effect of rotation on the boundary layer of a wind turbine blade
Yilmaz et al. Performance of a ducted propeller designed for UAV applications at zero angle of attack flight: An experimental study
Gaunaa et al. Determination of the maximum aerodynamic efficiency of wind turbine rotors with winglets
Das et al. Influence of stall fences on the performance of Wells turbine
El Mouhsine et al. Aerodynamics and structural analysis of wind turbine blade
Huebsch et al. Dynamic roughness as a means of leading-edge separation flow control
Garipova et al. Estimates of hover aerodynamics performance of rotor model
Kwon et al. Enhancement of wind turbine aerodynamic performance by a numerical optimization technique
Thouault et al. Numerical and experimental analysis of a generic fan-in-wing configuration
Gross et al. Numerical investigation of S822 wind turbine airfoil
Govardhan et al. Computational study of the effect of sweep on the performance and flow field in an axial flow compressor rotor
Dumitrache et al. Blowing jets as a circulation flow control to enhancement the lift of wing or generated power of wind turbine
Saracoglu et al. Analysis of the flow field around the wing section of a FanWing aircraft under various flow conditions
Kim et al. Viscous flow around a propeller-shaft configuration with infinite-pitch rectangular blades
Homer et al. Results from a set of low speed blade-vortex interaction experiments
Dumitrescu et al. Analysis of leading-edge separation bubbles on rotating blades
Sforza Wind Turbine Boundary Layers Near the Hub
Gologan et al. Potential of the cross-flow fan for powered-lift regional aircraft applications
Marinus et al. Effect of rotation on the 3D boundary layer around a propeller blade
Mazumder et al. Parametric Study of Aerodynamic Performance of an Airfoil with Active Circulation Control using Leading Edge Embedded Cross-Flow Fan
Renganathan et al. Validation and assesment of lower order aerodynamics based design of ram air turbines
Riyad et al. An analysis of harmonic airloads acting on helicopter rotor blades

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06814958

Country of ref document: EP

Kind code of ref document: A1