WO2007034966A1 - Projection-use zoom lens - Google Patents

Projection-use zoom lens Download PDF

Info

Publication number
WO2007034966A1
WO2007034966A1 PCT/JP2006/319081 JP2006319081W WO2007034966A1 WO 2007034966 A1 WO2007034966 A1 WO 2007034966A1 JP 2006319081 W JP2006319081 W JP 2006319081W WO 2007034966 A1 WO2007034966 A1 WO 2007034966A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
lens group
numerical example
lenses
group
Prior art date
Application number
PCT/JP2006/319081
Other languages
French (fr)
Japanese (ja)
Inventor
Takeshi Kitakata
Takahiro Sugiyama
Original Assignee
Brother Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005277953A external-priority patent/JP2007086636A/en
Priority claimed from JP2005277952A external-priority patent/JP2007086635A/en
Priority claimed from JP2006082099A external-priority patent/JP2007256711A/en
Application filed by Brother Kogyo Kabushiki Kaisha filed Critical Brother Kogyo Kabushiki Kaisha
Priority to US12/088,201 priority Critical patent/US20100149655A1/en
Publication of WO2007034966A1 publication Critical patent/WO2007034966A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/22Telecentric objectives or lens systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1445Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being negative
    • G02B15/144511Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being negative arranged -+-+

Definitions

  • the present invention relates to a zoom lens used in a projection optical system.
  • Patent Documents 1 to 5 there are those described in Patent Documents 1 to 5 below.
  • a cemented lens equivalent to a single lens in terms of power is a cemented lens in which the scales of the lens surfaces to be joined are the same.
  • lenses constituting such a cemented lens can be achromatic by making the refractive index different between adjacent lenses.
  • the refractive indexes between lenses are the same, if the Rs of the lens surfaces to be joined are the same, they are assumed to be “a cemented lens equivalent to a single lens in terms of power”.
  • the projection zoom lens is preferably designed to give telecentricity (particularly image side telecentricity).
  • the focusing is generally performed with a lens close to an image element.
  • conventional focusing lenses must also take telecentricity into consideration.
  • a condenser lens is generally disposed immediately in front of an image element in order to project a larger amount of light from the image element and to reduce the lens system. If the focusing lens arranged in is composed of positive lenses, there will be a problem if the telecentricity is impaired.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-77950 Patent Document 2: JP 2004-54021 A
  • Patent Document 3 Japanese Patent Laid-Open No. 2003-215453
  • Patent Document 4 Japanese Unexamined Patent Publication No. 2003-215455
  • Patent Document 5 Japanese Unexamined Patent Publication No. 2000-292698
  • the present invention has been made in view of the above situation.
  • One object of the present invention is to provide a zoom lens for projection that has a smaller number of lens elements than conventional lenses.
  • Another object of the present invention is to provide a zoom lens for projection that can easily maintain telecentricity.
  • the first lens group includes a negative lens, a negative lens, a positive lens, and a negative lens in order from the projection surface side, and has a negative number.
  • the second lens group consists of a total of three lenses, one cemented lens or one positive lens, one positive lens or one cemented lens, and one cemented lens in order from the projection surface side. This lens has a positive power.
  • the third lens group is composed of one negative lens.
  • the fourth lens group is composed of one positive lens. Further, at the time of zooming, the first lens group and the second lens group are moved, and the third lens group and the fourth lens group are fixed. In addition, the third lens group is configured to be moved for focusing!
  • the focal length is variable by moving the first lens group and the second lens group. Also, with this zoom lens, focusing can be achieved by moving the third lens group.
  • the fourth lens group is a condenser lens for projecting more light from the image element and at the same time reducing the outer diameter of the lens system.
  • the optical system from the first lens group to the fourth lens group is configured to maintain telecentricity.
  • Maintaining telecentricity means a state in which the principal ray and the optical axis are almost parallel (including an inclination of about ⁇ 10 °).
  • the zoom lens of the present invention may satisfy the following conditional expression (1).
  • f is the composite focal length of the first lens unit
  • the zoom lens of the present invention may satisfy the following conditional expression (2).
  • the zoom lens of the present invention may satisfy the following conditional expression (3).
  • f is the composite focal length of the third lens group
  • T Focal length at the long focal end
  • the projector according to the present invention includes the zoom lens according to the present invention described above.
  • Conditional expression (1) is a condition for regulating the relationship between the focal lengths of the first lens unit and the second lens unit that move to change the focal length.
  • the focal length force s of the first lens group becomes too small, so that the spherical aberration generated in the first lens group becomes excessive. Then, it becomes difficult to correct spherical aberration satisfactorily.
  • Conditional expression (2) indicates that the first lens group force and the third lens group have the required magnitude of the combined back focus, and the third lens group and the fourth lens Lens group This is a condition for securing an air space in which the illumination optical system can be inserted between the two.
  • Conditional expression (3) is a condition for maintaining the telecentricity of the optical system appropriately in an optical system in which focusing is performed by the third lens group and a condenser lens is installed immediately before the image element. .
  • f / f I is smaller than the lower limit 0.08, the focus of the third lens group
  • the distance is too large. Then, the amount of movement of the third lens group when focusing is too large, and as a result, the lens group becomes large, which is preferable.
  • the amount of movement is small, which is advantageous for reducing the size of the lens system.
  • the spherical aberration is over, which is not preferable.
  • a zoom lens according to another aspect of the present invention includes a first lens group, a second lens group, and a third lens group in order of the projection surface side force, and includes a short focal end and a long focal end. It is possible to zoom in between.
  • the first lens group is composed of three lenses of a negative lens, a positive lens, and a negative lens in order from the projection surface side, and has a negative power.
  • the second lens group includes, in order from the projection surface side, one positive lens, one cemented lens composed of two lenses, and one cemented lens composed of two lenses. It is composed of a total of 3 lenses and has positive power.
  • the third lens group is composed of two lenses of a negative lens and a positive lens in order, and has a positive power.
  • the first lens group and the second lens group are moved during zooming, and the third lens group is fixed.
  • the third lens group can be moved for focusing.
  • the focal length is changed by moving the first lens group and the second lens group.
  • the separation is variable.
  • focusing can be achieved by moving the third lens group.
  • the telecentricity can be maintained by the optical system up to the third lens group by using a design that satisfies conditional expressions (4) to (6) described later. it can.
  • maintaining telecentricity means that the principal ray and the optical axis are almost parallel (including an inclination of about ⁇ 10 °).
  • the zoom lens of the present invention may satisfy the following conditional expression (4).
  • f is the composite focal length of the first lens unit
  • the zoom lens of the present invention may satisfy the following conditional expression (5). 0. 8 ⁇ I f / ⁇ I ⁇ 1. 8 (5)
  • the zoom lens of the present invention may satisfy the following conditional expression (6). 0.08 ⁇ ⁇ ⁇ / ⁇ ⁇ ⁇ 0.3 (6)
  • f is the composite focal length of the third lens group
  • the projector according to the present invention includes the zoom lens according to the present invention described above.
  • Conditional expression (4) is a condition for regulating the relationship between the focal lengths of the first lens unit and the second lens unit that move to change the focal length.
  • the focal length of the first lens group becomes too large, and the amount of movement of the first lens group and the second lens group for changing the focal length becomes large. As a result, the lens system becomes large, which is not preferable.
  • Conditional expression (5) indicates that the first lens group force and the third lens group are combined with the third lens group and the image element in order to ensure the combined back focus up to the third lens group to a required magnitude and to ensure an appropriate amount of light for the projected image. This is a condition for ensuring an air gap between which the illumination optical system can be inserted.
  • Conditional expression (6) is a condition for performing focusing with the third lens group and maintaining the telecentricity of the lens system appropriately.
  • f t / f 3 I is smaller than the lower limit of 0.08, the focal length of the third lens unit becomes too large. Then, the amount of movement of the third lens group when focusing is too large, and as a result, the lens group becomes large, which is preferable.
  • the amount of movement is small, which is advantageous for reducing the size of the lens system.
  • the spherical aberration becomes under, which is not preferable.
  • the present invention it is possible to provide a zoom lens for projection with eight lens elements, which is smaller than in the past.
  • FIG. 1 is an explanatory diagram showing a lens configuration of Numerical Example 1 according to the first embodiment.
  • FIG. 2 is a diagram showing various aberrations at the short focal end in Numerical Example 1 of the first embodiment.
  • FIG. 3 is a diagram showing various aberrations at an intermediate focal position in Numerical Example 1 of the first embodiment.
  • FIG. 4 is a diagram showing various aberrations at the long focal end in Numerical Example 1 according to the first embodiment.
  • FIG. 5 is an explanatory diagram showing a lens configuration of Numerical Example 2 of the first embodiment.
  • FIG. 9 An explanatory diagram showing the lens configuration of Numerical Example 3 of the first embodiment.
  • FIG. 10 Various aberration diagrams at the short focus end in Numerical Example 3 according to the first embodiment. 11] Various aberration diagrams at the intermediate focal position in Numerical Example 3 of the first embodiment. 12] Various aberration diagrams at the long focal end in Numerical Example 3 of the first embodiment. 13] An explanatory diagram showing the lens configuration of Numerical Example 1 of the second embodiment.
  • FIG. 14 Various aberration diagrams at the short focal end in Numerical Example 1 according to the second embodiment. 15] Various aberration diagrams at the intermediate focal position in Numerical Example 1 of the second embodiment.
  • FIG. 16 Various aberration diagrams at the long focal end in Numerical Example 1 according to the second embodiment. 17] An explanatory diagram showing the lens configuration of Numerical Example 2 of the second embodiment.
  • FIG. 25 is an explanatory diagram showing a lens configuration of Numerical Example 1 according to the third embodiment.
  • FIG. 26 is an aberration diagram at the short focal end in Numerical Example 1 according to the third embodiment.
  • FIG. 28 is an aberration diagram at the long focal end in Numerical Example 1 of the third embodiment.
  • FIG. 29 is an explanatory diagram showing a lens configuration of Numerical Example 2 according to the third embodiment.
  • FIG. 30 is an explanatory diagram showing a lens configuration of Numerical Example 3 according to the third embodiment.
  • FIG. 34 is a diagram illustrating various aberrations at the short focal end in Numerical Example 3 according to the third embodiment.
  • FIG. 35 is a diagram showing various aberrations at an intermediate focal position in Numerical Example 3 of the third embodiment.
  • FIG. 36 is a diagram illustrating various aberrations at the long focal end in Numerical Example 3 according to the third embodiment.
  • the zoom lens of the first embodiment is composed of a first lens group, a second lens group, a third lens group, and a fourth lens group in order from the projection plane side, and includes a short focal end and a long focal end.
  • the first lens group consists of three lenses, a negative lens, a positive lens, and a negative lens, in order from the projection plane side, and has negative power.
  • the second lens unit is composed of a total of three lenses, one cemented lens, one positive lens, and one cemented lens, in order of the projection surface side force.
  • the third lens group is composed of one negative lens
  • the fourth lens group is composed of one positive lens
  • the first lens is used for zooming.
  • the lens group and the second lens group are moved, and the third lens group and the fourth lens group are fixed.
  • the third lens group is a preparative Ru zoom lens arrangement is moved for focusing.
  • FIG. Figure 1 The configuration of the zoom lens according to Numerical Example 1 of the first embodiment is shown in FIG. Figure 1 Symbol PL is the projection plane, Symbol GL is the protective glass of the image sensor (which may include an optical filter, etc.), Symbol CD is the image sensor, Symbol G is the first lens group, and Symbol G is
  • the number R indicates the diaphragm surface.
  • This zoom lens includes a first lens group G, a second lens group G, and the like in order from the projection plane PL side.
  • the third lens group G and the fourth lens group G are arranged between the short focal end and the long focal end.
  • the first lens group G is composed of three lenses of a negative lens, a positive lens, and a negative lens in order from the projection plane PL side, and has negative power.
  • one lens as a unit constituting each lens group includes a case where it is a cemented lens equivalent to a single lens in terms of power.
  • the cemented lens is obtained by cementing two or more single lenses.
  • the second lens group G includes one cemented lens (R to R) and one sheet in order from the projection plane PL side.
  • each of these cemented lenses is composed of two lenses.
  • Each of the above-described cemented lenses may be composed of three or more lenses, either one or both of which are two lenses.
  • the single positive lens (R to R) mentioned above is
  • it may be constituted by a cemented lens.
  • the third lens group G is composed of one negative lens. This negative lens also has negative power
  • the fourth lens group G is composed of one positive lens. This positive lens is also positive power
  • the zoom lens of the first embodiment is composed of eight lenses as a whole. As described above, here, a cemented lens equivalent to a single lens in terms of power is counted as one lens.
  • the first lens group G and the second lens group G are used for zooming.
  • the third lens group G is moved for focusing. It becomes the composition which becomes. Since the lens group moving mechanism itself is the same as the conventional one, a detailed description thereof will be omitted.
  • FIGS. Fig. 2 shows various aberrations at the short focal end of Numerical Example 1
  • Fig. 3 shows various aberrations at the intermediate focal position in Numerical Example 1.
  • FIG. 4 is a diagram of various aberrations at the long focal end of Numerical Example 1.
  • symbols G, B, and R in chromatic aberration represented by spherical aberration are spherical aberrations for green, blue, and red wavelengths, respectively, and symbol SC is an unsatisfactory sine condition. .
  • Table 1 shows various characteristics of Numerical Example 1.
  • the symbol f indicates the focal length of the third lens group G.
  • the symbol f is the focal length of the short focal end
  • the symbol f is the focal length of the long focal end
  • the symbol f indicates the combined back focus from the first lens group G force to the third lens group G b 1 3
  • the projection distance in the first embodiment is 1000 mm.
  • the zoom lens of Numerical Example 1 it is possible to provide a projection zoom lens having eight lens elements, which is smaller than the conventional zoom lens. As described above, the number of cemented lenses equivalent to a single lens in terms of power is calculated as one. In addition, this zoom lens can easily maintain telecentricity even in an optical system in which a condenser lens (that is, the fourth lens group G) is disposed immediately in front of the image element by forming the focusing lens with a negative lens.
  • a condenser lens that is, the fourth lens group G
  • the zoom lens according to the first embodiment can be used as a projection lens for a projector.
  • FIG. 5 shows a configuration of a zoom lens according to Numerical Example 2 of the first embodiment.
  • FIGS. Fig. 6 shows various aberrations at the short focal end
  • Fig. 7 shows
  • FIG. 8 is a diagram of various aberrations at the long focal end.
  • Table 2 shows the characteristics of Numerical Example 2.
  • FIG. 9 shows a configuration of a zoom lens according to Numerical Example 3 of the first embodiment.
  • the same reference numerals are used for the same components and characteristics as those of Numerical Example 1 to simplify the description.
  • FIGS. Figure 10 shows various aberrations at the short focal end.
  • FIG. 11 shows various aberrations at the intermediate focal position
  • FIG. 12 shows various aberrations at the long focal end.
  • Table 3 shows the characteristics of Numerical Example 3.
  • the zoom lens of the second embodiment is composed of a first lens group, a second lens group, a third lens group, and a fourth lens group in order from the projection plane side, and includes a short focal end and a long focal end.
  • the first lens group consists of three lenses, a negative lens, a positive lens, and a negative lens, in order from the projection plane side, and has negative power.
  • the second lens group is composed of a total of three lenses, one positive lens, one cemented lens, and one cemented lens, in order of the projection surface side force.
  • the third lens group is composed of one negative lens
  • the fourth lens group is composed of one positive lens
  • the first lens is used for zooming.
  • the lens group and the second lens group are moved, and the third lens group and the fourth lens group are fixed.
  • the third lens group is a preparative Ru zoom lens arrangement is moved for focusing.
  • FIG. 13 shows a configuration of a zoom lens according to Numerical Example 1 of the second embodiment.
  • symbol PL is the projection plane
  • symbol GL is the protective glass of the image sensor (which may include an optical filter, etc.)
  • symbol CD is the image sensor
  • symbol G is the first lens group.
  • G 11 12 denotes the second lens group
  • G denotes the third lens group
  • G denotes the fourth lens group.
  • the symbol R indicates the diaphragm surface.
  • This zoom lens includes a first lens group G and a second lens group G in order from the projection plane PL side.
  • the first lens group G includes three lenses, a negative lens, a positive lens, and a negative lens, in that order from the projection plane PL side.
  • the lens has a negative power.
  • one lens as a unit constituting each lens group includes a case where it is a cemented lens equivalent in power to a single lens.
  • the cemented lens is obtained by cementing two or more single lenses.
  • the second lens group G includes, in order from the projection plane PL side, one positive lens (R to R) and one sheet
  • each of these cemented lenses is composed of two lenses.
  • Each of the above-described cemented lenses may be composed of three or more lenses that are joined by either one or both of the two forces.
  • 28 29 may be constituted by a cemented lens.
  • the third lens group G includes one negative lens. This negative lens also has negative power
  • the fourth lens group G is composed of one positive lens. This positive lens is also positive power
  • the zoom lens according to the second embodiment is composed of eight lenses as a whole. As described above, here, a cemented lens equivalent to a single lens in terms of power is counted as one lens.
  • the first lens group G and the second lens group G are used for zooming.
  • the third lens group G is moved for focusing.
  • FIG. 14 shows various aberrations at the short focal end of Numerical Example 1
  • FIG. 15 shows various aberrations at the intermediate focal position of Numerical Example 1
  • FIG. 16 shows various aberrations at the long focal end of Numerical Example 1. It is.
  • symbols G, B, and R in the chromatic aberration represented by spherical aberration are spherical aberrations for green, blue, and red wavelengths, respectively, and symbol SC is an unsatisfactory sine condition. .
  • Table 4 shows properties of Numerical Example 1.
  • R is the radius of curvature
  • d is the lens thickness or air spacing
  • Nd is the refractive index of the d line (588 nm)
  • Vd is the Abbe number of the d line (the Abbe number is V d May also be expressed).
  • the relationship between the subscripts R and d and the lens is as shown in FIG.
  • the symbol f is the focal length of the first lens group G
  • the symbol f is the focal length of the second lens group G
  • the symbol f indicates the focal length of the third lens group G.
  • the symbol f is the focal length of the short focal end
  • the symbol f is the focal length of the long focal end
  • Symbol f indicates the combined back focus up to the first lens group G force and the third lens group G b 11 13
  • the projection distance in the second embodiment is 1000 mm.
  • the zoom lens of Numerical Example 1 it is possible to provide a projection zoom lens having eight lens elements, which is smaller than the conventional zoom lens. As described above, the number of cemented lenses equivalent to a single lens in terms of power is calculated as one. In addition, this zoom lens can easily maintain telecentricity even in an optical system in which a condenser lens (that is, the fourth lens group G) is arranged immediately in front of the image element by forming the focusing lens as a negative lens.
  • a condenser lens that is, the fourth lens group G
  • the zoom lens of the second embodiment can be used as a projection lens of a projector.
  • FIG. 17 shows a configuration of a zoom lens according to Numerical Example 2 of the second embodiment.
  • Numerical Example 2 the same reference numerals are used for the same constituent elements and characteristics as those of Numerical Example 1 to simplify the description.
  • FIGS. Figure 18 shows various aberrations at the short focal end.
  • FIG. 19 shows various aberrations at the intermediate focal position
  • FIG. 20 shows various aberrations at the long focal end.
  • Table 5 shows the characteristics of Numerical Example 2.
  • FIG. 21 shows a configuration of a zoom lens according to Numerical Example 3 of the second embodiment.
  • the same reference numerals are used for the same components and characteristics as those of Numerical Example 1 to simplify the description.
  • FIGS. Figure 22 is a diagram of various aberrations at the short focal end.
  • FIG. 23 shows various aberrations at the intermediate focal position
  • FIG. 24 shows various aberrations at the long focal end.
  • Table 6 shows the characteristics of Numerical Example 3.
  • zoom lens according to the third embodiment The zoom lens is composed of a first lens group, a second lens group, and a third lens group in order from the projection surface side, and is capable of zooming between the short focal end and the long focal end.
  • the first lens group is composed of three lenses, a negative lens, a positive lens, and a negative lens, in order from the projection surface side, and has a negative power.
  • the second lens group is a projection lens.
  • the third lens group is composed of two lenses, a negative lens and a positive lens in order from the projection surface side, and has a positive power. In this case, the first lens group and the second lens group are moved, and the third lens group is fixed.
  • the three lens group is a zoom lens configured to be moved for focusing.
  • FIG. 25 shows a configuration of a zoom lens according to Numerical Example 1 of the third embodiment.
  • symbol PL is the projection plane
  • symbol GL is the protective glass for the image element
  • symbol CD is the image element
  • symbol G is the first lens group
  • symbol G is the second lens group
  • symbol G is the third lens group. Shows
  • the symbol R indicates the diaphragm surface.
  • This zoom lens includes a first lens group G and a second lens group G in order from the projection plane PL side.
  • the first lens group G includes three lenses, a negative lens, a positive lens, and a negative lens, in that order from the projection plane PL side.
  • the lens has a negative power.
  • one lens as a unit constituting each lens group includes a case where it is a single lens and a case where it is a cemented lens.
  • the cemented lens is obtained by cementing two or more single lenses.
  • the second lens group G includes, in order from the projection plane PL side, one positive lens and two cemented lenses (
  • cemented lenses are both composed of two single lenses.
  • the third lens group G is composed of two lenses, a negative lens and a positive lens, in this order from the projection plane PL side. Have positive power. These lenses are single lenses in the third embodiment. However, these lenses can also be cemented lenses.
  • the zoom lens of the third example is composed of eight lenses as a whole.
  • a cemented lens equivalent to a single lens in terms of power is counted as one lens.
  • the first lens group G and the second lens group G are used for zooming.
  • the third lens group G is configured to be moved for focusing.
  • FIG. 26 shows various aberrations at the short focal end of Numerical Example 1
  • FIG. 27 shows various aberrations at the intermediate focal position of Numerical Example 1
  • FIG. 28 shows various aberrations at the long focal end of Numerical Example 1. It is.
  • symbols G, B, and R in chromatic aberration represented by spherical aberration are spherical aberrations for the wavelengths of green, blue, and red, respectively, and symbol SC is an unsatisfactory sine condition. .
  • R represents the radius of curvature
  • d represents the lens thickness or air spacing
  • Nd represents the refractive index of the d-line (58 nm)
  • Vd represents the Abbe number of the d-line.
  • the symbol f indicates the combined back focus up to the first lens group G force and the third lens group G b 21 23
  • the projection distance in the third embodiment is 1000 mm.
  • Table 1 the unit of the numerical value indicating the distance is not specified !, and in all cases it is mm.
  • the zoom lens of Numerical Example 1 it is possible to provide a projection zoom lens having eight lens elements, which is smaller than the conventional zoom lens.
  • the entire cemented lens is calculated as one lens.
  • the zoom lens of Numerical Example 1 maintains telecentricity.
  • the zoom lens of the third embodiment can be used as a projection lens of a projector.
  • FIG. 29 shows a configuration of a zoom lens according to Numerical Example 2 of the third embodiment.
  • the same reference numerals are used for the same constituent elements and characteristics as those of Numerical Example 1 to simplify the description.
  • FIGS. Figure 30 shows various aberrations at the short focal end.
  • FIG. 31 shows various aberrations at the intermediate focal position
  • FIG. 32 shows various aberrations at the long focal end.
  • Table 8 shows the characteristics of Numerical Example 2.
  • FIG. 33 shows a configuration of a zoom lens according to Numerical Example 3 of the third embodiment.
  • the same reference numerals are used for the same components and characteristics as those of Numerical Example 1 to simplify the description.
  • FIGS. Figure 34 shows various aberrations at the short focal end.
  • FIG. 35 is a diagram of various aberrations at the intermediate focal position
  • FIG. 36 is a diagram of various aberrations at the long focal point.
  • Table 9 shows the characteristics of Numerical Example 3.

Abstract

A zoom lens having fewer constituting lenses and easily keeping telecentricity. A first lens group (G1) through a fourth lens group (G4) are disposed sequentially from a projection plane (PL) side. The first lens group (G1) consists of three lenses, a negative lens, a positive lens and a negative lens sequentially from the projection plane (PL) side, and has a negative power. The second lens group (G2) consists of a total of three lenses, one positive lens, one junction lens and one junction lens sequentially from the projection plane (PL) side, and has a positive power. The third lens group (G3) consists of one negative lens. The fourth lens group (G4) consists of one positive lens. At power varying, the first lens group (G1) and the second lens group (G2) are moved with the third lens group (G3) and the fourth lens group (G4) kept fixed. The third lens group (G3) is moved for focusing.

Description

明 細 書  Specification
投写用ズームレンズ  Zoom lens for projection
技術分野  Technical field
[0001] 本発明は、投写光学系に用いられるズームレンズに関するものである。  [0001] The present invention relates to a zoom lens used in a projection optical system.
背景技術  Background art
[0002] 従来から、投写用ズームレンズとしては、様々な形式の光学系が提案されている。  Conventionally, various types of optical systems have been proposed as projection zoom lenses.
例えば、下記特許文献 1〜5に記載のものがある。  For example, there are those described in Patent Documents 1 to 5 below.
[0003] し力しながら、これらの文献に記載の光学系では、そのレンズ構成枚数が 9枚以上 と多ぐレンズコストが高くなるばかりか、レンズ系が大きくなつてしまうという不都合が ある。なお、この明細書では、パワー的に単レンズと等価な接合レンズは全体で 1枚と 数える。「パワー的に単レンズと等価な接合レンズ」とは、接合しているレンズ面の尺が 同じ接合レンズのことである。一般的には、このような接合レンズを構成するレンズは 、隣接するレンズ間で屈折率を異ならせることにより、色消しを行うことができるように なっている。ただし、本明細書では、レンズ間の屈折率が同じであっても、接合してい るレンズ面の Rが同じであれば、「パワー的に単レンズと等価な接合レンズ」であると する。  [0003] However, the optical systems described in these documents have the disadvantage that not only the lens cost becomes high, but the lens system becomes large. In this specification, the total number of cemented lenses equivalent to a single lens in terms of power is counted as one. “A cemented lens equivalent to a single lens in terms of power” is a cemented lens in which the scales of the lens surfaces to be joined are the same. In general, lenses constituting such a cemented lens can be achromatic by making the refractive index different between adjacent lenses. However, in the present specification, even if the refractive indexes between lenses are the same, if the Rs of the lens surfaces to be joined are the same, they are assumed to be “a cemented lens equivalent to a single lens in terms of power”.
[0004] また、画像素子の発光特性を考慮する目的で (すなわち、液晶やプリズムなどの光 学素子部品に入射する光が角度を持つと、偏光特性を持ち、色味が変わったり、反 射率が悪くなるために)、投写用のズームレンズにテレセントリック性 (特に像側のテレ セントリック性)を付与する設計とすることが好ましい。一方、投写用ズームレンズにお いては、その合焦を、画像素子に近いレンズで行うのが一般的である。このため、従 来の合焦用レンズは、テレセントリック性も考慮する必要がある。例えば、近年におい ては、画像素子の光量をより多く投写するためと、レンズ系を小さくする目的で、画像 素子の直前にコンデンサーレンズを一般的に配置しており、この場合、画像素子の 近くに配置されている合焦用レンズが正レンズで構成されていると、テレセントリック '性が損なわれてしまうと ヽぅ問題がある。  [0004] For the purpose of taking into account the light emission characteristics of the image element (that is, if the light incident on the optical element component such as a liquid crystal or a prism has an angle, it has polarization characteristics, changes its color, or reflects it. Therefore, the projection zoom lens is preferably designed to give telecentricity (particularly image side telecentricity). On the other hand, in a projection zoom lens, the focusing is generally performed with a lens close to an image element. For this reason, conventional focusing lenses must also take telecentricity into consideration. For example, in recent years, a condenser lens is generally disposed immediately in front of an image element in order to project a larger amount of light from the image element and to reduce the lens system. If the focusing lens arranged in is composed of positive lenses, there will be a problem if the telecentricity is impaired.
特許文献 1:特開 2004— 77950号公報 特許文献 2:特開 2004 - 54021号公報 Patent Document 1: Japanese Patent Application Laid-Open No. 2004-77950 Patent Document 2: JP 2004-54021 A
特許文献 3:特開 2003— 215453号公報  Patent Document 3: Japanese Patent Laid-Open No. 2003-215453
特許文献 4:特開 2003— 215455号公報  Patent Document 4: Japanese Unexamined Patent Publication No. 2003-215455
特許文献 5:特開 2000— 292698号公報  Patent Document 5: Japanese Unexamined Patent Publication No. 2000-292698
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] 本発明は、前記の状況に鑑みてなされたものである。本発明の一つの目的は、レン ズ構成枚数が従来よりも少ない投写用のズームレンズを提供することである。本発明 の他の目的は、テレセントリック性を保ち易い、投写用のズームレンズを提供すること である。 [0005] The present invention has been made in view of the above situation. One object of the present invention is to provide a zoom lens for projection that has a smaller number of lens elements than conventional lenses. Another object of the present invention is to provide a zoom lens for projection that can easily maintain telecentricity.
課題を解決するための手段  Means for solving the problem
[0006] 以上のような目的を達成するために、本発明の一つの観点によるズームレンズでは 、投写面カゝら順に、第 1レンズ群と、第 2レンズ群と、第 3レンズ群と、第 4レンズ群とで 構成され、短焦点端と長焦点端との間での変倍を可能とする。前記第 1レンズ群は、 投写面側から順に、負レンズ、正レンズ、負レンズの 3枚のレンズで構成されて負の ノ ヮ一を有している。前記第 2レンズ群は、投写面側から順に、 1枚の接合レンズ又 は 1枚の正レンズと、 1枚の正レンズ又は 1枚の接合レンズと、 1枚の接合レンズとの 合計 3枚のレンズで構成されて正のパワーを有している。前記第 3レンズ群は、 1枚の 負レンズで構成されている。前記第 4レンズ群は、 1枚の正レンズで構成されている。 さらに、前記変倍に際しては、前記第 1レンズ群と前記第 2レンズ群を移動させ、かつ 、前記第 3レンズ群と前記第 4レンズ群とは固定しておく構成となっている。さらに、前 記第 3レンズ群は、焦点合わせのために移動させられる構成となって!/ヽる。  In order to achieve the above object, in a zoom lens according to one aspect of the present invention, a first lens group, a second lens group, a third lens group, in order from the projection plane, Consists of a fourth lens group, and enables zooming between the short and long focal ends. The first lens group includes a negative lens, a negative lens, a positive lens, and a negative lens in order from the projection surface side, and has a negative number. The second lens group consists of a total of three lenses, one cemented lens or one positive lens, one positive lens or one cemented lens, and one cemented lens in order from the projection surface side. This lens has a positive power. The third lens group is composed of one negative lens. The fourth lens group is composed of one positive lens. Further, at the time of zooming, the first lens group and the second lens group are moved, and the third lens group and the fourth lens group are fixed. In addition, the third lens group is configured to be moved for focusing!
[0007] このズームレンズでは、第 1レンズ群と第 2レンズ群とを移動することにより、焦点距 離を可変としている。また、このズームレンズでは、第 3レンズ群を移動させることによ り合焦させることができる。  In this zoom lens, the focal length is variable by moving the first lens group and the second lens group. Also, with this zoom lens, focusing can be achieved by moving the third lens group.
[0008] また、第 4レンズ群は、画像素子の光量をより多く投写すると同時に、レンズ系の外 径を小型化するためのコンデンサーレンズである。本発明では、第 1レンズ群から第 4 レンズ群までの光学系によってテレセントリック性を保つように構成されて 、る。なお、 テレセントリック性を保つということは、主光線と光軸とがほぼ平行(± 10° 程度の傾 斜を含む)な状態をいう。 [0008] The fourth lens group is a condenser lens for projecting more light from the image element and at the same time reducing the outer diameter of the lens system. In the present invention, the optical system from the first lens group to the fourth lens group is configured to maintain telecentricity. In addition, Maintaining telecentricity means a state in which the principal ray and the optical axis are almost parallel (including an inclination of about ± 10 °).
[0009] 本発明のズームレンズは、次の条件式(1)を満足するものであってもよい。  [0009] The zoom lens of the present invention may satisfy the following conditional expression (1).
[0010] 0.7≤ I f /ϊ I ≤1.5 (1) [0010] 0.7≤ I f / ϊ I ≤1.5 (1)
2 1  twenty one
但し f :第 1レンズ群の合成焦点距離  Where f is the composite focal length of the first lens unit
f :第 2レンズ群の合成焦点距離  f: Composite focal length of the second lens group
2  2
本発明のズームレンズは、次の条件式(2)を満足するものであってもよい。  The zoom lens of the present invention may satisfy the following conditional expression (2).
[0011] 1.5≤ I f /f I ≤2.5 (2) [0011] 1.5≤ I f / f I ≤2.5 (2)
b w  b w
但し f :第 1レンズ群力も第 3レンズ群までの合成バックフォーカス  Where f is the combined back focus up to the first lens group and the third lens group
b  b
f :短焦点端の焦点距離  f: Focal length at short focal end
w  w
本発明のズームレンズは、次の条件式(3)を満足するものであってもよい。  The zoom lens of the present invention may satisfy the following conditional expression (3).
[0012] 0.08≤ I f /f [0012] 0.08≤ I f / f
T 3 I ≤0.3 (3)  T 3 I ≤0.3 (3)
但し f :第 3レンズ群の合成焦点距離  Where f is the composite focal length of the third lens group
3  Three
f  f
T:長焦点端の焦点距離  T: Focal length at the long focal end
本発明に係るプロジェクタは、前記した本発明に係るズームレンズを備えたもので ある。  The projector according to the present invention includes the zoom lens according to the present invention described above.
[0013] 以下、前記した条件式(1)〜(3)について説明する。  Hereinafter, the conditional expressions (1) to (3) will be described.
[0014] 条件式(1)は、焦点距離を変化させるために移動する第 1レンズ群と第 2レンズ群 の焦点距離の関係を規制するための条件である。 I f /f  Conditional expression (1) is a condition for regulating the relationship between the focal lengths of the first lens unit and the second lens unit that move to change the focal length. I f / f
2 1 I力 下限 0. 7を超えて 小さいときには、第 1レンズ群の焦点距離が大きくなりすぎ、焦点距離を変化させるた めの第 1レンズ群と第 2レンズ群の移動量が大きくなる。すると、結果としてレンズ系が 大きくなつてしまい、好ましくない。  2 1 I force When the value exceeds the lower limit of 0.7, the focal length of the first lens group becomes too large, and the amount of movement of the first and second lens groups for changing the focal length becomes large. As a result, the lens system becomes large, which is not preferable.
[0015] また、 | f Zf I力 上限 1. 5を超えて大きいときには、レンズを小型にするために [0015] Also, | f Zf I force upper limit of 1.5, to make the lens smaller when larger than 5
2 1  twenty one
は有利であるが、第 1レンズ群の焦点距離力 s小さくなりすぎ、このため、第 1レンズ群 で発生する球面収差が過剰になりすぎる。すると、球面収差を良好に補正することが 困難となってしまう。  Is advantageous, but the focal length force s of the first lens group becomes too small, so that the spherical aberration generated in the first lens group becomes excessive. Then, it becomes difficult to correct spherical aberration satisfactorily.
[0016] 条件式(2)は、第 1レンズ群力 第 3レンズ群までの合成バックフォーカスを所要の 大きさにし、投写画像の光量を適切に確保するために、第 3レンズ群と第 4レンズ群 の間に照明光学系を挿入できる空気間隔を確保するための条件である。 | f /f [0016] Conditional expression (2) indicates that the first lens group force and the third lens group have the required magnitude of the combined back focus, and the third lens group and the fourth lens Lens group This is a condition for securing an air space in which the illumination optical system can be inserted between the two. | f / f
b w I が下限 1. 5を超えて小さいときには、第 3レンズ群と第 4レンズ群との空気間隔が小さ くなりすぎ、照明光学系を挿入することができなくなってしまう。  If b w I is smaller than the lower limit of 1.5, the air space between the third lens group and the fourth lens group becomes too small, and the illumination optical system cannot be inserted.
[0017] また、 | f /f Iが上限 2. 5を超えて大きいときには、照明光学系を挿入するため b w [0017] Also, when f / f I is larger than the upper limit of 2.5, the illumination optical system is inserted.
の第 3レンズ群と第 4レンズ群との空気間隔を確保するためには有利であるが、第 1レ ンズ群、第 3レンズ群の負レンズの焦点距離力 S小さくなりすぎ、結果としてコマ収差の 増大となってしま 、好ましくな 、。  This is advantageous for securing the air gap between the third lens group and the fourth lens group, but the focal length force S of the negative lens of the first lens group and the third lens group becomes too small, resulting in coma. Increase in aberrations is preferable.
[0018] 条件式(3)は、第 3レンズ群で合焦を行うとともに、画像素子の直前にコンデンサー レンズが設置される光学系において、光学系のテレセントリック性を適切に保っため の条件である。 | f /f Iが下限 0. 08を超えて小さいときには、第 3レンズ群の焦点 [0018] Conditional expression (3) is a condition for maintaining the telecentricity of the optical system appropriately in an optical system in which focusing is performed by the third lens group and a condenser lens is installed immediately before the image element. . | When f / f I is smaller than the lower limit 0.08, the focus of the third lens group
T 3  T 3
距離が大きくなりすぎる。すると、合焦するときの第 3レンズ群の移動量が大きくなりす ぎ、結果としてレンズ群が大きくなつてしま 、好ましくな 、。  The distance is too large. Then, the amount of movement of the third lens group when focusing is too large, and as a result, the lens group becomes large, which is preferable.
[0019] また、 I f /f Iが上限 0. 3を超えて大きいときには、合焦のための第 3レンズ群の [0019] When I f / f I exceeds the upper limit of 0.3, the third lens group for focusing
T 3  T 3
移動量は小さくなり、レンズ系を小型にするためには有利である。し力しながら、この 場合は、レンズ系のテレセントリック性を保つことが困難となるばかりか、球面収差が オーバーになってしまい、好ましくない。  The amount of movement is small, which is advantageous for reducing the size of the lens system. However, in this case, not only is it difficult to maintain the telecentricity of the lens system, but the spherical aberration is over, which is not preferable.
[0020] 本発明の他の観点によるズームレンズでは、投写面側力 順に、第 1レンズ群と、第 2レンズ群と、第 3レンズ群とで構成され、短焦点端と長焦点端との間での変倍を可能 とする。前記第 1レンズ群は、投写面側から順に、負レンズ、正レンズ、負レンズの 3 枚のレンズで構成されて負のパワーを有している。前記第 2レンズ群は、投写面側か ら順に、 1枚の正レンズと、 2枚のレンズで構成された 1枚の接合レンズと、 2枚のレン ズで構成された 1枚の接合レンズとの、合計 3枚のレンズで構成されて正のパワーを 有している。前記第 3レンズ群は、投写面側力も順に負レンズ、正レンズの 2枚のレン ズで構成されて正のパワーを有している。さらに、本発明のズームレンズでは、前記 変倍に際して、前記第 1レンズ群と前記第 2レンズ群を移動させ、かつ、前記第 3レン ズ群は固定しておく構成となっている。また、前記第 3レンズ群は、焦点合わせのた めに移動させられる構成となって ヽる。  [0020] A zoom lens according to another aspect of the present invention includes a first lens group, a second lens group, and a third lens group in order of the projection surface side force, and includes a short focal end and a long focal end. It is possible to zoom in between. The first lens group is composed of three lenses of a negative lens, a positive lens, and a negative lens in order from the projection surface side, and has a negative power. The second lens group includes, in order from the projection surface side, one positive lens, one cemented lens composed of two lenses, and one cemented lens composed of two lenses. It is composed of a total of 3 lenses and has positive power. The third lens group is composed of two lenses of a negative lens and a positive lens in order, and has a positive power. In the zoom lens according to the present invention, the first lens group and the second lens group are moved during zooming, and the third lens group is fixed. The third lens group can be moved for focusing.
[0021] このズームレンズでは、第 1レンズ群と第 2レンズ群とを移動することにより、焦点距 離を可変としている。また、このズームレンズでは、第 3レンズ群を移動させることによ り合焦させることができる。 In this zoom lens, the focal length is changed by moving the first lens group and the second lens group. The separation is variable. Also, with this zoom lens, focusing can be achieved by moving the third lens group.
[0022] また、本発明では、後述する条件式 (4)〜(6)を満足する設計とすることにより、第 1 レンズ群力も第 3レンズ群までの光学系によって、テレセントリック性を保つことができ る。なお、テレセントリック性を保つということは、主光線と光軸とがほぼ平行(± 10° 程度の傾斜を含む)な状態を 、う。 In the present invention, the telecentricity can be maintained by the optical system up to the third lens group by using a design that satisfies conditional expressions (4) to (6) described later. it can. Note that maintaining telecentricity means that the principal ray and the optical axis are almost parallel (including an inclination of about ± 10 °).
[0023] 本発明のズームレンズは、次の条件式 (4)を満足するものであってもよい。 [0023] The zoom lens of the present invention may satisfy the following conditional expression (4).
0.6≤ I f /ϊ I ≤1.3 (4)  0.6≤ I f / ϊ I ≤1.3 (4)
2 1  twenty one
但し f :第 1レンズ群の合成焦点距離  Where f is the composite focal length of the first lens unit
f :第 2レンズ群の合成焦点距離  f: Composite focal length of the second lens group
2  2
本発明のズームレンズは、次の条件式(5)を満足するものであってもよい。 0. 8≤ I f /ϊ I ≤1. 8 (5)  The zoom lens of the present invention may satisfy the following conditional expression (5). 0. 8≤ I f / ϊ I ≤1. 8 (5)
b w  b w
但し f :第 1レンズ群力も第 3レンズ群までの合成バックフォーカス  Where f is the combined back focus up to the first lens group and the third lens group
b  b
f :短焦点端の焦点距離  f: Focal length at short focal end
w  w
本発明のズームレンズは、次の条件式(6)を満足するものであってもよい。 0.08≤ \ ϊ /ϊ \ ≤0.3 (6)  The zoom lens of the present invention may satisfy the following conditional expression (6). 0.08≤ \ ϊ / ϊ \ ≤0.3 (6)
t 3  t 3
但し f :第 3レンズ群の合成焦点距離  Where f is the composite focal length of the third lens group
3  Three
f :長焦点端の焦点距離  f: Focal length at long focal end
本発明に係るプロジェクタは、前記した本発明に係るズームレンズを備えたもので ある。  The projector according to the present invention includes the zoom lens according to the present invention described above.
[0024] 以下、前記した条件式 (4)〜(6)につ 、て説明する。  Hereinafter, the conditional expressions (4) to (6) will be described.
[0025] 条件式 (4)は、焦点距離を変化させるために移動する第 1レンズ群と第 2レンズ群 の焦点距離の関係を規制するための条件である。今、条件 I f /f I力 下限 0. 6  Conditional expression (4) is a condition for regulating the relationship between the focal lengths of the first lens unit and the second lens unit that move to change the focal length. Now, condition I f / f I force lower limit 0.6
2 1  twenty one
を超えて小さいときには、第 1レンズ群の焦点距離が大きくなりすぎ、焦点距離を変化 させるための第 1レンズ群と第 2レンズ群の移動量が大きくなる。すると、結果としてレ ンズ系が大きくなつてしまい、好ましくない。  When it is smaller than, the focal length of the first lens group becomes too large, and the amount of movement of the first lens group and the second lens group for changing the focal length becomes large. As a result, the lens system becomes large, which is not preferable.
[0026] また、 I f /f I力 上限 1. 3を超えて大きいときには、レンズを小型にするために [0026] Also, if the I f / f I force upper limit is greater than 1.3, to reduce the size of the lens
2 1  twenty one
は有利であるが、第 1レンズ群の焦点距離力 s小さくなりすぎ、このため、第 1レンズ群 で発生する球面収差が過剰になりすぎる。すると、球面収差を良好に補正することが 困難となってしまう。 Is advantageous, but the focal length force s of the first lens group becomes too small. The spherical aberration generated in is excessive. Then, it becomes difficult to correct spherical aberration satisfactorily.
[0027] 条件式(5)は、第 1レンズ群力 第 3レンズ群までの合成バックフォーカスを所要の 大きさにし、投写画像の光量を適切に確保するために、第 3レンズ群と画像素子との 間に照明光学系を挿入できる空気間隔を確保するための条件である。今、 I f b Zf w [0027] Conditional expression (5) indicates that the first lens group force and the third lens group are combined with the third lens group and the image element in order to ensure the combined back focus up to the third lens group to a required magnitude and to ensure an appropriate amount of light for the projected image. This is a condition for ensuring an air gap between which the illumination optical system can be inserted. Now I f b Zf w
Iが下限 O. 8を超えて小さいときには、第 3レンズ群と画像素子との空気間隔が小さ くなりすぎ、照明光学系を挿入することができなくなってしまう。 When I is smaller than the lower limit O. 8, the air space between the third lens group and the image element becomes too small, and the illumination optical system cannot be inserted.
[0028] また、 I ί /ί Iが上限 1. 8を超えて大きいときには、照明光学系を挿入するため b w [0028] When I ί / ί I is larger than the upper limit of 1.8, the illumination optical system is inserted. B w
の第 3レンズ群と画像素子との空気間隔を確保するためには有利であるが、第 1レン ズ群、第 3レンズ群の負レンズの焦点距離力 S小さくなりすぎ、結果としてコマ収差の増 大となってしま!/、好ましくな!/、。  This is advantageous for securing the air gap between the third lens group and the image element, but the focal length force S of the negative lens of the first lens group and the third lens group becomes too small, resulting in coma aberration. It ’s growing! /.
[0029] 条件式 (6)は、第 3レンズ群で合焦を行うとともに、レンズ系のテレセントリック性を適 切に保っための条件である。今、 | f t/f 3 Iが下限 0. 08を超えて小さいときには、 第 3レンズ群の焦点距離が大きくなりすぎる。すると、合焦するときの第 3レンズ群の 移動量が大きくなりすぎ、結果としてレンズ群が大きくなつてしま 、好ましくな 、。 Conditional expression (6) is a condition for performing focusing with the third lens group and maintaining the telecentricity of the lens system appropriately. Now, when | f t / f 3 I is smaller than the lower limit of 0.08, the focal length of the third lens unit becomes too large. Then, the amount of movement of the third lens group when focusing is too large, and as a result, the lens group becomes large, which is preferable.
[0030] また、 | f /f Iが上限 0. 3を超えて大きいときには、合焦のための第 3レンズ群の t 3 [0030] When f / f I is larger than the upper limit of 0.3, t 3 of the third lens group for focusing is set.
移動量は小さくなり、レンズ系を小型にするためには有利である。し力しながら、この 場合は、レンズ系のテレセントリック性を保つことが困難となるばかりか、球面収差が アンダーになってしまい、好ましくない。  The amount of movement is small, which is advantageous for reducing the size of the lens system. However, in this case, not only is it difficult to maintain the telecentricity of the lens system, but the spherical aberration becomes under, which is not preferable.
発明の効果  The invention's effect
[0031] 本発明によれば、レンズ構成枚数が 8枚と、従来よりも少ない、投写用のズームレン ズを提供することができる。また、本発明によれば、テレセントリック性を保ち易い、投 写用のズームレンズを提供することができる。  [0031] According to the present invention, it is possible to provide a zoom lens for projection with eight lens elements, which is smaller than in the past. In addition, according to the present invention, it is possible to provide a zoom lens for projection that can easily maintain telecentricity.
図面の簡単な説明  Brief Description of Drawings
[0032] [図 1]第 1実施形態の数値実施例 1のレンズ構成を示す説明図である。 FIG. 1 is an explanatory diagram showing a lens configuration of Numerical Example 1 according to the first embodiment.
[図 2]第 1実施形態の数値実施例 1における、短焦点端での諸収差図である。  FIG. 2 is a diagram showing various aberrations at the short focal end in Numerical Example 1 of the first embodiment.
[図 3]第 1実施形態の数値実施例 1における、中間焦点位置での諸収差図である。  FIG. 3 is a diagram showing various aberrations at an intermediate focal position in Numerical Example 1 of the first embodiment.
[図 4]第 1実施形態の数値実施例 1における、長焦点端での諸収差図である。 圆 5]第 1実施形態の数値実施例 2のレンズ構成を示す説明図である。 FIG. 4 is a diagram showing various aberrations at the long focal end in Numerical Example 1 according to the first embodiment. [5] FIG. 5 is an explanatory diagram showing a lens configuration of Numerical Example 2 of the first embodiment.
圆 6]第 1実施形態の数値実施例 2における、短焦点端での諸収差図である。 6] Various aberration diagrams at the short focal end in Numerical Example 2 according to the first embodiment.
圆 7]第 1実施形態の数値実施例 2における、中間焦点位置での諸収差図である。 圆 8]第 1実施形態の数値実施例 2における、長焦点端での諸収差図である。 7] Various aberration diagrams at the intermediate focal position in Numerical Example 2 of the first embodiment. 8] Various aberration diagrams at the long focal end in Numerical Example 2 of the first embodiment.
圆 9]第 1実施形態の数値実施例 3のレンズ構成を示す説明図である。 9] An explanatory diagram showing the lens configuration of Numerical Example 3 of the first embodiment. FIG.
圆 10]第 1実施形態の数値実施例 3における、短焦点端での諸収差図である。 圆 11]第 1実施形態の数値実施例 3における、中間焦点位置での諸収差図である。 圆 12]第 1実施形態の数値実施例 3における、長焦点端での諸収差図である。 圆 13]第 2実施形態の数値実施例 1のレンズ構成を示す説明図である。 FIG. 10] Various aberration diagrams at the short focus end in Numerical Example 3 according to the first embodiment. 11] Various aberration diagrams at the intermediate focal position in Numerical Example 3 of the first embodiment. 12] Various aberration diagrams at the long focal end in Numerical Example 3 of the first embodiment. 13] An explanatory diagram showing the lens configuration of Numerical Example 1 of the second embodiment. FIG.
圆 14]第 2実施形態の数値実施例 1における、短焦点端での諸収差図である。 圆 15]第 2実施形態の数値実施例 1における、中間焦点位置での諸収差図である。 圆 16]第 2実施形態の数値実施例 1における、長焦点端での諸収差図である。 圆 17]第 2実施形態の数値実施例 2のレンズ構成を示す説明図である。 14] Various aberration diagrams at the short focal end in Numerical Example 1 according to the second embodiment. 15] Various aberration diagrams at the intermediate focal position in Numerical Example 1 of the second embodiment. FIG. 16] Various aberration diagrams at the long focal end in Numerical Example 1 according to the second embodiment. 17] An explanatory diagram showing the lens configuration of Numerical Example 2 of the second embodiment. FIG.
圆 18]第 2実施形態の数値実施例 2における、短焦点端での諸収差図である。 圆 19]第 2実施形態の数値実施例 2における、中間焦点位置での諸収差図である。 圆 20]第 2実施形態の数値実施例 2における、長焦点端での諸収差図である。 圆 21]第 2実施形態の数値実施例 3のレンズ構成を示す説明図である。 18] Various aberration diagrams at the short focal end in Numerical Example 2 of the second embodiment. 19] Various aberration diagrams at the intermediate focal position in Numerical Example 2 of the second embodiment. 20] Various aberration diagrams at the long focal end in Numerical Example 2 of the second embodiment.圆 21] An explanatory diagram showing the lens configuration of Numerical Example 3 of the second embodiment.
圆 22]第 2実施形態の数値実施例 3における、短焦点端での諸収差図である。 圆 23]第 2実施形態の数値実施例 3における、中間焦点位置での諸収差図である。 圆 24]第 2実施形態の数値実施例 3における、長焦点端での諸収差図である。 圆 25]第 3実施形態の数値実施例 1のレンズ構成を示す説明図である。 圆 22] Various aberration diagrams at the short focus end in Numerical Example 3 of the second embodiment.圆 23] Various aberration diagrams at the intermediate focal position in Numerical Example 3 of the second embodiment. 24] Various aberration diagrams at the long focal end in Numerical Example 3 of the second embodiment. FIG. 25 is an explanatory diagram showing a lens configuration of Numerical Example 1 according to the third embodiment.
圆 26]第 3実施形態の数値実施例 1における、短焦点端での諸収差図である。 圆 27]第 3実施形態の数値実施例 1における、中間焦点位置での諸収差図である。 圆 28]第 3実施形態の数値実施例 1における、長焦点端での諸収差図である。 圆 29]第 3実施形態の数値実施例 2のレンズ構成を示す説明図である。 26] Various aberration diagrams at the short focal end in Numerical Example 1 according to the third embodiment. 27] Various aberration diagrams at the intermediate focal position in Numerical Example 1 of the third embodiment. FIG. 28 is an aberration diagram at the long focal end in Numerical Example 1 of the third embodiment. 29] FIG. 29 is an explanatory diagram showing a lens configuration of Numerical Example 2 according to the third embodiment.
圆 30]第 3実施形態の数値実施例 2における、短焦点端での諸収差図である。 圆 31]第 3実施形態の数値実施例 2における、中間焦点位置での諸収差図である。 圆 32]第 3実施形態の数値実施例 2における、長焦点端での諸収差図である。 [図 33]第 3実施形態の数値実施例 3のレンズ構成を示す説明図である。 30] Various aberration diagrams at the short focal end, in Numerical Example 2 of the third embodiment. 31] Various aberration diagrams at the intermediate focal position in Numerical Example 2 of the third embodiment. FIG. 32] Various aberration diagrams at the long focal point in Numerical Example 2 of the third embodiment. FIG. 33 is an explanatory diagram showing a lens configuration of Numerical Example 3 according to the third embodiment.
[図 34]第 3実施形態の数値実施例 3における、短焦点端での諸収差図である。  FIG. 34 is a diagram illustrating various aberrations at the short focal end in Numerical Example 3 according to the third embodiment.
[図 35]第 3実施形態の数値実施例 3における、中間焦点位置での諸収差図である。  FIG. 35 is a diagram showing various aberrations at an intermediate focal position in Numerical Example 3 of the third embodiment.
[図 36]第 3実施形態の数値実施例 3における、長焦点端での諸収差図である。  FIG. 36 is a diagram illustrating various aberrations at the long focal end in Numerical Example 3 according to the third embodiment.
符号の説明  Explanation of symbols
[0033] G 第 1レンズ群 [0033] G first lens group
G 第 2レンズ  G Second lens
2 群  2 groups
G  G
3 第 3レンズ群  3 Third lens group
G  G
4 第 4レンズ群  4 Fourth lens group
PL 投写面  PL projection surface
CD 撮像素子  CD image sensor
GL 撮像素子の保護ガラス  GL image sensor protective glass
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0034] (第 1実施形態)  [0034] (First embodiment)
まず、第 1実施形態のズームレンズについて説明する。第 1実施形態のズームレン ズは、投写面側から順に、第 1レンズ群と、第 2レンズ群と、第 3レンズ群と、第 4レンズ 群とで構成され、短焦点端と長焦点端との間での変倍が可能であるズームレンズで あって、第 1レンズ群は、投写面側から順に、負レンズ、正レンズ、負レンズの 3枚のレ ンズで構成されて負のパワーを有しており、第 2レンズ群は、投写面側力も順に、 1枚 の接合レンズと、 1枚の正レンズと、 1枚の接合レンズとの合計 3枚のレンズで構成さ れて正のパワーを有しており、第 3レンズ群は、 1枚の負レンズで構成されており、第 4レンズ群は、 1枚の正レンズで構成されており、さらに、変倍に際しては、第 1レンズ 群と第 2レンズ群を移動させ、かつ、第 3レンズ群と第 4レンズ群とは固定しておく構成 となっており、さらに、第 3レンズ群は、焦点合わせのために移動させられる構成をと るズームレンズである。  First, the zoom lens according to the first embodiment will be described. The zoom lens of the first embodiment is composed of a first lens group, a second lens group, a third lens group, and a fourth lens group in order from the projection plane side, and includes a short focal end and a long focal end. The first lens group consists of three lenses, a negative lens, a positive lens, and a negative lens, in order from the projection plane side, and has negative power. The second lens unit is composed of a total of three lenses, one cemented lens, one positive lens, and one cemented lens, in order of the projection surface side force. The third lens group is composed of one negative lens, the fourth lens group is composed of one positive lens, and the first lens is used for zooming. The lens group and the second lens group are moved, and the third lens group and the fourth lens group are fixed. The third lens group is a preparative Ru zoom lens arrangement is moved for focusing.
[0035] 次に、第 1実施形態についての具体的な数値実施例を示す。  Next, specific numerical examples regarding the first embodiment will be described.
[0036] (第 1実施形態における数値実施例 1の構成)  (Configuration of Numerical Example 1 in the First Embodiment)
本第 1実施形態の数値実施例 1に係るズームレンズの構成を図 1に示す。図 1にお いて、符号 PLは投写面、符号 GLは撮像素子の保護ガラス等 (ここには光学的フィル タなどを含むことがある)、符号 CDは撮像素子、符号 Gは第 1レンズ群、符号 Gは The configuration of the zoom lens according to Numerical Example 1 of the first embodiment is shown in FIG. Figure 1 Symbol PL is the projection plane, Symbol GL is the protective glass of the image sensor (which may include an optical filter, etc.), Symbol CD is the image sensor, Symbol G is the first lens group, and Symbol G is
1 2 第 2レンズ群、符号 Gは第 3レンズ群、符号 Gは第 4レンズ群を示している。また、符  1 2 The second lens group, symbol G represents the third lens group, and symbol G represents the fourth lens group. Also note
3 4  3 4
号 Rは絞り面を示す。  The number R indicates the diaphragm surface.
[0037] このズームレンズは、投写面 PLの側から順に、第 1レンズ群 Gと、第 2レンズ群 Gと  [0037] This zoom lens includes a first lens group G, a second lens group G, and the like in order from the projection plane PL side.
1 2 1 2
、第 3レンズ群 Gと、第 4レンズ群 Gとで構成され、短焦点端と長焦点端との間での The third lens group G and the fourth lens group G are arranged between the short focal end and the long focal end.
3 4  3 4
変倍が可能であるズームレンズである。  This is a zoom lens capable of zooming.
[0038] 第 1レンズ群 Gは、投写面 PLの側から順に、負レンズ、正レンズ、負レンズの 3枚の レンズで構成されて負のパワーを有している。ここで、各レンズ群を構成する単位とし ての 1枚のレンズは、前記の通り、パワー的に単レンズと等価な接合レンズである場 合を含む。ここで接合レンズは、 2枚又はそれ以上の単レンズを接合させたものであ る。  [0038] The first lens group G is composed of three lenses of a negative lens, a positive lens, and a negative lens in order from the projection plane PL side, and has negative power. Here, as described above, one lens as a unit constituting each lens group includes a case where it is a cemented lens equivalent to a single lens in terms of power. Here, the cemented lens is obtained by cementing two or more single lenses.
[0039] 第 2レンズ群 Gは、投写面 PLの側から順に、 1枚の接合レンズ (R〜R )と、 1枚の  [0039] The second lens group G includes one cemented lens (R to R) and one sheet in order from the projection plane PL side.
2 8 10 正レンズ (R 〜R )と、 1枚の接合レンズ (R 〜R )とで構成されて正のパワーを有  2 8 10 Consists of positive lens (R to R) and one cemented lens (R to R) and has positive power.
11 12 13 15  11 12 13 15
している。本第 1実施例では、これらの接合レンズが、いずれも 2枚のレンズで構成さ れている。前記した各接合レンズは、いずれか又は双方が、 2枚でなぐ 3枚以上のレ ンズから構成されたものであってもよい。また、前記した 1枚の正レンズ (R 〜R )は  is doing. In the first embodiment, each of these cemented lenses is composed of two lenses. Each of the above-described cemented lenses may be composed of three or more lenses, either one or both of which are two lenses. Also, the single positive lens (R to R) mentioned above is
11 12 11 12
、接合レンズによって構成されていても良い。 Alternatively, it may be constituted by a cemented lens.
[0040] 第 3レンズ群 Gは、 1枚の負レンズで構成されている。この負レンズも、負のパワー  [0040] The third lens group G is composed of one negative lens. This negative lens also has negative power
3  Three
を持つ接合レンズであってもよ ヽ。  Even a cemented lens with.
[0041] 第 4レンズ群 Gは、 1枚の正レンズで構成されている。この正レンズも、正のパワー  The fourth lens group G is composed of one positive lens. This positive lens is also positive power
4  Four
を持つ接合レンズであってもよ ヽ。  Even a cemented lens with.
[0042] したがって、本第 1実施例のズームレンズは、全体として 8枚のレンズで構成されて いる。前記の通り、ここでは、パワー的に単レンズと等価な接合レンズは 1枚と数えて いる。  [0042] Therefore, the zoom lens of the first embodiment is composed of eight lenses as a whole. As described above, here, a cemented lens equivalent to a single lens in terms of power is counted as one lens.
[0043] 本第 1実施例では、ズームレンズの変倍に際して、第 1レンズ群 Gと第 2レンズ群 G  In the first embodiment, the first lens group G and the second lens group G are used for zooming.
1 2 とを移動させ、かつ、第 3レンズ群 Gと第 4レンズ群 Gとは固定しておく構成となって  1 2 is moved, and the third lens group G and the fourth lens group G are fixed.
3 4  3 4
いる。さらに、本第 1実施例では、第 3レンズ群 Gは、焦点合わせのために移動させ られる構成となって 、る。このようなレンズ群の移動機構自体は従来と同様でょ 、の で、これについての詳細な説明は省略する。 Yes. Furthermore, in the first embodiment, the third lens group G is moved for focusing. It becomes the composition which becomes. Since the lens group moving mechanism itself is the same as the conventional one, a detailed description thereof will be omitted.
[0044] (第 1実施形態における数値実施例 1の特性)  [0044] (Characteristics of Numerical Example 1 in First Embodiment)
数値実施例 1における諸収差を図 2〜図 4に示す。図 2は、数値実施例 1の短焦点 端における諸収差図、図 3は、数値実施例 1の中間焦点位置における諸収差図、図 Various aberrations in Numerical Example 1 are shown in FIGS. Fig. 2 shows various aberrations at the short focal end of Numerical Example 1, and Fig. 3 shows various aberrations at the intermediate focal position in Numerical Example 1.
4は、数値実施例 1の長焦点端における諸収差図である。 4 is a diagram of various aberrations at the long focal end of Numerical Example 1. FIG.
[0045] これらの図中、球面収差で表される色収差における符号 G, B, Rは、それぞれ、グ リーン、ブルー、レッドの波長に対する球面収差であり、符号 SCは、正弦条件不満足 量である。 [0045] In these drawings, symbols G, B, and R in chromatic aberration represented by spherical aberration are spherical aberrations for green, blue, and red wavelengths, respectively, and symbol SC is an unsatisfactory sine condition. .
[0046] 非点収差における符号 Sはサジタル、符号 Mはメリジォナルである。  In the astigmatism, the symbol S is sagittal and the symbol M is meridional.
[0047] また、数値実施例 1の諸特性を表 1に示す。 [0047] Table 1 shows various characteristics of Numerical Example 1.
[0048] [表 1] [0048] [Table 1]
R Nd Vd R Nd Vd
1 2.00 1.80420 46.5 1 2.00 1.80420 46.5
2 27.702 9.90 2 27.702 9.90
3 -120.986 4.09 1.80420 46.5 3 -120.986 4.09 1.80420 46.5
4 -49.048 8.53 4 -49.048 8.53
5 -31.433 1.50 1.48749 70.  5 -31.433 1.50 1.48749 70.
6 24. 30 29.54  6 24. 30 29.54
7 8.00  7 8.00
8 141.659 1.50 1.83400 37.3 8 141.659 1.50 1.83400 37.3
9 25.491 6.22 1.80420 46.59 25.491 6.22 1.80420 46.5
n i  n i
10 -58.563 .10  10 -58.563 .10
11 24.9 o17 5.00 1.83400 37.3 11 24.9 o17 5.00 1.83400 37.3
12 32.667 10.90 12 32.667 10.90
13 37.268 1.00 1.80518 25.4 13 37.268 1.00 1.80518 25.4
14 7.49 1.48749 70.414 7.49 1.48749 70.4
15 -48.389 2.51 15 -48.389 2.51
16 -20.814 1.62 1.48749 70.  16 -20.814 1.62 1.48749 70.
17 -28.034 25.00  17 -28.034 25.00
18 49.471 5.48 1.58913 61.2 18 49.471 5.48 1.58913 61.2
19 19
Figure imgf000013_0001
Figure imgf000013_0002
表 1中の符号 Rは曲率半径、符号 dはレンズ厚または空気間隔、符号 Ndは d線(58 8nm)の屈折率、符号 Vdは d線のアッベ数を示す (アッベ数は符号 V dで表す場合も ある)。符号 R及び dの添字とレンズとの関係は、図 1に示される通りである。また、表 1 中の符号 f は第 1レンズ群 Gの焦点距離、符号 f は第 2レンズ群 Gの焦点距離、符
Figure imgf000013_0001
Figure imgf000013_0002
In Table 1, symbol R is the radius of curvature, symbol d is the lens thickness or air spacing, symbol Nd is the refractive index of the d-line (588 nm), symbol Vd is the Abbe number of the d-line (the Abbe number is the symbol Vd) May also be expressed). The relationship between the subscripts R and d and the lens is as shown in Fig. 1. Table 1 The symbol f in the figure is the focal length of the first lens group G, and the symbol f is the focal length of the second lens group G.
1 1 2 2 1 1 2 2
号 f は第 3レンズ群 Gの焦点距離を示す。  The symbol f indicates the focal length of the third lens group G.
3 3  3 3
[0050] さらに、表 1中の符号 f は短焦点端の焦点距離、符号 f は長焦点端の焦点距離、 w Γ  [0050] Further, in Table 1, the symbol f is the focal length of the short focal end, the symbol f is the focal length of the long focal end, and w Γ
符号 f は第 1レンズ群 G力ゝら第 3レンズ群 Gまでの合成バックフォーカスを示している b 1 3  The symbol f indicates the combined back focus from the first lens group G force to the third lens group G b 1 3
[0051] また、本第 1実施例における投写距離は 1000mmである。 [0051] Further, the projection distance in the first embodiment is 1000 mm.
[0052] 数値実施例 1のズームレンズによれば、レンズ構成枚数が 8枚と、従来よりも少ない 投写用のズームレンズを提供することができる。なお、前記したとおり、パワー的に単 レンズと等価な接合レンズは 1枚と計算している。また、このズームレンズは、合焦点 用レンズを負レンズで構成することにより、画像素子の直前にコンデンサーレンズ (つ まり第 4レンズ群 G )が配置されている光学系でも、テレセントリック性を保ち易いとい  [0052] According to the zoom lens of Numerical Example 1, it is possible to provide a projection zoom lens having eight lens elements, which is smaller than the conventional zoom lens. As described above, the number of cemented lenses equivalent to a single lens in terms of power is calculated as one. In addition, this zoom lens can easily maintain telecentricity even in an optical system in which a condenser lens (that is, the fourth lens group G) is disposed immediately in front of the image element by forming the focusing lens with a negative lens. Toi
4  Four
う利点がある。この実施例で得られたテレセントリック性は、表 1に記載の通りである。  There are advantages. The telecentricity obtained in this example is as shown in Table 1.
[0053] 本第 1実施形態のズームレンズは、プロジェクタの投写用レンズとして用いることが できる。 The zoom lens according to the first embodiment can be used as a projection lens for a projector.
[0054] (第 1実施形態における数値実施例 2の構成)  (Configuration of Numerical Example 2 in the First Embodiment)
次に、第 1実施形態の数値実施例 2に係るズームレンズの構成を図 5に示す。なお Next, FIG. 5 shows a configuration of a zoom lens according to Numerical Example 2 of the first embodiment. In addition
、数値実施例 2の説明においては、数値実施例 1と基本的に同じ構成要素や特性に ついては、同じ参照符号を用いて説明を簡潔にする。 In the description of Numerical Example 2, the same reference numerals are used for the same components and characteristics as those of Numerical Example 1 to simplify the description.
[0055] 数値実施例 2の諸収差を図 6〜8に示す。図 6は、短焦点端での諸収差図、図 7は[0055] Various aberrations of Numerical Example 2 are shown in FIGS. Fig. 6 shows various aberrations at the short focal end, and Fig. 7 shows
、中間焦点位置での諸収差図、図 8は、長焦点端での諸収差図である。また、数値 実施例 2の諸特性を表 2に示す。 FIG. 8 is a diagram of various aberrations at the long focal end. Table 2 shows the characteristics of Numerical Example 2.
[0056] [表 2] R d Nd Vd[0056] [Table 2] R d Nd Vd
1 49.812 2.00 1.80420 46.501 49.812 2.00 1.80420 46.50
2 27.023 11.68 2 27.023 11.68
3 -63.436 5.55 1.80420 46.50 3 -63.436 5.55 1.80420 46.50
4 11.60 4 11.60
5 -27.450 1.50 1.48749 70.45 5 -27.450 1.50 1.48749 70.45
6 96.853 25.47 6 96.853 25.47
7 8.00  7 8.00
8 -123.785 10.00 1.83400 37.34 8 -123.785 10.00 1.83400 37.34
9 22.04 o6 10.00 1.80420 46.509 22.04 o6 10.00 1.80420 46.50
10 .10 10 .10
11 32.230 3.05 1.83400 37.34 11 32.230 3.05 1.83400 37.34
12 95.673 12 95.673
13 39.478 4.80 1.80518 25.46 13 39.478 4.80 1.80518 25.46
14 15.316 6.7 o6 1.48749 70.45 14 15.316 6.7 o6 1.48749 70.45
o  o
15 -99.727 2.25  15 -99.727 2.25
16 -29.264 1.63 1.48749 70.45 16 -29.264 1.63 1.48749 70.45
17 -45.890 22.00 17 -45.890 22.00
18 54.598 9.00 1.58913 61.25 18 54.598 9.00 1.58913 61.25
19 19
Figure imgf000015_0001
Figure imgf000015_0002
Figure imgf000015_0001
Figure imgf000015_0002
[0057] 数値実施例 2の他の構成及び利点は、数値実施例 1と基本的に同様なので、これ 以上の詳細な説明は省略する。 [0057] Other configurations and advantages of the numerical example 2 are basically the same as those of the numerical example 1, and thus detailed description thereof is omitted.
[0058] (第 1実施形態における数値実施例 3の構成) 次に、本第 1実施形態の数値実施例 3に係るズームレンズの構成を図 9に示す。な お、数値実施例 3の説明においては、数値実施例 1と基本的に同じ構成要素や特性 については、同じ参照符号を用いて説明を簡略にする。 (Configuration of Numerical Example 3 in the First Embodiment) Next, FIG. 9 shows a configuration of a zoom lens according to Numerical Example 3 of the first embodiment. In the description of Numerical Example 3, the same reference numerals are used for the same components and characteristics as those of Numerical Example 1 to simplify the description.
[0059] 数値実施例 3の諸収差を図 10〜12に示す。図 10は、短焦点端での諸収差図、図[0059] Various aberrations of Numerical Example 3 are shown in FIGS. Figure 10 shows various aberrations at the short focal end.
11は、中間焦点位置での諸収差図、図 12は、長焦点端での諸収差図である。また、 数値実施例 3の諸特性を表 3に示す。 11 shows various aberrations at the intermediate focal position, and FIG. 12 shows various aberrations at the long focal end. Table 3 shows the characteristics of Numerical Example 3.
[0060] [表 3] [0060] [Table 3]
R d Nd Vd R d Nd Vd
1 2.00 1.80420 46.50 1 2.00 1.80420 46.50
2 29.385 11.51 2 29.385 11.51
3 5.66 1.80420 46.50 3 5.66 1.80420 46.50
4 -35.000 10.64 4 -35.000 10.64
5 1.50 1.48749 70.45 5 1.50 1.48749 70.45
6 -243.798 38.35 6 -243.798 38.35
m  m
7 oo 8.00  7 oo 8.00
8 205.4 ∞18 1.51 1.83400 37.34 8 205.4 ∞18 1.51 1.83400 37.34
9 39.209 4.45 1.80420 46.509 39.209 4.45 1.80420 46.50
10 -83.634 . 15 10 -83.634. 15
11 29.225 2.60 1.83400 37.34 11 29.225 2.60 1.83400 37.34
12 52.209 15.00 12 52.209 15.00
13 39.659 1.00 1.80518 25.46 13 39.659 1.00 1.80518 25.46
14 15.610 6.52 1.48749 70.4514 15.610 6.52 1.48749 70.45
15 -123.274 3.29 15 -123.274 3.29
16 - 19.842 2.22 1.48749 70.45 16-19.842 2.22 1.48749 70.45
17 -22.580 22. 11 17 -22.580 22. 11
18 50.627 8.86 1.58913 61.25 18 50.627 8.86 1.58913 61.25
19 19
Figure imgf000017_0001
Figure imgf000017_0002
Figure imgf000017_0001
Figure imgf000017_0002
[0061] 数値実施例 3の他の構成及び利点は、数値実施例 1と基本的に同様なので、これ 以上の詳細な説明は省略する。 [0061] Other configurations and advantages of the numerical value example 3 are basically the same as those of the numerical value example 1, and thus detailed description thereof is omitted.
[0062] (第 2実施形態) 次に、第 2実施形態のズームレンズについて説明する。第 2実施形態のズームレン ズは、投写面側から順に、第 1レンズ群と、第 2レンズ群と、第 3レンズ群と、第 4レンズ 群とで構成され、短焦点端と長焦点端との間での変倍が可能であるズームレンズで あって、第 1レンズ群は、投写面側から順に、負レンズ、正レンズ、負レンズの 3枚のレ ンズで構成されて負のパワーを有しており、第 2レンズ群は、投写面側力も順に、 1枚 の正レンズと、 1枚の接合レンズと、 1枚の接合レンズとの合計 3枚のレンズで構成さ れて正のパワーを有しており、第 3レンズ群は、 1枚の負レンズで構成されており、第 4レンズ群は、 1枚の正レンズで構成されており、さらに、変倍に際しては、第 1レンズ 群と第 2レンズ群を移動させ、かつ、第 3レンズ群と第 4レンズ群とは固定しておく構成 となっており、さらに、第 3レンズ群は、焦点合わせのために移動させられる構成をと るズームレンズである。 [0062] (Second Embodiment) Next, a zoom lens according to the second embodiment will be described. The zoom lens of the second embodiment is composed of a first lens group, a second lens group, a third lens group, and a fourth lens group in order from the projection plane side, and includes a short focal end and a long focal end. The first lens group consists of three lenses, a negative lens, a positive lens, and a negative lens, in order from the projection plane side, and has negative power. The second lens group is composed of a total of three lenses, one positive lens, one cemented lens, and one cemented lens, in order of the projection surface side force. The third lens group is composed of one negative lens, the fourth lens group is composed of one positive lens, and the first lens is used for zooming. The lens group and the second lens group are moved, and the third lens group and the fourth lens group are fixed. The third lens group is a preparative Ru zoom lens arrangement is moved for focusing.
[0063] 次に、第 2実施形態のズームレンズについての具体的な数値実施例を示す。  Next, specific numerical examples regarding the zoom lens according to the second embodiment will be described.
[0064] (第 2実施形態における数値実施例 1の構成)  (Configuration of Numerical Example 1 in Second Embodiment)
本第 2実施形態の数値実施例 1に係るズームレンズの構成を図 13に示す。図 13に おいて、符号 PLは投写面、符号 GLは撮像素子の保護ガラス等 (ここには光学的フィ ルタなどを含むことがある)、符号 CDは撮像素子、符号 G は第 1レンズ群、符号 G  FIG. 13 shows a configuration of a zoom lens according to Numerical Example 1 of the second embodiment. In FIG. 13, symbol PL is the projection plane, symbol GL is the protective glass of the image sensor (which may include an optical filter, etc.), symbol CD is the image sensor, and symbol G is the first lens group. , Sign G
11 12 は第 2レンズ群、符号 G は第 3レンズ群、符号 G は第 4レンズ群を示している。また  11 12 denotes the second lens group, G denotes the third lens group, and G denotes the fourth lens group. Also
13 14  13 14
、符号 R は絞り面を示す。  The symbol R indicates the diaphragm surface.
27  27
[0065] このズームレンズは、投写面 PLの側から順に、第 1レンズ群 G と、第 2レンズ群 G  [0065] This zoom lens includes a first lens group G and a second lens group G in order from the projection plane PL side.
11 12 と、第 3レンズ群 G と、第 4レンズ群 G とで構成され、短焦点端と長焦点端との間で  11 12 and the third lens group G and the fourth lens group G, between the short focus end and the long focus end.
13 14  13 14
の変倍が可能であるズームレンズである。  This is a zoom lens capable of zooming.
[0066] 第 1レンズ群 G は、投写面 PLの側から順に、負レンズ、正レンズ、負レンズの 3枚  [0066] The first lens group G includes three lenses, a negative lens, a positive lens, and a negative lens, in that order from the projection plane PL side.
11  11
のレンズで構成されて負のパワーを有している。ここで、各レンズ群を構成する単位と しての 1枚のレンズは、前記の通り、パワー的に単レンズと等価な接合レンズである場 合を含む。ここで接合レンズは、 2枚又はそれ以上の単レンズを接合させたものであ る。  The lens has a negative power. Here, as described above, one lens as a unit constituting each lens group includes a case where it is a cemented lens equivalent in power to a single lens. Here, the cemented lens is obtained by cementing two or more single lenses.
[0067] 第 2レンズ群 G は、投写面 PLの側から順に、 1枚の正レンズ (R 〜R )と、 1枚の  [0067] The second lens group G includes, in order from the projection plane PL side, one positive lens (R to R) and one sheet
12 28 29 接合レンズ (R 〜R )と、 1枚の接合レンズ (R 〜R )とで構成されて正のパワーを 有している。本第 2実施例では、これらの接合レンズが、いずれも 2枚のレンズで構成 されている。前記した各接合レンズは、いずれか又は双方力 2枚でなぐ 3枚以上の レンズから構成されたものであってもよい。また、前記した 1枚の正レンズ (R 〜R ) 12 28 29 Consists of a cemented lens (R to R) and a single cemented lens (R to R). Have. In the second embodiment, each of these cemented lenses is composed of two lenses. Each of the above-described cemented lenses may be composed of three or more lenses that are joined by either one or both of the two forces. One positive lens (R to R)
28 29 は、接合レンズによって構成されていても良い。  28 29 may be constituted by a cemented lens.
[0068] 第 3レンズ群 G は、 1枚の負レンズで構成されている。この負レンズも、負のパワー  [0068] The third lens group G includes one negative lens. This negative lens also has negative power
13  13
を持つ接合レンズであってもよ ヽ。  Even a cemented lens with.
[0069] 第 4レンズ群 G は、 1枚の正レンズで構成されている。この正レンズも、正のパワー  [0069] The fourth lens group G is composed of one positive lens. This positive lens is also positive power
14  14
を持つ接合レンズであってもよ ヽ。  Even a cemented lens with.
[0070] したがって、本第 2実施例のズームレンズは、全体として 8枚のレンズで構成されて いる。前記の通り、ここでは、パワー的に単レンズと等価な接合レンズは 1枚と数えて いる。  Therefore, the zoom lens according to the second embodiment is composed of eight lenses as a whole. As described above, here, a cemented lens equivalent to a single lens in terms of power is counted as one lens.
[0071] 本第 2実施例では、ズームレンズの変倍に際して、第 1レンズ群 G と第 2レンズ群 G  In the second embodiment, the first lens group G and the second lens group G are used for zooming.
11  11
とを移動させ、かつ、第 3レンズ群 G と第 4レンズ群 G とは固定しておく構成となつ And the third lens group G and the fourth lens group G are fixed.
12 13 14 12 13 14
ている。さらに、本第 2実施例では、第 3レンズ群 G は、焦点合わせのために移動さ  ing. Further, in the second embodiment, the third lens group G is moved for focusing.
13  13
せられる構成となって 、る。このようなレンズ群の移動機構自体は従来と同様でょ 、 ので、これについての詳細な説明は省略する。  It becomes the structure that is made. Such a lens group moving mechanism itself is the same as in the prior art, so a detailed description thereof will be omitted.
[0072] (第 2実施形態における数値実施例 1の特性) (Characteristics of Numerical Example 1 in Second Embodiment)
数値実施例 1における諸収差を図 14〜図 16に示す。図 14は、数値実施例 1の短 焦点端における諸収差図、図 15は、数値実施例 1の中間焦点位置における諸収差 図、図 16は、数値実施例 1の長焦点端における諸収差図である。  Various aberrations in Numerical Example 1 are shown in FIGS. FIG. 14 shows various aberrations at the short focal end of Numerical Example 1, FIG. 15 shows various aberrations at the intermediate focal position of Numerical Example 1, and FIG. 16 shows various aberrations at the long focal end of Numerical Example 1. It is.
[0073] これらの図中、球面収差で表される色収差における符号 G, B, Rは、それぞれ、グ リーン、ブルー、レッドの波長に対する球面収差であり、符号 SCは、正弦条件不満足 量である。 [0073] In these drawings, symbols G, B, and R in the chromatic aberration represented by spherical aberration are spherical aberrations for green, blue, and red wavelengths, respectively, and symbol SC is an unsatisfactory sine condition. .
[0074] 非点収差における符号 Sはサジタル、符号 Mはメリジォナルである。  In the astigmatism, the symbol S is sagittal and the symbol M is meridional.
[0075] また、数値実施例 1の諸特性を表 4に示す。 [0075] Table 4 shows properties of Numerical Example 1.
[0076] [表 4] R d Nd Vd [0076] [Table 4] R d Nd Vd
1 53.422 2.00 1.80420 46.50  1 53.422 2.00 1.80420 46.50
2 31.362 7.05  2 31.362 7.05
3 4655.051 4.72 1.83400 37.34  3 4655.051 4.72 1.83400 37.34
4 -64.540 12.17  4 -64.540 12.17
5 . -24.417 1.50 1.80420 46.50  5 -24.417 1.50 1.80420 46.50
6 35.805 11.77  6 35.805 11.77
7 ∞ 6.25  7 ∞ 6.25
8 -39.319 10.00 1.83400 37.34  8 -39.319 10.00 1.83400 37.34
9 -27.573 .10  9 -27.573 .10
10 30.844 1.52 1.78472 25.70  10 30.844 1.52 1.78472 25.70
11 26.891 3.76 1.83400 37.34  11 26.891 3.76 1.83400 37.34
12 107.402 7.79  12 107.402 7.79
13 5.00 1.80518 25.46  13 5.00 1.80518 25.46
14 14.524 8.81 1.64250 57.96  14 14.524 8.81 1.64250 57.96
15 -60.800 2.16  15 -60.800 2.16
16 -26.076 7.35 1.59551 39.23  16 -26.076 7.35 1.59551 39.23
17 -41.012 29.41  17 -41.012 29.41
18 24.036 9.00 1.58913 61.25  18 24.036 9.00 1.58913 61.25
19 oo  19 oo
Figure imgf000020_0001
Figure imgf000020_0002
表 4中の符号 Rは曲率半径、符号 dはレンズ厚または空気間隔、符号 Ndは d線(58 8nm)の屈折率、符号 Vdは d線のアッベ数を示す (アッベ数は符号 V dで表す場合も ある)。符号 R及び dの添字とレンズとの関係は、図 13に示される通りである。また、表 4中の符号 f は第 1レンズ群 G の焦点距離、符号 f は第 2レンズ群 G の焦点距離、 符号 f は第 3レンズ群 G の焦点距離を示す。
Figure imgf000020_0001
Figure imgf000020_0002
In Table 4, R is the radius of curvature, d is the lens thickness or air spacing, Nd is the refractive index of the d line (588 nm), Vd is the Abbe number of the d line (the Abbe number is V d May also be expressed). The relationship between the subscripts R and d and the lens is as shown in FIG. In Table 4, the symbol f is the focal length of the first lens group G, the symbol f is the focal length of the second lens group G, The symbol f indicates the focal length of the third lens group G.
3 13  3 13
[0078] さらに、表 4中の符号 f は短焦点端の焦点距離、符号 f は長焦点端の焦点距離、 w Γ  [0078] Further, in Table 4, the symbol f is the focal length of the short focal end, the symbol f is the focal length of the long focal end, and w Γ
符号 f は第 1レンズ群 G 力 第 3レンズ群 G までの合成バックフォーカスを示してい b 11 13  Symbol f indicates the combined back focus up to the first lens group G force and the third lens group G b 11 13
る。  The
[0079] また、本第 2実施例における投写距離は 1000mmである。  In addition, the projection distance in the second embodiment is 1000 mm.
[0080] 数値実施例 1のズームレンズによれば、レンズ構成枚数が 8枚と、従来よりも少ない 投写用のズームレンズを提供することができる。なお、前記したとおり、パワー的に単 レンズと等価な接合レンズは 1枚と計算している。また、このズームレンズは、合焦点 用レンズを負レンズで構成することにより、画像素子の直前にコンデンサーレンズ (つ まり第 4レンズ群 G )が配置されている光学系でも、テレセントリック性を保ち易いと  [0080] According to the zoom lens of Numerical Example 1, it is possible to provide a projection zoom lens having eight lens elements, which is smaller than the conventional zoom lens. As described above, the number of cemented lenses equivalent to a single lens in terms of power is calculated as one. In addition, this zoom lens can easily maintain telecentricity even in an optical system in which a condenser lens (that is, the fourth lens group G) is arranged immediately in front of the image element by forming the focusing lens as a negative lens. When
14  14
いう利点がある。この実施例で得られたテレセントリック性は、表 1に記載の通りである  There is an advantage. The telecentricity obtained in this example is as shown in Table 1.
[0081] 本第 2実施例のズームレンズは、プロジェクタの投写用レンズとして用いることがで きる。 [0081] The zoom lens of the second embodiment can be used as a projection lens of a projector.
[0082] (第 2実施形態における数値実施例 2の構成)  (Configuration of Numerical Example 2 in the Second Embodiment)
次に、第 2実施形態の数値実施例 2に係るズームレンズの構成を図 17に示す。な お、数値実施例 2の説明においては、数値実施例 1と基本的に同じ構成要素や特性 については、同じ参照符号を用いて説明を簡潔にする。  Next, FIG. 17 shows a configuration of a zoom lens according to Numerical Example 2 of the second embodiment. In the description of Numerical Example 2, the same reference numerals are used for the same constituent elements and characteristics as those of Numerical Example 1 to simplify the description.
[0083] 数値実施例 2の諸収差を図 18〜20に示す。図 18は、短焦点端での諸収差図、図[0083] Various aberrations of Numerical Example 2 are shown in FIGS. Figure 18 shows various aberrations at the short focal end.
19は、中間焦点位置での諸収差図、図 20は、長焦点端での諸収差図である。また、 数値実施例 2の諸特性を表 5に示す。 19 shows various aberrations at the intermediate focal position, and FIG. 20 shows various aberrations at the long focal end. Table 5 shows the characteristics of Numerical Example 2.
[0084] [表 5] R d Nd Vd [0084] [Table 5] R d Nd Vd
1 93.331 2.0000 1.83400 37.34  1 93.331 2.0000 1.83400 37.34
2 29.640 13.20  2 29.640 13.20
3 -36.805 2.88 1.84666 23.83  3 -36.805 2.88 1.84666 23.83
4 -31.060 18.72  4 -31.060 18.72
5 . -29.859 8.00 1.69350 53.54  5 .-29.859 8.00 1.69350 53.54
6 29.21  6 29.21
7 oo 10.00  7 oo 10.00
8 114.321 2.48 1.80420 46.50  8 114.321 2.48 1.80420 46.50
9 -114.606 .10  9 -114.606 .10
10 31.687 o 1.50 1.53172 48.83  10 31.687 o 1.50 1.53172 48.83
11 25.212 4.34 1.80420 46.50  11 25.212 4.34 1.80420 46.50
12 51.363 12.01  12 51.363 12.01
13 41.094 1.00 1.80518 25.46  13 41.094 1.00 1.80518 25.46
14 13.966 9.41 1.51823 58.96  14 13.966 9.41 1.51823 58.96
15 2.47  15 2.47
16 -29.699 2.03 1.84666 23.83  16 -29.699 2.03 1.84666 23.83
17 22.00  17 22.00
18 49.338 9.00 1.58913 61.25  18 49.338 9.00 1.58913 61.25
19  19
Figure imgf000022_0001
Figure imgf000022_0002
Figure imgf000022_0001
Figure imgf000022_0002
[0085] 数値実施例 2の他の構成及び利点は、数値実施例 1と基本的に同様なので、これ 以上の詳細な説明は省略する。 Since the other configurations and advantages of Numerical Example 2 are basically the same as those of Numerical Example 1, further detailed description thereof is omitted.
[0086] (第 2実施形態における数値実施例 3の構成) 次に、第 2実施形態の数値実施例 3に係るズームレンズの構成を図 21に示す。な お、数値実施例 3の説明においては、数値実施例 1と基本的に同じ構成要素や特性 については、同じ参照符号を用いて説明を簡略にする。 (Configuration of Numerical Example 3 in the Second Embodiment) Next, FIG. 21 shows a configuration of a zoom lens according to Numerical Example 3 of the second embodiment. In the description of Numerical Example 3, the same reference numerals are used for the same components and characteristics as those of Numerical Example 1 to simplify the description.
[0087] 数値実施例 3の諸収差を図 22〜24に示す。図 22は、短焦点端での諸収差図、図Various aberrations of Numerical Example 3 are shown in FIGS. Figure 22 is a diagram of various aberrations at the short focal end.
23は、中間焦点位置での諸収差図、図 24は、長焦点端での諸収差図である。また、 数値実施例 3の諸特性を表 6に示す。 23 shows various aberrations at the intermediate focal position, and FIG. 24 shows various aberrations at the long focal end. Table 6 shows the characteristics of Numerical Example 3.
[0088] [表 6] [0088] [Table 6]
R d Nd Vd R d Nd Vd
1 84.522 2.00 1.83400 37.34  1 84.522 2.00 1.83400 37.34
2 29.492 12.95  2 29.492 12.95
3 -38.598 3.03 1.84666 23.83  3 -38.598 3.03 1.84666 23.83
4 -32.059 13.21  4 -32.059 13.21
5 . -30.942 8.00 1.58913 61.25  5 .-30.942 8.00 1.58913 61.25
6 -66.740 36.97  6 -66.740 36.97
7 oo 10.00  7 oo 10.00
8 130.736 2.56 1.80420 46.50  8 130.736 2.56 1.80420 46.50
9 -92.881 .10  9 -92.881 .10
10 28.248 1.50 1.53172 48.83  10 28.248 1.50 1.53172 48.83
11 21.278 6.75 1.80420 46.50  11 21.278 6.75 1.80420 46.50
12 37.032 8.43  12 37.032 8.43
13 47.725 1.00 1.80518 25.46  13 47.725 1.00 1.80518 25.46
14 13.505 7.36 1.51823 58.96  14 13.505 7.36 1.51823 58.96
15 -315.881 3.66  15 -315.881 3.66
16 - 19.104 1.84 1.84666 23.83  16-19.104 1.84 1.84666 23.83
17 22.00  17 22.00
18 35.522 9.00 1.58913 61.25  18 35.522 9.00 1.58913 61.25
19  19
Figure imgf000024_0001
Figure imgf000024_0002
Figure imgf000024_0001
Figure imgf000024_0002
[0089] 数値実施例 3の他の構成及び利点は、数値実施例 1と基本的に同様なので、これ 以上の詳細な説明は省略する。 Since the other configurations and advantages of Numerical Example 3 are basically the same as those of Numerical Example 1, further detailed description thereof is omitted.
[0090] (第 3実施形態) [0090] (Third embodiment)
まず、第 3実施形態のズームレンズについて説明する。第 3実施形態のズームレン ズは、投写面側から順に、第 1レンズ群と、第 2レンズ群と、第 3レンズ群とで構成され 、短焦点端と長焦点端との間での変倍が可能であるズームレンズであって、第 1レン ズ群は、投写面側から順に、負レンズ、正レンズ、負レンズの 3枚のレンズで構成され て負のパワーを有しており、第 2レンズ群は、投写面側力 順に、 1枚の正レンズと、 2 枚のレンズで構成された 1枚の接合レンズと、 2枚のレンズで構成された 1枚の接合レ ンズとの合計 3枚のレンズで構成されて正のパワーを有しており、第 3レンズ群は、投 写面側から順に負レンズ、正レンズの 2枚のレンズで構成されて正のパワーを有して おり、さらに、変倍に際しては、第 1レンズ群と第 2レンズ群を移動させ、かつ、第 3レ ンズ群は固定しておく構成となっており、さらに、第 3レンズ群は、焦点合わせのため に移動させられる構成をとるズームレンズである。 First, the zoom lens according to the third embodiment will be described. Zoom lens according to the third embodiment The zoom lens is composed of a first lens group, a second lens group, and a third lens group in order from the projection surface side, and is capable of zooming between the short focal end and the long focal end. The first lens group is composed of three lenses, a negative lens, a positive lens, and a negative lens, in order from the projection surface side, and has a negative power. The second lens group is a projection lens. In order of surface force, it consists of a total of 3 lenses: 1 positive lens, 1 cemented lens composed of 2 lenses, and 1 cemented lens composed of 2 lenses The third lens group is composed of two lenses, a negative lens and a positive lens in order from the projection surface side, and has a positive power. In this case, the first lens group and the second lens group are moved, and the third lens group is fixed. The three lens group is a zoom lens configured to be moved for focusing.
[0091] 次に、第 3実施形態のズームレンズについての具体的な数値実施例を示す。  Next, specific numerical examples regarding the zoom lens according to the third embodiment will be described.
[0092] (第 3実施形態における数値実施例 1の構成)  (Configuration of Numerical Example 1 in the Third Embodiment)
第 3実施形態の数値実施例 1に係るズームレンズの構成を図 25に示す。図 25にお いて、符号 PLは投写面、符号 GLは画像素子の保護ガラス、符号 CDは画像素子、 符号 G は第 1レンズ群、符号 G は第 2レンズ群、符号 G は第 3レンズ群を示してい FIG. 25 shows a configuration of a zoom lens according to Numerical Example 1 of the third embodiment. In FIG. 25, symbol PL is the projection plane, symbol GL is the protective glass for the image element, symbol CD is the image element, symbol G is the first lens group, symbol G is the second lens group, and symbol G is the third lens group. Shows
21 22 23 21 22 23
る。また、符号 R は絞り面を示す。  The The symbol R indicates the diaphragm surface.
47  47
[0093] このズームレンズは、投写面 PLの側から順に、第 1レンズ群 G と、第 2レンズ群 G  This zoom lens includes a first lens group G and a second lens group G in order from the projection plane PL side.
21 22 と、第 3レンズ群 G とで構成され、短焦点端と長焦点端との間での変倍が可能であ  21 22 and the third lens group G, and zooming between the short and long focal ends is possible.
23  twenty three
るズームレンズである。  Zoom lens.
[0094] 第 1レンズ群 G は、投写面 PLの側から順に、負レンズ、正レンズ、負レンズの 3枚  [0094] The first lens group G includes three lenses, a negative lens, a positive lens, and a negative lens, in that order from the projection plane PL side.
21  twenty one
のレンズで構成されて負のパワーを有している。ここで、各レンズ群を構成する単位と しての 1枚のレンズは、特に言及しない限り、単レンズである場合と接合レンズである 場合とを含む。ここで接合レンズは、 2枚又はそれ以上の単レンズを接合したもので ある。  The lens has a negative power. Here, unless otherwise specified, one lens as a unit constituting each lens group includes a case where it is a single lens and a case where it is a cemented lens. Here, the cemented lens is obtained by cementing two or more single lenses.
[0095] 第 2レンズ群 G は、投写面 PLの側から順に、 1枚の正レンズと、 2枚の接合レンズ(  [0095] The second lens group G includes, in order from the projection plane PL side, one positive lens and two cemented lenses (
22  twenty two
R 〜R の間のレンズ)とで構成されて正のパワーを有している。本第 3実施例では Lens between R and R) and has a positive power. In this third example,
50 55 50 55
、これらの接合レンズが、いずれも 2枚の単レンズで構成されている。  These cemented lenses are both composed of two single lenses.
[0096] 第 3レンズ群 G は、投写面 PLの側から順に、負レンズ、正レンズの 2枚で構成され 、正のパワーを有している。これらのレンズは、本第 3実施例では単レンズとなってい る。ただし、これらのレンズも、接合レンズとすることができる。 [0096] The third lens group G is composed of two lenses, a negative lens and a positive lens, in this order from the projection plane PL side. Have positive power. These lenses are single lenses in the third embodiment. However, these lenses can also be cemented lenses.
[0097] 以上の通り、本第 3実施例のズームレンズは、全体として 8枚のレンズで構成されて いる。なお、ここでは、パワー的に単レンズと等価な接合レンズは 1枚と数えている。 As described above, the zoom lens of the third example is composed of eight lenses as a whole. Here, a cemented lens equivalent to a single lens in terms of power is counted as one lens.
[0098] 本第 3実施例では、ズームレンズの変倍に際して、第 1レンズ群 G と第 2レンズ群 G In the third embodiment, the first lens group G and the second lens group G are used for zooming.
21  twenty one
とを移動させ、かつ、第 3レンズ群 G は固定しておく構成となっている。さらに、本 And the third lens group G is fixed. In addition, book
22 23 22 23
第 3実施例では、第 3レンズ群 G は、焦点合わせのために移動させられる構成とな  In the third embodiment, the third lens group G is configured to be moved for focusing.
23  twenty three
つている。このようなレンズ群の移動機構自体は従来と同様でよいので、これについ ての詳細な説明は省略する。  It is. Since such a lens group moving mechanism itself may be the same as the conventional one, a detailed description thereof will be omitted.
[0099] (第 3実施形態における数値実施例 1の特性) [0099] (Characteristics of Numerical Example 1 in Third Embodiment)
数値実施例 1における諸収差を図 26〜図 28に示す。図 26は、数値実施例 1の短 焦点端における諸収差図、図 27は、数値実施例 1の中間焦点位置における諸収差 図、図 28は、数値実施例 1の長焦点端における諸収差図である。  Various aberrations in Numerical Example 1 are shown in FIGS. FIG. 26 shows various aberrations at the short focal end of Numerical Example 1, FIG. 27 shows various aberrations at the intermediate focal position of Numerical Example 1, and FIG. 28 shows various aberrations at the long focal end of Numerical Example 1. It is.
[0100] これらの図中、球面収差で表される色収差における符号 G, B, Rは、それぞれ、グ リーン、ブルー、レッドの波長に対する球面収差であり、符号 SCは、正弦条件不満足 量である。 [0100] In these figures, symbols G, B, and R in chromatic aberration represented by spherical aberration are spherical aberrations for the wavelengths of green, blue, and red, respectively, and symbol SC is an unsatisfactory sine condition. .
[0101] また、非点収差における符号 Sはサジタル、符号 Mはメリジォナルを示している。  [0101] In the astigmatism, the symbol S indicates sagittal, and the symbol M indicates meridional.
[0102] また、数値実施例 1の諸特性を表 7に示す。 [0102] Table 7 shows properties of Numerical Example 1.
[0103] [表 7] [0103] [Table 7]
R d Nd Vd R d Nd Vd
1 134.090 2.00 1.80420 46.50 1 134.090 2.00 1.80420 46.50
2 29.529 12.40 2 29.529 12.40
3 -42.882 8.00 1.80518 25.46 3 -42.882 8.00 1.80518 25.46
4 -33.046 5.85 4 -33.046 5.85
5 -34.972 5.00 1.48749 70.44 5 -34.972 5.00 1.48749 70.44
6 - 99.671 45.00 6-99.671 45.00
7 ■ 5.59  7 ■ 5.59
8 208.874 3.32 1.80420 46.50 8 208.874 3.32 1.80420 46.50
9 -92.178 1.50 9 -92.178 1.50
10 34.064 1.30 1.80518 25.46 10 34.064 1.30 1.80518 25.46
11 19.670 4.35 1.72000 43.9011 19.670 4.35 1.72000 43.90
12 78.337 12 78.337
13 29.821 1.00 1.84666 23.78 13 29.821 1.00 1.84666 23.78
14 16.405 4.69 1.48749 70.4414 16.405 4.69 1.48749 70.44
15 -80.810 1.82 15 -80.810 1.82
16 -35.233 1.30 1.48749 70.44 16 -35.233 1.30 1.48749 70.44
17 22.113 7.90 17 22.113 7.90
18 46.050 3.80 1.77250 49.62 18 46.050 3.80 1.77250 49.62
19 -49.907 4.00 19 -49.907 4.00
20 22.00 1.58913  20 22.00 1.58913
21  twenty one
Figure imgf000027_0001
Figure imgf000027_0002
表 7中の符号 Rは曲率半径、符号 dはレンズ厚または空気間隔、符号 Ndは d線 (58nm)の屈折率、符号 Vdは d線のアッベ数を示す。符号 R及び dの添字とレンズとの 関係は、図 25に示される通りである。また、表 7中の符号 f は第 1レンズ群 G の焦点
Figure imgf000027_0001
Figure imgf000027_0002
In Table 7, R represents the radius of curvature, d represents the lens thickness or air spacing, Nd represents the refractive index of the d-line (58 nm), and Vd represents the Abbe number of the d-line. Between the subscript R and d and the lens The relationship is as shown in FIG. The symbol f in Table 7 is the focal point of the first lens group G.
1 21 距離、符号 f は第 2レンズ群 G の焦点距離、符号 f は第 3レンズ群 G の焦点距離  1 21 Distance, symbol f is the focal length of the second lens group G, symbol f is the focal length of the third lens group G
2 22 3 23  2 22 3 23
を示す。  Indicates.
[0105] さらに、表 7中の符号 f は短焦点端の焦点距離、符号 fは長焦点端の焦点距離、 w t  [0105] Further, in Table 7, the symbol f is the focal length of the short focal end, the symbol f is the focal length of the long focal end, and w t
符号 f は第 1レンズ群 G 力 第 3レンズ群 G までの合成バックフォーカスを示してい b 21 23  The symbol f indicates the combined back focus up to the first lens group G force and the third lens group G b 21 23
る。  The
[0106] また、本第 3実施例における投写距離は 1000mmである。なお、表 1において、距 離を示す数値の単位は、指定のな!、場合はすべて mmである。  [0106] The projection distance in the third embodiment is 1000 mm. In Table 1, the unit of the numerical value indicating the distance is not specified !, and in all cases it is mm.
[0107] 数値実施例 1のズームレンズによれば、レンズ構成枚数が 8枚と、従来よりも少ない 投写用のズームレンズを提供することができる。なお、この説明では、群の構成要素 である接合レンズについては、接合レンズ全体で 1枚と計算している。また、数値実 施例 1のズームレンズは、表 1に記載の通り、テレセン性を保っている。  [0107] According to the zoom lens of Numerical Example 1, it is possible to provide a projection zoom lens having eight lens elements, which is smaller than the conventional zoom lens. In this description, for the cemented lens that is a component of the group, the entire cemented lens is calculated as one lens. In addition, as shown in Table 1, the zoom lens of Numerical Example 1 maintains telecentricity.
[0108] 本第 3実施例のズームレンズは、プロジェクタの投写用レンズとして用いることがで きる。  [0108] The zoom lens of the third embodiment can be used as a projection lens of a projector.
[0109] (第 3実施形態における数値実施例 2の構成)  (Configuration of Numerical Example 2 in the Third Embodiment)
次に、第 3実施形態の数値実施例 2に係るズームレンズの構成を図 29に示す。な お、数値実施例 2の説明においては、数値実施例 1と基本的に同じ構成要素や特性 については、同じ参照符号を用いて説明を簡潔にする。  Next, FIG. 29 shows a configuration of a zoom lens according to Numerical Example 2 of the third embodiment. In the description of Numerical Example 2, the same reference numerals are used for the same constituent elements and characteristics as those of Numerical Example 1 to simplify the description.
[0110] 数値実施例 2の諸収差を図 30〜32に示す。図 30は、短焦点端での諸収差図、図[0110] Various aberrations of Numerical Example 2 are shown in FIGS. Figure 30 shows various aberrations at the short focal end.
31は、中間焦点位置での諸収差図、図 32は、長焦点端での諸収差図である。また、 数値実施例 2の諸特性を表 8に示す。 31 shows various aberrations at the intermediate focal position, and FIG. 32 shows various aberrations at the long focal end. Table 8 shows the characteristics of Numerical Example 2.
[0111] [表 8] R d Nd Vd [0111] [Table 8] R d Nd Vd
1 131.0658 2.00 1.80420 46.50  1 131.0658 2.00 1.80420 46.50
2 30.5760 13.01  2 30.5760 13.01
3 -182.1067 8.00 1.80518 25.46  3 -182.1067 8.00 1.80518 25.46
4 -41.2759 1.00  4 -41.2759 1.00
5 -45.8909 5.00 1.48749 70.44  5 -45.8909 5.00 1.48749 70.44
6 42.6480 40.68  6 42.6480 40.68
7 · 7.82  7 · 7.82
8 242.4800 3.20 1.80420 46.50  8 242.4800 3.20 1.80420 46.50
9 -99.5525 1.50  9 -99.5525 1.50
10 37.9283 1.30 1.80518 25.46  10 37.9283 1.30 1.80518 25.46
11 20.2581 4.52 1.72000 43.90  11 20.2581 4.52 1.72000 43.90
12 117.9600 19.85  12 117.9600 19.85
13 32.0721 1.00 1.84666 23.78  13 32.0721 1.00 1.84666 23.78
14 18.9125 4.55 1.48749 70.44  14 18.9125 4.55 1.48749 70.44
15 -52.5715 1.24  15 -52.5715 1.24
16 -42.1738 1.30 1.48749 70.44  16 -42.1738 1.30 1.48749 70.44
17 21.4747 10.18  17 21.4747 10.18
18 47.6799 3.39 1.77250 49.62  18 47.6799 3.39 1.77250 49.62
19 -67.5253 4.00  19 -67.5253 4.00
20 oo 22.00 1.58913  20 oo 22.00 1.58913
21 oo  21 oo
Figure imgf000029_0001
Figure imgf000029_0002
数値実施例 2の他の構成及び利点は、数値実施例 1と基本的に同様なので、これ 以上の詳細な説明は省略する。
Figure imgf000029_0001
Figure imgf000029_0002
The other configurations and advantages of the numerical value embodiment 2 are basically the same as those of the numerical value example 1, and thus detailed description thereof is omitted.
(第 3実施形態における数値実施例 3の構成) 次に、第 3実施形態の数値実施例 3に係るズームレンズの構成を図 33に示す。な お、数値実施例 3の説明においては、数値実施例 1と基本的に同じ構成要素や特性 については、同じ参照符号を用いて説明を簡略にする。 (Configuration of Numerical Example 3 in the Third Embodiment) Next, FIG. 33 shows a configuration of a zoom lens according to Numerical Example 3 of the third embodiment. In the description of Numerical Example 3, the same reference numerals are used for the same components and characteristics as those of Numerical Example 1 to simplify the description.
[0114] 数値実施例 3の諸収差を図 34〜36に示す。図 34は、短焦点端での諸収差図、図Various aberrations of Numerical Example 3 are shown in FIGS. Figure 34 shows various aberrations at the short focal end.
35は、中間焦点位置での諸収差図、図 36は、長焦点端での諸収差図である。また、 数値実施例 3の諸特性を表 9に示す。 35 is a diagram of various aberrations at the intermediate focal position, and FIG. 36 is a diagram of various aberrations at the long focal point. In addition, Table 9 shows the characteristics of Numerical Example 3.
[0115] [表 9] [0115] [Table 9]
R d Nd Vd R d Nd Vd
1 111.5490 2.00 1.80420 46.50  1 111.5490 2.00 1.80420 46.50
2 28.5662 19.61  2 28.5662 19.61
3 -42.9438 8.00 1.80518 25.46  3 -42.9438 8.00 1.80518 25.46
4 -32.8929 1.66  4 -32.8929 1.66
5 -37.8780 5.00 1.48749 70.44  5 -37.8780 5.00 1.48749 70.44
6 -88.6820 45.00  6 -88.6820 45.00
7 00 8.39  7 00 8.39
8 214.7366 3.11 1.80420 46.50  8 214.7366 3.11 1.80420 46.50
9 -117.6225 1.50  9 -117.6225 1.50
10 32.2729 1.30 1.80518 25.46 10 32.2729 1.30 1.80518 25.46
11 18.4092 4.99 1.72000 43.9011 18.4092 4.99 1.72000 43.90
12 110.8199 18.25 12 110.8199 18.25
13 33.7817 1.00 1.84666 23.78 13 33.7817 1.00 1.84666 23.78
14 16.3758 4.51 1.48749 70.4414 16.3758 4.51 1.48749 70.44
15 -127.7361 1. 2 15 -127.7361 1.2
16 -38.66/5 1.30 1.48749 70.44 16 -38.66 / 5 1.30 1.48749 70.44
17 19.6610 8.38 17 19.6610 8.38
18 40.7623 3.95 1.77250 49.62 18 40.7623 3.95 1.77250 49.62
19 -51.5099 4.00 19 -51.5099 4.00
20 00 22.00 1.58913  20 00 22.00 1.58913
21 00 21 00
Jl
Figure imgf000031_0001
Jl
Figure imgf000031_0001
Figure imgf000031_0002
数値実施例 3の他の構成及び利点は、数値実施例 1と基本的に同様なので、これ以 上の詳細な説明は省略する なお、本発明は、上記した実施形態及び実施例に限定されるものではなぐ本発明 の要旨を逸脱しない範囲内において種々変更を加え得るものである。
Figure imgf000031_0002
Since the other configurations and advantages of Numerical Example 3 are basically the same as those of Numerical Example 1, further detailed explanation is omitted. The present invention is not limited to the above-described embodiments and examples, and various modifications can be made without departing from the gist of the present invention.

Claims

請求の範囲 The scope of the claims
[1] 投写面側カゝら順に、第 1レンズ群と、第 2レンズ群と、第 3レンズ群と、第 4レンズ群と で構成され、短焦点端と長焦点端との間での変倍が可能であるズームレンズであつ て、  [1] The first lens group, the second lens group, the third lens group, and the fourth lens group are arranged in order from the projection surface side, and are arranged between the short focal end and the long focal end. A zoom lens capable of zooming,
前記第 1レンズ群は、投写面側から順に、負レンズ、正レンズ、負レンズの 3枚のレ ンズで構成されて負のパワーを有しており、  The first lens group is composed of three lenses, a negative lens, a positive lens, and a negative lens, in order from the projection surface side, and has negative power.
前記第 2レンズ群は、投写面側から順に、 1枚の接合レンズ又は 1枚の正レンズと、 1枚の正レンズ又は 1枚の接合レンズと、 1枚の接合レンズとの合計 3枚のレンズで構 成されて正のパワーを有しており、  The second lens group includes, in order from the projection surface side, a total of three lenses including one cemented lens or one positive lens, one positive lens or one cemented lens, and one cemented lens. It consists of a lens and has positive power.
前記第 3レンズ群は、 1枚の負レンズで構成されており、  The third lens group is composed of one negative lens,
前記第 4レンズ群は、 1枚の正レンズで構成されており、  The fourth lens group is composed of one positive lens,
さらに、前記変倍に際しては、前記第 1レンズ群と前記第 2レンズ群を移動させ、か つ、前記第 3レンズ群と前記第 4レンズ群とは固定しておく構成となっており、 さらに、前記第 3レンズ群は、焦点合わせのために移動させられる構成となっている ことを特徴とするズームレンズ。  Further, when zooming, the first lens group and the second lens group are moved, and the third lens group and the fourth lens group are fixed, and The zoom lens is characterized in that the third lens group is configured to be moved for focusing.
[2] さらに、次の条件式(1)を満足することを特徴とする、請求項 1に記載のズームレン ズ。 [2] The zoom lens according to [1], wherein the following conditional expression (1) is satisfied.
0.7≤ I f /f I ≤1.5 (1)  0.7≤ I f / f I ≤1.5 (1)
2 1  twenty one
但し f :第 1レンズ群の合成焦点距離  Where f is the composite focal length of the first lens unit
f :第 2レンズ群の合成焦点距離  f: Composite focal length of the second lens group
2  2
[3] さらに、次の条件式(2)を満足することを特徴とする、請求項 1又は 2に記載のズー ムレンズ。  [3] The zoom lens according to claim 1 or 2, further satisfying the following conditional expression (2):
1.5≤ I f /f  1.5≤ I f / f
b w I ≤2.5 (2)  b w I ≤2.5 (2)
但し f :第 1レンズ群力も第 3レンズ群までの合成バックフォーカス  Where f is the combined back focus up to the first lens group and the third lens group
b  b
f :短焦点端の焦点距離  f: Focal length at short focal end
w  w
[4] さらに、次の条件式 (3)を満足することを特徴とする、請求項 1〜3のいずれか 1項 に記載のズームレンズ。  [4] The zoom lens according to any one of claims 1 to 3, further satisfying the following conditional expression (3):
0.08≤ I f /f I ≤0.3 (3) 但し f :第 3レンズ群の合成焦点距離 0.08≤ I f / f I ≤0.3 (3) Where f is the composite focal length of the third lens group
3  Three
f :長焦点端の焦点距離  f: Focal length at long focal end
T  T
[5] 投写面側から順に、第 1レンズ群と、第 2レンズ群と、第 3レンズ群とで構成され、短 焦点端と長焦点端との間での変倍が可能であるズームレンズであって、  [5] A zoom lens that is composed of a first lens group, a second lens group, and a third lens group in order from the projection surface side, and that can change the magnification between the short focal end and the long focal end. Because
前記第 1レンズ群は、投写面側から順に、負レンズ、正レンズ、負レンズの 3枚のレ ンズで構成されて負のパワーを有しており、  The first lens group is composed of three lenses, a negative lens, a positive lens, and a negative lens, in order from the projection surface side, and has negative power.
前記第 2レンズ群は、投写面側から順に、  The second lens group is arranged in order from the projection surface side.
1枚の正レンズと、  One positive lens,
2枚のレンズで構成された 1枚の接合レンズと、  One cemented lens composed of two lenses,
2枚のレンズで構成された 1枚の接合レンズとの  With one cemented lens composed of two lenses
合計 3枚のレンズで構成されて正のパワーを有しており、  It consists of a total of 3 lenses and has positive power.
前記第 3レンズ群は、投写面側カゝら順に負レンズ、正レンズの 2枚のレンズで構成さ れて正のパワーを有しており、  The third lens group is composed of two lenses of a negative lens and a positive lens in order from the projection surface side and has a positive power.
さらに、前記変倍に際しては、前記第 1レンズ群と前記第 2レンズ群を移動させ、か つ、前記第 3レンズ群は固定しておく構成となっており、  Further, when zooming, the first lens group and the second lens group are moved, and the third lens group is fixed,
さらに、前記第 3レンズ群は、焦点合わせのために移動させられる構成となっている ことを特徴とするズームレンズ。  Furthermore, the zoom lens is characterized in that the third lens group is configured to be moved for focusing.
[6] さらに、次の条件式(1)を満足することを特徴とする、請求項 5に記載のズームレン ズ。 6. The zoom lens according to claim 5, further satisfying the following conditional expression (1).
0.6≤ I f /f  0.6≤ I f / f
2 1 I ≤1.3 (1)  2 1 I ≤1.3 (1)
但し f :第 1レンズ群の合成焦点距離  Where f is the composite focal length of the first lens unit
f :第 2レンズ群の合成焦点距離  f: Composite focal length of the second lens group
2  2
[7] さらに、次の条件式(2)を満足することを特徴とする、請求項 5又は 6に記載のズー ムレンズ。  [7] The zoom lens according to claim 5 or 6, further satisfying the following conditional expression (2):
0. 8≤ I f /ϊ I ≤1. 8 (2)  0. 8≤ I f / ϊ I ≤1. 8 (2)
b w  b w
但し f :第 1レンズ群力も第 3レンズ群までの合成バックフォーカス  Where f is the combined back focus up to the first lens group and the third lens group
b  b
f :短焦点端の焦点距離  f: Focal length at short focal end
w  w
[8] さらに、次の条件式 (3)を満足することを特徴とする、請求項 5〜7のいずれか 1項 に記載のズームレンズ。 [8] Furthermore, the following conditional expression (3) is satisfied, Any one of claims 5 to 7, Zoom lens described in 1.
0.08≤ I f /f I ≤0.3 (3)  0.08≤ I f / f I ≤0.3 (3)
t 3  t 3
但し f :長焦点端の焦点距離 Where f is the focal length of the long focal end
f :第 3レンズ群の合成焦点距離  f: Composite focal length of the third lens group
3  Three
請求項 1〜8のいずれ力 1項に記載のズームレンズを備えたプロジェクタ。  A projector comprising the zoom lens according to any one of claims 1 to 8.
PCT/JP2006/319081 2005-09-26 2006-09-26 Projection-use zoom lens WO2007034966A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/088,201 US20100149655A1 (en) 2005-09-26 2006-09-26 Projection-use zoom lens

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2005277953A JP2007086636A (en) 2005-09-26 2005-09-26 Projection zoom lens
JP2005-277953 2005-09-26
JP2005-277952 2005-09-26
JP2005277952A JP2007086635A (en) 2005-09-26 2005-09-26 Projection zoom lens
JP2006082099A JP2007256711A (en) 2006-03-24 2006-03-24 Zoom lens
JP2006-082099 2006-03-24

Publications (1)

Publication Number Publication Date
WO2007034966A1 true WO2007034966A1 (en) 2007-03-29

Family

ID=37889006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/319081 WO2007034966A1 (en) 2005-09-26 2006-09-26 Projection-use zoom lens

Country Status (2)

Country Link
US (1) US20100149655A1 (en)
WO (1) WO2007034966A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102033305A (en) * 2009-09-29 2011-04-27 富士胶片株式会社 Variable power optical system and imaging device
CN107092083A (en) * 2016-02-18 2017-08-25 富士胶片株式会社 Imaging len and camera device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015004717A (en) * 2013-06-19 2015-01-08 リコーイメージング株式会社 Single focus lens system
CN108957929B (en) * 2018-08-15 2021-03-19 青岛海信激光显示股份有限公司 Laser light source and laser projector
TWI729424B (en) * 2019-06-25 2021-06-01 上暘光學股份有限公司 Projection system
CN116774405B (en) * 2023-08-18 2023-12-01 江西联昊光电有限公司 optical lens

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05297276A (en) * 1992-04-21 1993-11-12 Elmo Co Ltd Wide zoom lens
JPH1184237A (en) * 1997-09-12 1999-03-26 Canon Inc Zoom lens
JPH11202199A (en) * 1998-01-14 1999-07-30 Minolta Co Ltd Zoom lens

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5585970A (en) * 1994-04-19 1996-12-17 Nikon Corporation Zoom lens with high zoom ratio
JP4217437B2 (en) * 2002-07-22 2009-02-04 キヤノン株式会社 Zoom lens and image projection apparatus having the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05297276A (en) * 1992-04-21 1993-11-12 Elmo Co Ltd Wide zoom lens
JPH1184237A (en) * 1997-09-12 1999-03-26 Canon Inc Zoom lens
JPH11202199A (en) * 1998-01-14 1999-07-30 Minolta Co Ltd Zoom lens

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102033305A (en) * 2009-09-29 2011-04-27 富士胶片株式会社 Variable power optical system and imaging device
CN107092083A (en) * 2016-02-18 2017-08-25 富士胶片株式会社 Imaging len and camera device
CN107092083B (en) * 2016-02-18 2020-08-04 富士胶片株式会社 Imaging lens and imaging device

Also Published As

Publication number Publication date
US20100149655A1 (en) 2010-06-17

Similar Documents

Publication Publication Date Title
JP3625923B2 (en) Retro focus lens
JP4914999B2 (en) Telephoto lens system
JP4890090B2 (en) Zoom lens system
US6275342B1 (en) Zoom lens system
JP5378163B2 (en) Projection zoom lens and projection display device
JPH05188293A (en) Zoom lens
JPH04165319A (en) High variable power lens for compact camera comprehending wide angle
JP2016050989A (en) Projection zoom lens and projection display device
JP2000275519A (en) Zoom lens
JP2004233750A (en) Zoom lens
JPH0588085A (en) Zoom lens
WO2007034966A1 (en) Projection-use zoom lens
JP4874683B2 (en) Projection zoom lens and projection display device
JP2001004919A (en) Zoom lens
JP3752174B2 (en) Zoom lens system
JP2004219610A (en) Retrofocus wide-angle lens
JP2007256711A (en) Zoom lens
JP2650253B2 (en) Zoom lens
JPH07318803A (en) Rear conversion lens
JP2004101880A (en) Large aperture wide angle lens
JP4839763B2 (en) Wide angle lens
JP5814354B2 (en) Wide angle lens for projection and projection display device using the same
JPH10268188A (en) Large-aperture lens for photographic at low illuminance
JPH09211323A (en) Zoom lens for finite distance
JP2006171039A (en) Zoom lens

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 12088201

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06798342

Country of ref document: EP

Kind code of ref document: A1