WO2007034767A1 - Pressure control device and fuel feed device using the same - Google Patents

Pressure control device and fuel feed device using the same Download PDF

Info

Publication number
WO2007034767A1
WO2007034767A1 PCT/JP2006/318480 JP2006318480W WO2007034767A1 WO 2007034767 A1 WO2007034767 A1 WO 2007034767A1 JP 2006318480 W JP2006318480 W JP 2006318480W WO 2007034767 A1 WO2007034767 A1 WO 2007034767A1
Authority
WO
WIPO (PCT)
Prior art keywords
control device
pressure control
fuel
pressure
housing
Prior art date
Application number
PCT/JP2006/318480
Other languages
French (fr)
Japanese (ja)
Inventor
Bunji Homma
Hideyuki Iwamoto
Tomohiro Ono
Maki Shimogawa
Keizo Hayama
Takao Ikarugi
Katsutoshi Ito
Shinichiro Horisoko
Masahiko Narushima
Original Assignee
Honda Motor Co., Ltd.
Keihin Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co., Ltd., Keihin Corporation filed Critical Honda Motor Co., Ltd.
Priority to BRPI0616229-0A priority Critical patent/BRPI0616229B1/en
Priority to JP2007536482A priority patent/JP5164573B2/en
Publication of WO2007034767A1 publication Critical patent/WO2007034767A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/04Feeding by means of driven pumps
    • F02M37/08Feeding by means of driven pumps electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0005Control, e.g. regulation, of pumps, pumping installations or systems by using valves
    • F04D15/0011Control, e.g. regulation, of pumps, pumping installations or systems by using valves by-pass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0027Varying behaviour or the very pump
    • F04D15/005Varying behaviour or the very pump the pumps being of the circumferential flow type

Definitions

  • the present invention relates to a pressure control device that adjusts fluid pressure, and more particularly, to a pressure control device used in a fuel supply system of an engine and a fuel supply device using the same.
  • a pressure adjustment mechanism such as a fuel supply system or a hydraulic circuit of an automobile
  • various pressure adjustment mechanisms are used to prevent the fluid pressure from becoming excessive.
  • a pressure adjustment mechanism a pressure regulator (pressure control device) using a diaphragm is known.
  • a pressure regulator pressure control device
  • International Publication W096Z23969 discloses pressure adjustment used for an engine fuel supply system. A valve is shown. There, the fuel pumped up from the fuel tank by the fuel pump is adjusted in pressure by the pressure regulating valve and supplied to the fuel injection device. The surplus fuel is supplied from the pressure regulating valve to the fuel tank. Returned.
  • FIG. 5 is a cross-sectional view showing an example of a conventional pressure regulator used in the fuel supply system of such an engine.
  • the pressure regulator 51 has a configuration in which an armature 55 supported by a diaphragm 54 is disposed in a nosing in which a case 52 and a cover 53 are caulked.
  • a fuel inlet 56 is provided in the case 52
  • a fuel outlet 57 is provided in the cover 53.
  • the armature 55 is powered by the valve body 58 and the spring holder 59, and the inner peripheral portion of the diaphragm 54 is sandwiched between the valve body 58 and the spring holder 59.
  • the outer peripheral portion of the diaphragm 54 is sandwiched between the case 52 and the cover 53, whereby the armature 55 is supported by the diaphragm 54 so as to be vertically movable in the housing.
  • a spring 60 that urges the armature 55 downward in the figure is arranged between the spring holder 59 and the inner periphery of the upper end of the force bar 53.
  • the valve body 58 further includes a valve body 61, a valve spring 62, a ball 63, and a ball holder plate 64.
  • An oil passage 65 is formed in the valve body 61, and a valve hole 66 and a taper portion 67 are provided in the oil passage 65.
  • Valve spring 66 has valve spring 6 2 is accommodated, and a spherical ball 63 is disposed inside the tapered portion 67. The ball 63 is urged downward by a valve spring 62 in the figure.
  • a valve seat 68 projects from the bottom surface 52 a of the case 52 so as to face the armature 55.
  • the finished mature 55 is pressed against the upper surface of the valve seat 68 by the pressing force of the spring 60, and the ball 63 also contacts the valve seat 68.
  • the ball 63 is pushed up against the pressing force of the spring 68 and comes into contact with the taper portion 67, the oil passage 65 is shut off, and the valve is closed.
  • the armature 55 When the fuel flows in from the fuel inlet 56 in the state of FIG. 5 and the fuel pressure exceeds a predetermined adjustment pressure, the armature 55 receives the fuel pressure and moves upward. Then, the ball 63 is detached from the taper portion 67 by the pressing force of the spring 68, and the oil passage 65 is opened to open the valve. As a result, the fuel inlet 56 and the fuel outlet 57 communicate with each other via the oil passage 65, and excess fuel is returned to the fuel tank, so that the fuel pressure is adjusted.
  • Patent Document 1 International Publication W096Z23969
  • Patent Document 2 International Publication WO03Z58364
  • the pressure control mechanism has a composite spring structure.
  • the biasing force of the coil spring and the diaphragm is related in a complicated manner, so that it is very difficult to set the valve opening pressure.
  • the valve opening pressure is set as the valve opening pressure. Therefore, in the pressure control device having the structure as shown in FIG. 5, when the device is applied to a low flow rate (for example, 40 LZh or less) system, since the absolute amount of the flow rate change is small, the pressure gradient with respect to the flow rate change becomes large. There was a problem of end.
  • a rubber member (diaphragm 54) is used in the fuel flow path, so that corrosion resistance to gasoline, aging deterioration of the rubber member, etc. Therefore, there has been a demand for improvement in terms of device life.
  • the valve body operation may vary due to changes in the temperature (cold heat) of the rubber member, causing fuel to burn. There was also a problem that the pressure could not be controlled stably.
  • the load of the spring 60 is increased by crushing the cover 53 after the thread is attached.
  • the load adjustment width due to the cover crushing is only about ⁇ lmm with respect to the reference position, there is a problem that the adjustment load may not be adjusted to an optimum load with a narrow adjustment allowance.
  • the cover 53 is crushed to the set load, the set fuel pressure is always reduced by the springback as soon as the jig is removed.Therefore, it is necessary to crush the cover in anticipation of this, making adjustment difficult and load variation. Also grows.
  • the strength of the cover 53 is low, there is a possibility that the spring load may change due to changes over time, and there is also a problem in terms of performance stability.
  • An object of the present invention is to provide a pressure control device in which valve opening pressure adjustment is easy and accurate, and a pressure gradient at a low flow rate is small and various problems caused by a rubber member do not occur. Means for solving the problem
  • a pressure control device includes a housing including a fluid inlet, a fluid outlet connected to the fluid inlet through a flow path, a valve element disposed in the flow path, A seal portion that closes the flow path when the valve body abuts, an elastic member that abuts the valve body and biases the valve body toward the seal portion, and the flow path direction in the housing. And an adjustment member that can change the biasing force of the elastic member by moving in the flow path direction.
  • the closing / opening of the flow path can be controlled by one elastic member, and a complex spring structure in which the valve opening pressure is difficult to set is unnecessary, so that the valve opening pressure can be easily adjusted. Yes, the noise can be kept small. For this reason, even in a low flow rate fuel supply apparatus, the fuel pressure regulation becomes good and the pressure gradient with respect to the flow rate change can be reduced. Also, spring parts
  • the structure is simple and the pressure control device can be reduced in size and weight. Furthermore, since there is no rubber member in the apparatus, problems such as corrosion resistance of the rubber member to gasoline, aging deterioration, temperature change, etc. do not occur, the apparatus life is improved, and fuel pressure control is stabilized.
  • a compression coil spring is used as the elastic member, and the set length of the compression coil spring is increased by moving the adjustment member in the flow path direction. You may make it change.
  • the adjustment member may be press-fitted into the housing, and an end of the adjustment member on the fluid outlet side may be caulked and fixed to the housing. Further, in the pressure control device, the adjustment member may be welded in the housing, and an end portion of the adjustment member on the fluid outlet side may be caulked and fixed to the housing. Further, in the pressure control device, a locking piece that abuts on the inner peripheral surface of the housing and restricts the movement of the adjusting member toward the fluid outlet may be provided on the outer peripheral portion of the adjusting member. .
  • the seal portion is formed in the housing, and the seal member is formed by the elastic member having one end side in contact with the valve body and the other end side in contact with the adjustment member. You may make it press-contact.
  • the sealing member is formed on the adjustment member, and the valve body is abutted against the valve body at one end side and the elastic member holding section formed in the housing at the other end side. You may make it press-contact the said seal
  • the pressure control device may be installed downstream of the fuel pump having a discharge flow rate OLZh or less.
  • the fuel supply device of the present invention is attached to a fuel tank, and includes an electric motor, a pump unit driven by the electric motor, and a pressure control device that adjusts the pressure of fuel discharged from the pump unit.
  • a fuel supply apparatus comprising: a housing including a fluid inlet, a fluid outlet communicated with the fluid inlet via a flow path, and disposed in the flow path.
  • the closing and opening of the flow path is controlled by a single elastic member in a fuel supply device that is attached to a fuel tank and includes an electric motor, a pump unit, and a pressure control device.
  • a pressure control device that does not require a complex spring structure that is difficult to set the valve opening pressure To do. For this reason, it is easy to adjust the valve opening pressure of the pressure control device, and the variation thereof is suppressed to be small, and even in a low flow rate fuel supply device, fuel pressure regulation is good and the pressure gradient with respect to flow rate change can be reduced.
  • the structure of the pressure control device is simple and small and light, the fuel supply device can be reduced in size and weight.
  • the valve opening pressure of the pressure control device can be easily adjusted with various parts assembled as a fuel supply device, and variations in the performance of the entire fuel supply device can be suppressed.
  • the valve body disposed in the flow path in the housing, the seal portion in which the flow path is closed by contacting the valve body force S, and the valve body abuts against the valve body.
  • the biasing force of the elastic member can be adjusted, the valve opening pressure can be easily adjusted, and the variation can be suppressed to a small value. For this reason, even in a low flow rate fuel supply device, the fuel pressure regulation is good, and the pressure gradient with respect to the flow rate change can be reduced. Furthermore, since there is only one spring component in the device, the structure is simple, and the pressure control device can be made compact and lightweight. Since there is no rubber member in the device, there is no problem with the rubber member's corrosion resistance to gasoline, aging deterioration, temperature change, etc., the life of the device is improved, and stable control of fuel pressure is possible It becomes.
  • a fuel supply device that is attached to a fuel tank and includes an electric motor, a pump unit, and a pressure control device.
  • a valve body disposed on the sealing body, a seal portion that closes the flow path when the valve body abuts, an elastic member that abuts the valve body and biases the valve body toward the seal portion, and a housing.
  • the pressure control device's flow path is closed because it has an adjustment member that can be moved along the flow path direction and that can change the biasing force of the elastic member by moving in the flow path direction. 'Opening can be controlled by a single elastic member, and it is difficult to set the valve opening pressure in the pressure control device, eliminating the need for a complex spring structure.
  • the biasing force of the elastic member can be adjusted, and the opening valve pressure can be easily adjusted, and the variation can be suppressed to be small. For this reason, even in a low flow rate fuel supply apparatus, the fuel pressure regulation becomes good and the pressure gradient with respect to the flow rate change can be reduced. Furthermore, since there is only one spring component in the pressure control device, the structure is simple, the pressure control device can be reduced in size and weight, and the fuel supply device can be reduced in size and weight. Even if there is a variation in the pump flow rate, the valve opening pressure of the pressure control device can be easily adjusted with various parts assembled as a fuel supply device, so that variations in the performance of the entire fuel supply device can be suppressed. In addition, since there is no rubber member in the apparatus, problems such as corrosion resistance of the rubber member to gasoline, aging deterioration, temperature change, etc. do not occur, the apparatus life is improved, and stable control of the fuel pressure becomes possible.
  • FIG. 1 is a cross-sectional view showing a configuration of a pressure regulator that is Embodiment 1 of the present invention.
  • FIG. 2 is a cross-sectional view showing a modified example of the retainer.
  • FIG. 3 is a cross-sectional view showing a configuration of a pressure regulator that is Embodiment 2 of the present invention.
  • FIG. 4 is a cross-sectional view showing a configuration of a fuel supply apparatus that is Embodiment 3 of the present invention.
  • FIG. 5 is a cross-sectional view showing an example of a conventional pressure regulator used in an engine fuel supply system.
  • FIG. 1 is a cross-sectional view showing a configuration of a pressure regulator 101 (pressure control device) that is Embodiment 1 of the present invention.
  • the pressure regulator 101 in FIG. 1 is used, for example, for adjusting the fuel pressure of an automobile fuel supply device (see Example 3).
  • the pressure regulator 101 has a structure in which a ball (valve element) 103, a valve spring (elastic member) 104, and a retainer (adjustment member) 105 made of steel balls are housed in a metal housing 102. Yes.
  • a flow path 106 is formed through the housing 102.
  • a large diameter flow path 107 is formed on the downstream side (upper side in the figure) of the flow path 106, and a small diameter flow path 108 is formed on the upstream side (lower side in the figure).
  • a ball 103 and a valve spring 104 are accommodated in the large-diameter channel 107, and the valve spring 104 is held by a retainer 105.
  • a communication path 109 is formed in the retainer 105 so as to penetrate in the flow path direction.
  • a seal portion 110 is formed at the boundary between the large diameter channel 107 and the small diameter channel 108.
  • the ball 103 is in contact with the seal portion 110 by the urging force of the valve spring 104, and the flow path 106 is closed when the ball 103 is in contact with the seal portion 110.
  • the upstream end of the small diameter channel 108 is a fluid inlet 111, and the downstream end of the large diameter channel 107 is a fluid outlet 112.
  • a ring-shaped retainer (adjustment member) 105 is fixed near the fluid outlet 112.
  • a spring holding portion 113 is recessed on the upstream side (lower end surface) of the retainer 105. The spring holding portion 113 is in contact with the upper end portion of the valve spring 104 serving as a compression coil panel force.
  • the lower end side of the valve spring 104 is in contact with the ball 103, and the ball 103 is normally pressed against the seal portion 110 by the urging force of the knob spring 104.
  • the retainer 105 is inserted into the channel 106 from the fluid outlet 112 and is press-fitted into the inner peripheral surface 106 a of the channel 106.
  • the valve spring 104 is compressed and the urging force is increased.
  • the set height (set length) of the valve spring 104 varies depending on the position of the retainer 105 in the large-diameter flow path 107, so that the valve opening pressure of the ball 103 can be adjusted appropriately. Become.
  • the valve opening pressure can be easily adjusted by setting the position of the retainer 105.
  • the spring component is only one of the valve springs 104, the valve opening pressure can be easily adjusted and its variation is small. Therefore, even in a low flow rate fuel supply apparatus with a flow rate of 4 OLZh or less, if the pressure regulator 101 is used, the fuel pressure regulation becomes good and the pressure gradient with respect to the flow rate change can be reduced.
  • the device structure is simple, the pressure control device can be reduced in size and weight, and the fuel using it The supply device can also be reduced in size and weight.
  • the pressure regulator 101 does not have a rubber member such as a diaphragm in the apparatus, problems such as corrosion resistance of the rubber member due to gasoline, aging deterioration, temperature change, etc. do not occur. In addition, the life of the apparatus is improved and stable fluid pressure control becomes possible.
  • a crimping portion 114 is formed, and the retainer 105 is fixed by crimping.
  • the force squeeze portion 114 is formed by punching the opening edge 112a of the fluid outlet 112 on the inner diameter side at a plurality of locations (for example, four locations equally), and abuts the end surface of the retainer 105 on the fluid outlet 112 side.
  • the retainer 105 is restricted from moving in the axial direction by the force shim 114.
  • the retainer 105 is press-fitted into the inner peripheral surface 106a of the flow path, the retainer 105 is biased upward in the axial direction by the valve spring 104, so that the position of the retainer 105 may shift due to long-term use, and the valve opening pressure may change.
  • the pressure regulator 101 since the retainer 105 is retained by the force shim 114, the plate position is prevented from changing with time and the valve opening pressure is stabilized.
  • a retainer 116 provided with a locking piece 115 as shown in Fig. 2 may be used.
  • the insertion tip is formed with a slope 115a on the front end side and a return 115b on the rear end side.
  • the retainer 105 is inserted into the flow path inner peripheral surface 106a
  • the locking piece 115 comes into contact with the flow channel inner peripheral surface 106a and is crushed.
  • the retainer 116 is fixed in the flow path inner peripheral surface 106a, and at that time, the retainer 116 is prevented from coming off by the barb 115b.
  • FIG. 3 is a cross-sectional view showing a configuration of a pressure regulator 121 (pressure control device) that is Embodiment 2 of the present invention.
  • the pressure regulator 121 in FIG. 3 is also used, for example, for adjusting the fuel pressure of a fuel supply device for automobiles.
  • the same members and portions as those of the pre-regulator 101 of the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the pressure regulator 121 also has a configuration in which a ball 103, a valve spring 104, and a retainer 122 are housed in a metal housing 102.
  • the seal portion 110 is formed on the upper end surface of the retainer 122 that is not in the housing 102.
  • the spring holding portion (elastic member holding portion) 123 is formed at the boundary between the large-diameter channel 107 and the small-diameter channel 108 of the housing 102, which is not a retainer.
  • valve spring 104 is connected to the ball 103 on one end side and a spring holding portion 123 formed in the housing 102 on the other end side. In this manner, the ball 103 is pressed against the seal portion 110 formed on the retainer 122.
  • a small-diameter channel 108 is formed on the downstream side of the channel 106, and a large-diameter channel 107 is formed on the upstream side.
  • the upstream end of the large-diameter channel 107 is a fluid inlet 111, and the downstream end of the small-diameter channel 108 is a fluid outlet 112.
  • a ball 103 and a valve spring 104 are accommodated in the large-diameter channel 107, and the ball 103 is held by a retainer 122.
  • the retainer 122 is inserted into the flow path 106 from the fluid inlet 111, and is here welded to the inner peripheral surface 106a. After the welding, the retainer 122 is prevented from coming off by a caulking portion 114 formed at the fluid inlet 111.
  • the retainer 122 it is possible to use a retainer having a locking piece 115 formed as shown in FIG.
  • valve opening pressure can be easily adjusted by setting the position of the retainer 122, and its variation is small. Further, since there are only spring-like component forces in the pressure regulator 121, the structure of the apparatus is simple, and the apparatus can be made compact and lightweight. Furthermore, since there is no rubber member such as a diaphragm, various problems caused by the rubber member do not occur, the life of the apparatus is improved, and stable fluid pressure control is possible.
  • FIG. 4 is a cross-sectional view showing a configuration of a fuel supply apparatus that is Embodiment 3 of the present invention.
  • the fuel supply device 1 in FIG. 4 is a device for a motorcycle, and the fuel pressure is adjusted by a pressure control device according to an embodiment of the present invention.
  • the fuel supply device 1 is disposed in the fuel tank of the motorcycle and is used for a relatively low flow engine fuel supply system having a fuel flow rate of OLZh or less.
  • a fuel pipe (not shown) is connected to the fuel supply device 1, and fuel is supplied to the fuel injection valve of the engine via the fuel pipe.
  • the fuel supply device 1 has a configuration in which an electric motor 2, a fuel pump (pump unit) 3, and a fuel pressure control unit 4 are integrated and housed in a steel shell case 5. End covers 6 and 7 are secured to both ends of the cylindrical shell case 5.
  • the end cover (housing) 6 is made of synthetic resin and is attached to one end side of the shell case 5.
  • the end cover 6 is provided with a brush holder portion 8 that holds a brush (not shown) of the electric motor 2.
  • the shell case 5 serves as a cover and a brush holder.
  • the end cover 6 further accommodates a check valve 9 and a pressure regulator (pressure control device) 10 constituting the fuel pressure control unit 4.
  • the end cover 7 is formed by aluminum die casting and is attached to the other end of the shell case 5.
  • a fuel inlet 11 is provided at the lower end of the end cover 7!
  • the electric motor 2 is a brushed DC motor.
  • the shell case 5 also serves as a yoke for the electric motor 2, and a plurality of permanent magnets 12 are fixed to the inner peripheral surface thereof.
  • an armature 13 is rotatably arranged inside the permanent magnet 12, an armature 13 is rotatably arranged.
  • Ryoichi Mature 13 includes a core 15 having a plurality of slots 14 extending in the axial direction, and a winding 16 wound around the slots 14.
  • the armature 13 is fixed to the rotary shaft 17 and is rotatably supported between a bearing portion 18 provided on the end cover 6 and a bearing 20 attached to the pump case 19.
  • a commutator 21 is provided on the upper side of the armature 13 in FIG.
  • the commutator 21 is fixed to the rotating shaft 17.
  • the commutator 21 is also in contact with the brush in the radial force.
  • the brush is accommodated in a brush holder portion 8 formed on the end cover 6 and pressed against the commutator 21 by a spring.
  • a flat type (flat type) commutator in which the brush slides in the axial direction can be used.
  • the fuel pressure control unit 4 is provided with a check valve 9 and a pressure regulator 10.
  • the check valve 9 has a configuration in which a ball 22, a return spring 23 and a spring holder 24 are accommodated in a valve chamber 25. Unlike the pressure regulator 10, the check valve 9 does not have a fuel pressure control function and is arranged to prevent fuel backflow from the fuel pipe side to the fuel pump 3 side.
  • the ball 22 is pressed against the seal portion 26 by a return spring 23 made of a conical compression coil spring.
  • the check valve 9 is supplied with fuel whose fuel pressure is increased by the fuel pump 3 from the fuel inlet 27. When the fuel pressure exceeds a predetermined value, the ball 22 moves away from the seal portion 26 against the urging force of the return spring 23 and opens, and the fuel inlet 27 and the valve chamber 25 communicate with each other.
  • a fuel discharge port 28 is formed at the end of the valve chamber 25. Is connected to the fuel pipe.
  • a fuel inlet (fluid inlet) 29 is open.
  • the fuel inlet 29 is connected to the pressure regulator 10.
  • the pressure regulator 10 includes a ball (valve element) 31, a valve spring (elastic member) 32, and a retainer (adjustment member) 33 accommodated in a valve chamber (flow path) 34.
  • a valve spring 32 comprising a conical compression coil spring.
  • the right end side of the valve chamber 34 in the figure is a fuel return port (fluid outlet) 30 that opens into the fuel tank.
  • a pressure control device having a simple configuration is used as the pressure regulator 10.
  • the retainer 33 is arranged to be movable along the flow path direction by a screw mechanism.
  • a male thread portion 36 is formed on the outer periphery of the retainer 33 and is screwed with a female thread portion 37 formed on the inner periphery of the valve chamber 34.
  • the retainer 33 is arranged so as to be movable in the left-right direction in the figure by means of both screw portions 36 and 37 in the valve chamber 34.
  • the valve spring 32 is compressed to increase its urging force, and the valve opening pressure is increased.
  • the noble spring 32 is extended to reduce its urging force and lower the valve opening pressure. That is, the valve opening pressure can be adjusted only by the movement of the retainer 33.
  • the valve opening pressure can be adjusted as appropriate by adjusting the set height (set length) of the valve spring 32, which is the only spring component. At that time, since there is only one spring part 32, the valve opening pressure is easily adjusted and its variation is small. Therefore, even in a low flow rate fuel supply device with a discharge flow rate of 40LZh or less, the fuel pressure regulation becomes good and the pressure gradient with respect to the flow rate change can be reduced.
  • the structure since there is only one spring component in the pressure regulator 10, the structure is simple, the pressure control device can be reduced in size and weight, and the fuel supply device 1 can be reduced in size and weight. Is also planned.
  • the pressure regulator 10 does not have a rubber member such as a diaphragm in the apparatus, so that problems such as corrosion resistance of the rubber member to gasoline, aging deterioration, and temperature change do not occur.
  • the life of the apparatus is improved and the stability of fuel pressure control is improved.
  • the valve opening pressure of the pressure regulator 10 can be easily adjusted in a modular state as the fuel supply device 1 even if the pump flow rate and the valve opening pressure of the check valve 9 vary. Therefore, it is possible to suppress variations in the performance of the entire fuel supply device 1.
  • the pressure regulator 10 may be configured so that the retainer 33 is fixed by being press-fitted or welded as in the first and second embodiments.
  • the retainer 33 may be caulked and fixed as in the above-described embodiment.
  • the fuel pump 3 is a non-volume regenerative pump, and is formed of a pump case 19 and an impeller 38. At the lower end side of the pump case 19, a cylindrical impeller accommodating portion 39 is sunk. An impeller 38 connected to the rotary shaft 17 of the electric motor 2 is disposed in the impeller accommodating portion 39.
  • the rotary shaft 17 is formed with a D-cut portion 17a, and the impeller 38 is attached to the D-cut portion 17a and rotates integrally with the rotary shaft 17.
  • a large number of pump chambers 41 penetrating in the axial direction are provided along the circumferential direction.
  • the end cover 7 is provided with a fuel inlet 11, and a communication hole 42 is provided on the upper end side of the impeller accommodating portion 39.
  • the communication hole 42 is open facing the shell case 5.
  • the fuel supply apparatus 1 having such a configuration functions as follows. First, when the electric motor 2 is driven and the fuel pump 3 is operated, the fuel in the fuel tank is sucked from the fuel inlet 11. At this time, in the fuel pump 3, the impeller 38 rotates together with the rotating shaft 17, and fuel is sucked into the pump chamber 41 from the fuel suction port 11 as the impeller 38 rotates. The fuel sent into the pump chamber 41 is sent to the communication hole 42 by the rotation of the impeller 38 and supplied into the shell case 5.
  • Fuel is supplied into the shell case 5 by the fuel pump 3, and the check valve 9 is opened when the pressure in the shell case 5 exceeds a predetermined pressure.
  • the fuel in the shell case 5 flows into the valve chamber 25 and is sent from the fuel discharge port 28 to the fuel pipe.
  • the fuel pressure is When the fuel pressure rises and the fuel pressure in the nozzle chamber 25 exceeds a predetermined value, the pressure regulator 10 is opened.
  • the pressure regulator 10 By opening the pressure regulator 10, the fuel in the valve chamber 25 is returned to the fuel tank from the fuel return port 30, and the fuel pressure in the valve chamber 25 is also reduced accordingly. Thereby, the pressure of the fuel supplied to the fuel pipe side is appropriately adjusted, and the fuel whose fuel pressure is adjusted is sent from the fuel discharge port 28 to the fuel pipe.
  • the retainer 33 is movably disposed in the valve chamber 34 by the both screw portions 36 and 37, but the moving / fixing means of the retainer 33 is not limited to this. That is, as in Examples 1 and 2, the retainer 33 is press-fitted into the valve chamber 34, welded, or caulked and fixed.
  • the pump flow rate and check valve are set. It may be set as appropriate in consideration of the valve opening pressure of 9.
  • the pressure regulator 10 may adopt the configuration of the pressure regulator 121 of the 1S embodiment 2 adopting the configuration of the pressure regulator 101 of the first embodiment.
  • a block module such as the pressure regulator 121 is separately formed and assembled to the fuel supply device 1.
  • the spring holder 24 of the check valve 9 may be configured to be movable up and down in the figure by forming a threaded portion.
  • the example in which the pressure control device according to the present invention is applied to an engine fuel supply system having a flow rate of 40 LZh or less has been shown.
  • the flow rate of the fluid supply system to be applied is particularly limited.
  • the pressure regulator 10 is suitable for a system with a relatively low flow rate because it has a simple configuration with only one spring component.
  • an example in which the pressure control device according to the present invention is applied to a fuel supply device for a motorcycle has been shown.
  • the application is not limited to this, and various vehicles such as a four-wheeled vehicle are used. It can also be used for other fuel supply devices.
  • the fluid to be regulated is not limited to engine fuels such as gasoline and light oil, but can be applied to water, air, hydraulic circuit hydraulic oil, and the like.

Abstract

A pressure control device enabling the easy adjustment of a valve opening pressure and having a small pressure gradient when a flow is small. A pressure regulator (10) comprises a ball (31), a seal part (35) closing a flow passage when the ball (31) abuts thereon, a valve spring (32) abutting on the ball (31) at its one end and energizing the ball (31) toward the seal part (35), and a retainer (33) allowing the other end of the valve spring (32) to abut thereon and capable of changing an energization force by the valve spring (32). The retainer (33) is disposed in a valve chamber (34) movably along the direction of the flow passage. The energization force of the valve spring (32) can be properly adjusted by moving the retainer (33) to change the set height of the valve spring (32). Since a part with spring property in the device is only the valve spring (32), the valve opening pressure can be easily adjusted and its dispersion can be suppressed.

Description

明 細 書  Specification
圧力制御装置及びそれを用いた燃料供給装置  Pressure control device and fuel supply device using the same
技術分野  Technical field
[0001] 本発明は、流体圧力の調整を行う圧力制御装置に関し、特に、エンジンの燃料供 給系に使用される圧力制御装置及びそれを用いた燃料供給装置に関する。  The present invention relates to a pressure control device that adjusts fluid pressure, and more particularly, to a pressure control device used in a fuel supply system of an engine and a fuel supply device using the same.
背景技術  Background art
[0002] 自動車の燃料供給系や油圧回路などの流体送給システムでは、流体の圧力が過 大になるのを防止するため種々の圧力調整機構が用いられている。このような圧力 調整機構としては、ダイヤフラムを用いたプレツシャレギユレータ (圧力制御装置)が 知られており、例えば、国際公開 W096Z23969号公報には、エンジン燃料供給系に 使用される圧力調整弁が示されている。そこでは、燃料タンクから燃料ポンプによつ て汲み上げられた燃料は、圧力調整弁にて圧力を調整されて燃料噴射装置に供給 され、その際余剰となった燃料は圧力調整弁から燃料タンクに戻される。  [0002] In a fluid supply system such as a fuel supply system or a hydraulic circuit of an automobile, various pressure adjustment mechanisms are used to prevent the fluid pressure from becoming excessive. As such a pressure adjustment mechanism, a pressure regulator (pressure control device) using a diaphragm is known. For example, International Publication W096Z23969 discloses pressure adjustment used for an engine fuel supply system. A valve is shown. There, the fuel pumped up from the fuel tank by the fuel pump is adjusted in pressure by the pressure regulating valve and supplied to the fuel injection device. The surplus fuel is supplied from the pressure regulating valve to the fuel tank. Returned.
[0003] 図 5は、このようなエンジンの燃料供給系に使用される従来のプレツシャレギユレ一 タの一例を示す断面図である。図 5に示すように、プレツシャレギユレータ 51は、ケー ス 52とカバー 53をカシメ結合させたノヽウジング内に、ダイヤフラム 54にて支持された ァーマチュア 55を配置した構成となっている。プレツシャレギユレータ 51では、ケース 52に燃料流入口 56、カバー 53に燃料流出口 57が設けられている。ァーマチュア 5 5は、弁体 58とスプリングホルダ 59と力らなり、弁体 58とスプリングホルダ 59との間に はダイヤフラム 54の内周部が挟持されている。ダイヤフラム 54の外周部は、ケース 5 2とカバー 53との間に挟持されており、これによりァーマチュア 55はダイヤフラム 54 によってハウジング内に上下移動可能に支持される。一方、スプリングホルダ 59と力 バー 53の上端内周部との間には、ァーマチュア 55を図中下方向に付勢するスプリン グ 60が配置されている。  FIG. 5 is a cross-sectional view showing an example of a conventional pressure regulator used in the fuel supply system of such an engine. As shown in FIG. 5, the pressure regulator 51 has a configuration in which an armature 55 supported by a diaphragm 54 is disposed in a nosing in which a case 52 and a cover 53 are caulked. In the pressure regulator 51, a fuel inlet 56 is provided in the case 52, and a fuel outlet 57 is provided in the cover 53. The armature 55 is powered by the valve body 58 and the spring holder 59, and the inner peripheral portion of the diaphragm 54 is sandwiched between the valve body 58 and the spring holder 59. The outer peripheral portion of the diaphragm 54 is sandwiched between the case 52 and the cover 53, whereby the armature 55 is supported by the diaphragm 54 so as to be vertically movable in the housing. On the other hand, a spring 60 that urges the armature 55 downward in the figure is arranged between the spring holder 59 and the inner periphery of the upper end of the force bar 53.
[0004] 弁体 58はさらに、弁本体 61とバルブスプリング 62、ボール 63、ボールホルダプレ ート 64とから構成されている。弁本体 61の内部には油路 65が形成されており、油路 65には弁孔部 66とテーパ部 67が設けられている。弁孔部 66にはバルブスプリング 6 2が収容され、テーパ部 67の内側には球形のボール 63が配置される。ボール 63は バルブスプリング 62によって図中下方に向けて付勢されている。ケース 52の底面 52 aには、ァーマチュア 55に対向するように弁座部 68が突設されている。了一マチュア 55は、スプリング 60の押圧力により、弁座部 68の上面に押接され、ボール 63もまた 弁座部 68に当接する。これにより、ボール 63は、スプリング 68の押圧力に抗して押し 上げられてテーパ部 67に当接し、油路 65が遮断されて閉弁状態となる。 [0004] The valve body 58 further includes a valve body 61, a valve spring 62, a ball 63, and a ball holder plate 64. An oil passage 65 is formed in the valve body 61, and a valve hole 66 and a taper portion 67 are provided in the oil passage 65. Valve spring 66 has valve spring 6 2 is accommodated, and a spherical ball 63 is disposed inside the tapered portion 67. The ball 63 is urged downward by a valve spring 62 in the figure. A valve seat 68 projects from the bottom surface 52 a of the case 52 so as to face the armature 55. The finished mature 55 is pressed against the upper surface of the valve seat 68 by the pressing force of the spring 60, and the ball 63 also contacts the valve seat 68. As a result, the ball 63 is pushed up against the pressing force of the spring 68 and comes into contact with the taper portion 67, the oil passage 65 is shut off, and the valve is closed.
[0005] 図 5の状態にて燃料流入口 56から燃料が流入し、燃圧が所定の調整圧を超えると 、ァーマチュア 55は燃圧を受けて上方に移動する。すると、ボール 63がスプリング 6 8の押圧力によってテーパ部 67から離脱し、油路 65が開放されて開弁状態となる。 これにより、燃料流入口 56と燃料流出口 57が油路 65を介して連通し、余分な燃料 が燃料タンクにリターンされ、燃料の圧力が調整される。 When the fuel flows in from the fuel inlet 56 in the state of FIG. 5 and the fuel pressure exceeds a predetermined adjustment pressure, the armature 55 receives the fuel pressure and moves upward. Then, the ball 63 is detached from the taper portion 67 by the pressing force of the spring 68, and the oil passage 65 is opened to open the valve. As a result, the fuel inlet 56 and the fuel outlet 57 communicate with each other via the oil passage 65, and excess fuel is returned to the fuel tank, so that the fuel pressure is adjusted.
特許文献 1:国際公開 W096Z23969号公報  Patent Document 1: International Publication W096Z23969
特許文献 2:国際公開 WO03Z58364号公報  Patent Document 2: International Publication WO03Z58364
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] ところ力 図 5のプレツシャレギユレータ 51のように、コイルばねとダイヤフラムを構成 部品に持つ圧力制御装置では、両者がそれぞれに「ばね性 (弾性的機能)」を有して いるため、圧力制御機構が複合ばね構造となる。このような複合ばね構造では、コィ ルばねとダイヤフラムの付勢力が複雑に関連するため、開弁圧力の設定が非常に難 しぐこのようなタイプの圧力制御装置では、実際にはある所定流量を流した時に開 弁する圧力を開弁圧力として設定している。従って、図 5のような構造の圧力制御装 置では、低流量 (例えば、 40LZh以下)のシステムに当該装置を適用すると、流量 変化の絶対量が小さいため、流量変化に対する圧力勾配が大きくなつてしまうという 問題があった。 [0006] However, as in the pressure regulator 51 in FIG. 5, in a pressure control device having a coil spring and a diaphragm as constituent parts, both have “spring property (elastic function)”. Therefore, the pressure control mechanism has a composite spring structure. In such a composite spring structure, the biasing force of the coil spring and the diaphragm is related in a complicated manner, so that it is very difficult to set the valve opening pressure. The valve opening pressure is set as the valve opening pressure. Therefore, in the pressure control device having the structure as shown in FIG. 5, when the device is applied to a low flow rate (for example, 40 LZh or less) system, since the absolute amount of the flow rate change is small, the pressure gradient with respect to the flow rate change becomes large. There was a problem of end.
[0007] また、プレツシャレギユレータ 51のようなダイヤフラム式の圧力制御装置では、燃料 流路にゴム部材 (ダイヤフラム 54)が使用されているため、ガソリンに対する耐食性や ゴム部材の経年劣化等の問題があり、装置寿命の点で改善が求められていた。さら に、ゴム部材の温度 (冷熱)変化により、弁体動作にバラツキが生じる場合があり、燃 圧を安定的に制御できな 、と 、う問題もあった。 [0007] In addition, in the diaphragm pressure control device such as the pressure regulator 51, a rubber member (diaphragm 54) is used in the fuel flow path, so that corrosion resistance to gasoline, aging deterioration of the rubber member, etc. Therefore, there has been a demand for improvement in terms of device life. In addition, the valve body operation may vary due to changes in the temperature (cold heat) of the rubber member, causing fuel to burn. There was also a problem that the pressure could not be controlled stably.
[0008] さらに、このようなタイプの圧力制御装置では、糸且付け後にカバー 53を潰すことによ りスプリング 60の荷重を上げている。この際、カバー圧潰による荷重調整幅が基準位 置に対し約 ± lmm程度しかないため、調整代が狭ぐ最適な荷重に調整できないお それがあるという問題があった。また、設定荷重までカバー 53を潰しても、治具を外し た瞬間にスプリングバックにより必ず設定燃圧が下がるため、それを見込してカバー を圧潰する必要があり、調整が難しいと共に、荷重のバラツキも大きくなる。加えて、 カバー 53の強度が低いと、経時変化によりスプリング荷重が変化する可能性があり、 性能安定性という面でも問題があった。  [0008] Further, in such a type of pressure control device, the load of the spring 60 is increased by crushing the cover 53 after the thread is attached. At this time, since the load adjustment width due to the cover crushing is only about ± lmm with respect to the reference position, there is a problem that the adjustment load may not be adjusted to an optimum load with a narrow adjustment allowance. In addition, even if the cover 53 is crushed to the set load, the set fuel pressure is always reduced by the springback as soon as the jig is removed.Therefore, it is necessary to crush the cover in anticipation of this, making adjustment difficult and load variation. Also grows. In addition, if the strength of the cover 53 is low, there is a possibility that the spring load may change due to changes over time, and there is also a problem in terms of performance stability.
[0009] 本発明の目的は、開弁圧調整が容易かつ正確で低流量時の圧力勾配が小さぐし 力も、ゴム部材に起因する諸問題が発生しない圧力制御装置を提供することにある。 課題を解決するための手段  [0009] An object of the present invention is to provide a pressure control device in which valve opening pressure adjustment is easy and accurate, and a pressure gradient at a low flow rate is small and various problems caused by a rubber member do not occur. Means for solving the problem
[0010] 本発明の圧力制御装置は、流体流入口と前記流体流入口と流路を介して連通され た流体流出口とを備えるハウジングと、前記流路内に配置された弁体と、前記弁体が 当接することにより前記流路が閉鎖されるシール部と、前記弁体に当接し、前記弁体 を前記シール部に向けて付勢する弾性部材と、前記ハウジング内に前記流路方向 に沿って移動可能に配置され、前記流路方向への移動により、前記弾性部材の付 勢力を変更可能な調整部材とを有することを特徴とする。 [0010] A pressure control device according to the present invention includes a housing including a fluid inlet, a fluid outlet connected to the fluid inlet through a flow path, a valve element disposed in the flow path, A seal portion that closes the flow path when the valve body abuts, an elastic member that abuts the valve body and biases the valve body toward the seal portion, and the flow path direction in the housing. And an adjustment member that can change the biasing force of the elastic member by moving in the flow path direction.
[0011] 本発明にあっては、 1個の弾性部材によって流路の閉鎖 ·開放を制御でき、開弁圧 力の設定が難しい複合ばね構造が不要なため、開弁圧力の調整が容易であり、その ノラツキも小さく抑えられる。このため、低流量の燃料供給装置においても、燃料調 圧性が良好となり、流量変化に対する圧力勾配を小さくできる。また、ばね性部品が [0011] In the present invention, the closing / opening of the flow path can be controlled by one elastic member, and a complex spring structure in which the valve opening pressure is difficult to set is unnecessary, so that the valve opening pressure can be easily adjusted. Yes, the noise can be kept small. For this reason, even in a low flow rate fuel supply apparatus, the fuel pressure regulation becomes good and the pressure gradient with respect to the flow rate change can be reduced. Also, spring parts
1つしか存在しないため、構造が簡単であり、圧力制御装置の小型軽量化が図られ る。さらに、ゴム部材が装置内に存在しないため、ゴム部材のガソリンに対する耐食性 や経年劣化、温度変化等の問題が発生せず、装置寿命が改善されると共に、燃圧 制御の安定ィ匕が図られる。 Since there is only one, the structure is simple and the pressure control device can be reduced in size and weight. Furthermore, since there is no rubber member in the apparatus, problems such as corrosion resistance of the rubber member to gasoline, aging deterioration, temperature change, etc. do not occur, the apparatus life is improved, and fuel pressure control is stabilized.
[0012] 前記圧力制御装置にお!/、て、前記弾性部材として圧縮コイルばねを使用し、前記 調整部材を前記流路方向に移動させることによって前記圧縮コイルばねの設定長を 変更するようにしても良い。 [0012] In the pressure control apparatus, a compression coil spring is used as the elastic member, and the set length of the compression coil spring is increased by moving the adjustment member in the flow path direction. You may make it change.
[0013] 前記圧力制御装置において、前記調整部材を前記ハウジング内に圧入すると共に 、前記調整部材の前記流体流出口側の端部を前記ハウジングにカシメ固定しても良 い。また、前記圧力制御装置において、前記調整部材を前記ハウジング内に溶着す ると共に、前記調整部材の前記流体流出口側の端部を前記ハウジングにカシメ固定 しても良い。さらに、前記圧力制御装置において、前記調整部材の外周部に、前記 ハウジングの内周面に当接し、該調整部材の前記流体流出口側への移動を規制す る係止片を設けても良い。  [0013] In the pressure control device, the adjustment member may be press-fitted into the housing, and an end of the adjustment member on the fluid outlet side may be caulked and fixed to the housing. Further, in the pressure control device, the adjustment member may be welded in the housing, and an end portion of the adjustment member on the fluid outlet side may be caulked and fixed to the housing. Further, in the pressure control device, a locking piece that abuts on the inner peripheral surface of the housing and restricts the movement of the adjusting member toward the fluid outlet may be provided on the outer peripheral portion of the adjusting member. .
[0014] 前記圧力制御装置において、前記ハウジング内に前記シール部を形成し、前記弁 体を、一端側が該弁体に当接し、他端側が前記調整部材に当接する前記弾性部材 によって前記シール部に押接するようにしても良い。また、前記圧力制御装置におい て、前記調整部材に前記シール部を形成し、前記弁体を、一端側が該弁体に当接し 、他端側が前記ハウジング内に形成された弾性部材保持部に当接する前記弾性部 材によって前記シール部に押接するようにしても良い。  [0014] In the pressure control device, the seal portion is formed in the housing, and the seal member is formed by the elastic member having one end side in contact with the valve body and the other end side in contact with the adjustment member. You may make it press-contact. In the pressure control device, the sealing member is formed on the adjustment member, and the valve body is abutted against the valve body at one end side and the elastic member holding section formed in the housing at the other end side. You may make it press-contact the said seal | sticker part with the said elastic member to contact | connect.
[0015] カロえて、前記圧力制御装置を吐出流量力 OLZh以下の燃料ポンプの下流側に 設置しても良い。  [0015] In addition, the pressure control device may be installed downstream of the fuel pump having a discharge flow rate OLZh or less.
[0016] 一方、本発明の燃料供給装置は、燃料タンクに取り付けられ、電動モータと、前記 電動モータによって駆動されるポンプ部と、前記ポンプ部より吐出される燃料の圧力 を調整する圧力制御装置を備えてなる燃料供給装置であって、前記圧力制御装置 は、流体流入口と前記流体流入口と流路を介して連通された流体流出口とを備える ハウジングと、前記流路内に配置された弁体と、前記弁体が当接することにより前記 流路が閉鎖されるシール部と、前記弁体に当接し、前記弁体を前記シール部に向け て付勢する弾性部材と、前記ハウジング内に前記流路方向に沿って移動可能に配 置され、前記流路方向への移動により、前記弾性部材の付勢力を変更可能な調整 部材とを有することを特徴とする。  On the other hand, the fuel supply device of the present invention is attached to a fuel tank, and includes an electric motor, a pump unit driven by the electric motor, and a pressure control device that adjusts the pressure of fuel discharged from the pump unit. A fuel supply apparatus comprising: a housing including a fluid inlet, a fluid outlet communicated with the fluid inlet via a flow path, and disposed in the flow path. A valve body, a seal portion that closes the flow path when the valve body abuts, an elastic member that abuts the valve body and biases the valve body toward the seal portion, and the housing And an adjustment member that is movably disposed along the flow path direction and that can change the urging force of the elastic member by movement in the flow path direction.
[0017] 本発明にあっては、燃料タンクに取り付けられ、電動モータとポンプ部及び圧力制 御装置とを備えてなる燃料供給装置に、 1個の弾性部材によって流路の閉鎖'開放 を制御でき、開弁圧力の設定が難しい複合ばね構造が不要な圧力制御装置を使用 する。このため、圧力制御装置の開弁圧力の調整が容易であり、そのバラツキも小さ く抑えられ、低流量の燃料供給装置においても、燃料調圧性が良好となり、流量変 化に対する圧力勾配を小さくできる。また、圧力制御装置の構造が簡単で小型軽量 なため、燃料供給装置の小型軽量化が図られる。さらに、ポンプ流量にバラツキがあ つても、燃料供給装置として各種部品を組み付けた状態で容易に圧力制御装置の 開弁圧力を調整でき、燃料供給装置全体の性能のバラツキも抑えられる。 In the present invention, the closing and opening of the flow path is controlled by a single elastic member in a fuel supply device that is attached to a fuel tank and includes an electric motor, a pump unit, and a pressure control device. Uses a pressure control device that does not require a complex spring structure that is difficult to set the valve opening pressure To do. For this reason, it is easy to adjust the valve opening pressure of the pressure control device, and the variation thereof is suppressed to be small, and even in a low flow rate fuel supply device, fuel pressure regulation is good and the pressure gradient with respect to flow rate change can be reduced. . In addition, since the structure of the pressure control device is simple and small and light, the fuel supply device can be reduced in size and weight. Furthermore, even if there are variations in the pump flow rate, the valve opening pressure of the pressure control device can be easily adjusted with various parts assembled as a fuel supply device, and variations in the performance of the entire fuel supply device can be suppressed.
発明の効果  The invention's effect
[0018] 本発明の圧力制御装置によれば、ハウジング内の流路に配置された弁体と、弁体 力 S当接することにより流路が閉鎖されるシール部と、弁体に当接し該弁体をシール部 に向けて付勢する弾性部材と、ハウジング内に流路方向に沿って移動可能に配置さ れ、流路方向への移動により、弾性部材の付勢力を変更可能な調整部材とを設けた ので、単一の弾性部材によって流路の閉鎖'開放を制御でき、開弁圧力の設定が難 しい複合ばね構造が不要となる。また、弾性部材の付勢力も調整可能であることから 、開弁圧力の調整が容易であり、そのバラツキも小さく抑えることが可能となる。このた め、低流量の燃料供給装置においても、燃料調圧性が良好となり、流量変化に対す る圧力勾配を小さくできる。さらに、ばね性部品が装置内に 1つしか存在しないため、 構造が簡単であり、圧力制御装置の小型軽量ィ匕を図ることも可能となる。カロえて、装 置内にゴム部材が存在しな 、ため、ゴム部材のガソリンに対する耐食性や経年劣化 、温度変化等の問題が発生せず、装置寿命が改善されると共に、燃圧の安定制御が 可能となる。  [0018] According to the pressure control device of the present invention, the valve body disposed in the flow path in the housing, the seal portion in which the flow path is closed by contacting the valve body force S, and the valve body abuts against the valve body. An elastic member that urges the valve body toward the seal portion, and an adjustment member that is disposed in the housing so as to be movable along the flow path direction and can change the urging force of the elastic member by moving in the flow path direction. Therefore, the closing and opening of the flow path can be controlled by a single elastic member, and a complex spring structure that makes it difficult to set the valve opening pressure becomes unnecessary. Further, since the biasing force of the elastic member can be adjusted, the valve opening pressure can be easily adjusted, and the variation can be suppressed to a small value. For this reason, even in a low flow rate fuel supply device, the fuel pressure regulation is good, and the pressure gradient with respect to the flow rate change can be reduced. Furthermore, since there is only one spring component in the device, the structure is simple, and the pressure control device can be made compact and lightweight. Since there is no rubber member in the device, there is no problem with the rubber member's corrosion resistance to gasoline, aging deterioration, temperature change, etc., the life of the device is improved, and stable control of fuel pressure is possible It becomes.
[0019] 本発明の燃料供給装置によれば、燃料タンクに取り付けられ、電動モータとポンプ 部及び圧力制御装置とを備えてなる燃料供給装置にて、圧力制御装置として、ハウ ジング内の流路に配置された弁体と、弁体が当接することにより流路が閉鎖されるシ ール部と、弁体に当接し該弁体をシール部に向けて付勢する弾性部材と、ハウジン グ内に流路方向に沿って移動可能に配置され、流路方向への移動により、弾性部材 の付勢力を変更可能な調整部材とを有するものを使用したので、圧力制御装置の流 路の閉鎖'開放を単一の弾性部材によって制御でき、圧力制御装置内に開弁圧力 の設定が難 、複合ばね構造が不要となる。 [0020] また、ここで使用される圧力制御装置では、弾性部材の付勢力も調整可能であるこ と力 、開弁圧力の調整が容易であり、そのバラツキも小さく抑えることが可能となる。 このため、低流量の燃料供給装置においても、燃料調圧性が良好となり、流量変化 に対する圧力勾配を小さくすることが可能となる。さらに、ばね性部品が圧力制御装 置内に 1つしか存在しないため、構造が簡単であり、圧力制御装置の小型軽量化が 図られ、燃料供給装置の小型軽量ィ匕が図られる。カロえて、ポンプ流量にバラツキが あっても、燃料供給装置として各種部品を組み付けた状態で容易に圧力制御装置の 開弁圧力を調整できるので、燃料供給装置全体の性能のバラツキも抑えられる。また 、装置内にゴム部材が存在しないため、ゴム部材のガソリンに対する耐食性や経年 劣化、温度変化等の問題が発生せず、装置寿命が改善されると共に、燃圧の安定 制御が可能となる。 [0019] According to the fuel supply device of the present invention, a fuel supply device that is attached to a fuel tank and includes an electric motor, a pump unit, and a pressure control device. A valve body disposed on the sealing body, a seal portion that closes the flow path when the valve body abuts, an elastic member that abuts the valve body and biases the valve body toward the seal portion, and a housing. The pressure control device's flow path is closed because it has an adjustment member that can be moved along the flow path direction and that can change the biasing force of the elastic member by moving in the flow path direction. 'Opening can be controlled by a single elastic member, and it is difficult to set the valve opening pressure in the pressure control device, eliminating the need for a complex spring structure. [0020] In addition, in the pressure control device used here, the biasing force of the elastic member can be adjusted, and the opening valve pressure can be easily adjusted, and the variation can be suppressed to be small. For this reason, even in a low flow rate fuel supply apparatus, the fuel pressure regulation becomes good and the pressure gradient with respect to the flow rate change can be reduced. Furthermore, since there is only one spring component in the pressure control device, the structure is simple, the pressure control device can be reduced in size and weight, and the fuel supply device can be reduced in size and weight. Even if there is a variation in the pump flow rate, the valve opening pressure of the pressure control device can be easily adjusted with various parts assembled as a fuel supply device, so that variations in the performance of the entire fuel supply device can be suppressed. In addition, since there is no rubber member in the apparatus, problems such as corrosion resistance of the rubber member to gasoline, aging deterioration, temperature change, etc. do not occur, the apparatus life is improved, and stable control of the fuel pressure becomes possible.
図面の簡単な説明  Brief Description of Drawings
[0021] [図 1]本発明の実施例 1であるプレツシャレギユレータの構成を示す断面図である。  FIG. 1 is a cross-sectional view showing a configuration of a pressure regulator that is Embodiment 1 of the present invention.
[図 2]リテーナの変形例を示す断面図である。  FIG. 2 is a cross-sectional view showing a modified example of the retainer.
[図 3]本発明の実施例 2であるプレツシャレギユレータの構成を示す断面図である。  FIG. 3 is a cross-sectional view showing a configuration of a pressure regulator that is Embodiment 2 of the present invention.
[図 4]本発明の実施例 3である燃料供給装置の構成を示す断面図である。  FIG. 4 is a cross-sectional view showing a configuration of a fuel supply apparatus that is Embodiment 3 of the present invention.
[図 5]エンジンの燃料供給系に使用される従来のプレツシャレギユレータの一例を示 す断面図である。  FIG. 5 is a cross-sectional view showing an example of a conventional pressure regulator used in an engine fuel supply system.
符号の説明  Explanation of symbols
1 燃料供給装置 2 電動モータ  1 Fuel supply device 2 Electric motor
3 燃料ポンプ 4 燃圧制御部  3 Fuel pump 4 Fuel pressure control unit
5 シェノレケース 6 エンドカノく一  5 Shenore Case 6 End Kano Kuichi
7 エンドカノく一 8 ブラシホルダ部  7 End Kano Kuichi 8 Brush holder
9 チェックノ ノレブ 10 プレツシャレギユレータ  9 Checkno Noreb 10 Preticular Regulator
11 燃料吸入口 12 永久磁石  11 Fuel inlet 12 Permanent magnet
13 ァーマチュア 14 スロット  13 Armature 14 Slot
15 コア 16 卷線  15 core 16 shoreline
17 回転軸 17a Dカット部 軸受部 19 ポンプケース 軸受 21 コンミテータ ボール 23 リターンスプリング スプリングホルダ 25 ノ ノレブ室 シーノレ部 27 燃料流入口 燃料吐出口 29 燃料導入口 燃料リターン口 31 ボール ノ ルブスプリング 33 リテーナ バノレブ室 35 シーノレ部 雄ねじ部 37 雌ねじ部 インペラ 39 インペラ収容部 ポンプ室 42 連通孔 17 Rotating shaft 17a D cut part Bearing part 19 Pump case Bearing 21 Commutator ball 23 Return spring Spring holder 25 Nore chamber Chamber inlet 27 Fuel inlet Fuel outlet 29 Fuel inlet Fuel return port 31 Ball Nove spring 33 Retainer Bano rev chamber 35 Scene part Male thread part 37 Female thread Section Impeller 39 Impeller receiving section Pump chamber 42 Communication hole
プレツシャレギユレ一 -タ 52 ケースa 底面 53 カノく一  Pret salle guille -t 52 case a bottom 53
ダイヤフラム 55 ァーマチュア 燃料流入口 57 燃料流出口 弁体 59 スプリングホルダ スプリング 61 弁本体  Diaphragm 55 Armature Fuel inlet 57 Fuel outlet Valve body 59 Spring holder Spring 61 Valve body
ノ ルブスプリング 63 ボール ホ一ノレホノレダブレー十 65 油路 弁孔部 67 テーパ部 スプリング 68 弁座部  Knob spring 63 Ball Honor Honore doubling + 65 Oil passage Valve hole 67 Taper part Spring 68 Valve seat part
プレツシャレギユレ、 —タ 102 ハウジング ボール 104 バルブスプリング リテーナ 106 流路 Pressure gauge, housing 102 housing ball 104 valve spring retainer 106 flow path
a 内周面 107 大径流路 a Inner peripheral surface 107 Large diameter flow path
小径流路 10G 1 連通路 シーノレ部 111 流体流入口 112 流体流出口 112a 開口縁 Small-diameter channel 10G 1 communication path Scene section 111 Fluid inlet 112 Fluid outlet 112a Open edge
113 スプリング保持部 114 力シメ部  113 Spring holding part 114 Force staking part
115 係止片 115a 斜面部  115 Locking piece 115a Slope
115b 返し 116 リテーナ  115b Return 116 Retainer
121 プレツシャレギユレータ 122 リテーナ  121 pressure regulator 122 retainer
123 スプリング保持部  123 Spring holder
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0023] 以下、本発明の実施例を図面に基づいて詳細に説明する。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
実施例 1  Example 1
[0024] 図 1は本発明の実施例 1であるプレツシャレギユレータ 101 (圧力制御装置)の構成 を示す断面図である。図 1のプレツシャレギユレータ 101は、例えば、自動車用燃料供 給装置の燃圧調整に使用される(実施例 3参照)。プレツシャレギユレータ 101は、金 属製のハウジング 102内に、鋼球力 なるボール(弁体) 103とバルブスプリング(弾性 部材) 104及びリテーナ (調整部材) 105を収容した構成となっている。ハウジング 102 内には流路 106が貫通形成されており、流路 106の下流側(図中上方側)には大径流 路 107、上流側(図中下方側)には小径流路 108が形成されている。大径流路 107内 にはボール 103とバルブスプリング 104が収容されており、バルブスプリング 104はリテ ーナ 105にて保持されている。リテーナ 105内には連通路 109が流路方向に貫通形成 されている。  FIG. 1 is a cross-sectional view showing a configuration of a pressure regulator 101 (pressure control device) that is Embodiment 1 of the present invention. The pressure regulator 101 in FIG. 1 is used, for example, for adjusting the fuel pressure of an automobile fuel supply device (see Example 3). The pressure regulator 101 has a structure in which a ball (valve element) 103, a valve spring (elastic member) 104, and a retainer (adjustment member) 105 made of steel balls are housed in a metal housing 102. Yes. A flow path 106 is formed through the housing 102. A large diameter flow path 107 is formed on the downstream side (upper side in the figure) of the flow path 106, and a small diameter flow path 108 is formed on the upstream side (lower side in the figure). Has been. A ball 103 and a valve spring 104 are accommodated in the large-diameter channel 107, and the valve spring 104 is held by a retainer 105. A communication path 109 is formed in the retainer 105 so as to penetrate in the flow path direction.
[0025] 大径流路 107と小径流路 108の境界部にはシール部 110が形成されている。シール 部 110にはバルブスプリング 104の付勢力によってボール 103が当接しており、ボール 103がシール部 110に当接することにより流路 106が閉鎖される。小径流路 108の上流 側端部は流体流入口 111、大径流路 107の下流側端部は流体流出口 112となってい る。流体流出口 112の近傍には、リング状のリテーナ (調整部材) 105が固定される。リ テーナ 105の上流側(下端面)には、スプリング保持部 113が凹設されている。スプリン グ保持部 113には、圧縮コイルパネ力 なるバルブスプリング 104の上端部が当接して いる。バルブスプリング 104の下端側はボール 103に当接しており、ボール 103は、ノ ルブスプリング 104の付勢力によって、通常時はシール部 110に押接されている。 [0026] リテーナ 105は、流体流出口 112から流路 106内に挿入され、流路 106の内周面 106a に圧入される。この際、リテーナ 105を流路 106内の図中下方向に押し込むと、バルブ スプリング 104が圧縮され付勢力が増大する。付勢力増大に伴い、ボール 103がより 強くシール部 110に押接され、開弁圧力が高くなる。すなわち、リテーナ 105を大径流 路 107のどの位置まで圧入するかによって、バルブスプリング 104のセット高さ(設定長 )が変化し、これにより、ボール 103の開弁圧力を適宜調整することが可能となる。 A seal portion 110 is formed at the boundary between the large diameter channel 107 and the small diameter channel 108. The ball 103 is in contact with the seal portion 110 by the urging force of the valve spring 104, and the flow path 106 is closed when the ball 103 is in contact with the seal portion 110. The upstream end of the small diameter channel 108 is a fluid inlet 111, and the downstream end of the large diameter channel 107 is a fluid outlet 112. A ring-shaped retainer (adjustment member) 105 is fixed near the fluid outlet 112. A spring holding portion 113 is recessed on the upstream side (lower end surface) of the retainer 105. The spring holding portion 113 is in contact with the upper end portion of the valve spring 104 serving as a compression coil panel force. The lower end side of the valve spring 104 is in contact with the ball 103, and the ball 103 is normally pressed against the seal portion 110 by the urging force of the knob spring 104. The retainer 105 is inserted into the channel 106 from the fluid outlet 112 and is press-fitted into the inner peripheral surface 106 a of the channel 106. At this time, when the retainer 105 is pushed downward in the drawing in the flow path 106, the valve spring 104 is compressed and the urging force is increased. As the urging force increases, the ball 103 is more strongly pressed against the seal portion 110, and the valve opening pressure increases. In other words, the set height (set length) of the valve spring 104 varies depending on the position of the retainer 105 in the large-diameter flow path 107, so that the valve opening pressure of the ball 103 can be adjusted appropriately. Become.
[0027] このように、プレツシャレギユレータ 101では、リテーナ 105の位置設定により開弁圧 力を容易に調整できる。その際、ばね性部品はバルブスプリング 104の 1個のみであ るため、開弁圧力の調整が容易であると共にそのバラツキも小さい。従って、流量が 4 OLZh以下の低流量の燃料供給装置においても、当該プレツシャレギユレータ 101を 使用すれば、燃料調圧性が良好となり、流量変化に対する圧力勾配を小さくできる。 また、プレツシャレギユレータ 101内には、ばね性部品が 1つしか存在しないため、装 置構造が簡単であり、圧力制御装置の小型軽量化が図られると共に、それを使用し た燃料供給装置の小型軽量化も図られる。さらに、プレツシャレギユレータ 101には、 ダイヤフラムのようなゴム部材が装置内に存在しないため、例えば、ガソリンなどによ るゴム部材の耐食性や経年劣化、温度変化等の問題が発生せず、装置寿命が改善 されると共に、安定した流体圧制御が可能となる。  As described above, in the pressure regulator 101, the valve opening pressure can be easily adjusted by setting the position of the retainer 105. At that time, since the spring component is only one of the valve springs 104, the valve opening pressure can be easily adjusted and its variation is small. Therefore, even in a low flow rate fuel supply apparatus with a flow rate of 4 OLZh or less, if the pressure regulator 101 is used, the fuel pressure regulation becomes good and the pressure gradient with respect to the flow rate change can be reduced. In addition, since there is only one spring component in the pressure regulator 101, the device structure is simple, the pressure control device can be reduced in size and weight, and the fuel using it The supply device can also be reduced in size and weight. Furthermore, since the pressure regulator 101 does not have a rubber member such as a diaphragm in the apparatus, problems such as corrosion resistance of the rubber member due to gasoline, aging deterioration, temperature change, etc. do not occur. In addition, the life of the apparatus is improved and stable fluid pressure control becomes possible.
[0028] 所望の開弁圧力となるようにバルブスプリング 104のセット高さを調整した後、カシメ 部 114を形成し、リテーナ 105をカシメ固定する。力シメ部 114は、流体流出口 112の開 口縁 112aを内径側に複数箇所 (例えば、等分に 4箇所)打ち出して形成され、リテー ナ 105の流体流出口 112側の端面に当接する。リテーナ 105は、この力シメ部 114によ つて軸方向への移動が規制される。リテーナ 105は流路内周面 106aに圧入されて 、 るものの、バルブスプリング 104によって軸方向上方に付勢力を受けるため、長期間 の使用により位置がずれ、開弁圧力が変化するおそれがある。これに対し、当該プレ ッシャレギユレータ 101では、リテーナ 105が力シメ部 114によって抜け止めされている ため、プレート位置の経年変化が抑えられ、開弁圧力も安定する。  [0028] After adjusting the set height of the valve spring 104 so as to obtain a desired valve opening pressure, a crimping portion 114 is formed, and the retainer 105 is fixed by crimping. The force squeeze portion 114 is formed by punching the opening edge 112a of the fluid outlet 112 on the inner diameter side at a plurality of locations (for example, four locations equally), and abuts the end surface of the retainer 105 on the fluid outlet 112 side. The retainer 105 is restricted from moving in the axial direction by the force shim 114. Although the retainer 105 is press-fitted into the inner peripheral surface 106a of the flow path, the retainer 105 is biased upward in the axial direction by the valve spring 104, so that the position of the retainer 105 may shift due to long-term use, and the valve opening pressure may change. On the other hand, in the pressure regulator 101, since the retainer 105 is retained by the force shim 114, the plate position is prevented from changing with time and the valve opening pressure is stabilized.
[0029] なお、リテーナとして、図 2に示すような係止片 115を設けたリテーナ 116を使用して も良い。係止片 115は、リテーナ 105の外周部に複数個(例えば、 4個等分)、あるいは 、全周に亘つて形成されており、挿入先端側が斜面部 115a、後端側が返し 115bとな つている。リテーナ 105を流路内周面 106aに挿入する際、係止片 115は流路内周面 10 6aに当接し、圧潰される。これにより、リテーナ 116は流路内周面 106a内に固定され、 その際、返し 115bによって抜け止めされる。但し、リテーナ 116使用に際しても、端部 のカシメ固定を行った方が信頼性 ·耐久性の点では望ましい。 [0029] As the retainer, a retainer 116 provided with a locking piece 115 as shown in Fig. 2 may be used. There are a plurality of locking pieces 115 (for example, four equal parts) on the outer periphery of the retainer 105, or The insertion tip is formed with a slope 115a on the front end side and a return 115b on the rear end side. When the retainer 105 is inserted into the flow path inner peripheral surface 106a, the locking piece 115 comes into contact with the flow channel inner peripheral surface 106a and is crushed. Thereby, the retainer 116 is fixed in the flow path inner peripheral surface 106a, and at that time, the retainer 116 is prevented from coming off by the barb 115b. However, when using the retainer 116, it is desirable in terms of reliability and durability that the ends be caulked.
[0030] このようなプレツシャレギユレータ 101では、流体流入口 111から燃料等の流体が供 給され、その圧力が高くなり所定の開弁圧力以上となると、ボール 103がバルブスプリ ング 104の付勢力に抗して下流側へ移動する(上昇する)。これにより、ボール 103が シール部 110から離脱し、小径流路 108と大径流路 107が連通して開弁状態となり、流 路 106が開通する。一方、流体の圧力が低くなり所定の開弁圧力未満になると、ボー ル 103はバルブスプリング 104の付勢力によって上流側へ戻される(下降する)。これ により、ボール 103がシール部 110に当接し、小径流路 108と大径流路 107が隔絶され て閉弁状態となり、流路 106が閉される。 [0030] In such a pressure regulator 101, when a fluid such as fuel is supplied from the fluid inlet 111 and the pressure rises to a predetermined valve opening pressure or higher, the ball 103 moves to the valve spring 104. It moves downstream (rises up) against the urging force. As a result, the ball 103 is detached from the seal portion 110, the small-diameter channel 108 and the large-diameter channel 107 communicate with each other, and the valve 106 is opened. On the other hand, when the pressure of the fluid becomes lower than a predetermined valve opening pressure, the ball 103 is returned to the upstream side (lowered) by the urging force of the valve spring 104. As a result, the ball 103 comes into contact with the seal portion 110, the small-diameter channel 108 and the large-diameter channel 107 are isolated and closed, and the channel 106 is closed.
実施例 2  Example 2
[0031] 図 3は本発明の実施例 2であるプレツシャレギユレータ 121 (圧力制御装置)の構成 を示す断面図である。図 3のプレツシャレギユレータ 121もまた、例えば、自動車用燃 料供給装置の燃圧調整に使用される。なお、当該実施例においては、実施例 1のプ レツシャレギユレータ 101と同様の部材、部分については同一の符号を付し、その説 明は省略する。  FIG. 3 is a cross-sectional view showing a configuration of a pressure regulator 121 (pressure control device) that is Embodiment 2 of the present invention. The pressure regulator 121 in FIG. 3 is also used, for example, for adjusting the fuel pressure of a fuel supply device for automobiles. In the present embodiment, the same members and portions as those of the pre-regulator 101 of the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
[0032] プレツシャレギユレータ 121もまた、金属製のハウジング 102内に、ボール 103とバル ブスプリング 104及びリテーナ 122を収容した構成となっている。但し、ここでは、シー ル部 110は、ハウジング 102ではなぐリテーナ 122の上端面に形成されている。このよ うに、リテーナ 122にシール部 110を設けることにより、シール部 110がハウジング 102と 別体となり、シール部 110の加工精度が向上しシール性を高めることが可能となる。ま た、プレツシャレギユレータ 121では、スプリング保持部(弾性部材保持部) 123は、リテ ーナではなぐハウジング 102の大径流路 107と小径流路 108の境界部に形成されて いる。すなわち、図 3のプレツシャレギユレータ 121では、バルブスプリング 104は、一 端側がボール 103と、他端側がハウジング 102内に形成されたスプリング保持部 123に 当接し、これにより、ボール 103がリテーナ 122に形成されたシール部 110に押接され る。 The pressure regulator 121 also has a configuration in which a ball 103, a valve spring 104, and a retainer 122 are housed in a metal housing 102. However, here, the seal portion 110 is formed on the upper end surface of the retainer 122 that is not in the housing 102. Thus, by providing the retainer 122 with the seal portion 110, the seal portion 110 is separated from the housing 102, so that the processing accuracy of the seal portion 110 can be improved and the sealing performance can be improved. Further, in the pressure regulator 121, the spring holding portion (elastic member holding portion) 123 is formed at the boundary between the large-diameter channel 107 and the small-diameter channel 108 of the housing 102, which is not a retainer. That is, in the pressure regulator 121 of FIG. 3, the valve spring 104 is connected to the ball 103 on one end side and a spring holding portion 123 formed in the housing 102 on the other end side. In this manner, the ball 103 is pressed against the seal portion 110 formed on the retainer 122.
[0033] さらに、プレツシャレギユレータ 121では、流路 106の下流側に小径流路 108、上流側 に大径流路 107が形成されている。大径流路 107の上流側端部は流体流入口 111、 小径流路 108の下流側端部は流体流出口 112となっている。大径流路 107内には、ボ ール 103とバルブスプリング 104が収容されており、ボール 103がリテーナ 122にて保持 されている。リテーナ 122は、流体流入口 111から流路 106内に挿入され、ここでは、内 周面 106aに溶着される。溶着後、リテーナ 122は、流体流入口 111に形成されたカシメ 部 114によって抜け止めされる。なお、リテーナ 122として、図 2のように係止片 115が 形成されたものを用いることも可能である。  Furthermore, in the pressure regulator 121, a small-diameter channel 108 is formed on the downstream side of the channel 106, and a large-diameter channel 107 is formed on the upstream side. The upstream end of the large-diameter channel 107 is a fluid inlet 111, and the downstream end of the small-diameter channel 108 is a fluid outlet 112. A ball 103 and a valve spring 104 are accommodated in the large-diameter channel 107, and the ball 103 is held by a retainer 122. The retainer 122 is inserted into the flow path 106 from the fluid inlet 111, and is here welded to the inner peripheral surface 106a. After the welding, the retainer 122 is prevented from coming off by a caulking portion 114 formed at the fluid inlet 111. As the retainer 122, it is possible to use a retainer having a locking piece 115 formed as shown in FIG.
[0034] このようなプレツシャレギユレータ 121においても、リテーナ 122の位置設定により開 弁圧力を容易に調整でき、そのバラツキも小さい。また、プレツシャレギユレータ 121内 には、ばね性部品力^つしか存在しないため、装置構造が簡単であり、装置の小型 軽量ィ匕が図られる。さらに、ダイヤフラムのようなゴム部材がないため、ゴム部材に起 因する諸問題が発生せず、装置寿命が改善され、安定した流体圧制御が可能となる 実施例 3  [0034] Also in such a pressure regulator 121, the valve opening pressure can be easily adjusted by setting the position of the retainer 122, and its variation is small. Further, since there are only spring-like component forces in the pressure regulator 121, the structure of the apparatus is simple, and the apparatus can be made compact and lightweight. Furthermore, since there is no rubber member such as a diaphragm, various problems caused by the rubber member do not occur, the life of the apparatus is improved, and stable fluid pressure control is possible.
[0035] 図 4は、本発明の実施例 3である燃料供給装置の構成を示す断面図である。図 4の 燃料供給装置 1は、自動二輪車用の装置であり、本発明の一実施例である圧力制御 装置によって燃圧が調整される。燃料供給装置 1は自動二輪車の燃料タンク内に配 置され、燃料流量力 OLZh以下の比較的低流量のエンジン燃料供給系に使用さ れる。燃料供給装置 1には図示しない燃料配管が接続され、この燃料配管を介して、 エンジンの燃料噴射弁に対し燃料供給が行われる。  FIG. 4 is a cross-sectional view showing a configuration of a fuel supply apparatus that is Embodiment 3 of the present invention. The fuel supply device 1 in FIG. 4 is a device for a motorcycle, and the fuel pressure is adjusted by a pressure control device according to an embodiment of the present invention. The fuel supply device 1 is disposed in the fuel tank of the motorcycle and is used for a relatively low flow engine fuel supply system having a fuel flow rate of OLZh or less. A fuel pipe (not shown) is connected to the fuel supply device 1, and fuel is supplied to the fuel injection valve of the engine via the fuel pipe.
[0036] 燃料供給装置 1は、電動モータ 2と燃料ポンプ (ポンプ部) 3及び燃圧制御部 4を一 体化し、それらを鋼製のシェルケース 5内に収容した構成となっている。円筒状のシ エルケース 5の両端には、エンドカバー 6, 7がカシメ固定されている。エンドカバー(ハ ウジング) 6は合成樹脂にて形成され、シェルケース 5の一端側に取り付けられる。ェ ンドカバー 6には、電動モータ 2の図示しないブラシを保持するブラシホルダ部 8が設 けられており、シェルケース 5のカバーとブラシホルダを兼ねた構成となっている。ェ ンドカバー 6にはさらに、燃圧制御部 4を構成するチェックバルブ 9とプレツシャレギュ レータ (圧力制御装置) 10が収容されている。エンドカバー 7はアルミダイキャストにて 形成され、シェルケース 5の他端側に取り付けられる。エンドカバー 7の下端側には燃 料吸入口 11が突設されて!/、る。 The fuel supply device 1 has a configuration in which an electric motor 2, a fuel pump (pump unit) 3, and a fuel pressure control unit 4 are integrated and housed in a steel shell case 5. End covers 6 and 7 are secured to both ends of the cylindrical shell case 5. The end cover (housing) 6 is made of synthetic resin and is attached to one end side of the shell case 5. The end cover 6 is provided with a brush holder portion 8 that holds a brush (not shown) of the electric motor 2. The shell case 5 serves as a cover and a brush holder. The end cover 6 further accommodates a check valve 9 and a pressure regulator (pressure control device) 10 constituting the fuel pressure control unit 4. The end cover 7 is formed by aluminum die casting and is attached to the other end of the shell case 5. A fuel inlet 11 is provided at the lower end of the end cover 7!
[0037] 電動モータ 2は、ブラシ付の直流モータとなっている。シェルケース 5は電動モータ 2のヨークを兼ねており、その内周面には複数の永久磁石 12が固定されている。永 久磁石 12の内側には、ァーマチュア 13が回転自在に配置されている。了一マチュア 13は、軸方向に延びる複数のスロット 14を有するコア 15と、スロット 14に卷回された 卷線 16とを備えている。ァーマチュア 13は回転軸 17に固定され、エンドカバー 6に 設けられた軸受部 18と、ポンプケース 19に取り付けられた軸受 20との間に回転自在 に支持されている。 [0037] The electric motor 2 is a brushed DC motor. The shell case 5 also serves as a yoke for the electric motor 2, and a plurality of permanent magnets 12 are fixed to the inner peripheral surface thereof. Inside the permanent magnet 12, an armature 13 is rotatably arranged. Ryoichi Mature 13 includes a core 15 having a plurality of slots 14 extending in the axial direction, and a winding 16 wound around the slots 14. The armature 13 is fixed to the rotary shaft 17 and is rotatably supported between a bearing portion 18 provided on the end cover 6 and a bearing 20 attached to the pump case 19.
[0038] ァーマチュア 13の図 4において上側にはコンミテータ 21が設けられている。コンミテ ータ 21は回転軸 17に固定されている。コンミテータ 21には、径方向力もブラシが当 接している。ブラシは、エンドカバー 6に形成されたブラシホルダ部 8に収容されてお り、スプリングによってコンミテータ 21に押接されている。なお、電動モータ 2として、フ ラットタイプ (偏平型)のコンミテータに軸方向からブラシが摺接するタイプのものを用 いることも可能である。  A commutator 21 is provided on the upper side of the armature 13 in FIG. The commutator 21 is fixed to the rotating shaft 17. The commutator 21 is also in contact with the brush in the radial force. The brush is accommodated in a brush holder portion 8 formed on the end cover 6 and pressed against the commutator 21 by a spring. As the electric motor 2, a flat type (flat type) commutator in which the brush slides in the axial direction can be used.
[0039] 燃圧制御部 4には、チェックバルブ 9とプレツシャレギユレータ 10が設けられている。  The fuel pressure control unit 4 is provided with a check valve 9 and a pressure regulator 10.
チェックバルブ 9は、ボール 22とリターンスプリング 23及びスプリングホルダ 24をバル ブ室 25内に収容した構成となっている。このチェックバルブ 9は、プレツシャレギユレ ータ 10とは異なり燃圧制御の機能は有しておらず、燃料配管側から燃料ポンプ 3側 への燃料逆流防止のために配置されている。ボール 22は、円錐形の圧縮コイルば ねよりなるリターンスプリング 23によってシール部 26に押接されている。チェックバル ブ 9に対しては、燃料流入口 27から燃料ポンプ 3によって燃圧が高められた燃料が 供給される。燃圧が所定値以上となると、ボール 22がリターンスプリング 23の付勢力 に抗してシール部 26から離れて開弁状態となり、燃料流入口 27とバルブ室 25が連 通する。バルブ室 25の端部には燃料吐出口 28が形成されており、燃料吐出口 28に は燃料配管が接続される。 The check valve 9 has a configuration in which a ball 22, a return spring 23 and a spring holder 24 are accommodated in a valve chamber 25. Unlike the pressure regulator 10, the check valve 9 does not have a fuel pressure control function and is arranged to prevent fuel backflow from the fuel pipe side to the fuel pump 3 side. The ball 22 is pressed against the seal portion 26 by a return spring 23 made of a conical compression coil spring. The check valve 9 is supplied with fuel whose fuel pressure is increased by the fuel pump 3 from the fuel inlet 27. When the fuel pressure exceeds a predetermined value, the ball 22 moves away from the seal portion 26 against the urging force of the return spring 23 and opens, and the fuel inlet 27 and the valve chamber 25 communicate with each other. A fuel discharge port 28 is formed at the end of the valve chamber 25. Is connected to the fuel pipe.
[0040] ノ レブ室 25の中程には燃料導入口(流体流入口) 29が開口している。燃料導入口 29は、プレツシャレギユレータ 10と接続されている。プレツシャレギユレータ 10は、ボ ール (弁体) 31とバルブスプリング (弾性部材) 32及びリテーナ (調整部材) 33をバル ブ室 (流路) 34内に収容した構成となっており、バルブ室 25内の燃圧が所定値以上 の場合に開弁して燃圧を適宜調整する。ボール 31は、円錐形の圧縮コイルばねより なるバルブスプリング 32によってシール部 35に押接されている。バルブ室 34の図中 右端側は燃料リターン口(流体流出口) 30となっており、燃料タンク内に開口している 。このように、当該燃料供給装置 1では、シンプルな構成の圧力制御装置をプレツシ ャレギユレータ 10として使用している。  [0040] In the middle of the nozzle chamber 25, a fuel inlet (fluid inlet) 29 is open. The fuel inlet 29 is connected to the pressure regulator 10. The pressure regulator 10 includes a ball (valve element) 31, a valve spring (elastic member) 32, and a retainer (adjustment member) 33 accommodated in a valve chamber (flow path) 34. When the fuel pressure in the valve chamber 25 is equal to or higher than a predetermined value, the valve is opened and the fuel pressure is adjusted appropriately. The ball 31 is pressed against the seal portion 35 by a valve spring 32 comprising a conical compression coil spring. The right end side of the valve chamber 34 in the figure is a fuel return port (fluid outlet) 30 that opens into the fuel tank. As described above, in the fuel supply device 1, a pressure control device having a simple configuration is used as the pressure regulator 10.
[0041] 燃料供給装置 1のプレツシャレギユレータ 10では、リテーナ 33がねじ機構によって 流路方向に沿って移動可能に配置されて!、る。リテーナ 33の外周には雄ねじ部 36 が形成されており、バルブ室 34の内周に形成された雌ねじ部 37と螺合している。リテ ーナ 33は、両ねじ部 36,37により、バルブ室 34内にて図中左右方向に移動可能に 配置されている。リテーナ 33を図中左方向に移動させると、バルブスプリング 32が圧 縮されその付勢力が増大し、開弁圧力が高くなる。これに対し、リテーナ 33を図中右 方向に移動させると、ノ レブスプリング 32が延伸してその付勢力が減少し、開弁圧 力が低くなる。すなわち、開弁圧力は、リテーナ 33の移動のみによって調整できる。  [0041] In the pressure regulator 10 of the fuel supply device 1, the retainer 33 is arranged to be movable along the flow path direction by a screw mechanism. A male thread portion 36 is formed on the outer periphery of the retainer 33 and is screwed with a female thread portion 37 formed on the inner periphery of the valve chamber 34. The retainer 33 is arranged so as to be movable in the left-right direction in the figure by means of both screw portions 36 and 37 in the valve chamber 34. When the retainer 33 is moved in the left direction in the figure, the valve spring 32 is compressed to increase its urging force, and the valve opening pressure is increased. On the other hand, when the retainer 33 is moved in the right direction in the figure, the noble spring 32 is extended to reduce its urging force and lower the valve opening pressure. That is, the valve opening pressure can be adjusted only by the movement of the retainer 33.
[0042] このように、プレツシャレギユレータ 10では、唯一のばね性部品であるバルブスプリ ング 32のセット高さ (設定長)を調節することにより、開弁圧力を適宜調整できる。そ の際、ばね性部品はノ レブスプリング 32の 1個のみであるため、開弁圧力の調整は 容易であると共にそのバラツキも小さい。従って、吐出流量が 40LZh以下の低流量 の燃料供給装置においても、燃料調圧性が良好となり、流量変化に対する圧力勾配 を小さくできる。また、プレツシャレギユレータ 10内にばね性部品が 1つしか存在しな いため、構造が簡単であり、圧力制御装置の小型軽量化が図られると共に、燃料供 給装置 1の小型軽量化も図られる。なお、ノ レブスプリング 32のセット高さを調整した 後は、実施例 1,2のプレツシャレギユレータと同様に、リテーナ 33の燃料リターン口 3 0側をカシメ固定する。 [0043] 一方、プレツシャレギユレータ 10には、ダイヤフラムのようなゴム部材が装置内に存 在しないため、ゴム部材のガソリンに対する耐食性や経年劣化、温度変化等の問題 が発生せず、装置寿命が改善されると共に、燃圧制御の安定ィ匕が図られる。加えて 、ポンプ流量やチェックバルブ 9の開弁圧力にバラツキがあっても、燃料供給装置 1と してモジュールィ匕にした状態で容易にプレツシャレギユレータ 10の開弁圧力を調整 することができるため、燃料供給装置 1全体の性能のバラツキを抑えることが可能とな る。 As described above, in the pressure regulator 10, the valve opening pressure can be adjusted as appropriate by adjusting the set height (set length) of the valve spring 32, which is the only spring component. At that time, since there is only one spring part 32, the valve opening pressure is easily adjusted and its variation is small. Therefore, even in a low flow rate fuel supply device with a discharge flow rate of 40LZh or less, the fuel pressure regulation becomes good and the pressure gradient with respect to the flow rate change can be reduced. In addition, since there is only one spring component in the pressure regulator 10, the structure is simple, the pressure control device can be reduced in size and weight, and the fuel supply device 1 can be reduced in size and weight. Is also planned. After adjusting the set height of the knob spring 32, the fuel return port 30 side of the retainer 33 is caulked and fixed in the same manner as the pressure regulator of the first and second embodiments. [0043] On the other hand, the pressure regulator 10 does not have a rubber member such as a diaphragm in the apparatus, so that problems such as corrosion resistance of the rubber member to gasoline, aging deterioration, and temperature change do not occur. The life of the apparatus is improved and the stability of fuel pressure control is improved. In addition, the valve opening pressure of the pressure regulator 10 can be easily adjusted in a modular state as the fuel supply device 1 even if the pump flow rate and the valve opening pressure of the check valve 9 vary. Therefore, it is possible to suppress variations in the performance of the entire fuel supply device 1.
[0044] なお、プレツシャレギユレータ 10として、実施例 1,2のように、リテーナ 33を圧入した り、溶着したりして固定する構成のものを用いても良い。また、ノ レブスプリング 32の セット高さを調整した後、前述の実施例同様、リテーナ 33をカシメ固定しても良い。  It should be noted that the pressure regulator 10 may be configured so that the retainer 33 is fixed by being press-fitted or welded as in the first and second embodiments. In addition, after adjusting the set height of the noble spring 32, the retainer 33 may be caulked and fixed as in the above-described embodiment.
[0045] 燃料ポンプ 3は非容積型の再生式ポンプとなっており、ポンプケース 19とインペラ 3 8とから形成されている。ポンプケース 19の下端側には、円筒形状のインペラ収容部 39が没設されている。インペラ収容部 39内には、電動モータ 2の回転軸 17と連結さ れたインペラ 38が配置される。回転軸 17には Dカット部 17aが形成されており、イン ペラ 38はこの Dカット部 17aに取り付けられ回転軸 17と一体に回転する。インペラ 38 の外周寄りには、軸方向に貫通形成されたポンプ室 41が周方向に沿って多数設け られている。ポンプ室 41に対応して、エンドカバー 7には燃料吸入口 11、インペラ収 容部 39の上端側には連通孔 42が設けられている。連通孔 42はシェルケース 5内に 臨んで開口している。  The fuel pump 3 is a non-volume regenerative pump, and is formed of a pump case 19 and an impeller 38. At the lower end side of the pump case 19, a cylindrical impeller accommodating portion 39 is sunk. An impeller 38 connected to the rotary shaft 17 of the electric motor 2 is disposed in the impeller accommodating portion 39. The rotary shaft 17 is formed with a D-cut portion 17a, and the impeller 38 is attached to the D-cut portion 17a and rotates integrally with the rotary shaft 17. Near the outer periphery of the impeller 38, a large number of pump chambers 41 penetrating in the axial direction are provided along the circumferential direction. Corresponding to the pump chamber 41, the end cover 7 is provided with a fuel inlet 11, and a communication hole 42 is provided on the upper end side of the impeller accommodating portion 39. The communication hole 42 is open facing the shell case 5.
[0046] このような構成を備えた燃料供給装置 1は次のように機能する。まず、電動モータ 2 が駆動され燃料ポンプ 3が作動すると、燃料タンク内の燃料が燃料吸入口 11から吸 い込まれる。この際、燃料ポンプ 3では、回転軸 17と共にインペラ 38が回転し、イン ペラ 38の回転に伴って燃料吸入口 11からポンプ室 41内に燃料が吸い込まれる。ポ ンプ室 41内に送り込まれた燃料は、インペラ 38の回転により連通孔 42に送出され、 シェルケース 5内に供給される。  [0046] The fuel supply apparatus 1 having such a configuration functions as follows. First, when the electric motor 2 is driven and the fuel pump 3 is operated, the fuel in the fuel tank is sucked from the fuel inlet 11. At this time, in the fuel pump 3, the impeller 38 rotates together with the rotating shaft 17, and fuel is sucked into the pump chamber 41 from the fuel suction port 11 as the impeller 38 rotates. The fuel sent into the pump chamber 41 is sent to the communication hole 42 by the rotation of the impeller 38 and supplied into the shell case 5.
[0047] 燃料ポンプ 3によってシェルケース 5内に燃料が供給され、シェルケース 5内が所定 圧以上になるとチェックバルブ 9が開弁する。これにより、シェルケース 5内の燃料は バルブ室 25内に流入し、燃料吐出口 28から燃料配管に送出される。一方、燃圧が 上昇し、ノ レブ室 25内の燃圧が所定値以上となると、プレツシャレギユレータ 10が開 弁する。プレツシャレギユレータ 10の開弁により、バルブ室 25内の燃料は燃料リタ一 ン口 30から燃料タンク内に戻され、それに伴ってバルブ室 25内の燃圧も減少する。 これにより、燃料配管側に供給される燃料の圧力が適宜調整され、燃圧が調整され た燃料が燃料吐出口 28から燃料配管に送出される。 [0047] Fuel is supplied into the shell case 5 by the fuel pump 3, and the check valve 9 is opened when the pressure in the shell case 5 exceeds a predetermined pressure. As a result, the fuel in the shell case 5 flows into the valve chamber 25 and is sent from the fuel discharge port 28 to the fuel pipe. On the other hand, the fuel pressure is When the fuel pressure rises and the fuel pressure in the nozzle chamber 25 exceeds a predetermined value, the pressure regulator 10 is opened. By opening the pressure regulator 10, the fuel in the valve chamber 25 is returned to the fuel tank from the fuel return port 30, and the fuel pressure in the valve chamber 25 is also reduced accordingly. Thereby, the pressure of the fuel supplied to the fuel pipe side is appropriately adjusted, and the fuel whose fuel pressure is adjusted is sent from the fuel discharge port 28 to the fuel pipe.
[0048] 本発明は前記実施例に限定されるものではなぐその要旨を逸脱しない範囲で種 々変更可能であることは言うまでもな 、。 [0048] It goes without saying that the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the invention.
例えば、前述の実施例では、両ねじ部 36,37によって、リテーナ 33をバルブ室 34 内にて移動可能に配置したが、リテーナ 33の移動 ·固定手段はこれには限定されな い。すなわち、実施例 1,2のように、リテーナ 33をバルブ室 34内に圧入したり、溶着 したり、カシメ固定したりする構成とし、燃料供給装置 1の各モジュールごとに、ポンプ 流量やチェックバルブ 9の開弁圧力等を考慮して適宜設定しても良い。また、プレツ シャレギユレータ 10は、実施例 1のプレツシャレギユレータ 101の構成を採用している 1S 実施例 2のプレツシャレギユレータ 121の構成を適用しても良い。但し、この場合 には、燃料流通方向が逆となるため、プレツシャレギユレータ 121のようなブロックモジ ユールを別途形成し、これを燃料供給装置 1に組み付ける構成とする。なお、チェック バルブ 9のスプリングホルダ 24も、ねじ部を形成するなどして図中上下に移動可能な 構成としても良い。  For example, in the above-described embodiment, the retainer 33 is movably disposed in the valve chamber 34 by the both screw portions 36 and 37, but the moving / fixing means of the retainer 33 is not limited to this. That is, as in Examples 1 and 2, the retainer 33 is press-fitted into the valve chamber 34, welded, or caulked and fixed. For each module of the fuel supply device 1, the pump flow rate and check valve are set. It may be set as appropriate in consideration of the valve opening pressure of 9. Further, the pressure regulator 10 may adopt the configuration of the pressure regulator 121 of the 1S embodiment 2 adopting the configuration of the pressure regulator 101 of the first embodiment. However, in this case, since the fuel flow direction is reversed, a block module such as the pressure regulator 121 is separately formed and assembled to the fuel supply device 1. The spring holder 24 of the check valve 9 may be configured to be movable up and down in the figure by forming a threaded portion.
[0049] また、前述の実施例では、本発明による圧力制御装置を流量が 40LZh以下のェ ンジン燃料供給系に適用した例を示したが、適用対象となる流体送給系の流量は特 に制限されない。但し、プレツシャレギユレータ 10は、ばね性部品が 1つしか存在しな いシンプルな構成のため、比較的低流量のシステムに好適である。さらに、前述の実 施例では、本発明による圧力制御装置を自動二輪車用の燃料供給装置に適用した 例を示したが、その用途はこれには限定されず、四輪自動車等、種々の車両の燃料 供給装置に使用することも可能である。力 []えて、エンジンの燃料供給系以外にも、種 々の油圧回路に適用可能である。さらに、調圧対象となる流体は、ガソリンや軽油な どのエンジン燃料には限定されず、水や空気、油圧回路の作動油などにも適用可能 である。  [0049] In the above-described embodiment, the example in which the pressure control device according to the present invention is applied to an engine fuel supply system having a flow rate of 40 LZh or less has been shown. However, the flow rate of the fluid supply system to be applied is particularly limited. Not limited. However, the pressure regulator 10 is suitable for a system with a relatively low flow rate because it has a simple configuration with only one spring component. Furthermore, in the above-described embodiment, an example in which the pressure control device according to the present invention is applied to a fuel supply device for a motorcycle has been shown. However, the application is not limited to this, and various vehicles such as a four-wheeled vehicle are used. It can also be used for other fuel supply devices. In addition to the engine fuel supply system, it can be applied to various hydraulic circuits. Furthermore, the fluid to be regulated is not limited to engine fuels such as gasoline and light oil, but can be applied to water, air, hydraulic circuit hydraulic oil, and the like.

Claims

請求の範囲 The scope of the claims
[1] 流体流入口と前記流体流入口と流路を介して連通された流体流出口とを備えるハ ウジングと、  [1] a housing comprising a fluid inlet and a fluid outlet communicated with the fluid inlet through a flow path;
前記流路内に配置された弁体と、  A valve element disposed in the flow path;
前記弁体が当接することにより前記流路が閉鎖されるシール部と、  A seal portion in which the flow path is closed when the valve body abuts;
前記弁体に当接し、前記弁体を前記シール部に向けて付勢する弾性部材と、 前記ハウジング内に前記流路方向に沿って移動可能に配置され、前記流路方向 への移動により、前記弾性部材の付勢力を変更可能な調整部材とを有することを特 徴とする圧力制御装置。  An elastic member that abuts on the valve body and biases the valve body toward the seal portion; and is disposed in the housing so as to be movable along the flow path direction. A pressure control device comprising: an adjustment member capable of changing an urging force of the elastic member.
[2] 請求項 1記載の圧力制御装置において、前記弾性部材は圧縮コイルばねであり、 前記調整部材は前記圧縮コイルばねの設定長を変更することを特徴とする圧力制御 装置。  2. The pressure control device according to claim 1, wherein the elastic member is a compression coil spring, and the adjustment member changes a set length of the compression coil spring.
[3] 請求項 1記載の圧力制御装置において、前記調整部材は、前記ハウジング内に圧 入されると共に、その前記流体流出口側の端部が前記ハウジングにカシメ固定され ることを特徴とする圧力制御装置。  [3] The pressure control device according to claim 1, wherein the adjustment member is press-fitted into the housing, and an end portion on the fluid outlet side is caulked and fixed to the housing. Pressure control device.
[4] 請求項 1記載の圧力制御装置において、前記調整部材は、前記ハウジング内に溶 着されると共に、その前記流体流出口側の端部が前記ハウジングにカシメ固定され ることを特徴とする圧力制御装置。 [4] The pressure control device according to claim 1, wherein the adjustment member is welded into the housing, and an end portion on the fluid outlet side is caulked and fixed to the housing. Pressure control device.
[5] 請求項 1記載の圧力制御装置において、前記調整部材の外周部に、前記ハウジン グの内周面に当接し、該調整部材の前記流体流出口側への移動を規制する係止片 を設けたことを特徴とする圧力制御装置。 [5] The pressure control device according to [1], wherein the adjusting member is in contact with an inner peripheral surface of the housing at an outer peripheral portion of the adjusting member and restricts movement of the adjusting member toward the fluid outlet port. A pressure control device comprising:
[6] 請求項 1記載の圧力制御装置において、前記シール部は前記ハウジング内に形成 され、前記弁体は、一端側が該弁体に当接し、他端側が前記調整部材に当接する 前記弾性部材によって前記シール部に押接されることを特徴とする圧力制御装置。 6. The pressure control device according to claim 1, wherein the seal portion is formed in the housing, and the valve body has one end side in contact with the valve body and the other end side in contact with the adjustment member. A pressure control device, wherein the pressure control device is pressed against the seal portion.
[7] 請求項 1記載の圧力制御装置にお 、て、前記シール部は前記調整部材に形成さ れ、前記弁体は、一端側が該弁体に当接し、他端側が前記ハウジング内に形成され た弾性部材保持部に当接する前記弾性部材によって前記シール部に押接されること を特徴とする圧力制御装置。 [7] The pressure control device according to claim 1, wherein the seal portion is formed on the adjustment member, and the valve body has one end abutting the valve body and the other end formed in the housing. The pressure control device is pressed against the seal portion by the elastic member in contact with the elastic member holding portion.
[8] 請求項 1記載の圧力制御装置において、当該圧力制御装置は、吐出流量が 40L[8] The pressure control device according to claim 1, wherein the pressure control device has a discharge flow rate of 40L.
Zh以下の燃料ポンプの下流側に設置されることを特徴とする圧力制御装置。 A pressure control device installed downstream of a fuel pump of Zh or less.
[9] 燃料タンクに取り付けられ、電動モータと、前記電動モータによって駆動されるボン プ部と、前記ポンプ部より吐出される燃料の圧力を調整する圧力制御装置を備えて なる燃料供給装置であって、 [9] A fuel supply device that is attached to a fuel tank and includes an electric motor, a pump unit driven by the electric motor, and a pressure control device that adjusts the pressure of fuel discharged from the pump unit. And
前記圧力制御装置は、流体流入口と前記流体流入口と流路を介して連通された流 体流出口とを備えるハウジングと、  The pressure control device includes a housing including a fluid inlet, a fluid outlet communicated with the fluid inlet through a flow path, and
前記流路内に配置された弁体と、  A valve element disposed in the flow path;
前記弁体が当接することにより前記流路が閉鎖されるシール部と、  A seal portion in which the flow path is closed when the valve body abuts;
前記弁体に当接し、前記弁体を前記シール部に向けて付勢する弾性部材と、 前記ハウジング内に前記流路方向に沿って移動可能に配置され、前記流路方向 への移動により、前記弾性部材の付勢力を変更可能な調整部材とを有することを特 徴とする燃料供給装置。  An elastic member that abuts on the valve body and biases the valve body toward the seal portion; and is disposed in the housing so as to be movable along the flow path direction. A fuel supply device comprising: an adjustment member capable of changing an urging force of the elastic member.
PCT/JP2006/318480 2005-09-20 2006-09-19 Pressure control device and fuel feed device using the same WO2007034767A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
BRPI0616229-0A BRPI0616229B1 (en) 2005-09-20 2006-09-19 FUEL POWER DEVICE
JP2007536482A JP5164573B2 (en) 2005-09-20 2006-09-19 Fuel supply device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005271328 2005-09-20
JP2005-271328 2005-09-20

Publications (1)

Publication Number Publication Date
WO2007034767A1 true WO2007034767A1 (en) 2007-03-29

Family

ID=37888811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/318480 WO2007034767A1 (en) 2005-09-20 2006-09-19 Pressure control device and fuel feed device using the same

Country Status (4)

Country Link
JP (1) JP5164573B2 (en)
CN (1) CN101268272A (en)
BR (1) BRPI0616229B1 (en)
WO (1) WO2007034767A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010104058A1 (en) * 2009-03-09 2010-09-16 株式会社ミツバ Pressure regulator and fuel supply device
JP2014114895A (en) * 2012-12-11 2014-06-26 Pacific Ind Co Ltd Valve and its process of manufacture
JP2015040474A (en) * 2013-08-20 2015-03-02 三菱電機株式会社 Fuel supply device
JP2020084959A (en) * 2018-11-30 2020-06-04 株式会社ケーヒン Fuel supply device
WO2023181850A1 (en) * 2022-03-23 2023-09-28 愛三工業株式会社 Pressure regulator valve

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102913652B (en) * 2012-10-16 2014-12-03 山东电力集团公司电力科学研究院 Rapid regulation valve and regulation method for improving regulation capacity of thermal power generation unit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60178674U (en) * 1984-05-08 1985-11-27 株式会社 三ツ葉電機製作所 Fuel pump check valve device
JP2001027163A (en) * 1999-05-07 2001-01-30 Aisan Ind Co Ltd Relief valve
JP2001182636A (en) * 1999-12-27 2001-07-06 Mikuni Adec Corp Vapor exhausting structure of fuel system including mechanically driven fuel pump
JP2003247470A (en) * 2002-02-22 2003-09-05 Kyosan Denki Co Ltd Motor type fuel pump for vehicle

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02129484A (en) * 1988-11-09 1990-05-17 Aisin Aw Co Ltd Pressure regulating valve
JPH0389086A (en) * 1989-08-24 1991-04-15 Fuji Mejiyaanikusu Kk Safety valve
JPH0592402U (en) * 1992-05-20 1993-12-17 株式会社ユニシアジェックス Valve lifter for internal combustion engine
JP3208506B2 (en) * 1992-10-07 2001-09-17 フジオーゼックス株式会社 Tip mounting method for tappets for internal combustion engines
JPH0640537U (en) * 1992-08-28 1994-05-31 太平洋工業株式会社 safety valve
JPH0643438U (en) * 1992-11-16 1994-06-10 株式会社ユニシアジェックス Relief valve
JPH08261345A (en) * 1995-03-24 1996-10-11 Toyota Auto Body Co Ltd Relief valve
JPH1113912A (en) * 1997-06-20 1999-01-22 Aisin Seiki Co Ltd Pressure control valve
JP3488862B2 (en) * 2000-09-29 2004-01-19 株式会社ケーヒン Solenoid valve
JP2003139261A (en) * 2001-08-23 2003-05-14 Denso Corp Solenoid valve device and method of manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60178674U (en) * 1984-05-08 1985-11-27 株式会社 三ツ葉電機製作所 Fuel pump check valve device
JP2001027163A (en) * 1999-05-07 2001-01-30 Aisan Ind Co Ltd Relief valve
JP2001182636A (en) * 1999-12-27 2001-07-06 Mikuni Adec Corp Vapor exhausting structure of fuel system including mechanically driven fuel pump
JP2003247470A (en) * 2002-02-22 2003-09-05 Kyosan Denki Co Ltd Motor type fuel pump for vehicle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010104058A1 (en) * 2009-03-09 2010-09-16 株式会社ミツバ Pressure regulator and fuel supply device
JP5575109B2 (en) * 2009-03-09 2014-08-20 株式会社ミツバ Fuel supply device
JP2014114895A (en) * 2012-12-11 2014-06-26 Pacific Ind Co Ltd Valve and its process of manufacture
JP2015040474A (en) * 2013-08-20 2015-03-02 三菱電機株式会社 Fuel supply device
JP2020084959A (en) * 2018-11-30 2020-06-04 株式会社ケーヒン Fuel supply device
WO2023181850A1 (en) * 2022-03-23 2023-09-28 愛三工業株式会社 Pressure regulator valve

Also Published As

Publication number Publication date
CN101268272A (en) 2008-09-17
BRPI0616229A8 (en) 2017-05-23
BRPI0616229B1 (en) 2019-03-19
JP5164573B2 (en) 2013-03-21
JPWO2007034767A1 (en) 2009-03-26
BRPI0616229A2 (en) 2013-02-19

Similar Documents

Publication Publication Date Title
US8206131B2 (en) Fuel pump
WO2007034767A1 (en) Pressure control device and fuel feed device using the same
JP4413260B2 (en) High pressure fuel pump
JP4650851B2 (en) Fuel pressure adjusting device and fuel supply device including the same
JP4914701B2 (en) Pressure regulating valve
JP2006307850A (en) Check valve apparatus for fuel delivery system
WO1996023969A1 (en) Pressure regulating valve and fuel supply system using the same
US20090226332A1 (en) Pump with linear actuator
US20050217267A1 (en) Air pump having valve controlled by self-pressure
JP2004257360A (en) Secondary air supply system
CN109854428A (en) Axial type fluid pressure regulator
US6293259B1 (en) Automotive fuel system having a pressure regulator without a movable diaphragm
JP6423747B2 (en) Pressure control device and fuel supply device
JP4877845B2 (en) Fuel supply device
JP2008138786A (en) Valve device
US20090152486A1 (en) Pressure adjusting valve for vehicle fuel line
JP5316720B2 (en) Pressure regulator
JPWO2006115014A1 (en) Fuel supply device
JP5248312B2 (en) Fuel supply device
JP4213332B2 (en) Manufacturing method of solenoid valve
JP2003254201A (en) Pressure controller
JP2010144594A (en) Fuel pump
JP2005163803A (en) Pressure control device
JP6095520B2 (en) Fuel supply device
JP6921666B2 (en) Pressure controller and fuel supply

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680034579.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007536482

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1362/CHENP/2008

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1200800839

Country of ref document: VN

122 Ep: pct application non-entry in european phase

Ref document number: 06798091

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: PI0616229

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20080317