WO2007034587A1 - Elevator device - Google Patents

Elevator device Download PDF

Info

Publication number
WO2007034587A1
WO2007034587A1 PCT/JP2006/307085 JP2006307085W WO2007034587A1 WO 2007034587 A1 WO2007034587 A1 WO 2007034587A1 JP 2006307085 W JP2006307085 W JP 2006307085W WO 2007034587 A1 WO2007034587 A1 WO 2007034587A1
Authority
WO
WIPO (PCT)
Prior art keywords
car
force
speed
braking
time
Prior art date
Application number
PCT/JP2006/307085
Other languages
French (fr)
Japanese (ja)
Inventor
Takuo Kugiya
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to KR1020077021195A priority Critical patent/KR100909304B1/en
Priority to CN2006800098893A priority patent/CN101151202B/en
Priority to EP06731033.4A priority patent/EP1927567B1/en
Publication of WO2007034587A1 publication Critical patent/WO2007034587A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/02Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions
    • B66B5/04Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions for detecting excessive speed
    • B66B5/06Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions for detecting excessive speed electrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/24Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
    • B66B1/28Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical
    • B66B1/285Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical with the use of a speed pattern generator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/24Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
    • B66B1/28Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical
    • B66B1/32Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical effective on braking devices, e.g. acting on electrically controlled brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/02Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions

Definitions

  • the present invention relates to an elevator apparatus in which a shock absorber for reducing an impact on a force is provided at the bottom of a hoistway.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2000-110868
  • the force when the brake or emergency stop device of the lifting machine is activated is used.
  • the speed of the car when it collides with a shock absorber installed at the bottom of the hoistway differs depending on the position of the hoistway. Therefore, the allowable collision speed of the shock absorber must be set to the maximum value of the speed of the car when it collides with the shock absorber, and the shock absorber becomes large. This makes it impossible to reduce the ascending and descending path.
  • An object of the present invention is to solve the above-described problems, and an object of the present invention is to provide an elevator apparatus that can be reduced in size.
  • An elevator apparatus includes a car that is raised and lowered in a hoistway, a shock absorber provided at the bottom of the hoistway, a braking device for braking the movement of the force, and a force Speed of
  • the safety device is equipped with a safety device that operates the braking device when the degree is abnormal and reduces the speed of the cage below the allowable impact speed of the shock absorber until the force reaches the position of the shock absorber.
  • the overspeed detection level is set according to the position of the car, and the safety device starts the operation of the braking device when the speed of the car exceeds the overspeed detection level.
  • Positional force of the shock absorber The value of the overspeed detection level in a predetermined section is set so that the speed of the force becomes a predetermined value at the position of the shock absorber by braking the car by the braking device.
  • FIG. 1 A configuration diagram illustrating an elevator apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a graph showing the relationship between the braking torque applied to the drive sheave after the safety device of FIG. 1 detects the first overspeed of the force and the time.
  • [3] A graph showing the relationship between the speed of the force and the time determined based on the relationship between the braking torque and the time in FIG.
  • FIG. 4 is a graph showing simultaneously the relationship between the braking torque and time in FIG. 2 and the relationship between the approximate braking torque and time.
  • FIG. 5 is a graph showing the relationship between the speed of a car and time determined based on the relationship between approximate braking torque and time in FIG.
  • FIG. 6 is a graph showing the relationship between the acceleration of the car and time determined based on the relationship between the approximate braking torque and time in FIG.
  • FIG. 7 is a graph showing the relationship between the first overspeed detection level and the position of the car determined based on the relationship between the approximate braking torque and time in FIG.
  • FIG. 10 is a graph showing the relationship between the speed of the force and the time obtained based on the relationship between the braking force and time in FIG.
  • FIG. 12 is a graph showing the relationship between the speed of the force and the time determined based on the relationship between the approximate braking force and time in FIG.
  • FIG. 13 is a graph showing the relationship between car acceleration and time determined based on the relationship between approximate braking force and time in FIG. 11.
  • FIG. 14 is a graph showing the relationship between the second overspeed detection level and the position of the car determined based on the relationship between the approximate braking force and time in FIG.
  • FIG. 1 is a configuration diagram showing an elevator apparatus according to Embodiment 1 of the present invention.
  • a pair of force guide rails 3 for guiding a force 2 and a pair of counterweight guide rails 5 for guiding a counterweight 4 are installed in the hoistway 1.
  • a lifting machine (driving device) 6 for raising and lowering the car 2 and the counterweight 4 in the hoistway 1 there is a lifting machine (driving device) 6 for raising and lowering the car 2 and the counterweight 4 in the hoistway 1, and a sled wheel 7 arranged in the vicinity of the hoisting machine 6. Is provided.
  • the hoisting machine 6 has a hoisting machine main body 8 including a motor, and a drive sheave 9 rotated by the hoisting machine main body 8.
  • the lifting machine main body 8 is provided with a lifting machine brake device (braking device) 10 for braking the rotation of the drive sheave 9.
  • a plurality of main ropes 11 are wound around the drive sheave 9 and the deflector wheel 7.
  • the car 2 and the counterweight 4 are suspended in the hoistway 1 by the main ropes 11.
  • the force 2 and the counterweight 4 are moved up and down in the hoistway 1 by rotating the drive sheave 9.
  • the car 2 is mounted with a pair of emergency stop devices (braking devices) 12 disposed to face the car guide rails 3 respectively.
  • Each emergency stop device 12 has a wedge (braking member) that can be brought into and out of contact with the force guide rail 3.
  • the car 2 is forcibly braked when each wedge comes into contact with the car guide rail 3.
  • a speed governor 14 including a speed governor sheave 13 is provided above the hoistway 1.
  • a tension wheel (not shown) is provided at the lower part of the hoistway 1.
  • a governor rope 15 is wound around the governor sheave 13 and the tensioning vehicle. One end and the other end of the governor rope 15 are connected to the emergency stop device 12 via a connecting rod 16. Thus, the governor rope 15 is moved as the force 2 moves, and the governor sheave 13 is rotated according to the speed of the force 2.
  • the speed governor 14 is provided with a speed detector (for example, a rotary encoder) 17 that generates a signal corresponding to the rotation of the speed governor sheave 13. Information from the speed detector 17 is transmitted to the elevator safety device 18.
  • a speed detector for example, a rotary encoder
  • the safety device 18 obtains the speed of the force 2 based on information from the speed detector 17.
  • the safety device 18 includes a first overspeed detection level for detecting the first overspeed of the cage 2, a second overspeed detection level for detecting the second overspeed of the force 2, However, the force is set according to the position of the force 2.
  • the second overspeed detection level is larger than the first overspeed detection level.
  • the safety device 18 outputs an operation signal to the lifting device brake device 10 when the speed force of the force 2 exceeds the first overspeed detection level, and adjusts when the second overspeed detection level is exceeded. An operation signal is output to the speed machine 14.
  • the hoisting machine brake device 10 performs a braking operation when receiving the operation signal from the safety device 18.
  • the rotation of the drive sheave 9 is controlled by the braking operation of the lifting device brake device 10.
  • the speed governor 14 performs an operation of gripping the speed governor rope 15 when receiving an operation signal from the safety device 18.
  • the connecting rod 16 is pulled up against the force S car 2, and each emergency stop device 12 is braked.
  • each wedge comes into contact with the car guide rail 3, and the force 2 is forcibly stopped.
  • the speed of the cage 2 depends on at least one of braking of the drive sheave 9 by the lifting device brake device 10 and braking of the cage 2 by each emergency stop device 12. By the time, the car crash speed is less than the permissible speed.
  • the safety device 18 causes the speed of the car 2 to be less than the allowable collision speed of the car shock absorber before the force 2 reaches the position of the car shock absorber.
  • each of the lifting device brake device 10 and the speed governor 14 is controlled.
  • the speed of the force 2 is constantly detected by the speed detector 17.
  • the braking operation of the lifting device brake device 10 is performed under the control of the safety device 18. Thereby, the rotation of the drive sheave 9 is braked.
  • the speed of the car 2 further increases after exceeding the first overspeed detection level, and when the speed exceeds the second overspeed detection level, the governor rope 15 is controlled by the safety device 18 under control. Gripped by machine 14. As a result, the connecting rod 16 is pulled up, and the braking operation of each emergency stop device 12 is performed. As a result, force 2 is forcibly stopped.
  • FIG. 2 is a graph showing the relationship between the braking torque applied to the drive sheave 9 and the time after the safety device 18 of FIG. 1 detects the first overspeed of the car 2 (that is, the temporal change of the braking torque). It is. As shown in the figure, when the safety device 18 detects the first overspeed of the force 2, the braking operation of the lifting device brake device 10 is started. After this, until the operation delay time t elapses and time T is reached, braking is performed.
  • Torque is not generated.
  • the braking torque is generated at time ⁇ and continues as time passes.
  • the braking torque is maintained as it is.
  • FIG. 3 is a graph showing the relationship between the speed of the car 2 and time (that is, the temporal change in the speed of the force 2) obtained based on the relationship between the braking torque and time in FIG. It is. As shown in the figure, after the safety device 18 detects the first overspeed of the force 2, the drive sheave until the time T is reached.
  • the braking torque applied to the drive sheave 9 is generated and the force 2 starts to decelerate. [0023] At this time, it is applied to the drive sheave 9 until time T when the braking torque reaches the maximum value.
  • the time-dependent change in the braking torque as shown in Fig. 2 is obtained from the mechanical specifications such as the weight of the lifting device 10 and the car 2 for the hoisting machine. Is calculated. At this time, the time variation of the braking torque is calculated under the load condition of the car 2 where the force 2 is most difficult to decelerate. After this, a simplified relationship between approximate braking torque and time (i.e., approximate braking torque time) by a method set in advance based on the calculated temporal change in braking torque. Change).
  • FIG. 4 is a graph showing simultaneously the relationship between the braking torque and time in FIG. 2 and the relationship between the approximate braking torque and time.
  • the braking torque is calculated after the operation delay time t has elapsed since the safety device 18 detected the first overspeed of the car 2. It is 0 until time T, and it instantaneously increases from 0 to the maximum value at time T.
  • the method for obtaining the relation between the approximate braking torque and time is not limited to the method shown by the broken line in FIG.
  • the torque may be increased instantaneously.
  • FIG. 5 is a graph showing the relationship between the speed of the car 2 and the time determined based on the relationship between the approximate braking torque and the time in FIG.
  • FIG. 6 is a graph showing the relationship between the acceleration of the car 2 and time determined based on the relationship between the braking torque for approximation in FIG. 4 and time.
  • the speed of the force 2 is constant acceleration a from the time when the safety device 18 detects the first overspeed of the car 2 to the time T after the operation delay time t elapses.
  • Equation (1) Assuming that the time from when the device 18 detects the first overspeed of the car 2 to when the force car 2 collides with the car shock absorber, the relationship of Equation (1) holds.
  • V (X) (-2-a ⁇ ⁇ + ⁇ 2 ) ° ⁇ 5 ⁇ ' ⁇ (2)
  • the position and speed of the force 2 when the safety device 18 detects the first overspeed of the force 2 is (X, ⁇ ), and the position and speed of the car 2 when the braking torque is generated. Is ( ⁇ , ⁇ ), the equation (4
  • Equation (3) From Equation (3) and Equation (4), t 'and (x, ⁇ ) are eliminated, and V is obtained as a function of X, then Equation (5)
  • V (X) (a 2 -t 2 -2-a ⁇ ⁇ -a -a t 2 + v 2.) ° - 5 + a t -.
  • the first overspeed detection level v is obtained as a function of the position X of the car 2,
  • Equation (6) means a difference or a value of v (x) and v (x).
  • Predetermined added value is set to the first overspeed detection level V
  • FIG. 7 is a graph showing the relationship between the first overspeed detection level and the position of the car 2 obtained based on the relationship between the approximate braking torque and time in FIG.
  • an overspeed detection value change section predetermined section
  • the overspeed detection value constant section that is adjacent to the detection value change section and in which the value of the first overspeed detection level 30 is constant regardless of the position of the car 2.
  • the value of the first overspeed detection level 30 in the overspeed detection value change section is the value obtained by the above method.
  • Curves 20 to 23 show changes in the speed of the car 2 when the speed of the car 2 exceeds the first overspeed detection level 30 at four different positions in the overspeed detection value change section. All curves 20 to 23 show the value of the car impact permissible speed of the force shock absorber at the position of the car shock absorber. Therefore, when the car 2 reaches the position of the car shock absorber, the speed of the force car 2 becomes the value of the allowable car collision speed of the force shock absorber.
  • the first overspeed detection level for starting the braking operation of the hoisting machine brake apparatus 10 is preliminarily set in the safety apparatus 18 according to the position of the car 2. Therefore, the value of the first overspeed detection level in the predetermined section of the force shock absorber force is set so that the speed of the force 2 becomes the allowable car collision speed at the position of the car shock absorber! It is possible to prevent variations in speed when the force 2 collides with the car shock absorber. Accordingly, the capacity of the force shock absorber can be exhibited efficiently, and the car collision allowable speed of the car shock absorber can be set low. This allows you to relax The impactor can be reduced in size and the hoistway 1 can be reduced.
  • the cage 2 is braked by braking the cage 2 with the existing braking device. At this position, the speed of the car 2 can be suppressed to the allowable collision speed of the car shock absorber.
  • FIG. 8 is a block diagram showing an elevator apparatus according to Embodiment 2 of the present invention.
  • the car 2 is provided with a speed detector 31 (for example, a linear encoder) for detecting the speed of the force 2.
  • Information (electrical signal) from the speed detector 31 is transmitted to the safety device 18.
  • the safety device 18 obtains the speed of the force 2 based on information from the speed detector 31.
  • the safety device 18 includes a first overspeed detection level obtained in the same manner as in the first embodiment, a second overspeed detection level that is greater than the first overspeed detection level, and a force cage. It is preset according to the position of 2. Further, the safety device 18 outputs an operation signal to the lifting device brake device (first braking device) 10 when the speed of the force 2 exceeds the first overspeed detection level, and detects the second overspeed detection. When the level is exceeded, an operation signal is output to each emergency stop device (second braking device) 12.
  • the lifting device brake device 10 performs a braking operation when receiving the operation signal from the safety device 18.
  • the rotation of the drive sheave 9 is controlled by the braking operation of the lifting device brake device 10.
  • Each emergency stop device 12 performs a braking operation when receiving an operation signal from the safety device 18.
  • each wedge comes into contact with the car guide rail 3, and the force 2 is forcibly stopped. That is, the hoisting machine brake device 10 and the emergency stop device 12 start the braking operation at different overspeed detection levels, and brake the car 2 by different methods.
  • Other configurations and operations are the same as those in the first embodiment.
  • Figure 9 shows the 6 is a graph showing a relationship between braking force applied to the force 2 after the entire device 18 detects the second overspeed and time (that is, temporal change of braking force with respect to the force 2).
  • the safety device 18 detects the second overspeed of the force 2
  • the braking operation of the lifting device brake device 10 is started. After this, until the operation delay time t elapses until time T,
  • the braking force is generated at time ⁇ and continuously increases with time.
  • FIG. 10 is a graph showing the relationship between the speed of the car 2 and time (that is, the temporal change in the speed of the force 2) obtained based on the relationship between the braking force and time in FIG. is there. As shown in the figure, until the time T comes after the safety device 18 detects the second overspeed of the car 2,
  • a temporal change in braking force as shown in FIG. 9 is calculated from the mechanical specifications such as the weight of each emergency stop device 12 and car 2. .
  • the time change of braking force at this time is calculated under the load condition of force 2 where car 2 is most difficult to decelerate.
  • FIG. 11 is a graph showing simultaneously the relationship between the braking force and time in FIG. 9 and the relationship between the approximate braking force and time. As shown in the figure, in the relation between the approximate braking force and time, the braking force is the operation delay time t after the braking operation of each emergency stop device 12 is started.
  • time T is reached, and at time T, the time instantly increases from 0 to the maximum value.
  • FIG. 12 is a graph showing the relationship between the speed of the car 2 and time obtained based on the relationship between the approximate braking force and time in FIG.
  • FIG. 13 is a graph showing the relationship between the acceleration of the force 2 and the time determined based on the relationship between the braking force for approximation and the time in FIG.
  • the speed of the force 2 is constant acceleration a from the time when the safety device 18 detects the second overspeed of the car 2 to the time T after the operation delay time t elapses.
  • Car 2 stops when time t passes after time t.
  • each emergency stop device 12 If the car 2 collides with the car shock absorber before the braking force is generated, the car 2 collides with the power shock absorber without being controlled. Therefore, the position and speed of the force 2 when the braking operation of each emergency stop device 12 is started is (X, ⁇ ), and each emergency stop device 12
  • V (X) (-2-a ⁇ ⁇ + ⁇ 2 ) ° ⁇ 5 ⁇ ' ⁇ (8)
  • Equation (9) and Equation (10) From Equation (9) and Equation (10), t ′ and (x, v) are eliminated and v is obtained as a function of X.
  • Equation (11) is obtained.
  • V (X) (a 2 -t 2 -2-a ⁇ ⁇ -a -a -t 2 + v 2) ° - 5 a -t ⁇ (11)
  • the first overspeed detection level v is obtained as a function of the position X of the car 2,
  • V (X) Max ⁇ v (x), v (x) ⁇ --- (12)
  • Expression (12) means a larger value of v (X) and V (X).
  • the predetermined added value is set to the second overspeed detection level V.
  • FIG. 14 is a graph showing the relationship between the second overspeed detection level and the position of the car 2 obtained based on the relationship between the approximate braking force and time in FIG.
  • an overspeed detection value change section predetermined section
  • the overspeed An overspeed detection value constant section is set adjacent to the detection value change section, where the value of the second overspeed detection level 40 is constant regardless of the position of the car 2.
  • the value of the second overspeed detection level 40 in the overspeed detection value change section is a value obtained by the above method.
  • Curves 50 to 53 show changes in the speed of the car 2 when the speed of the car 2 exceeds the second overspeed detection level 40 at four different positions in the overspeed detection value change section. All curves 50-53 show the value of the car impact permissible speed of the force shock absorber at the position of the car shock absorber. Therefore, car 2 is the car When the position of the shock absorber is reached, the speed of the force 2 becomes the value of the allowable car collision speed of the force shock absorber. That is, the speed of the force 2 is such that the car 2 where the braking operation of each emergency stop device 12 is started is allowed to collide with the car shock absorber at a car collision allowable speed. It has become.
  • the first and second overspeed detection levels are set in advance in the safety device 18, and when the speed of the force 2 exceeds the first overspeed detection level.
  • the elevator brake device 10 that starts the braking operation and the emergency stop device 12 that starts the braking operation when the speed of the car 2 exceeds the second overspeed detection level are different from each other in the car. 2 is braked, so that the car 2 can be braked by different braking methods according to the abnormal level of the speed of the car 2, and the force 2 can be braked more reliably. It is out.
  • the cage 2 can be braked by the existing braking device, and the speed of the cage 2 can be increased. At the position of the shock absorber, it can be easily suppressed below the force collision allowable speed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Maintenance And Inspection Apparatuses For Elevators (AREA)

Abstract

An elevator device in which a car damper is installed at the inside bottom part of a hoistway. A brake device for a hoist for braking the movement of a car is installed on the hoist. When the speed of the car is abnormal, a safety device controls the operation of the brake device for the hoist so that the speed of the car can be reduced to the allowable impact speed of the damper or less before the car reaches the position of the damper. When the speed of the car exceeds an overspeed detection level, the safety device starts to operate the brake device for the hoist. The value of the overspeed detection level in a predetermined district starting at the position of the damper is set according to the position of the car so that the speed of the car can be reduced to the value of the allowable impact speed of the damper at the position of the damper by braking applied by the brake device for the hoist to the car.

Description

エレベータ装置  Elevator equipment
技術分野  Technical field
[0001] この発明は、力ごへの衝撃をやわらげるための緩衝器が昇降路内の底部に設けら れたエレベータ装置に関するものである。 背景技術  TECHNICAL FIELD [0001] The present invention relates to an elevator apparatus in which a shock absorber for reducing an impact on a force is provided at the bottom of a hoistway. Background art
[0002] 従来、力ごの速度が第 1の過速度検出レベルを超えたときに卷上機のブレーキが 作動され、力ごの速度が第 2の過速度検出レベルを超えたときに非常止め装置を作 動させるエレベータ装置が提案されて 、る。このような従来のエレベータ装置では、 昇降路の高さ方向の長さを小さくするために、第 1及び第 2の過速度検出レベルの値 が昇降路の端部に近づくに従って連続的に小さくなるように設定されている。また、 第 1及び第 2の過速度検出レベルは、エレベータの通常運転時に走行される走行速 度パターンを基準にして作成される (例えば、特許文献 1参照)。  [0002] Conventionally, when the speed of the force exceeds the first overspeed detection level, the brake of the lifting machine is operated, and when the speed of the force exceeds the second overspeed detection level, the emergency stop is performed. An elevator device for operating the device has been proposed. In such a conventional elevator apparatus, in order to reduce the length of the hoistway in the height direction, the values of the first and second overspeed detection levels continuously decrease as they approach the end of the hoistway. Is set to Further, the first and second overspeed detection levels are created based on a traveling speed pattern that is traveled during normal operation of the elevator (see, for example, Patent Document 1).
[0003] 特許文献 1:特開 2000— 110868号公報  [0003] Patent Document 1: Japanese Unexamined Patent Publication No. 2000-110868
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] しかし、従来では、第 1及び第 2の過速度検出レベルがかごの走行速度パターンを 基準にして作成されるので、卷上機のブレーキや非常止め装置が作動されるときの 力ごの位置によって、昇降路の底部に設置されている緩衝器に衝突するときのかご の速度が異なる。従って、緩衝器に衝突するときのかごの速度の最大値に緩衝器の 衝突許容速度を設定しなければならず、緩衝器が大形ィ匕してしまう。これにより、昇 降路の縮小化を図ることができなくなってしまう。  [0004] However, conventionally, since the first and second overspeed detection levels are created based on the traveling speed pattern of the car, the force when the brake or emergency stop device of the lifting machine is activated is used. The speed of the car when it collides with a shock absorber installed at the bottom of the hoistway differs depending on the position of the hoistway. Therefore, the allowable collision speed of the shock absorber must be set to the maximum value of the speed of the car when it collides with the shock absorber, and the shock absorber becomes large. This makes it impossible to reduce the ascending and descending path.
[0005] この発明は、上記のような問題点を解決することを課題としてなされたものであり、 縮小化を図ることができるエレベータ装置を得ることを目的とする。  [0005] An object of the present invention is to solve the above-described problems, and an object of the present invention is to provide an elevator apparatus that can be reduced in size.
課題を解決するための手段  Means for solving the problem
[0006] この発明に係るエレベータ装置は、昇降路内を昇降されるかご、昇降路内の底部 に設けられた力ごの緩衝器、力ごの移動を制動するための制動装置、及び力ごの速 度が異常であるときに制動装置を動作させて、力ごが緩衝器の位置に達するまでに 、カゝごの速度を緩衝器の衝突許容速度以下にする安全装置を備え、安全装置には 、過速度検出レベルがかごの位置に応じてあら力じめ設定され、安全装置は、かごの 速度が過速度検出レベルを超えたときに、制動装置の動作を開始させるようになって おり、緩衝器の位置力 所定の区間における過速度検出レベルの値は、制動装置に よるかごの制動によって、力ごの速度が緩衝器の位置で所定値になるように設定され ている。 [0006] An elevator apparatus according to the present invention includes a car that is raised and lowered in a hoistway, a shock absorber provided at the bottom of the hoistway, a braking device for braking the movement of the force, and a force Speed of The safety device is equipped with a safety device that operates the braking device when the degree is abnormal and reduces the speed of the cage below the allowable impact speed of the shock absorber until the force reaches the position of the shock absorber. The overspeed detection level is set according to the position of the car, and the safety device starts the operation of the braking device when the speed of the car exceeds the overspeed detection level. Positional force of the shock absorber The value of the overspeed detection level in a predetermined section is set so that the speed of the force becomes a predetermined value at the position of the shock absorber by braking the car by the braking device.
図面の簡単な説明 Brief Description of Drawings
圆 1]この発明の実施の形態 1によるエレベータ装置を示す構成図である。 圆 1] A configuration diagram illustrating an elevator apparatus according to Embodiment 1 of the present invention.
圆 2]図 1の安全装置が力ごの第 1過速度を検出した後の駆動シーブに与えられる制 動トルクと時間との関係を示すグラフである。 [2] FIG. 2 is a graph showing the relationship between the braking torque applied to the drive sheave after the safety device of FIG. 1 detects the first overspeed of the force and the time.
圆 3]図 2の制動トルクと時間との関係に基づいて求めた力ごの速度と時間との関係 を示すグラフである。 [3] A graph showing the relationship between the speed of the force and the time determined based on the relationship between the braking torque and the time in FIG.
[図 4]図 2の制動トルクと時間との関係と、近似用の制動トルクと時間との関係とを同時 に示すグラフである。  FIG. 4 is a graph showing simultaneously the relationship between the braking torque and time in FIG. 2 and the relationship between the approximate braking torque and time.
[図 5]図 4の近似用の制動トルクと時間との関係に基づいて求めたかごの速度と時間 との関係を示すグラフである。  FIG. 5 is a graph showing the relationship between the speed of a car and time determined based on the relationship between approximate braking torque and time in FIG.
[図 6]図 4の近似用の制動トルクと時間との関係に基づいて求めたかごの加速度と時 間との関係を示すグラフである。  FIG. 6 is a graph showing the relationship between the acceleration of the car and time determined based on the relationship between the approximate braking torque and time in FIG.
[図 7]図 4の近似用の制動トルクと時間との関係に基づいて求めた第 1過速度検出レ ベルとかごの位置との関係を示すグラフである。  FIG. 7 is a graph showing the relationship between the first overspeed detection level and the position of the car determined based on the relationship between the approximate braking torque and time in FIG.
圆 8]この発明の実施の形態 2によるエレベータ装置を示す構成図である。 8] A configuration diagram illustrating an elevator apparatus according to Embodiment 2 of the present invention.
圆 9]図 8の安全装置が力ごの第 2過速度を検出した後のかごに与えられる制動力と 時間との関係を示すグラフである。 9] A graph showing the relationship between the braking force applied to the car and the time after the safety device of FIG. 8 detects the second overspeed of the force.
圆 10]図 9の制動力と時間との関係に基づいて求めた力ごの速度と時間との関係を 示すグラフである。 [10] FIG. 10 is a graph showing the relationship between the speed of the force and the time obtained based on the relationship between the braking force and time in FIG.
圆 11]図 9の制動力と時間との関係と、近似用の制動力と時間との関係とを同時に示 すグラフである。 [図 12]図 11の近似用の制動力と時間との関係に基づいて求めた力ごの速度と時間 との関係を示すグラフである。 [11] This is a graph that simultaneously shows the relationship between the braking force and time in FIG. 9 and the relationship between the approximate braking force and time. FIG. 12 is a graph showing the relationship between the speed of the force and the time determined based on the relationship between the approximate braking force and time in FIG.
[図 13]図 11の近似用の制動力と時間との関係に基づいて求めたかごの加速度と時 間との関係を示すグラフである。  FIG. 13 is a graph showing the relationship between car acceleration and time determined based on the relationship between approximate braking force and time in FIG. 11.
[図 14]図 11の近似用の制動力と時間との関係に基づいて求めた第 2過速度検出レ ベルとかごの位置との関係を示すグラフである。  FIG. 14 is a graph showing the relationship between the second overspeed detection level and the position of the car determined based on the relationship between the approximate braking force and time in FIG.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0008] 以下、この発明の好適な実施の形態について図面を参照して説明する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
実施の形態 1.  Embodiment 1.
図 1は、この発明の実施の形態 1によるエレベータ装置を示す構成図である。図に おいて、昇降路 1内には、力ご 2を案内する一対の力ごガイドレール 3と、釣合おもり 4 を案内する一対の釣合おもりガイドレール 5とが設置されている。昇降路 1の上部に は、かご 2及び釣合おもり 4を昇降路 1内で昇降させるための卷上機 (駆動装置) 6と、 卷上機 6の近傍に配置されたそらせ車 7とが設けられている。  FIG. 1 is a configuration diagram showing an elevator apparatus according to Embodiment 1 of the present invention. In the figure, a pair of force guide rails 3 for guiding a force 2 and a pair of counterweight guide rails 5 for guiding a counterweight 4 are installed in the hoistway 1. In the upper part of the hoistway 1, there is a lifting machine (driving device) 6 for raising and lowering the car 2 and the counterweight 4 in the hoistway 1, and a sled wheel 7 arranged in the vicinity of the hoisting machine 6. Is provided.
[0009] 卷上機 6は、モータを含む卷上機本体 8と、卷上機本体 8により回転される駆動シー ブ 9とを有している。卷上機本体 8には、駆動シーブ 9の回転を制動するための卷上 機用ブレーキ装置 (制動装置) 10が設けられている。  The hoisting machine 6 has a hoisting machine main body 8 including a motor, and a drive sheave 9 rotated by the hoisting machine main body 8. The lifting machine main body 8 is provided with a lifting machine brake device (braking device) 10 for braking the rotation of the drive sheave 9.
[0010] 駆動シーブ 9及びそらせ車 7には、複数本の主索 11が巻き掛けられている。かご 2 及び釣合おもり 4は、各主索 11により昇降路 1内に吊り下げられている。力ご 2及び釣 合おもり 4は、駆動シーブ 9が回転されることにより昇降路 1内を昇降される。  A plurality of main ropes 11 are wound around the drive sheave 9 and the deflector wheel 7. The car 2 and the counterweight 4 are suspended in the hoistway 1 by the main ropes 11. The force 2 and the counterweight 4 are moved up and down in the hoistway 1 by rotating the drive sheave 9.
[0011] かご 2には、各かごガイドレール 3にそれぞれ対向して配置された一対の非常止め 装置 (制動装置) 12が搭載されている。各非常止め装置 12は、力ごガイドレール 3に 接離可能な楔 (制動部材)を有している。かご 2は、各楔がかごガイドレール 3に接触 することにより強制的に制動される。  [0011] The car 2 is mounted with a pair of emergency stop devices (braking devices) 12 disposed to face the car guide rails 3 respectively. Each emergency stop device 12 has a wedge (braking member) that can be brought into and out of contact with the force guide rail 3. The car 2 is forcibly braked when each wedge comes into contact with the car guide rail 3.
[0012] 昇降路 1内の底部には、かご 2が昇降路 1内の底部に直接衝突することを防止して 力ご 2への衝撃をやわらげる力ご用緩衝器と、釣合おもり 4が昇降路 1内の底部に直 接衝突することを防止して釣合おもり 4への衝撃をやわらげる釣合おもり用緩衝器と が設置されている (いずれも図示せず)。なお、力ご用緩衝器には、力ご 2が衝突する ときに許容される力ご 2の速度の最大値が衝突許容速度として設定され、釣合おもり 用緩衝器には、釣合おもり 4が衝突するときに許容される釣合おもり 4の速度の最大 値が衝突許容速度として設定されて!ヽる。 [0012] At the bottom of the hoistway 1, there are a force buffer and a counterweight 4 that prevent the car 2 from directly colliding with the bottom of the hoistway 1 and soften the impact on the force 2. A shock absorber for a counterweight that prevents a direct collision with the bottom of the hoistway 1 and softens the shock to the counterweight 4 is installed (not shown). Note that force 2 collides with the force buffer. The maximum allowable speed of the force 2 is set as the allowable collision speed, and the counterweight shock absorber has a maximum speed of the counterweight 4 allowed when the counterweight 4 collides. The value is set as the allowable collision speed!
[0013] また、昇降路 1の上部には、調速機シーブ 13を含む調速機 14が設けられている。 In addition, a speed governor 14 including a speed governor sheave 13 is provided above the hoistway 1.
昇降路 1の下部には、張り車 (図示せず)が設けられている。調速機シーブ 13及び張 り車間には、調速機ロープ 15が巻き掛けられている。調速機ロープ 15の一端部及び 他端部は、連結棒 16を介して非常止め装置 12に接続されている。これにより、調速 機ロープ 15は、力ご 2の移動に伴って移動され、調速機シーブ 13は、力ご 2の速度 に応じて回転される。  A tension wheel (not shown) is provided at the lower part of the hoistway 1. A governor rope 15 is wound around the governor sheave 13 and the tensioning vehicle. One end and the other end of the governor rope 15 are connected to the emergency stop device 12 via a connecting rod 16. Thus, the governor rope 15 is moved as the force 2 moves, and the governor sheave 13 is rotated according to the speed of the force 2.
[0014] 調速機 14には、調速機シーブ 13の回転に応じた信号を発生する速度検出器 (例 えばロータリエンコーダ等) 17が設けられている。速度検出器 17からの情報は、エレ ベータの安全装置 18へ伝送される。  The speed governor 14 is provided with a speed detector (for example, a rotary encoder) 17 that generates a signal corresponding to the rotation of the speed governor sheave 13. Information from the speed detector 17 is transmitted to the elevator safety device 18.
[0015] 安全装置 18は、速度検出器 17からの情報に基づいて、力ご 2の速度を求めるよう になっている。また、安全装置 18には、カゝご 2の第 1過速度を検出するための第 1過 速度検出レベルと、力ご 2の第 2過速度を検出するための第 2過速度検出レベルとが 、力ご 2の位置に応じてあら力じめ設定されている。第 2過速度検出レベルは、第 1過 速度検出レベルよりも大きな値とされている。また、安全装置 18は、力ご 2の速度力 第 1過速度検出レベルを超えたときに卷上機用ブレーキ装置 10へ作動信号を出力 し、第 2過速度検出レベルを超えたときに調速機 14へ作動信号を出力するようにな つている。  The safety device 18 obtains the speed of the force 2 based on information from the speed detector 17. The safety device 18 includes a first overspeed detection level for detecting the first overspeed of the cage 2, a second overspeed detection level for detecting the second overspeed of the force 2, However, the force is set according to the position of the force 2. The second overspeed detection level is larger than the first overspeed detection level. The safety device 18 outputs an operation signal to the lifting device brake device 10 when the speed force of the force 2 exceeds the first overspeed detection level, and adjusts when the second overspeed detection level is exceeded. An operation signal is output to the speed machine 14.
[0016] 卷上機用ブレーキ装置 10は、安全装置 18からの作動信号を受信したときに、制動 動作を行う。駆動シーブ 9の回転は、卷上機用ブレーキ装置 10の制動動作により制 動される。  The hoisting machine brake device 10 performs a braking operation when receiving the operation signal from the safety device 18. The rotation of the drive sheave 9 is controlled by the braking operation of the lifting device brake device 10.
[0017] また、調速機 14は、安全装置 18からの作動信号を受信したときに、調速機ロープ 1 5を把持する動作を行う。調速機 14による調速機ロープ 15の把持により、連結棒 16 力 Sかご 2に対して引き上げられ、各非常止め装置 12の制動動作が行われる。各非常 止め装置 12の制動動作により、各楔がかごガイドレール 3に接触し、力ご 2が強制的 に停止される。 [0018] 力ご 2の速度は、卷上機用ブレーキ装置 10による駆動シーブ 9の制動及び各非常 止め装置 12によるかご 2の制動の少なくともいずれかにより、力ご 2がかご用緩衝器 の位置に達するまでには、かご衝突許容速度以下になるようになつている。即ち、安 全装置 18は、力ご 2の速度が異常であるときに、力ご 2がかご用緩衝器の位置に達 するまでにかご 2の速度がかご用緩衝器の衝突許容速度以下になるように、卷上機 用ブレーキ装置 10及び調速機 14のそれぞれを制御するようになっている。 The speed governor 14 performs an operation of gripping the speed governor rope 15 when receiving an operation signal from the safety device 18. When the governor rope 15 is gripped by the governor 14, the connecting rod 16 is pulled up against the force S car 2, and each emergency stop device 12 is braked. By the braking operation of each emergency stop device 12, each wedge comes into contact with the car guide rail 3, and the force 2 is forcibly stopped. [0018] The speed of the cage 2 depends on at least one of braking of the drive sheave 9 by the lifting device brake device 10 and braking of the cage 2 by each emergency stop device 12. By the time, the car crash speed is less than the permissible speed. That is, when the speed of the car 2 is abnormal, the safety device 18 causes the speed of the car 2 to be less than the allowable collision speed of the car shock absorber before the force 2 reaches the position of the car shock absorber. Thus, each of the lifting device brake device 10 and the speed governor 14 is controlled.
[0019] 次に、動作について説明する。エレベータの運転時には、力ご 2の速度が速度検出 器 17により常時検出されている。力ご 2の速度が第 1過速度検出レベルを超えたとき には、安全装置 18の制御により、卷上機用ブレーキ装置 10の制動動作が行われる 。これにより、駆動シーブ 9の回転が制動される。  Next, the operation will be described. During the operation of the elevator, the speed of the force 2 is constantly detected by the speed detector 17. When the speed of the force 2 exceeds the first overspeed detection level, the braking operation of the lifting device brake device 10 is performed under the control of the safety device 18. Thereby, the rotation of the drive sheave 9 is braked.
[0020] かご 2の速度が第 1過速度検出レベルを超えた後にもさらに上昇し、第 2過速度検 出レベルを超えたときには、安全装置 18の制御により、調速機ロープ 15が調速機 14 に把持される。これにより、連結棒 16が引き上げられ、各非常止め装置 12の制動動 作が行われる。これにより、力ご 2が強制的に停止される。  [0020] The speed of the car 2 further increases after exceeding the first overspeed detection level, and when the speed exceeds the second overspeed detection level, the governor rope 15 is controlled by the safety device 18 under control. Gripped by machine 14. As a result, the connecting rod 16 is pulled up, and the braking operation of each emergency stop device 12 is performed. As a result, force 2 is forcibly stopped.
[0021] 次に、第 1過速度検出レベルの値の導出方法について説明する。図 2は、図 1の安 全装置 18がかご 2の第 1過速度を検出した後の駆動シーブ 9に与えられる制動トルク と時間との関係 (即ち、制動トルクの時間的変化)を示すグラフである。図に示すよう に、安全装置 18が力ご 2の第 1過速度を検出すると、卷上機用ブレーキ装置 10の制 動動作が開始される。この後、動作遅れ時間 tが経過して時刻 Tになるまでは、制動  [0021] Next, a method for deriving the value of the first overspeed detection level will be described. FIG. 2 is a graph showing the relationship between the braking torque applied to the drive sheave 9 and the time after the safety device 18 of FIG. 1 detects the first overspeed of the car 2 (that is, the temporal change of the braking torque). It is. As shown in the figure, when the safety device 18 detects the first overspeed of the force 2, the braking operation of the lifting device brake device 10 is started. After this, until the operation delay time t elapses and time T is reached, braking is performed.
0 1  0 1
トルクは発生しない。制動トルクは、時刻 τになると発生し、時間の経過とともに連続  Torque is not generated. The braking torque is generated at time τ and continues as time passes.
1  1
的に上昇する。この後、制動トルクは、時刻 τになったときに最大値に達する。最大  Rises. After this, the braking torque reaches its maximum value at time τ. Maximum
2  2
値に達した後には、制動トルクはそのまま維持される。  After reaching the value, the braking torque is maintained as it is.
[0022] また、図 3は、図 2の制動トルクと時間との関係に基づいて求めたかご 2の速度と時 間との関係 (即ち、力ご 2の速度の時間的変化)を示すグラフである。図に示すように 、安全装置 18が力ご 2の第 1過速度を検出した後、時刻 Tになるまでは、駆動シーブ [0022] FIG. 3 is a graph showing the relationship between the speed of the car 2 and time (that is, the temporal change in the speed of the force 2) obtained based on the relationship between the braking torque and time in FIG. It is. As shown in the figure, after the safety device 18 detects the first overspeed of the force 2, the drive sheave until the time T is reached.
1  1
9に与えられる制動トルクが発生しないので、力ご 2の速度は上昇し続ける。時刻 Tが  Since the braking torque given to 9 is not generated, the speed of the force 2 continues to increase. Time T is
1 経過した後には、駆動シーブ 9に与えられる制動トルクが発生し、力ご 2が減速し始め る。 [0023] このとき、制動トルクが最大値に達する時刻 Tになるまでは、駆動シーブ 9に与えら After 1 elapses, the braking torque applied to the drive sheave 9 is generated and the force 2 starts to decelerate. [0023] At this time, it is applied to the drive sheave 9 until time T when the braking torque reaches the maximum value.
2  2
れる制動トルクが時間の経過とともに連続的に上昇しているので、力ご 2の減速度も 連続的に大きくなる。時刻 Τが経過した後には、制動トルクが最大値で維持されるの  Since the braking torque generated continuously increases over time, the deceleration of the force 2 also increases continuously. After time Τ has elapsed, the braking torque is maintained at the maximum value.
2  2
で、力ご 2の減速度は一定となり、時刻 Τになったときにかご 2の移動が停止される。  Thus, the deceleration of the force 2 is constant, and the movement of the car 2 is stopped when the time Τ is reached.
3  Three
[0024] 第 1過速度検出レベルを導出するためには、まず、卷上機用ブレーキ装置 10やか ご 2の重量等の機械的仕様から、図 2に示すような制動トルクの時間的変化を算出す る。このとき、制動トルクの時間的変化の算出は、力ご 2が最も減速しづらくなるかご 2 の負荷条件で行う。この後、算出された制動トルクの時間的変化に基づいて、あらか じめ設定された方法により、単純化された近似用の制動トルクと時間との関係 (即ち、 近似用の制動トルクの時間的変化)を求める。  [0024] In order to derive the first overspeed detection level, first, the time-dependent change in the braking torque as shown in Fig. 2 is obtained from the mechanical specifications such as the weight of the lifting device 10 and the car 2 for the hoisting machine. Is calculated. At this time, the time variation of the braking torque is calculated under the load condition of the car 2 where the force 2 is most difficult to decelerate. After this, a simplified relationship between approximate braking torque and time (i.e., approximate braking torque time) by a method set in advance based on the calculated temporal change in braking torque. Change).
[0025] 図 4は、図 2の制動トルクと時間との関係と、近似用の制動トルクと時間との関係とを 同時に示すグラフである。図に示すように、近似用の制動トルクと時間との関係にお いて、制動トルクは、安全装置 18がかご 2の第 1過速度を検出してから、動作遅れ時 間 tが経過して時刻 Tになるまでは 0であり、時刻 Tで瞬時に 0から最大値まで上昇 FIG. 4 is a graph showing simultaneously the relationship between the braking torque and time in FIG. 2 and the relationship between the approximate braking torque and time. As shown in the figure, in the relation between the approximate braking torque and time, the braking torque is calculated after the operation delay time t has elapsed since the safety device 18 detected the first overspeed of the car 2. It is 0 until time T, and it instantaneously increases from 0 to the maximum value at time T.
1 4 4 1 4 4
し、時刻 τが経過した後には、最大値で維持される(図中の破線)。即ち、動作遅れ  After the time τ elapses, the maximum value is maintained (broken line in the figure). That is, operation delay
4  Four
時間 tが経過した時刻 Tで制動トルクを瞬時に 0から最大値まで上昇させるような近 At time T when time t has passed, the braking torque is increased from 0 to the maximum value instantly.
1 4 14
似用の制動トルクと時間との関係を求める。なお、近似用の制動トルクと時間との関 係を求める方法としては、図 4の破線で示す方法に限定されず、例えば制動トルクが 0から最大値になるまでに、複数段階に分けて制動トルクを瞬時に上昇させるようにし てもよい。  Find the relationship between similar braking torque and time. The method for obtaining the relation between the approximate braking torque and time is not limited to the method shown by the broken line in FIG. The torque may be increased instantaneously.
[0026] この後、近似用の制動トルクと時間との関係に基づいて、かご 2の速度及び加速度 を時間との関係で求める。図 5は、図 4の近似用の制動トルクと時間との関係に基づ いて求めたかご 2の速度と時間との関係を示すグラフである。また、図 6は、図 4の近 似用の制動トルクと時間との関係に基づいて求めたかご 2の加速度と時間との関係を 示すグラフである。図に示すように、力ご 2の速度は、安全装置 18がかご 2の第 1過速 度を検出してから、動作遅れ時間 tが経過して時刻 Tになるまでは、一定の加速度 a  [0026] Thereafter, the speed and acceleration of the car 2 are determined in relation to time based on the relationship between the approximate braking torque and time. FIG. 5 is a graph showing the relationship between the speed of the car 2 and the time determined based on the relationship between the approximate braking torque and the time in FIG. FIG. 6 is a graph showing the relationship between the acceleration of the car 2 and time determined based on the relationship between the braking torque for approximation in FIG. 4 and time. As shown in the figure, the speed of the force 2 is constant acceleration a from the time when the safety device 18 detects the first overspeed of the car 2 to the time T after the operation delay time t elapses.
1 4 1 で直線的に上昇し、時刻 Tの経過後、一定の加速度 aで直線的に下降する。この後  Ascends linearly at 1 4 1, and after a lapse of time T, descends linearly at a constant acceleration a. After this
4 2  4 2
、時間 tが経過して時刻 Tになったときに、かご 2は停止する。 [0027] 力ご 2の速度及び加速度と時間との関係を求めた後、力ご 2がかご用緩衝器の位置 に達したときの速度が力ご用緩衝器の衝突許容速度 (所定値) Vになるように、第 1過 t When time t has passed and time T is reached, car 2 stops. [0027] After obtaining the relationship between the speed and acceleration of the force 2 and time, the speed when the force 2 reaches the position of the car shock absorber is the allowable collision speed of the force shock absorber (predetermined value). The first excess t
速度検出レベル Vをかご 2の位置 Xの関数として求める。  Find the speed detection level V as a function of car 2 position X.
0 0  0 0
[0028] 具体的には、安全装置 18がかご 2の第 1過速度を検出してから、駆動シーブ 9に制 動トルクが発生するまでの間にかご 2がかご用緩衝器に衝突する場合と、駆動シーブ 9に制動トルクが発生した後に力ご 2がかご用緩衝器に衝突する場合とに分けて考え る。  [0028] Specifically, when the car 2 collides with the car shock absorber between the time when the safety device 18 detects the first overspeed of the car 2 and the time when the driving sheave 9 generates the braking torque. This is divided into the case where the force 2 collides with the car shock absorber after the braking torque is generated in the drive sheave 9.
[0029] 駆動シーブ 9に制動トルクが発生するまでにかご 2がかご用緩衝器に衝突する場合 には、力ご 2が制動されない状態で力ご用緩衝器に衝突する。従って、安全装置 18 力 Sかご 2の第 1過速度を検出するときの力ご 2の位置及び速度を (X ,ν )とし、安全装  [0029] When the car 2 collides with the car shock absorber before the braking torque is generated in the drive sheave 9, the car 2 collides with the force shock absorber without being braked. Therefore, the position and speed of the force 2 when the first overspeed of the safety device 18 force S car 2 is detected is (X, ν), and the safety device
01 01  01 01
置 18がかご 2の第 1過速度を検出してから、力ご 2がかご用緩衝器に衝突するまでの 時間 'とすると、式(1)の関係が成り立つ。  Assuming that the time from when the device 18 detects the first overspeed of the car 2 to when the force car 2 collides with the car shock absorber, the relationship of Equation (1) holds.
1  1
[0030] (X — (V -t ' + l/2-a -t '2), v +a -t ') = (0,ν) ·'·(1) [0030] (X — (V -t '+ l / 2-a -t' 2 ), v + a -t ') = (0, ν) ·' · (1)
01 01 1 1 1 01 1 1 t  01 01 1 1 1 01 1 1 t
[0031] 式(1)の t 'を消去し、 v を X の関数として求めると、式(2)のようになる。  [0031] When t ′ in equation (1) is eliminated and v is obtained as a function of X, equation (2) is obtained.
1 01 01  1 01 01
[0032] V (X ) = (-2-a ·χ +ν2)°·5 ·'·(2) [0032] V (X) = (-2-a · χ + ν 2 ) ° · 5 · '· (2)
01 01 1 01 t  01 01 1 01 t
[0033] また、駆動シーブ 9に制動トルクが発生した後に力ご 2がかご用緩衝器に衝突する 場合、制動トルクが発生してから、力ご 2がかご緩衝器に衝突するまでの時間を t 'と  [0033] Further, when the force 2 collides with the car shock absorber after the braking torque is generated in the drive sheave 9, the time from when the braking torque is generated until the force 2 collides with the car shock absorber is set. t 'and
2 すると、式(3)の関係が成り立つ。  2 Then, the relationship of Formula (3) is established.
[0034] (x -(v -t ' + l/2-a -t '2), v +a -t ') = (0, v) ·'·(3) [0034] (x-(v -t '+ l / 2-a -t' 2 ), v + a -t ') = (0, v) ·' · (3)
1 1 2 2 2 1 2 2 t  1 1 2 2 2 1 2 2 t
[0035] また、安全装置 18が力ご 2の第 1過速度を検出するときの力ご 2の位置及び速度を ( X ,ν )とし、制動トルクが発生したときのかご 2の位置及び速度を (χ ,ν )とすると、式 (4 [0035] Further, the position and speed of the force 2 when the safety device 18 detects the first overspeed of the force 2 is (X, ν), and the position and speed of the car 2 when the braking torque is generated. Is (χ, ν), the equation (4
02 02 1 1 02 02 1 1
)の関係が成り立つ。  ) Relationship holds.
[0036] (x ,v) = (x -(v -t +l/2-a -t 2),v +a -t ) "-(4) [0036] (x, v) = (x-(v -t + l / 2-a -t 2 ), v + a -t) "-(4)
1 1 02 02 1 1 1 02 1 1  1 1 02 02 1 1 1 02 1 1
[0037] 式(3)及び式 (4)より、 t '及び (x ,ν )を消去し、 V を X の関数として求めると、式(5)  [0037] From Equation (3) and Equation (4), t 'and (x, ν) are eliminated, and V is obtained as a function of X, then Equation (5)
2 1 1 02 02  2 1 1 02 02
のようになる。  become that way.
[0038] V (X ) = (a 2-t 2-2-a ·χ —a -a .t 2+v 2)°-5 + a .ta -t ·'·(5) [0038] V (X) = (a 2 -t 2 -2-a · χ -a -a t 2 + v 2.) ° - 5 + a t -. A -t · '· (5)
02 02 2 1 2 02 2 1 1 t 2 1 1 1  02 02 2 1 2 02 2 1 1 t 2 1 1 1
[0039] 以上より、第 1過速度検出レベル vは、かご 2の位置 Xの関数として求められ、以下  [0039] From the above, the first overspeed detection level v is obtained as a function of the position X of the car 2,
0 0  0 0
の式 (6)で表される。 [0040] v (x ) = Max{v (x ),v (x )} " - (6) This is expressed by equation (6). [0040] v (x) = Max {v (x), v (x)} "-(6)
0 0 01 0 02 0  0 0 01 0 02 0
[0041] ただし、式(6)は、 v (x )及び v (x )のうち、 、ずれか大き 、値を意味する。  [0041] However, Equation (6) means a difference or a value of v (x) and v (x).
01 0 02 0  01 0 02 0
[0042] そして、最下階のかご停止位置に向かって正常に走行するかご 2の正常速度バタ ーンと、上記の方法で求めた第 1過速度検出レベル Vとの差が小さぐ例えばかご 2  [0042] Then, the difference between the normal speed pattern of the car 2 that normally runs toward the car stop position on the lowest floor and the first overspeed detection level V obtained by the above method is small. 2
0  0
の揺れによる速度の上昇や速度検出器 17による検出誤差等によって、卷上機用ブ レーキ装置 10が誤作動するおそれがあるときには、卷上機用ブレーキ装置 10の誤 作動を防止するために、所定の加算値を第 1過速度検出レベル V  When there is a possibility that the lifting device brake device 10 may malfunction due to an increase in speed due to the shaking of the aircraft or a detection error caused by the speed detector 17, in order to prevent malfunctioning of the lifting device brake device 10, Predetermined added value is set to the first overspeed detection level V
0に加算して、最終 的な第 1過速度検出レベルを求める。  Add to 0 to obtain the final first overspeed detection level.
[0043] 図 7は、図 4の近似用の制動トルクと時間との関係に基づいて求めた第 1過速度検 出レベルとかご 2の位置との関係を示すグラフである。図に示すように、昇降路 1内に は、第 1過速度検出レベル 30の値がかご用緩衝器の位置に近づくに従って小さくな る過速度検出値変化区間 (所定の区間)と、過速度検出値変化区間に隣接し、第 1 過速度検出レベル 30の値がかご 2の位置にかかわらず一定にされている過速度検 出値一定区間とが設定されている。  FIG. 7 is a graph showing the relationship between the first overspeed detection level and the position of the car 2 obtained based on the relationship between the approximate braking torque and time in FIG. As shown in the figure, in the hoistway 1, there is an overspeed detection value change section (predetermined section) in which the value of the first overspeed detection level 30 decreases as it approaches the position of the car shock absorber, and the overspeed There is an overspeed detection value constant section that is adjacent to the detection value change section and in which the value of the first overspeed detection level 30 is constant regardless of the position of the car 2.
[0044] 過速度検出値変化区間における第 1過速度検出レベル 30の値は、上記の方法に より求めた値とされている。また、曲線 20〜23は、過速度検出値変化区間における 互いに異なる 4つの位置でかご 2の速度が第 1過速度検出レベル 30を超えたときの かご 2の速度の変化を示している。すべての曲線 20〜23は、かご用緩衝器の位置に おいて、力ご用緩衝器のかご衝突許容速度の値になっている。従って、かご 2がかご 用緩衝器の位置に達したときには、力ご 2の速度は、力ご用緩衝器のかご衝突許容 速度の値になる。  [0044] The value of the first overspeed detection level 30 in the overspeed detection value change section is the value obtained by the above method. Curves 20 to 23 show changes in the speed of the car 2 when the speed of the car 2 exceeds the first overspeed detection level 30 at four different positions in the overspeed detection value change section. All curves 20 to 23 show the value of the car impact permissible speed of the force shock absorber at the position of the car shock absorber. Therefore, when the car 2 reaches the position of the car shock absorber, the speed of the force car 2 becomes the value of the allowable car collision speed of the force shock absorber.
[0045] このようなエレベータ装置では、卷上機用ブレーキ装置 10の制動動作を開始する ための第 1過速度検出レベルが安全装置 18にかご 2の位置に応じてあら力じめ設定 されており、力ご用緩衝器力も所定の区間における第 1過速度検出レベルの値は、 力ご 2の速度がかご用緩衝器の位置でかご衝突許容速度になるように設定されて!ヽ るので、力ご 2がかご用緩衝器に衝突するときの速度にばらつきが生じることを防止 することができる。従って、力ご用緩衝器の能力を効率良く発揮させることができ、か ご用緩衝器のかご衝突許容速度を低く設定することができる。これにより、力ご用緩 衝器を小形ィ匕することができ、昇降路 1の縮小化を図ることができる。 In such an elevator apparatus, the first overspeed detection level for starting the braking operation of the hoisting machine brake apparatus 10 is preliminarily set in the safety apparatus 18 according to the position of the car 2. Therefore, the value of the first overspeed detection level in the predetermined section of the force shock absorber force is set so that the speed of the force 2 becomes the allowable car collision speed at the position of the car shock absorber! It is possible to prevent variations in speed when the force 2 collides with the car shock absorber. Accordingly, the capacity of the force shock absorber can be exhibited efficiently, and the car collision allowable speed of the car shock absorber can be set low. This allows you to relax The impactor can be reduced in size and the hoistway 1 can be reduced.
[0046] また、卷上機用ブレーキ装置 10の制動動作により、力ご 2が制動されるようになって いるので、既存の制動装置によってかご 2を制動することにより、力ご用緩衝器の位 置でかご 2の速度をかご用緩衝器の衝突許容速度に抑えることができる。 [0046] Further, since the force 2 is braked by the braking operation of the lifting device brake device 10, the cage 2 is braked by braking the cage 2 with the existing braking device. At this position, the speed of the car 2 can be suppressed to the allowable collision speed of the car shock absorber.
[0047] また、非常止め装置 12の制動動作により、力ご 2が制動されるようになっているので[0047] Moreover, the force 2 is braked by the braking operation of the emergency stop device 12.
、例えばかご 2を吊り下げる主索 11が破断した場合等であっても、力ご 2をより確実に 停止させることができる。 For example, even when the main rope 11 that suspends the car 2 breaks, the force 2 can be stopped more reliably.
[0048] 実施の形態 2. [0048] Embodiment 2.
図 8は、この発明の実施の形態 2によるエレベータ装置を示す構成図である。図に おいて、かご 2には、力ご 2の速度を検出するための速度検出器 (例えばリニアェンコ ーダ等) 31が設けられている。安全装置 18には、速度検出器 31からの情報 (電気的 信号)が伝送される。  FIG. 8 is a block diagram showing an elevator apparatus according to Embodiment 2 of the present invention. In the figure, the car 2 is provided with a speed detector 31 (for example, a linear encoder) for detecting the speed of the force 2. Information (electrical signal) from the speed detector 31 is transmitted to the safety device 18.
[0049] 安全装置 18は、速度検出器 31からの情報に基づいて、力ご 2の速度を求めるよう になっている。また、安全装置 18には、実施の形態 1と同様にして求められた第 1過 速度検出レベルと、第 1過速度検出レベルよりも大きな値とされた第 2過速度検出レ ベルと力 かご 2の位置に応じてあらかじめ設定されている。さらに、安全装置 18は、 力ご 2の速度が、第 1過速度検出レベルを超えたときに卷上機用ブレーキ装置 (第 1 制動装置) 10へ作動信号を出力し、第 2過速度検出レベルを超えたときに各非常止 め装置 (第 2制動装置) 12へ作動信号を出力するようになって 、る。  The safety device 18 obtains the speed of the force 2 based on information from the speed detector 31. In addition, the safety device 18 includes a first overspeed detection level obtained in the same manner as in the first embodiment, a second overspeed detection level that is greater than the first overspeed detection level, and a force cage. It is preset according to the position of 2. Further, the safety device 18 outputs an operation signal to the lifting device brake device (first braking device) 10 when the speed of the force 2 exceeds the first overspeed detection level, and detects the second overspeed detection. When the level is exceeded, an operation signal is output to each emergency stop device (second braking device) 12.
[0050] 卷上機用ブレーキ装置 10は、安全装置 18からの作動信号を受信したときに、制動 動作を行う。駆動シーブ 9の回転は、卷上機用ブレーキ装置 10の制動動作により制 動される。また、各非常止め装置 12は、安全装置 18からの作動信号を受信したとき に、制動動作を行う。各非常止め装置 12の制動動作により、各楔がかごガイドレール 3に接触し、力ご 2が強制的に停止される。即ち、卷上機用ブレーキ装置 10及び非 常止め装置 12は、互いに異なる過速度検出レベルで制動動作が開始され、互いに 異なる方法によってかご 2を制動するようになって 、る。他の構成及び動作は実施の 形態 1と同様である。  [0050] The lifting device brake device 10 performs a braking operation when receiving the operation signal from the safety device 18. The rotation of the drive sheave 9 is controlled by the braking operation of the lifting device brake device 10. Each emergency stop device 12 performs a braking operation when receiving an operation signal from the safety device 18. By the braking operation of each emergency stop device 12, each wedge comes into contact with the car guide rail 3, and the force 2 is forcibly stopped. That is, the hoisting machine brake device 10 and the emergency stop device 12 start the braking operation at different overspeed detection levels, and brake the car 2 by different methods. Other configurations and operations are the same as those in the first embodiment.
[0051] 次に、第 2過速度検出レベルの値の導出方法について説明する。図 9は、図 8の安 全装置 18が第 2過速度を検出した後の力ご 2に与えられる制動力と時間との関係( 即ち、力ご 2に対する制動力の時間的変化)を示すグラフである。図に示すように、安 全装置 18が力ご 2の第 2過速度を検出すると、卷上機用ブレーキ装置 10の制動動 作が開始される。この後、動作遅れ時間 t が経過して時刻 T になるまでは、制動トル [0051] Next, a method for deriving the value of the second overspeed detection level will be described. Figure 9 shows the 6 is a graph showing a relationship between braking force applied to the force 2 after the entire device 18 detects the second overspeed and time (that is, temporal change of braking force with respect to the force 2). As shown in the figure, when the safety device 18 detects the second overspeed of the force 2, the braking operation of the lifting device brake device 10 is started. After this, until the operation delay time t elapses until time T,
10 11  10 11
クは発生しない。制動力は、時刻 τ になると発生し、時間の経過とともに連続的に上  No problem occurs. The braking force is generated at time τ and continuously increases with time.
11  11
昇する。この後、制動力は、時刻 τ になったときに最大値に達する。最大値に達した  To rise. After this, the braking force reaches its maximum value at time τ. Maximum value reached
12  12
後には、制動力はそのまま維持される。  After that, the braking force is maintained as it is.
[0052] また、図 10は、図 9の制動力と時間との関係に基づいて求めたかご 2の速度と時間 との関係 (即ち、力ご 2の速度の時間的変化)を示すグラフである。図に示すように、 安全装置 18がかご 2の第 2過速度を検出した後、時刻 T になるまでは、かご 2への [0052] FIG. 10 is a graph showing the relationship between the speed of the car 2 and time (that is, the temporal change in the speed of the force 2) obtained based on the relationship between the braking force and time in FIG. is there. As shown in the figure, until the time T comes after the safety device 18 detects the second overspeed of the car 2,
11  11
制動力が発生しないので、かご 2の速度は上昇し続ける。時刻 T が経過した後には  Since no braking force is generated, the speed of the car 2 continues to increase. After time T has passed
11  11
、力ご 2への制動力が発生し、力ご 2が急激に減速し始める。  , The braking force to force 2 is generated, and force 2 begins to decelerate rapidly.
[0053] このとき、時刻 T になるまでは、かご 2に対する制動力が時間の経過とともに連続的 [0053] At this time, until time T is reached, the braking force on the car 2 is continuously increased with time.
12  12
に上昇しているので、かご 2の減速度も連続的に大きくなる。時刻 T が経過した後に  Because of this, the deceleration of the car 2 also increases continuously. After time T has passed
12  12
は、制動力が最大値で維持されるので、力ご 2の減速度は一定となり、時刻 T になつ  Since the braking force is maintained at the maximum value, the deceleration of force 2 is constant and reaches time T.
13 たときにかご 2の移動が停止される。  13 Car 2 stops moving.
[0054] 第 2過速度検出レベルを導出するためには、まず、各非常止め装置 12やかご 2の 重量等の機械的仕様から、図 9に示すような制動力の時間的変化を算出する。このと きの制動力の時間的変化の算出は、かご 2が最も減速しづらくなる力ご 2の負荷条件 で行う。この後、算出された制動力の時間的変化に基づいて、あらかじめ設定された 方法により、単純化された近似用の制動力と時間との関係 (即ち、近似用の制動力の 時間的変ィ匕)を求める。 In order to derive the second overspeed detection level, first, a temporal change in braking force as shown in FIG. 9 is calculated from the mechanical specifications such as the weight of each emergency stop device 12 and car 2. . The time change of braking force at this time is calculated under the load condition of force 2 where car 2 is most difficult to decelerate. After this, based on the temporal change of the calculated braking force, the relationship between the approximate braking force and time (ie, the temporal change in the approximate braking force) is simplified by a preset method.匕)
[0055] 図 11は、図 9の制動力と時間との関係と、近似用の制動力と時間との関係とを同時 に示すグラフである。図に示すように、近似用の制動力と時間との関係において、制 動力は、各非常止め装置 12の制動動作が開始されてから、動作遅れ時間 t が経過  FIG. 11 is a graph showing simultaneously the relationship between the braking force and time in FIG. 9 and the relationship between the approximate braking force and time. As shown in the figure, in the relation between the approximate braking force and time, the braking force is the operation delay time t after the braking operation of each emergency stop device 12 is started.
11 して時刻 T になるまでは 0であり、時刻 T で瞬時に 0から最大値まで上昇し、時刻 T  11 until time T is reached, and at time T, the time instantly increases from 0 to the maximum value.
14 14 14 が経過した後には、最大値で維持される(図中の破線)。即ち、動作遅れ時間 t が経  After 14 14 14 elapses, the maximum value is maintained (dashed line in the figure). That is, the operation delay time t
11 過した時刻 τ で制動力を瞬時に 0から最大値まで上昇させるような近似用の制動力 と時間との関係を求める。なお、近似用の制動力と時間との関係を求める方法として は、図 11の破線で示す方法に限定されず、例えば制動力が 0から最大値になるまで に、複数段階に分けて制動力を瞬時に上昇させるようにしてもよい。 11 Approximate braking force that instantaneously increases the braking force from 0 to the maximum value at the time τ The relationship between time and time. Note that the method for obtaining the relationship between the approximate braking force and time is not limited to the method shown by the broken line in FIG. 11, and for example, the braking force is divided into a plurality of stages until the braking force reaches 0 to the maximum value. May be raised instantaneously.
[0056] この後、近似用の制動力と時間との関係に基づいて、かご 2の速度及び加速度を 時間との関係で求める。図 12は、図 11の近似用の制動力と時間との関係に基づい て求めたかご 2の速度と時間との関係を示すグラフである。また、図 13は、図 11の近 似用の制動力と時間との関係に基づいて求めた力ご 2の加速度と時間との関係を示 すグラフである。図に示すように、力ご 2の速度は、安全装置 18がかご 2の第 2過速度 を検出してから、動作遅れ時間 t が経過して時刻 T になるまでは、一定の加速度 a  [0056] Thereafter, the speed and acceleration of the car 2 are determined in relation to time based on the relationship between the approximate braking force and time. FIG. 12 is a graph showing the relationship between the speed of the car 2 and time obtained based on the relationship between the approximate braking force and time in FIG. FIG. 13 is a graph showing the relationship between the acceleration of the force 2 and the time determined based on the relationship between the braking force for approximation and the time in FIG. As shown in the figure, the speed of the force 2 is constant acceleration a from the time when the safety device 18 detects the second overspeed of the car 2 to the time T after the operation delay time t elapses.
11 14 11 で直線的に上昇し、時刻 T を経過すると、一定の加速度 a で直線的に下降する。こ  11 14 11 Ascends linearly at time 11, and after time T, descends linearly at a constant acceleration a. This
14 12  14 12
の後時間 t が経過して時刻 T になったときに、かご 2は停止する。  Car 2 stops when time t passes after time t.
12 13  12 13
[0057] 力ご 2の速度及び加速度と時間との関係を求めた後、力ご 2がかご用緩衝器の位置 に達したときの速度がかご衝突許容速度 (所定値) V  [0057] After determining the relationship between the speed and acceleration of the cage 2 and time, the velocity when the cage 2 reaches the position of the car shock absorber is the allowable car collision speed (predetermined value) V
tになるように、第 2過速度検出レ ベル V をかご 2の位置 X の関数として求める。  Find the second overspeed detection level V as a function of the position X of the car 2 so that it becomes t.
10 10  10 10
[0058] 具体的には、安全装置 18がかご 2の第 2過速度を検出してから、力ご 2に制動力が 発生するまでの間にかご 2がかご用緩衝器に衝突する場合と、力ご 2に制動力が発 生した後に力ご 2がかご用緩衝器に衝突する場合とに分けて考える。  Specifically, the case where the car 2 collides with the car shock absorber between the time when the safety device 18 detects the second overspeed of the car 2 and the time when the braking force is generated on the force 2. This is divided into the case where the force 2 collides with the car shock absorber after the braking force is generated on the force 2.
[0059] 力ご 2に制動力が発生するまでにかご用緩衝器に衝突する場合には、かご 2が制 動されない状態で力ご用緩衝器に衝突する。従って、各非常止め装置 12の制動動 作が開始されるときの力ご 2の位置及び速度を (X ,ν )とし、各非常止め装置 12の  [0059] If the car 2 collides with the car shock absorber before the braking force is generated, the car 2 collides with the power shock absorber without being controlled. Therefore, the position and speed of the force 2 when the braking operation of each emergency stop device 12 is started is (X, ν), and each emergency stop device 12
011 011  011 011
制動動作が開始されてから、力ご 2がかご用緩衝器に衝突するまでの時間を t 'とす  Let t 'be the time from when braking operation starts until force 2 collides with the car shock absorber.
11 ると、式(7)の関係が成り立つ。  11 Then, the relationship of Formula (7) is established.
[0060] (X —(V -t ' + l/2 ' a -t '2), v +a -t ') = (0,ν ) · ' · (7) [0060] (X — (V -t '+ l / 2' a -t ' 2 ), v + a -t') = (0, ν) · '· (7)
on on 11 n n on n n t  on on 11 n n on n n t
[0061] 式(7)の t 'を消去し、 v を x の関数として求めると、式(8)のようになる。  [0061] When t 'in equation (7) is eliminated and v is obtained as a function of x, equation (8) is obtained.
11 011 011  11 011 011
[0062] V (X ) = (-2 - a · χ +ν 2)°·5 · ' · (8) [0062] V (X) = (-2-a · χ + ν 2 ) ° · 5 · '· (8)
Oil Oil 11 on t  Oil Oil 11 on t
[0063] また、力ご 2に制動力が発生した後に力ご用緩衝器に衝突する場合、制動力が発 生してから、力ご 2がかご緩衝器に衝突するまでの時間を t 'とすると、式 (9)の関係  [0063] Also, in the case of collision with the force shock absorber after the braking force is generated on the force 2, the time from when the braking force is generated until the force 2 collides with the car shock absorber is expressed as t ' Then, the relationship of equation (9)
12  12
が成り立つ。 [0064] (x —(v -t ' + l/2-a -t '2), v +a -t ') = (0,ν) ·'·(9) Holds. [0064] (x — (v -t '+ l / 2-a -t' 2 ), v + a -t ') = (0, ν) ·' · (9)
11 11 12 12 12 11 12 12 t  11 11 12 12 12 11 12 12 t
[0065] また、安全装置 18がかご 2の第 2過速度を検出したときのかご 2の位置及び速度を ( X ,ν )とし、制動力が発生したときのかご 2の位置及び速度を (X ,ν )とすると、式(1 [0065] Further, the position and speed of the car 2 when the safety device 18 detects the second overspeed of the car 2 is (X, ν), and the position and speed of the car 2 when the braking force is generated are ( X, ν), the formula (1
012 012 11 11 012 012 11 11
0)の関係が成り立つ。  0) holds.
[0066] (X ,ν ) = (x —(v -t +l/2-a -t 2),v +a -t ) ---(10) [0066] (X, ν) = (x — (v -t + l / 2-a -t 2 ), v + a -t) --- (10)
11 11 012 012 11 11 11 012 11 11  11 11 012 012 11 11 11 012 11 11
[0067] 式(9)及び式(10)より、 t '及び (x ,v )を消去し、 v を X の関数として求めると、  [0067] From Equation (9) and Equation (10), t ′ and (x, v) are eliminated and v is obtained as a function of X.
12 11 11 012 012  12 11 11 012 012
式(11)のようになる。  Equation (11) is obtained.
[0068] V (X ) = (a 2-t 2-2-a ·χ —a -a -t 2+v 2)°-5 a -t 〜(11) [0068] V (X) = (a 2 -t 2 -2-a · χ -a -a -t 2 + v 2) ° - 5 a -t ~ (11)
012 012 12 11 12 012 12 11 11 t 12 11 11 11  012 012 12 11 12 012 12 11 11 t 12 11 11 11
[0069] 以上より、第 1過速度検出レベル v は、かご 2の位置 X の関数として求められ、以  [0069] From the above, the first overspeed detection level v is obtained as a function of the position X of the car 2,
10 10  10 10
下の式(12)で表される。  It is represented by the following formula (12).
[0070] V (X ) = Max{v (x ),v (x )} ---(12) [0070] V (X) = Max {v (x), v (x)} --- (12)
10 10 Oil 10 012 10  10 10 Oil 10 012 10
[0071] ただし、式(12)は、 v (X )及び V (X )のうち、いずれか大きい値を意味する。  [0071] However, Expression (12) means a larger value of v (X) and V (X).
011 10 012 10  011 10 012 10
[0072] そして、第 1加速度設定パターンと、上記の方法で求めた第 2過速度検出レベル V  [0072] Then, the first acceleration setting pattern and the second overspeed detection level V obtained by the above method
10 との差が小さぐ例えばかご 2の揺れによる速度の上昇や速度検出器 31による検出 誤差等によって、各非常止め装置 12が誤作動するおそれがあるときには、各非常止 め装置 12の誤作動を防止するために、所定の加算値を第 2過速度検出レベル V に  When each emergency stop device 12 may malfunction due to an increase in speed due to shaking of the car 2 or a detection error by the speed detector 31, etc. In order to prevent this, the predetermined added value is set to the second overspeed detection level V.
10 加算して、最終的な第 2過速度検出レベルを求める。  Add 10 to obtain the final second overspeed detection level.
[0073] 図 14は、図 11の近似用の制動力と時間との関係に基づいて求めた第 2過速度検 出レベルとかご 2の位置との関係を示すグラフである。図に示すように、昇降路 1内に は、第 2過速度検出レベル 40の値がかご用緩衝器の位置に近づくに従って小さくな る過速度検出値変化区間 (所定の区間)と、過速度検出値変化区間に隣接し、第 2 過速度検出レベル 40の値がかご 2の位置にかかわらず一定にされている過速度検 出値一定区間とが設定されている。  FIG. 14 is a graph showing the relationship between the second overspeed detection level and the position of the car 2 obtained based on the relationship between the approximate braking force and time in FIG. As shown in the figure, in the hoistway 1, there is an overspeed detection value change section (predetermined section) in which the value of the second overspeed detection level 40 decreases as it approaches the position of the car shock absorber, and the overspeed An overspeed detection value constant section is set adjacent to the detection value change section, where the value of the second overspeed detection level 40 is constant regardless of the position of the car 2.
[0074] 過速度検出値変化区間における第 2過速度検出レベル 40の値は、上記の方法に より求めた値とされている。また、曲線 50〜53は、過速度検出値変化区間における 互いに異なる 4つの位置でかご 2の速度が第 2過速度検出レベル 40を超えたときの かご 2の速度の変化を示している。すべての曲線 50〜53は、かご用緩衝器の位置に おいて、力ご用緩衝器のかご衝突許容速度の値になっている。従って、かご 2がかご 用緩衝器の位置に達したときには、力ご 2の速度は、力ご用緩衝器のかご衝突許容 速度の値になる。即ち、力ご 2の速度は、各非常止め装置 12の制動動作が開始され たカゝご 2の位置がどの位置であっても、かご用緩衝器にかご衝突許容速度で衝突す るようになっている。 [0074] The value of the second overspeed detection level 40 in the overspeed detection value change section is a value obtained by the above method. Curves 50 to 53 show changes in the speed of the car 2 when the speed of the car 2 exceeds the second overspeed detection level 40 at four different positions in the overspeed detection value change section. All curves 50-53 show the value of the car impact permissible speed of the force shock absorber at the position of the car shock absorber. Therefore, car 2 is the car When the position of the shock absorber is reached, the speed of the force 2 becomes the value of the allowable car collision speed of the force shock absorber. That is, the speed of the force 2 is such that the car 2 where the braking operation of each emergency stop device 12 is started is allowed to collide with the car shock absorber at a car collision allowable speed. It has become.
[0075] このようなエレベータ装置では、第 1及び第 2過速度検出レベルが安全装置 18にあ らかじめ設定されており、力ご 2の速度が第 1過速度検出レベルを超えたときに制動 動作を開始する卷上機用ブレーキ装置 10と、かご 2の速度が第 2過速度検出レベル を超えたときに制動動作を開始する非常止め装置 12とが、互いに異なる方法によつ てかご 2を制動するようになっているので、かご 2の速度の異常のレベルに応じて、互 いに異なる制動方法によってかご 2を制動することができ、力ご 2をより確実に制動す ることがでさる。  [0075] In such an elevator apparatus, the first and second overspeed detection levels are set in advance in the safety device 18, and when the speed of the force 2 exceeds the first overspeed detection level. The elevator brake device 10 that starts the braking operation and the emergency stop device 12 that starts the braking operation when the speed of the car 2 exceeds the second overspeed detection level are different from each other in the car. 2 is braked, so that the car 2 can be braked by different braking methods according to the abnormal level of the speed of the car 2, and the force 2 can be braked more reliably. It is out.
[0076] 力ご 2の制動は、卷上機用ブレーキ装置 10及び非常止め装置 12によって行われ るので、既存の制動装置によってかご 2を制動することができ、力ご 2の速度をかご用 緩衝器の位置で力ご衝突許容速度以下に容易に抑えることができる。  [0076] Since the braking of the cage 2 is performed by the lifting device brake device 10 and the emergency stop device 12, the cage 2 can be braked by the existing braking device, and the speed of the cage 2 can be increased. At the position of the shock absorber, it can be easily suppressed below the force collision allowable speed.

Claims

請求の範囲 The scope of the claims
[1] 昇降路内を昇降されるかご、  [1] a car that is raised and lowered in the hoistway,
上記昇降路内の底部に設けられた上記かごの緩衝器、  A shock absorber for the car provided at the bottom of the hoistway;
上記かごの移動を制動するための制動装置、及び  A braking device for braking the movement of the car; and
上記力ごの速度が異常であるときに上記制動装置を動作させて、上記力ごが上記 緩衝器の位置に達するまでに、上記かごの速度を上記緩衝器の衝突許容速度以下 にする安全装置  A safety device which operates the braking device when the speed of the force cage is abnormal and keeps the speed of the cage below the allowable collision speed of the shock absorber until the force reaches the position of the shock absorber.
を備え、  With
上記安全装置には、過速度検出レベルが上記かごの位置に応じてあらかじめ設定 され、  In the safety device, the overspeed detection level is preset according to the position of the car,
上記安全装置は、上記かごの速度が上記過速度検出レベルを超えたときに、上記 制動装置の動作を開始させるようになっており、  The safety device is configured to start the operation of the braking device when the speed of the car exceeds the overspeed detection level.
上記緩衝器の位置から所定の区間における上記過速度検出レベルの値は、上記 制動装置による上記かごの制動によって上記かごの速度が上記緩衝器の位置で所 定値になるように設定されて 、ることを特徴とするエレベータ装置。  The value of the overspeed detection level in a predetermined section from the position of the shock absorber is set so that the speed of the car becomes a predetermined value at the position of the shock absorber by braking the car by the braking device. An elevator apparatus characterized by that.
[2] 上記力ごを吊り下げる主索が巻き掛けられた駆動シーブを有し、上記駆動シーブ の回転により上記力ごを昇降させる卷上機をさらに備え、  [2] A driving sheave around which a main rope for suspending the force is wound is further provided, and a hoisting machine that raises and lowers the force by the rotation of the driving sheave is further provided.
上記制動装置は、上記駆動シーブの回転を制動する卷上機用ブレーキ装置であ ることを特徴とする請求項 1に記載のエレベータ装置。  The elevator device according to claim 1, wherein the braking device is a lifting device braking device that brakes rotation of the drive sheave.
[3] 上記制動装置は、上記かごに搭載され、上記力ごを案内するガイドレールに制動 部材を接触させることにより上記力ごの移動を制動する非常止め装置であることを特 徴とする請求項 1に記載のエレベータ装置。 [3] The brake device is an emergency stop device that is mounted on the car and brakes the movement of the force by bringing a brake member into contact with a guide rail that guides the force. Item 2. The elevator apparatus according to item 1.
[4] 上記制動装置は、互いに異なる方法により上記力ごを制動する第 1制動装置及び 第 2制動装置を有しており、 [4] The braking device includes a first braking device and a second braking device that brake the force by different methods.
上記過速度検出レベルは、第 1過速度検出レベルと、上記第 1過速度検出レベル よりも大きな値とされた第 2過速度検出レベルとにより構成され、  The overspeed detection level is composed of a first overspeed detection level and a second overspeed detection level that is greater than the first overspeed detection level.
上記安全装置は、上記かごの速度が上記第 1過速度検出レベルを超えたときに上 記第 1制動装置の動作を開始させ、上記かごの速度が上記第 2過速度検出レベルを 超えたときに上記第 2制動装置の動作を開始させるようになつていることを特徴とする 請求項 1に記載のエレベータ装置。 The safety device starts the operation of the first braking device when the speed of the car exceeds the first overspeed detection level, and the speed of the car reaches the second overspeed detection level. The elevator apparatus according to claim 1, characterized in that the operation of the second braking device is started when exceeding.
上記力ごを吊り下げる主索が巻き掛けられた駆動シーブを有し、上記駆動シーブ の回転により上記力ごを昇降させる卷上機をさらに備え、  A driving sheave around which a main rope for suspending the force is wound, and further comprising a lifting machine that raises and lowers the force by the rotation of the driving sheave;
上記第 1制動装置は、上記駆動シーブの回転を制動するための卷上機用ブレーキ 装置であり、  The first braking device is a lifting device brake device for braking the rotation of the drive sheave,
上記第 2制動装置は、上記かごに搭載され、上記力ごを案内するガイドレールに制 動部材を接触させることにより上記力ごの移動を制動する非常止め装置であることを 特徴とする請求項 4に記載のエレベータ装置。  The second brake device is an emergency stop device that is mounted on the car and brakes the movement of the force by bringing a control member into contact with a guide rail that guides the force. 4. The elevator apparatus according to 4.
PCT/JP2006/307085 2005-09-21 2006-04-04 Elevator device WO2007034587A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020077021195A KR100909304B1 (en) 2005-09-21 2006-04-04 Elevator device
CN2006800098893A CN101151202B (en) 2005-09-21 2006-04-04 Elevator device
EP06731033.4A EP1927567B1 (en) 2005-09-21 2006-04-04 Elevator device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-273993 2005-09-21
JP2005273993A JP4403123B2 (en) 2005-09-21 2005-09-21 Elevator equipment

Publications (1)

Publication Number Publication Date
WO2007034587A1 true WO2007034587A1 (en) 2007-03-29

Family

ID=37888645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/307085 WO2007034587A1 (en) 2005-09-21 2006-04-04 Elevator device

Country Status (5)

Country Link
EP (1) EP1927567B1 (en)
JP (1) JP4403123B2 (en)
KR (1) KR100909304B1 (en)
CN (1) CN101151202B (en)
WO (1) WO2007034587A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013035376A1 (en) * 2011-09-06 2013-03-14 株式会社日立製作所 Electronically controlled elevator
US20220002114A1 (en) * 2018-10-30 2022-01-06 Hitachi, Ltd. Control system for elevator

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100891443B1 (en) * 2007-08-06 2009-04-03 한국미쓰비시엘리베이터 주식회사 The delay output apparatus of elevator brake system and the performing method
US8371420B2 (en) 2007-12-17 2013-02-12 Mitsubishi Electric Corporation Elevator system for reducing collision shock
KR101191461B1 (en) * 2007-12-27 2012-10-15 미쓰비시덴키 가부시키가이샤 Elevator equipment
FI20105587A0 (en) * 2010-05-25 2010-05-25 Kone Corp A method for limiting the load on an elevator assembly and an elevator assembly
FI122393B (en) 2010-10-11 2011-12-30 Kone Corp Method in the event of an elevator emergency stop and lift safety arrangement
CN104340821A (en) * 2014-11-06 2015-02-11 康力电梯股份有限公司 Girder-less driving device for home elevator
CN104291193A (en) * 2014-11-06 2015-01-21 康力电梯股份有限公司 Elevator dragging driving device
CN110316628B (en) * 2018-03-28 2021-08-03 上海三菱电梯有限公司 Elevator safety system
EP3819245A1 (en) * 2019-11-08 2021-05-12 KONE Corporation An elevator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004031064A1 (en) * 2002-10-04 2004-04-15 Hitachi, Ltd. Elevator system
JP2004137055A (en) * 2002-10-18 2004-05-13 Toshiba Elevator Co Ltd Control system for elevator
WO2004083091A1 (en) * 2003-03-18 2004-09-30 Mitsubishi Denki Kabushiki Kaisha Elevator device, and emergency stop device for elevator

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100815674B1 (en) * 2002-09-24 2008-03-20 미쓰비시덴키 가부시키가이샤 Elevator safety system
JP4335511B2 (en) * 2002-10-01 2009-09-30 三菱電機株式会社 Elevator equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004031064A1 (en) * 2002-10-04 2004-04-15 Hitachi, Ltd. Elevator system
JP2004137055A (en) * 2002-10-18 2004-05-13 Toshiba Elevator Co Ltd Control system for elevator
WO2004083091A1 (en) * 2003-03-18 2004-09-30 Mitsubishi Denki Kabushiki Kaisha Elevator device, and emergency stop device for elevator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013035376A1 (en) * 2011-09-06 2013-03-14 株式会社日立製作所 Electronically controlled elevator
JP2013052986A (en) * 2011-09-06 2013-03-21 Hitachi Ltd Electronically controlled elevator
CN103764532A (en) * 2011-09-06 2014-04-30 株式会社日立制作所 Electronically controlled elevator
US20220002114A1 (en) * 2018-10-30 2022-01-06 Hitachi, Ltd. Control system for elevator
US11708242B2 (en) * 2018-10-30 2023-07-25 Hitachi, Ltd. Control system for elevator

Also Published As

Publication number Publication date
KR100909304B1 (en) 2009-07-24
EP1927567B1 (en) 2014-03-05
EP1927567A4 (en) 2012-12-19
EP1927567A1 (en) 2008-06-04
CN101151202B (en) 2011-08-03
JP2007084239A (en) 2007-04-05
KR20080014732A (en) 2008-02-14
JP4403123B2 (en) 2010-01-20
CN101151202A (en) 2008-03-26

Similar Documents

Publication Publication Date Title
WO2007034587A1 (en) Elevator device
JP6012596B2 (en) Elevator equipment
JP4896873B2 (en) Elevator equipment
CN101090854B (en) Device for elevator
JP5333234B2 (en) Elevator equipment
KR101456403B1 (en) Elevator device
US10093515B2 (en) Elevator apparatus
WO2009084076A1 (en) Elevator equipment
KR20130135909A (en) Multi-car elevator and method for controlling same
JP6256620B2 (en) Elevator equipment
WO2014097373A1 (en) Elevator device
JP2004155519A (en) Elevator device
JP6062009B2 (en) Elevator equipment
JP4668186B2 (en) Elevator equipment
JP4575076B2 (en) Elevator equipment
JP4397720B2 (en) Elevator equipment
JPWO2004031064A1 (en) Elevator system
US20210371240A1 (en) Emergency terminal stopping systems
JP7078145B1 (en) Elevator control device
KR20070069127A (en) Elevator apparatus

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680009889.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006731033

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020077021195

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP