WO2007034549A1 - Reduction gear mechanism and injection molding device using the same - Google Patents

Reduction gear mechanism and injection molding device using the same Download PDF

Info

Publication number
WO2007034549A1
WO2007034549A1 PCT/JP2005/017465 JP2005017465W WO2007034549A1 WO 2007034549 A1 WO2007034549 A1 WO 2007034549A1 JP 2005017465 W JP2005017465 W JP 2005017465W WO 2007034549 A1 WO2007034549 A1 WO 2007034549A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
eccentric
injection
ball screw
mold
Prior art date
Application number
PCT/JP2005/017465
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Takeuchi
Mitsutoshi Kato
Original Assignee
Shinko Sellbic Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Sellbic Co., Ltd. filed Critical Shinko Sellbic Co., Ltd.
Priority to JP2007536370A priority Critical patent/JPWO2007034549A1/en
Priority to PCT/JP2005/017465 priority patent/WO2007034549A1/en
Publication of WO2007034549A1 publication Critical patent/WO2007034549A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/464Means for plasticising or homogenising the moulding material or forcing it into the mould using a rotating plasticising or injection disc

Definitions

  • the present invention relates to a speed reduction mechanism that amplifies rotational power by transmitting the rotational speed of power output from a power generation source and transmits it to a driven body, and an injection molding apparatus using the speed reduction mechanism.
  • An injection molding apparatus includes a mold clamping unit that clamps a mold so that the cavity in the mold becomes a closed space, an injection unit that injects plasticized material into the cavity, and a plastic that plasticizes the material.
  • a mold clamping unit that clamps a mold so that the cavity in the mold becomes a closed space
  • an injection unit that injects plasticized material into the cavity
  • a plastic that plasticizes the material.
  • this clamping part it is necessary to clamp the mold at a high pressure, and it is necessary to inject the plasticized material at a high pressure in the injection part. Further, in the plastic part, even if the material is plasticized, the viscosity is very high, so it is necessary to pump at a high pressure. In order to generate such a large amount of power, a method of driving by decelerating the output of a large motor with a reduction mechanism has been conventionally used.
  • a motor as a power source employs a servo motor or a step restricting bing motor, and a speed reduction mechanism also includes a worm gear and a worm wheel.
  • Servo motors, etc. are much smaller in size than conventional induction motors and can be electrically controlled with high accuracy, enabling miniaturization of the power system and control system, and miniaturization of injection molding equipment.
  • the reduction mechanism consisting of a worm gear and a worm wheel contributes to downsizing by providing a large reduction ratio with a small number of parts.
  • Patent Document 1 Japanese Patent Application No. 2005-85249 Disclosure of the invention
  • the speed reduction mechanism including the worm gear and the worm wheel transmits power while the teeth of the worm gear and the teeth of the worm wheel slide, so there is a power transmission loss due to this sliding, and there is a margin in motor capacity. Otherwise, the desired power cannot be obtained, and there is a problem that tooth wear due to sliding increases and maintenance frequency increases.
  • an object of the present invention is to provide a speed reduction mechanism that can reduce power transmission loss to the limit with an inexpensive and simple configuration, and an injection molding apparatus using the same.
  • the speed reduction mechanism is a speed reduction mechanism that amplifies the rotational power by decelerating the rotational speed of the power output from the power generation source force and transmits it to the driven body.
  • a crank that converts the rotational power of the power generation source force to eccentric rotational power
  • an eccentric motion gear that transmits the eccentric rotational power from the crank
  • a loose fitting hole is formed in the eccentric motion gear.
  • a pin that is loosely fitted and the other end is fixed to the eccentric gear, and the rotation of the eccentric gear is restricted while allowing the eccentric gear to move in the range where the pin moves within the loose hole.
  • a regulating pin that is integrally formed with the driven body and an eccentric gear It is arranged on the center side or arranged so as to include the eccentric movement gear inside, and partially meshes with a tooth portion in the eccentric direction of the eccentric movement gear, and the eccentric movement gear is eccentric. It consists of a rotating gear that rotates by receiving rotational power by rotating a partial meshing position according to a change in direction.
  • the driven body is a ball screw, and the ball screw A ball screw shaft or a ball screw nut and a self-rotating gear are formed.
  • the injection molding apparatus is an injection molding apparatus including a plastic rib portion including a scroll driving mechanism that drives a scroll when the material is plasticized and pressure-fed by the scroll.
  • the scroll drive mechanism is equipped with a speed reduction mechanism
  • the driven body is a scroll that feeds the material in the spiral groove that shrinks toward the rotation center axis toward the rotation center axis, and is fixed.
  • the member is a plasticized housing in which the casing forms a casing of the plastic collar.
  • the injection molding apparatus drives the plunger when the plasticized material in the injection cylinder is injected into the cavity of the extrusion mold by the plunger that forms the piston of the injection cylinder.
  • An injection molding apparatus having an injection part having a plunger drive mechanism, wherein the plunger drive mechanism has a speed reduction mechanism, and the driven body is engaged with a ball screw shaft whose tip part forms a plunger, and An injection side engagement member that allows the ball screw shaft to freely move back and forth while restricting free rotation of the ball screw shaft, the injection side engagement member and the rotating gear wheel are formed in a body, and a fixing member serves as a casing of the injection unit.
  • An injection housing made.
  • the injection molding apparatus drives the plunger when the plasticized material in the injection cylinder is injected onto the cavity of the extrusion mold by the plunger that forms the piston of the injection cylinder.
  • An injection molding apparatus having an injection part having a plunger drive mechanism, wherein the plunger drive mechanism has a speed reduction mechanism, and the driven body is a ball screw nut screwed into a ball screw shaft whose tip part forms a plunger.
  • the ball screw nut and the rotating gear are formed in a body, and the fixing member serves as an injection housing that forms a casing of the injection portion.
  • the injection molding apparatus when driving the movable mold of the mold composed of a fixed mold and a movable mold movable relative to the fixed mold, and clamping the mold,
  • An injection molding apparatus having a mold clamping unit having a mold clamping drive mechanism for opening and closing the mold, wherein the mold clamping drive mechanism has a speed reduction mechanism, and the tip of the driven body is movable at that time
  • a mold clamping side engaging body that engages with a ball screw shaft connected to a mold and rotates the ball screw shaft.
  • the mold clamping side engaging body and a rotating gear are formed in a body, and a fixing member is a mold.
  • Form the casing of the fastening part This is a mold clamping housing.
  • a reduction mechanism is a reduction mechanism that amplifies rotational power by decelerating the rotational speed of power output from a power generation source, and transmits the amplified rotational power to a driven body.
  • a crank that converts the rotational power of the force into eccentric rotational power, an eccentric motion gear that transmits the crank force eccentric rotational power, and a loose-fitting hole is formed in the eccentric motion gear, and one end thereof
  • the loose fitting hole is loosely fitted to the fixing member whose other end is fixed, or a loose fitting hole is formed in the fixing member whose position is fixed, and one end is loosely fitted to the loose fitting hole and the other end.
  • An eccentric gear is disposed on the inner side, and partially meshed with a tooth portion in the eccentric direction of the eccentric gear, and a portion corresponding to a change in the eccentric direction of the eccentric gear. Because it consists of a rotating gear that rotates by receiving rotational power by rotating the meshing position, it is possible to reduce power transmission loss to the limit with an inexpensive and simple configuration, and various devices using this As a result, it becomes possible to reduce the size and cost of the product, and to improve the reliability.
  • FIG. 1 is a cross-sectional view of an injection molding apparatus according to the present invention.
  • FIG. 2 is a cross-sectional perspective exploded view of a plastic collar.
  • FIG. 3 is a diagram showing a configuration of scrolling.
  • FIG. 4 is a diagram applied to explain the operation of the speed reduction mechanism.
  • FIG. 5 is an exploded cross-sectional perspective view illustrating a check valve mechanism.
  • FIG. 6 is a diagram applied to explain the operation of the check valve mechanism.
  • FIG. 7 is an exploded cross-sectional perspective view of an injection part.
  • FIG. 8 is a sectional perspective exploded view of a mold clamping part.
  • FIG. 9 is a view when a ball screw nut and an eccentric movement gear of a speed reduction mechanism in an injection part are formed integrally.
  • FIG. 10 is a view when the ball screw nut of the speed reduction mechanism and the eccentric motion gear are integrally formed in the mold clamping part.
  • FIG. 11 is a view showing an example in which the regulation pin is loosely fitted or fitted to a driven body without being loosely fitted or fitted to a fixing member such as a plasticized housing.
  • FIG. 12 is a diagram showing an example of using a plurality of eccentric gears.
  • FIG. 13 is a diagram showing a tooth inclusion relationship in an eccentric gear and a rotation gear and the like. Explanation of symbols
  • thermoplastic resin is injection molded
  • present invention can be applied to the case where the thermosetting resin, wax, and binder-treated ceramic 'iron powder is injection molded. I will add in advance.
  • the speed reduction mechanism includes a crank that converts rotational power from a power generation source into eccentric rotational power, and an eccentric operation that transmits the eccentric rotational power from the crank.
  • a loose fitting hole is formed in the moving gear and the eccentric gear, and one end is loosely fitted in the loose fitting hole, and the other end is fixed to a fixed member fixed in position, or the fixed member fixed in position.
  • a loose fitting hole is formed, one end of which is loosely fitted in the loose fitting hole and the other end is fixed to the eccentric movement gear, and the eccentric movement gear is displaced within the range in which the pin moves within the loose fitting hole.
  • the tooth portion in the eccentric direction and the partial meshing in the eccentric gear are arranged so as to be included on the side.
  • Rutotomoni a rotation gear that rotates the rotational power Te receiving by partial meshing position in response to changes in the direction of eccentricity of the eccentric motion gear rotates as main components, Ru.
  • a scroll drive mechanism a plunger drive mechanism, a mold clamping
  • the speed reducer mechanism is used for the drive mechanism.
  • the same members (crank, regulating pin, eccentric gear, rotating gear, etc.) in the scroll driving mechanism, plunger driving mechanism, and mold clamping driving mechanism are distinguished as first to third, respectively.
  • a crank in the scroll drive mechanism is described as a first crank
  • a crank in the plunger drive mechanism is described as a second crank
  • a crank in the mold clamping drive mechanism is described as a third crank.
  • the power generation source is compatible with scroll motors, injection motors, and mold clamping motors.
  • the application of the speed reduction mechanism according to the present invention is not limited to the injection molding apparatus. It is a requirement that the free gear is formed integrally with the driven body, and the speed reduction drive system and electric equipment of the automobile. It is added that it can be applied to general deceleration equipment such as the deceleration drive system.
  • FIG. 1 is a cross-sectional view of such an injection molding apparatus.
  • the injection molding apparatus includes a movable mold 401 and a fixed mold 402, and a space in which plasticized material is injected onto these abutting surfaces.
  • Mold 40 in which a certain K is formed, plasticizing the material 10 by heating and plasticizing the material and feeding the material to the injection cylinder 201 while kneading the material, plasticizing in the injection cylinder 201
  • the main components are an injection part 20 for injecting material into the cavity K and a mold clamping part 30 for opening and closing the mold 40.
  • FIG. 2 is an exploded perspective view showing the main part of the plastic cage 10, which has a plastic cage housing 101 and a fixed die plate 102, and a material such as pellets is put into the plasticized housing 101. A material insertion hole 103 is formed.
  • the scroll 106 is a rotating body having a substantially short cylindrical shape, and a spiral groove 105 is formed on the side of the rotating body that contacts the fixed die plate 102 from the side surface.
  • This screw The swirl groove 105 is formed in a plurality of strips (in the case of one strip in FIG. 2) so that the scroll shaft hole 109 formed in the rotation shaft is reduced in accordance with the rotation direction of the scroll 106, and the back surface thereof is a recess 116.
  • the first rotation gear 110 is formed on the inner side surface of the recess 116.
  • a check valve 121 is attached to the scroll shaft hole 109.
  • the surface where the scroll 106 is in contact with the fixed die plate 102 is referred to as a scroll action surface 111, and the side surface is referred to as a scroll side surface 112.
  • the spiral groove 105 formed on the scroll action surface 111 is referred to as a feeding groove 113
  • the spiral groove 105 formed on the scroll side surface 112 is referred to as an insertion groove 114. Accordingly, the spiral groove 105 is constituted by the nipping groove 114 and the feeding groove 113.
  • N direct pressure
  • the barrel 104 has a plurality of heaters (not shown) for heating the material inside, and the surface on the scroll 106 side is formed in close contact with the scroll action surface 111, and the central axis is plastic.
  • a flow path 115 is formed to form a flow path for the formed material.
  • the plastic housing 101, the fixed die plate 102, and the various members contained in the plastic housing 101 and the fixed die plate 102 formed by the heat of the barrel 104 are formed to form a cooling water channel 117 that forms a cooling water channel.
  • a heat insulating material 118 is appropriately provided.
  • the scroll 106 is rotatably disposed in the plasticizing housing 101 via a bearing A, and is provided with a scroll driving mechanism 107 that decelerates the rotation speed of the scroll motor 120 and transmits it to the scroll 106.
  • the scroll drive mechanism 107 has an annular first formed with teeth that mesh with the first rotation gear 110 on the outer peripheral surface and a plurality of first restriction pin fixing holes 123 inserted in the thickness direction.
  • An eccentric motion gear 124, a first restriction pin 130 that is inserted into the first restriction pin fixing hole 123, and a sleeve-shaped first crank 125 that transmits rotational power to the first eccentric motion gear 124 are provided.
  • the motor shaft 126 of the scroll motor 120 is attached to the link 125.
  • the first crank 125 is composed of a cylindrical portion 128 into which the motor shaft 126 is inserted, and a crank portion 129 eccentric to the cylindrical portion 128.
  • the crank portion 129 is a bearing C.
  • the first eccentric movement gear 124 is inserted, and the bearing B is inserted into the cylindrical portion 128 so as to be attached to the plastic housing 101.
  • the plasticized housing 101 is fixed to the fixed die plate 102, and the flange 132 is screwed to the plasticized housing 101.
  • the flange 132 is provided with a first loose-fitting hole 133 in which the head 131 of the first restriction pin 130 is loosely fitted and the movement of the first eccentric movement gear 124 is restricted.
  • FIG. 4 is a schematic diagram for explaining such a speed reduction mechanism.
  • the first eccentric movement gear 124 is eccentric by the first crank 125
  • the first eccentric movement gear 124 in the eccentric direction of the first eccentric movement gear 124 is shown.
  • the tooth portion and the tooth portion of the first rotating gear 110 are partially engaged, and the teeth of the other portions are disengaged.
  • the teeth of the first rotation gear 110 and the first rotation gear 1 Eccentric motion gear 124 teeth are both parallel teeth, and there is almost no sliding between the teeth as in the worm gear and worm wheel, reducing tooth wear loss and accompanying sliding. Power loss can be greatly suppressed.
  • the movable part is configured to be in contact with other members via the bearings A to C, the power transmission loss in the movable part can be greatly reduced.
  • the check valve mechanism 108 controls whether or not the plasticized material is sent from the scroll 106 to the injection unit 20, and the material injected toward the cavity K by the injection unit 20 is plastic. It functions to prevent backflow to the buttock 10, as shown in Fig. 5. , Check valve 121, valve screw 135, one-way clutch 136, valve screw storage portion 151, and the like.
  • the end of the check valve 121 on the barrel 104 side is in contact with a conical valve pocket 139 that is an opening of the flow path 115 that forms a flow path of the material that flows through the barrel 104.
  • the opening / closing end 140 is formed to close the valve pocket 139, and the other end of the check valve 121 is formed with a threaded screw 141, and an intermediate portion thereof is provided with a rotation stopper 142. Is formed.
  • the boundary between the rotation stop portion 142 and the screw portion 141 is a contact portion 152 that forms a step.
  • the rotation stopper 142 is formed by cutting the check valve 121 into, for example, a D shape, and a hole (rotation stopper) 144 having the same shape as the sectional shape of the rotation stopper 142 is formed in the scroll shaft hole 109. Has been. Then, the rotation stop portion 142 of the check valve 121 is inserted into the rotation stop hole 144, so that the free rotation of the check valve 121 is restricted, and the check valve 121 can advance and retreat in the axial direction.
  • the knob screw 135 is composed of a clutch fitting tube portion 145 into which the one-way clutch 136 is inserted, and a tapered portion 146 formed so that the vicinity of one end is reduced toward the motor shaft 126.
  • a female screw portion 147 is formed in which the screw portion 141 of the check valve 121 is screwed.
  • the motor shaft 126 is formed with a valve housing portion 151 that acts as a clutch housing hole 137 in which the one-way clutch 136 is housed and a tapered portion housing hole 150 in which the tapered portion 146 is housed.
  • the motor shaft 126 rotates in a predetermined direction (a direction in which the plasticized material is injected).
  • a predetermined direction a direction in which the plasticized material is injected.
  • the taper portion 146 of the valve screw 135 is press-fitted into the taper portion receiving hole 150 of the valve screw storage portion 151, and the two-way clutch 136 is in a free state.
  • the valve screw 135 is rotated by friction between the part storage hole 150 and the taper part 146 of the valve screw 135, and the check valve 121 moves to the motor shaft 126 side by screwing of the screw part 141 and the female screw part 147.
  • the check valve 121 can be reliably operated with a simple configuration using inexpensive parts, the reliability is improved, and the check valve 121 moves inside the scroll shaft hole 109 with the piston.
  • the problem that the check valve 121 moves poorly due to the material entering the gap during the previous operation is solved.
  • the drive source of the check valve 121 is a scroll module that drives the scroll 106. Therefore, it is possible to reduce the cost of the injection molding apparatus by reducing the number of parts and the number of parts by combining the power source.
  • the injection unit 20 includes the above-described injection cylinder 201 and the injection cylinder.
  • Plunger 202 mounted on 201, plunger drive mechanism 2 for driving the plunger 202
  • a runner tube 204 or the like provided in the fixed die plate 102 for injecting the material from the injection cylinder 201 into the cavity K is provided.
  • the plunger drive mechanism 203 has a second pulley 207, a second eccentric motion gear 208, a second rotation gear 209, and a second ball screw shaft 210 to which the power of the injection motor 206 is transmitted as main components.
  • the injection housing 211 is provided.
  • the tip of the second ball screw shaft 213 is a plunger 202 that forms the piston of the injection cylinder 201, and the rear end is formed with an asymmetric cross section (for example, D shape) with respect to the shaft center.
  • the second pulley 207 is sandwiched by a pair of bearings D and freely rotates, and a through hole 215 through which the head 217 of the second ball screw shaft 213 passes is formed. Further, the inner peripheral surface of the end of the second pulley 207 on the second ball screw shaft 213 side is formed as a cylindrical surface coaxial with the rotation shaft of the second pulley 207, and the outer peripheral surface is eccentric with respect to the rotation shaft. A second crank 216 having a cylindrical surface force is formed. The second crank 216 is provided with a bearing E.
  • the injection housing 211 is provided with a second ball screw shaft through hole 219 and a nut engaging portion 220, and a second loose-fitting hole 222 on the end surface of the injection motor 206 side (second pulley 207 side). There are several.
  • the second ball screw nut 214 When the second ball screw nut 214 is mounted and stored in the nut engaging portion 220, the second ball screw nut 214 is fixed to the injection housing 211 with a screw (not shown).
  • the second eccentric gear 208 is an annular gear having teeth formed on the inner peripheral surface and a plurality of second restricting pin fixing holes 223 formed in the thickness direction. Mounted on 2 cranks 216.
  • the second rotation gear 209 has teeth formed on the outer peripheral surface and a second ball screw at the center.
  • a second ball screw shaft engaging portion 225 is formed through which the head portion 217 of the shaft 213 is inserted and engaged, and a bearing F is externally inserted on the outer peripheral portion of the second ball screw shaft engaging portion 225 to provide a second eccentricity. It comes to be attached to the driving gear 208.
  • a second regulating pin 230 is fixed to the second eccentric movement gear 208, and its head is loosely fitted in a second loose-fitting hole 222 provided in the injection housing 211.
  • the gear 208 eccentrically moves in the range in which the head of the second restriction pin 230 can move in the second loose-fitting hole 222, so that the rotation movement is restricted and the second rotation gear 209 is partially meshed. As the portion rotates, the second rotation gear 209 rotates.
  • the mold clamping unit 30 includes a mold clamping housing 301, a movable die plate 302, and a mold clamping drive mechanism 303.
  • the mold clamping nosing 301 is fixed by a plurality of divers 304.
  • the die plate 102 is fixed at a predetermined interval, and the movable die plate 302 is inserted into the diver 304 so that the die clamping drive mechanism 303 can advance and retreat.
  • the mold clamping drive mechanism 303 includes a third ball screw shaft 311, a mold clamping motor 312, a third pulley 314, a third restriction pin 315, a third eccentric motion gear 322, a third rotation gear 317, and the like.
  • the third pulley 314 side end of the third ball screw shaft 311 is a head 326 having a cross section that is asymmetric (eg, D-shaped) with respect to the shaft center, and a female screw 313 is formed at the center thereof. Yes.
  • the third pulley 314 is sandwiched between a pair of bearings I and rotated by the rotational power of the mold clamping motor 312.
  • a third crank 327 is provided at the tip of the third pulley 314.
  • One end of the third crank 327 is formed with a cylindrical hole 316 coaxial with the rotation shaft of the third pulley 314.
  • the outer peripheral surface of the third crank 327 has a cylindrical shape with a circumferential surface force eccentric to the rotation shaft. H is extrapolated.
  • the cylindrical hole 316 is a hole for accommodating the head of the fixing bolt 323. Then, the third crank 327 is stored in the storage portion 318 provided in the mold clamping housing 301 via the bearing I.
  • a through hole 324 through which the head 326 of the third ball screw shaft 311 passes, and a head of the third restriction pin 315 are loosely fitted on the surface on the third ball screw shaft 311 side.
  • a plurality of third loose fitting holes 325 are provided.
  • the third eccentric gear 322 is an annular member in which teeth are formed on the outer peripheral surface and a plurality of third restricting pin fixing holes 321 are formed in the thickness direction.
  • the third crank 327 is inserted.
  • teeth are formed on the inner peripheral surface of a member protruding from the surface on the third eccentric movement gear 322 side, and the head of the third ball screw shaft 311 is formed on the other surface.
  • a mating hole 319 is provided to be inserted and engaged.
  • a bolt hole 320 through which the fixing bolt 323 passes is formed at the center of the third rotating gear 317.
  • the head 326 of the third ball screw shaft 311 is attached to the engaging hole 319, and the fixing bolt 323
  • the third rotation gear 317 and the third ball screw shaft 311 are connected to each other by tightening with the bolt.
  • the rotational power of the mold clamping motor 312 is transmitted as the eccentric rotational motion of the third crank 327 via the third pulley 314.
  • This eccentric rotational movement is transmitted to the third eccentric driving gear 322 via the bearing H, and the teeth and parts of the third rotating gear 317 are subjected to the movement restriction of the third restriction pin 315 by the third loose-fitting hole 325. Since the meshing position is rotated and the meshing position rotates in accordance with the eccentric direction, the third rotation gear 317 rotates, and accordingly, the third ball screw shaft 311 rotates.
  • the mold 40 is a cassette mold 40 composed of a movable mold 401 attached to the movable die plate 302 and a fixed mold 402 attached to the fixed die plate 102.
  • a plurality of positioning pins 403 are provided, and a regulation pin receiving hole 404 into which the positioning pins 403 are fitted is provided in the opposing mold 40.
  • a runner receiving hole 406 into which a hot runner 405 is inserted is formed in the fixed mold 402 attached to the fixed die plate 102.
  • the movable mold 401 is provided with a molded product extrusion mechanism 407.
  • This molded product push-out mechanism 407 is fixed to a support plate 409 to which a plurality of extrusion pins 408 provided so as to pass through the movable die 401 and to be inserted into the cavity K, and is fixed to the support plate 409 and movable.
  • Money A support bar 410 to be inserted into the mold 401, a panel 411 for urging the support plate 409 so that the head of the push pin 408 is inserted into the support bar 410, and the head of the cavity K normally forms a wall surface of the cavity K;
  • a fixed extrusion plate 412 and a thrust bearing 413 attached to the extrusion plate 412 are provided.
  • the third ball screw shaft 311 is thrust-bearing when the movable die plate 302 is retracted by a predetermined amount or more toward the mold clamping housing 301 side. Abutting on 413, the support plate 409 is pushed to the cavity K side against the panel 411. As a result, the injection-molded product in the cavity K can be easily extruded by the extrusion pin 408.
  • the thrust bearing 413 is provided so that the head of the third ball screw shaft 311 does not damage the extrusion plate 412, and may be a thrust slide bearing or the like.
  • the ball screw nut and the rotation gear are separate structures.
  • the present invention is not limited to this.
  • the ball screw nut and the eccentric motion gear of the speed reduction mechanism in the injection part 20 and the mold clamping part 30 may be formed integrally.
  • FIG. 9 shows the case in the injection part 20
  • FIG. 10 shows the case in the mold clamping part 30.
  • the cost can be reduced and the device can be further downsized.
  • the first restriction pin 130 to the third restriction pin 315 described so far are fixed to the first eccentric motion gear 1 24 to the third eccentric motion gear 322, and are provided in the plasticized housing 101 or the like.
  • the first loose-fitting hole 133 to the third loose-fitting hole 325 are configured to be loosely fitted, but the reverse structure may be used. That is, the function of the first restricting pin 130 and the like is to restrict the position of the first eccentric movement gear 124 and the like with respect to the plastic housing 101 and the like which are fixed members.
  • the first restriction pin fixing hole 123 is formed to fix the first restriction pin 130 etc.
  • the first eccentric fitting gear 124 etc. is formed with the first loose fitting hole 133 etc. to loosely fit the first restriction pin 130 etc. Even if it is done, it is possible to carry out similar regulations.
  • the regulation pin is not a force when it is loosely fitted or fitted to a fixing member such as a plasticized housing. As shown in FIG. 11, it may be configured to be loosely fitted or fitted to a driven body 330 that rotates with an eccentric gear.
  • the rotating gear described so far is fixed.
  • the third regulating pin 315 whose meshing relationship between the gear (the fixed gear 331) and the third eccentric gear 322 does not change is loosely fitted or fitted to the driven body 330 fixed to the third ball screw shaft 311. Therefore, the rotational power is transmitted to the driven body 330 and the third ball screw shaft 311 rotates.
  • a bearing may be provided in order to avoid friction caused by direct contact of the first restricting pins and the like that are loosely fitted into the loose fitting holes.
  • the eccentric gear and the rotation gear have a one-to-one relationship, and each has one configuration. It is also possible to have a configuration in which a plurality of are provided.
  • first eccentric motion gears 124a to 124c, bearings Ba to Bc, and first cranks 129a to 129c are provided (FIG. 12 shows three cases each).
  • the first cranks 129 a to 129 c of 3 are shifted by an equal angle with respect to the rotation center of the motor shaft 126.
  • one end of the first restricting pin 130 is loosely fitted in the first loose-fitting holes 133a to 133c of the first eccentric movement gears 124a to 124c, and the other end is fixed to the flange 132.
  • each of the first eccentric gears 124a to 124c is eccentric according to the phase of each of the first cranks 129a to 129c and partially meshes with the first rotation gear 110.
  • rotational power is transmitted simultaneously from each of the first eccentric gears 124a to 124c, the power transmission point is axisymmetric, and smooth rotational power can be transmitted.
  • the powers of the first eccentric gears 124a to 124c and the first cranks 129a to 129c are divided, so that wear and the like can be suppressed.
  • the present invention is not limited to the inclusion relationship between the eccentric gear and the rotation gear.
  • the third eccentric gear 322 is an internal tooth and the third rotation gear 317 is an external tooth, but as shown in FIG. 13, the third eccentric gear 322 is a third rotation gear with an external tooth. Similar effects can be obtained by using 317 as an internal tooth.
  • the rotational force of the motor is supplied to the mold clamping unit 30 and the like via a pulley.
  • a structure in which the crank is directly attached to the motor shaft may be used, such as a force plastic structure that transmits to the crank.

Abstract

A reduction gear mechanism including a plasticized part (10) in which the rotating motion of a scroll motor is converted into an eccentric rotating motion by a first crank and an eccentric rotating power in transmitted to a first eccentric motion gear (124). The reduction gear mechanism comprises a first restricting pin (130) fixed, at one end, to the first eccentric motion gear (124) and loosely fitted, at the other end, to a plasticized housing (101). The loosely fitted portion of the plasticized part is moved so as to restrict the self-rotation of the first eccentric motion gear (124) and allow the eccentric rotating motion so that the first eccentric motion gear (124) can be eccentrically moved. Further, the reduction gear mechanism comprises a first self-rotating gear (110) partially engaged with the teeth of the first eccentric motion gear (124) in the eccentric direction and self-rotated by receiving a rotating power from the first eccentric motion gear (124) when the partially engaged position thereof is rotated according to the change of the eccentric direction of the first eccentric moving gear (124). The first self-rotating gear (110) is formed integrally with a scroll (106). As a result, the reduction gear mechanism capable of minimizing a power transmission loss can be formed at low cost and by a simple structure.

Description

減速機構及びそれを用いた射出成形装置  Deceleration mechanism and injection molding apparatus using the same
技術分野  Technical field
[0001] 本発明は、動力発生源から出力される動力の回転数を減速することにより回転動 力を増幅して被駆動体に伝達する減速機構及びそれを用いた射出成形装置に関す る。  The present invention relates to a speed reduction mechanism that amplifies rotational power by transmitting the rotational speed of power output from a power generation source and transmits it to a driven body, and an injection molding apparatus using the speed reduction mechanism.
背景技術  Background art
[0002] 射出成形装置は、金型におけるキヤビティが閉空間になるように当該金型を型締す る型締部、可塑化された材料をキヤビティーに射出する射出部、材料を可塑化する 可塑化部を基本構成として ヽる。この型締部では高圧で金型の型締めを行う必要が あり、また射出部において高圧で可塑ィ匕した材料をキヤビティに射出する必要がある 。また、可塑ィ匕部においては材料が可塑ィ匕しても粘度が非常に高いため高圧で圧送 する必要がある。このような大きな動力を発生させるため、従来は大型モータの出力 を減速機構で減速して駆動する方法が採用されている。  [0002] An injection molding apparatus includes a mold clamping unit that clamps a mold so that the cavity in the mold becomes a closed space, an injection unit that injects plasticized material into the cavity, and a plastic that plasticizes the material. As a basic structure. In this clamping part, it is necessary to clamp the mold at a high pressure, and it is necessary to inject the plasticized material at a high pressure in the injection part. Further, in the plastic part, even if the material is plasticized, the viscosity is very high, so it is necessary to pump at a high pressure. In order to generate such a large amount of power, a method of driving by decelerating the output of a large motor with a reduction mechanism has been conventionally used.
[0003] ところが、このような射出成形装置では、各要素の肥大化により射出成形装置が大 型化して、広大な設置スペースが必要になると共に、装置内に残留する材料が増え て多くの無駄が発生する問題が指摘されていた。  [0003] However, in such an injection molding apparatus, the enlargement of each element increases the size of the injection molding apparatus, requiring a large installation space and increasing the amount of material remaining in the apparatus, resulting in a lot of waste. The problem that occurred was pointed out.
[0004] そこで、本願発明者は各要素の小型化を図ると共に、動力源となるモータ及び減速 機構の小型化を図ることにより、革新的に小型化された射出成形装置を提案してい る (特許文献 1参照)。  [0004] In view of this, the present inventor has proposed an innovatively miniaturized injection molding apparatus by miniaturizing each element and by miniaturizing the motor and the speed reduction mechanism as the power source ( (See Patent Document 1).
[0005] 例えば、動力源としてのモータはサーボモータゃステツ規制ビングモータを採用し、 また減速機構もウォームギアとウォームホイールとから構成して 、る。サーボモータ等 は従来用いられている誘導モータに比べ非常にサイズが小さぐ電気的な制御が高 精度に行えるため、電力系、制御系の小型化が可能になって射出成形装置の小型 化に寄与し、またウォームギアとウォームホイールとからなる減速機構では少な ヽ部 品点数で大きな減速比が得られて小型化に寄与している。  For example, a motor as a power source employs a servo motor or a step restricting bing motor, and a speed reduction mechanism also includes a worm gear and a worm wheel. Servo motors, etc. are much smaller in size than conventional induction motors and can be electrically controlled with high accuracy, enabling miniaturization of the power system and control system, and miniaturization of injection molding equipment. The reduction mechanism consisting of a worm gear and a worm wheel contributes to downsizing by providing a large reduction ratio with a small number of parts.
特許文献 1:特願 2005— 85249号公報 発明の開示 Patent Document 1: Japanese Patent Application No. 2005-85249 Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] しかしながら、ウォームギヤ及びウォームホイールからなる減速機構は、ウォームギ ャの歯とウォームホイールの歯とが摺動しながら動力伝達を行うため、この摺動による 動力伝達損失があり、モータ能力に余裕がないと所望の動力を得ることができない場 合が生じると共に、摺動による歯の摩耗が激しくメンテナンス頻度が多くなる問題があ つた o  [0006] However, the speed reduction mechanism including the worm gear and the worm wheel transmits power while the teeth of the worm gear and the teeth of the worm wheel slide, so there is a power transmission loss due to this sliding, and there is a margin in motor capacity. Otherwise, the desired power cannot be obtained, and there is a problem that tooth wear due to sliding increases and maintenance frequency increases.
[0007] 無論、モータ能力を大きめに設定し、かつ、歯もチタンコーティング等の処理が施さ れた歯車を用いることによりかかる問題の発生を抑制することができる力 このような 対応は射出成形装置を小型化する方向と逆行した方向となり、また射出成形装置の コストアップをもたらす要因となる。  [0007] Needless to say, a force capable of suppressing the occurrence of such a problem by using a gear set with a large motor capacity and having teeth treated with titanium coating or the like. This is in a direction opposite to the direction of downsizing and increases the cost of the injection molding equipment.
[0008] そこで、本発明は、安価、かつ、簡単な構成で動力伝達損失を極限まで低減できる 減速機構及びそれを用いた射出成形装置を提供することを目的とする。  [0008] Therefore, an object of the present invention is to provide a speed reduction mechanism that can reduce power transmission loss to the limit with an inexpensive and simple configuration, and an injection molding apparatus using the same.
課題を解決するための手段  Means for solving the problem
[0009] 上記課題を解決するため、請求項 1に係る減速機構は、動力発生源力 出力され る動力の回転数を減速することにより回転動力を増幅して被駆動体に伝達する減速 機構であって、動力発生源力 の回転動力を偏芯回転動力に変換するクランクと、 該クランクから偏芯回転動力が伝達される偏芯運動歯車と、該偏芯運動歯車に遊嵌 穴が形成されて、一端が当該遊嵌穴に遊嵌すると共に他端が位置固定された固定 部材に固着され、又は位置固定された固定部材に遊嵌穴が形成されて、一端が当 該遊嵌穴に遊嵌すると共に他端が偏芯運動歯車に固着されたピンで、該ピンが遊嵌 穴内で運動する範囲で偏芯運動歯車の偏芯運動を許容しながら当該偏芯運動歯車 の自転を規制する規制ピンと、被駆動体と一体に形成され、かつ、偏芯運動歯車の 中心側に配設され又は当該偏芯運動歯車を内側に含むように配設されて、該偏芯 運動歯車における偏芯方向の歯部と部分歯合すると共に、当該偏芯運動歯車の偏 芯方向の変化に応じて部分歯合位置が回転することにより回転動力を受て自転する 自転歯車とからなるものである。  [0009] In order to solve the above-mentioned problem, the speed reduction mechanism according to claim 1 is a speed reduction mechanism that amplifies the rotational power by decelerating the rotational speed of the power output from the power generation source force and transmits it to the driven body. A crank that converts the rotational power of the power generation source force to eccentric rotational power, an eccentric motion gear that transmits the eccentric rotational power from the crank, and a loose fitting hole is formed in the eccentric motion gear. Thus, one end is loosely fitted in the loose fitting hole and the other end is fixed to the fixed member fixed in position, or a loose fitting hole is formed in the fixed member fixed in position, and one end is in the loose fitting hole. A pin that is loosely fitted and the other end is fixed to the eccentric gear, and the rotation of the eccentric gear is restricted while allowing the eccentric gear to move in the range where the pin moves within the loose hole. A regulating pin that is integrally formed with the driven body and an eccentric gear It is arranged on the center side or arranged so as to include the eccentric movement gear inside, and partially meshes with a tooth portion in the eccentric direction of the eccentric movement gear, and the eccentric movement gear is eccentric. It consists of a rotating gear that rotates by receiving rotational power by rotating a partial meshing position according to a change in direction.
[0010] また、請求項 2に係る減速機構は、被駆動体がボールネジであって、当該ボールネ ジのボールネジ軸又はボールネジナット〖こ自転歯車が形成されて!ヽるものである。 [0010] In the speed reduction mechanism according to claim 2, the driven body is a ball screw, and the ball screw A ball screw shaft or a ball screw nut and a self-rotating gear are formed.
[0011] また、請求項 3に係る射出成形装置は、スクロールにより材料を可塑ィ匕し圧送する 際に当該スクロールを駆動するスクロール駆動機構を具備する可塑ィ匕部を備えた射 出成形装置であって、スクロール駆動機構が減速機構を具備して、その際に被駆動 体が回転中心軸に向けて縮小する螺旋溝内の材料を当該回転中心軸に向けて圧 送するスクロールであり、固定部材が可塑ィ匕部のケーシングをなす可塑化ハウジング とするちのである。  [0011] In addition, the injection molding apparatus according to claim 3 is an injection molding apparatus including a plastic rib portion including a scroll driving mechanism that drives a scroll when the material is plasticized and pressure-fed by the scroll. The scroll drive mechanism is equipped with a speed reduction mechanism, and the driven body is a scroll that feeds the material in the spiral groove that shrinks toward the rotation center axis toward the rotation center axis, and is fixed. The member is a plasticized housing in which the casing forms a casing of the plastic collar.
[0012] また、請求項 4に係る射出成形装置は、射出シリンダ内の可塑化された材料を該射 出シリンダのピストンをなすプランジャで押出し金型のキヤビティに射出する際に当該 プランジャを駆動するプランジャ駆動機構を具備する射出部を備えた射出成形装置 であって、プランジャ駆動機構が減速機構を具備し、その際に被駆動体は先端部が プランジャをなすボールネジ軸と係合して、当該ボールネジ軸の自由回転を規制し ながら、軸方向に進退可能にする射出側係合部材で当該射出側係合部材と自転歯 車とがー体に形成され、また固定部材が射出部のケーシングをなす射出ハウジング とするちのである。  [0012] In addition, the injection molding apparatus according to claim 4 drives the plunger when the plasticized material in the injection cylinder is injected into the cavity of the extrusion mold by the plunger that forms the piston of the injection cylinder. An injection molding apparatus having an injection part having a plunger drive mechanism, wherein the plunger drive mechanism has a speed reduction mechanism, and the driven body is engaged with a ball screw shaft whose tip part forms a plunger, and An injection side engagement member that allows the ball screw shaft to freely move back and forth while restricting free rotation of the ball screw shaft, the injection side engagement member and the rotating gear wheel are formed in a body, and a fixing member serves as a casing of the injection unit. An injection housing made.
[0013] また、請求項 5に係る射出成形装置は、射出シリンダ内の可塑化された材料を該射 出シリンダのピストンをなすプランジャで押出し金型のキヤビティに射出する際に当該 プランジャを駆動するプランジャ駆動機構を具備する射出部を備えた射出成形装置 であって、プランジャ駆動機構が減速機構を具備し、その際に被駆動体は先端部が プランジャをなすボールネジ軸に螺合するボールネジナットで、該ボールネジナットと 自転歯車とがー体に形成され、また固定部材が射出部のケーシングをなす射出ハウ ジングとするものである。  [0013] Further, the injection molding apparatus according to claim 5 drives the plunger when the plasticized material in the injection cylinder is injected onto the cavity of the extrusion mold by the plunger that forms the piston of the injection cylinder. An injection molding apparatus having an injection part having a plunger drive mechanism, wherein the plunger drive mechanism has a speed reduction mechanism, and the driven body is a ball screw nut screwed into a ball screw shaft whose tip part forms a plunger. The ball screw nut and the rotating gear are formed in a body, and the fixing member serves as an injection housing that forms a casing of the injection portion.
[0014] また、請求項 6に係る射出成形装置は、固定金型と該固定金型に対して可動する 可動金型からなる金型の当該可動金型を駆動して型締する際に、当該金型を型開 閉する型締駆動機構を具備する型締部を備えた射出成形装置であって、型締駆動 機構が減速機構を具備し、その際に被駆動体は先端部が可動金型と連結されたボ 一ルネジ軸と係合して当該ボールネジ軸を回転させる型締側係合体で、当該型締側 係合体と自転歯車とがー体に形成され、また固定部材が型締部のケーシングをなす 型締ハウジングとするものである。 [0014] Further, the injection molding apparatus according to claim 6, when driving the movable mold of the mold composed of a fixed mold and a movable mold movable relative to the fixed mold, and clamping the mold, An injection molding apparatus having a mold clamping unit having a mold clamping drive mechanism for opening and closing the mold, wherein the mold clamping drive mechanism has a speed reduction mechanism, and the tip of the driven body is movable at that time A mold clamping side engaging body that engages with a ball screw shaft connected to a mold and rotates the ball screw shaft. The mold clamping side engaging body and a rotating gear are formed in a body, and a fixing member is a mold. Form the casing of the fastening part This is a mold clamping housing.
発明の効果  The invention's effect
[0015] 本発明にかかる減速機構は、動力発生源カゝら出力される動力の回転数を減速する ことにより回転動力を増幅して被駆動体に伝達する減速機構であって、動力発生源 力 の回転動力を偏芯回転動力に変換するクランクと、該クランク力 偏芯回転動力 が伝達される偏芯運動歯車と、該偏芯運動歯車に遊嵌穴が形成されて、一端が当 該遊嵌穴に遊嵌すると共に他端が位置固定された固定部材に固着され、又は位置 固定された固定部材に遊嵌穴が形成されて、一端が当該遊嵌穴に遊嵌すると共に 他端が偏芯運動歯車に固着されたピンで、該ピンが遊嵌穴内で運動する範囲で偏 芯運動歯車の偏芯運動を許容しながら当該偏芯運動歯車の自転を規制する規制ピ ンと、被駆動体と一体に形成され、かつ、偏芯運動歯車の中心側に配設され又は当 該偏芯運動歯車を内側に含むように配設されて、該偏芯運動歯車における偏芯方 向の歯部と部分歯合すると共に、当該偏芯運動歯車の偏芯方向の変化に応じて部 分歯合位置が回転することにより回転動力を受て自転する自転歯車とからなるので、 安価、かつ、簡単な構成で動力伝達損失を極限まで低減できるようになり、これを用 いた各種の装置の小型化及び低価格ィ匕が可能になると共に信頼性を向上させること が可能になる。  [0015] A reduction mechanism according to the present invention is a reduction mechanism that amplifies rotational power by decelerating the rotational speed of power output from a power generation source, and transmits the amplified rotational power to a driven body. A crank that converts the rotational power of the force into eccentric rotational power, an eccentric motion gear that transmits the crank force eccentric rotational power, and a loose-fitting hole is formed in the eccentric motion gear, and one end thereof The loose fitting hole is loosely fitted to the fixing member whose other end is fixed, or a loose fitting hole is formed in the fixing member whose position is fixed, and one end is loosely fitted to the loose fitting hole and the other end. Is a pin fixed to the eccentric gear, and a regulation pin for restricting the rotation of the eccentric gear while allowing the eccentric gear to move in the range in which the pin moves in the loose fitting hole, Formed integrally with the driven body and disposed on the center side of the eccentric gear, An eccentric gear is disposed on the inner side, and partially meshed with a tooth portion in the eccentric direction of the eccentric gear, and a portion corresponding to a change in the eccentric direction of the eccentric gear. Because it consists of a rotating gear that rotates by receiving rotational power by rotating the meshing position, it is possible to reduce power transmission loss to the limit with an inexpensive and simple configuration, and various devices using this As a result, it becomes possible to reduce the size and cost of the product, and to improve the reliability.
図面の簡単な説明  Brief Description of Drawings
[0016] [図 1]本発明に係る射出成形装置の断面図である。 FIG. 1 is a cross-sectional view of an injection molding apparatus according to the present invention.
[図 2]可塑ィ匕部の断面斜視分解図である。  FIG. 2 is a cross-sectional perspective exploded view of a plastic collar.
[図 3]スクロールの構成を示す図である。  FIG. 3 is a diagram showing a configuration of scrolling.
[図 4]減速機構の動作の説明に適用される図である。  FIG. 4 is a diagram applied to explain the operation of the speed reduction mechanism.
[図 5]チェックバルブ機構を説明する断面斜視分解図である。  FIG. 5 is an exploded cross-sectional perspective view illustrating a check valve mechanism.
[図 6]チ ックバルブ機構の動作の説明に適用される図である。  FIG. 6 is a diagram applied to explain the operation of the check valve mechanism.
[図 7]射出部の断面斜視分解図である。  FIG. 7 is an exploded cross-sectional perspective view of an injection part.
[図 8]型締部の断面斜視分解図である。  FIG. 8 is a sectional perspective exploded view of a mold clamping part.
[図 9]射出部における減速機構のボールネジナットと偏芯運動歯車とを一体に形成し た場合の図である。 [図 10]型締部における減速機構のボールネジナットと偏芯運動歯車とを一体に形成 した場合の図である。 FIG. 9 is a view when a ball screw nut and an eccentric movement gear of a speed reduction mechanism in an injection part are formed integrally. FIG. 10 is a view when the ball screw nut of the speed reduction mechanism and the eccentric motion gear are integrally formed in the mold clamping part.
[図 11]規制ピンを可塑化ハウジング等の固定部材に遊嵌又は嵌着させず、被駆動体 に遊嵌又は嵌着する場合の例を示す図である。  FIG. 11 is a view showing an example in which the regulation pin is loosely fitted or fitted to a driven body without being loosely fitted or fitted to a fixing member such as a plasticized housing.
圆 12]複数の偏芯運動歯車を用いた場合の例を示す図である。 [12] FIG. 12 is a diagram showing an example of using a plurality of eccentric gears.
[図 13]偏芯運動歯車と自転歯車等においての歯の内包関係を示す図である。 符号の説明  FIG. 13 is a diagram showing a tooth inclusion relationship in an eccentric gear and a rotation gear and the like. Explanation of symbols
A〜I ベアリング ; 10 可塑化部 ; 20 射出部  A to I bearings; 10 plasticized parts; 20 injection parts
30 型締部 ; 40 カセット金型 ; 101 可塑化ハウジング  30 Mold clamping part; 40 Cassette mold; 101 Plasticized housing
102 固定ダイプレート ; 104 バレル ; 105 螺旋溝  102 Fixed die plate; 104 barrel; 105 spiral groove
106 スクロール ; 107 スクロール駆動機構 ; 108 チェックバルブ機構 109 スクロール軸穴 ; 110 第 1自転歯車 ; 111 スクロール作用面  106 Scroll; 107 Scroll drive mechanism; 108 Check valve mechanism 109 Scroll shaft hole; 110 First rotating gear; 111 Scroll surface
112 スクロール側面 ; 113 送溝 ; 114 搔込溝  112 Scroll side; 113 Feed groove; 114 Insert groove
120 スクロールモータ ; 121 チェックバルブ ; 123 第 1規制ピン固着穴 120 Scroll motor; 121 Check valve; 123 First restriction pin fixing hole
124 (124a〜124c) 第 1偏芯運動歯車 ; 125 (129a〜125c) 第 1クランク124 (124a-124c) 1st eccentric gear; 125 (129a-125c) 1st crank
126 モータ軸 ; 128 筒部 ; 129 クランク部 126 Motor shaft; 128 Tube part; 129 Crank part
130 第 1規制ピン ; 131 頭部 ; 132 フランジ  130 1st restriction pin; 131 head; 132 flange
133 (133 &〜 133c) 第 1遊嵌穴 ; 135 ノ レブ受部材  133 (133 & ~ 133c) 1st loose-fitting hole; 135 Nore receiving member
136 ワンウェイクラッチ ; 137 クラッチ揷着部 ; 139 バルブポケット 136 One-way clutch; 137 Clutch fitting; 139 Valve pocket
140 開閉端部 ; 141 係合部 ; 142 回転止部 140 Open / close end; 141 Engagement part; 142 Anti-rotation part
144 回転止穴 ; 145 クラッチ嵌着部 ; 146 テーパ部  144 Rotation stop hole 145 Clutch fitting part 146 Taper part
147 被係合部 ; 150 テーパ嵌着部 ; 151 受部材揷着部  147 engaged portion; 150 taper fitting portion; 151 receiving member fitting portion
152, 153 段差部 ; 201 射出シリンダ ; 202 プランジャ  152, 153 Stepped portion; 201 Injection cylinder; 202 Plunger
203 プランジャ駆動機構 ; 204 ランナチューブ ; 206 射出モータ 203 Plunger drive mechanism; 204 Runner tube; 206 Injection motor
207 第 2プーリ ; 208 第 2偏芯運動歯車 ; 209 第 2自転歯車 207 Second pulley; 208 Second eccentric gear; 209 Second rotation gear
210 第 2ボールネジ軸 ; 211 射出ハウジング ; 213 第 2ボールネジ軸 210 Second ball screw shaft; 211 Injection housing; 213 Second ball screw shaft
214 第 2ボールネジナット ; 215 貫通穴 ; 216 第 2クランク 214 Second ball screw nut 215 Through hole 216 Second crank
217 頭部 ; 219 第 2ボールネジ軸揷通穴 ; 220 ナット係合部 222 第 2遊嵌穴 ; 223 第 2規制ピン固着穴 ; 225 第 2ボールネジ軸係合 部 217 Head; 219 Second ball screw shaft through hole; 220 Nut engaging part 222 Second loose-fitting hole; 223 Second restricting pin fixing hole; 225 Second ball screw shaft engaging part
230 第 2規制ピン ; 301 型締ハウジング ; 302 可動ダイプレート 303 型締駆動機構 ; 304 ダイバー ; 311 第 3ボールネジ軸  230 2nd restriction pin; 301 mold clamping housing; 302 movable die plate 303 mold clamping drive mechanism; 304 diver; 311 3rd ball screw shaft
312 型締モータ ; 313 雌ネジ ; 314 第 3プーリ  312 Clamping motor 313 Female thread 314 Third pulley
315 第 3規制ピン ; 316 円筒穴 ; 317 第 3自転歯車  315 Third restriction pin 316 Cylindrical hole 317 Third rotation gear
318 収納部 ; 319 係合穴 ; 320 ボルト穴  318 storage unit; 319 engagement hole; 320 bolt hole
321 第 3規制ピン固着穴 ; 322 第 3偏芯運動歯車 ; 323 固定ボルト 321 Third pin fixing hole; 322 Third eccentric gear; 323 Fixing bolt
324 揷通穴 ; 325 第 3遊嵌穴 ; 326 頭部 324 through hole; 325 3rd loose hole; 326 head
327 第 3クランク ; 328 第 3ボールネジナット  327 3rd crank; 328 3rd ball screw nut
401 可動金型 ; 402 固定金型 ; 403 位置決ピン  401 Movable mold; 402 Fixed mold; 403 Positioning pin
404 規制ピン受穴  404 Restriction pin receiving hole
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0018] 本発明の実施の形態を図を参照して説明する。なお、本実施例では、熱可塑化榭 脂を射出成形する場合を例に説明するが、熱硬化榭脂、ワックス、バインダ処理され たセラミック '鉄粉を射出成形する場合も同様に適用できることを予め付言する。  Embodiments of the present invention will be described with reference to the drawings. In this embodiment, the case where the thermoplastic resin is injection molded will be described as an example. However, the present invention can be applied to the case where the thermosetting resin, wax, and binder-treated ceramic 'iron powder is injection molded. I will add in advance.
[0019] また、本発明に係る減速機構は、後述するように、動力発生源からの回転動力を偏 芯回転動力に変換するクランクと、該クランクから偏芯回転動力が伝達される偏芯運 動歯車と、該偏芯運動歯車に遊嵌穴が形成されて、一端が当該遊嵌穴に遊嵌する と共に他端が位置固定された固定部材に固着され、又は位置固定された固定部材 に遊嵌穴が形成されて、一端が当該遊嵌穴に遊嵌すると共に他端が偏芯運動歯車 に固着されたピンで、該ピンが遊嵌穴内で運動する範囲で偏芯運動歯車の偏芯運 動を許容しながら当該偏芯運動歯車の自転を規制する規制ピンと、被駆動体と一体 に形成され、かつ、偏芯運動歯車の中心側に配設され又は当該偏芯運動歯車を内 側に含むように配設されて、該偏芯運動歯車における偏芯方向の歯部と部分歯合す ると共に、当該偏芯運動歯車の偏芯方向の変化に応じて部分歯合位置が回転する ことにより回転動力を受て自転する自転歯車を主要構成として 、る。  [0019] Further, as will be described later, the speed reduction mechanism according to the present invention includes a crank that converts rotational power from a power generation source into eccentric rotational power, and an eccentric operation that transmits the eccentric rotational power from the crank. A loose fitting hole is formed in the moving gear and the eccentric gear, and one end is loosely fitted in the loose fitting hole, and the other end is fixed to a fixed member fixed in position, or the fixed member fixed in position. A loose fitting hole is formed, one end of which is loosely fitted in the loose fitting hole and the other end is fixed to the eccentric movement gear, and the eccentric movement gear is displaced within the range in which the pin moves within the loose fitting hole. A regulation pin that regulates the rotation of the eccentric gear while allowing the core motion and a driven pin and is formed integrally with the driven body, and is disposed on the center side of the eccentric gear, or includes the eccentric gear. The tooth portion in the eccentric direction and the partial meshing in the eccentric gear are arranged so as to be included on the side. Rutotomoni, a rotation gear that rotates the rotational power Te receiving by partial meshing position in response to changes in the direction of eccentricity of the eccentric motion gear rotates as main components, Ru.
[0020] そして、射出成形装置における、スクロール駆動機構、プランジャ駆動機構、型締 駆動機構に当該減速器機構が用いられている。この際、スクロール駆動機構、プラン ジャ駆動機構、型締駆動機構において同様な部材 (クランク、規制ピン、偏芯運動歯 車、自転歯車等)はそれぞれ第 1〜第 3として区別する。例えば、スクロール駆動機構 におけるクランクを第 1クランク、プランジャ駆動機構におけるクランクを第 2クランク、 型締駆動機構におけるクランクを第 3クランクのように記載する。また、動力発生源は スクロールモータ、射出モータ、型締モータに対応している。 [0020] And in the injection molding apparatus, a scroll drive mechanism, a plunger drive mechanism, a mold clamping The speed reducer mechanism is used for the drive mechanism. At this time, the same members (crank, regulating pin, eccentric gear, rotating gear, etc.) in the scroll driving mechanism, plunger driving mechanism, and mold clamping driving mechanism are distinguished as first to third, respectively. For example, a crank in the scroll drive mechanism is described as a first crank, a crank in the plunger drive mechanism is described as a second crank, and a crank in the mold clamping drive mechanism is described as a third crank. The power generation source is compatible with scroll motors, injection motors, and mold clamping motors.
[0021] なお、本発明に係る減速機構の適用は射出成形装置に限定されるものではなぐ 自由歯車が被駆動体と一体に形成されていることを要件として、自動車の減速駆動 系や電気機器の減速駆動系等の一般的な減速機器に適用できるものであることを付 言する。  [0021] The application of the speed reduction mechanism according to the present invention is not limited to the injection molding apparatus. It is a requirement that the free gear is formed integrally with the driven body, and the speed reduction drive system and electric equipment of the automobile. It is added that it can be applied to general deceleration equipment such as the deceleration drive system.
[0022] 図 1は係る射出成形装置の断面図で、当該射出成形装置は、可動金型 401と固定 金型 402とを備え、これらの突合せ面に可塑ィ匕した材料が射出される空間であるキヤ ビティ Kが形成される金型 40、材料を加熱して可塑化させると共に当該材料を混練 しながら射出シリンダ 201に送出する可塑ィ匕部 10、射出シリンダ 201内の可塑ィ匕さ れた材料をキヤビティ Kに射出する射出部 20、金型 40の型開閉を行う型締部 30を 主要構成としている。  FIG. 1 is a cross-sectional view of such an injection molding apparatus. The injection molding apparatus includes a movable mold 401 and a fixed mold 402, and a space in which plasticized material is injected onto these abutting surfaces. Mold 40 in which a certain K is formed, plasticizing the material 10 by heating and plasticizing the material and feeding the material to the injection cylinder 201 while kneading the material, plasticizing in the injection cylinder 201 The main components are an injection part 20 for injecting material into the cavity K and a mold clamping part 30 for opening and closing the mold 40.
[0023] 図 2は、可塑ィ匕部 10の要部を示す分解斜視図で、可塑ィ匕ハウジング 101及び固定 ダイプレート 102を有し、可塑化ハウジング 101にはペレット等の材料が投入される 材料投入穴 103が形成されている。  [0023] FIG. 2 is an exploded perspective view showing the main part of the plastic cage 10, which has a plastic cage housing 101 and a fixed die plate 102, and a material such as pellets is put into the plasticized housing 101. A material insertion hole 103 is formed.
[0024] これら可塑化ハウジング 101及び固定ダイプレート 102内には、材料投入穴 103か ら投入された材料を加熱するバレル 104、材料を搬送する螺旋溝 105が形成される と共にバレル 104に当接しながら回転して螺旋溝 105内の材料を搬送,撹拌,可塑 ィ匕,混練し、可塑ィ匕後はワイゼンベルグ効果を伴い、その回転中心軸の方向に圧送 するスクロール 106、該スクロール 106を回転駆動するスクロール駆動機構 107、可 塑ィ匕された材料の射出や逆流を制御するチェックバルブ機構 108が設けられている [0024] These plasticized housing 101 and the stationary die plate 102, the barrel 104 to heat the material charging hole 103 or et charged materials, the barrel 10 4 with spiral grooves 105 for conveying the material is formed equivalents Rotating while contacting, conveying, stirring, plasticizing, and kneading the material in the spiral groove 105. After plasticizing, the scroll 106 is fed in the direction of the rotation center axis with the Weisenberg effect, and the scroll 106 is rotated. A scroll drive mechanism 107 for driving and a check valve mechanism 108 for controlling injection and backflow of plasticized material are provided.
[0025] スクロール 106は、図 3に示すように、概略短円柱状をなす回転体で、その回転体 側面から固定ダイプレート 102に接する面側に螺旋溝 105が形成されている。この螺 旋溝 105は、回転軸に形成されたスクロール軸穴 109までスクロール 106の回転方 向に従って縮小するよう複数条(図 2では 1条の場合を示している)に形成され、その 裏面は凹部 116が形成され、該凹部 116の内側面に第 1自転歯車 110が形成され ている。なお、スクロール軸穴 109にチェックバルブ 121が装着されるようになってい る。 As shown in FIG. 3, the scroll 106 is a rotating body having a substantially short cylindrical shape, and a spiral groove 105 is formed on the side of the rotating body that contacts the fixed die plate 102 from the side surface. This screw The swirl groove 105 is formed in a plurality of strips (in the case of one strip in FIG. 2) so that the scroll shaft hole 109 formed in the rotation shaft is reduced in accordance with the rotation direction of the scroll 106, and the back surface thereof is a recess 116. The first rotation gear 110 is formed on the inner side surface of the recess 116. A check valve 121 is attached to the scroll shaft hole 109.
[0026] 以下、スクロール 106が固定ダイプレート 102に接する面をスクロール作用面 111、 その側面をスクロール側面 112という。また、スクロール作用面 111に形成されている 螺旋溝 105を送溝 113、スクロール側面 112に形成されて 、る螺旋溝 105を搔込溝 114という。従って、螺旋溝 105は、搔込溝 114と送溝 113とにより構成される。  Hereinafter, the surface where the scroll 106 is in contact with the fixed die plate 102 is referred to as a scroll action surface 111, and the side surface is referred to as a scroll side surface 112. Further, the spiral groove 105 formed on the scroll action surface 111 is referred to as a feeding groove 113, and the spiral groove 105 formed on the scroll side surface 112 is referred to as an insertion groove 114. Accordingly, the spiral groove 105 is constituted by the nipping groove 114 and the feeding groove 113.
なお、スクロール作用面 111は頂角 Θが Θ = 176度〜 174度の平面に近い凹状円 錐形状となるように形成して直圧力(N)を生じさせることにより材料の圧送を可能にし ている。無論、同程度の角度の凸状円錐形状としても良い。  In addition, the scroll working surface 111 is formed so as to have a concave pyramid shape close to a plane having an apex angle Θ of Θ = 176 to 174 degrees to generate a direct pressure (N), thereby enabling the material to be pumped. Yes. Of course, it is good also as the convex cone shape of the same angle.
[0027] バレル 104は、内部に材料を加熱するための図示しない複数のヒータが内設される と共に、スクロール 106側の面はスクロール作用面 111と密接する形状に形成され、 その中心軸に可塑ィ匕した材料の流路をなす流動路 115が形成されて!、る。  [0027] The barrel 104 has a plurality of heaters (not shown) for heating the material inside, and the surface on the scroll 106 side is formed in close contact with the scroll action surface 111, and the central axis is plastic. A flow path 115 is formed to form a flow path for the formed material.
なお、バレル 104の熱で可塑化ハウジング 101や固定ダイプレート 102及び、これ らに内包されて 、る各種の部材が高温にならな 、ように冷却水の流路をなす冷却水 路 117が形成され、また断熱材 118が適宜設けられて 、る。  The plastic housing 101, the fixed die plate 102, and the various members contained in the plastic housing 101 and the fixed die plate 102 formed by the heat of the barrel 104 are formed to form a cooling water channel 117 that forms a cooling water channel. In addition, a heat insulating material 118 is appropriately provided.
[0028] このスクロール 106は、可塑化ハウジング 101内にベアリング Aを介して回動自在に 配設され、スクロールモータ 120の回転数を減速して当該スクロール 106に伝達する スクロール駆動機構 107が設けられて 、る。  The scroll 106 is rotatably disposed in the plasticizing housing 101 via a bearing A, and is provided with a scroll driving mechanism 107 that decelerates the rotation speed of the scroll motor 120 and transmits it to the scroll 106. And
[0029] スクロール駆動機構 107は、外周面に第 1自転歯車 110と歯合する歯が形成される と共に厚み方向に複数の第 1規制ピン固着穴 123が挿通して形成された環状の第 1 偏芯運動歯車 124、第 1規制ピン固着穴 123に挿着される第 1規制ピン 130、第 1偏 芯運動歯車 124に回転動力を伝達するスリーブ状の第 1クランク 125を備え、第 1クラ ンク 125にスクロールモータ 120のモータ軸 126が装着されるようになっている。  [0029] The scroll drive mechanism 107 has an annular first formed with teeth that mesh with the first rotation gear 110 on the outer peripheral surface and a plurality of first restriction pin fixing holes 123 inserted in the thickness direction. An eccentric motion gear 124, a first restriction pin 130 that is inserted into the first restriction pin fixing hole 123, and a sleeve-shaped first crank 125 that transmits rotational power to the first eccentric motion gear 124 are provided. The motor shaft 126 of the scroll motor 120 is attached to the link 125.
[0030] なお、第 1クランク 125は、モータ軸 126が挿着される筒部 128と、該筒部 128に対 して偏芯したクランク部 129とから構成されて、クランク部 129はベアリング Cを介して 第 1偏芯運動歯車 124に内挿され、筒部 128にはベアリング Bが外挿されて可塑ィ匕 ハウジング 101に揷着されるようになって!/、る。 [0030] The first crank 125 is composed of a cylindrical portion 128 into which the motor shaft 126 is inserted, and a crank portion 129 eccentric to the cylindrical portion 128. The crank portion 129 is a bearing C. Through The first eccentric movement gear 124 is inserted, and the bearing B is inserted into the cylindrical portion 128 so as to be attached to the plastic housing 101.
[0031] この可塑化ハウジング 101は固定ダイプレート 102と固定されており、フランジ 132 はこの可塑化ハウジング 101にネジ止めされている。  The plasticized housing 101 is fixed to the fixed die plate 102, and the flange 132 is screwed to the plasticized housing 101.
フランジ 132には第 1規制ピン 130の頭部 131が遊嵌して、第 1偏芯運動歯車 124 の動きを規制する第 1遊嵌穴 133が設けられている。  The flange 132 is provided with a first loose-fitting hole 133 in which the head 131 of the first restriction pin 130 is loosely fitted and the movement of the first eccentric movement gear 124 is restricted.
[0032] このような構成により、モータ軸 126の回転運動は第 1クランク 125に伝達されて、 そのクランク部 129が偏芯回転運動し、この偏芯回転運動がベアリング Cを介して第 1偏芯運動歯車 124に伝達される。  With such a configuration, the rotational motion of the motor shaft 126 is transmitted to the first crank 125, the crank portion 129 performs eccentric rotational motion, and this eccentric rotational motion is It is transmitted to the core movement gear 124.
[0033] 図 4は、このような減速機構を説明する模式図で、第 1偏芯運動歯車 124が第 1クラ ンク 125により偏芯すると、その偏芯方向の第 1偏芯運動歯車 124の歯部と第 1自転 歯車 110の歯部とが部分歯合し、他の部分の歯は離合した状態となる。  FIG. 4 is a schematic diagram for explaining such a speed reduction mechanism. When the first eccentric movement gear 124 is eccentric by the first crank 125, the first eccentric movement gear 124 in the eccentric direction of the first eccentric movement gear 124 is shown. The tooth portion and the tooth portion of the first rotating gear 110 are partially engaged, and the teeth of the other portions are disengaged.
[0034] このような状態で偏芯方向が回転すると、第 1規制ピン 130の頭部は第 1遊嵌穴 13 3の内周面に沿って運動して第 1偏芯運動歯車 124と第 1自転歯車 110との歯合す る部分がこれに伴い回転する。第 1偏芯運動歯車 124は、第 1規制ピン 130により自 転が規制されているため、歯合位置の変化は第 1自転歯車 110が回転することにより 許容され、スクロールモータ 120の回転動力は第 1自転歯車 110と第 1偏芯運動歯 車 124とで決る減速比で第 1自転歯車 110に伝達されるようになる。  [0034] When the eccentric direction rotates in such a state, the head of the first regulating pin 130 moves along the inner peripheral surface of the first loose-fitting hole 133, and the first eccentric movement gear 124 and the first 1 The part that meshes with the rotating gear 110 rotates accordingly. Since the rotation of the first eccentric movement gear 124 is restricted by the first restriction pin 130, the change in the meshing position is allowed by the rotation of the first rotation gear 110, and the rotational power of the scroll motor 120 is The first rotation gear 110 is transmitted to the first rotation gear 110 at a reduction ratio determined by the first rotation gear 110 and the first eccentric moving gear 124.
[0035] 第 1自転歯車 110、第 1偏芯運動歯車 124及び該第 1偏芯運動歯車 124の運動を 規制する第 1規制ピン 130からなる減速機構では、第 1自転歯車 110の歯と第 1偏芯 運動歯車 124の歯とが共に平行歯であり、ウォームギヤとウォームホイールとにおけ るように歯同士の摺動が殆ど発生しないため、歯の摩耗損失が低減できると共に、摺 動に伴う動力損失を大幅に抑制することが可能になる。  [0035] In the speed reduction mechanism including the first rotation gear 110, the first eccentric movement gear 124, and the first restriction pin 130 that restricts the movement of the first eccentric movement gear 124, the teeth of the first rotation gear 110 and the first rotation gear 1 Eccentric motion gear 124 teeth are both parallel teeth, and there is almost no sliding between the teeth as in the worm gear and worm wheel, reducing tooth wear loss and accompanying sliding. Power loss can be greatly suppressed.
また、可動部分はベアリング A〜Cを介して他の部材と接する構成であるため、当該 可動部分での動力伝達損失を大幅に低減することができるようになって!/、る。  In addition, since the movable part is configured to be in contact with other members via the bearings A to C, the power transmission loss in the movable part can be greatly reduced.
[0036] チェックバルブ機構 108は、可塑化された材料をスクロール 106から射出部 20に送 出するか否かを制御すると共に、当該射出部 20によりキヤビティ Kに向けて射出され た材料が可塑ィ匕部 10に逆流するのを防止する機能をなすもので、図 5に示すように 、チェックノ レブ 121、バルブネジ 135、ワンウェイクラッチ 136、バルブネジ収納部 1 51等により構成されている。 [0036] The check valve mechanism 108 controls whether or not the plasticized material is sent from the scroll 106 to the injection unit 20, and the material injected toward the cavity K by the injection unit 20 is plastic. It functions to prevent backflow to the buttock 10, as shown in Fig. 5. , Check valve 121, valve screw 135, one-way clutch 136, valve screw storage portion 151, and the like.
[0037] チェックバルブ 121におけるバレル 104側の端部は、当該バレル 104を揷通して流 動する材料の流路をなす流動路 115の開口である円錐状のバルブポケット 139に当 接して、当該バルブポケット 139を閉塞する形状に形成された開閉端部 140であり、 またチェックバルブ 121の他方の端部はネジ切りされたネジ部 141が形成され、これ らの中間部分に回転止部 142が形成されている。回転止部 142とネジ部 141との境 は、段差なす当接部 152となっている。  [0037] The end of the check valve 121 on the barrel 104 side is in contact with a conical valve pocket 139 that is an opening of the flow path 115 that forms a flow path of the material that flows through the barrel 104. The opening / closing end 140 is formed to close the valve pocket 139, and the other end of the check valve 121 is formed with a threaded screw 141, and an intermediate portion thereof is provided with a rotation stopper 142. Is formed. The boundary between the rotation stop portion 142 and the screw portion 141 is a contact portion 152 that forms a step.
[0038] 回転止部 142は、チェックバルブ 121を例えば D形状に切欠くことにより形成され、 この回転止部 142の断面形状と同じ形状の穴(回転止穴) 144がスクロール軸穴 109 に形成されている。そして、チェックバルブ 121の回転止部 142が、この回転止穴 14 4に挿通することにより、チェックバルブ 121の自由回転が規制されながら、その軸方 向に進退できるようになって 、る。  [0038] The rotation stopper 142 is formed by cutting the check valve 121 into, for example, a D shape, and a hole (rotation stopper) 144 having the same shape as the sectional shape of the rotation stopper 142 is formed in the scroll shaft hole 109. Has been. Then, the rotation stop portion 142 of the check valve 121 is inserted into the rotation stop hole 144, so that the free rotation of the check valve 121 is restricted, and the check valve 121 can advance and retreat in the axial direction.
[0039] ノ レブネジ 135は、ワンウェイクラッチ 136が挿嵌されるクラッチ揷嵌筒部 145と一 端近傍がモータ軸 126に向けて縮小するように形成されたテーパ部 146とからなり、 内部にはチェックバルブ 121のネジ部 141が螺合する雌ネジ部 147が形成されてい る。  [0039] The knob screw 135 is composed of a clutch fitting tube portion 145 into which the one-way clutch 136 is inserted, and a tapered portion 146 formed so that the vicinity of one end is reduced toward the motor shaft 126. A female screw portion 147 is formed in which the screw portion 141 of the check valve 121 is screwed.
[0040] 一方、モータ軸 126には、ワンウェイクラッチ 136が収納されるクラッチ収納穴 137 及びテーパ部 146が収納されるテーパ部収納穴 150と力 なるバルブネジ収納部 1 51が形成されている。  [0040] On the other hand, the motor shaft 126 is formed with a valve housing portion 151 that acts as a clutch housing hole 137 in which the one-way clutch 136 is housed and a tapered portion housing hole 150 in which the tapered portion 146 is housed.
[0041] そして、図 6 (a)に示すように、モータ軸 126が所定方向(可塑化された材料を射出 する方向)に回転する。この状態ではバルブネジ 135のテーパ部 146がバルブネジ 収納部 151のテーパ部収納穴 150に圧入された状態であり、ヮンゥヱイクラッチ 136 はフリーの状態となっているため、モータ軸 126が回転するとテーパ部収納穴 150と バルブネジ 135のテーパ部 146との摩擦によりバルブネジ 135が回転して、当該チェ ックバルブ 121はネジ部 141と雌ネジ部 147との螺合によりモータ軸 126側に動く。  [0041] Then, as shown in FIG. 6 (a), the motor shaft 126 rotates in a predetermined direction (a direction in which the plasticized material is injected). In this state, the taper portion 146 of the valve screw 135 is press-fitted into the taper portion receiving hole 150 of the valve screw storage portion 151, and the two-way clutch 136 is in a free state. The valve screw 135 is rotated by friction between the part storage hole 150 and the taper part 146 of the valve screw 135, and the check valve 121 moves to the motor shaft 126 side by screwing of the screw part 141 and the female screw part 147.
[0042] これによりチェックバルブ 121の開閉端部 140はバルブポケット 139から離接して、 当該バルブポケット 139が開口し、図 6 (b)に示すように材料が流動路 115を経て射 出シリンダ 201内に送出される。なお、図 6において実線矢印 L1はチェックバルブの 動く方向を示し、実線矢印 L2はプランジャ 202の動く方向を示している。また点線矢 印 L3は材料の流れを示して!/、る。 [0042] As a result, the open / close end 140 of the check valve 121 is separated from the valve pocket 139, the valve pocket 139 is opened, and the material is injected through the flow path 115 as shown in FIG. It is sent into the exit cylinder 201. In FIG. 6, a solid line arrow L1 indicates the direction in which the check valve moves, and a solid line arrow L2 indicates the direction in which the plunger 202 moves. The dotted arrow L3 indicates the material flow!
[0043] そして、チェックバルブ 121の当接部 152がスクロール軸穴 109の当接部 153に当 接すると、この当接によりチェックバルブ 121の動きが規制されて、バルブネジ 135が チェックバルブ 121に引寄せられ、図 6 (b)拡大図に示すようにテーパ部 146とテー パ部収納穴 150と間に微少隙間 δが生じて圧入状態が解除される。なお、この隙間 は、テーパ部 146とテーパ部収納穴 150とが空回りできる程度の隙間である。  [0043] When the contact portion 152 of the check valve 121 comes into contact with the contact portion 153 of the scroll shaft hole 109, the movement of the check valve 121 is regulated by this contact, and the valve screw 135 is pulled to the check valve 121. Accordingly, as shown in the enlarged view of FIG. 6B, a minute gap δ is generated between the taper portion 146 and the taper portion accommodation hole 150, and the press-fitted state is released. Note that this gap is a gap that allows the tapered portion 146 and the tapered portion accommodation hole 150 to idle.
[0044] テーパ部 146とテーパ部収納穴 150とが空回りすると、チェックバルブ 121への回 転駆動力が伝達されなくなるため、その後スクロール 106が回転を継続して材料の射 出を続けることが可能になる。  [0044] When the taper portion 146 and the taper portion receiving hole 150 are idle, the rotational driving force to the check valve 121 is not transmitted, so that the scroll 106 can continue to rotate and continue to eject material. become.
[0045] そして、所定量の材料が射出シリンダ 201に送込まれると、図 6 (c)に示すようにスク ロールモータ 120を逆回転させる。この回転方向はワンウェイクラッチ 136がクラッチ 状態として機能する方向であるため、モータ軸 126の回転はワンウェイクラッチ 136を 経てバルブネジ 135に伝達されて、チェックバルブ 121はバルブポケット 139に向け て動き開閉端部 140が当該バルブポケット 139に当接してその開口を閉塞する。  [0045] When a predetermined amount of material is fed into the injection cylinder 201, the scroll motor 120 is reversely rotated as shown in FIG. 6 (c). Since this rotation direction is a direction in which the one-way clutch 136 functions as a clutch state, the rotation of the motor shaft 126 is transmitted to the valve screw 135 via the one-way clutch 136, and the check valve 121 moves toward the valve pocket 139 and opens and closes 140 contacts the valve pocket 139 to close the opening.
[0046] 開閉端部 140がバルブポケット 139に当接すると、それ以上チェックバルブ 121は 動けなくなるので、バルブネジ 135がモータ軸 126側に動き、テーパ部 146がテーパ 部収納穴 150に押込まれて図 6 (d)に示す圧入状態となり、図 6 (a)に示す状態に戻 る。  [0046] When the open / close end 140 comes into contact with the valve pocket 139, the check valve 121 cannot move any further, so the valve screw 135 moves to the motor shaft 126 side, and the tapered portion 146 is pushed into the tapered portion receiving hole 150. The press-fitted state shown in Fig. 6 (d) returns to the state shown in Fig. 6 (a).
[0047] バルブポケット 139が閉塞された状態では、プランジャ 202が射出シリンダ 201内の 材料を射出しても、射出圧により材料がスクロール 106側に逆流することがない。  [0047] In a state where the valve pocket 139 is closed, even if the plunger 202 injects the material in the injection cylinder 201, the material does not flow back to the scroll 106 side due to the injection pressure.
[0048] このように、安価な部品を用いた簡単な構成で確実にチェックバルブ 121を動作さ せることができるため、信頼性が向上すると共に、チェックバルブ 121がスクロール軸 穴 109内をピストンのように動く構成なので射出成形装置を起動する際に、前回の運 転の際に材料が隙間等に入り込み当該チェックバルブ 121の動きが悪くなると言った 問題が解消される。  [0048] As described above, since the check valve 121 can be reliably operated with a simple configuration using inexpensive parts, the reliability is improved, and the check valve 121 moves inside the scroll shaft hole 109 with the piston. When the injection molding apparatus is started up, the problem that the check valve 121 moves poorly due to the material entering the gap during the previous operation is solved.
[0049] また、当該チェックバルブ 121の駆動源はスクロール 106を駆動するスクロールモ ータ 120であるため、動力源の併用による射出成形装置の小型化及び部品点数の 削減によるコストダウンが可能になる。 [0049] The drive source of the check valve 121 is a scroll module that drives the scroll 106. Therefore, it is possible to reduce the cost of the injection molding apparatus by reducing the number of parts and the number of parts by combining the power source.
[0050] 射出部 20は、図 7に詳細に示すように、上述した射出シリンダ 201、該射出シリンダAs shown in detail in FIG. 7, the injection unit 20 includes the above-described injection cylinder 201 and the injection cylinder.
201に装着されるプランジャ 202、該プランジャ 202を駆動するプランジャ駆動機構 2Plunger 202 mounted on 201, plunger drive mechanism 2 for driving the plunger 202
03、固定ダイプレート 102内に設けられて射出シリンダ 201からの材料をキヤビティ K に射出させるランナチューブ 204等を備えて 、る。 03. A runner tube 204 or the like provided in the fixed die plate 102 for injecting the material from the injection cylinder 201 into the cavity K is provided.
[0051] プランジャ駆動機構 203は、射出モータ 206の動力が伝達される第 2プーリ 207、 第 2偏芯運動歯車 208、第 2自転歯車 209、第 2ボールネジ軸 210を主要構成として[0051] The plunger drive mechanism 203 has a second pulley 207, a second eccentric motion gear 208, a second rotation gear 209, and a second ball screw shaft 210 to which the power of the injection motor 206 is transmitted as main components.
、射出ハウジング 211内に設けられている。 The injection housing 211 is provided.
なお、第 2ボールネジ軸 213の先端部は射出シリンダ 201のピストンをなすプランジ ャ 202で、後端部は軸心に対して断面が非対称 (例えば、 D形状)に形成されている  The tip of the second ball screw shaft 213 is a plunger 202 that forms the piston of the injection cylinder 201, and the rear end is formed with an asymmetric cross section (for example, D shape) with respect to the shaft center.
[0052] 第 2プーリ 207は、 1対のベアリング Dにより挟持されて自在に回転し、内部には第 2 ボールネジ軸 213の頭部 217が揷通する貫通穴 215が形成されている。また、第 2プ ーリ 207の第 2ボールネジ軸 213側の端部内周面は、当該第 2プーリ 207の回転軸と 同軸の円筒面に形成され、その外周面は回転軸に対して偏芯した円筒面力 なる第 2クランク 216が形成されている。なお、この第 2クランク 216にはベアリング Eが外揷 される。 [0052] The second pulley 207 is sandwiched by a pair of bearings D and freely rotates, and a through hole 215 through which the head 217 of the second ball screw shaft 213 passes is formed. Further, the inner peripheral surface of the end of the second pulley 207 on the second ball screw shaft 213 side is formed as a cylindrical surface coaxial with the rotation shaft of the second pulley 207, and the outer peripheral surface is eccentric with respect to the rotation shaft. A second crank 216 having a cylindrical surface force is formed. The second crank 216 is provided with a bearing E.
[0053] 射出ハウジング 211には、第 2ボールネジ軸揷通穴 219及びナット係合部 220が設 けられると共に、射出モータ 206側 (第 2プーリ 207側)の端面に第 2遊嵌穴 222が複 数設けられている。  [0053] The injection housing 211 is provided with a second ball screw shaft through hole 219 and a nut engaging portion 220, and a second loose-fitting hole 222 on the end surface of the injection motor 206 side (second pulley 207 side). There are several.
なお、第 2ボールネジナット 214をナット係合部 220に装着収納した際には、図示し ないネジにより当該第 2ボールネジナット 214を射出ハウジング 211に固定されるよう になっている。  When the second ball screw nut 214 is mounted and stored in the nut engaging portion 220, the second ball screw nut 214 is fixed to the injection housing 211 with a screw (not shown).
[0054] 第 2偏芯運動歯車 208は、内周面に歯が形成されると共に厚み方向に複数の第 2 規制ピン固着穴 223が形成されてなる環状の歯車で、ベアリング Eを介して第 2クラン ク 216に装着される。  [0054] The second eccentric gear 208 is an annular gear having teeth formed on the inner peripheral surface and a plurality of second restricting pin fixing holes 223 formed in the thickness direction. Mounted on 2 cranks 216.
[0055] また、第 2自転歯車 209は、外周面に歯が形成されると共に中心に第 2ボールネジ 軸 213の頭部 217が挿通し、係合する第 2ボールネジ軸係合部 225が形成され、こ の第 2ボールネジ軸係合部 225の外周部分にベアリング Fが外挿されて第 2偏芯運 動歯車 208に揷着されるようになって 、る。 [0055] The second rotation gear 209 has teeth formed on the outer peripheral surface and a second ball screw at the center. A second ball screw shaft engaging portion 225 is formed through which the head portion 217 of the shaft 213 is inserted and engaged, and a bearing F is externally inserted on the outer peripheral portion of the second ball screw shaft engaging portion 225 to provide a second eccentricity. It comes to be attached to the driving gear 208.
[0056] そして、第 2プーリ 207が回転すると第 2クランク 216は偏芯回転運動し、その偏芯 回転運動が第 2偏芯運動歯車 208に伝達される。第 2偏芯運動歯車 208には第 2規 制ピン 230が固着され、その頭部は射出ハウジング 211に設けられた第 2遊嵌穴 22 2に遊嵌しているので、第 2偏芯運動歯車 208は第 2規制ピン 230の頭部が第 2遊嵌 穴 222で運動できる範囲で偏芯運動することにより、自転運動が規制されながら第 2 自転歯車 209と部分歯合し、この歯合部分が回転することにより第 2自転歯車 209が 回転する。 Then, when the second pulley 207 rotates, the second crank 216 performs an eccentric rotational motion, and the eccentric rotational motion is transmitted to the second eccentric motion gear 208. A second regulating pin 230 is fixed to the second eccentric movement gear 208, and its head is loosely fitted in a second loose-fitting hole 222 provided in the injection housing 211. The gear 208 eccentrically moves in the range in which the head of the second restriction pin 230 can move in the second loose-fitting hole 222, so that the rotation movement is restricted and the second rotation gear 209 is partially meshed. As the portion rotates, the second rotation gear 209 rotates.
[0057] 第 2自転歯車 209が回転すると、その回転は第 2ボールネジ軸係合部 225と第 2ボ 一ルネジ軸 213の頭部 217との係合により第 2ボールネジ軸 213に伝達され、第 2自 転歯車 209がある方向に回転するとプランジャ 202は射出シリンダ 201から抜出すよ うに動いて当該射出シリンダ 201内が空となり、逆方向に回転すると射出シリンダ 20 1のシリンダ内容物 (材料)が押出されるようになる。  When the second rotation gear 209 rotates, the rotation is transmitted to the second ball screw shaft 213 by the engagement between the second ball screw shaft engaging portion 225 and the head 217 of the second ball screw shaft 213, and 2 When the rotating gear 209 rotates in a certain direction, the plunger 202 moves so as to be pulled out from the injection cylinder 201 and the inside of the injection cylinder 201 becomes empty. When the rotation in the reverse direction, the cylinder contents (material) of the injection cylinder 201 are It will be extruded.
[0058] 型締部 30は、図 8に詳細に示すように、型締ハウジング 301、可動ダイプレート 302 、型締駆動機構 303を備えて、型締ノヽウジング 301は複数のダイバ— 304により固定 ダイプレート 102と所定間隔をなして固定され、該ダイバー 304に可動ダイプレート 3 02が挿通して型締駆動機構 303により進退可能となっている。  As shown in detail in FIG. 8, the mold clamping unit 30 includes a mold clamping housing 301, a movable die plate 302, and a mold clamping drive mechanism 303. The mold clamping nosing 301 is fixed by a plurality of divers 304. The die plate 102 is fixed at a predetermined interval, and the movable die plate 302 is inserted into the diver 304 so that the die clamping drive mechanism 303 can advance and retreat.
[0059] 型締駆動機構 303は、第 3ボールネジ軸 311、型締モータ 312、第 3プーリ 314、 第 3規制ピン 315、第 3偏芯運動歯車 322、第 3自転歯車 317等を備えている。第 3 ボールネジ軸 311の第 3プーリ 314側端部は、軸心に対して断面が非対称 (例えば、 D形状)に形成された頭部 326であり、その中心には雌ネジ 313が形成されている。  The mold clamping drive mechanism 303 includes a third ball screw shaft 311, a mold clamping motor 312, a third pulley 314, a third restriction pin 315, a third eccentric motion gear 322, a third rotation gear 317, and the like. . The third pulley 314 side end of the third ball screw shaft 311 is a head 326 having a cross section that is asymmetric (eg, D-shaped) with respect to the shaft center, and a female screw 313 is formed at the center thereof. Yes.
[0060] 第 3プーリ 314は一対のベアリング Iにより挟持されて型締モータ 312の回転動力に より回転し、その先端部には第 3クランク 327が設けられている。この第 3クランク 327 の一端には、第 3プーリ 314の回転軸と同軸の円筒穴 316が形成され、その外周面 は回転軸に対して偏芯した円周面力 なる円筒状をなしてベアリング Hが外挿される ようになつている。円筒穴 316は固定ボルト 323の頭部を収納する穴である。 [0061] そして、この第 3クランク 327は、型締ハウジング 301に設けられた収納部 318にべ ァリング Iを介して収納される。この型締ハウジング 301には、第 3ボールネジ軸 311 の頭部 326が揷通する揷通穴 324、第 3ボールネジ軸 311側の面に形成されて第 3 規制ピン 315の頭部が遊嵌する第 3遊嵌穴 325が複数設けられている。 [0060] The third pulley 314 is sandwiched between a pair of bearings I and rotated by the rotational power of the mold clamping motor 312. A third crank 327 is provided at the tip of the third pulley 314. One end of the third crank 327 is formed with a cylindrical hole 316 coaxial with the rotation shaft of the third pulley 314. The outer peripheral surface of the third crank 327 has a cylindrical shape with a circumferential surface force eccentric to the rotation shaft. H is extrapolated. The cylindrical hole 316 is a hole for accommodating the head of the fixing bolt 323. Then, the third crank 327 is stored in the storage portion 318 provided in the mold clamping housing 301 via the bearing I. In this mold-clamping housing 301, a through hole 324 through which the head 326 of the third ball screw shaft 311 passes, and a head of the third restriction pin 315 are loosely fitted on the surface on the third ball screw shaft 311 side. A plurality of third loose fitting holes 325 are provided.
[0062] 第 3偏芯運動歯車 322は、外周面に歯が形成されると共に、厚み方向に複数の第 3規制ピン固着穴 321が形成された環状部材で、その内側にはベアリング Hを介して 第 3クランク 327が内挿されるようになって 、る。  [0062] The third eccentric gear 322 is an annular member in which teeth are formed on the outer peripheral surface and a plurality of third restricting pin fixing holes 321 are formed in the thickness direction. The third crank 327 is inserted.
[0063] 第 3自転歯車 317は、第 3偏芯運動歯車 322側の面に突設された部材の内周面に 歯が形成され、他方の面には第 3ボールネジ軸 311の頭部が挿入されて係合する係 合穴 319を備えている。  [0063] In the third rotation gear 317, teeth are formed on the inner peripheral surface of a member protruding from the surface on the third eccentric movement gear 322 side, and the head of the third ball screw shaft 311 is formed on the other surface. A mating hole 319 is provided to be inserted and engaged.
また、第 3自転歯車 317の中心には、固定ボルト 323が揷通するボルト穴 320が形 成されており、第 3ボールネジ軸 311の頭部 326を係合穴 319に装着し、固定ボルト 323で締めることにより、第 3自転歯車 317と第 3ボールネジ軸 311とが連結されるよ うになつている。  A bolt hole 320 through which the fixing bolt 323 passes is formed at the center of the third rotating gear 317. The head 326 of the third ball screw shaft 311 is attached to the engaging hole 319, and the fixing bolt 323 The third rotation gear 317 and the third ball screw shaft 311 are connected to each other by tightening with the bolt.
[0064] そして、型締モータ 312の回転動力は、第 3プーリ 314を経て第 3クランク 327の偏 芯回転運動として伝達される。この偏芯回転運動はベアリング Hを介して第 3偏芯運 動歯車 322に伝達され、第 3遊嵌穴 325による第 3規制ピン 315の運動規制に応じ て第 3自転歯車 317の歯と部分的に歯合し、その歯合位置が偏芯方向に応じて回転 するため第 3自転歯車 317は回転し、これに伴 、第 3ボールネジ軸 311が回転する。  [0064] Then, the rotational power of the mold clamping motor 312 is transmitted as the eccentric rotational motion of the third crank 327 via the third pulley 314. This eccentric rotational movement is transmitted to the third eccentric driving gear 322 via the bearing H, and the teeth and parts of the third rotating gear 317 are subjected to the movement restriction of the third restriction pin 315 by the third loose-fitting hole 325. Since the meshing position is rotated and the meshing position rotates in accordance with the eccentric direction, the third rotation gear 317 rotates, and accordingly, the third ball screw shaft 311 rotates.
[0065] 金型 40は、可動ダイプレート 302に取付けられる可動金型 401、固定ダイプレート 102に取付けられる固定金型 402からなるカセット金型 40となっており、金型 40の一 方には、複数の位置決ピン 403が設けられ、対向する金型 40に該位置決ピン 403が 嵌合する規制ピン受穴 404が設けられて 、る。  [0065] The mold 40 is a cassette mold 40 composed of a movable mold 401 attached to the movable die plate 302 and a fixed mold 402 attached to the fixed die plate 102. A plurality of positioning pins 403 are provided, and a regulation pin receiving hole 404 into which the positioning pins 403 are fitted is provided in the opposing mold 40.
さらに、固定ダイプレート 102に取付けられる固定金型 402にはホットランナ 405が 挿嵌されるランナ受穴 406が形成されて 、る。  Further, a runner receiving hole 406 into which a hot runner 405 is inserted is formed in the fixed mold 402 attached to the fixed die plate 102.
[0066] また、可動金型 401には、成型品押出機構 407が設けられている。この成型品押 出機構 407は、可動金型 401を貫通してキヤビティ Kに挿通するように設けられた複 数の押出ピン 408が固着された支持板 409、支持板 409に固着されると共に可動金 型 401に挿嵌する支持棒 410、該支持棒 410に挿入されて通常時には押出ピン 40 8の頭部がキヤビティ Kの壁面をなすように支持板 409を付勢するパネ 411、支持板 409と固着された押出板 412、該押出板 412に取付られたスラストベアリング 413を 備えている。 In addition, the movable mold 401 is provided with a molded product extrusion mechanism 407. This molded product push-out mechanism 407 is fixed to a support plate 409 to which a plurality of extrusion pins 408 provided so as to pass through the movable die 401 and to be inserted into the cavity K, and is fixed to the support plate 409 and movable. Money A support bar 410 to be inserted into the mold 401, a panel 411 for urging the support plate 409 so that the head of the push pin 408 is inserted into the support bar 410, and the head of the cavity K normally forms a wall surface of the cavity K; A fixed extrusion plate 412 and a thrust bearing 413 attached to the extrusion plate 412 are provided.
[0067] そして、この成型品押出機構 407は、射出成形された製品を取り出す際に、可動ダ ィプレート 302を所定量以上型締ハウジング 301側に後退させると、第 3ボールネジ 軸 311がスラストべァリング 413に当接して、支持板 409をパネ 411に抗してキヤビテ ィ K側に押込む。これにより、キヤビティ K内の射出成形品は押出ピン 408により簡単 に押出すことができる。  [0067] Then, when the molded product extrusion mechanism 407 takes out the injection molded product, the third ball screw shaft 311 is thrust-bearing when the movable die plate 302 is retracted by a predetermined amount or more toward the mold clamping housing 301 side. Abutting on 413, the support plate 409 is pushed to the cavity K side against the panel 411. As a result, the injection-molded product in the cavity K can be easily extruded by the extrusion pin 408.
[0068] なお、スラストベアリング 413は、第 3ボールネジ軸 311の頭部が押出板 412を傷つ けたりしな 、ようにするために設けられ、スラスト滑り軸受等であっても良 、。  [0068] The thrust bearing 413 is provided so that the head of the third ball screw shaft 311 does not damage the extrusion plate 412, and may be a thrust slide bearing or the like.
[0069] また、射出部 20や型締部 30にお 、てボールネジナットと自転歯車とは別体構成で あった。しかし本発明は、これに限定されるものではない。例えば、図 9及び図 10に 示すように射出部 20や型締部 30における減速機構のボールネジナットと偏芯運動 歯車とを一体に形成てもょ ヽ。  [0069] Further, in the injection part 20 and the mold clamping part 30, the ball screw nut and the rotation gear are separate structures. However, the present invention is not limited to this. For example, as shown in FIGS. 9 and 10, the ball screw nut and the eccentric motion gear of the speed reduction mechanism in the injection part 20 and the mold clamping part 30 may be formed integrally.
なお、図 9は射出部 20における場合を示し、図 10は型締部 30における場合を示し ている。  FIG. 9 shows the case in the injection part 20, and FIG. 10 shows the case in the mold clamping part 30.
これにより 2の部材が 1の部材となるため、コストダウンが図れると共に、さらなる装置 の小型化が可能になる。  As a result, since the second member becomes the first member, the cost can be reduced and the device can be further downsized.
[0070] また、これまで説明した第 1規制ピン 130〜第 3規制ピン 315は第 1偏芯運動歯車 1 24〜第 3偏芯運動歯車 322に固着し、可塑化ハウジング 101等に設けられた第 1遊 嵌穴 133〜第 3遊嵌穴 325に遊嵌する構成であつたが、逆の構成であっても良!、。 即ち、第 1規制ピン 130等の機能は、第 1偏芯運動歯車 124等の位置規制を固定 部材である可塑ィ匕ハウジング 101等に対して行うことであるので、可塑化ハウジング 1 01等に第 1規制ピン固着穴 123を形成して第 1規制ピン 130等を固着し、第 1偏芯 運動歯車 124等に第 1遊嵌穴 133等を形成して第 1規制ピン 130等を遊嵌させても 同様の規制を行うことが可能になる。  [0070] Further, the first restriction pin 130 to the third restriction pin 315 described so far are fixed to the first eccentric motion gear 1 24 to the third eccentric motion gear 322, and are provided in the plasticized housing 101 or the like. The first loose-fitting hole 133 to the third loose-fitting hole 325 are configured to be loosely fitted, but the reverse structure may be used. That is, the function of the first restricting pin 130 and the like is to restrict the position of the first eccentric movement gear 124 and the like with respect to the plastic housing 101 and the like which are fixed members. The first restriction pin fixing hole 123 is formed to fix the first restriction pin 130 etc., and the first eccentric fitting gear 124 etc. is formed with the first loose fitting hole 133 etc. to loosely fit the first restriction pin 130 etc. Even if it is done, it is possible to carry out similar regulations.
[0071] また、規制ピンは可塑化ハウジング等の固定部材に遊嵌又は嵌着するば力りでなく 、図 11に示すように、偏芯運動歯車に伴い回転運動する被駆動体 330に遊嵌又は 嵌着する構成であってもよ 、。 [0071] In addition, the regulation pin is not a force when it is loosely fitted or fitted to a fixing member such as a plasticized housing. As shown in FIG. 11, it may be configured to be loosely fitted or fitted to a driven body 330 that rotates with an eccentric gear.
この場合は、これまで説明した自転歯車は固定されることになる。この歯車(固定歯 車 331)と第 3偏芯歯車 322との歯合関係は変化なぐ第 3規制ピン 315が第 3ボー ルネジ軸 311に固着された被駆動体 330に遊嵌又は嵌着して 、るので、回転動力 は被駆動体 330に伝達されて第 3ボールネジ軸 311が自転する。  In this case, the rotating gear described so far is fixed. The third regulating pin 315 whose meshing relationship between the gear (the fixed gear 331) and the third eccentric gear 322 does not change is loosely fitted or fitted to the driven body 330 fixed to the third ball screw shaft 311. Therefore, the rotational power is transmitted to the driven body 330 and the third ball screw shaft 311 rotates.
[0072] また、遊嵌穴に遊嵌する第 1規制ピン等の部位にこれらが直接接触することによる 摩擦を避けるため、ベアリングを設けてもよい。 [0072] Further, a bearing may be provided in order to avoid friction caused by direct contact of the first restricting pins and the like that are loosely fitted into the loose fitting holes.
[0073] また、これまでの説明では偏芯運動歯車と自転歯車とは 1対 1の関係をなし、それ ぞれ 1つ設ける構成であつたが、 1の自転歯車に対して偏芯運動歯車を複数設けた 構成にすることも可能である。 [0073] In the description so far, the eccentric gear and the rotation gear have a one-to-one relationship, and each has one configuration. It is also possible to have a configuration in which a plurality of are provided.
[0074] 例えば、図 12に示すように、 n個の第 1偏芯運動歯車 124a〜124c,ベアリング Ba 〜Bc及び第 1クランク 129a〜 129cを設ける(図 12ではそれぞれ 3個の場合を示す) 。このとき 3の第 1クランク 129a〜129cは、モータ軸 126の回転中心に対して等しい 角度ずらす。そして、第 1規制ピン 130の一端を各第 1偏芯運動歯車 124a〜124c の第 1遊嵌穴 133a〜133cに遊嵌させ、他端はフランジ 132に固着させる。  For example, as shown in FIG. 12, n first eccentric motion gears 124a to 124c, bearings Ba to Bc, and first cranks 129a to 129c are provided (FIG. 12 shows three cases each). . At this time, the first cranks 129 a to 129 c of 3 are shifted by an equal angle with respect to the rotation center of the motor shaft 126. Then, one end of the first restricting pin 130 is loosely fitted in the first loose-fitting holes 133a to 133c of the first eccentric movement gears 124a to 124c, and the other end is fixed to the flange 132.
[0075] このような構成により、各第 1偏芯運動歯車 124a〜124cはそれぞれ、各第 1クラン ク 129a〜129cの位相に従い偏芯して第 1自転歯車 110と部分歯合するので、当該 第 1自転歯車 110は各第 1偏芯運動歯車 124a〜124cから同時に回転動力が伝達 されることになり、動力伝達点が軸対称となって、スムースな回転動力の伝達が可能 になると共に、同じ動力を第 1自転歯車 110に伝達する際に第 1偏芯運動歯車 124a 〜 124c及び第 1クランク 129a〜 129cのそれぞれが担う動力が分割されるため摩耗 等が抑制できるようになる。  [0075] With such a configuration, each of the first eccentric gears 124a to 124c is eccentric according to the phase of each of the first cranks 129a to 129c and partially meshes with the first rotation gear 110. In the first rotation gear 110, rotational power is transmitted simultaneously from each of the first eccentric gears 124a to 124c, the power transmission point is axisymmetric, and smooth rotational power can be transmitted. When the same power is transmitted to the first rotation gear 110, the powers of the first eccentric gears 124a to 124c and the first cranks 129a to 129c are divided, so that wear and the like can be suppressed.
[0076] また、本発明は偏芯運動歯車と自転歯車との内包関係について限定を受けるもの ではない。例えば、図 10において第 3偏芯運動歯車 322は内歯で第 3自転歯車 317 は外歯であつたが、図 13に示すように第 3偏芯運動歯車 322を外歯で第 3自転歯車 317を内歯としても同様の作用効果が得られる。  [0076] Further, the present invention is not limited to the inclusion relationship between the eccentric gear and the rotation gear. For example, in FIG. 10, the third eccentric gear 322 is an internal tooth and the third rotation gear 317 is an external tooth, but as shown in FIG. 13, the third eccentric gear 322 is a third rotation gear with an external tooth. Similar effects can be obtained by using 317 as an internal tooth.
[0077] さらに、上記説明では型締部 30等においてはプーリを介してモータの回転動力を クランクに伝達する構成である力 可塑ィ匕部のようにモータ軸にクランクを直接取付け る構成であってもよい。 [0077] Furthermore, in the above description, the rotational force of the motor is supplied to the mold clamping unit 30 and the like via a pulley. A structure in which the crank is directly attached to the motor shaft may be used, such as a force plastic structure that transmits to the crank.

Claims

請求の範囲 The scope of the claims
[1] 動力発生源から出力される動力の回転数を減速することにより回転動力を増幅して 被駆動体に伝達する減速機構であって、  [1] A reduction mechanism that amplifies rotational power by decelerating the rotational speed of power output from a power generation source and transmits the amplified rotational power to a driven body,
前記動力発生源力 の前記回転動力を偏芯回転動力に変換するクランクと、 該クランクから前記偏芯回転動力が伝達される偏芯運動歯車と、  A crank that converts the rotational power of the power generation source force into eccentric rotational power; an eccentric motion gear that transmits the eccentric rotational power from the crank;
該偏芯運動歯車に遊嵌穴が形成されて、一端が当該遊嵌穴に遊嵌すると共に他 端が位置固定された固定部材に固着され、又は位置固定された固定部材に遊嵌穴 が形成されて、一端が当該遊嵌穴に遊嵌すると共に他端が前記偏芯運動歯車に固 着されたピンで、該ピンが前記遊嵌穴内で運動する範囲で前記偏芯運動歯車の偏 芯運動を許容しながら当該偏芯運動歯車の自転を規制する規制ピンと、  A loose fitting hole is formed in the eccentric gear, and one end is loosely fitted in the loose fitting hole and the other end is fixed to a fixed member fixed in position, or a loose fixed hole is fixed in the fixed member fixed in position. The pin is formed so that one end is loosely fitted in the loose fitting hole and the other end is fixed to the eccentric movement gear, and the eccentric movement gear is displaced within the range in which the pin moves within the loose fitting hole. A regulation pin that regulates the rotation of the eccentric gear while allowing the core motion;
前記被駆動体と一体に形成され、かつ、前記偏芯運動歯車の中心側に配設され 又は当該偏芯運動歯車を内側に含むように配設されて、該偏芯運動歯車における 偏芯方向の歯部と部分歯合すると共に、当該偏芯運動歯車の偏芯方向の変化に応 じて前記部分歯合位置が回転することにより回転動力を受て自転する自転歯車とか らなることを特徴とする減速機構。  Eccentric direction in the eccentric motion gear formed integrally with the driven body and disposed on the center side of the eccentric motion gear or disposed to include the eccentric motion gear inside And a rotating gear that rotates by receiving rotational power by rotating the partial meshing position according to a change in the eccentric direction of the eccentric gear. A reduction mechanism.
[2] 前記被駆動体がボールネジであって、当該ボールネジのボールネジ軸又はボール ネジナットに前記自転歯車が形成されていることを特徴とする請求項 1記載の減速機 構。  2. The reduction mechanism according to claim 1, wherein the driven body is a ball screw, and the rotation gear is formed on a ball screw shaft or a ball screw nut of the ball screw.
[3] スクロールにより材料を可塑ィ匕し圧送する際に当該スクロールを駆動するスクロー ル駆動機構を具備する可塑化部を備えた射出成形装置であって、  [3] An injection molding apparatus including a plasticizing portion including a scroll driving mechanism that drives a scroll when the material is plasticized and fed by a scroll.
前記スクロール駆動機構が前記減速機構を具備して、その際に前記被駆動体が回 転中心軸に向けて縮小する螺旋溝内の材料を当該回転中心軸に向けて圧送するス クロールであり、前記固定部材が前記可塑ィ匕部のケーシングをなす可塑化ハウジン グであることを特徴とする請求項 1記載の減速機構を用いた射出成形装置。  The scroll driving mechanism includes the speed reduction mechanism, and the driven body is a scroll for pressure-feeding the material in the spiral groove that shrinks toward the rotation center axis toward the rotation center axis. 2. The injection molding apparatus using a speed reduction mechanism according to claim 1, wherein the fixing member is a plasticizing housing that forms a casing of the plastic flange portion.
[4] 射出シリンダ内の可塑化された材料を該射出シリンダのピストンをなすプランジャで 押出し金型のキヤビティに射出する際に当該プランジャを駆動するプランジャ駆動機 構を具備する射出部を備えた射出成形装置であって、 [4] Injection including an injection portion having a plunger driving mechanism for driving the plasticized material in the injection cylinder when the plastic material in the injection cylinder is injected into the cavity of the extrusion mold by the plunger forming the piston of the injection cylinder A molding device,
前記プランジャ駆動機構が前記減速機構を具備し、その際に前記被駆動体は先端 部が前記プランジャをなすボールネジ軸と係合して、当該ボールネジ軸の自由回転 を規制しながら、軸方向に進退可能にする射出側係合部材で当該射出側係合部材 と前記自転歯車とがー体に形成され、また前記固定部材が射出部のケーシングをな す射出ハウジングであることを特徴とする請求項 2記載の減速機構を用いた射出成 形装置。 The plunger drive mechanism includes the speed reduction mechanism, and the driven body is at the tip The injection-side engagement member and the rotation gear are an injection-side engagement member that engages with the ball screw shaft that forms the plunger and restricts the free rotation of the ball screw shaft, and is capable of moving forward and backward in the axial direction. 3. The injection molding apparatus using a speed reduction mechanism according to claim 2, wherein the injection molding apparatus is formed in a body and the fixing member is an injection housing forming a casing of an injection portion.
[5] 射出シリンダ内の可塑化された材料を該射出シリンダのピストンをなすプランジャで 押出し金型のキヤビティに射出する際に当該プランジャを駆動するプランジャ駆動機 構を具備する射出部を備えた射出成形装置であって、  [5] Injection including an injection portion having a plunger driving mechanism for driving the plasticized material in the injection cylinder when the plastic material in the injection cylinder is injected into the cavity of the extrusion mold by the plunger forming the piston of the injection cylinder A molding device,
前記プランジャ駆動機構が前記減速機構を具備し、その際に前記被駆動体は先端 部が前記プランジャをなすボールネジ軸に螺合するボールネジナットで、該ボールネ ジナットと前記自転歯車とがー体に形成され、また前記固定部材が射出部のケーシ ングをなす射出ハウジングであることを特徴とする請求項 2記載の減速機構を用いた 射出成形装置。  The plunger drive mechanism includes the speed reduction mechanism, and the driven body is a ball screw nut whose front end is screwed to a ball screw shaft forming the plunger, and the ball screw nut and the rotation gear are formed in a body. 3. The injection molding apparatus using a speed reduction mechanism according to claim 2, wherein the fixing member is an injection housing that forms a casing of an injection portion.
[6] 固定金型と該固定金型に対して可動する可動金型からなる金型の当該可動金型 を駆動して型締する際に、当該金型を型開閉する型締駆動機構を具備する型締部 を備えた射出成形装置であって、  [6] A mold clamping drive mechanism that opens and closes the mold when the movable mold of the fixed mold and the movable mold movable relative to the fixed mold is driven to clamp the mold. An injection molding apparatus provided with a mold clamping part,
前記型締駆動機構が前記減速機構を具備し、その際に前記被駆動体は先端部が 前記可動金型と連結されたボールネジ軸と係合して当該ボールネジ軸を回転させる 型締側係合体で、当該型締側係合体と前記自転歯車とがー体に形成され、また前 記固定部材が型締部のケーシングをなす型締ハウジングであることを特徴とする請 求項 1記載の減速機構を用いた射出成形装置。  The mold clamping drive mechanism includes the speed reduction mechanism, and at this time, the driven body engages with a ball screw shaft whose tip is connected to the movable mold to rotate the ball screw shaft. The speed reduction according to claim 1, wherein the mold clamping side engaging body and the rotation gear are formed in a body, and the fixing member is a mold clamping housing forming a casing of the mold clamping portion. Injection molding equipment using the mechanism.
PCT/JP2005/017465 2005-09-22 2005-09-22 Reduction gear mechanism and injection molding device using the same WO2007034549A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007536370A JPWO2007034549A1 (en) 2005-09-22 2005-09-22 Injection molding equipment using reduction mechanism
PCT/JP2005/017465 WO2007034549A1 (en) 2005-09-22 2005-09-22 Reduction gear mechanism and injection molding device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/017465 WO2007034549A1 (en) 2005-09-22 2005-09-22 Reduction gear mechanism and injection molding device using the same

Publications (1)

Publication Number Publication Date
WO2007034549A1 true WO2007034549A1 (en) 2007-03-29

Family

ID=37888610

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/017465 WO2007034549A1 (en) 2005-09-22 2005-09-22 Reduction gear mechanism and injection molding device using the same

Country Status (2)

Country Link
JP (1) JPWO2007034549A1 (en)
WO (1) WO2007034549A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010052264A (en) * 2008-08-28 2010-03-11 Shinko Sellbick:Kk Material supply apparatus and material delivery mechanism applied to the same
JP2011020378A (en) * 2009-07-16 2011-02-03 Canon Electronics Inc Plasticizing feeding apparatus, rotor thereof, and injection molding machine using the same
JP2020157601A (en) * 2019-03-27 2020-10-01 セイコーエプソン株式会社 Material supply apparatus, injection molding apparatus and three dimensional modeling apparatus
US11235526B2 (en) 2018-11-07 2022-02-01 Seiko Epson Corporation Plasticizing device, three-dimensional modeling device, and injection molding device
US11577437B2 (en) 2020-11-27 2023-02-14 Seiko Epson Corporation Plasticizing device, injection molding device, and three-dimensional shaping device
US11679540B2 (en) 2020-08-19 2023-06-20 Seiko Epson Corporation Plasticizing device, injection molding apparatus, and three-dimensional shaping apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5656950U (en) * 1979-10-08 1981-05-16
JPH07164494A (en) * 1993-12-14 1995-06-27 Tsuoisu Kk Device for plasticization-injection for injection molding machine
JPH07223248A (en) * 1994-02-10 1995-08-22 Shinko Sellbick:Kk Heat structure for kneading device
JPH11207744A (en) * 1998-01-23 1999-08-03 Shinko Sellbick:Kk Method for supplying material and material supply apparatus
JP2001355685A (en) * 2000-06-13 2001-12-26 Katsuji Shoji Reduction gear having self lock function and hoist machine using the same
JP2002292712A (en) * 2001-04-02 2002-10-09 Toshiba Mach Co Ltd Mold protecting method in injection molding machine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5656950U (en) * 1979-10-08 1981-05-16
JPH07164494A (en) * 1993-12-14 1995-06-27 Tsuoisu Kk Device for plasticization-injection for injection molding machine
JPH07223248A (en) * 1994-02-10 1995-08-22 Shinko Sellbick:Kk Heat structure for kneading device
JPH11207744A (en) * 1998-01-23 1999-08-03 Shinko Sellbick:Kk Method for supplying material and material supply apparatus
JP2001355685A (en) * 2000-06-13 2001-12-26 Katsuji Shoji Reduction gear having self lock function and hoist machine using the same
JP2002292712A (en) * 2001-04-02 2002-10-09 Toshiba Mach Co Ltd Mold protecting method in injection molding machine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010052264A (en) * 2008-08-28 2010-03-11 Shinko Sellbick:Kk Material supply apparatus and material delivery mechanism applied to the same
JP2011020378A (en) * 2009-07-16 2011-02-03 Canon Electronics Inc Plasticizing feeding apparatus, rotor thereof, and injection molding machine using the same
US11235526B2 (en) 2018-11-07 2022-02-01 Seiko Epson Corporation Plasticizing device, three-dimensional modeling device, and injection molding device
JP2020157601A (en) * 2019-03-27 2020-10-01 セイコーエプソン株式会社 Material supply apparatus, injection molding apparatus and three dimensional modeling apparatus
JP7218646B2 (en) 2019-03-27 2023-02-07 セイコーエプソン株式会社 Material supply device, injection molding device and three-dimensional modeling device
US11679540B2 (en) 2020-08-19 2023-06-20 Seiko Epson Corporation Plasticizing device, injection molding apparatus, and three-dimensional shaping apparatus
US11577437B2 (en) 2020-11-27 2023-02-14 Seiko Epson Corporation Plasticizing device, injection molding device, and three-dimensional shaping device

Also Published As

Publication number Publication date
JPWO2007034549A1 (en) 2009-03-19

Similar Documents

Publication Publication Date Title
WO2007034549A1 (en) Reduction gear mechanism and injection molding device using the same
JP5074167B2 (en) Injection molding machine, resin material plasticizing delivery device and rotor thereof
EP1733863B1 (en) Injection molding apparatus
US20180133940A1 (en) Injection molding machine
JP4444147B2 (en) Injection molding apparatus and scroll for injection molding apparatus
KR20090007311A (en) Apparatus for plastifying pellets, in particular plastics pellets, and injection-moulding or extrusion system equipped with this apparatus
US9259871B2 (en) Injection molding machine
JP2010031965A (en) Rotation-linear motion converting mechanism, and injection device using the mechanism and injection molding machine using the device
JP2007083545A (en) Injection molding device
US6120277A (en) Hybrid injection molding machine
JP5144822B1 (en) Injection device
US5196213A (en) Ejector mechanism in an injection molding machine
US5916602A (en) Injection molding machine having a hydraulically operated clamping system
JP2009113360A (en) Plunger type injection cylinder for injection molding machine
EP1101591A1 (en) Backflow barrier at the screw head of screw injection moulding machines
KR20170006174A (en) Ultra-precision syringe pumps
US6200127B1 (en) Bi-directional check ring for a two-stage injection unit
US7377769B2 (en) Discharge apparatus for two-stage injection molding machine
JPS6219423A (en) Injection molder
CN211993880U (en) Material supply device, injection molding device, and three-dimensional molding device
US20060099299A1 (en) Plasticizing unit for micro injection molding machine
JP2001341176A (en) Electromotive drive type injection apparatus
CA2345949C (en) Hybrid injection molding machine
JP3509791B2 (en) Backflow prevention device for in-line screw injection molding machine
JP3312017B2 (en) Injection equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007536370

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05785443

Country of ref document: EP

Kind code of ref document: A1