WO2007033649A1 - Kühlsystem für verdichtergehäuse - Google Patents

Kühlsystem für verdichtergehäuse Download PDF

Info

Publication number
WO2007033649A1
WO2007033649A1 PCT/DE2006/001635 DE2006001635W WO2007033649A1 WO 2007033649 A1 WO2007033649 A1 WO 2007033649A1 DE 2006001635 W DE2006001635 W DE 2006001635W WO 2007033649 A1 WO2007033649 A1 WO 2007033649A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
housing
air
rotor
improved
Prior art date
Application number
PCT/DE2006/001635
Other languages
English (en)
French (fr)
Inventor
Georg Zotz
Original Assignee
Mtu Aero Engines Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mtu Aero Engines Gmbh filed Critical Mtu Aero Engines Gmbh
Publication of WO2007033649A1 publication Critical patent/WO2007033649A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/14Adjusting or regulating tip-clearance, i.e. distance between rotor-blade tips and stator casing
    • F01D11/20Actively adjusting tip-clearance
    • F01D11/24Actively adjusting tip-clearance by selectively cooling-heating stator or rotor components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • F01D25/26Double casings; Measures against temperature strain in casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/541Specially adapted for elastic fluid pumps
    • F04D29/542Bladed diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/584Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps cooling or heating the machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/14Casings or housings protecting or supporting assemblies within
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/205Cooling fluid recirculation, i.e. after cooling one or more components is the cooling fluid recovered and used elsewhere for other purposes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the invention relates to an improved compressor in Axialbauart according to the preamble of patent claim 1.
  • a conventional axial compressor has various components. These include the Emt ⁇ ttsgehause, the compressor housing with the vanes, the compressor rotor with the blades and the exit housing.
  • the air flowing into the engine first passes the entrance housing.
  • the back of the mustsgehauses is often designed as a flange, which has a plurality of holes and is screwed in this way with the compressor housing.
  • the inside of the compressor housing carries the vanes.
  • T-shaped slots are provided in the initial direction in which the guide vane ring can be inserted.
  • the housing has blow-off air ducts over its entire circumference, through which compressed air can be extracted.
  • the blow-off air can be used to improve the performance of the compressor under certain operating conditions. In this case, the extracted air is not used and passed ms free.
  • a certain proportion of the compressed blow-off air is constantly removed and supplies various systems. These include, for example, the maintenance of uniform cabin pressure, the temperature control of electronic devices, etc.
  • blow-off or bleed air also serves to heat the Stutzstreben the matterssgehauses and to cool the hot Turbine blades.
  • the outlet housing supplies the air supplied by the compressor to the downstream combustion chamber.
  • the channels are formed diffuser-shaped.
  • the forces coming from the compressor housing are introduced via an annular flange in the outlet housing.
  • FIG. 2 shows a schematic longitudinal section through a known high pressure compressor housing.
  • guide vanes 2 are arranged on the housing inner wall, which alternate with the outlet radially decreasing with blades 3.
  • the compressor housing 1 has a casing 9, whereby a chamber 13 between the casing 9 and the sections 4, 5, 6 is formed.
  • the housing sections are connected to each other via radially high flanges 17, 18 with screws with a narrow hole pitch.
  • the thermal behavior of the sections 4, 5, 6 is u.a. adapted by a massive design to the thermally inert behavior of the rotor.
  • the thermal tuning of compressor and rotor i. the gap width between the compressor housing wall and blade tips, can basically only be done for one operating point here.
  • the invention is therefore based on the object to avoid the disadvantages of the known solutions and to provide an improved compressor in Axialbauart available, the thermal behavior can be optimized for different operating points.
  • An inventive axial type compressor for a gas turbine engine wherein the compressor has at least one rotor with moving blades and a compressor housing with guide vanes constructed in several parts over its axial length, is characterized in that a control or adjustable housing cooling system for thermal adaptation of the compressor housing is provided to the rotor.
  • the thermal tuning can be done over the entire operating range.
  • the cooling can be done by blown air, which is performed on demand on the housing sections and thus prevents too rapid heating, especially the rear housing stages.
  • the amount of air can be adapted to the respective rotor movement in one operating point.
  • the air gap between the blade tips and the housing can be optimized for the overall operating points. This is associated with an increase of surge limit and efficiency.
  • the working line can be raised and the total pressure ratio can be increased.
  • An advantageous development of the present invention provides that an air guide tube is provided for cooling, which leads Abblaseluft over the compressor housing. Due to the appropriate design of, for example, air guide slots, air ducts, valves and cooling surfaces, the otherwise jammed, heated air is dissipated and adapted the expansion behavior, in particular the compressor housing elements in the higher compressor stages to the respective extent of the rotor and the blades.
  • a further advantageous embodiment of the invention provides that a control unit is provided for regulating the cooling air flow via the compressor housing. This has the advantage that, in contrast to the departure of cams, actual conditions are taken into account, i. Even with deviations from the normal state at an operating point, the compressor housing is optimally tuned.
  • a further advantageous embodiment of the invention provides that individual sections of the compressor housing are braced axially with each other via an air guide tube. Due to the axial tension via an air guide tube, the otherwise usual screw connections on the individual housing sections can be omitted, which leads to a weight loss. reducing contributes. This in turn leads to a reduction in specific fuel consumption. Remote maintenance and installation is greatly facilitated by eliminating the flange screw connection, which also contributes to cost savings.
  • a further advantageous embodiment of the invention provides that the compressor is a high-pressure compressor.
  • the effect of the housing cooling is the most effective, since the housing heating by the compressed air is greatest here.
  • a further advantageous embodiment of the invention provides that temperature sensors are provided for monitoring the housing temperature. This makes it possible to realize a closed loop in a simple manner.
  • a further advantageous embodiment of the invention provides that at least one controllable control valve for controlling the cooling air flow is provided. As a result, the mass flow is varied as needed.
  • FIG. 1 shows a schematic longitudinal section through a compressor according to the invention
  • Fig. 2 is a schematic longitudinal section through a compressor according to the prior art.
  • Directional information refers to the longitudinal axis of the axial compressor.
  • FIG. 1 shows, inter alia, a compressor housing 1.
  • This shows guide vanes 2 and rotor blades 3, which are arranged alternately one behind the other and whose radial blade height decreases in the flow direction.
  • the compressor housing 1 consists of several, axially
  • the individual sections 4, 5, 6, 7 are braced in each case via an air guide tube 20, which also forms a sheath 9 of the compressor housing 1.
  • the sections 4, 5, 6, 7 together with the casing 9 respectively annular chambers 13, 14, 15, each extending over a blade ring.
  • the gap between the rotor and the compressor housing inner side changes.
  • Air is not completely removed via a control valve 11 and a blow-off air connection 12 via a blow-off air inlet 10, but is at least partially supplied via air passages 8 to the chambers 13, 14, 15 via the rear compressor housing sections 5, 6, 7.
  • the air flow of the blown air with switched housing cooling is shown in the drawing with approximately horizontal arrows. The air is guided from the blown air inlet to the rear stages, where it leaves the chamber 15 via at least one outlet opening 19.
  • the tuning can be carried out over the entire operating range.
  • thermal adaptation of the housing to the rotor with the blades the air gap can be optimized for the entire operating points. This is associated with an increase in the surge line and the efficiency.
  • the working line can be raised, and the overall pressure ratio can be increased.
  • the invention is not limited in its execution to the above-mentioned, preferred embodiment. Rather, a number of variants are conceivable which make use of the basic solution even in other types.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Ein Verdichter in Axialbauart für ein Gasturbinentriebwerk, wobei der Verdichter zumindest einen Rotor mit Laufschaufeln (3) und ein über seine axiale Länge mehrteilig aufgebautes Verdichtergehäuse (1) mit Leitschauf eln (2) aufweist, ist dadurch gekennzeichnet, dass ein Steuer- bzw. regelbares Gehäusekühlsystem zur thermischen Anpassung des Verdichtergehäuses (1) an den Rotor vorgesehen ist.

Description

KUHLSYSTEM FUR VERDICHTERGEHAUSE
Die Erfindung betrifft einen verbesserten Verdichter in Axialbauart nach dem Oberbegriff des Patentanspruchs 1.
Heutige Strahltriebwerke werden in der Regel mit einem Axialverdichter versehen. Der Vorteil eines Axialverdichters liegt in der Fähigkeit, große Druckverhaltnisse bei hohem Durchsatz zu liefern. Ferner ist der Einfluss auf die Strömung wesentlich gunstiger, als bei Radialverdichtern. Bei Axialverdichtern lauft die Hauptstromung parallel zur Triebwerkslangsachse, wodurch nahezu keine Umlenkverluste entstehen.
Ein herkömmlicher Axialverdichter weist verschiedene Bauteile auf. Hierzu gehören das Emtπttsgehause, das Verdichtergehause mit den Leitschaufeln, der Verdichterrotor mit den Laufschaufeln und das Austrittsgehause .
Die in das Triebwerk einströmende Luft passiert zunächst das Eintrittsgehause . Die Ruckseite des Eintrittsgehauses ist häufig als Flansch ausgebildet, der mehrere Bohrungen besitzt und auf diese Weise mit dem Verdichtergehause verschraubt wird.
Die Innenseite des Verdichtergehauses tragt die Leitschaufeln. Hierzu sind in ümfangsrichtung beispielsweise T-formige Schlitze vorgesehen, in welche die Leitschaufelkranze einfuhrbar sind. An bestimmten Stellen besitzt das Gehäuse über den gesamten Umfang Abblaseluftkanale, durch die verdichtete Luft entnommen werden kann. Die Abblaseluft kann verwendet werden, um das Betriebsverhalten des Verdichters bei bestimmten Betriebsbedingungen zu verbessern. In diesem Fall wird die entnommene Luft nicht weiterverwendet und ms Freie geleitet. Em bestimmter Anteil der verdichteten Abblaseluft wird standig entnommen und versorgt verschiedene Systeme. Hierzu gehören beispielsweise die Erhaltung eines gleichmaßigen Kabinendrucks, die Temperierung elektronischer Gerate, etc.
Im Triebwerk dient die Abblase- oder Zapfluft auch zur Erwärmung der Stutzstreben des Eintrittsgehauses und zur Kühlung der heißen Turbinenschaufeln .
Das Austrittsgehäuse leitet die vom Verdichter gelieferte Luft der nachgeschalteten Brennkammer zu. Zur Herabsetzung der Strömungsgeschwindigkeit sind die Kanäle diffusorförmig ausgebildet. Die vom Verdichtergehäuse kommenden Kräfte werden über einen ringförmigen Flansch in das Austrittsgehäuse eingeleitet.
Figur 2 zeigt einen schematischen Längsschnitt durch ein bekanntes Hochdruckverdichtergehäuse. Hier sind an der Gehäuseinnenwand Leitschaufeln 2 angeordnet, die sich zum Austritt hin radial kleiner werdend mit Laufschaufeln 3 abwechseln. Radial weiter außen weist das Verdichtergehäuse 1 eine Ummantelung 9 auf, wodurch eine Kammer 13 zwischen der Ummantelung 9 und den Sektionen 4, 5, 6 gebildet wird. Die Gehäusesektionen sind dabei über radial hohe Flansche 17, 18 mit Schrauben mit enger Lochteilung miteinander verbunden. Das thermische Verhalten der Sektionen 4, 5, 6 wird u.a. durch eine massive Ausführung an das thermisch träge Verhalten des Rotors angepasst. Die thermische Abstimmung von Verdichter und Rotor, d.h. die Spaltbreite zwischen Verdichtergehäusewand und Laufschaufelspitzen, kann hier im Grunde nur für einen Betriebspunkt erfolgen.
Der Erfindung liegt daher die Aufgabe zugrunde, die Nachteile der bekannten Lösungen zu vermeiden und einen verbesserten Verdichter in Axialbauart zur Verfügung zu stellen, dessen thermisches Verhalten für verschiedene Betriebspunkte optimiert werden kann.
Diese Aufgabe wird erfindungsgemäß durch einen verbesserten Verdichter mit den Merkmalen des Patentanspruchs 1 gelöst . Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung sind in den abhängigen Ansprüchen angegeben.
Ein erfindungsgemäßer, verbesserter Verdichter in Axialbauart für ein Gasturbinentriebwerk, wobei der Verdichter zumindest einen Rotor mit Laufschaufeln und ein über seine axiale Länge mehrteilig aufgebautes Verdichtergehäuse mit Leitschaufeln aufweist, ist dadurch gekennzeichnet, dass ein Steuer- bzw. regelbares Gehäusekühlsystem zur thermischen Anpassung des Verdichtergehäuses an den Rotor vorgesehen ist.
Hierdurch werden die Nachteile des Standes der Technik vermieden, und die thermische Abstimmung kann über den gesamten Betriebsbereich erfolgen. Dabei kann die Kühlung durch Abblaseluft erfolgen, die bei Bedarf über die Gehäusesektionen geführt wird und somit ein zu schnelles Aufheizen besonders der hinteren Gehäusestufen verhindert. Durch beispielsweise Eingabe von Steuerkurven, kann die Luftmenge and die jeweilige Rotorbewegung in einem Betriebspunkt angepasst werden.
Durch das thermische Anpassen des Gehäuses an den Rotor kann der Luftspalt zwischen den Laufschaufelspitzen und dem Gehäuse für die gesamten Betriebspunkte optimiert werden. Damit verbunden ist eine Erhöhung von Pumpgrenze und Wirkungsgrad. Die Arbeitslinie kann angehoben werden und das Gesamtdruckverhältnis kann erhöht werden.
Eine vorteilhafte Weiterbildung der vorliegenden Erfindung sieht vor, dass zur Kühlung ein Luftführungsrohr vorgesehen ist, das Abblaseluft über das Verdichtergehäuse führt. Durch die entsprechende Ausbildung von beispielsweise Luftführungsschlitzen, Luftführungskanälen, Ventilen und Kühlflächen wird die sonst gestaute, erwärmte Luft abgeführt und das Ausdehnungsverhalten insbesondere der Verdichtergehäuseelemente in den höheren Verdichterstufen an die jeweilige Ausdehnung des Rotors und der Laufschaufeln angepasst.
Eine weitere vorteilhafte Ausführungsform der Erfindung sieht vor, - dass eine Regeleinheit zum Regeln des Kühlluftstroms über das Verdichtergehäuse vorgesehen ist. Dies hat den Vorteil, dass im Gegensatz zum Abfahren von Steuerkurven tatsächliche Verhältnisse berücksichtigt werden, d.h. auch bei Abweichungen vom Normalzustand an einem Betriebspunkt wird das Verdichtergehäuse optimal abgestimmt.
Eine weitere vorteilhafte Ausführungsform der Erfindung sieht vor, dass einzelne Sektionen des Verdichtergehäuses axial miteinander über ein Luftführungsrohr verspannt sind. Durch die axiale Verspannung über ein Luftführungsrohr können die sonst üblichen Schraubverbindungen an den einzelnen Gehäusesektionen entfallen, was zu einer Gewichts- reduzierung beiträgt. Dies führt wiederum zu einer Reduzierung des spezifischen Kraftstoffverbrauchs. Fernre wird durch Wegfall der Flanschverschraubung die Wartung und Montage erheblich erleichtert, was ebenfalls zur Kostenersparnis beiträgt.
Eine weitere vorteilhafte Ausführungsform der Erfindung sieht vor, dass der Verdichter ein Hochdruckverdichter ist. Hier ist die Wirkung der Gehäusekühlung am effektivsten, da hier die Gehäuseerwärmung durch die verdichtete Luft am größten ist.
Eine weitere vorteilhafte Ausführungsform der Erfindung sieht vor, dass Temperaturfühler zur Überwachung der Gehäusetemperatur vorgesehen sind. Hierdurch lässt sich in einfacher Weise ein geschlossener Regelkreis realisieren.
Schließlich sieht eine weitere vorteilhafte Ausführungsform der Erfindung vor, dass zumindest ein ansteuerbares Regelventil zur Regelung des Kühlluftstroms vorgesehen ist. Hierdurch wird der Massenstrom je nach Bedarf variiert.
Weitere die Erfindung verbessernde Maßnahmen werden nachstehend gemeinsam mit der Beschreibung eines bevorzugten Ausführungsbeispiels anhand der Figuren näher dargestellt. Es zeigen:
Fig. 1 einen schematischen Längsschnitt durch einen erfindungsgemäßen Verdichter;
Fig. 2 einen schematischer Längsschnitt durch einen Verdichter nach dem Stand der Technik.
Bei den abgebildeten Figuren sind gleiche oder ähnliche Bauteile mit gleichen Bezugszeichen versehen. Richtungsangaben beziehen sich auf die Längsachse des Axialverdichters.
Fig. 1 zeigt u.a. ein Verdichtergehäuse 1. Darin sind Leitschaufeln 2 und Laufschaufeln 3 dargestellt, die abwechselnd hintereinander angeordnet sind und deren radiale Schaufelhöhe in Strömungsrichtung abnimmt. Das Verdichtergehäuse 1 besteht dabei aus mehreren, axial miteinander verspannten Sektionen 4, 5, 6, 7. Die einzelnen Sektionen 4, 5, 6, 7 sind dabei jeweils über ein Luftführungsrohr 20 verspannt, welches auch eine Ummantelung 9 des Verdichtergehäuses 1 bildet.
Die Sektionen 4, 5, 6, 7 bilden zusammen mit der Ummantelung 9 jeweils ringförmige Kammern 13, 14, 15, die sich jeweils über einen Laufschaufelkranz erstrecken. Je nach Erwärmung des Verdichtergehäuses 1 bzw. einzelner Sektionen 4, 5, 6, 7, ändert sich der Spalt zwischen Rotor und Verdichtergehäuseinnenseite. Hier greift nun die vorliegende Erfindung. Über einen Abblaselufteintritt 10 wird Luft bei Bedarf über ein Regelventil 11 und einen Abblaseluftanschluss 12 nicht vollständig entnommen, sondern zumindest teilweise über Luftdurchtritte 8 den Kammern 13, 14, 15 über den hinteren Verdichtergehäusesektionen 5, 6, 7 zugeführt. Die Luftströmung der Abblaseluft bei zugeschalteter Gehäusekühlung ist in der Zeichnung mit etwa horizontalen Pfeilen dargestellt. Die Luft wird dabei vom Abblaselufteintritt zu den hinteren Stufen geführt, wo sie die Kammer 15 über mindestens eine Austrittsöffnung 19 verlässt.
Hierdurch wird ein schnelles Aufheizen in den hinteren Gehäusestufen verhindert. Durch Regelung der Luftmenge kann eine Anpassung an die Rotorbewegung erfolgen, d. h. durch das gekühlte Gehäuse kann die Abstimmung über den gesamten Betriebsbereich erfolgen. Durch die thermische Anpassung des Gehäuses an den Rotor mit den Laufschaufeln kann der Luftspalt für die gesamten Betriebspunkten optimiert werden. Damit verbunden ist eine Erhöhung der Pumpgrenze und des Wirkungsgrads. Die Arbeitslinie kann angehoben, und das gesamte Druckverhältnis kann erhöht werden.
Ferner können durch die axiale Verspannung über das Luftführungsrohr die geschraubten Verbindungen an den einzelnen Gehäusesektionen entfallen, was zu einer Gewichtsreduzierung und Montageerleichterung führt .
Die Erfindung beschränkt sich in ihrer Ausführung nicht auf das vorstehend angegebene, bevorzugte Ausführungsbeispiel. Vielmehr ist eine Anzahl von Varianten denkbar, welche von der prinzipiellen Lösung auch bei anders gearteten Ausführungen Gebrauch machen.

Claims

Patentansprüche
1. Verbesserter Verdichter in Axialbauart für ein Gasturbinentriebwerk, wobei der Verdichter zumindest einen Rotor mit Laufschaufeln (3) und ein über seine axiale Länge mehrteilig aufgebautes Verdichtergehäuse (1) mit Leitschaufeln (2) aufweist, dadurch gekennzeichnet, dass ein Steuer- bzw. regelbares Gehäusekühlsystem zur thermischen Anpassung des Verdichtergehäuses (1) an den Rotor vorgesehen ist.
2. Verbesserter Verdichter nach Anspruch 1, dadurch gekennzeichnet, dass ein Luftführungsrohr (20) vorgesehen ist, das Abblaseluft aus dem Verdichter über das Verdichtergehäuse (1) führt.
3. Verbesserter Verdichter nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass eine Regeleinheit zum Regeln des Kühlluftstroms über das Verdichtergehäuse (1) vorgesehen ist.
4. Verbesserter Verdichter nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass einzelne Sektionen (4 bis 7) des Verdichtergehäuses (1) axial miteinander über das Luftführungsrohr (20) verspannt sind.
5. Verbesserter Verdichter nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Verdichter ein Hochdruckverdichter ist.
6. Verbesserter Verdichter nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass
Temperaturfühler zur Überwachung der Temperatur des Verdichtergehäuses (1) vorgesehen sind.
7. Verbesserter Verdichter nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass zumindest ein ansteuerbares Regelventil (11) zur Regelung des Kühlluftstroms vorgesehen ist.
* * *
PCT/DE2006/001635 2005-09-22 2006-09-16 Kühlsystem für verdichtergehäuse WO2007033649A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005045255A DE102005045255A1 (de) 2005-09-22 2005-09-22 Verbesserter Verdichter in Axialbauart
DE102005045255.8 2005-09-22

Publications (1)

Publication Number Publication Date
WO2007033649A1 true WO2007033649A1 (de) 2007-03-29

Family

ID=37560983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2006/001635 WO2007033649A1 (de) 2005-09-22 2006-09-16 Kühlsystem für verdichtergehäuse

Country Status (2)

Country Link
DE (1) DE102005045255A1 (de)
WO (1) WO2007033649A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017110652A (ja) * 2015-12-16 2017-06-22 ゼネラル・エレクトリック・カンパニイ 活性高圧圧縮機クリアランス制御
EP3216987A1 (de) * 2016-03-11 2017-09-13 General Electric Company System zur aktiven spaltkontrolle für einen verdichter, zugehörige turbomaschine und verfahren zur spitzenspaltkontrolle in einem verdichter
CN109209515A (zh) * 2017-06-30 2019-01-15 安萨尔多能源英国知识产权有限公司 用于燃气涡轮装置的导叶载体和包括所述导叶载体的燃气涡轮装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007035927A1 (de) 2007-07-31 2009-02-05 Mtu Aero Engines Gmbh Regelung für eine Gasturbine mit aktiv stabilisiertem Verdichter
DE102009021384A1 (de) 2009-05-14 2010-11-18 Mtu Aero Engines Gmbh Strömungsvorrichtung mit Kavitätenkühlung
JP6223774B2 (ja) 2013-10-15 2017-11-01 三菱日立パワーシステムズ株式会社 ガスタービン
CN106194846A (zh) * 2016-07-12 2016-12-07 中国航空工业集团公司沈阳发动机设计研究所 一种双层机匣结构压气机及具有其的航空发动机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2054741A (en) * 1979-07-25 1981-02-18 Gen Electric Active clearance control system for a turbomachine
GB2078859A (en) * 1980-06-26 1982-01-13 Gen Electric Control means for a gas turbine engine
GB2261708A (en) * 1991-11-20 1993-05-26 Snecma Turbo-shaft engine casing and blade mounting
GB2267312A (en) * 1992-05-29 1993-12-01 Gen Electric Compressor casing assembly.
US20030223863A1 (en) * 2002-05-31 2003-12-04 Mitsubishi Heavy Industries, Ltd. Gas turbine compressor and clearance controlling method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2054741A (en) * 1979-07-25 1981-02-18 Gen Electric Active clearance control system for a turbomachine
GB2078859A (en) * 1980-06-26 1982-01-13 Gen Electric Control means for a gas turbine engine
GB2261708A (en) * 1991-11-20 1993-05-26 Snecma Turbo-shaft engine casing and blade mounting
GB2267312A (en) * 1992-05-29 1993-12-01 Gen Electric Compressor casing assembly.
US20030223863A1 (en) * 2002-05-31 2003-12-04 Mitsubishi Heavy Industries, Ltd. Gas turbine compressor and clearance controlling method therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017110652A (ja) * 2015-12-16 2017-06-22 ゼネラル・エレクトリック・カンパニイ 活性高圧圧縮機クリアランス制御
US10738791B2 (en) 2015-12-16 2020-08-11 General Electric Company Active high pressure compressor clearance control
EP3216987A1 (de) * 2016-03-11 2017-09-13 General Electric Company System zur aktiven spaltkontrolle für einen verdichter, zugehörige turbomaschine und verfahren zur spitzenspaltkontrolle in einem verdichter
US10393149B2 (en) 2016-03-11 2019-08-27 General Electric Company Method and apparatus for active clearance control
CN109209515A (zh) * 2017-06-30 2019-01-15 安萨尔多能源英国知识产权有限公司 用于燃气涡轮装置的导叶载体和包括所述导叶载体的燃气涡轮装置

Also Published As

Publication number Publication date
DE102005045255A1 (de) 2007-03-29

Similar Documents

Publication Publication Date Title
DE4242494C1 (en) Adjustable flow-guide for engine exhaust turbocharger - has axially-adjustable annular insert in sectors forming different kinds of guide grilles supplied simultaneously by spiral passages
EP2824284B1 (de) Turbofan-Triebwerk
EP1113145B1 (de) Schaufel für Gasturbinen mit Drosselquerschnitt an Hinterkante
EP2255072B1 (de) Leitschaufel für eine gasturbine sowie gasturbine mit einer solchen leitschaufel
WO2007033649A1 (de) Kühlsystem für verdichtergehäuse
EP2148977B1 (de) Gasturbine
EP2455584B1 (de) Gasturbine mit Steuerungsmittel zur Kühlung, welche teilweise aus einer Gedächtnislegierung bestehen
EP1640587B1 (de) Kühlsystem für eine Gasturbine und Verfahren zum Kühlen einer Gasturbine
WO1999063204A1 (de) Gasturbine sowie verfahren zur kühlung einer turbinenstufe
WO2001065095A1 (de) Kühlluftsystem
CH703553B1 (de) Axial-radialer Turbinendiffusor.
EP2226473A2 (de) Luftleitelement eines Laufspalteinstellungssystems einer Fluggasturbine
EP2224099A2 (de) Laufspalteinstellungssystem einer Fluggasturbine
WO2010040437A2 (de) Abgasturbolader für eine brennkraftmaschine
EP1904717B1 (de) HEIßGASFÜHRENDES GEHÄUSEELEMENT, WELLENSCHUTZMANTEL UND GASTURBINENANLAGE
EP3032032B1 (de) Austrittsleitgitter und Mantelstromtriebwerk mit einem Austrittsleitgitter
EP1656497A1 (de) Diffusor zwischen verdichter und brennkammer einer gasturbine angeordnet
WO1998013584A1 (de) Kompensation des druckverlustes einer kühlluftführung in einer gasturbinenanlage
EP2846000A2 (de) Turbinenleitrad einer Gasturbine
DE19839592A1 (de) Strömungsmaschine mit gekühlter Rotorwelle
EP1319806B1 (de) Vorrichtung zur Luftmassenstromregelung
EP2378103B1 (de) Fluggasturbinenantrieb
WO2008055474A1 (de) Turbomaschine
DE4442936A1 (de) Gasturbine
EP1522696A2 (de) Gasturbinenaxialkompressor mit Wassereinspritzung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase

Ref document number: 06805297

Country of ref document: EP

Kind code of ref document: A1