WO2007032378A1 - Process for producing quinone compound - Google Patents

Process for producing quinone compound Download PDF

Info

Publication number
WO2007032378A1
WO2007032378A1 PCT/JP2006/318138 JP2006318138W WO2007032378A1 WO 2007032378 A1 WO2007032378 A1 WO 2007032378A1 JP 2006318138 W JP2006318138 W JP 2006318138W WO 2007032378 A1 WO2007032378 A1 WO 2007032378A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
solution
water
organic layer
acid
Prior art date
Application number
PCT/JP2006/318138
Other languages
French (fr)
Japanese (ja)
Inventor
Tadashi Tomiyama
Akisuke Saika
Original Assignee
Eisai R & D Management Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eisai R & D Management Co., Ltd. filed Critical Eisai R & D Management Co., Ltd.
Priority to JP2007535501A priority Critical patent/JP5060299B2/en
Publication of WO2007032378A1 publication Critical patent/WO2007032378A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C46/00Preparation of quinones
    • C07C46/02Preparation of quinones by oxidation giving rise to quinoid structures
    • C07C46/06Preparation of quinones by oxidation giving rise to quinoid structures of at least one hydroxy group on a six-membered aromatic ring
    • C07C46/08Preparation of quinones by oxidation giving rise to quinoid structures of at least one hydroxy group on a six-membered aromatic ring with molecular oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/20C2-C4 olefins

Definitions

  • the present invention relates to a method for producing menatetrenone, which is a quinone compound.
  • Menatetrenone has the following formula (1)
  • Vitamin K preparations containing the compound as an active ingredient are vitamin K deficient
  • Menatetrenone is also contained in fermented foods such as natto and the like.
  • the main industrial production method is chemical synthesis.
  • Non-Patent Document 1 There are several known methods for the production of menatetrenone by chemical synthesis. One of the known strengths is to oxidize the precursor, iodoquinone, and the target quinone, menatetrenone. The method of obtaining is known (Non-Patent Document 1).
  • Non-Patent Document 1 is a method using acid silver, and similarly, a method using metal oxide such as manganese dioxide and lead peroxide (Patent Document 2). While known! / Repelling power, the use of metal oxides makes it difficult to control the reaction and may cause side reactions and requires treatment to prevent adverse environmental effects after the reaction. And so on.
  • Patent Document 1 a method using hydrogen peroxide was developed.
  • Non-patent literature l Kozlov, E ⁇ , Meditsinskaya Promyshlennost SSSR (1965), 19 (4), 16- 2 1
  • Patent Document 1 Japanese Patent Laid-Open No. 48-49733
  • Patent Document 2 JP-A 49-55650
  • Patent Document 3 Shoko 39-17514
  • Patent Document 4 JP-A 52-72884
  • Patent Document 5 Japanese Patent Laid-Open No. 54-151932
  • Patent Document 6 Japanese Patent Laid-Open No. 62-81347
  • an object of the present invention is to provide a method for producing menatetrenone that does not adversely affect the environment, is safe even in mass production, and is easy to operate.
  • menatetrenone can be produced by a method that does not adversely affect the environment, is safe even in mass production, and is easy to operate.
  • the first aspect of the present invention is
  • the present invention provides a production method characterized in that a reaction solution consisting only of a solution in which a compound represented by formula (1) is dissolved in a solvent is treated with an oxygen source.
  • the present invention provides a production method characterized by treating a reaction solution consisting of only with an oxygen source.
  • the oxygen source is air.
  • the treatment with the oxygen source is preferably blowing of the oxygen source into the reaction solution.
  • menatetrenone can be produced by a method that does not adversely affect the environment, is safe even in mass production, and is easy to operate.
  • Hydroquinone (2) which is a precursor of menatetrenone used in the present invention, is a known substance, and several synthesis methods are known. For example, the following disclosed in Non-Patent Document 1 It can be synthesized by the route of
  • the hydroquinone (2) can be synthesized by condensing menadiol monoacetate (4) and all-trans-gerlinalolol (5) and treating with Claisen's alkaline solution.
  • the solvent used in this condensation reaction can be used other than dioxane as long as it does not inhibit the reaction.
  • carbon tetrachloride, dichloromethane, chloroform, n- pentane, n —Hexane, N, N-dimethylformamide, N-methylpyrrolidone, acetonitrile, dimethylsulfoxide, benzene, toluene, xylene, methanol, ethanol, n-propanol, isopropanol, tert-butyl alcohol, methyl acetate, or acetic acid Ethyl etc. can be used. These can be used alone or in a mixture of two or more forces that can be used alone.
  • the acid catalyst used in the condensation reaction is not limited to the above zinc chloride and BF-OEt.
  • metal salts such as oxalic acid, potassium sulfate, potassium persulfate, zinc ( ⁇ ) triflate, or copper (I) sulfate, para-toluenesulfonic acid, methanesulfonic acid, sulfophthalic acid , Sulfonic acid derivatives such as hydroxybenzenesulfonic acid, nitrobenzenesulfonic acid, benzenesulfonic acid, black benzenesulfonic acid, naphthylsulfonic acid, dodecylbenzenesulfonic acid, 4,4-biphenyldisulfonic acid, or flavianic acid Can be used.
  • metal salts such as oxalic acid, potassium sulfate, potassium persulfate, zinc ( ⁇ ) triflate, or copper (I) sulfate, para-toluenesulfonic acid, methanesulfonic acid, sulfophthalic
  • the monoacetyl group (3) obtained by the condensation reaction is an alkane of Claisen (prepared by dissolving 35 g of KOH in 25 mL of water and diluting to 10 mL with CHOH).
  • a 3% aqueous solution of nodyl sulfite and ether can be mixed, stirred and then separated to obtain a hydroquinone (2) ether solution.
  • the extraction solvent after the Claisen treatment can be used in addition to ethers, for example, carbon tetrachloride, dichloromethan, chloroform, n -pentane, n-hexane, N-methylpyrrolidone, benzene, toluene. , Xylene, tert-butyl alcohol, methyl acetate, ethyl acetate and the like. These can be used alone, but two or more can be mixed and used in an arbitrary ratio.
  • the next step is an oxidation reaction of the production method of the present invention.
  • the extract of the nanoquinone (2) obtained in the previous step may be used as it is, or the solvent may be changed by removing the extraction solvent by distillation under reduced pressure or the like. V. Regardless of the deviation, it is only necessary to prepare a solution in which the hydroquinone body (2) is dissolved with a solvent, and it is not necessary to add other additives except when adding water and an aqueous sodium chloride solution described later.
  • the solvent is not particularly limited as long as it dissolves the nodo-idroquinone (2) and does not inhibit the oxidation reaction.
  • These can be used alone.
  • the above can be mixed at an arbitrary ratio and used as a hydrous solvent.
  • the present invention is characterized in that it can be carried out using only a solution in which the hydroquinone (2) is dissolved with a solvent. In other words, it is not necessary to add other additives in order to complete the oxidation reaction. However, in consideration of safety, it is preferable to carry out in a two-layer system by adding water or sodium chloride aqueous solution.
  • an organic solvent immiscible with water such as carbon tetrachloride, dichloromethane, chloroform, n-pentane, n-hexane, N-methylpyrrolidone, benzene, toluene, xylene, tert-butyl
  • alcohol, methyl acetate, ethyl acetate, or a mixed solvent of two or more thereof as a solvent.
  • water or an aqueous sodium chloride solution may be appropriately selected depending on the solvent used. For example, it is possible to select a method in which separation of the organic layer and the aqueous layer is favorable during separation after the reaction.
  • the oxygen source used in the present invention is one that can introduce molecular oxygen into the reaction system, and examples thereof include oxygen gas and air.
  • oxygen gas or air may be used as a mixed gas with another gas that does not inhibit the present invention, for example, nitrogen, helium, argon or the like.
  • the reaction substrate in the reaction solution and the molecular oxygen introduced into the reaction system are preferably brought into efficient contact by blowing an oxygen source.
  • an oxygen source For example, when air is blown into the reaction solution ⁇ Nozzle force is blown, or a bubble-like air is blown with a porous member at the tip of the nozzle, or many holes are drilled in the reaction can with ring-shaped pipes A variety of other instrumental measures can be taken, such as having a thing and letting the air blow out of its numerous holes into a moderately sized bubble.
  • the temperature condition of the oxidation reaction of the present invention may be appropriately selected as the temperature at which the reaction proceeds efficiently based on the contact efficiency with the solvent and oxygen source used, and the like. In order to proceed the reaction, it can be carried out from o ° c to the boiling point of the solvent, but considering the reaction time and energy efficiency, room temperature to 60 ° C is preferred, and 20 to 50 ° C is further preferred. In particular, 30-40 ° C is preferred.
  • the reaction time can be selected as appropriate by monitoring the completion of the reaction with TLC or HPLC.
  • the reaction time is 3 to 20 hours, and even if the reaction is continued for about 15 hours all night, the yield does not decrease due to side reaction! /.
  • menatetrenone is obtained by post-treatment and purification by a conventional method. Specifically, the reaction solution is concentrated under reduced pressure to obtain a crude product, which is then purified by column chromatography and Z or recrystallization. From the viewpoint of safety, it is preferable to wash the reaction solution with water and concentrate it.
  • the solvent used in the acid-acid reaction is not miscible with water, and an organic solvent is preferred.
  • Lutrans-Gera-Rurinalol (5) 28.3 g was added dropwise at 45 ° C over 1 hour 30 minutes to 2 hours, and then reacted at the same temperature for 5 hours.
  • the reaction solution was washed 4 times with 20 mL of 5% aqueous sodium chloride solution.
  • the organic layer was washed 4 times with a solution obtained by adding 2 g of sodium idrosulfite to 40 mL of 10% potassium hydroxide aqueous solution. Further, the organic layer was washed 4 times with 20 mL of 5% sodium chloride aqueous solution.
  • the organic layer was concentrated under reduced pressure.
  • Second step (Claisen alkali treatment)
  • the concentrated residue was dissolved in 150 mL of toluene, and 4 g of sodium hydrosulfite, 23 g of lithium hydroxide, 17 mL of water, and 40 mL of methanol were added and stirred.
  • the toluene layer is separated by separation, the aqueous layer is washed with 90 mL of toluene, extracted with 100 mL of ethyl acetate, 1-OOmL of n-hexane, and 220 mL of water, and the organic layer is 5% sodium chloride. After washing twice with 20 mL of aqueous solution, liquid separation was performed.
  • reaction solution was washed twice with 40 mL of 5% sodium chloride aqueous solution.
  • organic layer was washed twice with a solution obtained by adding 2 g of hydrosulfite sodium to 60 mL of a 10% potassium hydroxide aqueous solution.
  • Second step (Claisen alkali treatment)
  • l-hexane lOOmL and a sodium chloride aqueous solution were added, and the reaction mixture was stirred while publishing air at 30 to 35 ° C. After completion of the reaction, the mixture was separated, and the organic layer was washed twice with 40 mL of 5% sodium chloride aqueous solution and concentrated to obtain natrenone.
  • Second step (Claisen alkali treatment)
  • the organic layer was charged with sodium chloride aqueous solution (14 g of NaCL and 80 mL of water was prepared) and 200 mL of n-hexane, and the reaction mixture was stirred for 3 hours while publishing air at 25 ° C to 40 ° C. After completion of the reaction, the solution is separated, and the organic layer is washed twice with 40 mL of water and concentrated. Got non.
  • an aqueous solution of potassium hydroxide and potassium Z hydrosulfite prepared with 70 kg of potassium hydroxide, 40 kg of hydrosulfite and 800 L of water The mixture was stirred for 20 minutes, and the aqueous layer was separated and discarded. Further, the remaining aqueous solution of potassium hydroxide Z hydrosulfite and 508 L of water and 400 L of water were added to the organic layer, and the mixture was stirred for 20 minutes. Then, the aqueous layer was separated and discarded.
  • Second step (Claisen alkali treatment)
  • aqueous sodium chloride solution prepared from 113 L of 10% aqueous sodium chloride solution and 100 L of water, and further prepared from 97 L of 10% aqueous sodium chloride solution and 100 L of water. Washed with aqueous sodium chloride solution.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

A process for producing the compound represented by the following formula (1), which is menatetrenone. It is characterized in that a reaction solution consisting only of a solution obtained by dissolving the compound represented by the following formula (2): in a solvent is treated with an oxygen source without adding any additive other than water or an aqueous sodium chloride solution thereto. The process does not adversely influence the environment, is safe even in mass production, and is easy to operate.

Description

キノン化合物の製造方法  Method for producing quinone compound
技術分野  Technical field
[0001] 本発明は、キノンィ匕合物であるメナテトレノンの製造方法に関する。  [0001] The present invention relates to a method for producing menatetrenone, which is a quinone compound.
背景技術  Background art
[0002] メナテトレノンは下式(1)  [0002] Menatetrenone has the following formula (1)
[0003] [化 1] [0003] [Chemical 1]
Figure imgf000003_0001
Figure imgf000003_0001
で表される化合物で、該化合物を有効成分としたビタミン K製剤は、ビタミン K欠乏  Vitamin K preparations containing the compound as an active ingredient are vitamin K deficient
2  2
症の予防、治療に利用されるほカゝ、骨粗鬆症予防剤、治療剤としても利用されている  It is also used as a preventive and osteoporosis preventive and therapeutic agent used for the prevention and treatment of dementia
[0004] メナテトレノンは発酵食品である納豆等にも含まれる力 工業的製造方法としては 化学合成によるものが主流である。 [0004] Menatetrenone is also contained in fermented foods such as natto and the like. The main industrial production method is chemical synthesis.
メナテトレノンの化学合成による製造方法は、いくつかのものが知られている力 そ のうちの一つに前駆体であるノ、イドロキノン体を酸ィ匕し、 目的とするキノン体であるメ ナテトレノンを得る方法が知られて 、る(非特許文献 1)。  There are several known methods for the production of menatetrenone by chemical synthesis. One of the known strengths is to oxidize the precursor, iodoquinone, and the target quinone, menatetrenone. The method of obtaining is known (Non-Patent Document 1).
[0005] 前記の非特許文献 1に開示された方法は酸ィ匕銀を用いる方法である力 同様に二 酸化マンガン、過酸化鉛 (特許文献 2)等の金属酸ィ匕物を用いる方法が知られて!/ヽる し力しながら、金属酸化物の使用は反応の制御が困難で副反応が生じるおそれが あることと、反応後に環境への悪影響を防止するための処理が必要になる等の不都 合があった。 [0005] The method disclosed in Non-Patent Document 1 is a method using acid silver, and similarly, a method using metal oxide such as manganese dioxide and lead peroxide (Patent Document 2). While known! / Repelling power, the use of metal oxides makes it difficult to control the reaction and may cause side reactions and requires treatment to prevent adverse environmental effects after the reaction. And so on.
[0006] そこで、過酸ィ匕水素を用いる方法が開発された (特許文献 1)。  [0006] Therefore, a method using hydrogen peroxide was developed (Patent Document 1).
し力しながら、過酸ィ匕水素は強力な酸化剤であって、大量に取り扱う場合には、安 全面に配慮した特別な取り扱いが必要になるという問題点がある。 [0007] また、メナテトレノンと構造が類似するュビキノン類の製造方法にっ 、ては、より穏 和な酸化剤である分子状酸素を使用する方法が知られて!/ヽる(特許文献 3な ヽし 6) し力しながら、ュビキノン類の製造方法において分子状酸素を使用する場合には、 酸素単独では反応速度が著しく小さぐ完全な酸ィ匕が望めないことが知られており( 特許文献 5、 6)、かかる課題を克服するためには、塩基 (特許文献 4)、シリカゲル (特 許文献 5)、銅または銅イオンおよびアンモニアまたはアンモ-ゥムイオン (特許文献 6)等を反応溶液中へ添加することが必須であることが知られていた。このような酸ィ匕 剤以外の添加剤を用いる方法は、添加剤存在下で副反応を起こすおそれがあり、ま た、反応後の処理が複雑になることでは前記のキノン体製造方法にお!、て金属酸ィ匕 物を使用する場合と共通の問題がある。 However, hydrogen peroxide is a strong oxidant, and there is a problem that special handling with consideration for safety is required when handling large quantities. [0007] In addition, a method of using molecular oxygen, which is a milder oxidant, is known as a method for producing ubiquinones having a structure similar to that of menatetrenone! 6) However, when molecular oxygen is used in the production process of ubiquinones, it is known that oxygen alone cannot be used to produce a complete acid solution with a remarkably low reaction rate (patents) In order to overcome such problems, References 5 and 6), base (Patent Document 4), silica gel (Patent Document 5), copper or copper ion and ammonia or ammonia ion (Patent Document 6), etc. are added to the reaction solution. It was known to be essential to add to. Such a method using an additive other than an acid oxidant may cause a side reaction in the presence of the additive, and the post-reaction process becomes complicated. There are common problems with using metal oxides.
[0008] また、メナテトレノンの製造方法として、分子状酸素を使用する具体的な方法は、ま つたく知られて 、なかった。  [0008] In addition, as a method for producing menatetrenone, no specific method using molecular oxygen has been known.
[0009] 非特許文献 l : Kozlov,E丄, Meditsinskaya Promyshlennost SSSR (1965), 19(4), 16- 2 1  [0009] Non-patent literature l: Kozlov, E 丄, Meditsinskaya Promyshlennost SSSR (1965), 19 (4), 16- 2 1
特許文献 1:特開平 48—49733  Patent Document 1: Japanese Patent Laid-Open No. 48-49733
特許文献 2:特開平 49 - 55650  Patent Document 2: JP-A 49-55650
特許文献 3:特公昭 39 - 17514  Patent Document 3: Shoko 39-17514
特許文献 4:特開昭 52— 72884  Patent Document 4: JP-A 52-72884
特許文献 5:特開昭 54 - 151932  Patent Document 5: Japanese Patent Laid-Open No. 54-151932
特許文献 6:特開昭 62— 81347  Patent Document 6: Japanese Patent Laid-Open No. 62-81347
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0010] したがって、本発明の目的は、環境へ悪影響を及ぼさず、大量に製造する際にも 安全で、かつ操作も容易なメナテトレノンの製造方法を提供することにある。 [0010] Therefore, an object of the present invention is to provide a method for producing menatetrenone that does not adversely affect the environment, is safe even in mass production, and is easy to operate.
課題を解決するための手段  Means for solving the problem
[0011] 前記のとおり、従来のメナテトレノンの製造方法には問題があり、本発明者らは、メ ナテトレノンの前駆体であるハイドロキノン体 (2)の酸ィ匕方法を鋭意検討したところ、 驚くべきことに、分子状酸素によって、添加剤をまったく用いることなぐまた、重大な 副反応を起こすことなぐ十分な反応速度が得られ、酸化反応が完全に進行すること を見出した。この点は、酸化剤として分子状酸素単独を使用する場合には、反応速 度が著しく小さぐ完全な酸ィ匕が望めないことが長い間技術常識であったことに照ら すと、全く予想外であった。 [0011] As described above, there is a problem in the conventional method for producing menatetrenone, and the present inventors have conducted extensive studies on the acid method of hydroquinone (2), which is a precursor of menatetrenone. Surprisingly, it has been found that molecular oxygen allows the reaction to proceed completely without using any additives and without causing significant side reactions and the oxidation reaction proceeds completely. This is totally unexpected in the light of the long-standing technical knowledge that when using molecular oxygen alone as the oxidant, it is not possible to obtain a complete acid with a very low reaction rate. It was outside.
また、反応溶液へ水を共存させることにより、酸ィ匕反応自体には影響を与えないも のの、安全性を向上できることも見出した。かかる知見に基づき、環境へ悪影響を及 ぼさず、大量に製造する際にも安全で、かつ操作も容易な方法によってメナテトレノ ンを製造できることを見出し、本発明を完成した。  It was also found that the presence of water in the reaction solution does not affect the acid-acid reaction itself, but can improve safety. Based on these findings, the present inventors have found that menatetrenone can be produced by a method that does not adversely affect the environment, is safe even in mass production, and is easy to operate.
[0012] すなわち、本発明の第一の態様は、  [0012] That is, the first aspect of the present invention is
下式 (1)  (1)
[0013] [ 2]  [0013] [2]
Figure imgf000005_0001
Figure imgf000005_0001
で表される化合物の製造方法であって、下式 (2)  A process for producing a compound represented by the formula (2)
[0014] [化 3]  [0014] [Chemical 3]
Figure imgf000005_0002
Figure imgf000005_0002
で表される化合物を溶媒に溶解した溶液のみカゝらなる反応溶液を、酸素源で処理す ることを特徴とする製造方法を提供するものである。  The present invention provides a production method characterized in that a reaction solution consisting only of a solution in which a compound represented by formula (1) is dissolved in a solvent is treated with an oxygen source.
[0015] また、本発明の第二の態様は、下式(1)  [0015] Further, the second aspect of the present invention is the following formula (1)
[0016] [化 4] [0016] [Chemical 4]
Figure imgf000005_0003
で表される化合物の製造方法であって、
Figure imgf000005_0003
A process for producing a compound represented by
i)式 (2)  i) Formula (2)
[化 5]  [Chemical 5]
Figure imgf000006_0001
Figure imgf000006_0001
で表される化合物を水と混和しな ヽ有機溶媒に溶解した溶液、および  A solution in which the compound represented by is not miscible with water, dissolved in an organic solvent, and
ii)水または塩ィ匕ナトリウム水溶液、  ii) water or aqueous sodium chloride solution,
のみからなる反応溶液を、酸素源で処理することを特徴とする製造方法を提供するも のである。  The present invention provides a production method characterized by treating a reaction solution consisting of only with an oxygen source.
[0018] また、前記第一および第二の態様における酸素源は空気であることが好ましぐ酸 素源での処理は反応溶液中への酸素源の吹き込みであることが好ましい。  [0018] Further, in the first and second embodiments, it is preferable that the oxygen source is air. The treatment with the oxygen source is preferably blowing of the oxygen source into the reaction solution.
発明の効果  The invention's effect
[0019] 本発明によれば、環境へ悪影響を及ぼさず、大量に製造する際にも安全で、かつ 操作も容易な方法によってメナテトレノンを製造することができる。  [0019] According to the present invention, menatetrenone can be produced by a method that does not adversely affect the environment, is safe even in mass production, and is easy to operate.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0020] 本発明で使用するメナテトレノンの前駆体であるハイドロキノン体(2)は公知物質で あって、いくつかの合成方法が知られているが、例えば、非特許文献 1に開示されて いる下記のルートにより合成できる。 [0020] Hydroquinone (2), which is a precursor of menatetrenone used in the present invention, is a known substance, and several synthesis methods are known. For example, the following disclosed in Non-Patent Document 1 It can be synthesized by the route of
[0021] [化 6] [0021] [Chemical 6]
Figure imgf000007_0001
Figure imgf000007_0001
ZnC!j / BF3-OEt21 dioxaneZnC! J / BF 3 -OEt21 dioxane
Figure imgf000007_0002
Figure imgf000007_0002
[0022] 上記のように、メナジオールモノアセテート(4)とオールトランスーゲラ -ルリナロー ル(5)を縮合してクライゼンのアルカリ液で処理することによりハイドロキノン体(2)が 合成できる。 [0022] As described above, the hydroquinone (2) can be synthesized by condensing menadiol monoacetate (4) and all-trans-gerlinalolol (5) and treating with Claisen's alkaline solution.
[0023] メナジオールモノアセテート(4)とオールトランスーゲラ -ルリナロール(5)の縮合反 応は、非特許文献 1にあるように、メナジオールモノアセテート (4)、塩ィ匕亜鉛、およ び三フッ化ホウ素をジォキサン中、 50°Cに加温し、オールトランスーゲラ -ルリナロー ル(5)のジォキサン溶液を反応混合物に 30分間で滴下し、その後 30分間 50°Cに保 持することで行うことができる。  [0023] As described in Non-Patent Document 1, the condensation reaction of menadiol monoacetate (4) and all-trans-gera-lurinalol (5) is the same as menadiol monoacetate (4), And boron trifluoride in dioxane at 50 ° C, and all-trans-gerlin-rulinalol (5) in dioxane is added dropwise to the reaction mixture over 30 minutes, then kept at 50 ° C for 30 minutes. Can be done.
[0024] この縮合反応に使用する溶媒は、反応を阻害しな 、溶媒であればジォキサン以外 にも使用可能であって、例えば、四塩化炭素、ジクロロメタン、クロ口ホルム、 n—ペン タン、 n—へキサン、 N, N—ジメチルホルアミド、 N—メチルピロリドン、ァセトニトリル 、ジメチルスルホキシド、ベンゼン、トルエン、キシレン、メタノール、エタノール、 n— プロパノール、イソプロパノール、 tert—ブチルアルコール、酢酸メチル、または酢酸 ェチル等が使用できる。これらは単独でも使用可能である力 二以上を任意の割合 で混合して使用することもできる。 [0024] The solvent used in this condensation reaction can be used other than dioxane as long as it does not inhibit the reaction. For example, carbon tetrachloride, dichloromethane, chloroform, n- pentane, n —Hexane, N, N-dimethylformamide, N-methylpyrrolidone, acetonitrile, dimethylsulfoxide, benzene, toluene, xylene, methanol, ethanol, n-propanol, isopropanol, tert-butyl alcohol, methyl acetate, or acetic acid Ethyl etc. can be used. These can be used alone or in a mixture of two or more forces that can be used alone.
[0025] また、上記縮合反応に使用する酸触媒は、上記の塩化亜鉛と BF -OEt以外にも [0025] The acid catalyst used in the condensation reaction is not limited to the above zinc chloride and BF-OEt.
3 2 使用可能であって、例えば、シユウ酸、硫酸カリウム、過硫酸カリウム、亜鉛 (π)トリフ ラート、または硫酸銅 (I)等の金属塩やパラトルエンスルホン酸、メタンスルホン酸、ス ルホフタル酸、ヒドキシベンゼンスルホン酸、ニトロベンゼンスルホン酸、ベンゼンスル ホン酸、クロ口ベンゼンスルホン酸、ナフチルスルホン酸、ドデシルベンゼンスルホン 酸、 4, 4,ービフヱニルジスルホン酸、またはフラビアン酸等のスルホン酸誘導体が使 用可能である。  3 2 Can be used, for example, metal salts such as oxalic acid, potassium sulfate, potassium persulfate, zinc (π) triflate, or copper (I) sulfate, para-toluenesulfonic acid, methanesulfonic acid, sulfophthalic acid , Sulfonic acid derivatives such as hydroxybenzenesulfonic acid, nitrobenzenesulfonic acid, benzenesulfonic acid, black benzenesulfonic acid, naphthylsulfonic acid, dodecylbenzenesulfonic acid, 4,4-biphenyldisulfonic acid, or flavianic acid Can be used.
[0026] 縮合反応で得られたモノァセチル体(3)は、非特許文献 1にあるように、クライゼン のアルカリ(KOH35gを水 25mLに溶解し、 CH OHで lOOmLに希釈して調製)を  [0026] As described in Non-Patent Document 1, the monoacetyl group (3) obtained by the condensation reaction is an alkane of Claisen (prepared by dissolving 35 g of KOH in 25 mL of water and diluting to 10 mL with CHOH).
3  Three
加え、ノ、イドロサルファイトの 3%水溶液とエーテルをカ卩えて、撹拌した後、分液し、ハ イドロキノン体(2)のエーテル溶液として得ることができる。クライゼン処理後の抽出溶 媒としては、エーテル以外にも使用可能であって、例えば、四塩化炭素、ジクロロメタ ン、クロ口ホルム、 n—ペンタン、 n—へキサン、 N—メチルピロリドン、ベンゼン、トルェ ン、キシレン、 tert—ブチルアルコール、酢酸メチル、酢酸ェチル等が挙げられる。こ れらは単独でも使用可能であるが、二以上を任意の割合で混合して使用することも できる。 In addition, a 3% aqueous solution of nodyl sulfite and ether can be mixed, stirred and then separated to obtain a hydroquinone (2) ether solution. The extraction solvent after the Claisen treatment can be used in addition to ethers, for example, carbon tetrachloride, dichloromethan, chloroform, n -pentane, n-hexane, N-methylpyrrolidone, benzene, toluene. , Xylene, tert-butyl alcohol, methyl acetate, ethyl acetate and the like. These can be used alone, but two or more can be mixed and used in an arbitrary ratio.
[0027] 次工程が、本発明製造方法の酸化反応である。本発明では、前工程で得られたノヽ イドロキノン体 (2)の抽出液をそのまま使用してもよぐまた、減圧留去等で抽出溶媒 を除 、て溶媒変更してもよ 、。 V、ずれにせよ、溶媒でハイドロキノン体(2)を溶解した 溶液を調製すればよぐ後述する水および塩化ナトリウム水溶液を加える場合を除き 、他に添加剤を加える必要はない。溶媒としては、ノ、イドロキノン体(2)を溶解し、酸 化反応を阻害しないものであれば特に限定されず、例えば、四塩化炭素、ジクロロメ タン、クロ口ホルム、 n—ペンタン、 n—へキサン、 N, N—ジメチルホルアミド、 N—メチ ルピロリドン、ァセトニトリル、ジメチルスルホキシド、ベンゼン、トルエン、キシレン、メタ ノール、エタノール、 n—プロパノール、イソプロパノール、 tert—ブチルアルコール、 酢酸メチル、酢酸ェチル等が挙げられる。これらは単独でも使用可能である力 ニ以 上を任意の割合で混合して使用することもでき、含水溶媒として使用することも可能 である。 [0027] The next step is an oxidation reaction of the production method of the present invention. In the present invention, the extract of the nanoquinone (2) obtained in the previous step may be used as it is, or the solvent may be changed by removing the extraction solvent by distillation under reduced pressure or the like. V. Regardless of the deviation, it is only necessary to prepare a solution in which the hydroquinone body (2) is dissolved with a solvent, and it is not necessary to add other additives except when adding water and an aqueous sodium chloride solution described later. The solvent is not particularly limited as long as it dissolves the nodo-idroquinone (2) and does not inhibit the oxidation reaction. For example, carbon tetrachloride, dichloromethane, black mouth form, n -pentane, and n- Xane, N, N-dimethylformamide, N-methylpyrrolidone, acetonitrile, dimethyl sulfoxide, benzene, toluene, xylene, methanol, ethanol, n -propanol, isopropanol, tert-butyl alcohol, methyl acetate, ethyl acetate, etc. Can be mentioned. These can be used alone. The above can be mixed at an arbitrary ratio and used as a hydrous solvent.
[0028] 本発明は、溶媒でハイドロキノン体(2)を溶解した溶液のみを用いて実施できること が特徴である。すなわち、酸化反応を進行させて完了させるためには、他に添加剤を 加える必要はない。ただし、安全面を考慮して、水または塩ィ匕ナトリウム水溶液をカロえ て 2層系で実施することが好ましい。 2層系で実施する場合は、水と混和しない有機 溶媒、たとえば四塩化炭素、ジクロロメタン、クロ口ホルム、 n—ペンタン、 n—へキサン 、 N—メチルピロリドン、ベンゼン、トルエン、キシレン、 tert—ブチルアルコール、酢 酸メチル、酢酸ェチル、またはこれらの 2以上の混合溶媒を溶媒として使用するのが 好ましい。水または塩ィ匕ナトリウム水溶液のいずれを使用するかは、使用する溶媒に よって適宜選択すればよい。例えば、反応後の分液時に有機層と水層の分離が良 好な方を選択できる。  The present invention is characterized in that it can be carried out using only a solution in which the hydroquinone (2) is dissolved with a solvent. In other words, it is not necessary to add other additives in order to complete the oxidation reaction. However, in consideration of safety, it is preferable to carry out in a two-layer system by adding water or sodium chloride aqueous solution. When carried out in a two-layer system, an organic solvent immiscible with water, such as carbon tetrachloride, dichloromethane, chloroform, n-pentane, n-hexane, N-methylpyrrolidone, benzene, toluene, xylene, tert-butyl It is preferable to use alcohol, methyl acetate, ethyl acetate, or a mixed solvent of two or more thereof as a solvent. Whether to use water or an aqueous sodium chloride solution may be appropriately selected depending on the solvent used. For example, it is possible to select a method in which separation of the organic layer and the aqueous layer is favorable during separation after the reaction.
[0029] 本発明で使用する酸素源とは、反応系中に分子状酸素を導入できるものを 、 、、 例えば、酸素ガス、空気が挙げられる。酸素ガスや空気を酸素源として使用する場合 は、本発明を阻害しない別の気体、例えば、窒素、ヘリウム、アルゴン等との混合気 体として使用してもよい。  [0029] The oxygen source used in the present invention is one that can introduce molecular oxygen into the reaction system, and examples thereof include oxygen gas and air. When oxygen gas or air is used as the oxygen source, it may be used as a mixed gas with another gas that does not inhibit the present invention, for example, nitrogen, helium, argon or the like.
[0030] 反応溶液中の反応基質と、反応系中に導入される分子状酸素とは、酸素源の吹き 込みにより効率的に接触させることが好ましい。例えば、反応溶液へ空気を吹き込む 場合 ^ノズル力 吹き込んだり、ノズルの先端に多孔状の部材を備えて泡状の空気を 吹き込んだり、反応缶内に、リング状パイプで多数の穴を穿っているものを備えて、そ の多数の穴から空気が適度な大きさの泡となって吹き出るようにしてもよぐその他に も様々な装置的手段が取り得る。  [0030] The reaction substrate in the reaction solution and the molecular oxygen introduced into the reaction system are preferably brought into efficient contact by blowing an oxygen source. For example, when air is blown into the reaction solution ^ Nozzle force is blown, or a bubble-like air is blown with a porous member at the tip of the nozzle, or many holes are drilled in the reaction can with ring-shaped pipes A variety of other instrumental measures can be taken, such as having a thing and letting the air blow out of its numerous holes into a moderately sized bubble.
[0031] 本発明の酸化反応の温度条件は、使用する溶媒や酸素源との接触効率等を踏ま えて効率的に反応が進行する温度を適宜選択すればよ!、。反応を進行させるために は、 o°c〜溶媒の沸点までで実施可能であるが、反応時間やエネルギー効率等を考 慮すると室温〜 60°Cが好ましぐさらに 20〜50°Cが好ましぐ特に 30〜40°Cが好ま しい。  [0031] The temperature condition of the oxidation reaction of the present invention may be appropriately selected as the temperature at which the reaction proceeds efficiently based on the contact efficiency with the solvent and oxygen source used, and the like. In order to proceed the reaction, it can be carried out from o ° c to the boiling point of the solvent, but considering the reaction time and energy efficiency, room temperature to 60 ° C is preferred, and 20 to 50 ° C is further preferred. In particular, 30-40 ° C is preferred.
反応時間は、反応の終了を TLCまたは HPLCでモニターすることで適宜選択可能 であり、好ましくは 3時間から 20時間であって、終夜で 15時間程度反応させても副反 応で収率が低下することはな!/、。 The reaction time can be selected as appropriate by monitoring the completion of the reaction with TLC or HPLC. Preferably, the reaction time is 3 to 20 hours, and even if the reaction is continued for about 15 hours all night, the yield does not decrease due to side reaction! /.
[0032] 酸化反応終了後は、常法により後処理および精製することによってメナテトレノンを 得る。具体的には、反応溶液を減圧下等で濃縮して粗生成物を得た後、カラムクロマ トグラフィーおよび Zまたは再結晶法により精製すればょ 、。安全面からは反応溶液 を水洗して力 濃縮することが好ましぐ力かる観点からも酸ィ匕反応に使用する溶媒 は水と混和しな 、有機溶媒が好まし 、。 [0032] After the oxidation reaction, menatetrenone is obtained by post-treatment and purification by a conventional method. Specifically, the reaction solution is concentrated under reduced pressure to obtain a crude product, which is then purified by column chromatography and Z or recrystallization. From the viewpoint of safety, it is preferable to wash the reaction solution with water and concentrate it. The solvent used in the acid-acid reaction is not miscible with water, and an organic solvent is preferred.
実施例  Example
[0033] 以下に実施例を挙げて本発明を具体例に説明するが、本発明はこれらの実施例に 限定されるものではない。  Hereinafter, the present invention will be described by way of specific examples, but the present invention is not limited to these examples.
[実施例 1]  [Example 1]
第 1工程 (縮合反応)  First step (condensation reaction)
メナジオールモノアセテート(4) 28. 8gを酢酸ェチル 67mLと n—へキサン 67mLと の混合溶媒で溶解し、 BF— Et 02. 4gを添加した。この溶液を攪拌しながらォー  28.8 g of menadiol monoacetate (4) was dissolved in a mixed solvent of 67 mL of ethyl acetate and 67 mL of n-hexane, and 0.24 g of BF—Et was added. While stirring this solution
3 2  3 2
ルトランス—ゲラ -ルリナロール(5) 28. 3gを 45°Cで 1時間 30分から 2時間程度かけ て滴下した後、同温で 5時間反応させた。反応液を 5%塩ィ匕ナトリウム水溶液 20mL で 4回洗浄した。有機層を 10%水酸ィ匕カリウム水溶液 40mLにノ、イドロサルファイト ナトリウム 2gを加えた溶液で 4回洗浄した。さら〖こ、 5%塩ィ匕ナトリウム水溶液 20mLで 有機層を 4回洗浄した。有機層を減圧下で濃縮した。  Lutrans-Gera-Rurinalol (5) 28.3 g was added dropwise at 45 ° C over 1 hour 30 minutes to 2 hours, and then reacted at the same temperature for 5 hours. The reaction solution was washed 4 times with 20 mL of 5% aqueous sodium chloride solution. The organic layer was washed 4 times with a solution obtained by adding 2 g of sodium idrosulfite to 40 mL of 10% potassium hydroxide aqueous solution. Further, the organic layer was washed 4 times with 20 mL of 5% sodium chloride aqueous solution. The organic layer was concentrated under reduced pressure.
[0034] 第 2工程 (クライゼンアルカリ処理)  [0034] Second step (Claisen alkali treatment)
濃縮残渣をトルエン 150mLで溶解し、ハイドロサルファイトナトリウム 4g、水酸化力 リウム 23g、水 17mL、およびメタノール 40mLをカ卩えて、攪拌した。トルエン層を分液 で除き、水層をトルエン 90mLで洗浄し、水層に酢酸ェチル 100mL、 n—へキサン 1 OOmL、および水 220mLをカ卩えて抽出し、有機層を 5%塩ィ匕ナトリウム水溶液 20mL で 2回洗浄した後、分液した。  The concentrated residue was dissolved in 150 mL of toluene, and 4 g of sodium hydrosulfite, 23 g of lithium hydroxide, 17 mL of water, and 40 mL of methanol were added and stirred. The toluene layer is separated by separation, the aqueous layer is washed with 90 mL of toluene, extracted with 100 mL of ethyl acetate, 1-OOmL of n-hexane, and 220 mL of water, and the organic layer is 5% sodium chloride. After washing twice with 20 mL of aqueous solution, liquid separation was performed.
[0035] 第 3工程 (酸化反応)  [0035] Third step (oxidation reaction)
有機層に塩ィ匕ナトリウム水溶液 (NaCL14gと水 80mL力も調製)および n—へキサ ン 200mLを加え、空気をパブリングしながら反応混合物を攪拌した。反応終了後、 分液し、有機層を水 30mLで 3回洗浄し、濃縮した。濃縮残渣をカラムクロマトグラフ ィー (n キサン)に付し、目的物を含む画分を濃縮して ¾ ^ナテトレノンを油状物と して得た。 ¾ ^ナテトレノンをエタノールで結晶化して粗結晶を得た。さらに、粗結晶 をエタノールで再結晶することによりメナテトレノン(1)を得た((5)より収率 22%)To the organic layer were added sodium chloride aqueous solution (14 g of NaCL and 80 mL of water was prepared) and 200 mL of n-hexane, and the reaction mixture was stirred while publishing air. After the reaction is complete The layers were separated, and the organic layer was washed 3 times with 30 mL of water and concentrated. The concentrated residue was subjected to column chromatography (n-xan), and the fraction containing the target product was concentrated to obtain ¾ ^ natetrenone as an oil. ¾ ^ Natetrenone was crystallized with ethanol to obtain crude crystals. Furthermore, menatetrenone (1) was obtained by recrystallizing crude crystals with ethanol (22% yield from (5)).
[0036] [実施例 2] [Example 2]
第 1工程 (縮合反応)  First step (condensation reaction)
メナジオールモノアセテート(4) 26gをトルエン 130mLで溶解し、 50°Cで撹拌下、 オールトランスーゲラ -ルリナロール(5) 29gをトルエン 10mLに溶解した溶液と、 BF — Et 03. 6gをトルエン 20mLに溶解した溶液とを同時に 30分間で滴下した。その Dissolve 26 g of menadiol monoacetate (4) in 130 mL of toluene, stir at 50 ° C, a solution of 29 g of All-Trans-Gera-Lurinalol (5) in 10 mL of toluene, and BF — Et 03.6 g in 20 mL of toluene. The solution dissolved in was simultaneously added dropwise over 30 minutes. That
3 2 3 2
後同温で 30分反応させた。反応液を 5%塩ィ匕ナトリウム水溶液 40mLで 2回洗浄した 。有機層を 10%水酸ィ匕カリウム水溶液 60mLにハイドロサルファイトナトリウム 2gを加 えた溶液で 2回洗浄した。  Thereafter, the reaction was carried out at the same temperature for 30 minutes. The reaction solution was washed twice with 40 mL of 5% sodium chloride aqueous solution. The organic layer was washed twice with a solution obtained by adding 2 g of hydrosulfite sodium to 60 mL of a 10% potassium hydroxide aqueous solution.
[0037] 第 2工程 (クライゼンアルカリ処理) [0037] Second step (Claisen alkali treatment)
有機層に、ハイドロサルファイトナトリウム 3g、水酸ィ匕カリウム 23g、水 17mL、および メタノール 40mLを加えて、反応混合物を攪拌した。トルエン層を分液で除き、水層を トルエン 140mLで洗浄し、水層にトルエン 200mL、酢酸 30mL、および水 220mL を加えて抽出し、有機層を 5%塩ィ匕ナトリウム水溶液 40mLで 2回洗浄した後、分液し た。  To the organic layer, 3 g of sodium hydrosulfite, 23 g of potassium hydroxide, 17 mL of water, and 40 mL of methanol were added, and the reaction mixture was stirred. The toluene layer is removed by liquid separation, the aqueous layer is washed with 140 mL of toluene, extracted by adding 200 mL of toluene, 30 mL of acetic acid, and 220 mL of water to the aqueous layer, and the organic layer is washed twice with 40 mL of 5% sodium chloride aqueous solution. And then separated.
[0038] 第 3工程 (酸化反応)  [0038] Third step (oxidation reaction)
有機層に水 80mLを加え、空気を吹き込みながら攪拌した。反応終了後、分液し、 有機層を水 30mLで 3回洗浄し、濃縮して粗メナテトレノンを得た。  80 mL of water was added to the organic layer and stirred while blowing air. After completion of the reaction, the mixture was separated, and the organic layer was washed 3 times with 30 mL of water and concentrated to obtain crude menatetrenone.
[0039] [実施例 3] [0039] [Example 3]
第 1工程 (縮合反応)  First step (condensation reaction)
メナジオールモノアセテート(4) 30. 5gとオールトランスーゲラ -ルリナロール(5) 2 8. 3gをトルエン 130mLで溶解し、 45°Cで撹拌下、 BF— Et O 2. lgをトルエン 20  Menadiol monoacetate (4) 30.5g and All-Trans-Gera-Lurinalol (5) 2 8. 3g was dissolved in 130mL of toluene and stirred at 45 ° C.
3 2  3 2
mLに溶解した溶液を 30分間で滴下した。その後同温で 60分間反応させた。反応液 を 5%塩ィ匕ナトリウム水溶液 40mLで洗浄した。有機層を 10%水酸ィ匕カリウム水溶液 60mLにノ、イドロサルファイトナトリウム 2gをカ卩えた溶液で 2回洗浄した。 [0040] 第 2工程 (クライゼンアルカリ処理) The solution dissolved in mL was added dropwise over 30 minutes. Thereafter, the reaction was continued for 60 minutes at the same temperature. The reaction solution was washed with 40 mL of 5% sodium chloride aqueous solution. The organic layer was washed twice with a solution prepared by adding 2 g of idrosulfite sodium to 60 mL of a 10% potassium hydroxide aqueous solution. [0040] Second step (Claisen alkali treatment)
有機層に、ハイドロサルファイトナトリウム 4g、水酸化カリウム 23g、水 17mL、および メタノール 40mLを加えて、反応混合物を攪拌した。トルエン層を分液で除き、水層を トルエン lOOmLで洗浄し、水層に n—へキサン 100mL、酢酸ェチル 100mL、およ び水 220mLを加えて抽出し、有機層を 5%塩ィ匕ナトリウム水溶液 40mLで 2回洗浄し た後、分液した。  To the organic layer, 4 g of sodium hydrosulfite, 23 g of potassium hydroxide, 17 mL of water, and 40 mL of methanol were added, and the reaction mixture was stirred. The toluene layer is removed by liquid separation, the aqueous layer is washed with toluene lOOmL, extracted with 100 mL of n-hexane, 100 mL of ethyl acetate, and 220 mL of water, and the organic layer is 5% sodium chloride sodium salt. After washing twice with 40 mL of aqueous solution, liquid separation was performed.
[0041] 第 3工程 (酸化反応)  [0041] Third step (oxidation reaction)
有機層に、 n—へキサン lOOmLと塩化ナトリウム水溶液(NaCL14gと水 80mL)を 加え、 30〜35°Cで空気をパブリングしながら反応混合物を攪拌した。反応終了後、 分液し、有機層を 5%塩ィ匕ナトリウム水溶液 40mLで 2回洗浄し、濃縮して^ナテト レノンを得た。  To the organic layer, l-hexane lOOmL and a sodium chloride aqueous solution (NaCL 14 g and water 80 mL) were added, and the reaction mixture was stirred while publishing air at 30 to 35 ° C. After completion of the reaction, the mixture was separated, and the organic layer was washed twice with 40 mL of 5% sodium chloride aqueous solution and concentrated to obtain natrenone.
[0042] [実施例 4]  [0042] [Example 4]
第 1工程 (縮合反応)  First step (condensation reaction)
メナジオールモノアセテート(4) 30. 5gをトルエン 150mLで溶解し、メタンスルホン 酸 2mLを添加した。この溶液を攪拌しながらオールトランス一ゲラニルリナロール(5) 27. 7gを 49〜51°Cで 45分間かけて滴下した後、同温で 2時間 55分間反応させた。 反応液を 5%塩ィ匕ナトリウム水溶液 40mLで 2回洗浄した。有機層を 10%水酸ィ匕カリ ゥム水溶液 40mLにハイドロサルファイトナトリウム 2gを加えた溶液で 3回洗浄した。  30.5 g of menadiol monoacetate (4) was dissolved in 150 mL of toluene, and 2 mL of methanesulfonic acid was added. While stirring this solution, 27.7 g of all-trans-geranyl linalool (5) was added dropwise at 49-51 ° C. over 45 minutes, and then reacted at the same temperature for 2 hours and 55 minutes. The reaction solution was washed twice with 40 mL of 5% sodium chloride aqueous solution. The organic layer was washed three times with a solution obtained by adding 2 g of hydrosulfite sodium to 40 mL of a 10% potassium hydroxide aqueous solution.
[0043] 第 2工程 (クライゼンアルカリ処理) [0043] Second step (Claisen alkali treatment)
有機層に、ハイドロサルファイトナトリウム 4g、水酸化カリウム 23g、水 17mL、および メタノール 40mLをカ卩えて、攪拌した。トルエン層を分液で除き、水層をトルエン 75m Lで洗浄し、水層に酢酸ェチル 100mL、 n—へキサン 100mL、および水 220mLを 加えて抽出し、有機層を 5%塩ィ匕ナトリウム水溶液 40mLで 2回洗浄した後、分液した  To the organic layer, 4 g of sodium hydrosulfite, 23 g of potassium hydroxide, 17 mL of water, and 40 mL of methanol were added and stirred. Remove the toluene layer by liquid separation, wash the aqueous layer with 75 mL of toluene, add 100 mL of ethyl acetate, 100 mL of n-hexane, and 220 mL of water to the aqueous layer, and extract the organic layer with 5% sodium chloride aqueous solution. After washing twice with 40 mL, liquid separation
[0044] 第 3工程 (酸化反応) [0044] Third step (oxidation reaction)
有機層に塩ィ匕ナトリウム水溶液 (NaCL14gと水 80mL力も調製)および n—へキサ ン 200mLをカ卩え、 25°C〜40°Cで空気をパブリングしながら 3時間反応混合物を攪 拌した。反応終了後、分液し、有機層を水 40mLで 2回洗浄し、濃縮して^ナテトレ ノンを得た。 The organic layer was charged with sodium chloride aqueous solution (14 g of NaCL and 80 mL of water was prepared) and 200 mL of n-hexane, and the reaction mixture was stirred for 3 hours while publishing air at 25 ° C to 40 ° C. After completion of the reaction, the solution is separated, and the organic layer is washed twice with 40 mL of water and concentrated. Got non.
[0045] [実施例 5]  [0045] [Example 5]
第 1工程 (縮合反応)  First step (condensation reaction)
反応缶にメナジオールモノアセテート(4) 260. 2kgとトルエン 1300Lを加え、トル ェン 100Lに溶解したオールトランスーゲラ -ルリナロール(5) 290. 5kgおよびドデ シルベンゼンスルホン酸 3. 5kgを投入した後、ジャケットに 55°Cの温水を通液し、内 温 50°C以上で反応混合物を 8時間攪拌した。冷水で冷却後、再び温水 50°Cで加熱 し、内温 31. 9°Cで、水酸ィ匕カリウム 70kg、ハイドロサルファイト 40kgおよび水 800L で調製した水酸ィ匕カリウム Zハイドロサルファイト水溶液を 412Lカ卩え、混合物を 20 分間攪拌した後、水層を分離し、廃棄した。さらに有機層に残りの水酸ィ匕カリウム Z ハイドロサルファイト水溶液 508Lと水 400Lを加えて、混合物を 20分間攪拌した後、 水層を分離し、廃棄した。  Add 260.2 kg of menadiol monoacetate (4) and 1300 L of toluene to the reaction vessel, and add 290.5 kg of all-trans gellar-lurinalol (5) and 3.5 kg of dodecylbenzenesulfonic acid dissolved in 100 L of toluene. Then, warm water of 55 ° C was passed through the jacket, and the reaction mixture was stirred at an internal temperature of 50 ° C or higher for 8 hours. After cooling with cold water, heat again with hot water at 50 ° C, and at an internal temperature of 31.9 ° C, an aqueous solution of potassium hydroxide and potassium Z hydrosulfite prepared with 70 kg of potassium hydroxide, 40 kg of hydrosulfite and 800 L of water The mixture was stirred for 20 minutes, and the aqueous layer was separated and discarded. Further, the remaining aqueous solution of potassium hydroxide Z hydrosulfite and 508 L of water and 400 L of water were added to the organic layer, and the mixture was stirred for 20 minutes. Then, the aqueous layer was separated and discarded.
[0046] 第 2工程 (クライゼンアルカリ処理)  [0046] Second step (Claisen alkali treatment)
ハイドロサルファイト 30kgをカ卩え、窒素雰囲気下、 60°Cの温水で加熱した。内温 3 0°Cまで上昇した時点で温水を停止し、水酸ィ匕カリウム 205kg、水 185Lおよびメタノ ール 389Lから調製した溶液を加え、反応混合物を 30分間攪拌した後、撹拌を停止 し、 2時間静置した。有機層を分離後、水層にトルエン 1300Lを投入し、混合物を 5 分間攪拌した後、有機層を分離し、廃棄した。トルエン 2000Lと水 2200Lとが入って いる撹拌槽に、水層を加えて混合物を 30分間攪拌した後、氷酢酸 300kgを加えて、 さらに混合物を 30分間攪拌した。水層を分離後、有機層を 10%塩ィ匕ナトリウム水溶 液 113Lと水 100Lとから調製した塩ィ匕ナトリウム水溶液で洗浄し、さらに、 10%塩ィ匕 ナトリウム水溶液 97Lと水 100Lとから調製した塩ィ匕ナトリウム水溶液で洗浄した。  30 kg of hydrosulfite was added and heated with hot water at 60 ° C under a nitrogen atmosphere. When the internal temperature rose to 30 ° C, the hot water was stopped, a solution prepared from 205 kg of potassium hydroxide, 185 L of water and 389 L of methanol was added, and the reaction mixture was stirred for 30 minutes, and then the stirring was stopped. And left for 2 hours. After separating the organic layer, 1300 L of toluene was added to the aqueous layer, and the mixture was stirred for 5 minutes, and then the organic layer was separated and discarded. An aqueous layer was added to a stirring tank containing 2000 L of toluene and 2200 L of water, and the mixture was stirred for 30 minutes. Then, 300 kg of glacial acetic acid was added, and the mixture was further stirred for 30 minutes. After separating the aqueous layer, the organic layer was washed with an aqueous sodium chloride solution prepared from 113 L of 10% aqueous sodium chloride solution and 100 L of water, and further prepared from 97 L of 10% aqueous sodium chloride solution and 100 L of water. Washed with aqueous sodium chloride solution.
[0047] 第 3工程 (酸化反応)  [0047] Third step (oxidation reaction)
有機層に水 800Lを投入後、 60°Cの温水をジャケットに通液し、窒素気流下(20N m3/時間)、内温 30°Cで空気を 20Nm3Z時間で反応液に吹き込みながら、反応混 合物を 15時間撹拌した。水層を分離した後、有機層に水 300Lを加え 10分間攪拌し た後、水層を分離した。水 300Lによる水洗をさらに 2回行った。トルエンを減圧下留 去し、残渣をシリカゲルカラムクロマトグラフィーで精製し、溶離液を留去して ¾ ^ナテ トレノン 219kgを得た。 After adding 800 L of water to the organic layer, warm water at 60 ° C was passed through the jacket, and air was blown into the reaction solution at a temperature of 30 ° C under nitrogen flow (20 N m 3 / hour) for 20 Nm 3 Z hours. The reaction mixture was stirred for 15 hours. After separating the aqueous layer, 300 L of water was added to the organic layer and stirred for 10 minutes, and then the aqueous layer was separated. Washing with 300 L of water was performed twice more. Toluene was distilled off under reduced pressure and the residue was purified by silica gel column chromatography. Obtained 219 kg of trenone.
¾ ^ナテトレノンに 20%アセトン一エタノール 2367Lを加えて加熱溶解後、冷却し 、 11°Cで種結晶 25g投入後— 26. 3°Cまで冷却した。析出した結晶を濾取し、 20% アセトン エタノール 704Lで洗浄後、 60°C温水で加熱しながら窒素 3. 8Nm3Z時 間を 20時間吹き込んで溶媒を除去し、メナテトレノン(1) 121. 71kgを得た。 ^ ^ After adding 2367L of 20% acetone / ethanol to natetrenone, the mixture was heated and dissolved, and then cooled. The precipitated crystals were collected by filtration, washed with 704 L of 20% acetone ethanol, heated with 60 ° C hot water and blown with nitrogen 3.8 Nm 3 Z for 20 hours to remove the solvent, and menatetrenone (1) 121. 71 kg Got.

Claims

請求の範囲
Figure imgf000015_0001
The scope of the claims
Figure imgf000015_0001
で表される化合物の製造方法であって、下式 (2)  A process for producing a compound represented by the formula (2)
[化 8]  [Chemical 8]
Figure imgf000015_0002
Figure imgf000015_0002
で表される化合物を溶媒に溶解した溶液のみカゝらなる反応溶液を、酸素源で処理す ることを特徴とする製造方法。  A process comprising: treating a reaction solution consisting of only a solution obtained by dissolving the compound represented by formula (2) with a solvent with an oxygen source.
[2] 下式 (1)  [2] Formula (1)
[化 9]  [Chemical 9]
Figure imgf000015_0003
Figure imgf000015_0003
で表される化合物の製造方法であって、  A process for producing a compound represented by
i)式 (2)  i) Formula (2)
[化 10]  [Chemical 10]
Figure imgf000015_0004
Figure imgf000015_0004
で表される化合物を水と混和しな ヽ有機溶媒に溶解した溶液、および  A solution in which the compound represented by is not miscible with water, dissolved in an organic solvent, and
ii)水または塩ィ匕ナトリウム水溶液、 のみからなる反応溶液を、酸素源で処理することを特徴とする製造方法。 酸素源が空気である請求項 1または 2に記載の製造方法。 ii) water or aqueous sodium chloride solution, A process comprising treating a reaction solution comprising only an oxygen source. The production method according to claim 1 or 2, wherein the oxygen source is air.
PCT/JP2006/318138 2005-09-15 2006-09-13 Process for producing quinone compound WO2007032378A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007535501A JP5060299B2 (en) 2005-09-15 2006-09-13 Method for producing quinone compound

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US71695005P 2005-09-15 2005-09-15
JP2005-268750 2005-09-15
JP2005268750 2005-09-15
US60/716950 2005-09-15

Publications (1)

Publication Number Publication Date
WO2007032378A1 true WO2007032378A1 (en) 2007-03-22

Family

ID=37864970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/318138 WO2007032378A1 (en) 2005-09-15 2006-09-13 Process for producing quinone compound

Country Status (1)

Country Link
WO (1) WO2007032378A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104513149A (en) * 2013-09-29 2015-04-15 天津瑞安医药科技发展有限公司 Synthetic method of menatetrenone

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4936642A (en) * 1972-08-11 1974-04-05
JPS545958A (en) * 1977-06-14 1979-01-17 Nisshin Flour Milling Co Ltd Prparation of vitamine k's
JPS54151932A (en) * 1978-05-19 1979-11-29 Daigo Eiyou Kagaku Kk Preparation of ubiquinone
JPS6281347A (en) * 1985-10-02 1987-04-14 Mitsubishi Gas Chem Co Inc Production of quinone compound

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4936642A (en) * 1972-08-11 1974-04-05
JPS545958A (en) * 1977-06-14 1979-01-17 Nisshin Flour Milling Co Ltd Prparation of vitamine k's
JPS54151932A (en) * 1978-05-19 1979-11-29 Daigo Eiyou Kagaku Kk Preparation of ubiquinone
JPS6281347A (en) * 1985-10-02 1987-04-14 Mitsubishi Gas Chem Co Inc Production of quinone compound

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104513149A (en) * 2013-09-29 2015-04-15 天津瑞安医药科技发展有限公司 Synthetic method of menatetrenone

Similar Documents

Publication Publication Date Title
JP5473597B2 (en) Method for producing acyl peroxide
CN109232696A (en) A kind of preparation method of 16a- hydroxy prednisonlone product
ES2413480T3 (en) Method to produce L-biopterin
JP3020272B2 (en) Method for producing sclareolide
JPS62114922A (en) Production of phenol together with acetone ad methyl ethyl ketone
AU2001237452B2 (en) Method for oxidizing a thioether group into a sulfoxide group
Mlochowski et al. Benzisoselenazol-3 (2H)-ones and bis (2-Carbamoyl) phenyl diselenides as new catalysts for hydrogen peroxide oxidation of organic compounds
CN109081861A (en) A kind of preparation method of 16a- hydroxy prednisonlone
CN109232695A (en) A kind of preparation method of 16a, 21- biacetyl oxygroup prednisolone
WO2007032378A1 (en) Process for producing quinone compound
US7439402B2 (en) Method for producing quinone compound
EP2802564B1 (en) Process for the synthesis of etoricoxib
JP5060299B2 (en) Method for producing quinone compound
CN113621015B (en) 7-dehydrocholesterol and preparation method thereof
CN101792445B (en) Preparation method of L-erythro biopterin
CN110563670B (en) Sulfur-containing piperazine derivative and application thereof
CN107129466B (en) Synthesis method of 4-chloro-3-methoxy-2-methylpyridine-N-oxide
CN101792446A (en) Preparation method of L-erythro biopterin
WO2021111475A1 (en) Process for preparing tranexamic acid
US8350089B2 (en) Yield-efficient process for the production of highly pure 2-methyl-1,4-naphthoquinone and its derivatives
JP2005089329A (en) Manufacturing method of 2-adamantanone
CN109081860A (en) A kind of preparation method of 16a, 21- biacetyl oxygroup prednisolone product
EP1919863A1 (en) Process for the production of bicalutamide
CN103626673B (en) A kind of perfluoroalkyl aromatic hydroxylamine compound and preparation method thereof
JPS6281347A (en) Production of quinone compound

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007535501

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06810095

Country of ref document: EP

Kind code of ref document: A1