JP5060299B2 - Method for producing quinone compound - Google Patents

Method for producing quinone compound Download PDF

Info

Publication number
JP5060299B2
JP5060299B2 JP2007535501A JP2007535501A JP5060299B2 JP 5060299 B2 JP5060299 B2 JP 5060299B2 JP 2007535501 A JP2007535501 A JP 2007535501A JP 2007535501 A JP2007535501 A JP 2007535501A JP 5060299 B2 JP5060299 B2 JP 5060299B2
Authority
JP
Japan
Prior art keywords
reaction
solution
water
organic layer
toluene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007535501A
Other languages
Japanese (ja)
Other versions
JPWO2007032378A1 (en
Inventor
忠 富山
昭助 雑賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eisai R&D Management Co Ltd
Original Assignee
Eisai R&D Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eisai R&D Management Co Ltd filed Critical Eisai R&D Management Co Ltd
Priority to JP2007535501A priority Critical patent/JP5060299B2/en
Priority claimed from PCT/JP2006/318138 external-priority patent/WO2007032378A1/en
Publication of JPWO2007032378A1 publication Critical patent/JPWO2007032378A1/en
Application granted granted Critical
Publication of JP5060299B2 publication Critical patent/JP5060299B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明は、キノン化合物であるメナテトレノンの製造方法に関する。   The present invention relates to a method for producing menatetrenone, which is a quinone compound.

メナテトレノンは下式(1)   Menatetrenone is the following formula (1)


で表される化合物で、該化合物を有効成分としたビタミンK製剤は、ビタミンK欠乏症の予防、治療に利用されるほか、骨粗鬆症予防剤、治療剤としても利用されている。

In addition to being used for the prevention and treatment of vitamin K deficiency, the vitamin K 2 preparation containing the compound as an active ingredient is also used as an osteoporosis preventive and therapeutic agent.

メナテトレノンは発酵食品である納豆等にも含まれるが、工業的製造方法としては化学合成によるものが主流である。
メナテトレノンの化学合成による製造方法は、いくつかのものが知られているが、そのうちの一つに前駆体であるハイドロキノン体を酸化し、目的とするキノン体であるメナテトレノンを得る方法が知られている(非特許文献1)。
Menatetrenone is also contained in natto, which is a fermented food, but chemical synthesis is the mainstream as an industrial production method.
There are several known production methods by chemical synthesis of menatetrenone, one of which is a method of oxidizing the precursor hydroquinone to obtain the desired quinone, menatetrenone. (Non-Patent Document 1).

前記の非特許文献1に開示された方法は酸化銀を用いる方法であるが、同様に二酸化マンガン、過酸化鉛(特許文献2)等の金属酸化物を用いる方法が知られている。
しかしながら、金属酸化物の使用は反応の制御が困難で副反応が生じるおそれがあることと、反応後に環境への悪影響を防止するための処理が必要になる等の不都合があった。
The method disclosed in Non-Patent Document 1 is a method using silver oxide. Similarly, a method using a metal oxide such as manganese dioxide and lead peroxide (Patent Document 2) is known.
However, the use of metal oxides has the disadvantages that the reaction is difficult to control and a side reaction may occur, and that a treatment for preventing adverse effects on the environment is required after the reaction.

そこで、過酸化水素を用いる方法が開発された(特許文献1)。
しかしながら、過酸化水素は強力な酸化剤であって、大量に取り扱う場合には、安全面に配慮した特別な取り扱いが必要になるという問題点がある。
Therefore, a method using hydrogen peroxide has been developed (Patent Document 1).
However, hydrogen peroxide is a strong oxidizing agent, and there is a problem that special handling in consideration of safety is required when handling a large amount.

また、メナテトレノンと構造が類似するユビキノン類の製造方法については、より穏和な酸化剤である分子状酸素を使用する方法が知られている(特許文献3ないし6)。
しかしながら、ユビキノン類の製造方法において分子状酸素を使用する場合には、酸素単独では反応速度が著しく小さく、完全な酸化が望めないことが知られており(特許文献5、6)、かかる課題を克服するためには、塩基(特許文献4)、シリカゲル(特許文献5)、銅または銅イオンおよびアンモニアまたはアンモニウムイオン(特許文献6)等を反応溶液中へ添加することが必須であることが知られていた。このような酸化剤以外の添加剤を用いる方法は、添加剤存在下で副反応を起こすおそれがあり、また、反応後の処理が複雑になることでは前記のキノン体製造方法において金属酸化物を使用する場合と共通の問題がある。
As a method for producing ubiquinones having a structure similar to menatetrenone, methods using molecular oxygen, which is a milder oxidant, are known (Patent Documents 3 to 6).
However, when molecular oxygen is used in the method for producing ubiquinones, it is known that oxygen alone has a remarkably low reaction rate, and complete oxidation cannot be expected (Patent Documents 5 and 6). In order to overcome this, it is known that it is essential to add a base (Patent Document 4), silica gel (Patent Document 5), copper or copper ions, ammonia or ammonium ions (Patent Document 6), etc. to the reaction solution. It was done. Such a method using an additive other than an oxidizer may cause a side reaction in the presence of the additive, and the post-reaction treatment is complicated, so that the metal oxide can be added to the quinone compound production method. There is a common problem with using it.

また、メナテトレノンの製造方法として、分子状酸素を使用する具体的な方法は、まったく知られていなかった。   Further, as a method for producing menatetrenone, a specific method using molecular oxygen has not been known at all.

Kozlov,E.I.,Meditsinskaya Promyshlennost SSSR (1965),19(4),16-21Kozlov, E.I., Meditsinskaya Promyshlennost SSSR (1965), 19 (4), 16-21 特開平48−49733JP 48-49733 A 特開平49−55650JP-A 49-55650 特公昭39−17514Japanese Patent Publication No. 39-17514 特開昭52−72884JP-A-52-72884 特開昭54−151932JP 54-151932 A 特開昭62−81347JP 62-81347 A

したがって、本発明の目的は、環境へ悪影響を及ぼさず、大量に製造する際にも安全で、かつ操作も容易なメナテトレノンの製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a method for producing menatetrenone that does not adversely affect the environment, is safe even when produced in large quantities, and is easy to operate.

前記のとおり、従来のメナテトレノンの製造方法には問題があり、本発明者らは、メナテトレノンの前駆体であるハイドロキノン体(2)の酸化方法を鋭意検討したところ、驚くべきことに、分子状酸素によって、添加剤をまったく用いることなく、また、重大な副反応を起こすことなく、十分な反応速度が得られ、酸化反応が完全に進行することを見出した。この点は、酸化剤として分子状酸素単独を使用する場合には、反応速度が著しく小さく、完全な酸化が望めないことが長い間技術常識であったことに照らすと、全く予想外であった。
また、反応溶液へ水を共存させることにより、酸化反応自体には影響を与えないものの、安全性を向上できることも見出した。かかる知見に基づき、環境へ悪影響を及ぼさず、大量に製造する際にも安全で、かつ操作も容易な方法によってメナテトレノンを製造できることを見出し、本発明を完成した。
As described above, there is a problem in the conventional method for producing menatetrenone, and the present inventors have intensively studied the oxidation method of hydroquinone (2) which is a precursor of menatetrenone. Thus, it has been found that a sufficient reaction rate can be obtained without using any additive or causing a significant side reaction, and the oxidation reaction can proceed completely. This point was totally unexpected when using molecular oxygen alone as an oxidant, because the reaction rate was extremely low and complete oxidation was not expected for a long time. .
It was also found that by allowing water to coexist in the reaction solution, the oxidation reaction itself is not affected, but safety can be improved. Based on these findings, the inventors have found that menatetrenone can be produced by a method that does not adversely affect the environment, is safe even when produced in large quantities, and is easy to operate, and has completed the present invention.

すなわち、本発明の第一の態様は、
下式(1)
That is, the first aspect of the present invention is:
The following formula (1)


で表される化合物の製造方法であって、下式(2)

A method for producing a compound represented by formula (2):


で表される化合物を溶媒に溶解した溶液のみからなる反応溶液を、酸素源で処理することを特徴とする製造方法を提供するものである。

The reaction method which consists only of the solution which melt | dissolved the compound represented by this in the solvent is processed with an oxygen source, The manufacturing method characterized by the above-mentioned is provided.

また、本発明の第二の態様は、下式(1)   Moreover, the second aspect of the present invention is the following formula (1).


で表される化合物の製造方法であって、
i)式(2)

A process for producing a compound represented by
i) Formula (2)


で表される化合物を水と混和しない有機溶媒に溶解した溶液、および
ii)水または塩化ナトリウム水溶液、
のみからなる反応溶液を、酸素源で処理することを特徴とする製造方法を提供するものである。

A solution of the compound represented by formula (I) in an organic solvent immiscible with water, and ii) water or an aqueous sodium chloride solution,
The present invention provides a production method characterized by treating a reaction solution consisting of only an oxygen source.

また、前記第一および第二の態様における酸素源は空気であることが好ましく、酸素源での処理は反応溶液中への酸素源の吹き込みであることが好ましい。   The oxygen source in the first and second embodiments is preferably air, and the treatment with the oxygen source is preferably blowing the oxygen source into the reaction solution.

本発明によれば、環境へ悪影響を及ぼさず、大量に製造する際にも安全で、かつ操作も容易な方法によってメナテトレノンを製造することができる。   According to the present invention, menatetrenone can be produced by a method that does not adversely affect the environment, is safe even when produced in large quantities, and is easy to operate.

本発明で使用するメナテトレノンの前駆体であるハイドロキノン体(2)は公知物質であって、いくつかの合成方法が知られているが、例えば、非特許文献1に開示されている下記のルートにより合成できる。   Hydroquinone (2), which is a precursor of menatetrenone used in the present invention, is a known substance, and several synthesis methods are known. For example, by the following route disclosed in Non-Patent Document 1 Can be synthesized.



上記のように、メナジオールモノアセテート(4)とオールトランス−ゲラニルリナロール(5)を縮合してクライゼンのアルカリ液で処理することによりハイドロキノン体(2)が合成できる。   As described above, the hydroquinone body (2) can be synthesized by condensing menadiol monoacetate (4) and all-trans-geranyl linalool (5) and treating with Claisen's alkaline solution.

メナジオールモノアセテート(4)とオールトランス−ゲラニルリナロール(5)の縮合反応は、非特許文献1にあるように、メナジオールモノアセテート(4)、塩化亜鉛、および三フッ化ホウ素をジオキサン中、50℃に加温し、オールトランス−ゲラニルリナロール(5)のジオキサン溶液を反応混合物に30分間で滴下し、その後30分間50℃に保持することで行うことができる。   As described in Non-Patent Document 1, the condensation reaction of menadiol monoacetate (4) and all-trans-geranyl linalool (5) is performed by adding menadiol monoacetate (4), zinc chloride, and boron trifluoride in dioxane. The reaction can be performed by heating to 50 ° C., dropping a dioxane solution of all-trans-geranyl linalool (5) into the reaction mixture over 30 minutes, and then holding at 50 ° C. for 30 minutes.

この縮合反応に使用する溶媒は、反応を阻害しない溶媒であればジオキサン以外にも使用可能であって、例えば、四塩化炭素、ジクロロメタン、クロロホルム、n−ペンタン、n−ヘキサン、N,N−ジメチルホルアミド、N−メチルピロリドン、アセトニトリル、ジメチルスルホキシド、ベンゼン、トルエン、キシレン、メタノール、エタノール、n−プロパノール、イソプロパノール、tert−ブチルアルコール、酢酸メチル、または酢酸エチル等が使用できる。これらは単独でも使用可能であるが、二以上を任意の割合で混合して使用することもできる。   The solvent used in this condensation reaction can be used other than dioxane as long as it does not inhibit the reaction. For example, carbon tetrachloride, dichloromethane, chloroform, n-pentane, n-hexane, N, N-dimethyl Foramide, N-methylpyrrolidone, acetonitrile, dimethyl sulfoxide, benzene, toluene, xylene, methanol, ethanol, n-propanol, isopropanol, tert-butyl alcohol, methyl acetate, or ethyl acetate can be used. These can be used alone, but two or more can be mixed and used in an arbitrary ratio.

また、上記縮合反応に使用する酸触媒は、上記の塩化亜鉛とBF・OEt以外にも使用可能であって、例えば、シュウ酸、硫酸カリウム、過硫酸カリウム、亜鉛(II)トリフラート、または硫酸銅(I)等の金属塩やパラトルエンスルホン酸、メタンスルホン酸、スルホフタル酸、ヒドキシベンゼンスルホン酸、ニトロベンゼンスルホン酸、ベンゼンスルホン酸、クロロベンゼンスルホン酸、ナフチルスルホン酸、ドデシルベンゼンスルホン酸、4,4’−ビフェニルジスルホン酸、またはフラビアン酸等のスルホン酸誘導体が使用可能である。Further, the acid catalyst used in the condensation reaction can be used in addition to the above zinc chloride and BF 3 · OEt 2 , such as oxalic acid, potassium sulfate, potassium persulfate, zinc (II) triflate, or Metal salts such as copper (I) sulfate, para-toluenesulfonic acid, methanesulfonic acid, sulfophthalic acid, hydroxybenzenesulfonic acid, nitrobenzenesulfonic acid, benzenesulfonic acid, chlorobenzenesulfonic acid, naphthylsulfonic acid, dodecylbenzenesulfonic acid, 4 4,4'-biphenyldisulfonic acid or sulfonic acid derivatives such as flavianic acid can be used.

縮合反応で得られたモノアセチル体(3)は、非特許文献1にあるように、クライゼンのアルカリ(KOH35gを水25mLに溶解し、CHOHで100mLに希釈して調製)を加え、ハイドロサルファイトの3%水溶液とエーテルを加えて、撹拌した後、分液し、ハイドロキノン体(2)のエーテル溶液として得ることができる。クライゼン処理後の抽出溶媒としては、エーテル以外にも使用可能であって、例えば、四塩化炭素、ジクロロメタン、クロロホルム、n−ペンタン、n−ヘキサン、N−メチルピロリドン、ベンゼン、トルエン、キシレン、tert−ブチルアルコール、酢酸メチル、酢酸エチル等が挙げられる。これらは単独でも使用可能であるが、二以上を任意の割合で混合して使用することもできる。As described in Non-Patent Document 1, the monoacetyl compound (3) obtained by the condensation reaction was added with Claisen's alkali (prepared by dissolving 35 g of KOH in 25 mL of water and diluting to 100 mL with CH 3 OH). A 3% aqueous solution of sulfite and ether are added and stirred, followed by liquid separation to obtain a hydroquinone (2) ether solution. The extraction solvent after the Claisen treatment can be used in addition to ether, for example, carbon tetrachloride, dichloromethane, chloroform, n-pentane, n-hexane, N-methylpyrrolidone, benzene, toluene, xylene, tert- Examples include butyl alcohol, methyl acetate, and ethyl acetate. These can be used alone, but two or more can be mixed and used in an arbitrary ratio.

次工程が、本発明製造方法の酸化反応である。本発明では、前工程で得られたハイドロキノン体(2)の抽出液をそのまま使用してもよく、また、減圧留去等で抽出溶媒を除いて溶媒変更してもよい。いずれにせよ、溶媒でハイドロキノン体(2)を溶解した溶液を調製すればよく、後述する水および塩化ナトリウム水溶液を加える場合を除き、他に添加剤を加える必要はない。溶媒としては、ハイドロキノン体(2)を溶解し、酸化反応を阻害しないものであれば特に限定されず、例えば、四塩化炭素、ジクロロメタン、クロロホルム、n−ペンタン、n−ヘキサン、N,N−ジメチルホルアミド、N−メチルピロリドン、アセトニトリル、ジメチルスルホキシド、ベンゼン、トルエン、キシレン、メタノール、エタノール、n−プロパノール、イソプロパノール、tert−ブチルアルコール、酢酸メチル、酢酸エチル等が挙げられる。これらは単独でも使用可能であるが、二以上を任意の割合で混合して使用することもでき、含水溶媒として使用することも可能である。   The next step is an oxidation reaction of the production method of the present invention. In the present invention, the hydroquinone (2) extract obtained in the previous step may be used as it is, or the solvent may be changed by removing the extraction solvent by distillation under reduced pressure or the like. In any case, it suffices to prepare a solution in which the hydroquinone body (2) is dissolved with a solvent, and it is not necessary to add other additives except when adding water and a sodium chloride aqueous solution described later. The solvent is not particularly limited as long as it dissolves the hydroquinone (2) and does not inhibit the oxidation reaction. Examples thereof include carbon tetrachloride, dichloromethane, chloroform, n-pentane, n-hexane, N, N-dimethyl. Foramide, N-methylpyrrolidone, acetonitrile, dimethyl sulfoxide, benzene, toluene, xylene, methanol, ethanol, n-propanol, isopropanol, tert-butyl alcohol, methyl acetate, ethyl acetate and the like can be mentioned. These can be used alone, but two or more can be mixed and used in an arbitrary ratio, and can also be used as a hydrous solvent.

本発明は、溶媒でハイドロキノン体(2)を溶解した溶液のみを用いて実施できることが特徴である。すなわち、酸化反応を進行させて完了させるためには、他に添加剤を加える必要はない。ただし、安全面を考慮して、水または塩化ナトリウム水溶液を加えて2層系で実施することが好ましい。2層系で実施する場合は、水と混和しない有機溶媒、たとえば四塩化炭素、ジクロロメタン、クロロホルム、n−ペンタン、n−ヘキサン、N−メチルピロリドン、ベンゼン、トルエン、キシレン、tert−ブチルアルコール、酢酸メチル、酢酸エチル、またはこれらの2以上の混合溶媒を溶媒として使用するのが好ましい。水または塩化ナトリウム水溶液のいずれを使用するかは、使用する溶媒によって適宜選択すればよい。例えば、反応後の分液時に有機層と水層の分離が良好な方を選択できる。   The present invention is characterized in that it can be carried out using only a solution in which the hydroquinone (2) is dissolved with a solvent. That is, it is not necessary to add other additives in order to advance and complete the oxidation reaction. However, in consideration of safety, it is preferable to carry out a two-layer system by adding water or an aqueous sodium chloride solution. When carried out in a two-layer system, an organic solvent immiscible with water, such as carbon tetrachloride, dichloromethane, chloroform, n-pentane, n-hexane, N-methylpyrrolidone, benzene, toluene, xylene, tert-butyl alcohol, acetic acid Methyl, ethyl acetate, or a mixed solvent of two or more thereof is preferably used as the solvent. Whether water or an aqueous sodium chloride solution is used may be appropriately selected depending on the solvent used. For example, the better separation of the organic layer and the aqueous layer can be selected during the liquid separation after the reaction.

本発明で使用する酸素源とは、反応系中に分子状酸素を導入できるものをいい、例えば、酸素ガス、空気が挙げられる。酸素ガスや空気を酸素源として使用する場合は、本発明を阻害しない別の気体、例えば、窒素、ヘリウム、アルゴン等との混合気体として使用してもよい。   The oxygen source used in the present invention refers to one that can introduce molecular oxygen into the reaction system, and examples thereof include oxygen gas and air. When oxygen gas or air is used as an oxygen source, it may be used as a mixed gas with another gas that does not inhibit the present invention, for example, nitrogen, helium, argon or the like.

反応溶液中の反応基質と、反応系中に導入される分子状酸素とは、酸素源の吹き込みにより効率的に接触させることが好ましい。例えば、反応溶液へ空気を吹き込む場合ノズルから吹き込んだり、ノズルの先端に多孔状の部材を備えて泡状の空気を吹き込んだり、反応缶内に、リング状パイプで多数の穴を穿っているものを備えて、その多数の穴から空気が適度な大きさの泡となって吹き出るようにしてもよく、その他にも様々な装置的手段が取り得る。The reaction substrate in the reaction solution and the molecular oxygen introduced into the reaction system are preferably brought into efficient contact by blowing an oxygen source. For example, if the reaction solution blowing air, Dari blown from the nozzle, Dari blown foamy air comprises a porous member on the tip of the nozzle, into the reactor, and bored a number of holes in the ring-shaped pipe It may be provided that air is blown out of the large number of holes as moderately sized bubbles, and various other device means can be taken.

本発明の酸化反応の温度条件は、使用する溶媒や酸素源との接触効率等を踏まえて効率的に反応が進行する温度を適宜選択すればよい。反応を進行させるためには、0℃〜溶媒の沸点までで実施可能であるが、反応時間やエネルギー効率等を考慮すると室温〜60℃が好ましく、さらに20〜50℃が好ましく、特に30〜40℃が好ましい。
反応時間は、反応の終了をTLCまたはHPLCでモニターすることで適宜選択可能であり、好ましくは3時間から20時間であって、終夜で15時間程度反応させても副反応で収率が低下することはない。
The temperature condition for the oxidation reaction of the present invention may be appropriately selected at a temperature at which the reaction efficiently proceeds based on the contact efficiency with the solvent to be used and the oxygen source. In order to advance the reaction, the reaction can be carried out from 0 ° C. to the boiling point of the solvent. However, considering the reaction time, energy efficiency, etc., room temperature to 60 ° C. is preferable, 20 to 50 ° C. is more preferable, and 30 to 40 is particularly preferable. ° C is preferred.
The reaction time can be appropriately selected by monitoring the completion of the reaction by TLC or HPLC, and preferably 3 to 20 hours. Even if the reaction is carried out overnight for about 15 hours, the yield decreases as a side reaction. There is nothing.

酸化反応終了後は、常法により後処理および精製することによってメナテトレノンを得る。具体的には、反応溶液を減圧下等で濃縮して粗生成物を得た後、カラムクロマトグラフィーおよび/または再結晶法により精製すればよい。安全面からは反応溶液を水洗してから濃縮することが好ましく、かかる観点からも酸化反応に使用する溶媒は水と混和しない有機溶媒が好ましい。   After the oxidation reaction, menatetrenone is obtained by post-treatment and purification by a conventional method. Specifically, the reaction solution may be concentrated under reduced pressure or the like to obtain a crude product, and then purified by column chromatography and / or recrystallization. From the viewpoint of safety, it is preferable to concentrate the reaction solution after washing it. From this viewpoint, the solvent used for the oxidation reaction is preferably an organic solvent that is not miscible with water.

以下に実施例を挙げて本発明を具体例に説明するが、本発明はこれらの実施例に限定されるものではない。
[実施例1]
第1工程(縮合反応)
メナジオールモノアセテート(4)28.8gを酢酸エチル67mLとn−ヘキサン67mLとの混合溶媒で溶解し、BF−EtO2.4gを添加した。この溶液を攪拌しながらオールトランス−ゲラニルリナロール(5)28.3gを45℃で1時間30分から2時間程度かけて滴下した後、同温で5時間反応させた。反応液を5%塩化ナトリウム水溶液20mLで4回洗浄した。有機層を10%水酸化カリウム水溶液40mLにハイドロサルファイトナトリウム2gを加えた溶液で4回洗浄した。さらに、5%塩化ナトリウム水溶液20mLで有機層を4回洗浄した。有機層を減圧下で濃縮した。
EXAMPLES Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples.
[Example 1]
First step (condensation reaction)
28.8 g of menadiol monoacetate (4) was dissolved in a mixed solvent of 67 mL of ethyl acetate and 67 mL of n-hexane, and 2.4 g of BF 3 -Et 2 O was added. While stirring this solution, 28.3 g of all-trans-geranyl linalool (5) was added dropwise at 45 ° C. over 1 hour 30 minutes to 2 hours, and then reacted at the same temperature for 5 hours. The reaction solution was washed 4 times with 20 mL of 5% aqueous sodium chloride solution. The organic layer was washed four times with a solution obtained by adding 2 g of sodium hydrosulfite to 40 mL of 10% aqueous potassium hydroxide solution. Further, the organic layer was washed 4 times with 20 mL of 5% aqueous sodium chloride solution. The organic layer was concentrated under reduced pressure.

第2工程(クライゼンアルカリ処理)
濃縮残渣をトルエン150mLで溶解し、ハイドロサルファイトナトリウム4g、水酸化カリウム23g、水17mL、およびメタノール40mLを加えて、攪拌した。トルエン層を分液で除き、水層をトルエン90mLで洗浄し、水層に酢酸エチル100mL、n−ヘキサン100mL、および水220mLを加えて抽出し、有機層を5%塩化ナトリウム水溶液20mLで2回洗浄した後、分液した。
Second step (Claisen alkali treatment)
The concentrated residue was dissolved in 150 mL of toluene, and 4 g of sodium hydrosulfite, 23 g of potassium hydroxide, 17 mL of water, and 40 mL of methanol were added and stirred. The toluene layer was removed by liquid separation, the aqueous layer was washed with 90 mL of toluene, and extracted by adding 100 mL of ethyl acetate, 100 mL of n-hexane, and 220 mL of water to the aqueous layer, and the organic layer was extracted twice with 20 mL of 5% aqueous sodium chloride solution. After washing, the solution was separated.

第3工程(酸化反応)
有機層に塩化ナトリウム水溶液(NaCL14gと水80mLから調製)およびn−ヘキサン200mLを加え、空気をバブリングしながら反応混合物を攪拌した。反応終了後、分液し、有機層を水30mLで3回洗浄し、濃縮した。濃縮残渣をカラムクロマトグラフィー(n−ヘキサン)に付し、目的物を含む画分を濃縮して粗メナテトレノンを油状物として得た。粗メナテトレノンをエタノールで結晶化して粗結晶を得た。さらに、粗結晶をエタノールで再結晶することによりメナテトレノン(1)を得た((5)より収率22%)。
Third step (oxidation reaction)
Sodium chloride aqueous solution (prepared from 14 g of NaCL and 80 mL of water) and 200 mL of n-hexane were added to the organic layer, and the reaction mixture was stirred while bubbling air. After completion of the reaction, the mixture was separated, and the organic layer was washed 3 times with 30 mL of water and concentrated. The concentrated residue was subjected to column chromatography (n-hexane), and the fraction containing the target product was concentrated to obtain crude menatetrenone as an oil. Crude menatetrenone was crystallized from ethanol to obtain crude crystals. Furthermore, menatetrenone (1) was obtained by recrystallizing the crude crystals with ethanol (yield 22% from (5)).

[実施例2]
第1工程(縮合反応)
メナジオールモノアセテート(4)26gをトルエン130mLで溶解し、50℃で撹拌下、オールトランス−ゲラニルリナロール(5)29gをトルエン10mLに溶解した溶液と、BF−EtO3.6gをトルエン20mLに溶解した溶液とを同時に30分間で滴下した。その後同温で30分反応させた。反応液を5%塩化ナトリウム水溶液40mLで2回洗浄した。有機層を10%水酸化カリウム水溶液60mLにハイドロサルファイトナトリウム2gを加えた溶液で2回洗浄した。
[Example 2]
First step (condensation reaction)
26 g of menadiol monoacetate (4) was dissolved in 130 mL of toluene, and while stirring at 50 ° C., a solution of 29 g of all-trans-geranyl linalool (5) dissolved in 10 mL of toluene and 3.6 g of BF 3 -Et 2 O were added to 20 mL of toluene. The solution dissolved in was simultaneously added dropwise over 30 minutes. Thereafter, the reaction was carried out at the same temperature for 30 minutes. The reaction solution was washed twice with 40 mL of 5% aqueous sodium chloride solution. The organic layer was washed twice with a solution obtained by adding 2 g of sodium hydrosulfite to 60 mL of 10% aqueous potassium hydroxide solution.

第2工程(クライゼンアルカリ処理)
有機層に、ハイドロサルファイトナトリウム3g、水酸化カリウム23g、水17mL、およびメタノール40mLを加えて、反応混合物を攪拌した。トルエン層を分液で除き、水層をトルエン140mLで洗浄し、水層にトルエン200mL、酢酸30mL、および水220mLを加えて抽出し、有機層を5%塩化ナトリウム水溶液40mLで2回洗浄した後、分液した。
Second step (Claisen alkali treatment)
To the organic layer, 3 g of sodium hydrosulfite, 23 g of potassium hydroxide, 17 mL of water, and 40 mL of methanol were added, and the reaction mixture was stirred. After removing the toluene layer by liquid separation, the aqueous layer was washed with 140 mL of toluene, extracted by adding 200 mL of toluene, 30 mL of acetic acid, and 220 mL of water, and the organic layer was washed twice with 40 mL of 5% sodium chloride aqueous solution. The liquid was separated.

第3工程(酸化反応)
有機層に水80mLを加え、空気を吹き込みながら攪拌した。反応終了後、分液し、有機層を水30mLで3回洗浄し、濃縮して粗メナテトレノンを得た。
Third step (oxidation reaction)
80 mL of water was added to the organic layer and stirred while blowing air. After completion of the reaction, the mixture was separated, and the organic layer was washed with 30 mL of water three times and concentrated to obtain crude menatetrenone.

[実施例3]
第1工程(縮合反応)
メナジオールモノアセテート(4)30.5gとオールトランス−ゲラニルリナロール(5)28.3gをトルエン130mLで溶解し、45℃で撹拌下、BF−EtO 2.1gをトルエン20mLに溶解した溶液を30分間で滴下した。その後同温で60分間反応させた。反応液を5%塩化ナトリウム水溶液40mLで洗浄した。有機層を10%水酸化カリウム水溶液60mLにハイドロサルファイトナトリウム2gを加えた溶液で2回洗浄した。
[Example 3]
First step (condensation reaction)
30.5 g of menadiol monoacetate (4) and 28.3 g of all-trans-geranyl linalool (5) were dissolved in 130 mL of toluene, and 2.1 g of BF 3 -Et 2 O was dissolved in 20 mL of toluene with stirring at 45 ° C. The solution was added dropwise over 30 minutes. Thereafter, the reaction was carried out at the same temperature for 60 minutes. The reaction solution was washed with 40 mL of 5% aqueous sodium chloride solution. The organic layer was washed twice with a solution obtained by adding 2 g of hydrosulfite sodium to 60 mL of a 10% aqueous potassium hydroxide solution.

第2工程(クライゼンアルカリ処理)
有機層に、ハイドロサルファイトナトリウム4g、水酸化カリウム23g、水17mL、およびメタノール40mLを加えて、反応混合物を攪拌した。トルエン層を分液で除き、水層をトルエン100mLで洗浄し、水層にn−ヘキサン100mL、酢酸エチル100mL、および水220mLを加えて抽出し、有機層を5%塩化ナトリウム水溶液40mLで2回洗浄した後、分液した。
Second step (Claisen alkali treatment)
To the organic layer, 4 g of sodium hydrosulfite, 23 g of potassium hydroxide, 17 mL of water, and 40 mL of methanol were added, and the reaction mixture was stirred. The toluene layer was removed by liquid separation, the aqueous layer was washed with 100 mL of toluene, extracted by adding 100 mL of n-hexane, 100 mL of ethyl acetate, and 220 mL of water to the aqueous layer, and the organic layer was extracted twice with 40 mL of 5% aqueous sodium chloride solution. After washing, the solution was separated.

第3工程(酸化反応)
有機層に、n−ヘキサン100mLと塩化ナトリウム水溶液(NaCL14gと水80mL)を加え、30〜35℃で空気をバブリングしながら反応混合物を攪拌した。反応終了後、分液し、有機層を5%塩化ナトリウム水溶液40mLで2回洗浄し、濃縮して粗メナテトレノンを得た。
Third step (oxidation reaction)
To the organic layer, 100 mL of n-hexane and an aqueous sodium chloride solution (NaCL 14 g and water 80 mL) were added, and the reaction mixture was stirred while bubbling air at 30 to 35 ° C. After completion of the reaction, the mixture was separated, and the organic layer was washed twice with 40 mL of 5% aqueous sodium chloride solution and concentrated to obtain crude menatetrenone.

[実施例4]
第1工程(縮合反応)
メナジオールモノアセテート(4)30.5gをトルエン150mLで溶解し、メタンスルホン酸2mLを添加した。この溶液を攪拌しながらオールトランス−ゲラニルリナロール(5)27.7gを49〜51℃で45分間かけて滴下した後、同温で2時間55分間反応させた。反応液を5%塩化ナトリウム水溶液40mLで2回洗浄した。有機層を10%水酸化カリウム水溶液40mLにハイドロサルファイトナトリウム2gを加えた溶液で3回洗浄した。
[Example 4]
First step (condensation reaction)
30.5 g of menadiol monoacetate (4) was dissolved in 150 mL of toluene, and 2 mL of methanesulfonic acid was added. While stirring this solution, 27.7 g of all-trans-geranyl linalool (5) was added dropwise at 49 to 51 ° C. over 45 minutes, followed by reaction at the same temperature for 2 hours and 55 minutes. The reaction solution was washed twice with 40 mL of 5% aqueous sodium chloride solution. The organic layer was washed three times with a solution obtained by adding 2 g of hydrosulfite sodium to 40 mL of a 10% aqueous potassium hydroxide solution.

第2工程(クライゼンアルカリ処理)
有機層に、ハイドロサルファイトナトリウム4g、水酸化カリウム23g、水17mL、およびメタノール40mLを加えて、攪拌した。トルエン層を分液で除き、水層をトルエン75mLで洗浄し、水層に酢酸エチル100mL、n−ヘキサン100mL、および水220mLを加えて抽出し、有機層を5%塩化ナトリウム水溶液40mLで2回洗浄した後、分液した。
Second step (Claisen alkali treatment)
To the organic layer, 4 g of hydrosulfite sodium, 23 g of potassium hydroxide, 17 mL of water, and 40 mL of methanol were added and stirred. The toluene layer was removed by liquid separation, the aqueous layer was washed with 75 mL of toluene, extracted by adding 100 mL of ethyl acetate, 100 mL of n-hexane, and 220 mL of water to the aqueous layer, and the organic layer was extracted twice with 40 mL of 5% aqueous sodium chloride solution. After washing, the solution was separated.

第3工程(酸化反応)
有機層に塩化ナトリウム水溶液(NaCL14gと水80mLから調製)およびn−ヘキサン200mLを加え、25℃〜40℃で空気をバブリングしながら3時間反応混合物を攪拌した。反応終了後、分液し、有機層を水40mLで2回洗浄し、濃縮して粗メナテトレノンを得た。
Third step (oxidation reaction)
A sodium chloride aqueous solution (prepared from 14 g of NaCL and 80 mL of water) and 200 mL of n-hexane were added to the organic layer, and the reaction mixture was stirred for 3 hours while bubbling air at 25 ° C to 40 ° C. After completion of the reaction, the mixture was separated, and the organic layer was washed twice with 40 mL of water and concentrated to obtain crude menatetrenone.

[実施例5]
第1工程(縮合反応)
反応缶にメナジオールモノアセテート(4)260.2kgとトルエン1300Lを加え、トルエン100Lに溶解したオールトランス−ゲラニルリナロール(5)290.5kgおよびドデシルベンゼンスルホン酸3.5kgを投入した後、ジャケットに55℃の温水を通液し、内温50℃以上で反応混合物を8時間攪拌した。冷水で冷却後、再び温水50℃で加熱し、内温31.9℃で、水酸化カリウム70kg、ハイドロサルファイト40kgおよび水800Lで調製した水酸化カリウム/ハイドロサルファイト水溶液を412L加え、混合物を20分間攪拌した後、水層を分離し、廃棄した。さらに有機層に残りの水酸化カリウム/ハイドロサルファイト水溶液508Lと水400Lを加えて、混合物を20分間攪拌した後、水層を分離し、廃棄した。
[Example 5]
First step (condensation reaction)
After adding 260.2 kg of menadiol monoacetate (4) and 1300 L of toluene to the reaction can, 290.5 kg of all-trans-geranyl linalool (5) dissolved in 100 L of toluene and 3.5 kg of dodecylbenzenesulfonic acid were added to the jacket. Hot water at 55 ° C. was passed through, and the reaction mixture was stirred at an internal temperature of 50 ° C. or higher for 8 hours. After cooling with cold water, heat again with warm water at 50 ° C., add 412 L of potassium hydroxide / hydrosulfite aqueous solution prepared with potassium hydroxide 70 kg, hydrosulfite 40 kg and water 800 L at an internal temperature of 31.9 ° C. After stirring for 20 minutes, the aqueous layer was separated and discarded. Further, 508 L of the remaining potassium hydroxide / hydrosulfite aqueous solution and 400 L of water were added to the organic layer, and the mixture was stirred for 20 minutes. Then, the aqueous layer was separated and discarded.

第2工程(クライゼンアルカリ処理)
ハイドロサルファイト30kgを加え、窒素雰囲気下、60℃の温水で加熱した。内温30℃まで上昇した時点で温水を停止し、水酸化カリウム205kg、水185Lおよびメタノール389Lから調製した溶液を加え、反応混合物を30分間攪拌した後、撹拌を停止し、2時間静置した。有機層を分離後、水層にトルエン1300Lを投入し、混合物を5分間攪拌した後、有機層を分離し、廃棄した。トルエン2000Lと水2200Lとが入っている撹拌槽に、水層を加えて混合物を30分間攪拌した後、氷酢酸300kgを加えて、さらに混合物を30分間攪拌した。水層を分離後、有機層を10%塩化ナトリウム水溶液113Lと水100Lとから調製した塩化ナトリウム水溶液で洗浄し、さらに、10%塩化ナトリウム水溶液97Lと水100Lとから調製した塩化ナトリウム水溶液で洗浄した。
Second step (Claisen alkali treatment)
30 kg of hydrosulfite was added and heated with warm water at 60 ° C. in a nitrogen atmosphere. When the internal temperature rose to 30 ° C., the hot water was stopped, a solution prepared from 205 kg of potassium hydroxide, 185 L of water and 389 L of methanol was added, and the reaction mixture was stirred for 30 minutes, then the stirring was stopped and left for 2 hours. . After separating the organic layer, 1300 L of toluene was added to the aqueous layer, and the mixture was stirred for 5 minutes. Then, the organic layer was separated and discarded. An aqueous layer was added to a stirring tank containing 2000 L of toluene and 2200 L of water, and the mixture was stirred for 30 minutes. Then, 300 kg of glacial acetic acid was added, and the mixture was further stirred for 30 minutes. After separating the aqueous layer, the organic layer was washed with an aqueous sodium chloride solution prepared from 113 L of 10% aqueous sodium chloride solution and 100 L of water, and further washed with an aqueous sodium chloride solution prepared from 97 L of 10% aqueous sodium chloride solution and 100 L of water. .

第3工程(酸化反応)
有機層に水800Lを投入後、60℃の温水をジャケットに通液し、窒素気流下(20Nm/時間)、内温30℃で空気を20Nm/時間で反応液に吹き込みながら、反応混合物を15時間撹拌した。水層を分離した後、有機層に水300Lを加え10分間攪拌した後、水層を分離した。水300Lによる水洗をさらに2回行った。トルエンを減圧下留去し、残渣をシリカゲルカラムクロマトグラフィーで精製し、溶離液を留去して粗メナテトレノン219kgを得た。
Third step (oxidation reaction)
After adding 800 L of water to the organic layer, warm water of 60 ° C. was passed through the jacket, and the reaction mixture was blown into the reaction solution at an internal temperature of 30 ° C. under a nitrogen stream (20 Nm 3 / hour) at a temperature of 20 Nm 3 / hour. Was stirred for 15 hours. After separating the aqueous layer, 300 L of water was added to the organic layer and stirred for 10 minutes, and then the aqueous layer was separated. Washing with 300 L of water was performed twice more. Toluene was distilled off under reduced pressure, the residue was purified by silica gel column chromatography, and the eluent was distilled off to obtain 219 kg of crude menatetrenone.

粗メナテトレノンに20%アセトン−エタノール2367Lを加えて加熱溶解後、冷却し、11℃で種結晶25g投入後−26.3℃まで冷却した。析出した結晶を濾取し、20%アセトン−エタノール704Lで洗浄後、60℃温水で加熱しながら窒素3.8Nm/時間を20時間吹き込んで溶媒を除去し、メナテトレノン(1)121.71kgを得た。To the crude menatetrenone, 2367 L of 20% acetone-ethanol was added and dissolved by heating, followed by cooling. After adding 25 g of seed crystals at 11 ° C., the mixture was cooled to −26.3 ° C. The precipitated crystals were collected by filtration, washed with 704 L of 20% acetone-ethanol and then blown with nitrogen 3.8 Nm 3 / hour for 20 hours while heating with 60 ° C. warm water to remove 121.71 kg of menatetrenone (1). Obtained.

Claims (3)

下式(1)
で表される化合物の製造方法であって、下式(2)
で表される化合物を溶媒に溶解した溶液のみからなる反応溶液を、酸素源で処理することを特徴とする製造方法。
The following formula (1)
A method for producing a compound represented by formula (2):
A process comprising: treating a reaction solution consisting only of a solution obtained by dissolving a compound represented by formula (2) in a solvent with an oxygen source.
下式(1)
で表される化合物の製造方法であって、
i)式(2)
で表される化合物を水と混和しない有機溶媒に溶解した溶液、および
ii)水または塩化ナトリウム水溶液、
のみからなる反応溶液を、酸素源で処理することを特徴とする製造方法。
The following formula (1)
A process for producing a compound represented by
i) Formula (2)
A solution of the compound represented by formula (I) in an organic solvent immiscible with water, and ii) water or an aqueous sodium chloride solution,
A process comprising treating a reaction solution comprising only an oxygen source.
酸素源が空気である請求項1または2に記載の製造方法。  The production method according to claim 1 or 2, wherein the oxygen source is air.
JP2007535501A 2005-09-15 2006-09-13 Method for producing quinone compound Expired - Fee Related JP5060299B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007535501A JP5060299B2 (en) 2005-09-15 2006-09-13 Method for producing quinone compound

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US71695005P 2005-09-15 2005-09-15
JP2005268750 2005-09-15
JP2005268750 2005-09-15
US60/716950 2005-09-15
PCT/JP2006/318138 WO2007032378A1 (en) 2005-09-15 2006-09-13 Process for producing quinone compound
JP2007535501A JP5060299B2 (en) 2005-09-15 2006-09-13 Method for producing quinone compound

Publications (2)

Publication Number Publication Date
JPWO2007032378A1 JPWO2007032378A1 (en) 2009-03-19
JP5060299B2 true JP5060299B2 (en) 2012-10-31

Family

ID=47189636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007535501A Expired - Fee Related JP5060299B2 (en) 2005-09-15 2006-09-13 Method for producing quinone compound

Country Status (1)

Country Link
JP (1) JP5060299B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4936642A (en) * 1972-08-11 1974-04-05
JPS5272884A (en) * 1975-12-15 1977-06-17 Nisshin Flour Milling Co Ltd Preparation of coenzyme q
JPS545958A (en) * 1977-06-14 1979-01-17 Nisshin Flour Milling Co Ltd Prparation of vitamine k's
JPS54151932A (en) * 1978-05-19 1979-11-29 Daigo Eiyou Kagaku Kk Preparation of ubiquinone
JPS6281347A (en) * 1985-10-02 1987-04-14 Mitsubishi Gas Chem Co Inc Production of quinone compound

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4936642A (en) * 1972-08-11 1974-04-05
JPS5272884A (en) * 1975-12-15 1977-06-17 Nisshin Flour Milling Co Ltd Preparation of coenzyme q
JPS545958A (en) * 1977-06-14 1979-01-17 Nisshin Flour Milling Co Ltd Prparation of vitamine k's
JPS54151932A (en) * 1978-05-19 1979-11-29 Daigo Eiyou Kagaku Kk Preparation of ubiquinone
JPS6281347A (en) * 1985-10-02 1987-04-14 Mitsubishi Gas Chem Co Inc Production of quinone compound

Also Published As

Publication number Publication date
JPWO2007032378A1 (en) 2009-03-19

Similar Documents

Publication Publication Date Title
CN109232696A (en) A kind of preparation method of 16a- hydroxy prednisonlone product
JP2010524938A (en) Novel opiate reduction using catalytic hydrogen transfer reaction
US7439402B2 (en) Method for producing quinone compound
CN109232695A (en) A kind of preparation method of 16a, 21- biacetyl oxygroup prednisolone
CN109081861A (en) A kind of preparation method of 16a- hydroxy prednisonlone
CN109232697A (en) A method of preparing 16a- hydroxy prednisonlone product
JP5060299B2 (en) Method for producing quinone compound
JP4629322B2 (en) Production method of cilostazol
EP2802564B1 (en) Process for the synthesis of etoricoxib
CN115806543A (en) Articaine hydrochloride intermediate and preparation method and application thereof
WO2001021617A1 (en) Process for preparing sulfoxide compounds
TW201629078A (en) Process for the preparation of diosmin
WO2007032378A1 (en) Process for producing quinone compound
CN106458820A (en) Process for the production of 2,6-dimethylbenzoquinone
CN113999098A (en) Method for synthesizing 2,3, 5-trimethylbenzoquinone
WO2007012183A1 (en) Process for the production of bicalutamide
CN109081860A (en) A kind of preparation method of 16a, 21- biacetyl oxygroup prednisolone product
CN107129466B (en) Synthesis method of 4-chloro-3-methoxy-2-methylpyridine-N-oxide
CN109180764A (en) It is a kind of to prepare 16a, the method for 21- biacetyl oxygroup prednisolone product
JP7306202B2 (en) Method for producing aliphatic carboxylic acid compound, and pyridine compound adduct of aliphatic ketone compound
CN113292414B (en) Preparation method of butynedioic acid
CA2556329A1 (en) Process for the preparation of aq4n
CN113336753A (en) Riociguat synthesis method
CN109251230A (en) It is a kind of to prepare 16a, the method for 21- biacetyl oxygroup prednisolone
CN116751158A (en) Preparation method of 2, 3-pyridine dicarboxylic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120725

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120803

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees