WO2007032259A1 - Piezoelectric sensor - Google Patents

Piezoelectric sensor Download PDF

Info

Publication number
WO2007032259A1
WO2007032259A1 PCT/JP2006/317811 JP2006317811W WO2007032259A1 WO 2007032259 A1 WO2007032259 A1 WO 2007032259A1 JP 2006317811 W JP2006317811 W JP 2006317811W WO 2007032259 A1 WO2007032259 A1 WO 2007032259A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric
thin film
film layer
piezoelectric element
pressure
Prior art date
Application number
PCT/JP2006/317811
Other languages
French (fr)
Japanese (ja)
Inventor
Morito Akiyama
Naohiro Ueno
Tatsuo Tabaru
Original Assignee
National Institute Of Advanced Industrial Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Advanced Industrial Science And Technology filed Critical National Institute Of Advanced Industrial Science And Technology
Publication of WO2007032259A1 publication Critical patent/WO2007032259A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/008Transmitting or indicating the displacement of flexible diaphragms using piezoelectric devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/14Housings
    • G01L19/141Monolithic housings, e.g. molded or one-piece housings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L23/00Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid
    • G01L23/08Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid operated electrically
    • G01L23/10Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid operated electrically by pressure-sensitive members of the piezoelectric type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Definitions

  • the present invention relates to a piezoelectric ceramic thin film element that detects a physical quantity such as acoustic emission, vibration, and acceleration in a high temperature environment such as an internal combustion engine or a plant such as a nuclear power plant. It relates to sensors.
  • Sensors are installed inside structures to detect abnormalities in structures that generate high-temperature atmosphere, such as piping and valves in plants such as nuclear power plants, and engines of internal combustion engines.
  • acoustic emission sensors that detect acoustic emissions, which are elastic waves generated when cracks or cracks occur in structures
  • piezoelectric vibration sensors that detect abnormal vibration and acceleration information are used. These include various types such as a compression type, a cantilever type, a diaphragm type, and a shear type.
  • a compression type thin film type piezoelectric sensor is disclosed in Japanese Patent Publication “JP-A-6-148011 (Publication Date: May 27, 1994)” (hereinafter, Patent Document 1).
  • JP-A-6-148011 Publication Date: May 27, 1994
  • Patent Document 1 Japanese Patent Publication “JP-A-6-148011 (Publication Date: May 27, 1994)”
  • Fig. 1 it is composed of a pedestal, a pedestal side electrode, a piezoelectric body, a load body side electrode, and a stacked body in which load bodies are stacked in sequence, and is used by attaching the lower surface of the pedestal to the structure. It is.
  • the vibration is transmitted to the pedestal side of the thin film piezoelectric sensor.
  • the vibration transmitted to the pedestal side of the thin film type piezoelectric sensor is transmitted to the piezoelectric body, and compressive stress or tensile stress proportional to the vibration acceleration is generated in the piezoelectric body. Then, an electric signal (charge) proportional to the stress is generated on both surfaces of the piezoelectric body, and the two electrodes disposed on both sides of the piezoelectric body take out the charge.
  • the magnitude and acceleration of the vibration of the structure can be detected by measuring the extracted electric charge.
  • Patent Document 1 and Japanese Patent Laid-Open Publication No. 10-206399 publication date: August 7, 1998)
  • Patent Document 2 include lead zirconate titanate (PZT) as a piezoelectric material.
  • PZT lead zirconate titanate
  • PVDF polyvinylidene fluoride
  • these piezoelectric materials have a low Curie temperature, and the maximum application temperature is about 300 ° C.
  • the inside of the structure has a high combustion temperature (around 500 ° C.).
  • the piezoelectric body of the piezoelectric sensor installed inside the structure becomes quite hot (around 400 ° C) and reaches the Curie temperature. If the piezoelectric body is heated to a temperature exceeding the Curie temperature, the piezoelectric characteristics deteriorate and it cannot be used.
  • Patent Document 4 Japanese Patent Publication “JP-A-5-34230 (Publication Date: Feb. 9, 1993)” (hereinafter referred to as Patent Document 4) describes the use of lithium Niobate (LiNbO) having a high Curie temperature as a piezoelectric material. A method for use as a body is disclosed. Lithium niobate
  • the Curie temperature is about 1210 ° C, and it can be used in a high-temperature environment without using cooling means.
  • lithium niobate is inferior in workability, difficult to form a thin film, and has a problem S that piezoelectric properties cannot be obtained unless it is in a single crystal state.
  • Patent Document 5 uses a piezoelectric body having no Curie temperature, such as aluminum nitride (A1N) or zinc oxide (ZnO). Specifically, the piezoelectric sensor is formed by laminating a base layer, a piezoelectric thin film layer (aluminum nitride), and an upper electrode in this order on a metal diaphragm, and extracts charges generated from the piezoelectric thin film layer. A signal output rod is fixed to the upper electrode by pressure bonding.
  • a signal output rod is fixed to the upper electrode by pressure bonding.
  • the pressure received by the metal diaphragm from the outside is transmitted to the piezoelectric thin film layer, and the piezoelectric thin film layer generates an electric charge according to the pressure.
  • the pressure is detected by measuring the electric charge through a signal output rod.
  • the piezoelectric constant d as shown in Table 1 is used as the piezoelectric body of the piezoelectric element.
  • a sensor for detecting an abnormality in a structure needs to detect even a slight abnormality, so its sensitivity is an important issue.
  • other piezoelectric materials with a large piezoelectric constant d shown in Table 1 cause the above-mentioned problems.
  • the piezoelectric constant d is generated from the piezoelectric body with respect to the pressure applied to the piezoelectric body.
  • This value represents the amount of charge generated. That is, the piezoelectric constant d
  • the present invention has been made in view of the above problems, and an object thereof is to provide a piezoelectric sensor that can obtain high sensitivity using a piezoelectric element having low sensitivity.
  • the piezoelectric sensor of the present invention is a piezoelectric sensor including a piezoelectric element that receives a pressure on the first surface and generates an electric charge by the pressure. It is characterized in that a space is formed in a region facing the second surface opposite to the above.
  • the piezoelectric element that has received the pressure is Depending on the pressure, you can rub in the direction.
  • the piezoelectric element can be held in the direction of the space without being obstructed.
  • the piezoelectric element can be swollen, so that the piezoelectric element can accurately generate charges corresponding to the pressure. Therefore, even if a piezoelectric element with low sensitivity is used, a highly sensitive piezoelectric sensor can be obtained.
  • FIG. 1, showing an embodiment of the present invention is a cross-sectional view showing a schematic configuration of a piezoelectric sensor.
  • FIG. 2 is a cross-sectional view showing a piezoelectric element in the piezoelectric sensor shown in FIG.
  • FIG. 3 is a cross-sectional view showing a relationship between a piezoelectric element and a signal output bar in the piezoelectric sensor shown in FIG.
  • FIG. 4 (a) is a longitudinal sectional view of a cylindrical signal output rod having a recess.
  • FIG. 4 (b) is a cross-sectional view of a cylindrical signal output rod having a recess.
  • [4 (c)] is a longitudinal sectional view of a hemispherical signal output bar having a recess.
  • [4 (d)] is a cross-sectional view of a prismatic signal output rod having a recess.
  • FIG. 5 is a cross-sectional view showing a schematic configuration of a piezoelectric sensor that extracts electric charges generated from a piezoelectric element using a conducting wire.
  • FIG. 6 is a cross-sectional view of a piezoelectric element in which the upper electrode is formed only in the outer peripheral side region of the piezoelectric thin film layer in the piezoelectric sensor shown in FIG.
  • FIG. 7 A cross-sectional view of the piezoelectric sensor shown in FIG. 1 when sag occurs in the piezoelectric element.
  • FIG. 8A is a cross-sectional view of the piezoelectric element shown in FIG.
  • FIG. 9 is a cross-sectional view of a piezoelectric element formed by dividing a piezoelectric thin film layer and an upper electrode in the piezoelectric sensor shown in FIG.
  • FIG. 9 (b) is a plan view of the upper electrode shown in FIG. 9 (a).
  • FIG. 10 is a cross-sectional view of the piezoelectric element in which the piezoelectric thin film layer is formed only in the outer peripheral region in the piezoelectric sensor shown in FIG.
  • FIG. 11 is a cross-sectional view showing a schematic configuration of the piezoelectric sensor when the piezoelectric thin film layer shown in FIG. 1 is formed directly on the front end wall of the housing.
  • FIG. 12 is an enlarged cross-sectional view of the case where the piezoelectric thin film layer shown in FIG. 1 is formed directly on the front end wall of the case.
  • FIG. 13 is a cross-sectional view showing a schematic configuration of the piezoelectric sensor when a recess is provided in the front end wall of the housing on which the piezoelectric thin film layer shown in FIG. 1 is formed.
  • FIG. 14 A sectional view showing a schematic configuration of the piezoelectric sensor when the front end wall having the recess shown in FIG. 13 is formed of silicon.
  • FIG. 15 is a cross-sectional view showing a measurement system for measuring the amount of electric charge generated by the piezoelectric element force with respect to the pressure stored in the piezoelectric element in the piezoelectric sensor acting on this embodiment.
  • FIG. 16 is a waveform diagram showing the result of measuring the amount of charge taken from the piezoelectric element with an oscilloscope in the measurement system.
  • FIG. 17 is a graph showing the relationship between the force generated by the piezoelectric element in the measurement system and the charge amount obtained from the signal amplitude shown in the waveform diagram measured by the oscilloscope.
  • FIG. 18 is a graph showing the relationship between the pressure converted to the output voltage and the force obtained from the piezoelectric element in the measurement system and the signal amplitude force shown in the waveform diagram measured by the oscilloscope, and the amount of charge obtained.
  • FIG. 19 is a cross-sectional view showing a measurement system for measuring the amount of electric charge that also generates the piezoelectric element force with respect to the pressure applied to the piezoelectric element shown in FIGS. 8 (a) and 8 (b).
  • FIG. 20 is a graph showing a waveform of a voltage output from the piezoelectric element when pressure is applied to the piezoelectric element in the measurement system shown in FIG.
  • ⁇ 22] A graph showing frequency characteristics of the piezoelectric sensor of the present embodiment.
  • the piezoelectric sensor of the present embodiment is a plan view showing a schematic configuration of a piezoelectric element when a glass substrate is used as a pressure transmission member.
  • FIG. 23 (b) is a cross-sectional view showing a measurement system for measuring the amount of charge generated from the piezoelectric element with respect to the pressure applied to the piezoelectric element shown in FIG. 23 (a).
  • FIG. 24 is a graph showing the amount of charge generated from the piezoelectric thin film layer when pressure is applied to the piezoelectric element in the measurement system shown in FIG. 23 (b).
  • FIG. 1 is a cross-sectional view showing a schematic configuration of the piezoelectric sensor of the present embodiment.
  • the piezoelectric sensor 1 detects an abnormality in the cylinder by detecting the pressure generated in the internal combustion engine cylinder.
  • the piezoelectric sensor 1 includes a signal transmission unit 2 and a piezoelectric element 10.
  • the piezoelectric element 10 receives a pressure generated in the cylinder and generates a charge corresponding to the pressure. Details of the piezoelectric element 10 will be described later.
  • the signal transmission unit 2 includes a housing 20, a signal output rod (conductive member, electrode layer) 30, and an electrical insulating column 40.
  • the signal transmission unit 2 transmits the electric charge generated from the piezoelectric element 10 as a detection signal to a signal carrying cable (not shown) via the signal output rod 30.
  • the casing 20 includes a front casing 22 and a rear casing 21 in the front and rear in the axial direction, and a shaft hole 50 through which a front end force penetrates to the rear end is formed.
  • the casing 20 is preferably made of a heat-resistant metal because it is provided in an internal combustion engine that is at a high temperature.
  • the rear housing 21 includes a large-diameter portion 21a and a small-diameter portion 21b in front and rear in the axial direction, and the large-diameter portion 21a has an inner diameter and an outer diameter larger than those of the small-diameter portion 21b. .
  • Large diameter part 21 A connector for attaching a signal carrying cable (not shown) is fitted inside a.
  • the front housing 22 includes a large-diameter portion 22a having a large outer diameter and a small-diameter portion 22b having a small outer diameter at the front and rear in the axial direction.
  • a large-diameter hole 51 constituting a part of the shaft hole 50 is formed inside the front housing 22, and a small-diameter portion 21b of the rear housing 21 is formed in the large-diameter hole 51 of the large-diameter portion 22a. It is fitted by screwing.
  • An opening 53 having a smaller diameter than the large-diameter hole 51 is formed in the front end wall 22d of the small-diameter portion 22b in order to take in the pressure of an external force. Further, a step portion 22c for mounting the piezoelectric element 10 is formed around the opening 53 in the inner surface of the front end wall 22d.
  • the shaft hole 50 is a connecting hole of a large diameter hole 51 having a large diameter on the small diameter portion 22b side and a small diameter hole 52 having a small diameter on the small diameter portion 21b side.
  • the large-diameter hole 51 is fitted with a cylindrical electric insulating ring column 40 having an outer diameter slightly smaller than the hole diameter of the large-diameter hole 51.
  • a metal hole is inserted into the through-hole of the electric insulating ring column 40.
  • a signal output rod 30 made of steel is installed.
  • the signal output rod 30 has a round bar shape, and includes a step portion 31 whose outer diameter on the front end side is larger than that of other portions. Further, a recess 32 is formed in the front end surface of the signal output rod 30. Therefore, the front end surface of the signal output rod 30 is a ring-shaped annular surface.
  • the shape of the recess 32 is not particularly limited, and for example, a cylindrical shape, a prismatic shape, a conical shape, a pyramidal shape, or the like can be selected as appropriate.
  • the rear end portion of the signal output rod 30 passes through the small-diameter hole 52 in the small-diameter portion 21b of the rear housing 21, reaches the inside of the large-diameter portion 21a, and is connected to a signal carrying cable (not shown).
  • a metal electrode 33 is provided on the front end surface of the signal output rod 30, and the electrode 33 is configured to come into contact with the piezoelectric element 10 at the step portion 22 c of the small diameter portion 22 b of the front case 22.
  • the opening 53 is located inside the cylinder, and the pressure generated inside the cylinder enters from the opening 53 and reaches the piezoelectric element 10. Further, the signal output rod 30 is in contact only with the piezoelectric element 10 and the electrically insulating ring column 40 in the shaft hole 50 and is electrically insulated from the housing 20.
  • the piezoelectric sensor 1 is configured as described above. Here, an assembly method of the piezoelectric sensor 1 will be described below. First, the piezoelectric element 10 is placed on the step 22 c of the front housing 22. At this time, the front end surface (first surface) of the piezoelectric element 10 is exposed from the opening 53 of the front housing 22. Next, the signal output rod 30 is inserted into the front housing 22 and comes into contact with and fixed to the rear end surface (second surface) of the piezoelectric element 10. Next, the electrically insulating ring column 40 is inserted into the front housing 22 with the signal output rod 30 inserted therein, and is in contact with and fixed to the step portion 31 at the front end of the signal output rod 30. .
  • the small-diameter portion 21b of the rear housing 21 is inserted into the large-diameter portion 22a of the front housing 22, and the front end wall of the rear housing 21 pushes the rear end wall of the electrical insulating ring column 40. Then, the piezoelectric element 10, the signal output rod 30, and the electrically insulating ring column 40 are fixed in a state where they are crimped inside the front housing 22.
  • the piezoelectric sensor 1 can be formed by the above method.
  • FIG. 2 is a cross-sectional view showing the piezoelectric element 10 according to the present embodiment.
  • the piezoelectric element 10 is formed by forming a base layer 12, a piezoelectric thin film layer 13, and an upper electrode 14 in this order on a metal diaphragm (pressure transmission member) 11.
  • PVD physical vapor deposition
  • vacuum deposition methods such as resistance heating deposition or electron beam heating deposition
  • sputtering methods such as DC sputtering, high frequency sputtering, RF plasma assisted sputtering, magnetron sputtering, ECR sputtering or ion beam sputtering, high frequency ion plating method, various ion plating such as active ion deposition or arc ion plating Methods, molecular beam epitaxy, laser ablation, ion cluster beam deposition, and ion beam deposition.
  • the metal diaphragm 11 is in contact with the space in the cylinder in which pressure is generated, and receives the pressure generated in the cylinder to which the force of the opening 53 has also entered.
  • the metal diaphragm 11 transmits the pressure to the piezoelectric thin film layer 13 through the underlayer 12.
  • the metal diaphragm 11 also has a function as a substrate that supports the piezoelectric element 10.
  • the diaphragm refers to a film-like body that deforms according to an applied pressure. Therefore, the metal diaphragm 11 generates stagnation when the external force is also subjected to pressure.
  • the metal diaphragm 11 is required to have heat resistance because it is installed in the internal combustion engine cylinder that is at a high temperature. Therefore, the metal diaphragm 11 is preferably made of, for example, a heat resistant metal material equivalent to Inconel or SUS630. In addition, the surface of the metal diaphragm 11 on the side where the piezoelectric thin film layer 13 is formed is polished or chemically treated to prevent cracking or peeling of the piezoelectric thin film layer 13 and to enhance the orientation of the crystal axis. It ’s good to have a specular look by any way!
  • the foundation layer 12 is a buffer layer between the metal diaphragm 11 and the piezoelectric thin film layer 13 formed on the foundation layer 12.
  • the underlayer 12 has a role of improving the polar orientation of the piezoelectric thin film layer 13, the orientation of the crystal axis, and the wettability with the metal diaphragm 11. Further, the underlayer 12 has a function as a lower electrode.
  • the material of the underlayer 12 is TiN, MoSi2, Si3N4, Cr, Fe, Mg, Mo, Nb, Ta, Ti, Zn, Zr, W, Pt, Al, Ni, Cu, Pd, Rh Ir, Ru, Au, or Ag can be used, and a single layer or a multilayer of two or more layers using a plurality of materials can be used.
  • the piezoelectric thin film layer 13 has piezoelectric characteristics, and generates electric charges when it receives pressure from an external force. Specifically, stagnation occurs in the piezoelectric thin film layer 13 accompanying the stagnation generated in the metal diaphragm 11. A compressive stress and a tensile stress are generated inside the piezoelectric thin film layer 13 according to the sag of the piezoelectric thin film layer 13. Electric charges are generated from the piezoelectric thin film layer 13 by the action of the internal stress. As described above, the piezoelectric thin film layer 13 receives a pressure and generates a charge corresponding to the pressure.
  • the piezoelectric thin film layer 13 is preferably formed by sputtering using aluminum nitride (A1N) or zinc oxide (ZnO).
  • the upper electrode 14 takes out the electric charge generated from the piezoelectric thin film layer 13 by the pressure received by the metal diaphragm 11 together with the base layer 12. Then, the extracted electric charge contacts with the upper electrode 14 and is transmitted as a detection signal to the signal carrying cable (not shown) via the signal output rod 30.
  • the material of the upper electrode 14 can be the same material as that of the underlayer 12, but it is not necessary that the upper electrode 14 be the same.
  • the structure may be a single layer or multiple layers.
  • the concave portion 32 is formed at the front end portion of the signal output rod 30 in contact with the upper electrode 14 of the piezoelectric element 10, there is no gap between the piezoelectric element 10 and the signal output rod 30. A space is formed. As a result, the piezoelectric element 10 can squeeze in the direction of the space without being disturbed by the signal output rod 30 when an external force is also subjected to pressure.
  • the shape of the recess 32 in the signal output rod 30 is a ring-shaped annular surface as shown in FIGS. 4 (a) and 4 (b). It is not limited. As other shapes, for example, a hemispherical shape may be used as shown in FIG. Further, as shown in FIG. 4 (d), the cross section of the recess 32 in the signal output rod 30 may be square.
  • the depth of the recess 32 is preferably not less than 0. Olmm and not more than 10 mm.
  • the signal output rod 30 is a rod-shaped member having the recess 32, but it may be an annular electrode layer. Thereby, since a hollow space is formed inside the electrode layer, the piezoelectric element 10 can be sandwiched in the space direction of the electrode layer.
  • the metal diaphragm 11 receives pressure generated by vibration or the like inside the internal combustion engine cylinder.
  • a sag corresponding to the pressure is generated in the direction in which the pressure is applied, that is, in the space direction of the recess 32 of the signal output rod 30.
  • the sag occurs in the inner direction of the recess 32 in the base layer 12 and the piezoelectric thin film layer 13 as well. Due to the occurrence of stagnation in the piezoelectric thin film layer 13, stress is generated inside the piezoelectric thin film layer 13.
  • the piezoelectric sensor 1 is configured to detect the pressure generated outside by using the stagnation effect of the piezoelectric element 10.
  • the piezoelectric element 10 of the present embodiment is recessed without being obstructed by the signal output rod 30.
  • Part 32 can be swept in the direction of the space.
  • the piezoelectric element 10 can be swollen, and the pressure can be detected based on the charge generated according to this stagnation. Therefore, even when a piezoelectric element with low sensitivity is used, a highly sensitive piezoelectric sensor can be obtained by utilizing the stagnation effect of the piezoelectric element.
  • FIG. 5 is a cross-sectional view showing a schematic configuration of the piezoelectric sensor 1 that takes out electric charges generated from the piezoelectric thin film layer 13 by a conducting wire.
  • the casing 20 in this configuration is preferably a cylindrical member in which only one end surface is released.
  • the one end face is connected to the metal diaphragm 11. Therefore, a sealed space is formed inside the housing 20.
  • a piezoelectric thin film layer 13 and an upper electrode 14 are formed in this order on the surface of the metal diaphragm 11 on the space side, and a conductive wire 60 is electrically connected to the upper electrode 14.
  • the piezoelectric element 10 stagnate in the direction of the space and generates electric charges. Then, this electric charge is taken out by the upper electrode 14 and transmitted as a detection signal to the signal carrying cable via the conducting wire. In this way, by forming a space between the casing 20 and the piezoelectric element 10, the piezoelectric element 10 can be sandwiched in the surface opposite to the surface receiving pressure, that is, in the direction of the space. Therefore, a sufficient charge can be obtained using the stagnation effect of the piezoelectric element 10.
  • the thickness of the metal diaphragm 11 when the thickness of the metal diaphragm 11 is increased, the amount of stagnation is reduced. Therefore, the amount of charge generated from the piezoelectric thin film layer 13 is reduced.
  • the sensitivity of the piezoelectric sensor 1 can be changed by arbitrarily setting the thickness of the metal diaphragm 11.
  • the upper electrode 14 may be formed so as to take out electric charges generated by compressive stress or tensile stress generated in the piezoelectric thin film layer 13.
  • FIG. 6 is a cross-sectional view of the piezoelectric element 10 in which the upper electrode 14 is formed only in the outer peripheral side region of the piezoelectric thin film layer 13.
  • the piezoelectric thin film layer 13 generates stagnation accompanying the stagnation generated in the metal diaphragm 11, thereby generating compressive stress and tensile stress therein.
  • the central portion 10 a of the piezoelectric thin film layer 13 is pulled in the both directions by the sag of the metal diaphragm 11.
  • a tensile stress is generated near the center 10 a of the piezoelectric thin film layer 13.
  • the vicinity 10b of both ends of the piezoelectric thin film layer 13 is compressed in the contraction direction.
  • compressive stress is generated in the vicinity 10 b of both ends of the piezoelectric thin film layer 13.
  • the charge generated by the compressive stress and the charge generated by the tensile stress have different polarities. For this reason, if charges generated by both stresses are taken out by the upper electrode 14, they cancel each other out, so that sufficient charges cannot be taken out. Therefore, the upper electrode 14 is formed only in a range where the compressive stress of the piezoelectric thin film layer 13 is generated.
  • the upper electrode 14 can take out only the charge generated by the compressive stress from the piezoelectric thin film layer 13 without canceling out the charge generated by the tensile stress. Therefore, the upper electrode 14 can extract a sufficient amount of charge from the piezoelectric thin film layer 13. As a result, even if the pressure of the external force transmitted to the metal diaphragm 11 is small, more electric charge can be taken out from the piezoelectric thin film layer 13, so that the slight pressure generated inside the cylinder of the internal combustion engine can be detected. can do. That is, the piezoelectric sensor 1 with further improved detection sensitivity can be realized.
  • the upper electrode 14 is provided so as to individually take out the electric charge generated by the compressive stress generated in the piezoelectric thin film layer 13 due to the pressure and the electric charge generated by the tensile stress, respectively. Also good. Specifically, as shown in FIGS. 8 (a) and 8 (b), the upper electrode 14 is individually provided in the outer peripheral side region and the central region of the piezoelectric thin film layer 13, respectively. It is the composition which is. In FIGS. 8 (a) and 8 (b), the electrode provided in the outer peripheral region is defined as the external electrode 14b, and the electrode provided in the region closer to the central portion. The pole is shown as the center electrode 14a.
  • a base layer 12 serving as a lower electrode may be provided on the lower surface of the piezoelectric thin film layer 13, as shown in FIGS. 8 (a) and 8 (b).
  • the electrode 14c may be provided at an arbitrary position of the metal diaphragm 11. Electrical wiring (not shown) is connected to the electrodes 14a ', 14b, and 14c, respectively.
  • the upper electrode 14 In order to form the upper electrode 14 in a range where the compressive stress of the piezoelectric thin film layer 13 is generated, the upper electrode 14 may be formed in an annular shape, or may be divided into two or more. It is good also as a composition.
  • the piezoelectric thin film layer 13 can squeeze in the direction of the signal output rod 30 when receiving pressure. Therefore, electric charges can be generated by using the sag of the piezoelectric thin film layer 13 without providing the recess 32 in the signal output rod 30.
  • the upper electrode 14 may be formed only in a range where the tensile stress of the piezoelectric thin film layer 13 is generated. Thereby, the upper electrode 14 can take out only the electric charge generated from the piezoelectric thin film layer 13 due to the tensile stress. Thereby, the same effect as the case where only the electric charge generated by the compressive stress is taken out can be obtained.
  • the piezoelectric thin film layer 13 is formed by dividing the metal diaphragm 11 into ranges where compressive stress and tensile stress are generated, A structure in which the central electrode 14a and the external electrode 14b are formed corresponding to the divided piezoelectric thin film layer 13 may be employed. And charge generated by compressive stress or charge generated by tensile stress The polarity of either one of the charges is reversed. As a result, it is possible to take out a charge obtained by adding up the charge generated by the compressive stress and the charge generated by the tensile stress. Therefore, since the charge that can be taken out from the piezoelectric thin film layer 13 can be further increased, the piezoelectric sensor 1 with higher sensitivity can be realized.
  • the upper electrode 14 is formed on the piezoelectric thin film layer 13.
  • the force is not particularly limited.
  • the upper electrode 14 and the piezoelectric thin film layer 13 are connected by a signal line. It is also good. Thereby, the electric charge generated by the compressive stress or tensile stress generated in the piezoelectric thin film layer 13 can be detected via the signal line.
  • the piezoelectric thin film layer 13 may be formed only in a range where the compressive stress is generated in the metal diaphragm 11.
  • the upper electrode 14 can extract only the electric charge generated by the compressive stress from the piezoelectric thin film layer 13. Therefore, as described above, the upper electrode 14 can extract more charges from the piezoelectric thin film layer 13 even if the pressure of the external force transmitted to the metal diaphragm 11 is slight. That is, a highly sensitive piezoelectric sensor 1 can be realized.
  • the shape of the piezoelectric thin film layer 13 may be a ring-shaped configuration, or may be a configuration divided into two or more. Alternatively, the piezoelectric thin film layer 13 may be formed only in a range where tensile stress is generated.
  • the piezoelectric thin film layer 13 is directly formed on the front end wall 22d of the front housing 22, and the piezoelectric thin film layer 13 is formed on the front end wall 22d.
  • a configuration may be adopted in which the portion is diaphragm processed.
  • the piezoelectric thin film layer 13 can be squeezed toward the inside of the recess 32 formed in the signal output rod 30 in association with the sag of the front end wall 22d that receives external pressure. Then, charges are generated according to the sag of the piezoelectric thin film layer 13.
  • the housing 20 for mounting the piezoelectric element 10 can also function as the metal diaphragm 11, the metal diaphragm 11 becomes unnecessary. Therefore, since the configuration of the piezoelectric element 10 can be simplified, the piezoelectric sensor can be reduced in size and the cost can be reduced.
  • Examples of the diaphragm processing method include machining, chemical etching, electric discharge machining, and laser cage. Then, by the above-mentioned cage, the front end wall 22d
  • the thickness of the portion where the piezoelectric thin film layer 13 is formed is preferably 0.005 mm or more and 10 mm or less.
  • a recess 22e is provided in the front end wall 22d of the front case 22 on which the piezoelectric thin film layer 13 is formed, and the upper electrode 14 is provided only above the edge portion 22f in the recess 22e. It is good also as the provided structure.
  • the piezoelectric thin film layer 13 located above the edge portion 22f generates compressive stress and charges are generated. appear.
  • the upper electrode 14 can take out the charges generated by this compressive stress.
  • sufficient charges can be taken out by using the stagnation of the casing 20 without using the metal diaphragm 11. Therefore, a highly sensitive piezoelectric sensor 1 can be realized with a simple configuration.
  • the piezoelectric thin film layer 13 can be sandwiched in the direction of the signal output rod 30 when receiving pressure. Therefore, the signal output rod 30 is not required to be provided with the recess 32.
  • FIG. 14 is a cross-sectional view showing a schematic configuration of the piezoelectric sensor 1 when the front end wall 22d shown in FIG. 13 is formed of silicon.
  • the structure in which the piezoelectric thin film layer 13 is formed on the underlayer 12 may be configured such that the piezoelectric thin film layer 13 is directly formed on the metal diaphragm 11.
  • the diaphragm is not limited to a metal.
  • a semiconductor such as a polymer, a metal oxide, a metal nitride, or silicon may be used. good.
  • the material of the piezoelectric thin film layer 13 used in this embodiment is preferably aluminum nitride (AIN).
  • AIN aluminum nitride
  • the reason for this is that aluminum nitride has stable piezoelectric properties even at high temperatures and has little impact on the environment because it does not use heavy metals such as lead.
  • the piezoelectric thin film layer 13 may be made of another material as long as it does not have a Curie temperature.
  • This “piezoelectric material having no Curie temperature” is a material that has piezoelectric characteristics and does not cause polar dislocation as the temperature rises. Examples include substances having a crystalline structure. Specific examples of the substance having the crystal structure of the wurtzite structure include aluminum nitride (A1N) and zinc oxide (ZnO).
  • Such a piezoelectric material does not lose its piezoelectric properties until the crystal melts or sublimes.
  • a substance having a crystal structure of the wurtzite structure has piezoelectric characteristics because there is no symmetry in the crystal, and since it is not a ferroelectric substance, there is no Curie temperature. Therefore, the piezoelectric element made of the above-described piezoelectric material has excellent heat resistance and does not deteriorate the piezoelectric characteristics. Even if it is exposed to a high temperature close to 500 ° C. like the inside of a cylinder of an internal combustion engine, the piezoelectric element As a function never lose. Therefore, it is possible to use the internal combustion engine cylinder without using a piezoelectric element cooling device. As described above, the piezoelectric element made of the above-described piezoelectric material has excellent heat resistance and does not deteriorate the piezoelectric characteristics even at high temperatures. It is also excellent in workability and suitable for thin film production.
  • a method for forming a thin film of piezoelectric material can be realized by using a known technique. Specifically, oxide-based, carbon-based, nitrogen-based or boride-based ceramic sintered bodies, insulating substrates with quartz glass power, and heat-resistant metal material cards such as Inconel or SUS630. A thin film can be formed on a conductive substrate formed by growing the piezoelectric ceramic into a single crystal while controlling the polarity.
  • the thickness of the piezoelectric thin film layer 13 of the piezoelectric sensor 1 of the present invention is preferably in the range of 0.1111 to 100111. Further, it is more preferably 0.5 m or more and 20 ⁇ m or less: more preferably m or more and 10 m or less.
  • the thickness force of the piezoelectric thin film layer 13 is less than 0.1 m and a short circuit occurs between the underlayer 12 and the upper electrode 14, the film thickness becomes longer than 100 ⁇ m and the film formation time becomes long. .
  • the piezoelectric thin film layer 13 has a dipole orientation degree of preferably 75% or more and more preferably 90% or more in order to maintain good piezoelectric characteristics.
  • the degree of dipole orientation is the proportion of crystal columns that form electric dipoles that are positive or negative in the thin film surface in the same direction. If the polarity direction of the crystal column is completely random, the piezoelectricity of each crystal column cancels each other, and the piezoelectricity disappears in the entire thin film.
  • the dipole orientation of the piezoelectric thin film layer 13 is less than 75%, the apparent piezoelectric constant The number d is less than half of the dipole orientation degree of 100%, and the pressure of the piezoelectric thin film layer 13 is reduced.
  • the dipole orientation degree is 75% or more, sufficient piezoelectric characteristics can be secured.
  • the material of the underlayer 12 is the same as the material of the piezoelectric thin film layer 13.
  • the base layer 12 is preferably Al, and when the piezoelectric thin film layer 13 is ZnO, the base layer 12 is preferably Zn.
  • the underlayer 12 is a multilayer, it is preferable that the uppermost layer, that is, the layer in contact with the piezoelectric thin film layer 13, be made of a metal having the same component as the material of the piezoelectric thin film layer 13.
  • the pressure is transmitted from the force metal diaphragm 11 using the metal diaphragm 11 as the pressure transmission member to the piezoelectric thin film layer 13 via another member such as a pressure transmission rod. Even so, it is possible to realize a piezoelectric sensor 1 that has excellent heat resistance and does not require a cooling means.
  • the pressure transmission member is not limited to the metal diaphragm 11, but may be ceramics such as a glass substrate.
  • Ceramics include acid-ceramics such as acid aluminum, acid magnesium, acid zirconium oxide, titanium oxide, yttrium oxide, and oxygen key, aluminum nitride, silicon nitride, Examples thereof include nitride ceramics such as boron nitride and gallium nitride, carbide ceramics such as silicon carbide and tungsten carbide, and silicide ceramics such as molybdenum disilicide.
  • FIG. 15 shows the measurement system used in this experiment.
  • the piezoelectric element 10 is covered with a cylindrical glass tube, and a sealed space equal to the atmospheric pressure is created inside.
  • the upper electrode 14 of the piezoelectric element 10 and the amplifier are connected by a low noise coaxial cable, and the amplifier is connected to the oscilloscope.
  • the thickness of 0.2 mm was measured by sputtering.
  • a type in which an upper electrode 14 having a thickness of 200 nm and aluminum nitride (piezoelectric thin film layer 13) having a thickness of 1 ⁇ m are formed on a metal diaphragm 11 of Nconel 601 and the aluminum nitride on the metal diaphragm 11.
  • Two types of piezoelectric elements 10 of type B were used.
  • the atmospheric pressure in the sealed space is extracted at once and the pressure is rapidly reduced.
  • the metal diaphragm 11 of the piezoelectric element 10 receives a force in the direction of the sealed space due to the sudden pressure reduction, and stagnation occurs.
  • the piezoelectric thin film layer 13 swells, and stress is generated inside. Electric charges are generated from the piezoelectric thin film layer 13 by the stress generated in the piezoelectric thin film layer 13. The charge generated at this time is taken out by the upper electrode 14 and can be measured with an oscilloscope.
  • FIG. 16 is a waveform diagram obtained by measuring the amount of charge taken out from the piezoelectric element 10 when the sealed space is rapidly depressurized.
  • FIG. 17 is a graph showing the relationship between the force applied to the piezoelectric element 10 and the charge amount obtained from the signal amplitude force shown in the waveform diagram of FIG. 16.
  • FIG. 18 shows the relationship between the force and the charge amount. It is the graph which showed the relationship between the pressure and output voltage which converted.
  • the piezoelectric constant d of the piezoelectric element 10 is greatly increased.
  • FIGS. 8 (a) and 8 (b) the configuration shown in FIGS. 8 (a) and 8 (b), that is, the outer electrode 14b in the outer peripheral region on the upper surface of the piezoelectric thin film layer 13, and the central electrode 14a in the region closer to the center, respectively.
  • An experiment was conducted to measure the voltage output from the piezoelectric element 10 (piezoelectric thin film layer 13) with respect to the pressure applied to the piezoelectric element 10 in a configuration in which the electrode 14c is provided at an arbitrary position of the metal diaphragm 11 provided separately. .
  • FIG. 19 shows the measurement system used in this experiment.
  • This measurement system is shown in Fig. 15 above.
  • an aluminum nitride (piezoelectric thin film layer 13) with a thickness of l / zm was formed on a metal diaphragm 11 with a thickness of 0.2 mm, and a thickness of 0.05-
  • a piezoelectric element provided with a 0.3 ⁇ m central electrode 14a and an external electrode 14b is used.
  • An electrode 14c having a thickness of 0.05 to 0.3 m is provided at one end of the metal diaphragm.
  • the external electrode 14b and the electrode 14c are connected to the amplifier 1 through a low-noise coaxial cable, and the center electrode 14a and the electrode 14c are connected to the amplifier 2 through a low-noise coaxial cable, and each of the amplifiers 1 and 2 is connected to an oscilloscope. Connect with.
  • FIG. 20 is a graph showing a waveform of pressure output from the piezoelectric thin film layer 13 when pressure is applied to the piezoelectric element 10 in the measurement system.
  • the pressure is applied from the direction opposite to the direction applied to the piezoelectric element 10 in order to easily obtain the output characteristics of the piezoelectric element 10.
  • FIG. 21 is a graph obtained by measuring the change in piezoelectric response to the temperature change of the piezoelectric sensor 1.
  • the piezoelectric response can be considered by measuring the amount of charge per 1-Euton (N), that is, the piezoelectric constant.
  • N 1-Euton
  • FIG. 21 it was found that the piezoelectric sensor 1 can maintain stable piezoelectric characteristics up to 600 ° C. Thereby, according to the piezoelectric sensor 1 in the present embodiment, stable measurement can be performed in a high-temperature environment of about 500 ° C. such as inside the structure.
  • FIG. 22 is a graph showing frequency characteristics in the piezoelectric sensor 1. As shown in FIG. 22, it was found that measurement was possible from 0.3 Hz to: LOOHz. [0093] Next, in the piezoelectric sensor 1 according to the present embodiment, the piezoelectric element 10 (piezoelectric thin film layer 13) cover against the pressure applied to the piezoelectric element 10 when the glass substrate 1la is used as the pressure transmitting member. An experiment was carried out to measure the amount of charge generated from the above.
  • FIG. 23 (a) is a plan view showing a schematic configuration of the piezoelectric element 10 when the glass substrate 11a is used as the pressure transmission member in the piezoelectric sensor 1, and FIG. It shows the measurement system used.
  • an aluminum nitride (piezoelectric thin film layer 13) having a thickness of 1 m is formed on a glass substrate 11a having a thickness of 1 mm, and an upper electrode 14 having a thickness of 0.05 to 0. is formed thereon.
  • the provided piezoelectric element is used.
  • a lower electrode 12 is provided between the glass substrate 11a and the piezoelectric thin film layer 13. Then, the lower electrode 12 and the upper electrode 14 are connected to the amplifier by a low noise coaxial cable, and the amplifier is connected to the oscilloscope.
  • FIG. 24 is a graph showing the amount of charge generated from the piezoelectric thin film layer 13 when pressure is applied to the piezoelectric element 10 in the measurement system. From the results shown in the figure, it was found that the force applied to the glass substrate 11a and the amount of charge taken out from the piezoelectric thin film layer 13 are proportional to each other.
  • the piezoelectric sensor of the present invention is a piezoelectric sensor including a piezoelectric element that receives a pressure on the first surface and generates electric charges by the pressure, and is opposite to the first surface. In this configuration, a space is formed in the region where the second surface faces.
  • the piezoelectric element can be encased in the space according to the pressure generated outside, and the electric charge according to this stagnation can be generated accurately. Therefore, it is possible to provide a piezoelectric sensor that can obtain high sensitivity by using a piezoelectric element having low sensitivity.
  • the piezoelectric sensor of the present invention further includes a conductive member on the second surface of the piezoelectric element, and a connection surface where the conductive member is electrically connected to the piezoelectric element is the piezoelectric element. It is preferable that only the region on the outer peripheral side of the second surface of the element is in contact.
  • the conductive member since the conductive member is in contact with only the outer peripheral region of the surface that generates the charge opposite to the surface that receives the pressure of the piezoelectric element, the charge generating side of the piezoelectric element is generated. A space is formed. Therefore, the piezoelectric element that has received the pressure can squeeze in the direction of the pressure, that is, the direction of the space, and generates an electric charge according to the stress generated in the inside. Then, the pressure applied to the piezoelectric element can be detected by the conductive member taking out the electric charge generated from the piezoelectric element.
  • the piezoelectric element can be squeezed in the direction of the space without being obstructed by the conductive member that takes out the electric charge, and therefore it is possible to accurately generate electric charges according to the pressure. Therefore, a highly sensitive piezoelectric sensor can be obtained even when a piezoelectric element with low sensitivity is used.
  • the conductive member is a conductive rod-shaped member, and one end surface in the axial direction serves as the connection surface, and a recess is formed at a position near the center of the connection surface. I like it! /
  • the recess is formed in the conductive member at a position near the center of the connection surface between the conductive member and the piezoelectric element.
  • a space is formed on the side opposite to the surface receiving the pressure of the piezoelectric element. Therefore, when the piezoelectric element receives pressure from the outside, the piezoelectric element can be squeezed in the direction of pressure according to the pressure, that is, in the inner direction of the recess of the conductive member without being obstructed by the conductive member.
  • a stress corresponding to the sag of the piezoelectric element is generated inside the piezoelectric element, and an electric charge corresponding to the stress is generated. In this way, the piezoelectric element can be sandwiched by forming a recess in the conductive member.
  • the piezoelectric sensor of the present invention further includes a housing for mounting the piezoelectric element, wherein an opening formed in a front end wall of the housing is located on the first surface, The piezoelectric element is preferably fixed between the front end wall and the rod-shaped member by the rod-shaped member disposed on the second surface.
  • the opening is formed in the front end wall of the housing for mounting the piezoelectric element, and the opening is located on the first surface.
  • the piezoelectric element is fixed between the front end wall and the rod-shaped member by the rod-shaped member disposed on the second surface.
  • the piezoelectric element is fixed between the front end wall of the housing where the opening is formed and the rod-shaped member with the pressure receiving surface (first surface) exposed to the opening force. Is done. Therefore, the piezoelectric element can receive pressure from the outside and can squeeze only in the direction of the pressure.
  • the piezoelectric element includes an upper electrode that extracts electric charges generated from the piezoelectric element, and the upper electrode is generated inside the piezoelectric element by the action of the pressure. It is preferable that an electric charge generated by compressive stress or tensile stress is taken out.
  • the piezoelectric element generates a compressive stress and a tensile stress due to stagnation. Specifically, when pressure is applied to the piezoelectric element and stagnation occurs, the vicinity of the center of the piezoelectric element is pulled in both directions. Thereby, tensile stress is generated near the center of the piezoelectric element. On the other hand, the vicinity of both ends of the piezoelectric element is compressed in the contraction direction. As a result, compressive stress is generated near both ends of the piezoelectric element.
  • the upper electrode is provided so as to take out the electric charge generated by the compressive stress or tensile stress of the piezoelectric element.
  • the upper electrode can take out the piezoelectric element force that does not cancel the charge generated by the compressive stress with the charge generated by the tensile stress. Therefore, the upper electrode can extract a sufficient amount of electric charge with the piezoelectric element force. As a result, even if the pressure applied to the piezoelectric element is small, more electric charge can be taken out with the piezoelectric element force, so that even a slight pressure generated outside can be detected.
  • the piezoelectric element includes a piezoelectric thin film layer that generates a charge upon receiving a pressure, and an upper electrode that extracts the charge generated from the piezoelectric thin film layer. It is preferable that the piezoelectric thin film layer is in contact with only the outer peripheral region of the second surface.
  • the upper electrode is in contact with only the outer peripheral region of the surface that generates a charge opposite to the pressure receiving surface of the piezoelectric thin film layer.
  • a space is formed on the side where the load is generated.
  • the piezoelectric thin film layer that has received the pressure can swell in the direction of pressure, that is, the direction of the space, and generates an electric charge according to the stress generated therein.
  • the pressure applied to the piezoelectric element can be detected by the upper electrode taking out the electric charge generated from the piezoelectric thin film layer.
  • the piezoelectric sensor of the present invention includes a housing for mounting the piezoelectric element, and the piezoelectric element includes a piezoelectric thin film layer that generates a charge upon receiving pressure, It is preferable that the film layer is formed on the front end wall of the casing, and the piezoelectric thin film layer on the front end wall is formed, and the portion is covered so as to function as a diaphragm! /.
  • the thickness of the front end wall on which the piezoelectric thin film layer is formed is preferably 0.005 mm or more and 10 mm or less.
  • the piezoelectric thin film layer that generates an electric charge by receiving pressure is directly formed on the front end wall of the casing.
  • the front end wall on which the piezoelectric thin film layer is formed is processed so as to function as a diaphragm.
  • the diaphragm is a film-like body that deforms in response to an applied pressure.
  • the front end wall that receives pressure can be squeezed in the direction of pressure, and the piezoelectric thin film layer can be squeezed along with this stagnation.
  • the piezoelectric thin film layer can be formed directly on the housing, the structure of the piezoelectric element can be simplified. Therefore, it is possible to obtain a piezoelectric sensor with a small size, low cost, and high sensitivity.
  • the piezoelectric sensor of the present invention includes a housing for mounting the piezoelectric element.
  • the piezoelectric element includes a pressure transmission member positioned on the first surface side and the second surface.
  • a piezoelectric thin film layer that generates a charge upon receiving pressure, and an upper electrode that extracts electric charge generated from the piezoelectric thin film layer, and the housing has an opening, and the pressure transmission
  • the member includes the opening portion so that the piezoelectric thin film layer and the upper electrode are accommodated in the housing, and only a region on the outer peripheral side of the pressure transmission member is in contact with a region around the opening. It is preferred to be provided in.
  • the pressure transmission member that receives pressure is provided in the opening so as to be in contact with the region around the opening in the housing that accommodates the piezoelectric thin film layer and the upper electrode.
  • the casing and the pressure transmission member do not come into contact with each other in the region on the central side other than the region on the outer peripheral side. That is, a space is formed in the inner direction of the housing, that is, on the side where electric charges are generated in the piezoelectric thin film layer. Therefore, the pressure transmission member that has received the pressure can squeeze in the direction of the pressure, that is, the direction of the space, and the piezo-electric thin film layer can squeeze along with the stagnation.
  • the piezoelectric element can be held in the direction of the space without being obstructed.
  • a conductive wire is connected to the upper electrode.
  • the upper electrode is an annular member, and one surface serves as a connection surface connected to the piezoelectric thin film layer, and this connection surface is located on the second surface of the piezoelectric thin film layer. It is preferable to touch only the outer peripheral area.
  • the annular upper electrode is in contact with only the outer peripheral region of the second surface of the piezoelectric thin film layer, so that a hollow space is formed inside the upper electrode. Therefore, the piezoelectric thin film layer can be sandwiched in the spatial direction of the upper electrode.
  • the piezoelectric element includes an upper electrode that extracts electric charges generated from the piezoelectric element, and the upper electrode is generated inside the piezoelectric element by the action of the pressure. It is preferable that the electric charge generated by the compressive stress and the electric charge generated by the tensile stress are individually taken out.
  • the piezoelectric element receives a stagnation caused by an external pressure, and generates a compressive stress and a tensile stress therein.
  • the charge generated by the compressive stress in the piezoelectric element and the charge generated by the tensile stress in the piezoelectric element have different polarities, so if the charge generated by both stresses is taken out by the electrode layer, they will cancel each other out. I can't get enough charge.
  • the upper electrode is provided so as to individually take out the charge generated by the compressive stress and the charge generated by the tensile stress. [0125] Accordingly, since the charge generated by the compressive stress and the charge generated by the tensile stress can be taken out separately, a sufficient amount of charge obtained by adding both can be detected. In order to obtain an amplified charge (output) by adding both, it is possible to invert the polarity of one charge. As a result, even if the pressure applied to the piezoelectric element is small, more electric charge can be taken out with the entire force of the piezoelectric element, so that even a slight pressure generated outside can be detected. That is, the sensitivity of the piezoelectric sensor can be further improved.
  • the piezoelectric element includes a piezoelectric thin film layer that generates a charge upon receiving a pressure, and an upper electrode that extracts the charge generated from the piezoelectric thin film layer. It is preferable that the piezoelectric thin film layer is individually provided in an outer peripheral region and a central region on the second surface.
  • the piezoelectric element is subjected to the stagnation caused by the pressure of an external force, and compressive stress is generated in the outer peripheral side region of the second surface, and the central portion of the second surface is Tensile stress is generated in the region close to it.
  • the upper electrode is individually provided in the outer peripheral region and the central region on the surface that generates charges opposite to the surface receiving the pressure of the piezoelectric thin film layer. It is possible to individually take out the charge generated by the compressive stress and the charge generated by the tensile stress.
  • the piezoelectric sensor of the present invention can detect the vibration, pressure, etc. of an object to be measured in a high temperature environment, it can be used for measuring pressure fluctuations of high temperature and high pressure fluid in pipes and tanks in plants such as nuclear power plants. Is also applicable.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Measuring Fluid Pressure (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

Disclosed is a piezoelectric sensor (1) comprising a piezoelectric element (10) which receives a pressure at a first surface and generates electrical charges from the pressure. In this piezoelectric sensor (1), a space is formed in a region facing a second surface of the piezoelectric element that is opposite to the first surface.

Description

明 細 書  Specification
圧電センサ  Piezoelectric sensor
技術分野  Technical field
[0001] 本発明は、内燃機関のエンジン内部や原子力発電所等のプラント内部のような高 温環境下で、アコースティックェミッションや、振動、加速度といった物理量を、圧電 性セラミックス薄膜素子によって検出する圧電センサに関するものである。  [0001] The present invention relates to a piezoelectric ceramic thin film element that detects a physical quantity such as acoustic emission, vibration, and acceleration in a high temperature environment such as an internal combustion engine or a plant such as a nuclear power plant. It relates to sensors.
背景技術  Background art
[0002] 原子力発電所などのプラントにおける配管やバルブ、または内燃機関のエンジンな どの高温雰囲気を生じる構造物の異常探知を行うために、構造物の内部にセンサを 設置している。例えば、構造物に亀裂や割れが生じる時に発生する弾性波であるァ コースティックェミッションを検出するアコースティックェミッションセンサや、異常振動 、加速度の情報を検出する圧電型の振動センサが用いられており、これらには、圧縮 型、片持ち梁型、ダイアフラム型、せん断型等種々の形式のものが知られている。  [0002] Sensors are installed inside structures to detect abnormalities in structures that generate high-temperature atmosphere, such as piping and valves in plants such as nuclear power plants, and engines of internal combustion engines. For example, acoustic emission sensors that detect acoustic emissions, which are elastic waves generated when cracks or cracks occur in structures, and piezoelectric vibration sensors that detect abnormal vibration and acceleration information are used. These include various types such as a compression type, a cantilever type, a diaphragm type, and a shear type.
[0003] この中で、圧縮型の薄膜型圧電センサは、日本国公開特許公報「特開平 6— 1480 11号公報 (公開日: 1994年 5月 27日)」(以下、特許文献 1)の図 1に記載されている ように、台座、台座側電極、圧電体、荷重体側電極、及び荷重体を順次積層した積 層体からなり、その台座の下面を構造物に取り付けて使用されるものである。構造物 に振動が発生すると、その振動が薄膜型圧電センサの台座側に伝達される。薄膜型 圧電センサの台座側に伝達された振動は圧電体に伝達され、圧電体に振動加速度 に比例した圧縮応力、または引張応力が発生する。そして、その応力に比例した電 気信号 (電荷)が圧電体の両面に発生し、圧電体両側に配設された上記 2枚の電極 がその電荷を取り出す。その取り出された電荷を測定することによって構造物の振動 の大きさや加速度を検出することができる。  Among these, a compression type thin film type piezoelectric sensor is disclosed in Japanese Patent Publication “JP-A-6-148011 (Publication Date: May 27, 1994)” (hereinafter, Patent Document 1). As shown in Fig. 1, it is composed of a pedestal, a pedestal side electrode, a piezoelectric body, a load body side electrode, and a stacked body in which load bodies are stacked in sequence, and is used by attaching the lower surface of the pedestal to the structure. It is. When vibration is generated in the structure, the vibration is transmitted to the pedestal side of the thin film piezoelectric sensor. The vibration transmitted to the pedestal side of the thin film type piezoelectric sensor is transmitted to the piezoelectric body, and compressive stress or tensile stress proportional to the vibration acceleration is generated in the piezoelectric body. Then, an electric signal (charge) proportional to the stress is generated on both surfaces of the piezoelectric body, and the two electrodes disposed on both sides of the piezoelectric body take out the charge. The magnitude and acceleration of the vibration of the structure can be detected by measuring the extracted electric charge.
[0004] 従来、このような圧電型のセンサに用いられる圧電体としては、表 1に示すような種 々のものが使用されている。  [0004] Conventionally, various piezoelectric materials as shown in Table 1 are used for such piezoelectric sensors.
[0005] [表 1] AIN PZT 水晶 LiNb03 キユリ-温度 [。c] 300 573 1210 圧電定数 d33 [pm/V] 4 300 2 6 [0005] [Table 1] AIN PZT Quartz LiNb0 3 Kyuri-temperature [. c] 300 573 1210 Piezoelectric constant d 33 [pm / V] 4 300 2 6
電圧出力定数 3 [V- m/N] 0.05 0.02 0.05 0.02 Voltage output constant 3 [V- m / N] 0.05 0.02 0.05 0.02
薄膜化 〇 〇 厶 Δ  Thin film ○ ○ 厶 Δ
特許文献 1および日本国公開特許公報「特開平 10— 206399号公報 (公開日: 19 98年 8月 7日)」(以下、特許文献 2)には、圧電体としてチタン酸ジルコン酸鉛 (PZT) やポリフッ化ビ-リデン (PVDF)を使用した圧電センサの一例が開示されて 、る。と Patent Document 1 and Japanese Patent Laid-Open Publication No. 10-206399 (publication date: August 7, 1998) (hereinafter referred to as Patent Document 2) include lead zirconate titanate (PZT) as a piezoelectric material. ) And an example of a piezoelectric sensor using polyvinylidene fluoride (PVDF). When
§厂  § 厂
ころが、これらの圧電体はキュリー温度が低ぐその適用限界温度は最高でも 300°C 程度である。これに対して、構造物の内部は高い燃焼温度(500°C前後)となる。そ のため、構造物の内部に設置される圧電センサの圧電体は、かなりの高温 (400°C 前後)となり、キュリー温度に達してしまう。圧電体がキュリー温度を超える高温になる と、圧電特性が劣化し使用に耐え得ないものとなる。そのため、上記のようなキュリー 温度の低!ヽ圧電体を使用する場合には、日本国公開特許公報「特開平 5— 20366 5号公報 (公開日: 1993年 8月 10日)」(以下、特許文献 3)に記載されているように、 圧電体を適温に維持するための冷却手段を別途設ける必要がある。しかしながら、 冷却手段を設けることによって圧電センサは、その構造が複雑ィ匕し、コストが増大化 してしまうという問題が生じる。  However, these piezoelectric materials have a low Curie temperature, and the maximum application temperature is about 300 ° C. In contrast, the inside of the structure has a high combustion temperature (around 500 ° C.). For this reason, the piezoelectric body of the piezoelectric sensor installed inside the structure becomes quite hot (around 400 ° C) and reaches the Curie temperature. If the piezoelectric body is heated to a temperature exceeding the Curie temperature, the piezoelectric characteristics deteriorate and it cannot be used. Therefore, in the case of using a low-curie temperature piezoelectric material as described above, the Japanese Patent Publication “JP-A-5-203665 publication date (August 10, 1993)” (hereinafter, As described in Patent Document 3), it is necessary to separately provide a cooling means for maintaining the piezoelectric body at an appropriate temperature. However, the provision of the cooling means causes a problem that the structure of the piezoelectric sensor is complicated and the cost is increased.
[0006] そこで、上記の問題を解決するために、キュリー温度が高 、圧電体を高温環境下 で使用する方法が考えられる。 日本国公開特許公報「特開平 5 - 34230号公報 (公 開日: 1993年 2月 9日)」(以下、特許文献 4)には、キュリー温度の高いニオブ酸リチ ゥム (LiNbO )を圧電体として使用する方法が開示されている。ニオブ酸リチウムは、 [0006] In order to solve the above problem, a method of using a piezoelectric body in a high temperature environment with a high Curie temperature is conceivable. Japanese Patent Publication “JP-A-5-34230 (Publication Date: Feb. 9, 1993)” (hereinafter referred to as Patent Document 4) describes the use of lithium Niobate (LiNbO) having a high Curie temperature as a piezoelectric material. A method for use as a body is disclosed. Lithium niobate
3  Three
表 1に示すように、キュリー温度が約 1210°Cであり、冷却手段を用いることなく高温 環境下での使用が可能である。ところが、ニオブ酸リチウムは加工性に劣り、薄膜ィ匕 が困難であり、また単結晶体の状態でなければ圧電特性が得られないという問題点 力 Sある。さらに、作製や加工が困難でコストがかかるという問題点もある。  As shown in Table 1, the Curie temperature is about 1210 ° C, and it can be used in a high-temperature environment without using cooling means. However, lithium niobate is inferior in workability, difficult to form a thin film, and has a problem S that piezoelectric properties cannot be obtained unless it is in a single crystal state. In addition, there is a problem that production and processing are difficult and costly.
[0007] また、圧電体に水晶を使用した場合にも、上記と同様に薄膜ィ匕が困難であるという 問題点がある。 [0007] Also, when quartz is used for the piezoelectric body, it is difficult to form a thin film as described above. There is a problem.
[0008] そこで、これらの問題点を解決する方法の一例が日本国公開特許公報「特開 2004 — 156991号公報 (公開日: 2004年 6月 3日)」(以下、特許文献 5)に開示されてい る。上記特許文献 5の圧電センサは、キュリー温度が存在しない圧電体、例えば、窒 化アルミニウム (A1N)や酸ィ匕亜鉛 (ZnO)を利用したものである。具体的には、上記 圧電センサは、金属ダイアフラム上に、下地層、圧電薄膜層(窒化アルミニウム)、お よび上部電極がこの順に積層して形成されており、圧電薄膜層から発生する電荷を 取り出す上部電極に信号出力棒が圧着固定されている。そして、金属ダイァフラムが 外部から受けた圧力が圧電薄膜層に伝達され、その圧力に応じて圧電薄膜層が電 荷を発生する。この電荷を信号出力棒を介して測定することによって前記圧力を検 出するものである。これにより、小型で耐熱性に優れた低価格の圧電センサを実現す ることがでさる。  [0008] Therefore, an example of a method for solving these problems is disclosed in Japanese Patent Publication “JP 2004-156991 A (publication date: June 3, 2004)” (hereinafter, Patent Document 5). It has been done. The piezoelectric sensor disclosed in Patent Document 5 uses a piezoelectric body having no Curie temperature, such as aluminum nitride (A1N) or zinc oxide (ZnO). Specifically, the piezoelectric sensor is formed by laminating a base layer, a piezoelectric thin film layer (aluminum nitride), and an upper electrode in this order on a metal diaphragm, and extracts charges generated from the piezoelectric thin film layer. A signal output rod is fixed to the upper electrode by pressure bonding. The pressure received by the metal diaphragm from the outside is transmitted to the piezoelectric thin film layer, and the piezoelectric thin film layer generates an electric charge according to the pressure. The pressure is detected by measuring the electric charge through a signal output rod. As a result, it is possible to realize a low-cost piezoelectric sensor that is small and excellent in heat resistance.
[0009] ところが、上記従来の構成では、圧電素子の圧電体として、表 1に示すような圧電 定数 d  [0009] However, in the conventional configuration, the piezoelectric constant d as shown in Table 1 is used as the piezoelectric body of the piezoelectric element.
33の小さい窒化アルミニウムを用いているため、外部からの圧力に応じた電荷 を十分に発生させることができない。また、この圧電素子が信号出力棒に密着固定さ れているため、外部からの圧力による圧電素子の変形量が制限されてしまう。圧電素 子は外部力もの圧力により変形し、その内部に生じる応力に応じて電荷を発生するも のであるため、圧電素子の変形量が小さいと外部からの圧力に応じた電荷を正確に 発生することができない。したがって、このような圧電素子を使用した圧電センサは感 度が低いという問題点がある。特に、構造物の異常を検出するためのセンサは、僅か な異常をも検出する必要があるため、その感度は重要な問題である。また、表 1に示 す圧電定数 d が大きい他の圧電体は、上述した問題が生じるため高温環境下での  Since aluminum nitride with a small size of 33 is used, it is not possible to generate a sufficient charge according to the external pressure. In addition, since the piezoelectric element is tightly fixed to the signal output rod, the amount of deformation of the piezoelectric element due to external pressure is limited. Piezoelectric elements are deformed by the pressure of an external force and generate electric charges according to the stress generated inside them. Therefore, if the amount of deformation of the piezoelectric element is small, electric charges are generated accurately according to external pressure. I can't. Therefore, a piezoelectric sensor using such a piezoelectric element has a problem of low sensitivity. In particular, a sensor for detecting an abnormality in a structure needs to detect even a slight abnormality, so its sensitivity is an important issue. In addition, other piezoelectric materials with a large piezoelectric constant d shown in Table 1 cause the above-mentioned problems.
33  33
使用には適さない。  Not suitable for use.
[0010] ここで、上記圧電定数 d とは、圧電体に加えられる圧力に対して該圧電体から発  Here, the piezoelectric constant d is generated from the piezoelectric body with respect to the pressure applied to the piezoelectric body.
33  33
生する電荷量を表す値である。つまり、圧電定数 d の  This value represents the amount of charge generated. That is, the piezoelectric constant d
33 値が大きければ発生する電荷 量が多いということである。そして、発生する電荷量が多い程、加えられる圧力が僅か でもその圧力に応じた電荷を発生させることができる。したがって、この電荷量の多さ は圧電素子の感度に影響を与えるものである。 [0011] 本発明は、上記の問題点に鑑みてなされたものであり、その目的は、感度の低い圧 電素子を使用して、高感度が得られる圧電センサを提供することである。 33 The larger the value, the more charge is generated. As the amount of generated charge increases, a charge corresponding to the pressure can be generated even if the applied pressure is small. Therefore, this large amount of charge affects the sensitivity of the piezoelectric element. The present invention has been made in view of the above problems, and an object thereof is to provide a piezoelectric sensor that can obtain high sensitivity using a piezoelectric element having low sensitivity.
発明の開示  Disclosure of the invention
[0012] 本発明の圧電センサは、上記の目的を達成するために、第 1の面にて圧力を受け、 その圧力により電荷を発生する圧電素子を備えた圧電センサにおいて、前記第 1の 面とは反対の第 2の面が臨む領域に空間が形成されていることを特徴としている。  [0012] In order to achieve the above object, the piezoelectric sensor of the present invention is a piezoelectric sensor including a piezoelectric element that receives a pressure on the first surface and generates an electric charge by the pressure. It is characterized in that a space is formed in a region facing the second surface opposite to the above.
[0013] 圧電素子は、外部から力を受けて変形すると、その内部に圧縮応力および引張応 力が発生し、この応力に応じた電荷を発生する。したがって、変形量が大きければそ の内部に発生する応力も大きくなり、より多くの電荷を発生する。  When the piezoelectric element is deformed by receiving a force from the outside, a compressive stress and a tensile stress are generated inside the piezoelectric element, and an electric charge corresponding to the stress is generated. Therefore, if the amount of deformation is large, the stress generated in the inside becomes large, and more charges are generated.
[0014] 上記の構成によれば、圧電素子の第 1の面とは反対の第 2の面が臨む領域に空間 が形成されているので、圧力を受けた圧電素子は、圧力の方向つまり空間の方向へ 、その圧力に応じて橈むことができる。このように、圧力を受ける面とは反対の面に空 間を形成することによって、圧電素子は妨害されることなく空間の方向へ橈むことが できる。これにより、外部で発生する圧力が僅かでも、圧電素子を橈ませることができ るため、圧電素子はその圧力に応じた電荷を正確に発生することができる。したがつ て、感度の低い圧電素子を使用した場合であっても高感度の圧電センサを得ること ができる。  [0014] According to the above configuration, since the space is formed in the region where the second surface opposite to the first surface of the piezoelectric element faces, the piezoelectric element that has received the pressure is Depending on the pressure, you can rub in the direction. In this way, by forming a space on the surface opposite to the surface that receives pressure, the piezoelectric element can be held in the direction of the space without being obstructed. Thereby, even if the pressure generated outside is slight, the piezoelectric element can be swollen, so that the piezoelectric element can accurately generate charges corresponding to the pressure. Therefore, even if a piezoelectric element with low sensitivity is used, a highly sensitive piezoelectric sensor can be obtained.
[0015] 本発明のさらに他の目的、特徴、および優れた点は、以下に示す記載によって十 分わ力るであろう。また、本発明の利益は、添付図面を参照した次の説明で明白にな るであろう。  [0015] Other objects, features, and advantages of the present invention will be sufficiently enhanced by the following description. The benefits of the present invention will become apparent from the following description with reference to the accompanying drawings.
図面の簡単な説明  Brief Description of Drawings
[0016] [図 1]本発明の一実施形態を示すものであり、圧電センサの概略構成を示す断面図 である。  FIG. 1, showing an embodiment of the present invention, is a cross-sectional view showing a schematic configuration of a piezoelectric sensor.
[図 2]図 1に示す圧電センサにおける圧電素子を示す断面図である。  2 is a cross-sectional view showing a piezoelectric element in the piezoelectric sensor shown in FIG.
[図 3]図 1に示す圧電センサにおける圧電素子と信号出力棒との関係を示す断面図 である。  FIG. 3 is a cross-sectional view showing a relationship between a piezoelectric element and a signal output bar in the piezoelectric sensor shown in FIG.
[図 4(a)]凹部を有する円柱状の信号出力棒の縦断面図である。  FIG. 4 (a) is a longitudinal sectional view of a cylindrical signal output rod having a recess.
[図 4(b)]凹部を有する円柱状の信号出力棒の横断面図である。 圆 4(c)]凹部を有する半球状の信号出力棒の縦断面図である。 FIG. 4 (b) is a cross-sectional view of a cylindrical signal output rod having a recess. [4 (c)] is a longitudinal sectional view of a hemispherical signal output bar having a recess.
圆 4(d)]凹部を有する角柱状の信号出力棒の横断面図である。 [4 (d)] is a cross-sectional view of a prismatic signal output rod having a recess.
[図 5]導線を使用して圧電素子から発生する電荷を取り出す圧電センサの概略構成 を示す断面図である。  FIG. 5 is a cross-sectional view showing a schematic configuration of a piezoelectric sensor that extracts electric charges generated from a piezoelectric element using a conducting wire.
[図 6]図 1に示す圧電センサにおいて上部電極を圧電薄膜層の外周側の領域のみに 成膜した圧電素子の断面図である。  FIG. 6 is a cross-sectional view of a piezoelectric element in which the upper electrode is formed only in the outer peripheral side region of the piezoelectric thin film layer in the piezoelectric sensor shown in FIG.
[図 7]図 1に示す圧電センサにおいて圧電素子に橈みが発生したときの断面図である 圆 8(a)]図 1に示す圧電センサにおいて上部電極を圧電薄膜層の外周側の領域およ び中央部寄りの領域にそれぞれ個別に設けた場合の圧電素子の平面図である。 圆 8(b)]図 8 (a)に示す圧電素子の a— a断面図である。  [FIG. 7] A cross-sectional view of the piezoelectric sensor shown in FIG. 1 when sag occurs in the piezoelectric element. 圆 8 (a)] In the piezoelectric sensor shown in FIG. FIG. 5 is a plan view of a piezoelectric element when provided separately in a region closer to the center. [8 (b)] FIG. 8A is a cross-sectional view of the piezoelectric element shown in FIG.
圆 9(a)]図 1に示す圧電センサにおいて圧電薄膜層と上部電極とを分割して成膜し た圧電素子の断面図である。 [9 (a)] FIG. 9 is a cross-sectional view of a piezoelectric element formed by dividing a piezoelectric thin film layer and an upper electrode in the piezoelectric sensor shown in FIG.
[図 9(b)]図 9 (a)に示す上部電極の平面図である。  FIG. 9 (b) is a plan view of the upper electrode shown in FIG. 9 (a).
圆 10]図 1に示す圧電センサにおいて圧電薄膜層を外周側の領域のみに成膜した 圧電素子の断面図である。 [10] FIG. 10 is a cross-sectional view of the piezoelectric element in which the piezoelectric thin film layer is formed only in the outer peripheral region in the piezoelectric sensor shown in FIG.
[図 11]図 1に示す圧電薄膜層を筐体の前端壁に直接成膜した場合の圧電センサの 概略構成を示す断面図である。  FIG. 11 is a cross-sectional view showing a schematic configuration of the piezoelectric sensor when the piezoelectric thin film layer shown in FIG. 1 is formed directly on the front end wall of the housing.
[図 12]図 1に示す圧電薄膜層を筐体の前端壁に直接成膜した場合の筐体を拡大し た断面図である。  FIG. 12 is an enlarged cross-sectional view of the case where the piezoelectric thin film layer shown in FIG. 1 is formed directly on the front end wall of the case.
[図 13]図 1に示す圧電薄膜層を成膜した筐体の前端壁に凹部を設けた場合の圧電 センサの概略構成を示す断面図である。  FIG. 13 is a cross-sectional view showing a schematic configuration of the piezoelectric sensor when a recess is provided in the front end wall of the housing on which the piezoelectric thin film layer shown in FIG. 1 is formed.
圆 14]図 13に示す凹部を有する前端壁をシリコンにより形成した場合の圧電センサ の概略構成を示す断面図である。 14] A sectional view showing a schematic configuration of the piezoelectric sensor when the front end wall having the recess shown in FIG. 13 is formed of silicon.
[図 15]本実施形態に力かる圧電センサについて圧電素子にカ卩えられる圧力に対す る圧電素子力 発生される電荷量を測定するための測定系を示す断面図である。  FIG. 15 is a cross-sectional view showing a measurement system for measuring the amount of electric charge generated by the piezoelectric element force with respect to the pressure stored in the piezoelectric element in the piezoelectric sensor acting on this embodiment.
[図 16]上記測定系にお 、て圧電素子から取り出された電荷量をオシロスコープによ つて測定した結果を示す波形図である。 [図 17]上記測定系において圧電素子にカ卩えられる力とオシロスコープによって測定 された波形図に示す信号振幅から求めた電荷量との関係を示すグラフである。 FIG. 16 is a waveform diagram showing the result of measuring the amount of charge taken from the piezoelectric element with an oscilloscope in the measurement system. FIG. 17 is a graph showing the relationship between the force generated by the piezoelectric element in the measurement system and the charge amount obtained from the signal amplitude shown in the waveform diagram measured by the oscilloscope.
[図 18]上記測定系において圧電素子にカ卩えられる力とオシロスコープによって測定 された波形図に示す信号振幅力 求めた電荷量とから換算した圧力と出力電圧との 関係を示すグラフである。 FIG. 18 is a graph showing the relationship between the pressure converted to the output voltage and the force obtained from the piezoelectric element in the measurement system and the signal amplitude force shown in the waveform diagram measured by the oscilloscope, and the amount of charge obtained.
[図 19]図 8 (a)および図 8 (b)に示す圧電素子に加えられる圧力に対する当該圧電素 子力も発生される電荷量を測定するための測定系を示す断面図である。  FIG. 19 is a cross-sectional view showing a measurement system for measuring the amount of electric charge that also generates the piezoelectric element force with respect to the pressure applied to the piezoelectric element shown in FIGS. 8 (a) and 8 (b).
[図 20]図 19に示す測定系にお!/、て圧電素子に圧力が印加されたときの、当該圧電 素子から出力される電圧の波形を示すグラフである。 FIG. 20 is a graph showing a waveform of a voltage output from the piezoelectric element when pressure is applied to the piezoelectric element in the measurement system shown in FIG.
圆 21]本実施形態の圧電センサの温度変化に対する圧電応答性の変化を測定した グラフである。 21] A graph showing changes in piezoelectric response to temperature changes of the piezoelectric sensor of this embodiment.
圆 22]本実施形態の圧電センサにおける周波数特性を示すグラフである。 圆 22] A graph showing frequency characteristics of the piezoelectric sensor of the present embodiment.
圆 23(a)]本実施形態の圧電センサにおいて、圧力伝達部材にガラス基板を用いた 場合の圧電素子の概略構成を示す平面図である。 23 (a)] In the piezoelectric sensor of the present embodiment, it is a plan view showing a schematic configuration of a piezoelectric element when a glass substrate is used as a pressure transmission member.
[図 23(b)]図 23 (a)に示す圧電素子に加えられる圧力に対する当該圧電素子から発 生される電荷量を測定するための測定系を示す断面図である。  FIG. 23 (b) is a cross-sectional view showing a measurement system for measuring the amount of charge generated from the piezoelectric element with respect to the pressure applied to the piezoelectric element shown in FIG. 23 (a).
[図 24]図 23 (b)に示す測定系において、圧電素子に圧力を印加したときの圧電薄膜 層から発生する電荷量を示すグラフである。 FIG. 24 is a graph showing the amount of charge generated from the piezoelectric thin film layer when pressure is applied to the piezoelectric element in the measurement system shown in FIG. 23 (b).
符号の説明 Explanation of symbols
1 圧電センサ  1 Piezoelectric sensor
2 信号伝達部  2 Signal transmission part
10 圧電素子  10 Piezoelectric element
10a 中央付近  10a Near the center
10b 両端付近  10b Near both ends
11 金属ダイアフラム (圧力伝達部材)  11 Metal diaphragm (pressure transmission member)
12 下地層  12 Underlayer
13 圧電薄膜層  13 Piezoelectric thin film layer
14 上部電極 20 筐体 14 Upper electrode 20 enclosure
21 後部筐体  21 Rear housing
22 前部筐体  22 Front housing
22d 前端壁  22d front end wall
30 信号出力棒 (導電部材、電極層)  30 Signal output rod (conductive member, electrode layer)
32 凹部  32 recess
40 電 縁尿柱  40 Electric urine column
53 開口部  53 opening
60 導線  60 conductor
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0018] 本発明の実施の一形態について図面に基づいて説明すれば、以下の通りである。  [0018] An embodiment of the present invention is described below with reference to the drawings.
なお、本実施の形態では、圧電センサを内燃機関に適用した場合を例にとって説明 する。  In the present embodiment, a case where a piezoelectric sensor is applied to an internal combustion engine will be described as an example.
[0019] 図 1は、本実施の形態の圧電センサの概略構成を示す断面図である。圧電センサ 1は、内燃機関シリンダ内から発生する圧力を検知することによって、当該シリンダ内 の異常を検出するものである。圧電センサ 1は、信号伝達部 2および圧電素子 10を 備えている。  FIG. 1 is a cross-sectional view showing a schematic configuration of the piezoelectric sensor of the present embodiment. The piezoelectric sensor 1 detects an abnormality in the cylinder by detecting the pressure generated in the internal combustion engine cylinder. The piezoelectric sensor 1 includes a signal transmission unit 2 and a piezoelectric element 10.
[0020] 圧電素子 10は、上記シリンダ内で発生する圧力を受けて、該圧力に応じた電荷を 発生するものである。なお、圧電素子 10の詳細については後述する。  [0020] The piezoelectric element 10 receives a pressure generated in the cylinder and generates a charge corresponding to the pressure. Details of the piezoelectric element 10 will be described later.
[0021] 信号伝達部 2は、筐体 20、信号出力棒 (導電部材、電極層) 30および電気絶縁環 柱 40を備えている。信号伝達部 2は、圧電素子 10から発生された電荷を信号出力 棒 30を介して信号搬送用ケーブル(図示せず)に検出信号として伝達するものであ る。  The signal transmission unit 2 includes a housing 20, a signal output rod (conductive member, electrode layer) 30, and an electrical insulating column 40. The signal transmission unit 2 transmits the electric charge generated from the piezoelectric element 10 as a detection signal to a signal carrying cable (not shown) via the signal output rod 30.
[0022] 筐体 20は、前部筐体 22と後部筐体 21とを軸方向の前後に備え、その内部には前 端力も後端まで貫通した軸孔 50が形成されている。なお、筐体 20は、高温となる内 燃機関に備えられるため、耐熱性金属により構成されていることが好ましい。  The casing 20 includes a front casing 22 and a rear casing 21 in the front and rear in the axial direction, and a shaft hole 50 through which a front end force penetrates to the rear end is formed. The casing 20 is preferably made of a heat-resistant metal because it is provided in an internal combustion engine that is at a high temperature.
[0023] 後部筐体 21は、大径部 21aと小径部 21bとを軸方向の前後に備えており、当該大 径部 21aは内径および外径が小径部 21bのそれらよりも大きくなつている。大径部 21 aの内部には、図示しない信号搬送用ケーブルを取り付けるためのコネクタが揷嵌さ れる。 [0023] The rear housing 21 includes a large-diameter portion 21a and a small-diameter portion 21b in front and rear in the axial direction, and the large-diameter portion 21a has an inner diameter and an outer diameter larger than those of the small-diameter portion 21b. . Large diameter part 21 A connector for attaching a signal carrying cable (not shown) is fitted inside a.
[0024] 前部筐体 22は、外径が大きい大径部 22aと外径が小さい小径部 22bとを軸方向の 前後に備えている。前部筐体 22の内部には上記軸孔 50の一部を構成する大径孔 5 1が形成され、大径部 22aの大径孔 51には後部筐体 21の小径部 21bが、例えば螺 合により嵌合されている。  [0024] The front housing 22 includes a large-diameter portion 22a having a large outer diameter and a small-diameter portion 22b having a small outer diameter at the front and rear in the axial direction. A large-diameter hole 51 constituting a part of the shaft hole 50 is formed inside the front housing 22, and a small-diameter portion 21b of the rear housing 21 is formed in the large-diameter hole 51 of the large-diameter portion 22a. It is fitted by screwing.
[0025] 小径部 22bの前端壁 22dには、外部力もの圧力を取り入れるために、大径孔 51より も小径の開口部 53が形成されている。さらに、上記前端壁 22dの内面における開口 部 53の周りには、圧電素子 10を載置するための段部 22cが形成されている。  [0025] An opening 53 having a smaller diameter than the large-diameter hole 51 is formed in the front end wall 22d of the small-diameter portion 22b in order to take in the pressure of an external force. Further, a step portion 22c for mounting the piezoelectric element 10 is formed around the opening 53 in the inner surface of the front end wall 22d.
[0026] 軸孔 50は、小径部 22b側の径の大きな大径孔 51と、小径部 21b側の径の小さな小 径孔 52との連接孔である。大径孔 51には、当該大径孔 51の孔径よりも僅かに小さ い外径を有する筒状の電気絶縁環柱 40が挿嵌されており、電気絶縁環柱 40の貫通 孔には金属製の信号出力棒 30が設置されている。  [0026] The shaft hole 50 is a connecting hole of a large diameter hole 51 having a large diameter on the small diameter portion 22b side and a small diameter hole 52 having a small diameter on the small diameter portion 21b side. The large-diameter hole 51 is fitted with a cylindrical electric insulating ring column 40 having an outer diameter slightly smaller than the hole diameter of the large-diameter hole 51. A metal hole is inserted into the through-hole of the electric insulating ring column 40. A signal output rod 30 made of steel is installed.
[0027] 信号出力棒 30は、丸棒状であり、その前端側の外径が他の部分よりも大きぐ段部 31を備えている。また、信号出力棒 30の前端面には、凹部 32が形成されている。し たがって、信号出力棒 30の前端面はリング状の円環状面となっている。なお、凹部 3 2の形状は、特に限定されるものではなぐ例えば、円柱状、角柱状、円錐状、角錐 状などを適宜選択することができる。  [0027] The signal output rod 30 has a round bar shape, and includes a step portion 31 whose outer diameter on the front end side is larger than that of other portions. Further, a recess 32 is formed in the front end surface of the signal output rod 30. Therefore, the front end surface of the signal output rod 30 is a ring-shaped annular surface. The shape of the recess 32 is not particularly limited, and for example, a cylindrical shape, a prismatic shape, a conical shape, a pyramidal shape, or the like can be selected as appropriate.
[0028] また、信号出力棒 30の後端部は、後部筐体 21の小径部 21bにおける小径孔 52を 貫通して大径部 21aの内部まで達し、図示しない信号搬送ケーブルと接続される。ま た、信号出力棒 30の前端面には金属製の電極 33が設けられており、電極 33は前部 筐体 22の小径部 22bの段部 22cにおいて圧電素子 10と接触できる構成である。  [0028] Further, the rear end portion of the signal output rod 30 passes through the small-diameter hole 52 in the small-diameter portion 21b of the rear housing 21, reaches the inside of the large-diameter portion 21a, and is connected to a signal carrying cable (not shown). In addition, a metal electrode 33 is provided on the front end surface of the signal output rod 30, and the electrode 33 is configured to come into contact with the piezoelectric element 10 at the step portion 22 c of the small diameter portion 22 b of the front case 22.
[0029] 開口部 53はシリンダ内部に位置しており、シリンダ内部で発生する圧力は開口部 5 3から進入し、圧電素子 10に到達する。また、信号出力棒 30は、軸孔 50において圧 電素子 10および電気絶縁環柱 40とのみ接触しており、筐体 20からは電気的に絶縁 されている。  The opening 53 is located inside the cylinder, and the pressure generated inside the cylinder enters from the opening 53 and reaches the piezoelectric element 10. Further, the signal output rod 30 is in contact only with the piezoelectric element 10 and the electrically insulating ring column 40 in the shaft hole 50 and is electrically insulated from the housing 20.
[0030] 圧電センサ 1は以上のような構成である。ここで、圧電センサ 1の組立方法について 以下に説明する。 [0031] まず、圧電素子 10は前部筐体 22の段部 22cに載置される。このとき、圧電素子 10 の前端面 (第 1の面)は、前部筐体 22の開口部 53から露出した状態となる。次に、信 号出力棒 30が前部筐体 22内に挿入され、圧電素子 10の後端面 (第 2の面)と接触 し固定される。次に、電気絶縁環柱 40が、その内部に信号出力棒 30を嵌通させなが ら前部筐体 22内に挿入され、信号出力棒 30の前端の段部 31と接触し固定される。 その後、後部筐体 21の小径部 21bが前部筐体 22の大径部 22a内に挿入され、後部 筐体 21の前端壁が電気絶縁環柱 40の後端壁を押し込む。そして、圧電素子 10と信 号出力棒 30と電気絶縁環柱 40とが、前部筐体 22の内部で圧着した状態で固定さ れる。以上の方法によって、圧電センサ 1を形成することができる。 [0030] The piezoelectric sensor 1 is configured as described above. Here, an assembly method of the piezoelectric sensor 1 will be described below. First, the piezoelectric element 10 is placed on the step 22 c of the front housing 22. At this time, the front end surface (first surface) of the piezoelectric element 10 is exposed from the opening 53 of the front housing 22. Next, the signal output rod 30 is inserted into the front housing 22 and comes into contact with and fixed to the rear end surface (second surface) of the piezoelectric element 10. Next, the electrically insulating ring column 40 is inserted into the front housing 22 with the signal output rod 30 inserted therein, and is in contact with and fixed to the step portion 31 at the front end of the signal output rod 30. . Thereafter, the small-diameter portion 21b of the rear housing 21 is inserted into the large-diameter portion 22a of the front housing 22, and the front end wall of the rear housing 21 pushes the rear end wall of the electrical insulating ring column 40. Then, the piezoelectric element 10, the signal output rod 30, and the electrically insulating ring column 40 are fixed in a state where they are crimped inside the front housing 22. The piezoelectric sensor 1 can be formed by the above method.
[0032] 次に、図 2を用いて圧電素子 10について詳細に説明する。図 2は、本実施の形態 にかかる圧電素子 10を示す断面図である。  Next, the piezoelectric element 10 will be described in detail with reference to FIG. FIG. 2 is a cross-sectional view showing the piezoelectric element 10 according to the present embodiment.
[0033] 圧電素子 10は、金属ダイアフラム (圧力伝達部材) 11上に、下地層 12、圧電薄膜 層 13および上部電極 14がこの順に成膜されてなるものである。  The piezoelectric element 10 is formed by forming a base layer 12, a piezoelectric thin film layer 13, and an upper electrode 14 in this order on a metal diaphragm (pressure transmission member) 11.
[0034] それぞれの成膜には、物理気相成長法 (PVD)法、すなわち、物理的方法で物質 を蒸発させ、成膜する部材上で凝縮させて薄膜を形成する方法を用いることができる [0034] For each film formation, a physical vapor deposition (PVD) method, that is, a method of forming a thin film by evaporating a substance by a physical method and condensing on a member to be formed can be used.
。具体的には、例えば、抵抗加熱蒸着または電子ビーム加熱蒸着等の真空蒸着法、. Specifically, for example, vacuum deposition methods such as resistance heating deposition or electron beam heating deposition,
DCスパッタリング、高周波スパッタリング、 RFプラズマ支援スパッタリング、マグネトロ ンスパッタリング、 ECRスパッタリングまたはイオンビームスパッタリング等の各種スパ ッタリング方法、高周波イオンプレーティング法、活性ィ匕蒸着またはアークイオンプレ 一ティング等の各種イオンプレーティング法、分子線エピタキシー法、レーザアブレ ーシヨン法、イオンクラスタビーム蒸着法、並びにイオンビーム蒸着法などの方法であ る。 Various sputtering methods such as DC sputtering, high frequency sputtering, RF plasma assisted sputtering, magnetron sputtering, ECR sputtering or ion beam sputtering, high frequency ion plating method, various ion plating such as active ion deposition or arc ion plating Methods, molecular beam epitaxy, laser ablation, ion cluster beam deposition, and ion beam deposition.
[0035] 金属ダイアフラム 11は、圧力が発生するシリンダ内の空間と接しており、開口部 53 力も進入してきた、該シリンダ内で発生した圧力を受ける。そして、金属ダイアフラム 1 1は、上記圧力を下地層 12を介して圧電薄膜層 13に伝達するものである。また、金 属ダイアフラム 11は、圧電素子 10を支える基板としての機能も有している。なお、ダ ィァフラムとは、加えられる圧力に応じて変形する膜状体を言う。したがって、金属ダ ィァフラム 11は、外部力も圧力を受けることによって橈みが発生するものである。 [0036] なお、金属ダイアフラム 11は、高温となる内燃機関シリンダ内に設置されるため耐 熱性を有している必要がある。そのため、金属ダイアフラム 11は、例えば、インコネル または SUS630相当の耐熱金属材料を使用するのが好ましい。また、金属ダイァフ ラム 11における、圧電薄膜層 13を形成する側の表面は、圧電薄膜層 13のひびや剥 がれを防ぐため、また、結晶軸の配向性を高めるために、研磨や化学的な方法によ つて鏡面カ卩ェして 、ることが好まし!/、。 [0035] The metal diaphragm 11 is in contact with the space in the cylinder in which pressure is generated, and receives the pressure generated in the cylinder to which the force of the opening 53 has also entered. The metal diaphragm 11 transmits the pressure to the piezoelectric thin film layer 13 through the underlayer 12. The metal diaphragm 11 also has a function as a substrate that supports the piezoelectric element 10. The diaphragm refers to a film-like body that deforms according to an applied pressure. Therefore, the metal diaphragm 11 generates stagnation when the external force is also subjected to pressure. [0036] It should be noted that the metal diaphragm 11 is required to have heat resistance because it is installed in the internal combustion engine cylinder that is at a high temperature. Therefore, the metal diaphragm 11 is preferably made of, for example, a heat resistant metal material equivalent to Inconel or SUS630. In addition, the surface of the metal diaphragm 11 on the side where the piezoelectric thin film layer 13 is formed is polished or chemically treated to prevent cracking or peeling of the piezoelectric thin film layer 13 and to enhance the orientation of the crystal axis. It ’s good to have a specular look by any way!
[0037] 下地層 12は、金属ダイアフラム 11と当該下地層 12上に成膜される圧電薄膜層 13 との緩衝層である。また、下地層 12は、圧電薄膜層 13の極性の配向、結晶軸の配向 および金属ダイアフラム 11との濡れ性の改善などの役割を有している。さらに、下地 層 12は下部電極としての機能を有して 、る。  The foundation layer 12 is a buffer layer between the metal diaphragm 11 and the piezoelectric thin film layer 13 formed on the foundation layer 12. In addition, the underlayer 12 has a role of improving the polar orientation of the piezoelectric thin film layer 13, the orientation of the crystal axis, and the wettability with the metal diaphragm 11. Further, the underlayer 12 has a function as a lower electrode.
[0038] なお、下地層 12の材料としては、 TiN、 MoSi2、 Si3N4、 Cr、 Fe、 Mg、 Mo、 Nb、 Ta、 Ti、 Zn、 Zr、 W、 Pt、 Al、 Ni、 Cu、 Pd、 Rh、 Ir、 Ru、 Auまたは Agを用いること ができ、単層または複数の材料を用いた 2層以上の複層とすることができる。  [0038] The material of the underlayer 12 is TiN, MoSi2, Si3N4, Cr, Fe, Mg, Mo, Nb, Ta, Ti, Zn, Zr, W, Pt, Al, Ni, Cu, Pd, Rh Ir, Ru, Au, or Ag can be used, and a single layer or a multilayer of two or more layers using a plurality of materials can be used.
[0039] 圧電薄膜層 13は、圧電特性を有するものであり、外部力もの圧力を受けることによ つて電荷を発生するものである。具体的には、圧電薄膜層 13には、金属ダイアフラム 11に生じた橈みに付随して、橈みが発生する。そして、圧電薄膜層 13の橈みに応じ て、圧電薄膜層 13の内部に圧縮応力および引張応力が発生する。そして、この内部 応力の働きによって、圧電薄膜層 13から電荷が発生する。このように、圧電薄膜層 1 3は、圧力を受けることによって、その圧力に応じた電荷を発生する。なお、圧電薄膜 層 13は、窒化アルミニウム (A1N)または酸ィ匕亜鉛 (ZnO)を、スパッタリング法で成膜 することが好ましい。  The piezoelectric thin film layer 13 has piezoelectric characteristics, and generates electric charges when it receives pressure from an external force. Specifically, stagnation occurs in the piezoelectric thin film layer 13 accompanying the stagnation generated in the metal diaphragm 11. A compressive stress and a tensile stress are generated inside the piezoelectric thin film layer 13 according to the sag of the piezoelectric thin film layer 13. Electric charges are generated from the piezoelectric thin film layer 13 by the action of the internal stress. As described above, the piezoelectric thin film layer 13 receives a pressure and generates a charge corresponding to the pressure. The piezoelectric thin film layer 13 is preferably formed by sputtering using aluminum nitride (A1N) or zinc oxide (ZnO).
[0040] 上部電極 14は、金属ダイアフラム 11が受けた圧力によって圧電薄膜層 13から発 生された電荷を下地層 12と共に取り出すものである。そして、取り出された電荷は、 上部電極 14と接触して 、る信号出力棒 30を介して図示しな 、信号搬送ケーブルに 検出信号として伝達される。なお、上部電極 14の材料は、下地層 12と同様の材料を 用いることができるが、同一のものである必要はなぐ圧電薄膜層 13や電極 33との相 性によって適時選択すれば良ぐまたその構造は単層であっても複層であっても良 い。 [0041] 次に、図 3を用いて圧電素子 10と信号出力棒 30との構成について説明する。 The upper electrode 14 takes out the electric charge generated from the piezoelectric thin film layer 13 by the pressure received by the metal diaphragm 11 together with the base layer 12. Then, the extracted electric charge contacts with the upper electrode 14 and is transmitted as a detection signal to the signal carrying cable (not shown) via the signal output rod 30. The material of the upper electrode 14 can be the same material as that of the underlayer 12, but it is not necessary that the upper electrode 14 be the same. The structure may be a single layer or multiple layers. Next, the configuration of the piezoelectric element 10 and the signal output rod 30 will be described with reference to FIG.
[0042] 上述のように、圧電素子 10の上部電極 14と接触する信号出力棒 30の前端部には 、凹部 32が形成されているため、圧電素子 10と信号出力棒 30との間には、空間が 形成される。これにより、圧電素子 10は、外部力も圧力を受けた際に、信号出力棒 3 0に妨害されることなく上記空間の方向へ橈むことができる。  [0042] As described above, since the concave portion 32 is formed at the front end portion of the signal output rod 30 in contact with the upper electrode 14 of the piezoelectric element 10, there is no gap between the piezoelectric element 10 and the signal output rod 30. A space is formed. As a result, the piezoelectric element 10 can squeeze in the direction of the space without being disturbed by the signal output rod 30 when an external force is also subjected to pressure.
[0043] なお、本実施の形態では、信号出力棒 30における凹部 32の形状は、図 4 (a)およ び図 4 (b)に示すようにリング状の円環状面としている力 これに限定されるものでは ない。他の形状として例えば、図 4 (c)に示すように、半球形状としても良い。また、図 4 (d)に示すように、信号出力棒 30における凹部 32の横断面が角形状であっても良 い。また、凹部 32の深さは、 0. Olmm以上 10mm以下であることが好ましい。  In the present embodiment, the shape of the recess 32 in the signal output rod 30 is a ring-shaped annular surface as shown in FIGS. 4 (a) and 4 (b). It is not limited. As other shapes, for example, a hemispherical shape may be used as shown in FIG. Further, as shown in FIG. 4 (d), the cross section of the recess 32 in the signal output rod 30 may be square. The depth of the recess 32 is preferably not less than 0. Olmm and not more than 10 mm.
[0044] また、本実施の形態では、信号出力棒 30は凹部 32を有する棒状部材としているが 、円環状の電極層であっても良い。これにより、前記電極層の内部は中空空間が形 成されているので、圧電素子 10は前記電極層の空間方向に橈むことができる。  In the present embodiment, the signal output rod 30 is a rod-shaped member having the recess 32, but it may be an annular electrode layer. Thereby, since a hollow space is formed inside the electrode layer, the piezoelectric element 10 can be sandwiched in the space direction of the electrode layer.
[0045] 次に、圧電センサ 1の動作について図 3に基づいて説明する。  Next, the operation of the piezoelectric sensor 1 will be described with reference to FIG.
[0046] まず、金属ダイアフラム 11は、内燃機関シリンダ内部で振動等によって発生する圧 力を受ける。上記圧力を受け取った金属ダイアフラム 11には、圧力が加わる方向つ まり信号出力棒 30の凹部 32の空間方向に、その圧力に応じた橈みが発生する。そ して、金属ダイアフラム 11の橈みに付随して、下地層 12および圧電薄膜層 13にも同 様に凹部 32の内部方向に橈みが発生する。圧電薄膜層 13に橈みが発生することに よって、圧電薄膜層 13の内部には応力が発生する。そして、圧電薄膜層 13内部で 発生した応力に応じた電荷が、圧電薄膜層 13から発生する。次に、圧電薄膜層 13 の両面に配設された下地層 12および上部電極 14力 圧電薄膜層 13で発生した上 記電荷を取り出す。そして、取り出された電荷が電極 33に伝達され信号出力棒 30を 介して、図示しない信号搬送ケーブルに検出信号として伝達される。この検出信号を 測定することによって、内燃機関シリンダ内部で発生した圧力を検出することができる 。以上のように、本実施の形態に力かる圧電センサ 1は、圧電素子 10の橈み効果を 利用して、外部で発生する圧力を検出する構成である。  [0046] First, the metal diaphragm 11 receives pressure generated by vibration or the like inside the internal combustion engine cylinder. In the metal diaphragm 11 that has received the pressure, a sag corresponding to the pressure is generated in the direction in which the pressure is applied, that is, in the space direction of the recess 32 of the signal output rod 30. Then, accompanying the sag of the metal diaphragm 11, the sag occurs in the inner direction of the recess 32 in the base layer 12 and the piezoelectric thin film layer 13 as well. Due to the occurrence of stagnation in the piezoelectric thin film layer 13, stress is generated inside the piezoelectric thin film layer 13. Then, a charge corresponding to the stress generated inside the piezoelectric thin film layer 13 is generated from the piezoelectric thin film layer 13. Next, the base layer 12 and the upper electrode 14 force disposed on both surfaces of the piezoelectric thin film layer 13 take out the charges generated in the piezoelectric thin film layer 13. The extracted charges are transmitted to the electrode 33 and transmitted as a detection signal to a signal carrying cable (not shown) via the signal output rod 30. By measuring this detection signal, the pressure generated in the internal combustion engine cylinder can be detected. As described above, the piezoelectric sensor 1 according to the present embodiment is configured to detect the pressure generated outside by using the stagnation effect of the piezoelectric element 10.
[0047] このように、本実施の形態の圧電素子 10は、信号出力棒 30に妨害されることなく凹 部 32の空間方向へ橈むことができる。これにより、外部で発生する圧力が僅かでも、 圧電素子 10を橈ませることができ、この橈みに応じて発生した電荷に基づ 、て上記 圧力を検出することができる。したがって、感度の低い圧電素子を使用した場合にも 、圧電素子の橈み効果を利用することによって、高感度の圧電センサを得ることがで きる。 Thus, the piezoelectric element 10 of the present embodiment is recessed without being obstructed by the signal output rod 30. Part 32 can be swept in the direction of the space. Thereby, even if the pressure generated outside is slight, the piezoelectric element 10 can be swollen, and the pressure can be detected based on the charge generated according to this stagnation. Therefore, even when a piezoelectric element with low sensitivity is used, a highly sensitive piezoelectric sensor can be obtained by utilizing the stagnation effect of the piezoelectric element.
[0048] ここで、圧電薄膜層 13から発生する電荷を信号出力棒 30に代えて導線を用いて 取り出す構成について説明する。図 5は、圧電薄膜層 13から発生する電荷を導線に より取り出す圧電センサ 1の概略構成を示す断面図である。  Here, a configuration for taking out the electric charge generated from the piezoelectric thin film layer 13 by using a lead wire instead of the signal output rod 30 will be described. FIG. 5 is a cross-sectional view showing a schematic configuration of the piezoelectric sensor 1 that takes out electric charges generated from the piezoelectric thin film layer 13 by a conducting wire.
[0049] 本構成における筐体 20は、一端面のみが解放された円筒状部材であることが好ま しい。そして、前記一端面が金属ダイアフラム 11と接続されている。したがって、筐体 20の内部には、密閉された空間が形成される。また、金属ダイアフラム 11の前記空 間側の面には、圧電薄膜層 13と上部電極 14とがこの順に成膜されており、上部電 極 14には導線 60が電気的に接続されている。  [0049] The casing 20 in this configuration is preferably a cylindrical member in which only one end surface is released. The one end face is connected to the metal diaphragm 11. Therefore, a sealed space is formed inside the housing 20. In addition, a piezoelectric thin film layer 13 and an upper electrode 14 are formed in this order on the surface of the metal diaphragm 11 on the space side, and a conductive wire 60 is electrically connected to the upper electrode 14.
[0050] これにより、外部力 の圧力を受けることによって、圧電素子 10は上記空間の方向 に橈み、電荷を発生する。そして、この電荷は上部電極 14にて取り出され、導線を介 して信号搬送ケーブルに検出信号として伝達される。このように、筐体 20と圧電素子 10との間に空間を形成することによって圧力を受ける面と反対の面側、つまり空間の 方向に圧電素子 10が橈むことができる。したがって、圧電素子 10の橈み効果を利用 して十分な電荷を得ることができる。  [0050] Thereby, by receiving the pressure of the external force, the piezoelectric element 10 stagnate in the direction of the space and generates electric charges. Then, this electric charge is taken out by the upper electrode 14 and transmitted as a detection signal to the signal carrying cable via the conducting wire. In this way, by forming a space between the casing 20 and the piezoelectric element 10, the piezoelectric element 10 can be sandwiched in the surface opposite to the surface receiving pressure, that is, in the direction of the space. Therefore, a sufficient charge can be obtained using the stagnation effect of the piezoelectric element 10.
[0051] ここで、金属ダイアフラム 11の厚みと圧電薄膜層 13から発生する電荷量との関係 について以下に説明する。  Here, the relationship between the thickness of the metal diaphragm 11 and the amount of charge generated from the piezoelectric thin film layer 13 will be described below.
[0052] 例えば、金属ダイアフラム 11の厚みを薄くした場合には、その橈み量は大きくなる。  For example, when the thickness of the metal diaphragm 11 is reduced, the amount of stagnation increases.
そのため、圧電薄膜層 13からは、より多くの電荷が発生する。また、金属ダイアフラム 11の厚みを厚くした場合には、その橈み量は小さくなる。そのため、圧電薄膜層 13 から発生する電荷量は少なくなる。このように、金属ダイアフラム 11の厚みを変化させ ることによって、圧電薄膜層 13から発生される電荷量を変化させることができる。つま り、金属ダイアフラム 11の厚みを任意に設定することによって、圧電センサ 1の感度を 変ィ匕させることができる。 [0053] ここで、上部電極 14が、圧電薄膜層 13に生じる圧縮応力または引張応力によって 発生する電荷を取り出すように形成されて 、ても良 ヽ。 Therefore, more charges are generated from the piezoelectric thin film layer 13. Further, when the thickness of the metal diaphragm 11 is increased, the amount of stagnation is reduced. Therefore, the amount of charge generated from the piezoelectric thin film layer 13 is reduced. Thus, by changing the thickness of the metal diaphragm 11, the amount of charge generated from the piezoelectric thin film layer 13 can be changed. In other words, the sensitivity of the piezoelectric sensor 1 can be changed by arbitrarily setting the thickness of the metal diaphragm 11. Here, the upper electrode 14 may be formed so as to take out electric charges generated by compressive stress or tensile stress generated in the piezoelectric thin film layer 13.
[0054] 本実施の形態では、上部電極 14が、圧電薄膜層 13に生じる圧縮応力によって発 生する電荷を取り出す構成について説明する。図 6は、上部電極 14を圧電薄膜層 1 3の外周側の領域のみに成膜した圧電素子 10の断面図である。  In the present embodiment, a configuration will be described in which the upper electrode 14 extracts charges generated by the compressive stress generated in the piezoelectric thin film layer 13. FIG. 6 is a cross-sectional view of the piezoelectric element 10 in which the upper electrode 14 is formed only in the outer peripheral side region of the piezoelectric thin film layer 13.
[0055] 圧電薄膜層 13は、金属ダイアフラム 11に生じる橈みに付随して橈みを発生するこ とによって、その内部に圧縮応力と引張応力とが発生する。具体的には、図 7に示す ように、圧電薄膜層 13の中央付近 10aは、金属ダイアフラム 11の橈みにより両端方 向へ引っ張られる。これにより、圧電薄膜層 13の中央付近 10aには引張応力が発生 する。また、圧電薄膜層 13の両端付近 10bは、収縮方向へ圧縮される。これにより、 圧電薄膜層 13の両端付近 10bには圧縮応力が発生する。  The piezoelectric thin film layer 13 generates stagnation accompanying the stagnation generated in the metal diaphragm 11, thereby generating compressive stress and tensile stress therein. Specifically, as shown in FIG. 7, the central portion 10 a of the piezoelectric thin film layer 13 is pulled in the both directions by the sag of the metal diaphragm 11. As a result, a tensile stress is generated near the center 10 a of the piezoelectric thin film layer 13. Further, the vicinity 10b of both ends of the piezoelectric thin film layer 13 is compressed in the contraction direction. As a result, compressive stress is generated in the vicinity 10 b of both ends of the piezoelectric thin film layer 13.
[0056] ところで、圧縮応力によって発生する電荷と引張応力によって発生する電荷とは、 その極性が異なる。そのため、上部電極 14によって両応力により発生する電荷を取 り出すと、互いに相殺されてしまい十分な電荷を取り出すことができない。そこで、上 部電極 14を圧電薄膜層 13の圧縮応力が生じる範囲のみに成膜する。  Incidentally, the charge generated by the compressive stress and the charge generated by the tensile stress have different polarities. For this reason, if charges generated by both stresses are taken out by the upper electrode 14, they cancel each other out, so that sufficient charges cannot be taken out. Therefore, the upper electrode 14 is formed only in a range where the compressive stress of the piezoelectric thin film layer 13 is generated.
[0057] 上記の構成によれば、上部電極 14は、圧縮応力によって発生した電荷のみを引張 応力によって発生した電荷に相殺されることなく、圧電薄膜層 13から取り出すことが できる。したがって、上部電極 14は、圧電薄膜層 13から十分な量の電荷を取り出す ことができる。これにより、金属ダイアフラム 11に伝達される外部力もの圧力が僅かで も、圧電薄膜層 13からより多くの電荷を取り出すことができるため、内燃機関のシリン ダ内部で発生した僅かな圧力をも検出することができる。すなわち、検出感度をさら に向上させた圧電センサ 1を実現することができる。  [0057] According to the above configuration, the upper electrode 14 can take out only the charge generated by the compressive stress from the piezoelectric thin film layer 13 without canceling out the charge generated by the tensile stress. Therefore, the upper electrode 14 can extract a sufficient amount of charge from the piezoelectric thin film layer 13. As a result, even if the pressure of the external force transmitted to the metal diaphragm 11 is small, more electric charge can be taken out from the piezoelectric thin film layer 13, so that the slight pressure generated inside the cylinder of the internal combustion engine can be detected. can do. That is, the piezoelectric sensor 1 with further improved detection sensitivity can be realized.
[0058] また、上部電極 14は、圧力が作用して圧電薄膜層 13の内部に生じる圧縮応力に よって発生する電荷および引張応力によって発生する電荷を、それぞれ個別に取り 出すように設けられていてもよい。具体的には、図 8 (a)および図 8 (b)に示すように、 上部電極 14が、圧電薄膜層 13の外周側の領域および中央部寄りの領域にそれぞ れ個別に設けられている構成である。図 8 (a)および図 8 (b)では、上記外周側の領 域に設けられる電極を外部電極 14bとして、上記中央部寄りの領域に設けられる電 極を中心電極 14aとして図示している。なお、圧電薄膜層 13から発生する電荷を取り 出すために、下部電極なる下地層 12を圧電薄膜層 13の下面に設けてもよぐまた、 図 8 (a)および図 8 (b)に示すように金属ダイアフラム 11の任意の位置に電極 14cを 設けてもよい。上述の電極 14a' 14b ' 14cには、それぞれ電気配線(図示せず)が接 続されている。 Further, the upper electrode 14 is provided so as to individually take out the electric charge generated by the compressive stress generated in the piezoelectric thin film layer 13 due to the pressure and the electric charge generated by the tensile stress, respectively. Also good. Specifically, as shown in FIGS. 8 (a) and 8 (b), the upper electrode 14 is individually provided in the outer peripheral side region and the central region of the piezoelectric thin film layer 13, respectively. It is the composition which is. In FIGS. 8 (a) and 8 (b), the electrode provided in the outer peripheral region is defined as the external electrode 14b, and the electrode provided in the region closer to the central portion. The pole is shown as the center electrode 14a. In order to take out the electric charge generated from the piezoelectric thin film layer 13, a base layer 12 serving as a lower electrode may be provided on the lower surface of the piezoelectric thin film layer 13, as shown in FIGS. 8 (a) and 8 (b). Thus, the electrode 14c may be provided at an arbitrary position of the metal diaphragm 11. Electrical wiring (not shown) is connected to the electrodes 14a ', 14b, and 14c, respectively.
[0059] これにより、圧電薄膜層 13の外周側の領域に作用する圧縮応力によって発生する 電荷を外部電極 14bにより、また、圧電薄膜層 13の中央部寄りの領域に作用する引 張応力によって発生する電荷を中心電極 14aにより、それぞれ個別に取り出すことが できる。  [0059] Thereby, electric charges generated by the compressive stress acting on the outer peripheral region of the piezoelectric thin film layer 13 are generated by the external electrode 14b and by the tensile stress acting on the region near the center of the piezoelectric thin film layer 13. The charges to be taken out can be taken out individually by the center electrode 14a.
[0060] そのため、それぞれ個別に取り出した電荷を足し合わせることにより、十分な量の電 荷を検出することができる。なお、両者を足し合わせて、増幅した電荷(出力)を得る ためには、一方の電荷の極性を反転させることにより可能となる。これにより、圧電セ ンサ 1の感度をより向上させることができる。  [0060] Therefore, a sufficient amount of charge can be detected by adding the charges taken out individually. In order to obtain the amplified charge (output) by adding both, it is possible to invert the polarity of one charge. Thereby, the sensitivity of the piezoelectric sensor 1 can be further improved.
[0061] なお、上部電極 14を圧電薄膜層 13の圧縮応力が発生する範囲に形成するために 、上部電極 14の形状を円環状に形成した構成としても良ぐまた、 2個以上に分割し た構成としても良い。  [0061] In order to form the upper electrode 14 in a range where the compressive stress of the piezoelectric thin film layer 13 is generated, the upper electrode 14 may be formed in an annular shape, or may be divided into two or more. It is good also as a composition.
[0062] なお、上記の構成では、圧電薄膜層 13の両端に上部電極 14を設けているため、 上部電極 14間に空間が形成される。これにより、圧電薄膜層 13は、圧力を受けたと き信号出力棒 30の方向へ橈むことができる。したがって、信号出力棒 30に凹部 32を 設けることなぐ圧電薄膜層 13の橈みを利用して電荷を発生させることができる。  In the above configuration, since the upper electrodes 14 are provided at both ends of the piezoelectric thin film layer 13, a space is formed between the upper electrodes 14. As a result, the piezoelectric thin film layer 13 can squeeze in the direction of the signal output rod 30 when receiving pressure. Therefore, electric charges can be generated by using the sag of the piezoelectric thin film layer 13 without providing the recess 32 in the signal output rod 30.
[0063] さらに、上部電極 14を圧電薄膜層 13の引張応力が発生する範囲のみに成膜する 構成としても良い。これにより、上部電極 14は、引張応力によって圧電薄膜層 13から 発生した電荷のみを取り出すことができる。これにより、上述した圧縮応力により発生 した電荷のみを取り出す場合と同様の効果を得ることができる。  Further, the upper electrode 14 may be formed only in a range where the tensile stress of the piezoelectric thin film layer 13 is generated. Thereby, the upper electrode 14 can take out only the electric charge generated from the piezoelectric thin film layer 13 due to the tensile stress. Thereby, the same effect as the case where only the electric charge generated by the compressive stress is taken out can be obtained.
[0064] また、図 9 (a)および図 9 (b)に示すように、金属ダイアフラム 11における圧縮応力と 引張応力とが発生する範囲それぞれに分割して、圧電薄膜層 13を成膜し、分割した 圧電薄膜層 13に対応して中心電極 14aと外部電極 14bとを成膜する構成としても良 い。そして、圧縮応力によって発生する電荷または引張応力によって発生する電荷 のいずれか一方の電荷の極性を反転させる構成とする。これにより、圧縮応力によつ て発生した電荷と引張応力によって発生した電荷とを合算させた電荷を取り出すこと ができる。したがって、圧電薄膜層 13から取り出すことのできる電荷をさらに増カロさせ ることができるため、さらに高感度の圧電センサ 1を実現することができる。 Further, as shown in FIGS. 9 (a) and 9 (b), the piezoelectric thin film layer 13 is formed by dividing the metal diaphragm 11 into ranges where compressive stress and tensile stress are generated, A structure in which the central electrode 14a and the external electrode 14b are formed corresponding to the divided piezoelectric thin film layer 13 may be employed. And charge generated by compressive stress or charge generated by tensile stress The polarity of either one of the charges is reversed. As a result, it is possible to take out a charge obtained by adding up the charge generated by the compressive stress and the charge generated by the tensile stress. Therefore, since the charge that can be taken out from the piezoelectric thin film layer 13 can be further increased, the piezoelectric sensor 1 with higher sensitivity can be realized.
[0065] また、本実施の形態では、上部電極 14を圧電薄膜層 13に成膜する構成としている 力 特に限定されるものではなぐ上部電極 14と圧電薄膜層 13とを信号線によって 接続する構成としても良い。これにより、圧電薄膜層 13に生じる圧縮応力または引張 応力によって発生する電荷を信号線を介して検出することができる。  [0065] In the present embodiment, the upper electrode 14 is formed on the piezoelectric thin film layer 13. The force is not particularly limited. The upper electrode 14 and the piezoelectric thin film layer 13 are connected by a signal line. It is also good. Thereby, the electric charge generated by the compressive stress or tensile stress generated in the piezoelectric thin film layer 13 can be detected via the signal line.
[0066] ここで、図 10に示すように、金属ダイアフラム 11において圧縮応力が発生する範囲 のみに圧電薄膜層 13を成膜する構成としても良い。これにより、圧電薄膜層 13には 圧縮応力のみが働くため、上部電極 14は、圧縮応力によって発生する電荷のみを 圧電薄膜層 13から取り出すことができる。したがって、上記と同様、金属ダイアフラム 11に伝達される外部力もの圧力が僅かでも上部電極 14は圧電薄膜層 13からより多 くの電荷を取り出すことができる。すなわち、高感度の圧電センサ 1を実現することが できる。なお、圧電薄膜層 13の形状は環状に形成した構成としても良ぐまた、 2個 以上に分割した構成としても良い。また、圧電薄膜層 13を引張応力が発生する範囲 のみに成膜する構成としても良い。  Here, as shown in FIG. 10, the piezoelectric thin film layer 13 may be formed only in a range where the compressive stress is generated in the metal diaphragm 11. As a result, only the compressive stress acts on the piezoelectric thin film layer 13, so that the upper electrode 14 can extract only the electric charge generated by the compressive stress from the piezoelectric thin film layer 13. Therefore, as described above, the upper electrode 14 can extract more charges from the piezoelectric thin film layer 13 even if the pressure of the external force transmitted to the metal diaphragm 11 is slight. That is, a highly sensitive piezoelectric sensor 1 can be realized. The shape of the piezoelectric thin film layer 13 may be a ring-shaped configuration, or may be a configuration divided into two or more. Alternatively, the piezoelectric thin film layer 13 may be formed only in a range where tensile stress is generated.
[0067] ここで、図 11および図 12に示すように、圧電薄膜層 13を前部筐体 22の前端壁 22 dに直接成膜し、前端壁 22dにおける圧電薄膜層 13が成膜される部分をダイアフラ ム加工する構成としても良い。これにより、外部からの圧力を受ける前端壁 22dの橈 みに付随して、圧電薄膜層 13が信号出力棒 30に形成された凹部 32の内部方向へ 橈むことができる。そして、圧電薄膜層 13の橈みに応じて電荷が発生する。このよう に、圧電素子 10を装着するための筐体 20が金属ダイアフラム 11としての機能を兼 ねることができるため、金属ダイアフラム 11が不要になる。そのため、圧電素子 10の 構成を簡略ィ匕できるので、圧電センサを小型化することができ、コストを低減すること ができる。  Here, as shown in FIGS. 11 and 12, the piezoelectric thin film layer 13 is directly formed on the front end wall 22d of the front housing 22, and the piezoelectric thin film layer 13 is formed on the front end wall 22d. A configuration may be adopted in which the portion is diaphragm processed. As a result, the piezoelectric thin film layer 13 can be squeezed toward the inside of the recess 32 formed in the signal output rod 30 in association with the sag of the front end wall 22d that receives external pressure. Then, charges are generated according to the sag of the piezoelectric thin film layer 13. Thus, since the housing 20 for mounting the piezoelectric element 10 can also function as the metal diaphragm 11, the metal diaphragm 11 becomes unnecessary. Therefore, since the configuration of the piezoelectric element 10 can be simplified, the piezoelectric sensor can be reduced in size and the cost can be reduced.
[0068] なお、上記ダイァフラムの加工方法としては、例えば、機械加工、化学エッチング、 放電加工、レーザカ卩ェ等が挙げられる。そして、上記カ卩ェにより、前端壁 22dにおけ る圧電薄膜層 13が成膜される部分の厚みを 0. 005mm以上 10mm以下とすること が好ましい。 [0068] Examples of the diaphragm processing method include machining, chemical etching, electric discharge machining, and laser cage. Then, by the above-mentioned cage, the front end wall 22d The thickness of the portion where the piezoelectric thin film layer 13 is formed is preferably 0.005 mm or more and 10 mm or less.
[0069] また、図 13に示すように、圧電薄膜層 13を成膜した前部筐体 22の前端壁 22dに 凹部 22eを設け、凹部 22e内のエッジ部 22fの上方にのみ上部電極 14を設けた構成 としても良い。これにより、凹部 22e内の上面に形成される圧力受部 22gが圧力を受 け、橈みが発生したとき、エッジ部 22fの上方に位置する圧電薄膜層 13には、圧縮 応力が生じ電荷が発生する。そして、この圧縮応力により発生した電荷を上部電極 1 4が取り出すことができる。このように、金属ダイアフラム 11を使用することなぐ筐体 2 0の橈みを利用して十分な電荷を取り出すことができる。したがって、簡易な構成によ り高感度の圧電センサ 1を実現することができる。  Further, as shown in FIG. 13, a recess 22e is provided in the front end wall 22d of the front case 22 on which the piezoelectric thin film layer 13 is formed, and the upper electrode 14 is provided only above the edge portion 22f in the recess 22e. It is good also as the provided structure. As a result, when the pressure receiving portion 22g formed on the upper surface in the concave portion 22e receives pressure and stagnation occurs, the piezoelectric thin film layer 13 located above the edge portion 22f generates compressive stress and charges are generated. appear. Then, the upper electrode 14 can take out the charges generated by this compressive stress. Thus, sufficient charges can be taken out by using the stagnation of the casing 20 without using the metal diaphragm 11. Therefore, a highly sensitive piezoelectric sensor 1 can be realized with a simple configuration.
[0070] なお、上述のように、上部電極 14の間には空間が形成されるので、圧電薄膜層 13 は、圧力を受けたとき信号出力棒 30の方向へ橈むことができる。したがって、信号出 力棒 30に凹部 32を設けな 、構成としても良 、。  [0070] As described above, since a space is formed between the upper electrodes 14, the piezoelectric thin film layer 13 can be sandwiched in the direction of the signal output rod 30 when receiving pressure. Therefore, the signal output rod 30 is not required to be provided with the recess 32.
[0071] また、圧電薄膜層 13を成膜する前端壁 22dは、シリコン等の半導体によって形成さ れていても良い。シリコンを用いることにより、大量生産が可能となり安価で小型の圧 電センサ 1を実現することができる。図 14は、図 13に示した前端壁 22dをシリコンによ り形成した場合の圧電センサ 1の概略構成を示す断面図である。  Further, the front end wall 22d for forming the piezoelectric thin film layer 13 may be formed of a semiconductor such as silicon. By using silicon, mass production becomes possible, and an inexpensive and small piezoelectric sensor 1 can be realized. FIG. 14 is a cross-sectional view showing a schematic configuration of the piezoelectric sensor 1 when the front end wall 22d shown in FIG. 13 is formed of silicon.
[0072] ここで、本実施の形態では、圧電薄膜層 13を下地層 12に成膜する構成としている 力 圧電薄膜層 13を金属ダイァフラム 11に直接成膜する構成としても良い。なお、 本実施の形態のように下地層 12を設けた場合には、ダイアフラムは金属に限定され るものではなぐ例えば、高分子や金属酸化物、金属窒化物、シリコン等の半導体を 用いても良い。  Here, in the present embodiment, the structure in which the piezoelectric thin film layer 13 is formed on the underlayer 12 may be configured such that the piezoelectric thin film layer 13 is directly formed on the metal diaphragm 11. When the base layer 12 is provided as in the present embodiment, the diaphragm is not limited to a metal. For example, a semiconductor such as a polymer, a metal oxide, a metal nitride, or silicon may be used. good.
[0073] また、本実施の形態に用いる圧電薄膜層 13の材料は、窒化アルミニウム (AIN)を 用いることが好ましい。その理由としては、窒化アルミニウムは、高温下でも安定した 圧電特性を有し、また鉛等の重金属を使用していないため環境に与える影響も少な いことである。なお、圧電薄膜層 13は、キュリー温度の存在しない圧電材料であれば 他の材料を用いても良い。この「キュリー温度の存在しない圧電材料」とは、圧電特性 を有し、かつ温度の上昇に伴った極性転位を起こさない材料であり、例えばウルッ鉱 構造の結晶構造をもつ物質が挙げられる。ウルッ鉱構造の結晶構造をもつ物質とし ては、具体的には、窒化アルミニウム (A1N)や酸ィ匕亜鉛 (ZnO)等が挙げられる。 [0073] The material of the piezoelectric thin film layer 13 used in this embodiment is preferably aluminum nitride (AIN). The reason for this is that aluminum nitride has stable piezoelectric properties even at high temperatures and has little impact on the environment because it does not use heavy metals such as lead. The piezoelectric thin film layer 13 may be made of another material as long as it does not have a Curie temperature. This “piezoelectric material having no Curie temperature” is a material that has piezoelectric characteristics and does not cause polar dislocation as the temperature rises. Examples include substances having a crystalline structure. Specific examples of the substance having the crystal structure of the wurtzite structure include aluminum nitride (A1N) and zinc oxide (ZnO).
[0074] このような圧電材料は、結晶が融解あるいは昇華するまで圧電特性を失うことがな い。また、ウルッ鉱構造の結晶構造をもつ物質は、結晶に対称性が存在しないため 圧電特性を備えており、また強誘電体ではないのでキュリー温度が存在しない。その ため、上記圧電材料からなる圧電素子は、耐熱性に優れ、圧電特性が劣化すること がなく、内燃機関のシリンダ内部のように 500°C近い高温中に曝されたとしても、その 圧電素子としての機能を失うことがない。したがって、圧電素子の冷却装置を使用す ることなく、内燃機関シリンダ内での使用が可能となる。このように、上記圧電材料か らなる圧電素子は、耐熱性に優れ、高温でも圧電特性が劣化することがない。また、 加工性に優れ、薄膜ィ匕を図る上でも適している。 [0074] Such a piezoelectric material does not lose its piezoelectric properties until the crystal melts or sublimes. In addition, a substance having a crystal structure of the wurtzite structure has piezoelectric characteristics because there is no symmetry in the crystal, and since it is not a ferroelectric substance, there is no Curie temperature. Therefore, the piezoelectric element made of the above-described piezoelectric material has excellent heat resistance and does not deteriorate the piezoelectric characteristics. Even if it is exposed to a high temperature close to 500 ° C. like the inside of a cylinder of an internal combustion engine, the piezoelectric element As a function never lose. Therefore, it is possible to use the internal combustion engine cylinder without using a piezoelectric element cooling device. As described above, the piezoelectric element made of the above-described piezoelectric material has excellent heat resistance and does not deteriorate the piezoelectric characteristics even at high temperatures. It is also excellent in workability and suitable for thin film production.
[0075] ここで、キュリー温度が存在しな!ヽ圧電材料の薄膜を形成する方法にっ ヽては、公 知の技術を用いて実現することができる。具体的には、酸化物系、炭素系、窒素系ま たはホウ化物系セラミックスの焼結体や石英ガラス力 なる絶縁性の基板や、インコ ネル又は SUS630相当のような耐熱性金属材料カゝらなる導電性基板上に圧電性セ ラミックスを極性制御しながら単結晶状に成長させることによって薄膜を形成すること ができる。 Here, the Curie temperature does not exist! A method for forming a thin film of piezoelectric material can be realized by using a known technique. Specifically, oxide-based, carbon-based, nitrogen-based or boride-based ceramic sintered bodies, insulating substrates with quartz glass power, and heat-resistant metal material cards such as Inconel or SUS630. A thin film can be formed on a conductive substrate formed by growing the piezoelectric ceramic into a single crystal while controlling the polarity.
[0076] また、本発明の圧電センサ 1の圧電薄膜層 13の厚さは、 0. 1 111カら100 111の 範囲とすることが好ましい。また、 0. 5 m以上 20 μ m以下とすることがより好ましぐ : m以上 10 m以下とすることがさらに好ましい。圧電薄膜層 13の厚さ力 0. 1 mより薄 、と下地層 12と上部電極 14との間で短絡が発生しやすぐ 100 μ mより厚 ヽ と成膜時間が長時間になってしまう。  In addition, the thickness of the piezoelectric thin film layer 13 of the piezoelectric sensor 1 of the present invention is preferably in the range of 0.1111 to 100111. Further, it is more preferably 0.5 m or more and 20 μm or less: more preferably m or more and 10 m or less. When the thickness force of the piezoelectric thin film layer 13 is less than 0.1 m and a short circuit occurs between the underlayer 12 and the upper electrode 14, the film thickness becomes longer than 100 μm and the film formation time becomes long. .
[0077] また、圧電薄膜層 13は、良好な圧電特性を保っために、その双極子配向度を 75 %以上とすることが好ましぐ 90%以上とすることがさらに好ましい。この双極子配向 度とは、電気双極子をなす結晶柱の薄膜表面の極性が正あるいは負の、同一方向 のものが占める割合である。もし、結晶柱の極性の方向が完全にランダムであれば、 それぞれの結晶柱の圧電性は互いに打ち消しあって、薄膜全体では圧電性が消滅 してしまう。圧電薄膜層 13の双極子配向度が 75%より小さいと、見かけ上の圧電定 数 d が双極子配向度 100%のときの半分以下になってしまい、圧電薄膜層 13の圧In addition, the piezoelectric thin film layer 13 has a dipole orientation degree of preferably 75% or more and more preferably 90% or more in order to maintain good piezoelectric characteristics. The degree of dipole orientation is the proportion of crystal columns that form electric dipoles that are positive or negative in the thin film surface in the same direction. If the polarity direction of the crystal column is completely random, the piezoelectricity of each crystal column cancels each other, and the piezoelectricity disappears in the entire thin film. When the dipole orientation of the piezoelectric thin film layer 13 is less than 75%, the apparent piezoelectric constant The number d is less than half of the dipole orientation degree of 100%, and the pressure of the piezoelectric thin film layer 13 is reduced.
33 33
電特性が劣化し、良好に圧力を検出できなくなるためである。双極子配向度が 75% 以上であれば、十分な圧電特性を確保することができる。  This is because the electric characteristics deteriorate and the pressure cannot be detected well. If the dipole orientation degree is 75% or more, sufficient piezoelectric characteristics can be secured.
[0078] 上記双極子配向度を 75%以上とするためには、結晶柱が成長する際に最初の原 子をそろい易くする必要があり、下地層 12の材料は圧電薄膜層 13の材料と同じ成 分の金属、例えば、圧電薄膜層 13に A1Nを用いる場合には下地層 12を Al、圧電薄 膜層 13に ZnOを用いる場合には下地層 12を Znとすることが好ましい。また、下地層 12を複層とする場合には、最上層、つまり圧電薄膜層 13と接する層を圧電薄膜層 1 3の材料と同じ成分の金属を材料とするのが好ましい。  [0078] In order to set the dipole orientation to 75% or more, it is necessary to easily align the first atoms when the crystal column grows, and the material of the underlayer 12 is the same as the material of the piezoelectric thin film layer 13. When the same component metal, for example, A1N is used for the piezoelectric thin film layer 13, the base layer 12 is preferably Al, and when the piezoelectric thin film layer 13 is ZnO, the base layer 12 is preferably Zn. When the underlayer 12 is a multilayer, it is preferable that the uppermost layer, that is, the layer in contact with the piezoelectric thin film layer 13, be made of a metal having the same component as the material of the piezoelectric thin film layer 13.
[0079] また、本実施の形態では、圧力伝達部材として金属ダイアフラム 11を用いた力 金 属ダイアフラム 11から圧力伝達棒等の他の部材を介して、圧電薄膜層 13に圧力を 伝達する構成であっても、耐熱性に優れ、冷却手段が不要な圧電センサ 1を実現す ることがでさる。  In the present embodiment, the pressure is transmitted from the force metal diaphragm 11 using the metal diaphragm 11 as the pressure transmission member to the piezoelectric thin film layer 13 via another member such as a pressure transmission rod. Even so, it is possible to realize a piezoelectric sensor 1 that has excellent heat resistance and does not require a cooling means.
[0080] また、圧力伝達部材は、金属ダイアフラム 11に限定されるものではなぐ例えば、ガ ラス基板などのセラミックスであってもよい。具体的なセラミックスとしては、酸ィ匕アルミ 、酸ィ匕マグネシウム、酸ィ匕ジルコユア、 酸化チタン、酸化イットリウム、酸ィ匕ケィ素など の酸ィ匕物系セラミックスや、窒化アルミ、窒化ケィ素、窒化ホウ素、窒化ガリウムなどの 窒化物系セラミックスや、炭化ケィ素、炭化タングステンなどの炭化物系セラミックス や、二ケィ化モリブデンなどのケイイ匕物系セラミックスなどが挙げられる。これにより、 金属と比較して、耐腐食性、耐熱性および耐圧性などが向上する。なお、ガラス基板 を用いたときの圧電センサの特性を調べた実験結果については後述する。  [0080] The pressure transmission member is not limited to the metal diaphragm 11, but may be ceramics such as a glass substrate. Specific ceramics include acid-ceramics such as acid aluminum, acid magnesium, acid zirconium oxide, titanium oxide, yttrium oxide, and oxygen key, aluminum nitride, silicon nitride, Examples thereof include nitride ceramics such as boron nitride and gallium nitride, carbide ceramics such as silicon carbide and tungsten carbide, and silicide ceramics such as molybdenum disilicide. Thereby, compared with a metal, corrosion resistance, heat resistance, pressure resistance, etc. improve. The experimental results of examining the characteristics of the piezoelectric sensor when using a glass substrate will be described later.
実施例  Example
[0081] 本実施の形態に力かる圧電センサ 1について、圧電素子 10に加えられる圧力に対 する圧電素子 10から発生される電荷量を測定する実験を行った。  [0081] With respect to the piezoelectric sensor 1 according to the present embodiment, an experiment was performed to measure the amount of charge generated from the piezoelectric element 10 with respect to the pressure applied to the piezoelectric element 10.
[0082] 図 15は、本実験に用いた測定系を示すものである。具体的には、圧電素子 10を円 筒状のガラス管で覆い、その内部に大気圧と等しい密封空間を作る。そして、圧電素 子 10の上部電極 14とアンプとをローノイズ同軸ケーブルにより接続し、アンプはオシ ロスコープと接続する。なお、本実験では、スパッタリング法により、厚さ 0. 2mmのィ ンコネル 601の金属ダイアフラム 11上に厚さ 200nmの上部電極 14と厚さ 1 μ mの窒 化アルミニウム (圧電薄膜層 13)とを成膜した Aタイプと、上記金属ダイアフラム 11上 に上記窒化アルミニウムを成膜した Bタイプの 2種類の圧電素子 10を用いた。 FIG. 15 shows the measurement system used in this experiment. Specifically, the piezoelectric element 10 is covered with a cylindrical glass tube, and a sealed space equal to the atmospheric pressure is created inside. The upper electrode 14 of the piezoelectric element 10 and the amplifier are connected by a low noise coaxial cable, and the amplifier is connected to the oscilloscope. In this experiment, the thickness of 0.2 mm was measured by sputtering. A type in which an upper electrode 14 having a thickness of 200 nm and aluminum nitride (piezoelectric thin film layer 13) having a thickness of 1 μm are formed on a metal diaphragm 11 of Nconel 601 and the aluminum nitride on the metal diaphragm 11. Two types of piezoelectric elements 10 of type B were used.
[0083] 上記測定系において、密封空間の大気圧を一気に抜き急減圧させる。このとき、圧 電素子 10の金属ダイアフラム 11は、この急減圧に伴い密封空間の方向へ力を受け 橈みが発生する。そして、金属ダイアフラム 11の橈みに付随して圧電薄膜層 13が橈 み、その内部に応力が発生する。そして、圧電薄膜層 13内部に発生した応力によつ て、圧電薄膜層 13から電荷が発生する。このとき発生した電荷を上部電極 14が取り 出し、オシロスコープによって測定することができる。  [0083] In the above measurement system, the atmospheric pressure in the sealed space is extracted at once and the pressure is rapidly reduced. At this time, the metal diaphragm 11 of the piezoelectric element 10 receives a force in the direction of the sealed space due to the sudden pressure reduction, and stagnation occurs. Then, accompanying the sag of the metal diaphragm 11, the piezoelectric thin film layer 13 swells, and stress is generated inside. Electric charges are generated from the piezoelectric thin film layer 13 by the stress generated in the piezoelectric thin film layer 13. The charge generated at this time is taken out by the upper electrode 14 and can be measured with an oscilloscope.
[0084] 図 16は、上記密封空間を急減圧させたときの圧電素子 10から取り出された電荷量 を測定した波形図である。また、図 17は、圧電素子 10に加えられる力と図 16の波形 図に示す信号振幅力 求めた電荷量との関係を示したグラフであり、図 18は、上記 力と上記電荷量とから換算した、圧力と出力電圧との関係を示したグラフである。  FIG. 16 is a waveform diagram obtained by measuring the amount of charge taken out from the piezoelectric element 10 when the sealed space is rapidly depressurized. FIG. 17 is a graph showing the relationship between the force applied to the piezoelectric element 10 and the charge amount obtained from the signal amplitude force shown in the waveform diagram of FIG. 16. FIG. 18 shows the relationship between the force and the charge amount. It is the graph which showed the relationship between the pressure and output voltage which converted.
[0085] 図 17の結果より、金属ダイアフラム 11に加えられる力と上部電極 14から取り出され る電荷量とは比例関係となることが分力つた。そして、この比例関係を示す直線の傾 きは、見かけ上の圧電定数 d (pC/N)、つまり圧電素子 10の圧電定数を示して ヽ  From the results of FIG. 17, it was found that the force applied to the metal diaphragm 11 and the amount of charge taken out from the upper electrode 14 have a proportional relationship. The slope of the straight line indicating this proportional relationship indicates the apparent piezoelectric constant d (pC / N), that is, the piezoelectric constant of the piezoelectric element 10.
33  33
る。ここで、圧電素子 10の橈み効果を利用しない従来の構成では、その圧電定数 d  The Here, in the conventional configuration that does not use the stagnation effect of the piezoelectric element 10, the piezoelectric constant d
33 は、 d = 2であった。これに対して、本実施の形態における圧電素子 10の橈み効果 33 had d = 2. In contrast, the stagnation effect of the piezoelectric element 10 in the present embodiment
33 33
を利用した場合には、圧電素子 10の圧電定数 d は、上記 Aタイプで d = 30. 808  Is used, the piezoelectric constant d of the piezoelectric element 10 is d = 30.808 for the A type above.
33 33  33 33
、上記 Bタイプで d = 22. 305であった。このように、圧電素子 10の橈み効果を利用  In the above B type, d = 22.305. In this way, the stagnation effect of the piezoelectric element 10 is used.
33  33
することによって、圧電素子 10の圧電定数 d の値が大幅に増加することが分力つた  As a result, the piezoelectric constant d of the piezoelectric element 10 is greatly increased.
33  33
[0086] 次に、図 8 (a)および図 8 (b)に示す構成、つまり圧電薄膜層 13の上面における外 周側の領域に外部電極 14b、中央部寄りの領域に中央電極 14aをそれぞれ個別に 設け、金属ダイアフラム 11の任意の位置に電極 14cを設けた構成において、圧電素 子 10に加えられる圧力に対する圧電素子 10 (圧電薄膜層 13)から出力される電圧を 測定する実験を行った。 Next, the configuration shown in FIGS. 8 (a) and 8 (b), that is, the outer electrode 14b in the outer peripheral region on the upper surface of the piezoelectric thin film layer 13, and the central electrode 14a in the region closer to the center, respectively. An experiment was conducted to measure the voltage output from the piezoelectric element 10 (piezoelectric thin film layer 13) with respect to the pressure applied to the piezoelectric element 10 in a configuration in which the electrode 14c is provided at an arbitrary position of the metal diaphragm 11 provided separately. .
[0087] 図 19は、本実験に用いた測定系を示すものである。この測定系は、上述した図 15 の測定系と同等であり、厚さ 0. 2mmのインコネル 601の金属ダイアフラム 11上に厚 さ l /z mの窒化アルミニウム (圧電薄膜層 13)を成膜し、その上に厚さ 0. 05-0. 3 μ mの中央電極 14aおよび外部電極 14bを設けた圧電素子を使用している。なお、金 属ダイアフラムの一端には、厚さ 0. 05-0. 3 mの電極 14cを設けている。そして、 外部電極 14bと電極 14cとをローノイズ同軸ケーブルを介してアンプ 1に接続すると 共に、中央電極 14aと電極 14cとをローノイズ同軸ケーブルを介してアンプ 2に接続 し、アンプ 1 , 2はそれぞれオシロスコープと接続する。 FIG. 19 shows the measurement system used in this experiment. This measurement system is shown in Fig. 15 above. In this case, an aluminum nitride (piezoelectric thin film layer 13) with a thickness of l / zm was formed on a metal diaphragm 11 with a thickness of 0.2 mm, and a thickness of 0.05- A piezoelectric element provided with a 0.3 μm central electrode 14a and an external electrode 14b is used. An electrode 14c having a thickness of 0.05 to 0.3 m is provided at one end of the metal diaphragm. The external electrode 14b and the electrode 14c are connected to the amplifier 1 through a low-noise coaxial cable, and the center electrode 14a and the electrode 14c are connected to the amplifier 2 through a low-noise coaxial cable, and each of the amplifiers 1 and 2 is connected to an oscilloscope. Connect with.
[0088] 図 20は、上記測定系において、圧電素子 10に圧力を印加したときの圧電薄膜層 1 3から出力される圧力の波形を示すグラフである。なお、上記測定系では、圧電素子 10の出力特性を容易に得られるように、本来、圧電素子 10に印加される方向とは反 対側の方向から圧力を印加している。  FIG. 20 is a graph showing a waveform of pressure output from the piezoelectric thin film layer 13 when pressure is applied to the piezoelectric element 10 in the measurement system. In the measurement system, the pressure is applied from the direction opposite to the direction applied to the piezoelectric element 10 in order to easily obtain the output characteristics of the piezoelectric element 10.
[0089] 図 20に示すように、アンプ 1に接続される外部電極 14bおよびアンプ 2に接続され る中央電極 14aから、同時に出力信号を検出できることが分力つた。このように、複数 の電極を用いた場合でも、それぞれにおいて同時に出力信号を検出できることが分 かった。これにより、出力信号の極性を合わせることにより、個別に検出された出力信 号を足し合わせることが可能となる。したがって、外部から印加される圧力が僅かでも 、より大きな出力を得ることができるため、圧電センサの感度を向上させることができる  [0089] As shown in FIG. 20, it was found that the output signal can be detected simultaneously from the external electrode 14b connected to the amplifier 1 and the central electrode 14a connected to the amplifier 2. Thus, it was found that even when a plurality of electrodes were used, the output signal could be detected simultaneously in each. This makes it possible to add individually detected output signals by matching the polarities of the output signals. Therefore, even if the pressure applied from the outside is small, a larger output can be obtained, so that the sensitivity of the piezoelectric sensor can be improved.
[0090] 次に、本実施の形態に力かる圧電センサ 1における温度特性および周波数特性を 調べる実験を行った。 [0090] Next, an experiment was conducted to examine the temperature characteristics and frequency characteristics of the piezoelectric sensor 1 that is effective in the present embodiment.
[0091] 図 21は、圧電センサ 1の温度変化に対する圧電応答性の変化を測定したグラフで ある。なお、圧電応答性は、 1-ユートン (N)当たりの電荷量、すなわち圧電定数を測 定することにより考察できる。図 21に示すように、圧電センサ 1は、 600°Cまで安定し た圧電特性を維持できることが分力つた。これにより、本実施形態における圧電セン サ 1によれば、構造物内部等の 500°C程度の高温環境下において、安定した測定が 可能となる。  FIG. 21 is a graph obtained by measuring the change in piezoelectric response to the temperature change of the piezoelectric sensor 1. The piezoelectric response can be considered by measuring the amount of charge per 1-Euton (N), that is, the piezoelectric constant. As shown in FIG. 21, it was found that the piezoelectric sensor 1 can maintain stable piezoelectric characteristics up to 600 ° C. Thereby, according to the piezoelectric sensor 1 in the present embodiment, stable measurement can be performed in a high-temperature environment of about 500 ° C. such as inside the structure.
[0092] また、図 22は、圧電センサ 1における周波数特性を示すグラフである。図 22に示す ように、 0. 3Hz〜: LOOHzまで測定可能であることが分かった。 [0093] 次に、本実施の形態に力かる圧電センサ 1において、圧力伝達部材にガラス基板 1 laを用いた場合の圧電素子 10に加えられる圧力に対する圧電素子 10 (圧電薄膜層 13)カゝら発生される電荷量を測定する実験を行った。 FIG. 22 is a graph showing frequency characteristics in the piezoelectric sensor 1. As shown in FIG. 22, it was found that measurement was possible from 0.3 Hz to: LOOHz. [0093] Next, in the piezoelectric sensor 1 according to the present embodiment, the piezoelectric element 10 (piezoelectric thin film layer 13) cover against the pressure applied to the piezoelectric element 10 when the glass substrate 1la is used as the pressure transmitting member. An experiment was carried out to measure the amount of charge generated from the above.
[0094] 図 23 (a)は、圧電センサ 1において、圧力伝達部材にガラス基板 11aを用いた場合 の圧電素子 10の概略構成を示す平面図であり、図 23 (b)は、本実験に用いた測定 系を示すものである。この測定系では、厚さ lmmのガラス基板 11a上に、厚さ 1 m の窒化アルミニウム(圧電薄膜層 13)を成膜し、その上に厚さ 0. 05〜0. の上 部電極 14を設けた圧電素子を使用している。なお、ガラス基板 11aと圧電薄膜層 13 との間には下部電極 12を設けている。そして、下部電極 12および上部電極 14とアン プとをそれぞれローノイズ同軸ケーブルにより接続し、アンプはオシロスコープと接続 する。  FIG. 23 (a) is a plan view showing a schematic configuration of the piezoelectric element 10 when the glass substrate 11a is used as the pressure transmission member in the piezoelectric sensor 1, and FIG. It shows the measurement system used. In this measurement system, an aluminum nitride (piezoelectric thin film layer 13) having a thickness of 1 m is formed on a glass substrate 11a having a thickness of 1 mm, and an upper electrode 14 having a thickness of 0.05 to 0. is formed thereon. The provided piezoelectric element is used. A lower electrode 12 is provided between the glass substrate 11a and the piezoelectric thin film layer 13. Then, the lower electrode 12 and the upper electrode 14 are connected to the amplifier by a low noise coaxial cable, and the amplifier is connected to the oscilloscope.
[0095] 図 24は、上記測定系において、圧電素子 10に圧力を印加したときの圧電薄膜層 1 3から発生する電荷量を示すグラフである。図の結果より、ガラス基板 11aに加えられ る力と圧電薄膜層 13から取り出される電荷量とは比例関係となることが分力 た。そ して、この比例関係を示す直線の傾きから圧電応答性すなわち圧電定数 d (pCZ  FIG. 24 is a graph showing the amount of charge generated from the piezoelectric thin film layer 13 when pressure is applied to the piezoelectric element 10 in the measurement system. From the results shown in the figure, it was found that the force applied to the glass substrate 11a and the amount of charge taken out from the piezoelectric thin film layer 13 are proportional to each other. The piezoelectric response, ie, the piezoelectric constant d (pCZ
33 33
N)を算出すると、 d = 75. 4となった。ここで、窒化アルミニウムを用いた従来の構 When N) is calculated, d = 75.4. Here, a conventional structure using aluminum nitride is used.
33  33
成では、上述のように d = 2であった。このように、圧力伝達部材にガラス基板を用  In the results, d = 2 as described above. In this way, a glass substrate is used for the pressure transmission member
33  33
いた場合でも、圧電素子 10の橈み効果を利用することによって、圧電素子 10の圧電 定数 d の値が大幅に増加することが分力つた。  Even in such a case, it was found that by using the stagnation effect of the piezoelectric element 10, the value of the piezoelectric constant d of the piezoelectric element 10 was significantly increased.
33  33
[0096] 以上のように、本発明の圧電センサは、第 1の面にて圧力を受け、その圧力により 電荷を発生する圧電素子を備えた圧電センサにおいて、前記第 1の面とは反対の第 2の面が臨む領域に空間が形成されている構成である。  [0096] As described above, the piezoelectric sensor of the present invention is a piezoelectric sensor including a piezoelectric element that receives a pressure on the first surface and generates electric charges by the pressure, and is opposite to the first surface. In this configuration, a space is formed in the region where the second surface faces.
[0097] これにより、外部で発生する圧力に応じて圧電素子を空間内部に橈ませることがで き、この橈みに応じた電荷を正確に発生させることができる。したがって、感度の低い 圧電素子を使用して、高感度が得られる圧電センサを提供することができるという効 果を奏する。  Accordingly, the piezoelectric element can be encased in the space according to the pressure generated outside, and the electric charge according to this stagnation can be generated accurately. Therefore, it is possible to provide a piezoelectric sensor that can obtain high sensitivity by using a piezoelectric element having low sensitivity.
[0098] 本発明の圧電センサは、前記圧電素子の前記第 2の面に導電部材をさらに備えて おり、前記導電部材が、前記圧電素子と電気的に接続されている接続面が前記圧電 素子の前記第 2の面における外周側の領域のみと接していることが好ましい。 The piezoelectric sensor of the present invention further includes a conductive member on the second surface of the piezoelectric element, and a connection surface where the conductive member is electrically connected to the piezoelectric element is the piezoelectric element. It is preferable that only the region on the outer peripheral side of the second surface of the element is in contact.
[0099] 上記の構成によれば、導電部材は、圧電素子の圧力を受ける面とは反対の電荷を 発生する面における外周側の領域のみと接しているので、圧電素子における電荷が 発生する側には、空間が形成されている。そのため圧力を受け取った圧電素子は、 圧力の方向つまり空間の方向へ橈むことができ、その内部に発生する応力に応じて 電荷を発生する。そして、圧電素子から発生した電荷を導電部材が取り出すことによ つて圧電素子に加えられた圧力を検出することができる。このように、圧電素子は、電 荷を取り出す導電部材に妨害されることなく空間の方向へ橈むことができるため、そ の圧力に応じた電荷を正確に発生することができる。したがって、感度の低い圧電素 子を使用した場合であっても高感度の圧電センサを得ることができる。 [0099] According to the above configuration, since the conductive member is in contact with only the outer peripheral region of the surface that generates the charge opposite to the surface that receives the pressure of the piezoelectric element, the charge generating side of the piezoelectric element is generated. A space is formed. Therefore, the piezoelectric element that has received the pressure can squeeze in the direction of the pressure, that is, the direction of the space, and generates an electric charge according to the stress generated in the inside. Then, the pressure applied to the piezoelectric element can be detected by the conductive member taking out the electric charge generated from the piezoelectric element. In this way, the piezoelectric element can be squeezed in the direction of the space without being obstructed by the conductive member that takes out the electric charge, and therefore it is possible to accurately generate electric charges according to the pressure. Therefore, a highly sensitive piezoelectric sensor can be obtained even when a piezoelectric element with low sensitivity is used.
[0100] 本発明の圧電センサでは、前記導電部材は、導電性の棒状部材であって軸方向 の一端面が前記接続面となり、この接続面の中央部寄りの位置に凹部が形成されて 、ることが好まし!/、。 [0100] In the piezoelectric sensor of the present invention, the conductive member is a conductive rod-shaped member, and one end surface in the axial direction serves as the connection surface, and a recess is formed at a position near the center of the connection surface. I like it! /
[0101] 上記の構成によれば、導電部材における、導電部材と圧電素子との接続面の中央 部寄りの位置に凹部が形成されている。これにより、圧電素子の圧力を受ける面とは 反対の面側には空間が形成されることになる。したがって、圧電素子が外部から圧力 を受けると、その圧力に応じて圧力の方向、つまり、導電部材の凹部の内部方向に 導電部材に妨害されることなく橈むことができる。そして、圧電素子の橈みに応じた応 力が圧電素子の内部に発生し、その応力に応じた電荷が発生する。このように、導電 部材に凹部を形成することによって圧電素子は橈むことができる。  [0101] According to the above configuration, the recess is formed in the conductive member at a position near the center of the connection surface between the conductive member and the piezoelectric element. As a result, a space is formed on the side opposite to the surface receiving the pressure of the piezoelectric element. Therefore, when the piezoelectric element receives pressure from the outside, the piezoelectric element can be squeezed in the direction of pressure according to the pressure, that is, in the inner direction of the recess of the conductive member without being obstructed by the conductive member. A stress corresponding to the sag of the piezoelectric element is generated inside the piezoelectric element, and an electric charge corresponding to the stress is generated. In this way, the piezoelectric element can be sandwiched by forming a recess in the conductive member.
[0102] 本発明の圧電センサでは、前記圧電素子を装着するための筐体をさらに備えてお り、前記筐体の前端壁に形成される開口部が前記第 1の面に位置し、前記第 2の面 に配置された前記棒状部材により前記圧電素子が前記前端壁と前記棒状部材との 間に固定されて 、ることが好ま 、。  [0102] The piezoelectric sensor of the present invention further includes a housing for mounting the piezoelectric element, wherein an opening formed in a front end wall of the housing is located on the first surface, The piezoelectric element is preferably fixed between the front end wall and the rod-shaped member by the rod-shaped member disposed on the second surface.
[0103] 上記の構成によれば、圧電素子を装着するための筐体の前端壁に開口部が形成 されており、その開口部は前記第 1の面に位置している。そして、前記第 2の面に配 置された棒状部材により圧電素子が前記前端壁と棒状部材との間に固定されている [0104] これにより、圧電素子は、その圧力を受ける面 (第 1の面)が開口部力 露出した状 態で、開口部が形成される筐体の前端壁と棒状部材との間に固定される。したがって 、圧電素子は、外部からの圧力を受け、その圧力の方向にのみ橈むことができる。 [0103] According to the above configuration, the opening is formed in the front end wall of the housing for mounting the piezoelectric element, and the opening is located on the first surface. The piezoelectric element is fixed between the front end wall and the rod-shaped member by the rod-shaped member disposed on the second surface. Thus, the piezoelectric element is fixed between the front end wall of the housing where the opening is formed and the rod-shaped member with the pressure receiving surface (first surface) exposed to the opening force. Is done. Therefore, the piezoelectric element can receive pressure from the outside and can squeeze only in the direction of the pressure.
[0105] 本発明の圧電センサでは、前記圧電素子は、該圧電素子から発生する電荷を取り 出す上部電極を備えており、前記上部電極は、前記圧力が作用して前記圧電素子 の内部に生じる圧縮応力または引張応力によって発生する電荷を取り出すように設 けられていることが好ましい。  [0105] In the piezoelectric sensor of the present invention, the piezoelectric element includes an upper electrode that extracts electric charges generated from the piezoelectric element, and the upper electrode is generated inside the piezoelectric element by the action of the pressure. It is preferable that an electric charge generated by compressive stress or tensile stress is taken out.
[0106] 圧電素子は、橈みが作用してその内部に圧縮応力と引張応力とが発生する。具体 的には、圧電素子に圧力が加わり橈みが発生したとき、圧電素子の中央付近は両端 方向へ引っ張られる。これにより、圧電素子の中央付近には引張応力が発生する。 一方、圧電素子の両端付近は収縮方向へ圧縮される。これにより、圧電素子の両端 付近には圧縮応力が発生する。  [0106] The piezoelectric element generates a compressive stress and a tensile stress due to stagnation. Specifically, when pressure is applied to the piezoelectric element and stagnation occurs, the vicinity of the center of the piezoelectric element is pulled in both directions. Thereby, tensile stress is generated near the center of the piezoelectric element. On the other hand, the vicinity of both ends of the piezoelectric element is compressed in the contraction direction. As a result, compressive stress is generated near both ends of the piezoelectric element.
[0107] ところで、圧電素子において圧縮応力によって発生する電荷と引張応力によって発 生する電荷とは、その極性が異なる。そのため、電極層によって両応力により発生す る電荷を取り出すと、互いに相殺されてしま 、十分な電荷を取り出すことができな!/、。  By the way, the charge generated by the compressive stress in the piezoelectric element and the charge generated by the tensile stress have different polarities. Therefore, if the electric charges generated by both stresses are taken out by the electrode layer, they cancel each other out, so that it is impossible to take out enough electric charges!
[0108] 上記の構成によれば、上部電極が、圧電素子の圧縮応力または引張応力によって 発生する電荷を取り出すように設けられて 、る。  [0108] According to the above configuration, the upper electrode is provided so as to take out the electric charge generated by the compressive stress or tensile stress of the piezoelectric element.
[0109] これにより、例えば、上部電極は、圧縮応力によって発生した電荷を引張応力によ つて発生した電荷に相殺されることなぐ圧電素子力も取り出すことができる。したが つて、上部電極は、圧電素子力も十分な量の電荷を取り出すことができる。これにより 、圧電素子に加わる圧力が僅かでも、圧電素子力もより多くの電荷を取り出すことが できるため、外部で発生した僅かな圧力をも検出することができる。  Accordingly, for example, the upper electrode can take out the piezoelectric element force that does not cancel the charge generated by the compressive stress with the charge generated by the tensile stress. Therefore, the upper electrode can extract a sufficient amount of electric charge with the piezoelectric element force. As a result, even if the pressure applied to the piezoelectric element is small, more electric charge can be taken out with the piezoelectric element force, so that even a slight pressure generated outside can be detected.
[0110] 本発明の圧電センサでは、前記圧電素子は、圧力を受けて電荷を発生する圧電薄 膜層と前記圧電薄膜層から発生する電荷を取り出す上部電極とを備えており、前記 上部電極は前記圧電薄膜層の前記第 2の面における外周側の領域のみと接してい ることが好ましい。  [0110] In the piezoelectric sensor of the present invention, the piezoelectric element includes a piezoelectric thin film layer that generates a charge upon receiving a pressure, and an upper electrode that extracts the charge generated from the piezoelectric thin film layer. It is preferable that the piezoelectric thin film layer is in contact with only the outer peripheral region of the second surface.
[0111] 上記の構成によれば、上部電極は、圧電薄膜層の圧力を受ける面とは反対の電荷 を発生する面における外周側の領域のみと接しているので、圧電薄膜層における電 荷が発生する側には、空間が形成されている。そのため、圧力を受け取った圧電薄 膜層は、圧力の方向つまり空間の方向へ橈むことができ、その内部に発生する応力 に応じて電荷を発生する。そして、圧電薄膜層から発生した電荷を上部電極が取り 出すことによって圧電素子に加えられた圧力を検出することができる。 [0111] According to the above configuration, the upper electrode is in contact with only the outer peripheral region of the surface that generates a charge opposite to the pressure receiving surface of the piezoelectric thin film layer. A space is formed on the side where the load is generated. For this reason, the piezoelectric thin film layer that has received the pressure can swell in the direction of pressure, that is, the direction of the space, and generates an electric charge according to the stress generated therein. The pressure applied to the piezoelectric element can be detected by the upper electrode taking out the electric charge generated from the piezoelectric thin film layer.
[0112] 本発明の圧電センサでは、前記圧電素子を装着するための筐体を備えており、前 記圧電素子は、圧力を受けて電荷を発生する圧電薄膜層を備えており、前記圧電薄 膜層は前記筐体の前端壁に形成され、この前端壁における前記圧電薄膜層が形成 されて 、る部分はダイァフラムとして機能するようにカ卩ェされて 、ることが好まし!/、。具 体的には、圧電薄膜層が形成される前端壁の厚さを 0. 005mm以上 10mm以下と することが好ましい。  [0112] The piezoelectric sensor of the present invention includes a housing for mounting the piezoelectric element, and the piezoelectric element includes a piezoelectric thin film layer that generates a charge upon receiving pressure, It is preferable that the film layer is formed on the front end wall of the casing, and the piezoelectric thin film layer on the front end wall is formed, and the portion is covered so as to function as a diaphragm! /. Specifically, the thickness of the front end wall on which the piezoelectric thin film layer is formed is preferably 0.005 mm or more and 10 mm or less.
[0113] 上記の構成によれば、圧力を受けて電荷を発生する圧電薄膜層が筐体の前端壁 に直接形成されている。そして、圧電薄膜層が形成されている前端壁はダイアフラム として機能するように加工されている。ここで、ダイァフラムとは、加えられる圧力に応 じて変形する膜状体を言う。  [0113] According to the above configuration, the piezoelectric thin film layer that generates an electric charge by receiving pressure is directly formed on the front end wall of the casing. The front end wall on which the piezoelectric thin film layer is formed is processed so as to function as a diaphragm. Here, the diaphragm is a film-like body that deforms in response to an applied pressure.
[0114] これにより、圧力を受ける前端壁は圧力の方向に橈むことができ、この橈みに付随 して圧電薄膜層も橈むことができる。このように、圧電薄膜層は筐体に直接形成され ても橈むことができるため、圧電素子の構成を簡略ィ匕できる。したがって、小型でコス トの低 、高感度の圧電センサを得ることができる。  [0114] Thus, the front end wall that receives pressure can be squeezed in the direction of pressure, and the piezoelectric thin film layer can be squeezed along with this stagnation. As described above, since the piezoelectric thin film layer can be formed directly on the housing, the structure of the piezoelectric element can be simplified. Therefore, it is possible to obtain a piezoelectric sensor with a small size, low cost, and high sensitivity.
[0115] 本発明の圧電センサでは、前記圧電素子を装着するための筐体を備えており、前 記圧電素子は、前記第 1の面側に位置する圧力伝達部材と、前記第 2の面側に位置 する、圧力を受けて電荷を発生する圧電薄膜層と、前記圧電薄膜層から発生する電 荷を取り出す上部電極とを備えており、前記筐体は開口部を有し、前記圧力伝達部 材は、前記圧電薄膜層と前記上部電極とが前記筐体内部に収容され、かつ前記圧 力伝達部材の外周側の領域のみが前記開口部の周囲の領域と接するように前記開 口部に設けられて 、ることが好まし 、。  [0115] The piezoelectric sensor of the present invention includes a housing for mounting the piezoelectric element. The piezoelectric element includes a pressure transmission member positioned on the first surface side and the second surface. A piezoelectric thin film layer that generates a charge upon receiving pressure, and an upper electrode that extracts electric charge generated from the piezoelectric thin film layer, and the housing has an opening, and the pressure transmission The member includes the opening portion so that the piezoelectric thin film layer and the upper electrode are accommodated in the housing, and only a region on the outer peripheral side of the pressure transmission member is in contact with a region around the opening. It is preferred to be provided in.
[0116] 上記の構成によれば、圧力を受ける圧力伝達部材は、圧電薄膜層と上部電極とを 収容する筐体における開口部の周囲の領域と接するように前記開口部に設けられて いる。 [0117] これにより、筐体と圧力伝達部材とは、外周側の領域以外つまり中央側の領域にお いて接することがない。すなわち、筐体の内部方向、つまり圧電薄膜層における電荷 が発生する側には空間が形成されている。そのため圧力を受け取った圧力伝達部材 は、圧力の方向つまり空間の方向へ橈むことができ、その橈みに付随して圧電薄膜 層も橈むことができる。このように、圧力を受ける面とは反対の面に空間を形成するこ とによって、圧電素子は妨害されることなく空間の方向へ橈むことができる。 [0116] According to the above configuration, the pressure transmission member that receives pressure is provided in the opening so as to be in contact with the region around the opening in the housing that accommodates the piezoelectric thin film layer and the upper electrode. [0117] Thus, the casing and the pressure transmission member do not come into contact with each other in the region on the central side other than the region on the outer peripheral side. That is, a space is formed in the inner direction of the housing, that is, on the side where electric charges are generated in the piezoelectric thin film layer. Therefore, the pressure transmission member that has received the pressure can squeeze in the direction of the pressure, that is, the direction of the space, and the piezo-electric thin film layer can squeeze along with the stagnation. Thus, by forming the space on the surface opposite to the surface that receives the pressure, the piezoelectric element can be held in the direction of the space without being obstructed.
[0118] 本発明の圧電センサでは、前記上部電極に導線が接続されていることが好ましい。  [0118] In the piezoelectric sensor of the present invention, it is preferable that a conductive wire is connected to the upper electrode.
[0119] 上記の構成によれば、上部電極に導線が接続されているので、圧電薄膜層から発 生した電荷は導線にて取り出される。そして、取り出された電荷を検出することによつ て、圧力伝達手段に加えられた圧力を検出することができる。  [0119] According to the above configuration, since the conducting wire is connected to the upper electrode, the electric charge generated from the piezoelectric thin film layer is taken out by the conducting wire. Then, the pressure applied to the pressure transmission means can be detected by detecting the extracted electric charge.
[0120] 本発明の圧電センサでは、上部電極は、円環状部材であって一面が前記圧電薄 膜層と接続する接続面となり、この接続面が前記圧電薄膜層の前記第 2の面におけ る外周側の領域のみと接して 、ることが好ま 、。  [0120] In the piezoelectric sensor of the present invention, the upper electrode is an annular member, and one surface serves as a connection surface connected to the piezoelectric thin film layer, and this connection surface is located on the second surface of the piezoelectric thin film layer. It is preferable to touch only the outer peripheral area.
[0121] 上記の構成によれば、円環状の上部電極は、圧電薄膜層の第 2の面における外周 側の領域のみと接しているので上部電極の内部は中空空間が形成されている。した がって、圧電薄膜層は上部電極の空間方向に橈むことができる。  [0121] According to the above configuration, the annular upper electrode is in contact with only the outer peripheral region of the second surface of the piezoelectric thin film layer, so that a hollow space is formed inside the upper electrode. Therefore, the piezoelectric thin film layer can be sandwiched in the spatial direction of the upper electrode.
[0122] 本発明の圧電センサでは、前記圧電素子は、該圧電素子から発生する電荷を取り 出す上部電極を備えており、前記上部電極は、前記圧力が作用して前記圧電素子 の内部に生じる圧縮応力によって発生する電荷および引張応力によって発生する電 荷を、それぞれ個別に取り出すように設けられて 、ることが好ま 、。  [0122] In the piezoelectric sensor of the present invention, the piezoelectric element includes an upper electrode that extracts electric charges generated from the piezoelectric element, and the upper electrode is generated inside the piezoelectric element by the action of the pressure. It is preferable that the electric charge generated by the compressive stress and the electric charge generated by the tensile stress are individually taken out.
[0123] 圧電素子は、外部からの圧力により生じる橈みが作用して、その内部に圧縮応力 および引張応力が発生する。し力しながら、圧電素子において圧縮応力によって発 生する電荷と引張応力によって発生する電荷とは、その極性が異なるため、電極層 によって両応力により発生する電荷を取り出すと、互いに相殺されてしま 、十分な電 荷を取り出すことができな 、。  [0123] The piezoelectric element receives a stagnation caused by an external pressure, and generates a compressive stress and a tensile stress therein. However, the charge generated by the compressive stress in the piezoelectric element and the charge generated by the tensile stress in the piezoelectric element have different polarities, so if the charge generated by both stresses is taken out by the electrode layer, they will cancel each other out. I can't get enough charge.
[0124] これに対して、上記の構成によれば、上部電極は、圧縮応力によって発生する電荷 および引張応力によって発生する電荷を、それぞれ個別に取り出すように設けられて いる。 [0125] これにより、圧縮応力によって発生した電荷と、引張応力によって発生した電荷とを 別々に取り出せるため、両者を足し合わせた十分な量の電荷を検出することができる 。なお、両者を足し合わせて、増幅した電荷(出力)を得るためには、一方の電荷の 極性を反転させることにより可能となる。これにより、圧電素子に加わる圧力が僅かで も、圧電素子全体力もより多くの電荷を取り出すことができるため、外部で発生した僅 力な圧力をも検出することができる。すなわち、圧電センサの感度をより向上させるこ とがでさる。 [0124] On the other hand, according to the above configuration, the upper electrode is provided so as to individually take out the charge generated by the compressive stress and the charge generated by the tensile stress. [0125] Accordingly, since the charge generated by the compressive stress and the charge generated by the tensile stress can be taken out separately, a sufficient amount of charge obtained by adding both can be detected. In order to obtain an amplified charge (output) by adding both, it is possible to invert the polarity of one charge. As a result, even if the pressure applied to the piezoelectric element is small, more electric charge can be taken out with the entire force of the piezoelectric element, so that even a slight pressure generated outside can be detected. That is, the sensitivity of the piezoelectric sensor can be further improved.
[0126] 本発明の圧電センサでは、前記圧電素子は、圧力を受けて電荷を発生する圧電薄 膜層と前記圧電薄膜層から発生する電荷を取り出す上部電極とを備えており、前記 上部電極は、前記圧電薄膜層の前記第 2の面における、外周側の領域および中央 部寄りの領域にそれぞれ個別に設けられていることが好ましい。  [0126] In the piezoelectric sensor of the present invention, the piezoelectric element includes a piezoelectric thin film layer that generates a charge upon receiving a pressure, and an upper electrode that extracts the charge generated from the piezoelectric thin film layer. It is preferable that the piezoelectric thin film layer is individually provided in an outer peripheral region and a central region on the second surface.
[0127] ここで、圧電素子は、外部力もの圧力により生じる橈みが作用して、前記第 2の面に おける外周側の領域には圧縮応力が発生し、前記第 2の面における中央部寄りの領 域には引張応力が発生する。  [0127] Here, the piezoelectric element is subjected to the stagnation caused by the pressure of an external force, and compressive stress is generated in the outer peripheral side region of the second surface, and the central portion of the second surface is Tensile stress is generated in the region close to it.
[0128] 上記の構成によれば、上部電極は、圧電薄膜層の圧力を受ける面とは反対の電荷 を発生する面における、外周側の領域および中央部寄りの領域にそれぞれ個別に 設けられるため、圧縮応力によって発生する電荷および引張応力によって発生する 電荷を、それぞれ個別に取り出すことが可能となる。  [0128] According to the above configuration, the upper electrode is individually provided in the outer peripheral region and the central region on the surface that generates charges opposite to the surface receiving the pressure of the piezoelectric thin film layer. It is possible to individually take out the charge generated by the compressive stress and the charge generated by the tensile stress.
[0129] したがって、いずれか一方の電荷の極性を反転させる方法等により、圧縮応力およ び引張応力によって発生した電荷を足し合わせた十分な量の電荷を検出することが できる。これにより、圧電素子に加わる圧力が僅かでも、圧電素子からより多くの電荷 を取り出すことができるため、外部で発生した僅かな圧力をも検出することができる。 すなわち、圧電センサの感度をより向上させることができる。  Therefore, a sufficient amount of charges obtained by adding the charges generated by compressive stress and tensile stress can be detected by a method of reversing the polarity of one of the charges. As a result, even if the pressure applied to the piezoelectric element is small, more charges can be taken out from the piezoelectric element, so that even a slight pressure generated outside can be detected. That is, the sensitivity of the piezoelectric sensor can be further improved.
[0130] 発明の詳細な説明の項においてなされた具体的な実施態様または実施例は、あく までも、本発明の技術内容を明らかにするものであって、そのような具体例にのみ限 定して狭義に解釈されるべきものではなぐ本発明の精神と次に記載する特許請求 事項との範囲内で、いろいろと変更して実施することができるものである。  [0130] The specific embodiments or examples made in the detailed description of the invention are to clarify the technical contents of the present invention, and are limited to such specific examples. Therefore, various modifications may be made within the scope of the spirit of the present invention and the claims described below.
産業上の利用の可能性 本発明の圧電センサは、高温環境下において被測定物の振動、圧力等を検出す ることができるため、原子力発電所等のプラントにおけるパイプやタンク内の高温高 圧流体の圧力変動計測等へも適用できる。 Industrial applicability Since the piezoelectric sensor of the present invention can detect the vibration, pressure, etc. of an object to be measured in a high temperature environment, it can be used for measuring pressure fluctuations of high temperature and high pressure fluid in pipes and tanks in plants such as nuclear power plants. Is also applicable.

Claims

請求の範囲 The scope of the claims
[1] 第 1の面にて圧力を受け、その圧力により電荷を発生する圧電素子を備えた圧電 センサにおいて、  [1] In a piezoelectric sensor having a piezoelectric element that receives pressure on the first surface and generates electric charge by the pressure,
前記第 1の面とは反対の第 2の面が臨む領域に空間が形成されていることを特徴と する圧電センサ。  A piezoelectric sensor characterized in that a space is formed in a region facing a second surface opposite to the first surface.
[2] 前記圧電素子の前記第 2の面に導電部材が設けられ、前記導電部材の前記圧電 素子と電気的に接続されている接続面が前記圧電素子の前記第 2の面における外 周側の領域のみと接して 、ることを特徴とする請求項 1に記載の圧電センサ。  [2] A conductive member is provided on the second surface of the piezoelectric element, and a connection surface electrically connected to the piezoelectric element of the conductive member is an outer peripheral side of the second surface of the piezoelectric element. The piezoelectric sensor according to claim 1, wherein the piezoelectric sensor is in contact with only the region.
[3] 前記導電部材は、導電性の棒状部材であって軸方向の一端面が前記接続面とな り、この接続面の中央部寄りの位置に凹部が形成されていることを特徴とする請求項 2に記載の圧電センサ。  [3] The conductive member is a conductive rod-shaped member, wherein one end surface in the axial direction serves as the connection surface, and a recess is formed at a position near the center of the connection surface. The piezoelectric sensor according to claim 2.
[4] 前記圧電素子を装着するための筐体を備えており、前記筐体の前端壁に形成され る開口部が前記第 1の面に位置し、前記第 2の面に配置された前記棒状部材により 前記圧電素子が前記前端壁と前記棒状部材との間に固定されていることを特徴とす る請求項 3に記載の圧電センサ。  [4] A housing for mounting the piezoelectric element is provided, and an opening formed in a front end wall of the housing is located on the first surface and disposed on the second surface. 4. The piezoelectric sensor according to claim 3, wherein the piezoelectric element is fixed between the front end wall and the rod-shaped member by a rod-shaped member.
[5] 前記圧電素子は、該圧電素子から発生する電荷を取り出す上部電極を備えており 前記上部電極は、前記圧力が作用して前記圧電素子の内部に生じる圧縮応力ま たは引張応力によって発生する電荷を取り出すように設けられて 、ることを特徴とす る請求項 1または 2に記載の圧電センサ。  [5] The piezoelectric element is provided with an upper electrode for extracting electric charges generated from the piezoelectric element, and the upper electrode is generated by a compressive stress or a tensile stress generated in the piezoelectric element by the action of the pressure. The piezoelectric sensor according to claim 1, wherein the piezoelectric sensor is provided so as to take out a charge to be removed.
[6] 前記圧電素子は、圧力を受けて電荷を発生する圧電薄膜層と前記圧電薄膜層か ら発生する電荷を取り出す上部電極とを備えており、 [6] The piezoelectric element includes a piezoelectric thin film layer that generates a charge under pressure and an upper electrode that extracts the charge generated from the piezoelectric thin film layer,
前記上部電極は前記圧電薄膜層の前記第 2の面における外周側の領域のみと接 していることを特徴とする請求項 1または 2に記載の圧電センサ。  3. The piezoelectric sensor according to claim 1, wherein the upper electrode is in contact with only an outer peripheral region of the second surface of the piezoelectric thin film layer.
[7] 前記圧電素子を装着するための筐体を備えており、 [7] A housing for mounting the piezoelectric element is provided,
前記圧電素子は、圧力を受けて電荷を発生する圧電薄膜層を備えており、 前記圧電薄膜層は前記筐体の前端壁に形成され、この前端壁における前記圧電 薄膜層が形成されて ヽる部分はダイァフラムとして機能するように加工されて ヽること を特徴とする請求項 1または 2に記載の圧電センサ。 The piezoelectric element includes a piezoelectric thin film layer that generates a charge upon receiving pressure, and the piezoelectric thin film layer is formed on a front end wall of the casing, and the piezoelectric thin film layer is formed on the front end wall. The part is processed to function as a diaphragm. The piezoelectric sensor according to claim 1 or 2, wherein:
[8] 前記圧電素子を装着するための筐体を備えており、 [8] includes a housing for mounting the piezoelectric element;
前記圧電素子は、前記第 1の面側に位置する圧力伝達部材と、前記第 2の面側に 位置する、圧力を受けて電荷を発生する圧電薄膜層と、前記圧電薄膜層から発生す る電荷を取り出す上部電極とを備えており、  The piezoelectric element is generated from the pressure transmission member located on the first surface side, the piezoelectric thin film layer located on the second surface side, which generates electric charge under pressure, and the piezoelectric thin film layer. And an upper electrode for extracting electric charge,
前記筐体は開口部を有し、前記圧力伝達部材は、前記圧電薄膜層と前記上部電 極とが前記筐体内部に収容され、かつ前記圧力伝達部材の外周側の領域のみが前 記開口部の周囲の領域と接するように前記開口部に設けられていることを特徴とする 請求項 1に記載の圧電センサ。  The casing has an opening, and the pressure transmission member includes the piezoelectric thin film layer and the upper electrode accommodated inside the casing, and only the outer peripheral region of the pressure transmission member is opened. The piezoelectric sensor according to claim 1, wherein the piezoelectric sensor is provided in the opening so as to be in contact with a region around the portion.
[9] 前記上部電極に導線が接続されて!ヽることを特徴とする請求項 8に記載の圧電セ ンサ。 [9] A conductor is connected to the upper electrode! The piezoelectric sensor according to claim 8, wherein the piezoelectric sensor is wound.
[10] 前記上部電極は、円環状部材であって一面が前記圧電薄膜層と接続する接続面 となり、この接続面が前記圧電薄膜層の前記第 2の面における外周側の領域のみと 接して 、ることを特徴とする請求項 9に記載の圧電センサ。  [10] The upper electrode is an annular member, and one surface serves as a connection surface connected to the piezoelectric thin film layer, and this connection surface is in contact with only the outer peripheral region of the second surface of the piezoelectric thin film layer. The piezoelectric sensor according to claim 9, wherein:
[11] 前記圧電素子は、該圧電素子から発生する電荷を取り出す上部電極を備えており 前記上部電極は、前記圧力が作用して前記圧電素子の内部に生じる圧縮応力に よって発生する電荷および引張応力によって発生する電荷を、それぞれ個別に取り 出すように設けられていることを特徴とする請求項 1または 2に記載の圧電センサ。  [11] The piezoelectric element includes an upper electrode for extracting electric charges generated from the piezoelectric element, and the upper electrode is charged and tensile generated by compressive stress generated in the piezoelectric element by the action of the pressure. 3. The piezoelectric sensor according to claim 1, wherein the piezoelectric sensor is provided so as to individually take out the electric charges generated by the stress.
[12] 前記圧電素子は、圧力を受けて電荷を発生する圧電薄膜層と前記圧電薄膜層か ら発生する電荷を取り出す上部電極とを備えており、 [12] The piezoelectric element includes a piezoelectric thin film layer that generates a charge under pressure, and an upper electrode that extracts the charge generated from the piezoelectric thin film layer,
前記上部電極は、前記圧電薄膜層の前記第 2の面における、外周側の領域および 中央部寄りの領域にそれぞれ個別に設けられていることを特徴とする請求項 1または 2に記載の圧電センサ。  3. The piezoelectric sensor according to claim 1, wherein the upper electrode is individually provided in a region on the outer peripheral side and a region near the center of the second surface of the piezoelectric thin film layer. .
PCT/JP2006/317811 2005-09-14 2006-09-08 Piezoelectric sensor WO2007032259A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-267643 2005-09-14
JP2005267643 2005-09-14
JP2006-170126 2006-06-20
JP2006170126A JP4883768B2 (en) 2005-09-14 2006-06-20 Piezoelectric sensor

Publications (1)

Publication Number Publication Date
WO2007032259A1 true WO2007032259A1 (en) 2007-03-22

Family

ID=37864854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/317811 WO2007032259A1 (en) 2005-09-14 2006-09-08 Piezoelectric sensor

Country Status (2)

Country Link
JP (1) JP4883768B2 (en)
WO (1) WO2007032259A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7829960B2 (en) 2007-12-10 2010-11-09 Seiko Epson Corporation Semiconductor pressure sensor, method for producing the same, semiconductor device, and electronic apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5309898B2 (en) * 2008-10-31 2013-10-09 セイコーエプソン株式会社 Pressure sensor device
JP2020088284A (en) * 2018-11-29 2020-06-04 大日本印刷株式会社 Piezoelectric laminate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55160820A (en) * 1979-06-01 1980-12-15 Nissan Motor Co Ltd Vibration sensor
JPS5612516A (en) * 1979-07-13 1981-02-06 Nissan Motor Co Ltd Oscillation sensor
JPS5612515A (en) * 1979-07-13 1981-02-06 Nissan Motor Co Ltd Oscillation sensor
JPS5654445U (en) * 1979-10-03 1981-05-13
JP2004156991A (en) * 2002-11-06 2004-06-03 National Institute Of Advanced Industrial & Technology Piezo-electric sensor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5654445A (en) * 1979-10-09 1981-05-14 Canon Inc Microencapsulated toner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55160820A (en) * 1979-06-01 1980-12-15 Nissan Motor Co Ltd Vibration sensor
JPS5612516A (en) * 1979-07-13 1981-02-06 Nissan Motor Co Ltd Oscillation sensor
JPS5612515A (en) * 1979-07-13 1981-02-06 Nissan Motor Co Ltd Oscillation sensor
JPS5654445U (en) * 1979-10-03 1981-05-13
JP2004156991A (en) * 2002-11-06 2004-06-03 National Institute Of Advanced Industrial & Technology Piezo-electric sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7829960B2 (en) 2007-12-10 2010-11-09 Seiko Epson Corporation Semiconductor pressure sensor, method for producing the same, semiconductor device, and electronic apparatus

Also Published As

Publication number Publication date
JP2007108161A (en) 2007-04-26
JP4883768B2 (en) 2012-02-22

Similar Documents

Publication Publication Date Title
US7152482B2 (en) Piezoelectric sensor and input device including same
CN101322258B (en) A piezoelectric element and method for manufacturing
EP2290345B1 (en) Thin-film transistor based piezoelectric strain sensor and manufacturing method
JP4810661B2 (en) Electromechanical transducer and method for manufacturing the same
JP5748257B2 (en) High-temperature pressure sensor element for measuring the internal pressure of the engine, its manufacturing method, and engine parts
JP4126370B2 (en) Thin film type piezoelectric sensor
WO2007032259A1 (en) Piezoelectric sensor
JP4756309B2 (en) High sensitivity piezoelectric element
JP4126369B2 (en) Piezoelectric sensor
US6171420B1 (en) Manufacturing process of functional film element
EP3091586B1 (en) High temperature flexural mode piezoelectric dynamic pressure sensor and method of forming the same
JP2015204544A (en) Mems element, method of manufacturing mems element, and electronic apparatus
JP4803633B2 (en) Piezoelectric detector
EP2660577B1 (en) Pressure sensor element
WO2004066406A2 (en) A piezoelectric element and method for manufacturing
JP2013134116A (en) Pressure sensor element
US9816854B2 (en) Capacitive ultrasonic transducer
JP2000315805A (en) Strain detecting element and manufacture of the same
JP3020130B2 (en) Composite material with pressure measurement function
EP3012879A1 (en) Manufacturing method for high-temperature piezoelectric element electrode and piezoelectric element structure
JP5832059B2 (en) Pressure measuring device
US9404938B2 (en) Acceleration sensor
JPH11284242A (en) Piezoelectric thin film and its manufacture
CN117784105A (en) Ultrasonic sensing device and manufacturing method thereof
JPH0338672Y2 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06797667

Country of ref document: EP

Kind code of ref document: A1