WO2007032121A1 - Water-vapor transfer controller - Google Patents

Water-vapor transfer controller Download PDF

Info

Publication number
WO2007032121A1
WO2007032121A1 PCT/JP2006/308933 JP2006308933W WO2007032121A1 WO 2007032121 A1 WO2007032121 A1 WO 2007032121A1 JP 2006308933 W JP2006308933 W JP 2006308933W WO 2007032121 A1 WO2007032121 A1 WO 2007032121A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
water vapor
movement control
control device
mounting nut
Prior art date
Application number
PCT/JP2006/308933
Other languages
French (fr)
Japanese (ja)
Inventor
Kunitaka Mizobe
Original Assignee
Kyushu Sankosha Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2005/017332 external-priority patent/WO2007032092A1/en
Application filed by Kyushu Sankosha Inc. filed Critical Kyushu Sankosha Inc.
Priority to JP2006548434A priority Critical patent/JP4509123B2/en
Publication of WO2007032121A1 publication Critical patent/WO2007032121A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/268Drying gases or vapours by diffusion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K17/00Safety valves; Equalising valves, e.g. pressure relief valves
    • F16K17/36Safety valves; Equalising valves, e.g. pressure relief valves actuated in consequence of extraneous circumstances, e.g. shock, change of position
    • F16K17/38Safety valves; Equalising valves, e.g. pressure relief valves actuated in consequence of extraneous circumstances, e.g. shock, change of position of excessive temperature
    • F16K17/383Safety valves; Equalising valves, e.g. pressure relief valves actuated in consequence of extraneous circumstances, e.g. shock, change of position of excessive temperature the valve comprising fusible, softening or meltable elements, e.g. used as link, blocking element, seal, closure plug

Definitions

  • the present invention mainly relates to a water vapor movement control device used as a dehumidifying device by controlling the movement direction of water vapor with a special film body and its arrangement, and in particular, has entered the water vapor movement control device.
  • a plurality of spacer cylinders are directly fitted inside an outer casing, and a film body having air permeability and moisture permeability is interposed between the plurality of spacer cylinders.
  • a small chamber is formed by being sandwiched and partitioned by this film body (see Japanese Patent Application Laid-Open No. HEI 5-3 2 0 60).
  • This water vapor movement control apparatus is used with one of the outer casings open to the outside and the other opened to the inside of a box or the like (box, container, etc.).
  • the temperature and moisture permeability are used to control the movement of water vapor inside the box etc. according to the temperature fluctuation speed of the outside air and the box.
  • the feature of such a water vapor movement control device is that even if an abnormality occurs in the seal of a box or the like that houses electrical equipment such as an electric box or a container, it is possible to use a film body that has a large amount of water vapor movement. It is possible to promote the discharge of water vapor and adjust the humidity inside the box that houses the equipment.
  • the conventional device when protecting equipment that undergoes humidity adjustment in the space that is subject to humidity adjustment, the conventional device uses a film body with a large amount of water vapor movement to reduce stress on each seal. Ingenuity was done.
  • the life of the sealing performance of the box airtightness by various means to ensure airtightness
  • the breathing phenomenon with the external environment air accompanied by the environmental temperature change.
  • the sealability has been severely damaged or destroyed, water has entered due to an accident, or when breathing with the external environment air has been lost. There was a problem that drainage was difficult.
  • An object of the present invention is to provide a water vapor movement control device having a drainage structure.
  • a plurality of spacer cylinders are fitted inside the inner cylinder, and a film body having air permeability and moisture permeability is sandwiched between the spacer cylinders in a compressed state with an airtight seal.
  • a small chamber unit is formed in which a small chamber defined by the film body is formed.
  • the upper male screw part formed at the upper end is inserted into a mounting hole formed in the bottom wall of the box body, and the mounting nut is screwed into the upper male screw part from the inside of the box body, etc.
  • Tube casing is attached,
  • the small chamber unit Inside the outer casing, the small chamber unit is fitted with a drainage gap.
  • Water accumulated inside the box or the like flows into the outer cylinder casing through a slit formed in the upper male screw portion from a notch formed in the end face of the mounting nut, and the drainage channel. Shaped to drain outside through the gap,
  • the drainage channel gap is normally closed by the water-soluble sealing substance, and when the water enters, the water-soluble sealing substance dissolves and the drainage channel gap is opened to the outside.
  • the water vapor movement control device wherein the top of the mounting nut A notch is formed on both lower end surfaces, and the mounting nut is formed so that the notch on the lower end side communicates with a slit formed on the upper male screw when the mounting nut is screwed. It was formed so that it could be used in reverse. '
  • the water vapor movement control device of the present invention (Claim 3)
  • the water vapor movement control device according to claim 1 or 2, wherein a back portion of the notch portion is formed in an arc shape.
  • the water vapor movement control device of the present invention (Claim 4)
  • This locking claw is formed so as to be inclined so that the side facing the loosening direction of the mounting nut (upward side) faces upward and the side of the mounting nut loosening direction (downward side) faces downward
  • the upper side is locked to the bottom surface of the mounting nut with elasticity in a direction to return to the inclined state with respect to the tightening of the mounting nut
  • the lower side is the upper surface of the bottom wall of the box or the like
  • the locking claws are formed in a number different from the number of the plurality of notches formed at equal intervals on the mounting nut, thereby tightening the mounting nut.
  • the loose stopper washer is configured to be mounted between the bottom wall of the box or the like and the mounting nut in a state of being deformed into a wave shape.
  • the water vapor movement control device of the present invention (Claim 5)
  • the water vapor movement control device according to any one of claims 1 to 4, wherein an upper end portion of a drainage channel gap is formed between a step portion formed on an upper inner surface of the outer casing and an upper end of the small chamber unit.
  • a porous ring body excellent in water absorption is attached to the upper end portion, and a water-soluble sealing substance is filled in the water-permeable gap of the porous ring body.
  • the water vapor movement control device of the present invention (Claim 6)
  • the porous ring produced an emulsion obtained by coagulating a water-soluble substance such as oplate, cellulose, agar protein, gelatin, starch, etc., once partially coagulated with tannin having a low pH. It is formed by adsorbing and drying a mixture of hydrates obtained by neutralizing a complete gel body with sodium hydrogen carbonate using a hydrogen carbonate solution.
  • a water-soluble substance such as oplate, cellulose, agar protein, gelatin, starch, etc.
  • the water vapor movement control device of the present invention (Claim 7)
  • the water vapor movement control device of the present invention (Claim 8)
  • the water vapor movement control device according to any one of claims 1 to 8, wherein the conductive porous body is a hexagon having an inner angle formed at 120 degrees, and the lengths of two opposite sides are different from each other. By being formed twice the length of the side, it has a flat hexagonal mesh part formed by two long sides and four short sides,
  • the mesh portions are repeatedly connected as a unit pattern so as to form regular triangles by the long sides of adjacent mesh portions.
  • FIG. 1 is a longitudinal sectional view showing an embodiment of a water vapor movement control apparatus of the present invention.
  • FIG. 2 is an exploded sectional view of the outer casing.
  • Fig. 3 is an exploded cross-sectional view of the small chamber unit.
  • FIG. 4 shows a reference example of the present invention.
  • Figure 5 shows a reference example of the present invention.
  • FIG. 6 shows a reference example of the present invention.
  • FIG. 7 is a plan view of the locking washer.
  • Fig. 8 is an exploded sectional view showing the mounting structure of the locking washer.
  • Fig. 9 is a front view showing the mounting structure of the locking washer.
  • FIG. 10 is a bottom view of the water vapor movement control device.
  • FIG. 10 is a bottom view of the water vapor movement control device.
  • FIG. 11 is a partial cross-sectional view showing a state where the porous ring body is mounted.
  • Fig. 12 is a plan view of the porous ring body.
  • Fig. 13 is a cross-sectional view of a porous ring body using hygroscopic fibers.
  • Fig. 14 is a cross-sectional view of a porous ring body using non-hygroscopic fibers.
  • Fig. 15 is a graph showing the change in hardness due to water absorption of hygroscopic fibers and fluorohygroscopic fibers.
  • FIG. 16 shows a reference example of the present invention.
  • Fig. 17 is an explanatory diagram for explaining the problems that occur when attaching the quiz packing.
  • FIG. 18 is a partial cross-sectional view showing the squeeze packing attached.
  • FIG. 19 is an enlarged partial plan view showing the mesh plate of this embodiment.
  • FIG. 20 is an explanatory diagram showing the mesh pattern of the mesh plate with lines.
  • Figure 21 is an explanatory diagram of a wiring structure with reduced transient impedance.
  • Fig. 22 is an explanatory diagram showing the heat conduction path of the orthogonal cross mesh.
  • FIG. 23 is an explanatory view showing a basic heat conduction path of the mesh plate of this embodiment.
  • FIG. 1 is a longitudinal sectional view showing an embodiment of the water vapor movement control device of the present invention
  • FIG. 2 is an exploded sectional view of an outer casing
  • FIG. 3 is an exploded sectional view of a small chamber unit.
  • a small unit 2 has an outer casing 3
  • the bottom vent 3 8 is opened to the outside air, and the top vent 3 9 is opened inside the box 4 (box, container, etc.) 4 for example. used.
  • the small chamber unit 2 includes a plurality of spacer cylinders 20 fitted into the inner cylinder 21 and a film having air permeability and moisture permeability between the spacer cylinders 20.
  • the body 2 and the copper mesh plate 23 as the conductive porous body are sandwiched in a compressed state so as to have an airtight seal, and a small chamber 24 defined by the film body 22 is formed inside.
  • two chambers 24 are defined by four spacer cylinders 20 and three film bodies 2 2.
  • a space portion 20 a is formed at the lower end of the small chamber unit 2, and this space portion 20 a generates a turbulent flow in the air flow passing therebelow to cause the temperature of the film body 22 on the outside air side. It is formed for the purpose of reducing the distribution width.
  • Each film body 22 is a film body having air permeability and moisture permeability, and is formed into a circular film having a predetermined diameter by punching with a press, etc., and using the air permeability and moisture permeability, The movement of water vapor is controlled so that the inside of the box body 4 is dehumidified by the temperature fluctuation speed in the box body 4.
  • the mesh plate 23 as a conductive porous body is arranged in close proximity to or in contact with the membrane body 22, and is used to adjust the temperature gradient and humidity gradient of water vapor that passes through the influence of the surface temperature.
  • the film body 22 functions as a film body support member that reinforces the film body 2 2.
  • the membrane body 2 2 and the mesh plate 23 may come into contact with each other due to the expansion of the membrane body 22 or the like due to the breathing phenomenon on the side of the box body 4 or the like.
  • the movement speed of the water vapor is adjusted using the planar film body 22, and the water vapor passing through the film body 22 is transmitted according to the temperature of the film body 22. Changes.
  • the dispersion of the heat distribution of the mesh plate 23 is minimized, and the same plane can be quickly changed to a uniform temperature with respect to the temperature change of the moving boundary surface of the water vapor.
  • a structure with a pattern was adopted.
  • FIG. 19 is an enlarged partial plan view showing the mesh plate 23, and FIG. 20 is an explanatory view showing the mesh pattern of the mesh plate 23 with lines.
  • this mesh plate 23 has a hexagonal shape with internal angles of 120 degrees, and the length of the two opposite sides is twice the length of the other sides.
  • a flat hexagonal mesh portion M formed of two long sides M l and four short sides M 2 is provided.
  • the mesh plate M is formed by repeatedly connecting the mesh portion M as a unit pattern.
  • the mesh portions M are connected so that a regular hexagon N is formed by the long sides M l, M l, and M 1 of M, M, and M.
  • a regular hexagonal hole Q (which may be formed as a star-shaped hole) is formed in a portion surrounded by the short side portion M2 of the adjacent mesh portion M.
  • the patented transient impedance-reduced wiring structure is applied as a mesh structure, and heat diffusion is efficiently performed to obtain the effect of reducing unevenness in the diffusion rate of heat propagation.
  • the heat transfer theory uses the diffusion equation, and the basic theory of energy propagation is based on a concept that approximates electrical conductivity.
  • the thermal conductivity differs depending on the material.
  • the electrical resistance is similar.
  • the propagation speed is assumed to be constant for electricity, but is affected by conductivity for heat.
  • thermal conductivity of metals As a general property of pure metals and alloys, there is Lorentz's law, in which a good electrical conductor has a higher thermal conductivity, and the electrical conductivity and thermal conductivity are approximately proportional. .
  • the transient impedance-reduced wiring structure will be briefly described (for details, refer to Japanese Laid-Open Patent Publication No. 7-1 3 1 93 2).
  • a first current path X having a surge inflow point (o) and a branch point (a) on the side opposite to the surge inflow side, and a point where a reflected wave is generated by the surge
  • a second current path Y having connection points (b) and (c) at positions (d 2) from both ends (d) and (e).
  • a branch current path Z having substantially the same length for connecting the branch point (a) and the two connection points (b) and (c), respectively.
  • branch current paths Z and Z having substantially the same length branched symmetrically in two directions are provided on the side opposite to the surge inflow point in the first current path X (input side), and on the downstream side of the first current path X
  • the point between the points (d) and (e) where the reflected wave is generated by the surge (d) is the second current path Y between the two points that end (open end).
  • the branch current paths Z and Z are connected to the flow path Y at substantially the same distance from one end, and the distance (dl) between the connection points (b) and (c) is the distance (d 2).
  • the configuration is doubled.
  • the surge from point (o) is shunted at point (a), and a transient impedance of approximately 1 Z 2 appears at point (o).
  • the surge from point (a) to point (b) flows in the direction (d) and becomes a transient impedance of about 1/2 before being reflected at the end and returning to point (0).
  • the surge from point (a) to point (c) flows in the direction (e), is reflected at the end point and becomes a transient impedance of about 1 Z 2 before returning to point (o). Impedance is reduced.
  • the first heat conduction path X and the second heat conduction path y can be divided as shown in the orthogonal cross mesh shown in Fig. 22.
  • intersection 0 4 in the case of Fig. 2 2 is at the same distance as seen from the end points 0 3, 0 3, 0 0, but in the case of Fig. 2 3 the same S-angle plane 0 3— 0 3-0
  • the surface area of the conductor within 0 increases, and as a result, the heat exchange area increases.
  • the angular distribution of energy from the application point (heat entry point) 0 0 passes through 0 1 and 0 2 to 0 3 through the diversion conduction paths z and z.
  • the first heat conduction path X from 0 0 to the diversion point 0 1 is perpendicular to the second heat conduction path y of 0 3 ⁇ 0 3, and considering the heat diffusion to the plane, The diffusion direction is limited, resulting in an inconvenient shape.
  • the mesh part M can be configured with a 3 ⁇ n square while maintaining this ratio.
  • the heat conduction velocity can be considered as a similar diffusion theory by the Lorentz law.
  • the angle between the voltage application point and the line segment is not discussed, but in order to efficiently dissipate the heat transfer in a plane, it is shunted in the direction of 360 degrees.
  • the mesh plate 2 3 (conductive porous body) is important as an auxiliary material for controlling the heat transfer of the water vapor transfer control device.
  • the mesh plate 2 3 formed in the mesh pattern as described above is the mesh plate 2
  • the heat distribution of 3 can diffuse efficiently, and the same plane as the temperature change at the boundary of water vapor migration can change quickly to a homogeneous temperature.
  • the surface temperature of the moisture permeable membrane which is the moving boundary of water vapor, and even if a temperature distribution in a small chamber space composed of two or more moisture permeable membranes occurs, the surface is transparent as a boundary surface. It is possible to homogenize the surface temperature of the wet film and stabilize the function of the water vapor movement control device.
  • the structure for design is easy, and the surface area of highly antibacterial metal materials such as copper is increased, and the free end area of the metal material itself is increased. At the same time, the surface area increases, increasing the heat exchange as well as maintaining the strength. Further, the surface area can be increased with respect to the space volume occupied by the conductive porous body, and it is easy to ensure the porosity, and the heat exchange property can be improved.
  • the spacer cylindrical body 20 has a chamfered outer peripheral end on the side sandwiching the film body 22 and the mesh plate 23 in a compressed state, and a photo-curing resin 25 for providing an airtight seal. The filling is ensured.
  • the light-curing resin 25 has a syringe (not shown) set in an injection hole (not shown) formed in the inner cylindrical body 21, and the inner cylindrical body 21 is fixed in this state while fixing the inner cylindrical body 21.
  • Rotating spacer cylinder 20 and membrane body 2 2 and mesh plate 2 3, as a sealant with a syringe, photo-curing resin 25 UV-curing silicone, UV-curing acrylic (modifying acrylic), etc. It is filled by injecting water-soluble curable resin, etc.).
  • the inner cylindrical body 21 is formed of a transparent synthetic resin, and the filling state of the spacer cylindrical body 20, the film body 22, the mesh plate 2 3, and the photo-curing resin 25 is incorporated in the inside. It can be confirmed with.
  • the material of the inner cylinder 21 and the spacer cylinder 20 can be selected in consideration of chemical bonding or mechanical fitting with the photo-curing resin 25.
  • transparent acrylic is used for the inner cylinder 2 1.
  • the spacer cylinder 20 should be selected in consideration of the transmission of light for the photocuring reaction and the temperature gradient of each chamber 2 4 affecting the performance of the completed water vapor transfer control device 1. it can.
  • a surface treatment such as a primer for promoting bonding may be performed.
  • 7 A may be used.
  • fibers or the like are cascaded in the ventilation direction between the inner cylindrical body 21 and the spacer cylindrical body 20.
  • the spacer cylinder 20 can be wound with fibers 7 such as Japanese paper and incompletely bonded to form the drainage channel 7a.
  • a drainage channel 7 a may be secured in the small chamber 24 as indicated by an arrow P together with the side leaking air.
  • a water-soluble adhesive is used as the adhesive.
  • Agent 2b should be used to dissolve the water-soluble adhesive 22b in order to break the holding part of the film body 22 if significant water enters.
  • the outer cylinder casing 3 includes a main body cylindrical portion 30, a mounting nut 3 2 screwed into an upper male screw portion 31 formed on the upper end surface of the main body cylindrical portion 30, and the main body cylindrical portion 30.
  • An assembly nut ⁇ 3 4 is provided to be screwed into the lower male screw portion 33 formed at the lower end.
  • the water vapor movement control device 1 is assembled.
  • the porous body described later is formed from the lower end of the main body cylindrical portion 30. Insert the material ring 5 1 and the upper end mesh plate 5 2 into the cylindrical body 30 and then insert the small chamber unit 2 into the assembly nut 3 4 with the lower male thread 3 3 The small chamber unit 2 is tightened from below by a ring plate 3 4 a formed integrally with the assembly nut 34 and is housed and held in the main body cylindrical portion 30.
  • the water vapor movement control device 1 in which the small chamber unit 2 is fitted inside the main body cylindrical portion 30 is attached to a box or the like 4 so that the air permeability and permeability of each film body 22 can be obtained.
  • Use humidity between both vents 3 8, 3 9 By controlling the movement of water vapor, the movement of water vapor is controlled to dehumidify the inside of the box etc. 4 according to the temperature fluctuation speed of the outside air and the box etc. 4.
  • the upper male screw part 3 1 formed in the main body cylindrical part 30 of the outer casing 3 is inserted into the mounting hole 40 formed in the bottom wall 4 1 of the box body 4, etc.
  • O Ring (packing) 3 5 The water vapor movement control device 1 is attached to the box body 4 by screwing the mounting nut 3 2 into the upper male screw portion 31 from the inside of the box body 4.
  • the water vapor transfer control device 1 of this embodiment if a hole is formed in the box body 4 etc. and water unexpectedly enters the inside of the box body 4, the water is drained outside the box body 4. A drainage structure is provided.
  • the drainage structure is a mounting nut in which a slit 36 is formed in the upper male screw portion 31 formed in the main body cylindrical portion 30 of the outer casing 3 and is screwed into the upper male screw portion 31.
  • 3 2 Notches 3 7 a and 3 7 b are formed so that the slit 3 6 and the notches 3 7 a communicate with each other with the water vapor transfer control device 1 attached to the box 4. Has been.
  • the mounting nut 3 2 has notches 3 7 a and 3 7 b formed on both upper and lower end faces thereof, and the notch 3 on the lower end side when the mounting nut 3 2 is screwed. 7a is formed so as to communicate with a slit 36 formed on the upper male threaded portion 31, so that the mounting nut 32 can be used upside down.
  • a plurality (three in the embodiment) of the slits 36 are arranged at equal intervals (12.0 degrees intervals), and are formed by cutting from the upper end of the upper male screw portion 31.
  • the notch is formed only on one end face of the mounting nut 32, there will be no notch on the end face of the mounting nut if the mounting direction is such that the end face that does not have the notch is turned downward. Therefore, there is a problem of blocking the drainage route.
  • the outer shape of the mounting nut ⁇ 3 2 is formed in an octagon
  • the notch 3 7 a is formed in the center of each side of the octagon
  • the notch 3 7 b Is formed at each corner of the octagon, and is arranged so that the eight notches 3 7 a and 3 7 b do not overlap each other when seen from the plane.
  • the back portion 3 7 c of the notches 3 7 a and 3 7 b is formed in an arc shape.
  • the inner part of the notch is square, the water accumulated at the bottom of the electrical box due to a water leakage accident, etc., freezes due to a temperature drop, and stress deformation occurs in the mounting nut 3 2 due to freezing and expansion. It is easy to cause cracks in the mounting nut 3 2 due to deterioration over time.
  • the mounting nut 3 2 is prevented from being damaged or loosened due to stress concentration on the mounting nut 3 2 due to freezing and expansion. Can do.
  • the small chamber unit 2 is fitted into the outer casing 3 while holding the drain gap 6 and the bottom view of the water vapor movement control device of FIG. As shown, a through hole 3 4 b communicating with the drainage gap 6 is formed.
  • the water absorption between the step portion 60 formed on the upper inner surface of the outer casing 3 and the upper end of the small unit 2 is achieved.
  • a porous ring body 51 excellent in water resistance and filling the water permeable gap S of this porous ring body 51 with a water-soluble sealing substance the water permeable gap S is normally closed to close the drain gap 6. Occlude the water At the time of intrusion, the water-soluble seal substance is dissolved so that the drain gap 6 is opened to the outside.
  • the drainage gap 6 and the upper end thereof may be directly closed with the water-soluble sealing substance itself.
  • a squeeze packing 61 is attached between the porous ring body 51 attached to the upper end of the drainage gap 6 and the upper end of the small chamber unit 2 as shown in FIG. Has been. In this case, the drainage gap 6 is not closed by the squeeze packing 61.
  • the squeeze packing 6 1 prevents the drainage gap 6 from opening when the drainage gap 6 is wet by blowing from the outside, etc., and reduces the thermal expansion and shrinkage. have.
  • the swelling of the porous ring body 51 changes the distance between the upper ends of the drainage gap 6 and the thermal expansion of the outer casing 3 causes the box 4 etc. to be in a dry state.
  • the porous ring body 51 is elastically pressed by the squeeze packing 61 so that the drain passage gap 6 is not opened.
  • the squeeze packing 61 is mounted between the porous ring body 51 and the upper end of the small chamber unit 2. At this time, the small chamber unit as shown in FIGS. If the squeeze packing 6 1 is placed on the upper end surface of the second ring 2 as it is, the squeeze packing 61 will bite into the bottom surface of the porous ring body 51. 5 A drainage failure that prevents the flow of water through 1 will occur. Therefore, as shown in FIG. 18, a stepped portion 2 a is formed at the upper end of the outer periphery of the small chamber unit 2, and the squeeze packing 6 1 is placed in the stepped portion 2 a, so that It prevents the failure from occurring. In addition, a locking washer 9 is provided between the bottom wall 4 1 of the box or the like and the mounting nut 3 2. It is installed.
  • This locking washer 9 prevents loosening of the mounting nut 3 2 in order to prevent the water vapor transfer control device 1 from falling off when it is mounted on a vibration-proof electric box for the purpose of improving vibration resistance. Is to do.
  • the screw part for connection to the box is made of synthetic resin, and if a lock nut or nylon nut is used, deformation of the slit 36 or the upper male screw There was a problem that part 31 was easily damaged.
  • a plurality of locking claws 90 (in the embodiment, 12 pieces) 90 are projected at equal intervals (30 degree intervals) on the inner periphery, as shown in FIG. Claw 90 is the side (upward side) 9 1 facing the loosening direction of mounting nut 3 2 (arrow A direction), and the side of loosening direction of mounting nut 3 2 (downward side) 9 Inclined so that 2 is facing down.
  • the locking claw 90 is in contact with the upper male screw portion 3 1 of the outer casing 3 but is inclined at an angle that makes it difficult to fit into the screw groove. Therefore, when the mounting nut 3 2 is tightened against the upper male threaded portion 3 1, the locking washer 9 does not hinder tightening.
  • the upper side 91 is locked to the bottom surface of the mounting nut 3 2 by giving elasticity in a direction to return to the inclined state with respect to the tightening of the mounting nut 32, and the lower side 9 2 is formed so as to be locked to the upper surface of the bottom wall 4 1 of the box or the like 4.
  • the locking washer 9 is mounted between the bottom wall 4 1 of the box body 4 and the mounting nut 3 2 in a state where the locking washer 9 is deformed into a wave shape by tightening the mounting nut 3 2. It is formed so that.
  • the upward side 91 is locked to the bottom surface of the mounting nut 32, the downward side 92 is locked to the top surface of the bottom wall 41 of the box body 4 etc.
  • the looseness of the mounting nut 3 2 can be prevented by the action of a strong tension bar.
  • the locking washer 9 Since the locking washer 9 is deformed into a wave shape when the mounting nut 3 2 is tightened, between the locking washer 9 and the mounting nut 3 2 and between the locking washer 9 and the box 4 etc. Since there is a gap between them and water can flow into the gap by utilizing the capillary phenomenon, it is formed from the notch 3 7a formed on the end face of the mounting nut 3 2 to the upper male thread 3 1 A drainage channel that flows into the outer casing 3 through the slit 36 can be secured.
  • the locking washer 9 has no top and bottom, and the above effect can be achieved even if it is installed upside down.
  • the water-permeable gap S of the porous ring body 51 is filled (impregnated and dried) with a water-soluble sealing substance that is solid in a dry state and has airtightness.
  • the upper end mesh plate 52 When water enters, the upper end mesh plate 52 is positively drained to the porous ring body 51 side. As a result, when more than a certain amount of water enters, the porous ring body 51 cannot swell due to the water absorbed in the porous ring body 51 and cannot maintain a solid form.
  • the water-soluble sealing substance that existed in solid form in the water-permeable gap S of the ring body 5 1 elutes into the water, opens the drainage gap 6 and allows it to drain outside through this drainage gap 6. become.
  • the problem at this time is maintaining the sealing performance of the porous ring body 51 by the squeezed air from the outside air side.
  • the wetness of the porous ring body 51 depends on the amount of infiltrated water, that is, the amount of water in contact with the porous ring body 51, and the retrograde invasion of the squeezed air from the outside air side. Also affected by.
  • the base material of the porous ring body 51 is formed of, for example, felt-like porous fibers, and a water-soluble seal is formed thereon. Use felt material impregnated with material.
  • the water-soluble sealing material contained in the ferrous material also affects the film body 2 2 below the upper end mesh plate 52 and causes surface contamination.
  • the air passage has already been secured, the airtightness necessary for the breathing phenomenon has been destroyed, and the air breathing phenomenon no longer occurs or decreases in the space of the small room unit 2. .
  • a porous material such as felt material is provided in the drainage path that serves as a ventilation path with the outside air.
  • the effect of air filtering is to prevent the intrusion of dust in the box due to the breathing phenomenon in the box or container.
  • the drain gap 6 is designed with a calorific value, which is surrounded by a material with a low heat conduction rate, for example, synthetic resin, which is hard to condense, and the outside air ring plate 3 4 a 4 b keeps the conditions as easy to dry as possible.
  • the design of the through hole 3 4 b can be arbitrarily performed under this condition.
  • the inside of the box, etc.4 is filtered by the felt material. Even if an incomplete breathing phenomenon occurs, the humidity adjustment function is maintained.
  • the drainage capacity can be adjusted by the capillary phenomenon.
  • the compression of the porous sealing body 51 can be adjusted by adjusting the tightening force with the assembly nut ⁇ 3 4 for the small chamber unit 3 housed inside the outer casing 2. It is also possible to prevent the compression from being adjusted at the time of wearing.
  • the drainage gap 6 also serves as a space provided between the small chamber unit 2 and the outer casing 3, and also acts as a heat retaining cavity in a situation where it does not act as a drainage path. It works to maintain the humidity adjustment function. Therefore, the heat retention can be adjusted by adjusting the effective sectional area of the through hole 3 4 b provided in the ring plate 3 4 a.
  • the felt material is shown as a material of the porous ring body 51 in the embodiment, but it is also possible to use a porous fibrous material having compressibility. it can.
  • water-soluble sealing materials are important, and in outdoor electrical boxes, temperatures exceeding 65 ° C are also observed. Therefore, oblate, cellulose, agar protein, starch, etc., which are solid in a normal dry state and have airtightness, are useful as a water-soluble sealing substance.
  • the porous ring body 51 is filled with the water-soluble sealing substance 8 as shown by the hatched portion in FIG. 12 at the outer peripheral side portion of the porous ring body 51. Is arranged so as to be separated from the film body 2 2.
  • the water-soluble sealing substance 8 is positioned away from the membrane body 22, the degradation of the membrane body 2 2 can be prevented, and the internal space up to the limit of the sealing performance that protects the space of the box body 4 etc.
  • the seal substance 8 may be mixed with an antibacterial agent or an antibacterial agent.
  • the most useful substances among these antibacterial materials are copper, silver powder and other compounds, and substances having such an origami effect may be disposed in the drainage gap 6. .
  • the origami effect used for the membrane body With ensuring the safety of the drainage system, the treatment method is limited even when it is turned into waste, which is economical.
  • an insect repellent may be mixed in the water-soluble sealing substance 8.
  • the fiber used for the material of the porous ring body 5 1 is hygroscopic fiber 51 as shown in Fig. 13, the fiber absorbs moisture even at the same time as the water-soluble sealing substance 8 or at low humidity (65% PH). As shown in Figure 14 Thus, when the fibers are non-hygroscopic fibers 5 1 b, the fibers are unlikely to absorb moisture, so until the water comes into direct contact with the water-soluble sealing substance 8, as shown in the graph of Figure 15 There is an advantage that it is easy to maintain hardness (air tightness). Further, since the porous ring body 51 is annular, drainage tends to start early even if water comes from any direction on the bottom of the box.
  • FIGS. 13 and 14 are cross-sectional views in which the outer peripheral portion of the porous ring body 51 is filled with a water-soluble sealing substance 8 (indicated by hatching), and FIG. 15 is a hygroscopic material.
  • 5 is a graph showing changes in hardness due to water absorption of fiber 51a and non-hygroscopic fiber 51b.
  • the water-soluble sealing material of the porous ring 51 is solid in a normal dry state and can be airtight, such as wafer, cellulose, agar protein, gelatin, starch, etc.
  • the sealing material it is conceivable to mix an insect repellent to prevent insect damage from insects, but the tannin used as such an insect repellent has an acidity of pH 3-4. There is a problem that it is expensive.
  • the material impregnated in the porous ring 51 is only a solid dissolved material, the occurrence of the collapse phenomenon after deformation due to water absorption expansion is slow, and it takes a long time (3 mm thick) to generate the water path.
  • the result of a test with a porous ring body requires 24 hours or more).
  • the tannin used as the insect repellent has a low acidity of pH 3-4, but the pH is adjusted after mixing the tannin, and sodium bicarbonate is added for the purpose of adjusting to almost neutral. To do.
  • Tannin is an antiseptic substance extracted from so-called persimmon astringents, and since it has an astringent effect, it is dangerous to use high concentrations.
  • a method using salting out may be used to adjust the viscosity of the gel body.
  • hydrophilic colloid composed of force lpoxyl groups constituting the cross-linked gel structure molecule contained in the gel body.
  • an electrolyte is added, the hydrophilic colloid is aggregated. Analyze.
  • the order from the strong salting out ion to the weak ion in the protein is S0 4 —>F—> C 1 —> B r—> N0 3 —> 1 1> SCN-, monovalent For cations, L i +> N a + ⁇ K +> R b +> C s +, and for divalent cations, M g 2+ > C a 2+ > S r 2+ > B a 2+ etc. (Physical physics: approach to pharmaceutical science: Hiroyuki Oshima, Tetsuro Handa: Nanedo Co., Ltd .: 20 July 2003 issue: p. 1 2 5) Then, the viscosity of the colloid may be adjusted.
  • anions such as C 1 and I 1 are known as highly corrosive metals, and it is preferable not to use them.
  • the porous ring body 51 Since a large amount of Na, K, Ca, etc. is contained in water vapor in the atmosphere, it is predicted that the porous ring body 51 will have few respiratory phenomena, such as changes in physical properties due to aging, even in dry conditions. It is safe.
  • the disintegrant is voided by using a disintegration mechanism by capillary action to improve wetting and to promote the disintegration.
  • a disintegration mechanism by capillary action to improve wetting and to promote the disintegration.
  • To absorb water and widen the gap There is a known method of disrupting the matrix by reducing the interparticle bonding force (Manabu Hanano, Katsuhide Terada, Toshio Ito, edited by P. 5 9-6 2: Pharmacology: Revised 6th edition: 1 9 8 September 15th, 4th, 1st edition, 1st edition issued: 2000 June 1st edition, 6th edition, 2nd edition: Nanedo Co., Ltd.).
  • the breathing phenomenon that occurs in accordance with the change in the environmental temperature where the box 4 or the like is placed gives stress to the drainage structure of the water vapor movement control device 1.
  • the properties required for a water-soluble sealant are required to improve the solid properties in the dry state and dissolve immediately when wet.
  • felt-like fibers with high water absorption are formed in an annular shape, and air is left in the space that is the pathway of water in order to adsorb highly hydrated substances and promote water penetration. There is a need.
  • an emulsion was obtained by partially coagulating water-soluble substances such as oblate, cellulose, agar protein, gelatin, and starch with tannin having low pH, and obtained by vigorous stirring.
  • the incomplete gel is neutralized with sodium hydrogen carbonate.
  • the mixture of hydrates obtained in this way is adsorbed on a ferrous seal body and dried, so that the felt that was present in water is dried as shown in Fig. 11. As a result, it becomes a water-permeable gap S occupied by air, and in the part where the gel body is adsorbed, it becomes an ideal water-absorbing body to which oblate, cellulose, agar protein, gelatin, starch, etc. adhere as solid matter.
  • test result with a porous ring body of 3 mm thickness is 1 minute 30 seconds It was observed that drainage started in 3 "minutes.
  • test result with a porous ring body having a thickness of 3 mm required more than 24 hours.
  • the voids occupied by the incomplete gel body emulsion water are dried to form the irregular water-permeable voids S.
  • the water-permeable voids S are supported by the fibers, and have a skeleton structure made of a dry solid that adheres to the fibers or communicates between the fibers.
  • Disintegration can be promoted by using a swellable substance such as the above as an element that improves the solubility in the porous ring body 51.
  • a swellable substance such as the above as an element that improves the solubility in the porous ring body 51.
  • dissolution can be promoted by using a swellable substance such as the above as an element that improves the solubility in the porous ring body 51.
  • a swellable substance such as the above as an element that improves the solubility in the porous ring body 51.
  • Amorphous materials (those that do not have a certain regularity in the three-dimensional molecular arrangement in a solid) exhibit higher solubility than crystals.
  • Hydrates containing water molecules in a constant stoichiometric ratio in crystals
  • Hydrates are said to be less soluble than anhydrides but stable in terms of energy. ing.
  • the above-mentioned wafers cellulose, agar protein, gelatin, starch, etc., which are crystalline polymorphs such as a) and b), which are amorphous and hydrated, etc. Is acidic and gelled.
  • Na C 1 is known as a metal corrosive substance, but glutamic acid has a simple force lpoxyl group and absorbs water, but has low corrosiveness and low harm to living organisms.
  • ethanol propylene glycol, glycerin, tuna coal 400, etc. can be used. It is recommended to adjust the solubility by using the effect.
  • ethanol has the effect of promoting drying and is suitable for shortening the time required for the production process of the drainage mechanism.
  • Propylene glycol is safe because it has excellent anti-mold properties and is frequently used in hair detergents.
  • dalyserin is likely to cause membrane fouling.
  • the fibers of the porous ring 51 are made of fibers with high water absorption, such as nylon or polyester, the water absorption is easy to maintain. It is necessary to devise measures that make it easy to maintain elasticity.
  • an emulsification was generated by partially coagulating water-soluble substances such as the aforementioned oblate, cellulose, agar protein, gelatin, and starch with tannin having a low pH, and this was incompletely stirred.
  • the mixture of hydrates obtained by neutralizing the gel body with sodium hydrogen carbonate is adsorbed on the felt seal body and dried.
  • solids such as oblate, cellulose, and agar protein harden into a sponge-like porous shape in the part where the gel body is adsorbed, resulting in a skeleton structure (bone marrow tissue-like), increasing hardness, and moderate This is convenient because of its elasticity.
  • the coating 51a is formed on the inner peripheral surface, the outer peripheral surface, and the bottom surface of the porous ring body 51.
  • the Arabic paste coating 5la that hardly dissolves is formed on the inner side of the Arabic paste.
  • the capsule of Japanese Pharmacopoeia containing gelatin and other materials besides Arabic glue is preferable to coat the surface of the porous ring body 51.
  • FIG. 16 shows a reference example of the present invention.
  • a drain pipe 70 is provided in the wall thickness of the inner cylindrical body 21 in the axial direction, and the drain pipe 70 is formed in place of the drain channel gap 6 in the present invention.
  • the upper end portion of the drain pipe 70 is formed in a slightly large diameter portion 71, and a water-soluble sealing material 8 is filled from the large diameter portion 70 to the stepped portion 60.
  • the water vapor movement control device according to the present invention (Claim 1) is formed in the small chamber unit in which the spacer cylinder and the film body are incorporated in the inner cylinder, so that the small chamber unit is formed inside the outer casing.
  • the assembly work can be done simply by mating with the, and the assembly work can be done easily.
  • the water-soluble sealing substance dissolves and the drainage channel gap is opened, so that water can be drained to the outside through this drainage channel gap.
  • the drainage gap is designed with a calorific value that is unlikely to condense.
  • a water-soluble sealing substance is retrograde from the outside air side. It can prevent dissolving.
  • Such a drainage structure is considered to be a necessary technology in the electric industry to ensure the spread of water vapor transfer control devices.
  • the drainage path can be secured by the notches regardless of which surface is facing downward. It becomes.
  • the inner part of the notch formed in the mounting nut is formed in an arc shape (claim 3)
  • the mounting nut can be prevented from being damaged or loosened due to stress concentration on the mounting nut due to freezing and expansion. it can.
  • the locking washer When the locking washer is used (Claim 4), the upper side is locked to the bottom surface of the mounting nut, and the lower side is locked to the upper surface of the bottom wall of the box, etc.
  • the mounting nut can be prevented from loosening due to vibration.
  • the locking washer is deformed into a wave shape by tightening the mounting nut, gaps are created between the locking washer and the mounting nut, and between the locking washer and the bottom wall of the box, etc. Capillary phenomenon can be used to allow water to flow into this gap, so drainage that flows into the outer casing from the notch formed on the end face of the mounting nut through the slit formed on the upper male thread. A route can be secured.
  • the drainage channel is formed by the porous ring body.
  • the gap is always closed with a water-soluble sealing substance to prevent the intrusion of water vapor or air from the outside air. If water inadvertently enters, the gap between the drainage channels is opened by the dissolution of the water-soluble sealing substance, and the water is removed. It can be drained to the outside.
  • a porous ring body is formed by adsorbing a mixture of an incomplete gel body and a hydrate to a seal body which is a base material of the porous ring body and drying it (Claim 6).
  • solid matter is sponge Since it is hardened in a porous shape, it becomes harder and has an appropriate elasticity, resulting in an ideal water absorber.
  • a film is formed on the surface of the porous ring body (Claim 7), it is effective to suppress moisture absorption of water vapor from the outside air.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Drying Of Gases (AREA)
  • Self-Closing Valves And Venting Or Aerating Valves (AREA)

Abstract

A water-vapor transfer controller which can be easily assembled and has an emergency drainage structure so as to cope with, e.g., the case where water has come in an amount exceeding the capacity for water vapor processing. It has a small-chamber unit (2) which has, formed therein, small chambers (24) separated by films (22) and is fitted into an outer casing (3) while holding a drainage channel space (6). At ordinary times, the drainage channel space is stopped with a water-soluble sealing substance. Once water comes in, the water-soluble sealing substance dissolves to open the drainage channel space to the outside.

Description

水蒸気移動制御装置 技術分野 Water vapor movement control equipment
本発明は、 特殊な膜体とその配列で水蒸気の移動方向を制御するこ とによって、 主に、 除湿装置として利用される水蒸気移動 御装置に 関し、 特に、 この水蒸気移動制御装置内に侵入した水の排水技術に関 する。 背景技術  The present invention mainly relates to a water vapor movement control device used as a dehumidifying device by controlling the movement direction of water vapor with a special film body and its arrangement, and in particular, has entered the water vapor movement control device. Concerning water drainage technology. Background art
水蒸気移動制御装置は、 外筒ケーシングの内部に、 複数のスぺーサ 円筒体が直接に嵌合されると共に、前記複数のスぺーサ円筒体の間に 通気性及び透湿性を有する膜体が挟持されて、 この膜体によって区画 された小室が形成されている構造になっている (特許文献 特開平 5 — 3 2 2 0 6 0号公報参照)。  In the water vapor movement control device, a plurality of spacer cylinders are directly fitted inside an outer casing, and a film body having air permeability and moisture permeability is interposed between the plurality of spacer cylinders. A small chamber is formed by being sandwiched and partitioned by this film body (see Japanese Patent Application Laid-Open No. HEI 5-3 2 0 60).
この水蒸気移動制御装置は、外筒ケーシングの一方を外気に開放し、 他方を箱体等 (箱体、 容器等) の内部に開放する状態にして使用され るもので、 前記各膜体の通気度及び透湿度を使用して、 外気と箱体等 の温度変動速度により、 箱体等の内部の水蒸気の移動を制御するもの である。  This water vapor movement control apparatus is used with one of the outer casings open to the outside and the other opened to the inside of a box or the like (box, container, etc.). The temperature and moisture permeability are used to control the movement of water vapor inside the box etc. according to the temperature fluctuation speed of the outside air and the box.
このような水蒸気移動制御装置の特徴は、 水蒸気の移動量が大きい 膜体を使用することで、 電気箱や容器などの電気機器を収容する箱体 等のシールに異常が発生した場合でも、 可及的に水蒸気の排出を促進 し、 機器を収容する箱体等の内部の湿度調整を行うことができること である。  The feature of such a water vapor movement control device is that even if an abnormality occurs in the seal of a box or the like that houses electrical equipment such as an electric box or a container, it is possible to use a film body that has a large amount of water vapor movement. It is possible to promote the discharge of water vapor and adjust the humidity inside the box that houses the equipment.
しかしながら、 この水蒸気移動制御装置では、 水蒸気の処理能力を 超える水が、 湿度調整の対象となる空間内に侵入した場合には、 排水 ができず、 水が滞る結果を招いてしまうことがあるという問題があつ た。 However, with this water vapor transfer control device, the water vapor processing capacity is reduced. When excess water enters the space subject to humidity adjustment, there is a problem that the water cannot be drained and the water may be stagnated.
水蒸気の処理のためには、 湿度調整の対象となる空間が、 環境温度 変化に伴って、 外部環境空気との間で呼吸現象を生じるようにする必 要がある。  For the treatment of water vapor, it is necessary to cause the space subject to humidity adjustment to generate a breathing phenomenon with the external environment air as the environmental temperature changes.
従来、 この呼吸現象を調整する目的で、 アキュムレータを併用したり 圧力安全弁を併用したり、 または、 小室壁を伸縮可能な部材で構成し たりして、 湿度調整の能力を調整する態様はすでに明らかである。 Conventionally, it is already clear how to adjust the ability to adjust humidity by using an accumulator, using a pressure safety valve, or configuring the wall of the chamber with an extendable member for the purpose of adjusting this breathing phenomenon. It is.
しかしながら、 ひとたび水蒸気の処理能力を超える水が、 湿度調整 の対象となる空間内に侵入した場合に、 どのように排水路を確保する かという課題が残されていた。  However, once water exceeding the water vapor processing capacity enters the space subject to humidity adjustment, there remains a problem of how to secure a drainage channel.
すなわち、 湿度調整の対象となる空間の湿度調整を受ける機器を保 護する場合、 従来の装置では、 水蒸気の移動量が大きな膜体を使用す ることで、 各シール部へのストレスを低減する工夫が行われていた。 一方、 箱体等のシール性 (気密性確保の各種手段による気密性) の 寿命が、 環境温度変化を伴った外部環境空気との呼吸現象によって、 直接的に水蒸気移動制御装置などの機能性の発揮に影響することにな り、 大きなシ一ル性の破損や破壊、 事故による水の浸入が発生してし まった場合などや、 または外部環境空気との呼吸性が失われた条件下 では、 排水が困難であるという問題があった。  In other words, when protecting equipment that undergoes humidity adjustment in the space that is subject to humidity adjustment, the conventional device uses a film body with a large amount of water vapor movement to reduce stress on each seal. Ingenuity was done. On the other hand, the life of the sealing performance of the box (airtightness by various means to ensure airtightness) is directly affected by the breathing phenomenon with the external environment air accompanied by the environmental temperature change. Under conditions where the sealability has been severely damaged or destroyed, water has entered due to an accident, or when breathing with the external environment air has been lost. There was a problem that drainage was difficult.
また、 前記特許文献では、 毛細管現象を活用した排水機構を備えて もよいとの記載があるが、 具体的な対策手段は記載されていないし、 従来、 このような水蒸気移動制御装置において、 非常用の排水構造を 備えたものは見当らない。  In addition, in the above-mentioned patent document, there is a description that a drainage mechanism utilizing a capillary phenomenon may be provided, but no specific countermeasure means is described. Conventionally, in such a water vapor movement control device, There is no one with a drainage structure.
本発明は、 かかる従来の問題を解決するためになされたもので、 水 蒸気の処理能力を超える水が侵入した場合等に対処すべく、 非常用の 排水構造を備えた水蒸気移動制御装置を提供することを課題としてい る。 The present invention has been made to solve such a conventional problem. In order to cope with the case where water exceeding the capacity of water vapor enters, An object of the present invention is to provide a water vapor movement control device having a drainage structure.
又、 スぺーサ円筒体と膜体とをィンナ円筒体の内部に組み込んだ小 室ユニッ トを形成することで、 水蒸気移動制御装置の組み立てが簡単 にできるようにする。 発明の開示  In addition, by forming a chamber unit in which the spacer cylinder and the film body are incorporated into the inner cylinder, the assembly of the water vapor movement control device can be facilitated. Disclosure of the invention
上記の課題を解決するために、 本発明 (請求項 1 ) の水蒸気移動制 御装置は、  In order to solve the above problems, a water vapor movement control device of the present invention (Claim 1)
複数のスぺーサ円筒体がインナ円筒体の内部に嵌合されると共に、 前記スぺーサ円筒体の間に通気性及び透湿性を有する膜体が気密シー ル性を持って圧迫状態に挟持されて、 この膜体によって区画された小 室が内部に形成されている小室ュニッ 卜が形成され、  A plurality of spacer cylinders are fitted inside the inner cylinder, and a film body having air permeability and moisture permeability is sandwiched between the spacer cylinders in a compressed state with an airtight seal. Thus, a small chamber unit is formed in which a small chamber defined by the film body is formed.
上端に形成した上側雄ネジ部を箱体等の底壁に形成した取り付け穴 に挿入させ、 この上側雄ネジ部に箱体等の内部から取付ナツ トを螺合 させることで箱体等に外筒ケ一シングが取り付けられ、  The upper male screw part formed at the upper end is inserted into a mounting hole formed in the bottom wall of the box body, and the mounting nut is screwed into the upper male screw part from the inside of the box body, etc. Tube casing is attached,
この外筒ケーシングの内部に前記小室ュニッ 卜が排水路間隙を保持 して嵌合され、.  Inside the outer casing, the small chamber unit is fitted with a drainage gap.
前記箱体等の内部に溜まった水が、 前記取付ナツ トの端面に形成し た切欠部から上側雄ネジ部に形成したスリッ トを通して外筒ケ一シン グの内部に流入し、 前記排水路間隙を通して外部に排水するように形 成され、  Water accumulated inside the box or the like flows into the outer cylinder casing through a slit formed in the upper male screw portion from a notch formed in the end face of the mounting nut, and the drainage channel. Shaped to drain outside through the gap,
前記排水路間隙が水溶性シール物質に-よって常時は閉塞され、 水の 侵入時には水溶性シール物質が溶解して排水路間隙が外部に開通する ように形成されている構成とした。  The drainage channel gap is normally closed by the water-soluble sealing substance, and when the water enters, the water-soluble sealing substance dissolves and the drainage channel gap is opened to the outside.
又、 本発明 (請求項 2 ) の水蒸気移動制御装置は、  The water vapor movement control device of the present invention (Claim 2)
請求項 1記載の水蒸気移動制御装置において、 前記取付ナツ トの上 下両端面に切欠部が形成され、前記取付ナツ トの螺合状態で下端側の 切欠部が上側雄ネジ部に形成したスリッ トに連通するように形成する ことで、 前記取付ナツ トを上下反転使用できるように形成した.構成と した。 ' The water vapor movement control device according to claim 1, wherein the top of the mounting nut A notch is formed on both lower end surfaces, and the mounting nut is formed so that the notch on the lower end side communicates with a slit formed on the upper male screw when the mounting nut is screwed. It was formed so that it could be used in reverse. '
又、 本発明 (請求項 3 ) の水蒸気移動制御装置は、  The water vapor movement control device of the present invention (Claim 3)
請求項 1又は 2記載の水蒸気移動制御装置において、 前記切欠部の 奥部が円弧状に形成されている構成とした。  The water vapor movement control device according to claim 1 or 2, wherein a back portion of the notch portion is formed in an arc shape.
又、 本発明 (請求項 4 ) の水蒸気移動制御装置は、  The water vapor movement control device of the present invention (Claim 4)
請求項 1〜 3のいずれかに記載の水蒸気移動制御装置において、 箱体等の底壁と取付ナツ ドの間に緩み止め座金が装着され、 この緩み止め座金は、 その内周に複数個の係止爪が等間隔で突設さ れ、  The water vapor movement control device according to any one of claims 1 to 3, wherein a locking washer is mounted between the bottom wall of the box or the like and the mounting nut, and the locking stopper washer includes a plurality of locking stoppers on its inner periphery. The locking claws are projected at equal intervals,
この係止爪は取付ナッ トの緩み方向に対向する辺 (上向辺) を上に 向け、取付ナツ トの緩み方向の辺 (下向辺) を下に向けるように傾斜し て形成されると共に、前記取付ナツ トの締め付けに対して傾斜状態に 復帰する方向に弾性を持たせて前記上向辺が取付ナツ トの底面に係止 し、 前記下向辺が箱体等の底壁上面に係止するように形成され、 かつ前記係止爪を、 前記取付ナツ トに等間隔で形成した複数個の切 欠部の数と異なる数で形成させることで、取付ナッ トの締め付けによ り前記緩み止め座金が波形状に変形した状態で箱体等の底壁と取付ナ ッ トの間に装着されるように形成した構成とした。  This locking claw is formed so as to be inclined so that the side facing the loosening direction of the mounting nut (upward side) faces upward and the side of the mounting nut loosening direction (downward side) faces downward In addition, the upper side is locked to the bottom surface of the mounting nut with elasticity in a direction to return to the inclined state with respect to the tightening of the mounting nut, and the lower side is the upper surface of the bottom wall of the box or the like And the locking claws are formed in a number different from the number of the plurality of notches formed at equal intervals on the mounting nut, thereby tightening the mounting nut. The loose stopper washer is configured to be mounted between the bottom wall of the box or the like and the mounting nut in a state of being deformed into a wave shape.
又、 本発明 (請求項 5 ) の水蒸気移動制御装置は、  The water vapor movement control device of the present invention (Claim 5)
請求項 1〜 4のいずれかに記載の水蒸気移動制御装置において、 外筒ケーシングの上部内面に形成した段部と、 小室ュニッ トの上端 との間に排水路間隙の上端部が形成され、 この上端部に吸水性に優れ た多孔質リング体が装着され、 この多孔質リング体の透水空隙に水溶 性シール物質が充填されている構成とした。 又、 本発明 (請求項 6 ) の水蒸気移動制御装置は、 The water vapor movement control device according to any one of claims 1 to 4, wherein an upper end portion of a drainage channel gap is formed between a step portion formed on an upper inner surface of the outer casing and an upper end of the small chamber unit. A porous ring body excellent in water absorption is attached to the upper end portion, and a water-soluble sealing substance is filled in the water-permeable gap of the porous ring body. The water vapor movement control device of the present invention (Claim 6)
請求項 5記載の水蒸気移動制御装置において、  In the water vapor movement control device according to claim 5,
前記多孔質リング体が、オプラート、セルロース、寒天たんぱく質、 ゼラチン、 でんぷんなどの水溶性物質を低い p Hを有するタンニンを 用いて一旦一部凝固させたェマルジョンを生成して、 これを強く攪拌 した不完全なゲル体に対して炭酸水素ナトリゥムを用いてほぼ中性に させて得た水和物の混合物を多孔質リング体の基材であるシール体に 吸着させて乾燥させることにより形成されている構成とした。  The porous ring produced an emulsion obtained by coagulating a water-soluble substance such as oplate, cellulose, agar protein, gelatin, starch, etc., once partially coagulated with tannin having a low pH. It is formed by adsorbing and drying a mixture of hydrates obtained by neutralizing a complete gel body with sodium hydrogen carbonate using a hydrogen carbonate solution. The configuration.
又、 本発明 (請求項 7 ) の水蒸気移動制御装置は、  The water vapor movement control device of the present invention (Claim 7)
請求項 5又は 6記載の水蒸気移動制御装置において、 多孔質リング 体の表面に、 硬化により皮膜を形成しやすい水溶性基剤をコーティン グして形成した皮膜が形成されている構成とした。  7. The water vapor movement control device according to claim 5 or 6, wherein a film formed by coating a water-soluble base that easily forms a film by curing is formed on the surface of the porous ring body.
又、 本発明 (請求項 8 ) の水蒸気移動制御装置は、  The water vapor movement control device of the present invention (Claim 8)
請求項 1から 7のいずれかに記載の水蒸気移動制御装置において、 前記排水路間隙の上端部に装着された多孔質リング体と、 小室ュニッ トの間にスクイ一ズパッキンが装着されている構成とした。  The water vapor movement control device according to any one of claims 1 to 7, wherein a squeeze packing is attached between a porous ring body attached to an upper end portion of the drainage channel gap and a small chamber unit. did.
又、 本発明 (請求項 9 ) の水蒸気移動制御装置は、  The water vapor movement control device of the present invention (claim 9)
請求項 1から 8のいずれかに記載の水蒸気移動制御装置において、 前記導電性多孔体は、 内角がそれぞれ 1 2 0度に形成された六角形で あって対向する 2辺の長さが他の辺の長さの 2倍に形成されることで、 2本の長辺部と 4本の短辺部で形成された扁平六角形のメッシュ部を 備え、  The water vapor movement control device according to any one of claims 1 to 8, wherein the conductive porous body is a hexagon having an inner angle formed at 120 degrees, and the lengths of two opposite sides are different from each other. By being formed twice the length of the side, it has a flat hexagonal mesh part formed by two long sides and four short sides,
隣り合うメッシュ部の長辺によって正三角形を形成させるように、 前記メッシュ部を単位パターンとして繰り返し連結させることにより 形成されている構成とした。 図面の簡単な説明 The mesh portions are repeatedly connected as a unit pattern so as to form regular triangles by the long sides of adjacent mesh portions. Brief Description of Drawings
図 1は本発明の水蒸気移動制御装置の実施例を示す縦断面図である。 図 2は外筒ケーシングの分解断面図である。 図 3は小室ュニッ トの分 解断面図である。 図 4は本発明の参考例を示す図である。 図 5は本発 明の参考例を示す図である。 図 6は本発明の参考例を示す図である。 図 7は緩み止め座金の平面図である。 図 8は緩み止め座金の装着構造 を示す分解断面図である。 図 9は 緩み止め座金の装着構造を示す正 面図である。 図 1 0は水蒸気移動制御装置の底面図である。 図 1 1は 多孔質リング体の装着状態を示す部分断面図である。 図 1 2は多孔質 リング体の平面図である。 図 1 3は吸湿性繊維を使用した多孔質リン グ体の断面図である。 図 1 4は非吸湿性繊維を使用した多孔質リング 体の断面図である。 図 1 5は吸湿性繊維と弗吸湿性繊維の吸水による 硬度変化を示すグラフである。 図 1 6は本発明の参考例を示す図であ る。 図 1 7はクイーズパッキンを装着する際の問題点を説明するため の説明図である。 図 1 8はスクイーズパッキンの装着状態を示す部分 断面図である。 図 1 9は本実施例のメッシュプレートを示す拡大部分 平面図である。 図 2 0は このメッシュプレートのメッシュパターン を線で示した説明図である。 図 2 1は過渡ィンピーダンス低減化配線 構造の説明図である。 図 2 2は直交クロスメッシュの熱伝導路を示す 説明図である。 図 2 3は本実施例のメッシュプレートの基本的な熱伝 導路を示す説明図である。 発明を実施するための最良の形態  FIG. 1 is a longitudinal sectional view showing an embodiment of a water vapor movement control apparatus of the present invention. FIG. 2 is an exploded sectional view of the outer casing. Fig. 3 is an exploded cross-sectional view of the small chamber unit. FIG. 4 shows a reference example of the present invention. Figure 5 shows a reference example of the present invention. FIG. 6 shows a reference example of the present invention. FIG. 7 is a plan view of the locking washer. Fig. 8 is an exploded sectional view showing the mounting structure of the locking washer. Fig. 9 is a front view showing the mounting structure of the locking washer. FIG. 10 is a bottom view of the water vapor movement control device. FIG. 11 is a partial cross-sectional view showing a state where the porous ring body is mounted. Fig. 12 is a plan view of the porous ring body. Fig. 13 is a cross-sectional view of a porous ring body using hygroscopic fibers. Fig. 14 is a cross-sectional view of a porous ring body using non-hygroscopic fibers. Fig. 15 is a graph showing the change in hardness due to water absorption of hygroscopic fibers and fluorohygroscopic fibers. FIG. 16 shows a reference example of the present invention. Fig. 17 is an explanatory diagram for explaining the problems that occur when attaching the quiz packing. Fig. 18 is a partial cross-sectional view showing the squeeze packing attached. FIG. 19 is an enlarged partial plan view showing the mesh plate of this embodiment. FIG. 20 is an explanatory diagram showing the mesh pattern of the mesh plate with lines. Figure 21 is an explanatory diagram of a wiring structure with reduced transient impedance. Fig. 22 is an explanatory diagram showing the heat conduction path of the orthogonal cross mesh. FIG. 23 is an explanatory view showing a basic heat conduction path of the mesh plate of this embodiment. BEST MODE FOR CARRYING OUT THE INVENTION
図 1は本発明の水蒸気移動制御装置の実施例を示す縦断面図、 図 2 は外筒ケーシングの分解断面図、 図 3は小室ュニッ 卜の分解断面図で ある。  FIG. 1 is a longitudinal sectional view showing an embodiment of the water vapor movement control device of the present invention, FIG. 2 is an exploded sectional view of an outer casing, and FIG. 3 is an exploded sectional view of a small chamber unit.
この水蒸気移動制御装置 1は、 小室ュニッ ト 2が外筒ケーシング 3 の内部に嵌合されたもので、 下端の通気口 3 8を外気に開放し、 上端 の通気口 3 9を、 例えば箱体等 (箱体、 容器等) 4の内部に開放する 状態にして使用される。 In this water vapor transfer control device 1, a small unit 2 has an outer casing 3 The bottom vent 3 8 is opened to the outside air, and the top vent 3 9 is opened inside the box 4 (box, container, etc.) 4 for example. used.
前記小室ュニッ ト 2は、 複数のスぺーサ円筒体 2 0がィンナ円筒体 2 1の内部に嵌合されると共に、前記スぺーサ円筒体 2 0の間に通気 性及び透湿性を有する膜体 2 及び導電性多孔体としての銅製のメッ シュプレート 2 3が気密シール性を持つように圧迫状態に挟持されて、 内部に膜体 2 2によって区画された小室 2 4が形成されている。  The small chamber unit 2 includes a plurality of spacer cylinders 20 fitted into the inner cylinder 21 and a film having air permeability and moisture permeability between the spacer cylinders 20. The body 2 and the copper mesh plate 23 as the conductive porous body are sandwiched in a compressed state so as to have an airtight seal, and a small chamber 24 defined by the film body 22 is formed inside.
実施例では、 4個のスぺーサ円筒体 2 0と、 3枚の膜体 2 2とによつ て 2個の小室 2 4が区画形成されている。 In the embodiment, two chambers 24 are defined by four spacer cylinders 20 and three film bodies 2 2.
また、小室ュニッ ト 2の下端には空間部 2 0 aが形成され、 この空間 部 2 0 aは、 その下方を通過する空気流に乱流を生じさせて外気側の 膜体 2 2の温度分布幅を小さくさせる目的で形成している。  In addition, a space portion 20 a is formed at the lower end of the small chamber unit 2, and this space portion 20 a generates a turbulent flow in the air flow passing therebelow to cause the temperature of the film body 22 on the outside air side. It is formed for the purpose of reducing the distribution width.
なお、 前記各膜体 2 2は、 通気性及び透湿性を有する膜体で、 プレ スによる打ち抜き加工等で所定直径の円形膜に形成され、 その通気度 及び透湿度を使用して、 外気と箱体等 4内の温度変動速度により、 箱 体等 4の内部を除湿するように水蒸気の移動を制御するものである。 導電性多孔体としてのメッシュプレ一ト 2 3は、 膜体 2 2に近接又 は接触して配置され、 表面温度による影響を利用して通過する水蒸気 の温度勾配及び湿度勾配を調整するためと、 膜体 2 2を補強する膜体 支持部材として機能する。  Each film body 22 is a film body having air permeability and moisture permeability, and is formed into a circular film having a predetermined diameter by punching with a press, etc., and using the air permeability and moisture permeability, The movement of water vapor is controlled so that the inside of the box body 4 is dehumidified by the temperature fluctuation speed in the box body 4. The mesh plate 23 as a conductive porous body is arranged in close proximity to or in contact with the membrane body 22, and is used to adjust the temperature gradient and humidity gradient of water vapor that passes through the influence of the surface temperature. The film body 22 functions as a film body support member that reinforces the film body 2 2.
又、 箱体等 4側の呼吸現象に伴なつて、 膜体 2 2の伸長等により、 膜体 2 2とメッシュプレート 2 3は接触することがある。  Also, the membrane body 2 2 and the mesh plate 23 may come into contact with each other due to the expansion of the membrane body 22 or the like due to the breathing phenomenon on the side of the box body 4 or the like.
水蒸気移動制御装置では、 平面状の膜体 2 2を用いて水蒸気の移動 速度の調整を行うもので、 この膜体 2 2を通過する水蒸気は通過する 膜体 2 2の温度によつて透過速度が変化する。  In the water vapor movement control device, the movement speed of the water vapor is adjusted using the planar film body 22, and the water vapor passing through the film body 22 is transmitted according to the temperature of the film body 22. Changes.
熱設計を容易にさせ、 かつ動作を安定化させるためには、 できるだ け膜体 2 2の表面温度を均質にして温度分布幅を小さくする必要があ る。 To make thermal design easier and to stabilize operation, you can It is necessary to make the surface temperature of the film body 22 uniform and to reduce the temperature distribution width.
もしも膜体 2 2内において、 ある部分の温度が高く、 それ以外の部 分が低くなると、 その温度分布の平面が接触する空間で熱交換を行う メッシュプレー卜 2 3 (導電性多孔体) と空気との熱交換の結果、 対 流が発生し、 水蒸気の移動速度にむらが発生してしまい、 水蒸気移動 の方向性の秩序が乱されてしまうことが考えられる。  If the temperature of a part of the membrane body 2 2 is high and the other part is low, heat exchange is performed in the space where the plane of the temperature distribution contacts with the mesh plate 2 3 (conductive porous body) and As a result of heat exchange with the air, convection occurs, and the movement speed of the water vapor becomes uneven, which may disrupt the order of the direction of the water vapor movement.
そこで、 本発明では、 メッシュプレート 2 3の熱分布の分散を最小 限にさせて、 水蒸気の移動境界面の温度変化に同一の平面が均質な温 度に早く変化することができるようにしたメッシュパターンを備えた 構造を採用した。  Therefore, in the present invention, the dispersion of the heat distribution of the mesh plate 23 is minimized, and the same plane can be quickly changed to a uniform temperature with respect to the temperature change of the moving boundary surface of the water vapor. A structure with a pattern was adopted.
図 1 9はメッシュプレ一ト 2 3を示す拡大部分平面図、 図 2 0はこ のメッシュプレート 2 3のメッシュパターンを線で示した説明図であ る。  FIG. 19 is an enlarged partial plan view showing the mesh plate 23, and FIG. 20 is an explanatory view showing the mesh pattern of the mesh plate 23 with lines.
このメッシュプレート 2 3の構造は、 図 2 0に示すように、 内角が それぞれ 1 2 0度に形成された六角形であって対向する 2辺の長さが 他の辺の長さの 2倍に形成されることで、 2本の長辺部 M l と 4本の 短辺部 M 2で形成された扁平六角形のメッシュ部 Mを備えている。  As shown in Fig. 20, this mesh plate 23 has a hexagonal shape with internal angles of 120 degrees, and the length of the two opposite sides is twice the length of the other sides. Thus, a flat hexagonal mesh portion M formed of two long sides M l and four short sides M 2 is provided.
そして、 このメッシュ部 Mを単位パターンとして繰り返し連結させ ることにより、 前記メッシュプレート 2 3が形成されるもので、 この 場合、 図 2 0において斜線部で示すように、 3個の隣り合うメッシュ 部 M, M , Mの長辺部 M l , M l , M 1によって正 Ξ角形 Nを形成さ せるように、 各メッシュ部 Mを連結させている。  Then, the mesh plate M is formed by repeatedly connecting the mesh portion M as a unit pattern. In this case, as shown by hatched portions in FIG. 20, three adjacent mesh portions are formed. The mesh portions M are connected so that a regular hexagon N is formed by the long sides M l, M l, and M 1 of M, M, and M.
なお、 このメッシュプレート 2 3において、 隣り合うメッシュ部 M の短辺部 M 2によって囲まれる部分に正六形孔 Q (星形孔に形成して もよい) が形成される。  In this mesh plate 23, a regular hexagonal hole Q (which may be formed as a star-shaped hole) is formed in a portion surrounded by the short side portion M2 of the adjacent mesh portion M.
上記のように形成したメッシュプレート 2 3の構造 (メッシュパタ ーン) は、 本出願人において電気的接地の研究過程で見出し、 既に出 願し、 特許された過渡インピーダンス低減化配線構造 (特開平 7— 1 3 1 9 3 2号公報) の理論を熱伝導に適用したものである。 Structure of mesh plate 2 3 formed as above (mesh pattern Was found in the research process of electrical grounding by the applicant, and applied the theory of the patented transient impedance-reduced wiring structure (Japanese Patent Laid-Open No. 7-1 3 1 9 3 2). It is applied to conduction.
即ち、 電気理論の研究過程で発明し、 特許を得た過渡インピーダン ス低減化配線構造をメッシュ構造として適用し、 熱伝播の拡散速度の むらを低減するという効果を得るための熱拡散を効率的に行う工夫を 採用した。  In other words, invented in the electrical theory research process, the patented transient impedance-reduced wiring structure is applied as a mesh structure, and heat diffusion is efficiently performed to obtain the effect of reducing unevenness in the diffusion rate of heat propagation. Adopted the device to be used in
伝熱理論は, 拡散方程式を活用しており、 エネルギー伝播の基礎理 論は電導性に近似した考え方を採るもので、 熱の場合には, 熱伝導率 が物質によって異なり、 電気の場合には電気抵抗が類似する。 また伝 播速度は、 電気では一定速度とみなすが、 熱の場合には伝導率により 影響を受ける。  The heat transfer theory uses the diffusion equation, and the basic theory of energy propagation is based on a concept that approximates electrical conductivity. In the case of heat, the thermal conductivity differs depending on the material. In the case of electricity, The electrical resistance is similar. The propagation speed is assumed to be constant for electricity, but is affected by conductivity for heat.
なお、金属の熱伝導率に関し、純金属及び合金の一般的性質として、 電気の良導体ほど熱伝導率もが大きく、 電気伝導度と熱伝導度はほぼ 比例関係にあるとするローレンツの法則がある。  Regarding the thermal conductivity of metals, as a general property of pure metals and alloys, there is Lorentz's law, in which a good electrical conductor has a higher thermal conductivity, and the electrical conductivity and thermal conductivity are approximately proportional. .
前記過渡ィンピーダンス低減化配線構造を簡単に説明する (詳細は 特開平 7— 1 3 1 9 3 2号公報参照)。  The transient impedance-reduced wiring structure will be briefly described (for details, refer to Japanese Laid-Open Patent Publication No. 7-1 3 1 93 2).
図 2 1に示すように、 サージの流入点 ( o) を有し、 該サージの反 流入点側に分岐点 ( a) を有する第一電流路 Xと、 サージによる反射 波が生起される点を両終端 (d'), ( e ) とすると共に該両終端 (d), ( e ) から距離 ( d 2 ) ずつの位置に接続点 (b), ( c ) を有する第 二電流路 Yと、 前記分岐点 ( a) と両接続点 (b), ( c ) をそれぞれ 接続する略同一長さの分岐電流路 Zと、 を備えている。  As shown in Fig. 21, a first current path X having a surge inflow point (o) and a branch point (a) on the side opposite to the surge inflow side, and a point where a reflected wave is generated by the surge And a second current path Y having connection points (b) and (c) at positions (d 2) from both ends (d) and (e). And a branch current path Z having substantially the same length for connecting the branch point (a) and the two connection points (b) and (c), respectively.
即ち、 第一電流路 X (入力側) におけるサージの反流入点側に二方 向に対称に分岐した略同一長さの分岐電流路 Z, Zを設け、 第一電流 路 Xの下流側であって、 サージによる反射波が生起される点 ( d ), ( e ) を終端 (開放端) とする二点間を第二電流路 Yとし、 該第二電 流路 Yに前記分岐電流路 Z , Zをそれぞれ一方ずつの終端から略同一 距離位置に接続させ、 かつ接続点 ( b), ( c ) 間の距離 (d l ) が距 離 (d 2 ) の 2倍である構成とした。 That is, branch current paths Z and Z having substantially the same length branched symmetrically in two directions are provided on the side opposite to the surge inflow point in the first current path X (input side), and on the downstream side of the first current path X The point between the points (d) and (e) where the reflected wave is generated by the surge (d) is the second current path Y between the two points that end (open end). The branch current paths Z and Z are connected to the flow path Y at substantially the same distance from one end, and the distance (dl) between the connection points (b) and (c) is the distance (d 2). The configuration is doubled.
その作用は、 点 (o ) から入ったサージは点 ( a) で分流し、 およ そ 1 Z 2の過渡インピ一ダンスが点 ( o) に現れる。 さらに、 点 ( a) から点 (b) に到点したサ一ジは ( d) 方向へ流れ、 終端で反射され 点 ( 0 ) に戻ってくるまでに約 1 / 2の過渡インピーダンスとなる。 同様に、 点 ( a) から点 ( c ) に到点したサージは ( e ) 方向へ流れ、 終端で反射され点 ( o) に戻ってくるまでに約 1 Z 2の過渡インピー ダンスとなり、 過渡インピーダンスが低減される。  The effect is that the surge from point (o) is shunted at point (a), and a transient impedance of approximately 1 Z 2 appears at point (o). In addition, the surge from point (a) to point (b) flows in the direction (d) and becomes a transient impedance of about 1/2 before being reflected at the end and returning to point (0). Similarly, the surge from point (a) to point (c) flows in the direction (e), is reflected at the end point and becomes a transient impedance of about 1 Z 2 before returning to point (o). Impedance is reduced.
そこで、 前記過渡ィンピーダンス低減化配線構造を熱伝導率に置き 替えて考察すると、 図 2 2で示した直交クロスメッシュのように、 第 一熱伝導路 Xと第二熱伝導路 yが分流せず直交する場合と、 図 2 3の ように分流比率を考慮して、 d 2 : d 1 = 1 : 2になるように構成し た場合とでは熱の拡散速度の効率が異なる。  Therefore, when the wiring structure with reduced transient impedance is replaced with thermal conductivity, the first heat conduction path X and the second heat conduction path y can be divided as shown in the orthogonal cross mesh shown in Fig. 22. The efficiency of the heat diffusion rate differs between the case where they are orthogonal and the case where d2: d1 = 1: 2 is taken into consideration, as shown in Fig. 23.
つまり、 図 2 2の場合の交点 0 4は終端の 0 3, 0 3 , 0 0からみ て同一の距離にあるが、 図 2 3の場合では同一の S角状平面 0 3— 0 3 - 0 0内での導体の表面積は増加することになり、 結果的に熱交換 面積が増加する。  That is, the intersection 0 4 in the case of Fig. 2 2 is at the same distance as seen from the end points 0 3, 0 3, 0 0, but in the case of Fig. 2 3 the same S-angle plane 0 3— 0 3-0 The surface area of the conductor within 0 increases, and as a result, the heat exchange area increases.
また, 分流比率を考慮した図 2 3では、 印加点 (熱の射入点) 0 0 からのエネルギーの角度分布は、 分流伝導路 z, zにより 0 1、 0 2 を通過して 0 3に到達し、 0 0から分流点 0 1までの第一熱伝導路 X は、 0 3— 0 3の第二熱伝導路 yに対して直角であり、 平面への熱拡 散を考慮する場合、 拡散方向が制限され、 不都合な形状となる。  Also, in Fig. 23 considering the diversion ratio, the angular distribution of energy from the application point (heat entry point) 0 0 passes through 0 1 and 0 2 to 0 3 through the diversion conduction paths z and z. And the first heat conduction path X from 0 0 to the diversion point 0 1 is perpendicular to the second heat conduction path y of 0 3− 0 3, and considering the heat diffusion to the plane, The diffusion direction is limited, resulting in an inconvenient shape.
そこで、 この分流点 0 2 , 0 2 , 0 1を 6 0度ごとに配置し, かつ 図 2 3を 1 8 0度反転して重ねた六角形状 (図 2 3の仮想線で示す) の構成とすることで、 可及的にメッシュプレート 2 3が占める容積に 対してメッシュプレート 2 3の表面積を増大させ、 かつ熱分流を効率 的に行う比率として、 図 2 0に示したように、 M 1 : M 2 = 2 : 1 とす る構成としたものである。 Therefore, a configuration of hexagonal shapes (shown by phantom lines in Fig. 23) in which the diversion points 0 2, 0 2, 0 1 are arranged every 60 degrees and Fig. 23 is inverted by 180 ° As a result, the volume occupied by the mesh plate 2 3 On the other hand, the ratio of increasing the surface area of the mesh plate 23 and efficiently performing the heat splitting is configured as M 1: M 2 = 2: 1 as shown in Fig. 20. .
なお、 基本的に素材の強度が許せば, この比率を保って、 前記メッ シュ部 Mを 3 X n角形で構成することが可能である。  Basically, if the strength of the material permits, the mesh part M can be configured with a 3 × n square while maintaining this ratio.
同一物質で構成される熱伝導路において、 前記ローレンツの法則に より熱伝導速度は同様な拡散理論として考察することができる。  In the heat conduction path composed of the same material, the heat conduction velocity can be considered as a similar diffusion theory by the Lorentz law.
前記した過渡ィンピーダンス低減化配線構造では、 電圧印加点と線 分との角度については論じていないが、 熱移動を平面的に効率的に分 散させるためには、 3 6 0度方向に分流することが望ましく、 構造強 度上の要求や, 製作の簡素化を目的として、 本発明では、 長辺部 M l と短辺部 M 2が熱分岐点となる連結点 Pにおいて 1 2 0度分流を採用 している。  In the above-described wiring structure with reduced transient impedance, the angle between the voltage application point and the line segment is not discussed, but in order to efficiently dissipate the heat transfer in a plane, it is shunted in the direction of 360 degrees. In the present invention, for the purpose of structural strength requirements and simplification of manufacturing, in the present invention, 1 20 degrees at the connection point P where the long side portion M l and the short side portion M 2 become thermal branch points. A shunt is used.
水蒸気移動制御装置の熱移動を制御するための補助的素材としてメ ッシュプレート 2 3 (導電性多孔体) は重要であり、 上記のようなメ ッシュパターンに形成したメッシュプレート 2 3では、 このメッシュ プレート 2 3の熱分布が効率的に拡散することができ、 水蒸気の移動 境界面の温度変化に同一の平面が均質な温度に早く変化することがで きる。  The mesh plate 2 3 (conductive porous body) is important as an auxiliary material for controlling the heat transfer of the water vapor transfer control device. The mesh plate 2 3 formed in the mesh pattern as described above is the mesh plate 2 The heat distribution of 3 can diffuse efficiently, and the same plane as the temperature change at the boundary of water vapor migration can change quickly to a homogeneous temperature.
この結果、 水蒸気の移動境界である透湿膜の表面温度を均質化する ことができ、 また、 2つ以上の透湿膜から構成される小室空間の温度 分布が発生しても境界面として透湿膜の表面温度を均質化し、 水蒸気 移動制御装置の機能を安定化させることができる。  As a result, it is possible to homogenize the surface temperature of the moisture permeable membrane, which is the moving boundary of water vapor, and even if a temperature distribution in a small chamber space composed of two or more moisture permeable membranes occurs, the surface is transparent as a boundary surface. It is possible to homogenize the surface temperature of the wet film and stabilize the function of the water vapor movement control device.
又、 設計のための構成が容易であり、 また銅などの制菌性の高い金 属製物質の表面積が増加し、 金属素材自体の遊離端の面積が増加する ことで強度の強化を得やすいとともに、 表面積が増加し、 強度維持と ともに熱交換性を高めることができる。 又、 導電性多孔体の占める空間容積に対して表面積を高めることが でき、 かつ気孔性を確保することが容易であり、 熱交換性を高めるこ とができる。 In addition, the structure for design is easy, and the surface area of highly antibacterial metal materials such as copper is increased, and the free end area of the metal material itself is increased. At the same time, the surface area increases, increasing the heat exchange as well as maintaining the strength. Further, the surface area can be increased with respect to the space volume occupied by the conductive porous body, and it is easy to ensure the porosity, and the heat exchange property can be improved.
前記スぺ一サ円筒体 2 0は、 膜体 2 2及びメッシュプレート 2 3を 圧迫状態に挟持する側の外周端部は面取り加工され、 気密シール性を 持たせるための光硬化樹脂 2 5が確実に充填できるようにしている。  The spacer cylindrical body 20 has a chamfered outer peripheral end on the side sandwiching the film body 22 and the mesh plate 23 in a compressed state, and a photo-curing resin 25 for providing an airtight seal. The filling is ensured.
なお、 前記光硬化榭脂 2 5は、 インナ円筒体 2 1 に形成した注入穴 (図示省略) に注射器 (図示省略) をセッ トし、 その状態でインナ円 筒体 2 1 を固定させながら内部のスぺーサ円筒体 2 0及び膜体 2 2及 びメッシュプレート 2 3を回転させて、 注射器によりシール剤として 光硬化樹脂 2 5 (紫外線硬化性シリコンや紫外線硬化性アクリル (変 性アクリル) 等、 その他、 水溶性硬化樹脂等) を注入させることで充 填される。  The light-curing resin 25 has a syringe (not shown) set in an injection hole (not shown) formed in the inner cylindrical body 21, and the inner cylindrical body 21 is fixed in this state while fixing the inner cylindrical body 21. Rotating spacer cylinder 20 and membrane body 2 2 and mesh plate 2 3, as a sealant with a syringe, photo-curing resin 25 (UV-curing silicone, UV-curing acrylic (modifying acrylic), etc.) It is filled by injecting water-soluble curable resin, etc.).
前記インナ円筒体 2 1は、 透明合成樹脂により形成され、 内部に組 み込んだスぺ一サ円筒体 2 0及び膜体 2 2及びメッシュプレート 2 3 及び光硬化樹脂 2 5の充填状態を目視で確認できるようにしている。  The inner cylindrical body 21 is formed of a transparent synthetic resin, and the filling state of the spacer cylindrical body 20, the film body 22, the mesh plate 2 3, and the photo-curing resin 25 is incorporated in the inside. It can be confirmed with.
又、インナ円筒体 2 1及びスぺ一サ円筒体 2 0の材質は、光硬化樹脂 2 5 との化学的接合又は機械的嵌合を考慮して選択することができる。 例えば、インナ円筒体 2 1 には透明アクリルを用いる。スぺーサ円筒体 2 0は光硬化反応のための光線の透過を考慮すると共に、完成した水 蒸気移動制御装置 1の性能に影響する各小室 2 4の温度傾斜を配慮し て選択することができる。又、接合を促進するプライマー等の表面処理 を行なってもよい。  The material of the inner cylinder 21 and the spacer cylinder 20 can be selected in consideration of chemical bonding or mechanical fitting with the photo-curing resin 25. For example, transparent acrylic is used for the inner cylinder 2 1. The spacer cylinder 20 should be selected in consideration of the transmission of light for the photocuring reaction and the temperature gradient of each chamber 2 4 affecting the performance of the completed water vapor transfer control device 1. it can. In addition, a surface treatment such as a primer for promoting bonding may be performed.
この接合部を緊密な接合を確保しない場合、 図 4の参考例で示すよ うに、膜体 2 2の通過方向に直角方向 (矢印 Q方向) の横漏れを生じる が、 この横漏れを排水路 7 aとしてもよい。 この場合、 インナ円筒体 2 1内のスぺ一サ円筒体 2 0との間に繊維等を通気方向に縦列させて、 例えば、 スぺ一サ円筒体 2 0を和紙などの繊維 7で巻いて不完全に合 着して排水路 7 aとすることもできる。 If this joint is not secured tightly, as shown in the reference example in Fig. 4, a side leakage in the direction perpendicular to the passage direction of the membrane body 22 (arrow Q direction) occurs. 7 A may be used. In this case, fibers or the like are cascaded in the ventilation direction between the inner cylindrical body 21 and the spacer cylindrical body 20. For example, the spacer cylinder 20 can be wound with fibers 7 such as Japanese paper and incompletely bonded to form the drainage channel 7a.
また、 図 5の参考例で示すように、小室 2 4に横漏れの空気と共に、 矢印 Pで示すように、排水路 7 aが確保されるようにしてもよい。この 場合には、図 6の参考例で示すように、小室ュニッ ト 2内に配置した膜 体 2 2の外周部分にパッキン 2 2 aを接着剤によって取り付ける際に、 その接着剤として水溶性接着剤 2 bを使用して、 著しい水が浸入し た場合には、 この水溶性接着剤 2 2 bを溶解させて膜体 2 2の保持部 を破壊させるようにする。  Further, as shown in the reference example of FIG. 5, a drainage channel 7 a may be secured in the small chamber 24 as indicated by an arrow P together with the side leaking air. In this case, as shown in the reference example of FIG. 6, when the packing 2 2 a is attached to the outer peripheral portion of the membrane 22 arranged in the small chamber unit 2 with an adhesive, a water-soluble adhesive is used as the adhesive. Agent 2b should be used to dissolve the water-soluble adhesive 22b in order to break the holding part of the film body 22 if significant water enters.
この場合には、 膜体 2 2の構成物質に依存した吸湿性に差違が生じ るので、水溶性接着剤 2 2 bの含浸性 (しみ込み方) が異なり、 また、 膜体 2 2 とパッキン 2 2 aの固定が不完全になりやすい傾向がある。 前記外筒ケーシング 3は、 本体円筒部 3 0 と、 この本体円筒部 3 0 の上端面に形成した上側雄ネジ部 3 1に螺合させる取付ナッ ト 3 2と、 前記本体円筒部 3 0の下端に形成した下側雄ネジ部 3 3に螺合させる 組立ナツ 卜 3 4を備えている。  In this case, there is a difference in the hygroscopicity depending on the constituent material of the membrane body 22. Therefore, the water-soluble adhesive 22b has different impregnation properties (how to penetrate), and the membrane body 2 2 and packing are different. 2 2 a tends to be imperfectly fixed. The outer cylinder casing 3 includes a main body cylindrical portion 30, a mounting nut 3 2 screwed into an upper male screw portion 31 formed on the upper end surface of the main body cylindrical portion 30, and the main body cylindrical portion 30. An assembly nut 卜 3 4 is provided to be screwed into the lower male screw portion 33 formed at the lower end.
そして、 前記本体円筒部 3 0の内部に、 前記小室ユニッ ト 2を嵌合 することで、 水蒸気移動制御装置 1が組み立てられるもので、 この場 合、 本体円筒部 3 0の下端から後述する多孔質リング体 5 1及び上端 メッシュプレー卜 5 2を本体円筒部 3 0の内部に挿入し、 次に、 小室 ュニッ ト 2を揷入したのち、 組立ナツ ト 3 4を下側雄ネジ部 3 3に螺 合させて、 この組立ナツ ト 3 4に一体成形したリングプレート 3 4 a によって小室ュニッ ト 2を下から締め付けて本体円筒部 3 0の内部に 収容保持させるものである。  Then, by fitting the small chamber unit 2 inside the main body cylindrical portion 30, the water vapor movement control device 1 is assembled. In this case, the porous body described later is formed from the lower end of the main body cylindrical portion 30. Insert the material ring 5 1 and the upper end mesh plate 5 2 into the cylindrical body 30 and then insert the small chamber unit 2 into the assembly nut 3 4 with the lower male thread 3 3 The small chamber unit 2 is tightened from below by a ring plate 3 4 a formed integrally with the assembly nut 34 and is housed and held in the main body cylindrical portion 30.
上記のようにして、 本体円筒部 3 0の内部に小室ユニッ ト 2を嵌合 した水蒸気移動制御装置 1は、 これを箱体等 4に取り付けて、 前記各 膜体 2 2の通気度及び透湿度を使用して、 両通気口 3 8、 3 9間での 水蒸気の移動を制御することで、 外気と箱体等 4の温度変動速度によ り、 箱体等 4の内部を除湿するように水蒸気の移動を制御する。 As described above, the water vapor movement control device 1 in which the small chamber unit 2 is fitted inside the main body cylindrical portion 30 is attached to a box or the like 4 so that the air permeability and permeability of each film body 22 can be obtained. Use humidity between both vents 3 8, 3 9 By controlling the movement of water vapor, the movement of water vapor is controlled to dehumidify the inside of the box etc. 4 according to the temperature fluctuation speed of the outside air and the box etc. 4.
この場合、 箱体等 4の底壁 4 1 に形成した取り付け穴 4 0に、 外筒 ケーシング 3の本体円筒部 3 0に形成した上側雄ネジ部 3 1を、 〇リ ング (パッキン) 3 5を介して揷入させ、 上側雄ネジ部 3 1に箱体等 4の内部から前記取付ナッ ト 3 2を螺合させることで水蒸気移動制御 装置 1を箱体等 4に取り付けるようにしている。  In this case, the upper male screw part 3 1 formed in the main body cylindrical part 30 of the outer casing 3 is inserted into the mounting hole 40 formed in the bottom wall 4 1 of the box body 4, etc. O Ring (packing) 3 5 The water vapor movement control device 1 is attached to the box body 4 by screwing the mounting nut 3 2 into the upper male screw portion 31 from the inside of the box body 4.
従来、 水蒸気移動制御装置の組み立てに際しては、 外筒ケーシング の内部に、 直接にスぺーサ円筒体と膜体を嵌め込んでいくもので、 そ の組み立て作業に手間がかかるという問題があつたが、 本実施例のよ う、 小室ユニッ ト 2を形成して、 これを外筒ケーシング 3の内部に嵌 合させるようにすると、 組み立て作業が簡単になる。  Conventionally, when assembling the water vapor movement control device, the spacer cylinder and the film body are directly fitted inside the outer casing, which requires a lot of trouble in the assembling work. As in this embodiment, when the small chamber unit 2 is formed and fitted into the outer casing 3, the assembling work is simplified.
本実施例の水蒸気移動制御装置 1では、 箱体等 4に穴が明いたりし て、 不測に箱体等 4の内部に水が侵入した場合、 その水を箱体等 4の 外部に排水するための排水構造が設けられている。  In the water vapor transfer control device 1 of this embodiment, if a hole is formed in the box body 4 etc. and water unexpectedly enters the inside of the box body 4, the water is drained outside the box body 4. A drainage structure is provided.
水蒸気移動制御装置の理想的な機能発揮のためには、 外部環境の温 度変化に伴う湿度調整空間の内部と外気側との呼吸現象が必要であり、 シール性は少なく とも水蒸気移動制御装置が調整することが可能な 2 0〜 3 0 % R Hの除湿に相当する水蒸気圧に室温近辺でほぼ等しい 1 0 c m水柱圧程度の気密性に耐える微弱なシール性が必要である。 し かし、 ひとたび大きなシール性の破損や破壊、 事故による水の浸入が 発生してしまった場合等や、 呼吸性が失われた条件下では排水が困難 である。  In order to demonstrate the ideal function of the water vapor transfer control device, it is necessary to have a breathing phenomenon between the inside of the humidity adjustment space and the outside air side as the temperature of the external environment changes. A weak seal is required to withstand a hermeticity of about 10 cm water column pressure, which is approximately equal to the water vapor pressure corresponding to dehumidification of 20 to 30% RH, which can be adjusted, around room temperature. However, it is difficult to drain water under the condition that once a large seal breakage or destruction, water intrusion due to an accident occurs, or under conditions where breathability is lost.
そこで、 水の浸入が発生するまでは、 湿度調整の対象となる空間の 気密性を確実に確保すると共に、 湿度調整機能を十分に発揮させる。 一方、 シールなどの箱体等 4側の不測の破損などが原因で水が浸入 した場合には、 湿度調整による水蒸気移動量を超える状況にあり、 こ 5 の状態が自然に復旧することは、 電気機器などを収容する容器または 箱体では考えにくい。 そこで、 水の浸入が発生した場合には、 排水構 造によって排水を確保することとした。 この段階では、 呼吸性よりも 排水経路の確保が重要であり、 湿度調整の能力は望めない。 Therefore, until the intrusion of water, the airtightness of the space to be adjusted for humidity is ensured and the humidity adjustment function is fully demonstrated. On the other hand, if water enters due to unexpected damage on the 4th side of a box such as a seal, the amount of water vapor transferred due to humidity adjustment is exceeded. It is unlikely that the state of 5 will naturally recover in containers or boxes that contain electrical equipment. Therefore, in case of water intrusion, it was decided to secure the drainage by the drainage structure. At this stage, securing a drainage path is more important than respiration, and the ability to adjust humidity cannot be expected.
その排水構造は、 外筒ケ一シング 3の本体円筒部 3 0に形成した上 側雄ネジ部 3 1にスリッ ト 3 6を形成し、 この上側雄ネジ部 3 1に螺 合させる取付ナッ ト 3 2に切欠部 3 7 a、 3 7 bを形成して、 水蒸気 移動制御装置 1を箱体等 4に取り付けた状態で、 スリ ッ ト 3 6と切欠 部 3 7 aが連通するように形成されている。  The drainage structure is a mounting nut in which a slit 36 is formed in the upper male screw portion 31 formed in the main body cylindrical portion 30 of the outer casing 3 and is screwed into the upper male screw portion 31. 3 2 Notches 3 7 a and 3 7 b are formed so that the slit 3 6 and the notches 3 7 a communicate with each other with the water vapor transfer control device 1 attached to the box 4. Has been.
前記取付ナッ ト 3 2は、 図 8に示すように、 その上下両端面に切欠 部 3 7 a、 3 7 bが形成され、前記取付ナツ ト 3 2の螺合状態で下端側 の切欠部 3 7 aが上側雄ネジ部 3 1に形成したスリッ ト 3 6に連通す るように形成することで、 前記取付ナツ ト 3 2を上下反転使用できる ように形成されている。  As shown in FIG. 8, the mounting nut 3 2 has notches 3 7 a and 3 7 b formed on both upper and lower end faces thereof, and the notch 3 on the lower end side when the mounting nut 3 2 is screwed. 7a is formed so as to communicate with a slit 36 formed on the upper male threaded portion 31, so that the mounting nut 32 can be used upside down.
なお、 前記スリッ ト 3 6は、 複数個 (実施例では 3個) が等間隔 ( 1 2 0度間隔)で配設されており、上側雄ネジ部 3 1の上端から切り込み 形成されている。  A plurality (three in the embodiment) of the slits 36 are arranged at equal intervals (12.0 degrees intervals), and are formed by cutting from the upper end of the upper male screw portion 31.
例えば、切欠部を取付ナツ ト 3 2の片方の端面だけに形成した場合、 切欠部を形成していない端面を下向きにしてしまうという装着方向を 誤ると、 取付ナッ トの端面に切欠部がないため、 排水経路を遮断して しまうという問題がある。  For example, if the notch is formed only on one end face of the mounting nut 32, there will be no notch on the end face of the mounting nut if the mounting direction is such that the end face that does not have the notch is turned downward. Therefore, there is a problem of blocking the drainage route.
これに対し、取付ナツ 卜 3 2の上下両端面に切欠部 3 7 a, 3 7 bを 形成すると、 どちらの面を下向きにしても下端側に位置した切欠部 3 7 aによつて排水経路を確保することができるもので、 取り付け間違 いに対するフェイルセーフ機能となる。  On the other hand, when the notches 3 7 a and 3 7 b are formed on the upper and lower end faces of the mounting nut 卜 3 2, the drainage path is formed by the notch 3 7 a located on the lower end side regardless of which face is facing downward This is a fail-safe function against incorrect installation.
なお、 この実施例では、 前記取付ナツ 卜 3 2の外形は 8角形に形成 され、 切欠部 3 7 aは 8角形の各辺部中央に形成され、 切欠部 3 7 b は 8角形の各角部に形成されて、 共に 8個づつの切欠部 3 7 aと切欠 部 3 7 bが平面から見て重ならないように配置されている。 In this embodiment, the outer shape of the mounting nut 卜 3 2 is formed in an octagon, the notch 3 7 a is formed in the center of each side of the octagon, and the notch 3 7 b Is formed at each corner of the octagon, and is arranged so that the eight notches 3 7 a and 3 7 b do not overlap each other when seen from the plane.
又、前記切欠部 3 7 a , 3 7 bの奥部 3 7 cは円弧状に形成されてい る。  Further, the back portion 3 7 c of the notches 3 7 a and 3 7 b is formed in an arc shape.
切欠部の奥部を角形状にすると、 水漏れ事故などにあった電気箱の 底部に溜まった水が温度下降により凍結してしまった場合、 凍結膨張 によって取付ナッ ト 3 2に応力変形が生じやすく、 経年劣化にともな つて取付ナツ ト 3 2への亀裂形成などの原因にもなる。  If the inner part of the notch is square, the water accumulated at the bottom of the electrical box due to a water leakage accident, etc., freezes due to a temperature drop, and stress deformation occurs in the mounting nut 3 2 due to freezing and expansion. It is easy to cause cracks in the mounting nut 3 2 due to deterioration over time.
そこで、 切欠部 3 7 a, 3 7 bの奥部を円弧状に形成することで、 凍結膨張による取付ナツ ト 3 2への応力集中による取付ナツ ト 3 2の 破損や緩みなどを予防することができる。  Therefore, by forming the inner part of the notches 3 7 a and 3 7 b in an arc shape, the mounting nut 3 2 is prevented from being damaged or loosened due to stress concentration on the mounting nut 3 2 due to freezing and expansion. Can do.
又、 前記小室ュニッ ト 2が排水路間隙 6を保持して外筒ケ一シング 3の内部に嵌合されると共に、 前記リングプレート 3 4 aに、 図 1 0 の水蒸気移動制御装置の底面図に示すように排水路間隙 6に連通する 貫通孔 3 4 bが形成されている。  The small chamber unit 2 is fitted into the outer casing 3 while holding the drain gap 6 and the bottom view of the water vapor movement control device of FIG. As shown, a through hole 3 4 b communicating with the drainage gap 6 is formed.
箱体等 4に損崩が発生し、箱体等 4内へ外部の水が流入したような 場合には、 箱体等 4の内部に水が貯留してしまう。  When a loss occurs in the box etc. 4 and external water flows into the box etc. 4, the water is stored inside the box etc. 4.
このように箱体等 4の底面に水が湾まつたとしても、 その水は取付 ナッ ト 3 2の切欠部 3 7 aから上側雄ネジ部 3 1のスリッ ト 3 6を通 して水蒸気移動制御装置 1の内部に流入し、 前記排水路間隙 6及びリ ングプレート 3 4 aの貫通孔 3 4 bを通して外部に排水することが可 能になる。  In this way, even if water falls on the bottom of the box 4 etc., the water moves through the notch 3 7a of the mounting nut 3 2 through the slit 3 6 of the upper male thread 3 1 It becomes possible to flow into the control device 1 and drain to the outside through the drain gap 6 and the through hole 3 4 b of the ring plate 3 4 a.
そして、 図 1 1に示すように、前記排水路間隙 6の上端部において、 外筒ケ一シング 3の上部内面に形成した段部 6 0 と、 小室ュニッ ト 2 の上端との間に吸水性に優れた多孔質リング体 5 1を装着させ、 この 多孔質リング体 5 1の透水空隙 Sに水溶性シール物質を充填させるこ とで、 常時は透水空隙 Sを閉塞させて排水路間隙 6を閉塞させ、 水の 侵入時には水溶性シ一ル物質が溶解して排水路間隙 6が外部に開通す るように形成されている。 Then, as shown in FIG. 11, at the upper end portion of the drainage gap 6, the water absorption between the step portion 60 formed on the upper inner surface of the outer casing 3 and the upper end of the small unit 2 is achieved. By attaching a porous ring body 51 excellent in water resistance and filling the water permeable gap S of this porous ring body 51 with a water-soluble sealing substance, the water permeable gap S is normally closed to close the drain gap 6. Occlude the water At the time of intrusion, the water-soluble seal substance is dissolved so that the drain gap 6 is opened to the outside.
なお、 多孔質リング体 5 1を使用せずに、 水溶性シール物質自体で 直接に排水路間隙 6やその上端部を閉塞させるようにしてもよい。  Instead of using the porous ring body 51, the drainage gap 6 and the upper end thereof may be directly closed with the water-soluble sealing substance itself.
なお、 この実施例では、 前記排水路間隙 6の上端部に装着された多 孔質リング体 5 1 と、 小室ユニッ ト 2の上端の間に、 図 1に示すよう にスクイーズパッキン 6 1が装着されている。 この場合、 スクイ一ズ パッキン 6 1によって、 排水路間隙 6を閉鎖してしまわないようにす る。  In this embodiment, a squeeze packing 61 is attached between the porous ring body 51 attached to the upper end of the drainage gap 6 and the upper end of the small chamber unit 2 as shown in FIG. Has been. In this case, the drainage gap 6 is not closed by the squeeze packing 61.
スクイーズパッキン 6 1は、 排水路間隙 6が外部からの吹き込み等 によって湿潤したような場合、 少々の湿潤では排水路間隙 6が開通し ないようにする作用、 および熱膨張や収縮減少を緩和する作用を有し ている。 また、 多孔質リング体 5 1の膨潤によって排水路間隙 6の上 端部の間隔が変化してしまったり、外筒ケーシング 3の熱膨張により、 箱体等 4側が乾燥状態にあるにもかかわらず、 排水路間隙 6が開通し てしまったりしないように、 スクイーズパッキン 6 1によって多孔質 リング体 5 1 を弾性的に圧迫させている。  The squeeze packing 6 1 prevents the drainage gap 6 from opening when the drainage gap 6 is wet by blowing from the outside, etc., and reduces the thermal expansion and shrinkage. have. In addition, the swelling of the porous ring body 51 changes the distance between the upper ends of the drainage gap 6 and the thermal expansion of the outer casing 3 causes the box 4 etc. to be in a dry state. The porous ring body 51 is elastically pressed by the squeeze packing 61 so that the drain passage gap 6 is not opened.
なお、 前記スクイーズパッキン 6 1は、 多孔質リング体 5 1 と、 小 室ユニッ ト 2の上端の間に装着されるが、このとき、図 1 7 ( a )、 ( b ) のように小室ュニッ ト 2の上端面にスクイーズパッキン 6 1 をそのま ま載置させると、 このスクイーズパッキン 6 1が多孔質リング体 5 1 の底面に食い込む状態になるため、きつ水が上昇し、多孔質リング体 5 1を通過する水の流動を阻止する状態の排水障害が生じてしまう。 そこで、図 1 8に示すように、小室ュニッ ト 2の外周上端に段差部 2 aを形成して、 この段差部 2 aにスクイーズパッキン 6 1 を納めるよ うにすることで、 上記のような排水障害が生じるのを防止している。 また、 箱体等の底壁 4 1 と取付ナツ ト 3 2の間に緩み止め座金 9が 装着されている。 The squeeze packing 61 is mounted between the porous ring body 51 and the upper end of the small chamber unit 2. At this time, the small chamber unit as shown in FIGS. If the squeeze packing 6 1 is placed on the upper end surface of the second ring 2 as it is, the squeeze packing 61 will bite into the bottom surface of the porous ring body 51. 5 A drainage failure that prevents the flow of water through 1 will occur. Therefore, as shown in FIG. 18, a stepped portion 2 a is formed at the upper end of the outer periphery of the small chamber unit 2, and the squeeze packing 6 1 is placed in the stepped portion 2 a, so that It prevents the failure from occurring. In addition, a locking washer 9 is provided between the bottom wall 4 1 of the box or the like and the mounting nut 3 2. It is installed.
この緩み止め座金 9は、 耐震動性能の向上を目的として、 震動性の ある電気箱に装着された場合に、 水蒸気移動制御装置 1の脱落を防止 するため、 取付ナツ ト 3 2の緩みを防止するためのものである。  This locking washer 9 prevents loosening of the mounting nut 3 2 in order to prevent the water vapor transfer control device 1 from falling off when it is mounted on a vibration-proof electric box for the purpose of improving vibration resistance. Is to do.
従来、ナツ トが震動で緩むのを防ぐには、ロックナッ トやナイロンナ ッ トなどを用いるのが知られている。  Conventionally, it is known to use lock nuts or nylon nuts to prevent nuts from loosening due to vibration.
水蒸気移動制御装置は、 箱体等への接続のためのネジ部分は合成樹 脂で形成されており、 ロックナッ トや、 ナイロンナッ トなどを用いる と、 スリッ ト 3 6の変形や、 上側雄ネジ部 3 1の損傷が容易に生じて しまうという問題があった。  In the water vapor transfer control device, the screw part for connection to the box is made of synthetic resin, and if a lock nut or nylon nut is used, deformation of the slit 36 or the upper male screw There was a problem that part 31 was easily damaged.
また、 取付ナツ ト 3 2に切欠部 3 7 a , 3 7 bを形成するものにあ つては、 同様に上側雄ネジ部 3 1の損傷をまねくおそれが高く、 自然 脱落のおそれが考えられる。  In addition, when the mounting nut 3 2 is formed with the notches 3 7 a and 3 7 b, there is a high possibility that the upper male threaded portion 31 will be damaged in the same manner, and there is a possibility of natural dropout.
箱体等 4への接続に使う〇リング 3 5の弾性力が得られる圧縮力の 幅を上昇させても、 外筒ケ一シング 3 と取付ナツ ト 3 2の間に挟まれ た箱体等 4の底壁 4 1の震動は、取付ナツト 3 2への応力を発生させ、 結果的に取付ナッ ト 3 2の緩みを発生させてしまう場合がある。  Used for connection to box etc. 4 Ring 3 Box 3 etc. sandwiched between outer cylinder casing 3 and mounting nut 3 2 even if the width of the compression force that gives the elastic force of 5 3 is increased The vibration of the bottom wall 4 1 may cause stress on the mounting nut 3 2 and may result in loosening of the mounting nut 3 2.
さらに、 Oリング 3 5を箱体等 4の内側に装着した場合には、 箱底 部に溜まった水がスリッ ト部 3 6に至る排水経路を遮断することにな り、 又、 0リング 3 5の付け忘れや損傷などにあっても、 箱体等 4の底 壁 4 1の内面と取付ナッ ト 3 2の摩擦力を上昇させると共に排水経路 を確保する方法が必要とされ、 そこで箱体等 4の底壁 4 1 と取付ナツ ト 3 2の間に緩み止め座金 9を装着するように形成した。  Furthermore, when the O-ring 3 5 is installed inside the box body 4 etc., the water accumulated at the bottom of the box will block the drainage route to the slit portion 36, and the 0-ring 3 5 Even if you forget to attach or damage the box, etc., there must be a way to increase the frictional force between the inner wall of the bottom wall 4 1 and the mounting nut 3 2 and secure a drainage path. 4 is formed so that a locking washer 9 is attached between the bottom wall 4 1 of 4 and the mounting nut 3 2.
前記緩み止め座金 9は、 図 7に示すように、 内周に複数個 (実施例 では 1 2個) の係止爪 9 0が等間隔 ( 3 0度間隔) で突設され、 この 係止爪 9 0は取付ナッ ト 3 2の緩み方向 (矢印 A方向) に対向する辺 (上向辺) 9 1 を上に向け、取付ナッ ト 3 2の緩み方向の辺 (下向辺) 9 2を下に向けるように傾斜して形成されている。 As shown in FIG. 7, a plurality of locking claws 90 (in the embodiment, 12 pieces) 90 are projected at equal intervals (30 degree intervals) on the inner periphery, as shown in FIG. Claw 90 is the side (upward side) 9 1 facing the loosening direction of mounting nut 3 2 (arrow A direction), and the side of loosening direction of mounting nut 3 2 (downward side) 9 Inclined so that 2 is facing down.
この場合、係止爪 9 0は、外筒ケ一シング 3の上側雄ネジ部 3 1 に対 して接触するが、 ネジ溝に嵌まりにくい角度に傾斜している。従って、 取付ナツ ト 3 2を上側雄ネジ部 3 1 に対して締め付ける際に、 この緩 み止め座金 9が締め付けの妨げになることはない。  In this case, the locking claw 90 is in contact with the upper male screw portion 3 1 of the outer casing 3 but is inclined at an angle that makes it difficult to fit into the screw groove. Therefore, when the mounting nut 3 2 is tightened against the upper male threaded portion 3 1, the locking washer 9 does not hinder tightening.
又、前記取付ナッ ト 3 2の締め付けに対して傾斜状態に復帰する方 向に弾性を持たせて前記上向辺 9 1が取付ナツ ト 3 2の底面に係止し、 前記下向辺 9 2が箱体等 4の底壁 4 1の上面に係止するように形成さ れている。  Further, the upper side 91 is locked to the bottom surface of the mounting nut 3 2 by giving elasticity in a direction to return to the inclined state with respect to the tightening of the mounting nut 32, and the lower side 9 2 is formed so as to be locked to the upper surface of the bottom wall 4 1 of the box or the like 4.
又、前記係止爪 9を、前記取付ナツ ト 3 2に形成した複数個の切欠部 の数 (実施例では 8個) と異なる数 (実施例では 1 2個) で形成させ ることで、図 9に示すように、取付ナッ ト 3 2の締め付けにより前記緩 み止め座金 9が波形状に変形した状態で箱体等 4の底壁 4 1 と取付ナ ッ ト 3 2の間に装着されるように形成されている。  In addition, by forming the locking claws 9 with a different number (12 in the embodiment) than the number of the plurality of notches formed in the mounting nut 32 (8 in the embodiment), As shown in Fig. 9, the locking washer 9 is mounted between the bottom wall 4 1 of the box body 4 and the mounting nut 3 2 in a state where the locking washer 9 is deformed into a wave shape by tightening the mounting nut 3 2. It is formed so that.
この緩み止め座金 9を設けたことにより、取付ナッ ト 3 2が震動で 緩むのを防止することができる。  By providing this locking stopper washer 9, it is possible to prevent the mounting nut 3 2 from loosening due to vibration.
即ち、上向辺 9 1が取付ナッ ト 3 2の底面に係止し、前記下向辺 9 2 が箱体等 4の底壁 4 1の上面に係止するように形成されているので、 取付ナッ ト 3 2の緩みに対して強固な突っ張り棒の働きで緩みを防止 することができる。  That is, since the upward side 91 is locked to the bottom surface of the mounting nut 32, the downward side 92 is locked to the top surface of the bottom wall 41 of the box body 4 etc. The looseness of the mounting nut 3 2 can be prevented by the action of a strong tension bar.
取付ナツ ト 3 2の締め付けによって前記緩み止め座金 9が波形状に 変形するため、 緩み止め座金 9 と取付ナッ ト 3 2の間、 及び緩み止め 座金 9 と箱体等 4の底壁 4 1 との間に隙間が生じ、 この隙間に毛細管 現象を活用して水を流入させることができるので、 取付ナツ ト 3 2の 端面に形成した切欠部 3 7 aから上側雄ネジ部 3 1に形成したスリツ ト 3 6を通して外筒ケーシング 3の内部に流入する排水経路を確保す ることができる。 なお、 この緩み止め座金 9に上下は無く、 反転して取り付けても前 記効果を達成することができる。 Since the locking washer 9 is deformed into a wave shape when the mounting nut 3 2 is tightened, between the locking washer 9 and the mounting nut 3 2 and between the locking washer 9 and the box 4 etc. Since there is a gap between them and water can flow into the gap by utilizing the capillary phenomenon, it is formed from the notch 3 7a formed on the end face of the mounting nut 3 2 to the upper male thread 3 1 A drainage channel that flows into the outer casing 3 through the slit 36 can be secured. The locking washer 9 has no top and bottom, and the above effect can be achieved even if it is installed upside down.
前述したように、 多孔質リング体 5 1の透水空隙 Sには、 乾燥状態 で固形で、 かつ気密性を有する水溶性シール物質を充填 (含浸させて 乾燥) させている。  As described above, the water-permeable gap S of the porous ring body 51 is filled (impregnated and dried) with a water-soluble sealing substance that is solid in a dry state and has airtightness.
水が侵入すると、 上端メッシュプレート 5 2によって、 多孔質リン グ体 5 1の側に積極的に排水される。 この結果、 一定量を超える水が 侵入した場合には、 多孔質リング体 5 1内に吸収される水によって、 多孔質リング体 5 1は膨潤して固形形態を維持できなくなり、 かつ、 多孔質リング体 5 1の透水空隙 Sに固形で存在していた水溶性シール 物質が水中に溶出して、 排水路間隙 6が開通し、 この排水路間隙 6を 通して外部に排水することができるようになる。  When water enters, the upper end mesh plate 52 is positively drained to the porous ring body 51 side. As a result, when more than a certain amount of water enters, the porous ring body 51 cannot swell due to the water absorbed in the porous ring body 51 and cannot maintain a solid form. The water-soluble sealing substance that existed in solid form in the water-permeable gap S of the ring body 5 1 elutes into the water, opens the drainage gap 6 and allows it to drain outside through this drainage gap 6. become.
この際問題になるのは、 外気側からのしめり空気による多孔質リン グ体 5 1のシール性の維持である。  The problem at this time is maintaining the sealing performance of the porous ring body 51 by the squeezed air from the outside air side.
多孔質リング体 5 1の湿り具合は、 浸潤した水の量、 すなわち、 該 多孔質リング体 5 1に接触する水の量に依存する他、 外気側からのし めり空気の逆行性の侵入によっても影響を受ける。 このような二律背 反による悪作用を解決するための解決手段としては、 前記多孔質リン グ体 5 1の基材を、 たとえばフェルト状の多孔質繊維により形成し、 これに、 水溶性シール物質を含浸させたフェルト材を活用する。  The wetness of the porous ring body 51 depends on the amount of infiltrated water, that is, the amount of water in contact with the porous ring body 51, and the retrograde invasion of the squeezed air from the outside air side. Also affected by. As a means for solving such an adverse effect due to the contradiction, the base material of the porous ring body 51 is formed of, for example, felt-like porous fibers, and a water-soluble seal is formed thereon. Use felt material impregnated with material.
この結果、 フェル卜材に含まれる水溶性シール物質は、 直下の上端 メッシュプレート 5 2以下の膜体 2 2にも影響し、 表面汚損を生じる ので、 湿度調整能力は低下するが、 この段階では、 すでに外気との交 通路が確保されている状況であり、 呼吸現象に必要な気密性は破壊し ており、 もはや小室ユニッ ト 2の空間では空気の呼吸現象は発生しな いか、 もしくは低下する。  As a result, the water-soluble sealing material contained in the ferrous material also affects the film body 2 2 below the upper end mesh plate 52 and causes surface contamination. The air passage has already been secured, the airtightness necessary for the breathing phenomenon has been destroyed, and the air breathing phenomenon no longer occurs or decreases in the space of the small room unit 2. .
また、 外気との通気路となる排水経路に、 フェルト材等の多孔体が エア一フィルタリ ングを行い、箱や容器内の呼吸現象に伴う外気中の 塵埃等の箱内侵入を予防するという効果が得られる。 In addition, a porous material such as felt material is provided in the drainage path that serves as a ventilation path with the outside air. The effect of air filtering is to prevent the intrusion of dust in the box due to the breathing phenomenon in the box or container.
又、 排水路間隙 6は、 熱伝導速度が遅い物質、 例えば合成樹脂など で囲まれた結露しにくい熱量的な設計が行われ、 又、 外気側のリング プレ一ト 3 4 aの貫通孔 3 4 bにより、 可及的に乾燥し易い条件が維 持される。 貫通孔 3 4 bの設計は、 この条件で任意に行うことができ る。  Also, the drain gap 6 is designed with a calorific value, which is surrounded by a material with a low heat conduction rate, for example, synthetic resin, which is hard to condense, and the outside air ring plate 3 4 a 4 b keeps the conditions as easy to dry as possible. The design of the through hole 3 4 b can be arbitrarily performed under this condition.
ところが、 従来行われてきたように、 外部への排水孔を箱体等の底 部に設ける手段に比較すると、 箱体等 4の内部は、 フェルト材によつ てフィルタリングされるので、 何らかの原因によって不完全な呼吸現 象が発生した場合でも、 湿度調整機能は維持されやすい状態を保持す る。  However, as compared with the conventional method of providing a drain hole to the outside of the box, etc., the inside of the box, etc.4 is filtered by the felt material. Even if an incomplete breathing phenomenon occurs, the humidity adjustment function is maintained.
また、 前記多孔質シール体 5 1の圧迫度合いによっては、 毛細管現 象による排水能力の調整が可能である。  Further, depending on the degree of compression of the porous seal 51, the drainage capacity can be adjusted by the capillary phenomenon.
なお、 多孔質シール体 5 1の圧迫性の調整は、 外筒ケーシング 2の 内部に収容される小室ュニッ ト 3に対する組立ナツ 卜 3 4による締め 付け力の調整によって可能であるが、 固定式として、 圧迫性が装着時 に調整できないようにすることもできる。  The compression of the porous sealing body 51 can be adjusted by adjusting the tightening force with the assembly nut 卜 3 4 for the small chamber unit 3 housed inside the outer casing 2. It is also possible to prevent the compression from being adjusted at the time of wearing.
この締め付け力が強ければ、水溶性シール物質の有効断面積の排水 路は小さくなり、緩ければ、緩慢な気密性となる。  If this tightening force is strong, the drainage channel of the effective cross-sectional area of the water-soluble sealing substance will be small, and if it is loose, it will be slow airtight.
又、 排水路間隙 6は、 小室ユニッ ト 2 と外筒ケーシング 3の間に設 けられた空間を兼用しており、 排水路として作用していない状況下で は、 保温腔としても作用し、 湿度調整機能の維持に作用する。 そのた めに、 リングプレート 3 4 aに設ける貫通孔 3 4 bの有効断面積を調 整し、 保温性を調整することができる。  In addition, the drainage gap 6 also serves as a space provided between the small chamber unit 2 and the outer casing 3, and also acts as a heat retaining cavity in a situation where it does not act as a drainage path. It works to maintain the humidity adjustment function. Therefore, the heat retention can be adjusted by adjusting the effective sectional area of the through hole 3 4 b provided in the ring plate 3 4 a.
又、 多孔質リング体 5 1の素材として実施例ではフェルト材を示し たが、 このほか圧縮性を有した多孔性の繊維性素材を使用することが できる。 In addition, the felt material is shown as a material of the porous ring body 51 in the embodiment, but it is also possible to use a porous fibrous material having compressibility. it can.
また、 水溶性シール物質の耐熱性は重要であって、 屋外電気箱では 6 5 °Cを超える場合も認められる。 そこで、 通常の乾燥状態で固形で あって、 気密性を有するオブラート、 セルロース、 寒天たんぱく質、 澱粉などが水溶性シール物質としては有用である。  In addition, the heat resistance of water-soluble sealing materials is important, and in outdoor electrical boxes, temperatures exceeding 65 ° C are also observed. Therefore, oblate, cellulose, agar protein, starch, etc., which are solid in a normal dry state and have airtightness, are useful as a water-soluble sealing substance.
前記した多孔質リング体 5 1への水溶性シール物質 8の充填部位は、 図 1 2の斜線部で示すように、多孔質リング体 5 1の外周側部分とし、 水溶性シ一ル物質 8が膜体 2 2から離隔するように配置している。  The porous ring body 51 is filled with the water-soluble sealing substance 8 as shown by the hatched portion in FIG. 12 at the outer peripheral side portion of the porous ring body 51. Is arranged so as to be separated from the film body 2 2.
このように、 水溶性シール物質 8を膜体 2 2から離隔して位置させ ると、 膜体 2 2の劣化を予防できるし、 また、 箱体等 4の空間を守る シール性の限界まで内部空間の湿度調整を行うことができと共に、 限 界に達した箱や容器のシール性の破壊に伴う直接的な不測の水の侵入 による排水経路を確実に確保することができ、 フェイルセーフであつ て、 有用な構造である。  Thus, if the water-soluble sealing substance 8 is positioned away from the membrane body 22, the degradation of the membrane body 2 2 can be prevented, and the internal space up to the limit of the sealing performance that protects the space of the box body 4 etc. In addition to being able to adjust the humidity of the space, it is possible to ensure a drainage path due to direct and unforeseen water intrusion due to the breakage of the sealing performance of boxes and containers that have reached the limit. It is a useful structure.
又、 吸水性の物質を、 箱体等 4の湿度調整を行う空間の気密性確保 に使用するにあたっては、 自然界に存在する細菌や黴などによって分 解されることが考えられるので、 前記水溶性シール物質 8には、 防黴 剤や抗菌剤を混合使用するとよい。  In addition, when water-absorbing substances are used to ensure the airtightness of the space where the humidity of the box or the like 4 is adjusted, it is considered that the water-soluble substance is decomposed by bacteria or spiders that exist in nature. The seal substance 8 may be mixed with an antibacterial agent or an antibacterial agent.
これらの抗菌素材で最も有用であると考えられる物質は、 銅や銀粉 末やその他の化合物が有用であって、 排水路間隙 6 にこのようなオリ ゴジナミ一効果を有する物質を配置してもよい。 膜体に使用したオリ ゴジナミ一効果を排水路系の安全確保時にも併用することで、 廃棄物 化した場合等も処理方法が限定され、経済的である。  The most useful substances among these antibacterial materials are copper, silver powder and other compounds, and substances having such an origami effect may be disposed in the drainage gap 6. . By combining the origami effect used for the membrane body with ensuring the safety of the drainage system, the treatment method is limited even when it is turned into waste, which is economical.
又、 水溶性シール物質 8に虫避け剤等を混合してもよい。  In addition, an insect repellent may be mixed in the water-soluble sealing substance 8.
多孔質リング体 5 1 の素材に使用した繊維が、 図 1 3に示すように 吸湿性繊維 5 1 aの場合、水溶性シール物質 8 と同時又は低い湿度( 6 5 % P H ) でも繊維に吸湿が生じることがあるのに対し、 図 1 4に示 すように繊維が非吸湿性繊維 5 1 bの場合には、 繊維に吸湿が生じ難 いため、 水が水溶性シール物質 8に直接接触するまでは、 図 1 5のグ ラフに示すように、 硬さ (気密性) を維持し易いという利点がある。 又、多孔質リング体 5 1は環状であるため、箱の底面のどの方向から水 がきても排水が早期に開始しやすい。 When the fiber used for the material of the porous ring body 5 1 is hygroscopic fiber 51 as shown in Fig. 13, the fiber absorbs moisture even at the same time as the water-soluble sealing substance 8 or at low humidity (65% PH). As shown in Figure 14 Thus, when the fibers are non-hygroscopic fibers 5 1 b, the fibers are unlikely to absorb moisture, so until the water comes into direct contact with the water-soluble sealing substance 8, as shown in the graph of Figure 15 There is an advantage that it is easy to maintain hardness (air tightness). Further, since the porous ring body 51 is annular, drainage tends to start early even if water comes from any direction on the bottom of the box.
なお、 図 1 3及び図 1 4は多孔質リング体 5 1の外周側部分に水溶 性シール物質 8 (斜線部で示す) を充填した状態の断面図であり、又、 図 1 5は吸湿性繊維 5 1 aと非吸湿性繊維 5 1 bの吸水による硬度変 化を示すグラフである。  FIGS. 13 and 14 are cross-sectional views in which the outer peripheral portion of the porous ring body 51 is filled with a water-soluble sealing substance 8 (indicated by hatching), and FIG. 15 is a hygroscopic material. 5 is a graph showing changes in hardness due to water absorption of fiber 51a and non-hygroscopic fiber 51b.
前記多孔質リング体 5 1の水溶性シール物質に関し、 通常の乾燥状 態で固形であって、 気密性を確保することができるオブラート、 セル ロース、 寒天たんばく質、 ゼラチン、 でんぷんなど、 水溶性シール物 質のみで構成した場合、 虫等による食害を防止するため防虫剤を混合 することが考えられるが、 このような防虫剤として使用されるタン二 ンは、 酸性度が p H 3〜 4と高いという問題がある。  Regarding the water-soluble sealing material of the porous ring 51, it is solid in a normal dry state and can be airtight, such as wafer, cellulose, agar protein, gelatin, starch, etc. In the case of using only the sealing material, it is conceivable to mix an insect repellent to prevent insect damage from insects, but the tannin used as such an insect repellent has an acidity of pH 3-4. There is a problem that it is expensive.
また、 多孔質リング体 5 1に含浸させた物質が、 固形溶解物質のみ であれば、 吸水膨張による変形の後の崩壊現象の発生は遅く、 また水 の経路の生成に長時間 ( 3 m m厚さの多孔質リング体での試験結果で は 2 4時間以上) を要する。  In addition, if the material impregnated in the porous ring 51 is only a solid dissolved material, the occurrence of the collapse phenomenon after deformation due to water absorption expansion is slow, and it takes a long time (3 mm thick) to generate the water path. The result of a test with a porous ring body requires 24 hours or more).
このような問題点に対して、 排水機能をより確実にし俊敏な反応が 得られ、 かつ耐力の高い排水構造が要求される。  In response to these problems, a drainage structure that requires more reliable drainage function, agile reaction, and high durability is required.
そこで、 前記防虫剤として使用されるタンニンは、 酸性度が p H 3 〜 4と髙いものであるが、 タンニンの混合後に p H調整を行い、 ほぼ 中性に調整する目的で炭酸水素ナトリゥムを配合する。  Therefore, the tannin used as the insect repellent has a low acidity of pH 3-4, but the pH is adjusted after mixing the tannin, and sodium bicarbonate is added for the purpose of adjusting to almost neutral. To do.
たとえば、 柱上に懸垂される電気箱などでは、 事故により電気箱に 貯留した水が下方への落下することが考えられる。 このような場合、 落下する水の p Hは中性であることが望ましい。 また、 防腐剤は、 天 然素材で構成されることが望ましい。 For example, in an electrical box suspended on a pillar, water stored in the electrical box due to an accident may fall downward. In such cases, the pH of the falling water should be neutral. Also, the preservative is However, it is desirable to be composed of materials.
タンニンは、 いわゆる柿渋から抽出された防腐性物質で、 収斂作用 が認められるので高濃度を使用すると危険である。  Tannin is an antiseptic substance extracted from so-called persimmon astringents, and since it has an astringent effect, it is dangerous to use high concentrations.
しかし、 p Hを中性に調整しても、 なおかつ錯塩ゃ酸で飽埋された 状態であれば、 夕ンニンの有効成分は不完全ゲル体の水和物中の水溶 性成分として増量させやすいので、 防腐効果を得やすいことが考えら れる。  However, even if the pH is adjusted to be neutral, and if it is filled with complex oxalic acid, the active ingredient of ninnin can be easily increased as a water-soluble component in the incomplete gel hydrate. Therefore, it is thought that it is easy to obtain an antiseptic effect.
この他、 ゲル体の粘性調整には、 塩析を活用する方法も用いても良 い。  In addition, a method using salting out may be used to adjust the viscosity of the gel body.
この場合にはゲル体の中に含まれる架橋ゲル構造分子を構成する力 ルポキシル基などによって構成される親水性コロイ ドの凝集を活用す るが、 このとき、 電解質を添加すると親水コロイ ドは凝析する。  In this case, agglomeration of hydrophilic colloid composed of force lpoxyl groups constituting the cross-linked gel structure molecule contained in the gel body is utilized. At this time, when an electrolyte is added, the hydrophilic colloid is aggregated. Analyze.
夕ンパク質に対する塩析効果の強いイオンから弱いイオンへの序列 は、 ァニオンについては、 S〇4— >F— >C 1 — >B r— >N03— > 1 一 > S C N -、 一価カチオンについては、 L i +>N a +〉K+> R b +> C s +、 二価カチオンについては、 M g 2+> C a 2+> S r 2+> B a 2+など が知られており (物性物理学: 製剤学へのアプローチ : 大島広行、 半 田哲郎 : 株式会社南江堂 : 2 0 0 3年 7月 2 0 日発行 : p . 1 2 5 )、 これらの物質を活用して、 コロイ ドの粘性を調整してもよい。 The order from the strong salting out ion to the weak ion in the protein is S0 4 —>F—> C 1 —> B r—> N0 3 —> 1 1> SCN-, monovalent For cations, L i +> N a + 〉 K +> R b +> C s +, and for divalent cations, M g 2+ > C a 2+ > S r 2+ > B a 2+ etc. (Physical physics: approach to pharmaceutical science: Hiroyuki Oshima, Tetsuro Handa: Nanedo Co., Ltd .: 20 July 2003 issue: p. 1 2 5) Then, the viscosity of the colloid may be adjusted.
ただし、 これらの中で、 金属腐食性の高い物質として、 C 1 一、 I一などのァニオンが知られており、 使用しないほうが望ましい。  However, among these, anions such as C 1 and I 1 are known as highly corrosive metals, and it is preferable not to use them.
N aや Kなどや C aなどは大気中の水蒸気にも多く含まれるので、 使用上乾燥状況でも、 経年劣化に伴う物性変化など、 多孔質リング体 5 1の呼吸現象が少ないことが予測され、 安全である。  Since a large amount of Na, K, Ca, etc. is contained in water vapor in the atmosphere, it is predicted that the porous ring body 51 will have few respiratory phenomena, such as changes in physical properties due to aging, even in dry conditions. It is safe.
水和性を向上させる目的で、 薬剤の崩壊と溶解を促進させるために は、 一般には、 ぬれを向上させ、 崩壊を促進するためには毛管現象に よる崩壊機構を用いて、 崩壊剤が空隙を通じて吸水し、 空隙を広げて 粒子間結合力を低下させてマトリックスを崩壊させる方法が知られて いる (花野学、 寺田勝英、 伊藤敏智夫編集: P p . 5 9— 6 2 :薬剤学 : 改訂第 6版 : 1 9 8 4年 9月 1 5 日第 1版第 1刷発行 : 2 0 0 5年 6 月 1 日第 6版第 2刷発行 : 株式会社南江堂)。 In order to promote the disintegration and dissolution of the drug for the purpose of improving hydration, in general, the disintegrant is voided by using a disintegration mechanism by capillary action to improve wetting and to promote the disintegration. To absorb water and widen the gap There is a known method of disrupting the matrix by reducing the interparticle bonding force (Manabu Hanano, Katsuhide Terada, Toshio Ito, edited by P. 5 9-6 2: Pharmacology: Revised 6th edition: 1 9 8 September 15th, 4th, 1st edition, 1st edition issued: 2000 June 1st edition, 6th edition, 2nd edition: Nanedo Co., Ltd.).
ところで、 水蒸気移動制御装置 1の場合には、 箱体等 4の置かれた 環境温度の変化に伴って発生する呼吸現象は、 水蒸気移動制御装置 1 の排水構造に対してス トレスを与える。  By the way, in the case of the water vapor movement control device 1, the breathing phenomenon that occurs in accordance with the change in the environmental temperature where the box 4 or the like is placed gives stress to the drainage structure of the water vapor movement control device 1.
そこで水溶性シール剤に求められる特性としては、 乾燥状態の固形 性質を向上させ、湿潤した場合には直ちに溶解する性質が必要である。  Therefore, the properties required for a water-soluble sealant are required to improve the solid properties in the dry state and dissolve immediately when wet.
そのためには、 湿潤しやすい状況を排水構造に準備するとともに、 乾燥状態の時にはシール剤としての特性を確保する必要がある。  To that end, it is necessary to prepare a drainage structure that is easily wetted, and to ensure the properties of a sealant when it is dry.
そこで、 吸水性の高いフェルト状の繊維を環状に形成し、 これに、 水和性の高い物質を吸着させ、 かつ水の浸透を促進するために、 水の 経路となる空間に空気を残留させる必要がある。  Therefore, felt-like fibers with high water absorption are formed in an annular shape, and air is left in the space that is the pathway of water in order to adsorb highly hydrated substances and promote water penetration. There is a need.
このためには、 オブラート、 セルロース、 寒天たんぱく質、 ゼラチ ン、 でんぷんなどの水溶性物質を低い p Hを有するタンニンを用いて 一旦一部凝固させたェマルジョンを生成し、 これを強く攪拌して得た 不完全なゲル体に対して炭酸水素ナトリゥムを用いてほぼ中性にする。  For this purpose, an emulsion was obtained by partially coagulating water-soluble substances such as oblate, cellulose, agar protein, gelatin, and starch with tannin having low pH, and obtained by vigorous stirring. The incomplete gel is neutralized with sodium hydrogen carbonate.
次に、 このようにして得た水和物の混合物をフェル卜質のシール体 に吸着させ、 これを乾燥させることで、 図 1 1に示すように、水が存在 していたフェルト質は乾燥により空気によって占められる透水空隙 S になり、 ゲル体が吸着した部分ではオブラート、 セルロース、 寒天た んぱく質、 ゼラチン、 でんぷんなどが固形物として付着する理想的な 吸水体となる。  Next, the mixture of hydrates obtained in this way is adsorbed on a ferrous seal body and dried, so that the felt that was present in water is dried as shown in Fig. 11. As a result, it becomes a water-permeable gap S occupied by air, and in the part where the gel body is adsorbed, it becomes an ideal water-absorbing body to which oblate, cellulose, agar protein, gelatin, starch, etc. adhere as solid matter.
これらの物質は、 吸水して膨潤し、 シール体としての多孔質リング 体 5 1を変形させつつ崩壊を促進し、短時間で排水することができる。  These substances absorb water and swell, promote the collapse while deforming the porous ring body 51 as the seal body, and can drain the water in a short time.
例えば、 3 mm厚さの多孔質リング体での試験結果では 1分 3 0秒 から 3 "分にて排水開始することが認められた。 For example, the test result with a porous ring body of 3 mm thickness is 1 minute 30 seconds It was observed that drainage started in 3 "minutes.
もしも、 膨潤する性質のみの固形溶解物質のみであれば、 吸水膨張 による変形の後の崩壊現象の発生は遅く、 また水の経路の生成に長時 間を要した。  If there was only a solid dissolved material with only swelling properties, the collapse phenomenon after deformation due to water absorption expansion was slow, and it took a long time to generate the water pathway.
例えば、 3 m m厚さの多孔質リング体での試験結果では 2 4時間以 上を要した。  For example, the test result with a porous ring body having a thickness of 3 mm required more than 24 hours.
即ち、 不完全なゲル体のェマルジョンの水で占められていた空隙が 乾燥して不定形の透水空隙 Sが形成される。  That is, the voids occupied by the incomplete gel body emulsion water are dried to form the irregular water-permeable voids S.
この透水空隙 Sは繊維に支持され、 繊維に付着し、 又は繊維間を連 絡する乾燥した固形物によるスケルトン構造となる。  The water-permeable voids S are supported by the fibers, and have a skeleton structure made of a dry solid that adheres to the fibers or communicates between the fibers.
又、 崩壊する固形物ののべ経路距離が短くなるので、 崩壊が水に接 触したときから早く発生する。  Also, since the total path distance of the solids that disintegrate is shortened, the disintegration occurs soon after contact with water.
一方、 完全ゲル体の乾燥物または乾燥固形物では、 空隙は得られに くく、 乾燥した固形物の塊になりやすい。  On the other hand, in the case of a dry product or a dry solid product having a complete gel body, voids are difficult to obtain, and it tends to be a lump of dry solid product.
また、 崩壊する固形物ののべ経路距離が非常に長くなるので、 水に 接触したときから非常に長い時間を経過して緩慢に崩壊が発生するこ とになる。  In addition, since the total path distance of the solids that collapse is very long, a very long period of time will elapse after contact with water.
多孔質リング体 5 1の内部の溶解性を向上させる要素として、 上記 のような、 膨潤性の物質を用いると崩壊を促進することができるが、 溶解に影響する因子としては、  Disintegration can be promoted by using a swellable substance such as the above as an element that improves the solubility in the porous ring body 51. However, as a factor affecting dissolution,
a ) 結晶多形 (同一の化合物であるにもかかわらず結晶中における分 子の三次元的な配列の仕方の異なるもの) では形態によりことなる溶 解性を示すことが知られており、  a) It is known that crystalline polymorphs (different in the way of three-dimensional arrangement of molecules in a crystal despite the same compound) show different solubility depending on the form.
b ) 非晶質 (固体中の三次元における分子配列に一定の規則性をもた ないもの) では結晶よりも高い溶解性を示す。 b) Amorphous materials (those that do not have a certain regularity in the three-dimensional molecular arrangement in a solid) exhibit higher solubility than crystals.
c ) 水和物 (結晶中に水分子を一定の化学量論比で含むもの) は無水 物よりも溶解度が低いがエネルギー的には安定しているものといわれ ている。 c) Hydrates (containing water molecules in a constant stoichiometric ratio in crystals) are said to be less soluble than anhydrides but stable in terms of energy. ing.
d )コソルペンシー c o s o 1 v e n c y (水に難溶性の物質に水に可 溶性の有機溶媒としてエタノールやプロピレンダリコール、 グリセリ ン、 マグロコール 4 0 0などを混合したとき、 それぞれ単独の場合に 比べて著しく溶解度を増大させる現象)である。 d) Coso 1 vency (When it is mixed with ethanol, propylene darlicol, glycerin, tuna coal, etc. as water-soluble organic solvent in a water-insoluble substance, it is remarkably different from the case of each. Phenomenon that increases solubility).
e ) 塩および共沈物は水に溶解しやすい、 などが知られている。 e) It is known that salts and coprecipitates are easily dissolved in water.
(花野学、 寺田勝英、 伊藤敏智夫編集: P p . 6 8— 7 1 :薬剤学改訂 第 6版 : 1 9 8 4年 9月 1 5 日第 1版第 1刷発行 : 2 0 0 5年 6月 1 日第 6版第 2刷発行 : 株式会社南江堂)。  (Edited by Manabu Hanano, Katsuhide Terada, Toshio Ito: P p. 6 8—7 1: Revised Pharmacology 6th edition: 1 9 8 4 September 15th 1st edition 1st edition issued: 2 0 0 5 June 1st, 6th edition, 2nd edition issued: Nanedo Co., Ltd.).
このような溶解性を向上させる手段として、 前記 a )、 b ) のような 結晶多形、 非晶質であり、 かつ水和物である前述のオブラート、 セル ロース、 寒天たんぱく質、 ゼラチン、 でんぷんなどは酸性にてゲル化 しゃすい。  As a means for improving the solubility, the above-mentioned wafers, cellulose, agar protein, gelatin, starch, etc., which are crystalline polymorphs such as a) and b), which are amorphous and hydrated, etc. Is acidic and gelled.
また、 一般塩のなかでも N a C 1 は金属腐食性物質として知られて いるが、 グルタミン酸は単純な力ルポキシル基を有し、 吸水性を持つ が腐食性は低く生体への害は低い。  Among general salts, Na C 1 is known as a metal corrosive substance, but glutamic acid has a simple force lpoxyl group and absorbs water, but has low corrosiveness and low harm to living organisms.
また、 食物にも用いられるので安全である。  It is safe because it is used for food.
また、 ェマルジヨンのゲル体と非ゲル体の混合物へのタンニンの混 合率を上昇させるためには、 エタノールやプロピレングリコ一ル、 グ リセリン、 マグロコール 4 0 0などを用いて、 コソルべンシ一効果を 活用し、 溶解度調整を行うと良い。  In order to increase the mixing ratio of tannin in a mixture of gel and non-gel emulsions, ethanol, propylene glycol, glycerin, tuna coal 400, etc. can be used. It is recommended to adjust the solubility by using the effect.
この中で、 エタノールは乾燥を促進する効果が得られ、 排水機構の 製造過程の時間短縮に好適である。 また、 プロピレングリコ一ルは防 黴特性に優れ頭髪洗剤などにも頻用されているので安全である。一方、 ダリセリンは膜汚損を生じるおそれが高い。  Of these, ethanol has the effect of promoting drying and is suitable for shortening the time required for the production process of the drainage mechanism. Propylene glycol is safe because it has excellent anti-mold properties and is frequently used in hair detergents. On the other hand, dalyserin is likely to cause membrane fouling.
ところで、 多孔質リング体 5 1 自体の吸水性や吸湿性が高い場合、 外気からの水蒸気の吸着が生じ、 大きなエア一リークの原因となるこ とが考えられる。 By the way, if the porous ring body 5 1 itself has high water absorption and moisture absorption, water vapor is adsorbed from the outside air, which may cause a large air leak. You could think so.
この対策としては、多孔質リング体 5 1の繊維を吸水性の高い繊維、 例えばナイロンやポリエステルなどで構成すると、 吸水性を維持しや すいのでこれらの繊維を活用し、 また、 吸湿しても弾性を維持しやす いようにする工夫が必要となる。  As countermeasures, if the fibers of the porous ring 51 are made of fibers with high water absorption, such as nylon or polyester, the water absorption is easy to maintain. It is necessary to devise measures that make it easy to maintain elasticity.
そこで、 前述のオブラート、 セルロース、 寒天たんぱく質、 ゼラチ ン、 でんぷんなどの水溶性物質を低い p Hを有するタンニンを用いて 一旦一部凝固させたェマルジョンを生成して、 これを強く攪拌した不 完全なゲル体に対して炭酸水素ナトリゥムを用いてほぼ中性にさせて 得た水和物の混合物をフェルト質のシール体に吸着させ、 これを乾燥 させるものである。  Therefore, an emulsification was generated by partially coagulating water-soluble substances such as the aforementioned oblate, cellulose, agar protein, gelatin, and starch with tannin having a low pH, and this was incompletely stirred. The mixture of hydrates obtained by neutralizing the gel body with sodium hydrogen carbonate is adsorbed on the felt seal body and dried.
これにより、ゲル体が吸着した部分ではオブラート、 セルロース、 寒 天たんぱく質などの固形物が、 スポンジ状の多孔状に硬化し、 スケル トン構造 (骨髄組織様) になり、 固さが高くなり、 適度な弾性も発生 して都合がよい。  As a result, solids such as oblate, cellulose, and agar protein harden into a sponge-like porous shape in the part where the gel body is adsorbed, resulting in a skeleton structure (bone marrow tissue-like), increasing hardness, and moderate This is convenient because of its elasticity.
また、 外気側の水蒸気の吸湿を抑制するためには、 外気との接触空 間の空気の流れを抑制すると共に、図 1 1に示すように、多孔質リング 体 5 1の表面に、 例えばァラビア糊等を用いて強固な皮膜 5 1 aを形 成するのが有効である。  In addition, in order to suppress the moisture absorption of the water vapor on the outside air side, the air flow in the contact space with the outside air is suppressed and, as shown in FIG. It is effective to form a strong film 51a using glue or the like.
なお、 図 1 1において、 実線矢印は排水経路を示し、破線矢印は外気 からの水蒸気の流入を示している。  In Fig. 11, the solid line arrows indicate the drainage route, and the broken line arrows indicate the inflow of water vapor from the outside air.
又、前記皮膜 5 1 aは、 多孔質リング体 5 1の内周面、 外周面、 及び 底面に形成されるもので、 この場合、溶解しにくいアラビア糊の皮膜 5 l aの内側に、 アラビア糊の不完全乾燥部である飽和域 5 1 b、 ァラ ビア糊がフェルト質に含浸した拡散域 5 1 cが形成される。  The coating 51a is formed on the inner peripheral surface, the outer peripheral surface, and the bottom surface of the porous ring body 51. In this case, the Arabic paste coating 5la that hardly dissolves is formed on the inner side of the Arabic paste. A saturated region 5 1 b, which is an incompletely dried portion, and a diffusion region 5 1 c, in which the felt paste is impregnated with Alabia paste, are formed.
なお、 硬化により表面に皮膜 5 1 aを形成しやすい水溶性基剤とし ては、 アラビア糊の他、 ゼラチンなどを含有する日本薬局方のカプセ ル基剤などを用いることができるもので、 これを多孔質リング体 5 1 の表面にコーティングするとよい。 In addition, as a water-soluble base that is easy to form a film 51a on the surface by curing, the capsule of Japanese Pharmacopoeia containing gelatin and other materials besides Arabic glue. It is preferable to coat the surface of the porous ring body 51.
次に、 図 1 6は本発明の参考例を示している。  Next, FIG. 16 shows a reference example of the present invention.
この参考例は、 インナ円筒体 2 1の肉厚内に、 軸方向に貫通させて 排水管 7 0を設け、 この排水管 7 0を本発明においての排水路間隙 6 の代わりに形成したもので、 この排水管 7 0の上端部分をやや大径部 7 1 に形成し、 この大径部 7 0から段部 6 0にかけて水溶性シール物 質 8を充填した構造になっている。  In this reference example, a drain pipe 70 is provided in the wall thickness of the inner cylindrical body 21 in the axial direction, and the drain pipe 70 is formed in place of the drain channel gap 6 in the present invention. The upper end portion of the drain pipe 70 is formed in a slightly large diameter portion 71, and a water-soluble sealing material 8 is filled from the large diameter portion 70 to the stepped portion 60.
この排水管 7 0による方法では、 排水管 7 0に水が到達したときに 排水が開始されるが、 箱や容器の水の漏洩部が小さいときなどは、 排 水管 7 0が水で満たされて大気と開通するまでの毛細管圧が必要にな り、 排水能力に制限が生じやすいという短所がある。 産業の利用可能性  In this drainage pipe 70 method, drainage starts when water reaches the drainage pipe 70, but when the leaking part of the box or container is small, the drainage pipe 70 is filled with water. Capillary pressure is required until it is opened to the atmosphere, and the drainage capacity is likely to be limited. Industrial applicability
本発明の水蒸気移動制御装置 (請求項 1 ) は、 スぺーサ円筒体と膜 体とをィンナ円筒体の内部に組み込んだ小室ュニッ トに形成したので、 この小室ュニッ トを外筒ケーシングの内部に嵌合するだけの組み立て 作業になり、 その組み立て作業が簡単にできる。  The water vapor movement control device according to the present invention (Claim 1) is formed in the small chamber unit in which the spacer cylinder and the film body are incorporated in the inner cylinder, so that the small chamber unit is formed inside the outer casing. The assembly work can be done simply by mating with the, and the assembly work can be done easily.
又、 小室ユニッ トと外筒ケーシングの間に形成した排水路間隙を、 常時は水溶性シール物質によって閉塞させているので、 ここから 水蒸気や空気が侵入することは無く、 正常な水蒸気移動制御を行なう ことができる。  In addition, since the drainage gap formed between the small chamber unit and the outer casing is normally blocked by a water-soluble sealing substance, water vapor and air do not enter from here, and normal water vapor movement control is performed. Can be done.
そして、 水蒸気の処理能力を超える水が不測に侵入した場合、 水溶 性シール物質が溶解して排水路間隙が開通するため、 この排水路間隙 を通して水を外部に排水することができる。  When water exceeding the water vapor processing capacity enters unexpectedly, the water-soluble sealing substance dissolves and the drainage channel gap is opened, so that water can be drained to the outside through this drainage channel gap.
又、排水路間隙は結露しにくい熱量的設計が行なわれ、 例えば、合成 樹脂により構成されるので、 外気側から逆行性に水溶性シール物質が 溶解してしまうことを予防することができる。 In addition, the drainage gap is designed with a calorific value that is unlikely to condense. For example, because it is made of synthetic resin, a water-soluble sealing substance is retrograde from the outside air side. It can prevent dissolving.
このような排水構造は、 電気業界において水蒸気移動制御装置の普 及を確実にするために必要な技術であると考えられる。  Such a drainage structure is considered to be a necessary technology in the electric industry to ensure the spread of water vapor transfer control devices.
又、 取付ナツ トの上下両端面に切欠部を形成すると (請求項 2 )、 ど ちらの面を下向きにしても切欠部によって排水経路を確保することが できるもので、 取り付け間違いに対するフェイルセーフ機能となる。 又、 取付ナッ トに形成した切欠部の奥部を円弧状に形成すると (請 求項 3 )、凍結膨張による取付ナツ トへの応力集中による取付ナッ トの 破損や緩みなどを予防することができる。  In addition, if notches are formed on both upper and lower end faces of the mounting nut (Claim 2), the drainage path can be secured by the notches regardless of which surface is facing downward. It becomes. In addition, if the inner part of the notch formed in the mounting nut is formed in an arc shape (claim 3), the mounting nut can be prevented from being damaged or loosened due to stress concentration on the mounting nut due to freezing and expansion. it can.
緩み止め座金を用いると (請求項 4 )、 上向辺が取付ナツ トの底面に 係止し、 前記下向辺が箱体等の底壁上面に係止するように形成されて いるので、 取付ナツ トが震動で緩むのを防止することができる。  When the locking washer is used (Claim 4), the upper side is locked to the bottom surface of the mounting nut, and the lower side is locked to the upper surface of the bottom wall of the box, etc. The mounting nut can be prevented from loosening due to vibration.
又、 取付ナツ トの締め付けによって前記緩み止め座金が波形状に変 形するため、 緩み止め座金と取付ナッ トの間、 及び緩み止め座金と箱 体等の底壁との間に隙間が生じ、 この隙間に毛細管現象を活用して水 を流入させることができるので、 取付ナツ トの端面に形成した切欠部 から上側雄ネジ部に形成したスリッ トを通して外筒ケ一シングの内部 に流入する排水経路を確保することができる。  Also, since the locking washer is deformed into a wave shape by tightening the mounting nut, gaps are created between the locking washer and the mounting nut, and between the locking washer and the bottom wall of the box, etc. Capillary phenomenon can be used to allow water to flow into this gap, so drainage that flows into the outer casing from the notch formed on the end face of the mounting nut through the slit formed on the upper male thread. A route can be secured.
又、 排水路間隙の上端部に多孔質リング体を装着して、 この多孔質 リング体の透水空隙に水溶性シール物質を充填させると (請求項 5 )、 この多孔質リング体によって、 排水路間隙を常時は水溶性シール物質 によって閉塞させて外気からの水蒸気や空気の侵入を防止できるし、 水が不測に侵入した場合、 水溶性シール物質の溶解によって排水路間 隙が開通し、 水を外部に排水することができる。  Further, when a porous ring body is attached to the upper end of the drainage channel gap and the water-permeable sealing substance is filled in the water-permeable gap of the porous ring body (Claim 5), the drainage channel is formed by the porous ring body. The gap is always closed with a water-soluble sealing substance to prevent the intrusion of water vapor or air from the outside air. If water inadvertently enters, the gap between the drainage channels is opened by the dissolution of the water-soluble sealing substance, and the water is removed. It can be drained to the outside.
又、 不完全なゲル体と、 水和物の混合物を多孔質リング体の基材で あるシール体に吸着させて乾燥させることにより多孔質リング体を形 成させると (請求項 6 )、 ゲル体が吸着した部分では固形物がスポンジ 状の多孔状に硬: ί匕するので、 固さが高くなり、 適度な弾性も発生し理 想的な吸水体となる。 又、 多孔質リ ング体の表面に皮膜を形成させる と (請求項 7 )、 外気からの水蒸気の吸湿を抑制するのに有効である。 また、 多孔質リング体と、 小室ユニッ トの間にスクイーズパッキン を装着させると (請求項 8 )、 このスクイーズパッキンによって多孔質 リング体を弹性的に圧迫させるので、 多孔質リング体の膨潤によって 排水路間隙の上端部の間隔が変化してしまったり、 外筒ケーシングの 熱膨張により箱体等側が乾燥状態にあるにもかかわらず排水路間隙が 開通してしまったりするのを抑制できる。 Further, when a porous ring body is formed by adsorbing a mixture of an incomplete gel body and a hydrate to a seal body which is a base material of the porous ring body and drying it (Claim 6). In the part where the body is adsorbed, solid matter is sponge Since it is hardened in a porous shape, it becomes harder and has an appropriate elasticity, resulting in an ideal water absorber. Further, when a film is formed on the surface of the porous ring body (Claim 7), it is effective to suppress moisture absorption of water vapor from the outside air. Further, when a squeeze packing is mounted between the porous ring body and the small chamber unit (Claim 8), the porous ring body is inertially pressed by the squeeze packing, so that the drainage occurs due to the swelling of the porous ring body. It is possible to prevent the gap between the upper ends of the channel gap from changing, and the drain channel gap from being opened due to the thermal expansion of the outer casing even though the box body side is in a dry state.

Claims

請求の範囲 The scope of the claims
1 .複数のスぺ一サ円筒体がィンナ円筒体の内部に嵌合されると共に、 前記スぺーサ円筒体の間に通気性及び透湿性を有する膜体及び導電性 多孔体が気密シール性を持って圧迫状態に挟持されて、 この膜体によ つて区画された小室が内部に形成されている小室ユニッ トが形成さ れ、 1. A plurality of spacer cylinders are fitted inside the inner cylinder, and a gas permeable and moisture permeable membrane body and a conductive porous body are hermetically sealed between the spacer cylinders. Is held in a compressed state to form a chamber unit in which a chamber partitioned by this membrane body is formed,
上端に形成した上側雄ネジ部を箱体等の底壁に形成した取り付け穴 に挿入させ、 この上側雄ネジ部に箱体等の内部から取付ナツ トを螺合 させることで箱体等に外筒ケーシングが取り付けられ、  The upper male screw part formed at the upper end is inserted into a mounting hole formed in the bottom wall of the box body, and the mounting nut is screwed into the upper male screw part from the inside of the box body, etc. A cylinder casing is attached,
この外筒ケーシングの内部に前記小室ュニッ トが排水路間隙を保持 して嵌合され、  The small chamber unit is fitted inside the outer casing while holding the drainage gap,
前記箱体等の内部に溜まった水が、 前記取付ナツ トの端面に形成し た切欠部から上側雄ネジ部に形成したスリッ 卜を通して外筒ケ一シン グの内部に流入し、 前記排水路間隙を通して外部に排水するように形 成され、  Water accumulated inside the box or the like flows from the notch formed in the end face of the mounting nut into the inside of the outer cylinder casing through the slit formed in the upper male screw portion, and the drainage channel Shaped to drain outside through the gap,
前記排水路間隙が水溶性シール物質によって常時は閉塞され、 水の 侵入時には水溶性シール物質が溶解して排水路間隙が外部に開通する ように形成されていることを特徴とした水蒸気移動制御装置。  The water vapor movement control device characterized in that the drainage gap is normally closed by a water-soluble sealing substance, and the water-soluble sealing substance dissolves when water enters and the drainage gap opens to the outside. .
2 . 請求項 1記載の水蒸気移動制御装置において、  2. In the water vapor movement control device according to claim 1,
前記取付ナツ 卜の上下両端面に切欠部が形成され、前記取付ナツ 卜 の螺合状態で下端側の切欠部が上側雄ネジ部に形成したスリッ トに連 通するように形成することで、 前記取付ナツ 卜を上下反転使用できる ように形成した水蒸気移動制御装置。  By forming notches on both upper and lower end faces of the mounting nut 、, and so that the notched portion on the lower end side communicates with the slit formed on the upper male screw portion in the threaded state of the mounting nut 卜, A water vapor movement control device formed so that the mounting nut 卜 can be used upside down.
3 . 請求項 1又は 2記載の水蒸気移動制御装置において、  3. In the water vapor movement control device according to claim 1 or 2,
前記切欠部の奥部が円弧状に形成されている水蒸気移動制御装置。 The water vapor movement control apparatus in which the inner part of the notch is formed in an arc shape.
4 . 請求項 1〜 3のいずれかに記載の水蒸気移動制御装置において、 箱体等の底壁と取付ナツ トの間に緩み止め座金が装着され、 4. In the water vapor movement control device according to any one of claims 1 to 3, A locking washer is installed between the bottom wall of the box and the mounting nut,
この緩み止め座金は、 その内周に複数個の係止爪が等間隔で突設さ れ、  This locking stopper washer has a plurality of locking claws on its inner periphery that protrude at equal intervals.
この係止爪は取付ナツ トの緩み方向に対向する辺を上に向け、取付 ナツ トの緩み方向の辺を下に向けるように傾斜して形成されると共に、 前記取付ナツ トの締め付けに対して傾斜状態に復帰する方向に弹性を 持たせて前記上向辺が取付ナツ トの底面に係止し、 前記下向辺が箱体 等の底壁上面に係止するように形成され、  The locking claw is formed so as to be inclined so that the side facing the loosening direction of the mounting nut faces upward and the side of the mounting nut loosening direction faces downward, and against the tightening of the mounting nut. The upper side is locked to the bottom surface of the mounting nut with the inertia in the direction to return to the inclined state, and the lower side is locked to the upper surface of the bottom wall of the box, etc.
かつ前記係止爪を、 前記取付ナツ 卜に等間隔で形成した複数個の切 欠部の数と異なる数で形成させることで、取付ナツ トの締め付けによ り前記緩み止め座金が波形状に変形した状態で箱体等の底壁と取付ナ ッ トの間に装着されるように形成した水蒸気移動制御装置。  In addition, by forming the locking claws in a number different from the number of the plurality of notches formed at equal intervals on the mounting nut 卜, the loosening washer is waved by tightening the mounting nut. A water vapor movement control device formed so as to be mounted between a bottom wall of a box or the like and a mounting nut in a deformed state.
5 . 請求項 1〜 4のいずれかに記載の水蒸気移動制御装置において、 外筒ケ一シングの上部内面に形成した段部と、 小室ュニッ トの上端 との間に排水路間隙の上端部が形成され、 この上端部に吸水性に優れ た多孔質リング体が装着され、 この多孔質リング体の透水空隙に水溶 性シール物質が充填されている水蒸気移動制御装置。 5. The water vapor movement control device according to any one of claims 1 to 4, wherein the upper end portion of the drainage channel gap is formed between the step formed on the upper inner surface of the outer casing and the upper end of the small chamber unit. A water vapor movement control device formed and mounted with a porous ring body with excellent water absorption at the upper end portion, and a water-permeable sealing substance filled in a water-permeable gap of the porous ring body.
6 . 請求項 5記載の水蒸気移動制御装置において、 6. In the water vapor movement control device according to claim 5,
前記多孔質リング体が、オブラート、セルロース、寒天たんぱく質、 ゼラチン、 でんぷんなどの水溶性物質を低い p Hを有するタンニンを 用いて一旦一部凝固させたェマルジョンを生成して、 これを強く攪拌 した不完全なゲル体に対して炭酸水素ナ卜リゥムを用いてほぼ中性に させて得た水和物の混合物を多孔質リング体の基材であるシール体に 吸着させて乾燥させることにより形成されている水蒸気移動制御装置。  The porous ring body produced an emulsion in which water-soluble substances such as wafer, cellulose, agar protein, gelatin, and starch were partially coagulated with tannin having a low pH, and this was strongly stirred. It is formed by adsorbing and drying a mixture of hydrates obtained by neutralizing a complete gel body with sodium hydrogen carbonate to a neutral body. Water vapor movement control device.
7 . 請求項 5又は 6記載の水蒸気移動制御装置において、 7. In the water vapor movement control device according to claim 5 or 6,
多孔質リング体の表面に、 硬化により皮膜を形成しやすい水溶性基 剤をコ一ティングして形成した皮膜が形成されている水蒸気移動制御 装置。 Water vapor movement control with a coating formed on the surface of the porous ring body by coating a water-soluble base that is easy to form by curing apparatus.
8 .請求項 1から 7のいずれかに記載の水蒸気移動制御装置において、 前記排水路間隙の上端部に装着された多孔質リング体と、 小室ュニッ トの間にスクイーズパッキンが装着されている水蒸気移動制御装置。 8. The water vapor movement control device according to any one of claims 1 to 7, wherein a water vapor is attached between the porous ring body attached to the upper end portion of the drainage channel gap and the small chamber unit. Movement control device.
9 .請求項 1から 8のいずれかに記載の水蒸気移動制御装置において、 前記導電性多孔体は、 内角がそれぞれ 1 2 0度に形成された六角形 であって対向する 2辺の長さが他の辺の長さの 2倍に形成されること で、 2本の長辺部と 4本の短辺部で形成された扁平六角形のメッシュ 部を備え、 9. The water vapor movement control device according to any one of claims 1 to 8, wherein the conductive porous body is a hexagon having an inner angle of 120 degrees, and the lengths of two opposing sides are By forming twice the length of the other side, it has a flat hexagonal mesh part formed by two long sides and four short sides,
隣り合うメッシュ部の長辺によって正三角形を形成させるように、 前記メッシュ部を単位パターンとして繰り返し連結させることにより 形成されている水蒸気移動制御装置。  A water vapor movement control device formed by repeatedly connecting the mesh portions as unit patterns so as to form equilateral triangles by the long sides of adjacent mesh portions.
PCT/JP2006/308933 2005-09-14 2006-04-21 Water-vapor transfer controller WO2007032121A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006548434A JP4509123B2 (en) 2005-09-14 2006-04-21 Water vapor movement control device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JPPCT/JP2005/017332 2005-09-14
PCT/JP2005/017332 WO2007032092A1 (en) 2005-09-14 2005-09-14 Apparatus for controlling movement of steam
JP2006-060305 2006-03-06
JP2006060305 2006-03-06

Publications (1)

Publication Number Publication Date
WO2007032121A1 true WO2007032121A1 (en) 2007-03-22

Family

ID=37864724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/308933 WO2007032121A1 (en) 2005-09-14 2006-04-21 Water-vapor transfer controller

Country Status (2)

Country Link
JP (1) JP4509123B2 (en)
WO (1) WO2007032121A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009084257A1 (en) * 2007-12-30 2009-07-09 Kyushu Sankosha Inc. Steam movement controller
JP2009154112A (en) * 2007-12-27 2009-07-16 Kyushu Sankosha:Kk Water vapor transfer control device
CN109854795A (en) * 2019-01-23 2019-06-07 西安铁路职业技术学院 Apply to the labyrinth type waterproof vent valve and its waterproof and breathable method of confined space

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005224742A (en) * 2004-02-16 2005-08-25 Kyushu Sankosha:Kk Steam movement controlling apparatus and method for manufacturing small chamber unit of the same
JP2005291544A (en) * 2004-03-31 2005-10-20 Kyushu Sankosha:Kk Controller for transfer of steam

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005224742A (en) * 2004-02-16 2005-08-25 Kyushu Sankosha:Kk Steam movement controlling apparatus and method for manufacturing small chamber unit of the same
JP2005291544A (en) * 2004-03-31 2005-10-20 Kyushu Sankosha:Kk Controller for transfer of steam

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009154112A (en) * 2007-12-27 2009-07-16 Kyushu Sankosha:Kk Water vapor transfer control device
WO2009084257A1 (en) * 2007-12-30 2009-07-09 Kyushu Sankosha Inc. Steam movement controller
JPWO2009084257A1 (en) * 2007-12-30 2011-05-12 株式会社九州山光社 Water vapor movement control device
CN109854795A (en) * 2019-01-23 2019-06-07 西安铁路职业技术学院 Apply to the labyrinth type waterproof vent valve and its waterproof and breathable method of confined space
CN109854795B (en) * 2019-01-23 2020-06-30 西安铁路职业技术学院 Labyrinth type waterproof ventilation valve applied to closed space and waterproof ventilation method thereof

Also Published As

Publication number Publication date
JPWO2007032121A1 (en) 2009-03-19
JP4509123B2 (en) 2010-07-21

Similar Documents

Publication Publication Date Title
JP4718540B2 (en) Metal vent
JP4805438B2 (en) Filter assembly and apparatus having an adsorbent or absorber and method of use
KR102046817B1 (en) New types of textile protective materials and methods of making them
WO2007032121A1 (en) Water-vapor transfer controller
US6146446A (en) Filter assembly with shaped adsorbent article; and devices and methods of use
US7695547B2 (en) Desiccant
ATE551706T1 (en) ELECTROLYTIC CAPACITORS COMPRISING AGENTS IN THE FORM OF A MULTI-LAYER POLYMER LAYER FOR ABSORPTION OF HAZARDOUS SUBSTANCES
JP5710358B2 (en) Enclosure with ventilation member
JP4141381B2 (en) Proton conductor gas sensor
CN105561744A (en) Long-acting deoxidizing composite desiccant formula sheet and preparation method thereof
JP5175305B2 (en) Casing for electrical components
JP2008200552A (en) Controller for transfer of steam
JP2009154112A (en) Water vapor transfer control device
JPWO2009084257A1 (en) Water vapor movement control device
JPS6328428A (en) Drying agent
JP2005291544A (en) Controller for transfer of steam
JP2003236347A (en) Hollow fiber membrane assembled body and method for manufacturing the same
WO2023006957A1 (en) Carrier plate for a humidifying device, plate stack and humidifying device
KR20090048448A (en) Adsorptive filter material
JPH0785925A (en) Sealed connector
WO2007032092A1 (en) Apparatus for controlling movement of steam
JP2006346635A (en) Gas dryer structure
WO2023276414A1 (en) Hollow fiber membrane module
JPH11347340A (en) Moisture absorbent and moisture absorption unit
DE102020205970B3 (en) Flexible system for generating electrical energy, device for delivering electrical energy, method for producing the flexible system and uses thereof

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2006548434

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06745814

Country of ref document: EP

Kind code of ref document: A1