WO2007031658A1 - Production d'energie par turbine a gaz sans emission de co2 - Google Patents
Production d'energie par turbine a gaz sans emission de co2 Download PDFInfo
- Publication number
- WO2007031658A1 WO2007031658A1 PCT/FR2006/002134 FR2006002134W WO2007031658A1 WO 2007031658 A1 WO2007031658 A1 WO 2007031658A1 FR 2006002134 W FR2006002134 W FR 2006002134W WO 2007031658 A1 WO2007031658 A1 WO 2007031658A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas
- combustion
- compressed
- fumes
- oxygen
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C3/00—Gas-turbine plants characterised by the use of combustion products as the working fluid
- F02C3/34—Gas-turbine plants characterised by the use of combustion products as the working fluid with recycling of part of the working fluid, i.e. semi-closed cycles with combustion products in the closed part of the cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2270/00—Control
- F05D2270/01—Purpose of the control system
- F05D2270/08—Purpose of the control system to produce clean exhaust gases
Definitions
- the power generator can perform catalytic combustion.
- the oxygen content can be adjusted so that the combustion is performed under stoichiometric conditions.
- the gas comprising oxygen may be air.
- the gases compressed by K1 are derived via line 8 to extract the CO 2 by the separating device S1.
- the CO 2 that is recovered via line 5 can for example be stored in the basement.
- the capture of CO 2 is carried out on pressurized and relatively concentrated gases, which is advantageous. It is however necessary to purge a portion of the gas leaving the turbine through the pipe 2 to remove the nitrogen arriving with the combustion air. This results in a CO 2 emission. As a result, recovery of CO 2 remains limited.
- the present invention proposes to carry out a capture of CO 2 on pressurized and relatively concentrated gases, avoiding evacuation of a flow comprising CO 2 . According to the invention, the operation is carried out so that the CO 2 produced by combustion and the nitrogen introduced with the combustion air can be evacuated simultaneously, without having to emit CO 2 with the nitrogen that is evacuated.
- a first fraction of the compressed gases is derived via line 8.
- This gas fraction is first cooled in the gas-gas heat exchanger E2 with a gaseous fraction removed from S1 and then using an external fluid. refrigeration in the heat exchanger C2.
- the cooled compressed gas is introduced into the separation device Sl in which the CO 2 is separated from the nitrogen.
- the CO 2 is evacuated from the device Sl via line 5, for example to be recompressed and injected into the basement to be stored.
- a gas substantially free of CO 2 rich in nitrogen and also containing a small proportion of oxygen is obtained.
- This gas passes through the exchanger E2 in which it is heated and is then expanded in the turbine section T2.
- the expanded gas that is discharged through line 13 contains nitrogen, a little oxygen, but substantially more CO 2 .
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Treating Waste Gases (AREA)
- Gas Separation By Absorption (AREA)
- Separation By Low-Temperature Treatments (AREA)
Abstract
L'invention concerne un procédé pour diminuer le taux de CO2 présent dans les fumées rejetées par un générateur de puissance brûlant un mélange d'un comburant et d'un combustible contenant des hydrocarbures, dans lequel on détend les fumées de combustion, on comprime un mélange gazeux comportant du comburant et les fumées, on élimine au moins une partie du CO2 présent dans une première partie du mélange comprimé et on recycle une deuxième partie du mélange comprimé afin d'effectuer la combustion. L'invention concerne également un dispositif pour mettre en œuvre le procédé.
Description
PRODUCTION D'ÉNERGIE PAR TURBINE À GAZ SANS ÉMISSION DE CO2
La présente invention concerne le domaine des turbines à gaz, le dioxyde de carbone (CO2) émis étant capturé dans des conditions de concentration et de pression favorables.
Depuis les débuts de l'ère industrielle, le taux de CO2 présent dans l'atmosphère augmente régulièrement en raison de l'augmentation sans cesse croissante de l'utilisation comme source d'énergie des combustibles dits "fossiles" comme le charbon, les hydrocarbures liquides ou gazeux comme le gaz naturel. Il est prouvé que le CO2 émis lors de la combustion de ces combustibles est responsable de l'effet de serre et du réchauffement global de la planète constaté depuis quelques décennies. II est ainsi impératif, pour limiter l'effet de serre dans les années futures, de développer et de mettre en oeuvre de nouvelles techniques de capture du CO2 avant le rejet final des fumées de combustion. Ces techniques doivent être simples, robustes, efficaces et les moins onéreuses possibles dans leur mise en oeuvre et leur fonctionnement. Dans le domaine des générateurs thermiques, une première solution consiste à prélever le CO2 présent dans les fumées de combustion avant le rejet de celles-ci dans l'atmosphère. Les méthodes utilisées sont basées généralement sur la cryogénie, l'absorption par réaction chimique ou physique avec un autre composé, ou encore la séparation par membranes. Les importantes quantités de fumées à traiter ainsi que les faibles pressions partielles de CO2 dans ces fumées à pression atmosphérique expliquent que ces solutions soient cependant complexes et coûteuses à mettre en oeuvre.
Le document FR 2 825 935 décrit un arrangement de turbine à gaz qui présente des avantages importants par rapport à l'art antérieur. Cet arrangement illustré par la figure 1 permet de capturer le CO2 sous pression et à une concentration plus élevée que celle qui est obtenue normalement à la sortie d'une turbine à gaz. Elle présente néanmoins comme inconvénient la nécessité d'une purge de gaz afin d'éviter une accumulation d'azote et d'oxygène. De ce fait une partie du CO2 généré est envoyée à l'atmosphère.
La présente invention propose d'effectuer une capture du CO2 sur des gaz sous pression et relativement concentrés, en évitant d'évacuer un flux comportant du CO2.
De manière générale, la présente invention concerne un procédé pour diminuer le taux de CO2 présent dans les fumées rejetées par un générateur de puissance brûlant un mélange d'un comburant et d'un combustible contenant des hydrocarbures, dans lequel on effectue les étapes suivantes : a) on détend les fumées de combustion, b) on comprime un gaz composé au moins en partie des fumées de combustion, c) on élimine au moins une partie du CO2 présent dans une première partie du gaz comprimé obtenu à l'étape b), d) on recycle une deuxième partie du gaz comprimé obtenu à l'étape b), le comburant comportant au moins la deuxième partie du gaz comprimé.
Selon l'invention, avant l'étape b), on peut mélanger les fumées de combustion avec un gaz comportant de l'oxygène de manière à ce que le gaz comprimé à l'étape b) comporte des fumées de combustion et de l'oxygène. Alternativement, avant l'étape d), on peut mélanger ladite deuxième partie du gaz comprimé avec un gaz comportant de l'oxygène.
On peut refroidir le gaz comprimé obtenu à l'étape b) et, avant l'étape d), on peut comprimer la deuxième partie du gaz comprimé.
On peut détendre puis rejeter à l'atmosphère les gaz appauvris en CO2 obtenus à l'étape c). On peut refroidir les fumées de combustion par échange de chaleur avec une solution absorbante mise en oeuvre à l'étape c).
Le générateur de puissance peut effectuer une combustion catalytique.
On peut ajuster la teneur en oxygène de manière à ce que la combustion soit réalisée dans des conditions stoechiométriques. Le gaz comportant de l'oxygène peut être de l'air.
La présente invention concerne également un générateur de puissance brûlant un mélange d'un comburant et d'un combustible contenant des hydrocarbures, le générateur comportant un compresseur, des moyens de combustion, une turbine de détente et des moyens de séparation du CO2 contenu dans un flux gazeux, la sortie du compresseur étant reliée d'une part à une entrée des moyens de combustion et d'autre part à l'entrée des moyens de séparation du CO2.
Selon l'invention, les moyens de combustion peuvent comporter des brûleurs catalytiques. Les moyens de séparation du CO2 peuvent être choisis dans le groupe constitué par les colonnes utilisant des solvants d'absorption, les colonnes de distillation cryogénique, les membranes, les tamis moléculaires adsorbants.
D'autres caractéristiques et avantages de l'invention seront mieux compris et apparaîtront clairement à la lecture de la description faite ci-après en se référant aux figures 1 à 5, sur lesquelles les organes similaires sont désignés par des références identiques, et parmi lesquelles :
- la figure 1 illustre selon l'art antérieur le schéma d'un générateur électrique intégrant une turbine à gaz et un dispositif de captation du CO2 sur le gaz recyclé après compression de ce gaz,
- la figure 2 schématise un générateur de puissance selon l'invention, - la figure 3 représente un exemple de procédé pour capter le CO2,
- les figures 4 et 5 représentent des variantes du générateur de puissance selon l'invention.
La figure 1 schématise un générateur d'énergie, selon l'art antérieur, de type turbine à gaz dans lequel est brûlé un combustible hydrocarboné liquide ou gazeux (du gaz naturel dans les exemples donnés ci-après), suivi d'un dispositif Sl de séparation du CO2.
Le générateur de puissance se compose d'une turbine à gaz intégrant :
- un compresseur Kl comprenant au moins un étage de compression, - une chambre de combustion CO,
- une turbine de détente Tl fournissant l'énergie nécessaire pour l'entraînement du compresseur Kl et de l'alternateur Al.
L'air d'alimentation arrivant par le conduit 3 est mélangé avec des gaz de combustion recyclés de façon à pouvoir augmenter la teneur en CO2 des gaz qui circulent dans la section de compression du dispositif.
Les gaz comprimés par Kl sont dérivés par le conduit 8, pour extraire le CO2 par le dispositif de séparation Sl. Le CO2 qui est récupéré par le conduit 5, peut être par exemple stocké dans le sous-sol. La capture du CO2 est effectuée sur des gaz sous pression et relativement concentrés, ce qui est avantageux. Il est toutefois nécessaire de purger une partie du gaz sortant de la turbine par le conduit 2 pour évacuer l'azote arrivant avec l'air de combustion. Il en résulte une émission de CO2. De ce fait la récupération de CO2 reste limitée.
La présente invention propose d'effectuer une capture du CO2 sur des gaz sous pression et relativement concentrés, en évitant d'évacuer un flux comportant du CO2. Selon l'invention, on opère de façon à pouvoir évacuer simultanément le CO2 produit par combustion et l'azote introduit avec l'air de combustion, sans avoir à émettre de CO2 avec l'azote qui est évacué.
Le principe de l'invention est décrit en relation avec le schéma de la figure 2. Dans cet exemple de configuration de la figure 2, les fumées de combustion mélangées avec de l'air arrivant par le conduit 3 sont comprimées par le compresseur Kl.
Une première fraction des gaz comprimés est dérivée par le conduit 8. Cette fraction de gaz est refroidie d'abord dans l'échangeur de chaleur gaz-gaz E2 avec une fraction gazeuse évacuée de Sl, puis à l'aide d'un fluide extérieur de réfrigération dans l'échangeur de chaleur C2. Le gaz comprimé refroidi est introduit dans le dispositif de séparation Sl dans lequel on sépare le CO2 de l'azote. Le CO2 est évacué du dispositif Sl par le conduit 5, pour être par exemple recomprimé et injecté dans le sous-sol pour être stocké. A l'issue de cette séparation, on obtient un gaz substantiellement débarrassé du CO2, riche en azote et contenant également une faible proportion d'oxygène. Ce gaz passe par l'échangeur E2 dans lequel il est réchauffé et il est ensuite détendu dans la section de turbine T2. Le gaz détendu qui est évacué par le conduit 13 contient de l'azote, un peu d'oxygène, mais pratiquement plus de CO2.
Une deuxième fraction des gaz comprimés issus de Kl est envoyée par le conduit 9 dans la chambre de combustion CO à titre de comburant. Le combustible, par exemple des hydrocarbures liquides ou gazeux, est introduit dans CO par le conduit 6. Les fumées de combustion évacuées de CO par le conduit 10 sont détendues dans la turbine Tl, refroidies par échange de chaleur dans El et Cl, puis recyclées à l'entrée du compresseur Kl. L'eau
condensée par refroidissement dans El et Cl peut être séparée des fumées dans le ballon Bl, et évacuée par le conduit 4.
Pour séparer le CO2 dans le dispositif Sl, on peut utiliser tout procédé connu. Par exemple, on peut mettre en oeuvre un procédé d'absorption du CO2 par solvant physique ou chimique, décrit notamment par les documents EP 744 987 et WO 00/57990. La solution absorbante peut comporter par exemple des aminés primaires telles la MEA, la DGA et la DIPA, des aminés secondaires comme la DEA, des aminés tertiaires comme la MDEA. On peut aussi utiliser une solution de carbonate de potassium. En outre, le dispositif Sl peut mettre en oeuvre un procédé de distillation cryogénique, de séparation par membrane, et plus particulièrement de membrane à perméation gazeuse ou il peut être basé sur l'utilisation des techniques d'adsorption sur tamis moléculaire. Ces procédés sont par exemple décrits dans "Natural gas : production, processing, transport" (A. Rojey et C. Jaffret) Editions Technip, Paris, 1997.
La figure 3 propose de mettre en oeuvre dans le dispositif Sl un procédé d'absorption du CO2 par solvant. Le procédé décrit en référence à la figure 3 s'intègre au procédé décrit par la figure 2, les références identiques désignant les mêmes éléments. Sur la figure 3, le gaz comprimé arrivant par le conduit 8 est refroidi par les échangeurs de chaleur E2 et C2, puis introduit dans la colonne d'absorption CAl pour être mis en contact avec un solvant comportant une aminé qui absorbe le CO2. Le solvant est régénéré dans la colonne de distillation CD2. Dans l'exemple de configuration qui est représenté par la figure 3, la colonne de distillation CD2 opère d'une part avec un rebouilleur RBl situé au fond de la colonne de distillation et avec un rebouilleur intermédiaire RB2 situé à un niveau intermédiaire entre le fond et la tête de la colonne. La fraction gazeuse détendue et recyclée doit être
refroidie. Il est avantageux dans ce cas de récupérer au moins en partie la chaleur disponible pour régénérer le solvant utilisé pour capturer le CO2.
Les deux rebouilleurs RBl et RB2 permettent de récupérer de la chaleur sur un large intervalle de température. Ainsi, le gaz sortant de la turbine Tl par le conduit 1 est d'abord refroidi dans l'échangeur de chaleur El, dans lequel il produit de la vapeur qui peut alimenter un cycle à condensation produisant une puissance électrique supplémentaire. Il passe ensuite dans les rebouilleurs RBl et RB2 dans lequel il fournit la chaleur nécessaire à la régénération du solvant dans la colonne de distillation CD2. Et ensuite, le gaz est envoyé dans l'échangeur final de refroidissement Cl. Il est également possible d'utiliser un fluide caloporteur auxiliaire qui permet de récupérer la chaleur sur les gaz d'échappement de la section de turbine Tl et de réchauffer les rebouilleurs RBl et RB2.
La présence d'oxygène dans le gaz introduit dans le dispositif Sl peut être gênante dans certains cas. En effet, dans le cas de la mise en oeuvre par Sl d'un procédé d'absorption du CO2 par solvant, la présence d'oxygène peut nuire à la stabilité chimique du solvant. En outre, la perte d'oxygène nécessite une augmentation du débit d'air d'alimentation, qui n'est pas favorable au rendement global du dispositif.
Pour éviter cette présence d'oxygène dans le gaz traité par le dispositif Sl, on peut opérer selon le schéma de la figure 4.
Les fumées arrivant par le conduit 1 sont comprimées dans la zone de compression Kl. L'air arrivant par le conduit 3 est comprimée dans une zone de compression K2 distincte de la zone de compression Kl. Par exemple, Kl et K2 peuvent être deux compresseurs distincts. Kl et K2 peuvent également être deux étages de compression distincts et montés sur un même arbre d'entraînement. L'air comprimé dans K2 est mélangé avec la fraction gazeuse évacuée de Kl par le conduit 9. Ce mélange de gaz sous pression est introduit
dans la chambre de combustion CO. Dans ces conditions, la fraction gazeuse évacuée par le conduit 8 contient de l'azote et du CO2, mais pratiquement pas d'oxygène, ce qui permet d'évacuer de l'azote pratiquement pur par le conduit 13.
La figure 5 propose une variante du procédé schématisé par la figure 2. Sur la figure 5, le mélange d'air et de fumées comprimé par le compresseur Kl est refroidi dans l'échangeur de chaleur E3, puis est séparé en deux fractions gazeuses évacuées par les conduits 8 et 9. La fraction gazeuse circulant dans le conduit 8 est débarrassée du CO2 dans le dispositif Sl, puis détendu dans la turbine T2. Le gaz appauvri en CO2 est détendu dans la turbine T2. La fraction gazeuse circulant dans le conduit 9 est comprimée dans la zone de compression K3, puis introduite par le conduit 7 dans la chambre de combustion CO.
La variante schématisée par la figure 5 correspond à une turbine à gaz comportant un refroidissement intermédiaire, couramment appelé "inter- cooling", sur le compresseur. L'échangeur E3 permet, d'une part de refroidir les gaz destinés à être comprimé par K3 et, d'autre part, de refroidir les gaz envoyés vers le dispositif Sl. Ainsi, la capture du CO2 ne nécessite pas d'échangeurs de chaleur supplémentaires. Alternativement, à la place de mélanger l'air avec les fumées avant compression dans Kl, l'air peut être comprimé par un compresseur distinct du compresseur Kl, puis mélangée avec la fraction de gaz circulant dans le conduit 9 ou 7 introduite à titre de comburant dans la chambre de combustion CO.
Les avantages de la présente invention sont illustrés par les exemples numériques suivants.
Exemple 1 (selon Fart antérieur) :
Un dispositif analogue à celui décrit en relation avec la figure 1 est utilisé dans cet exemple. Selon la simulation réalisée par le demandeur, l'air arrive par le conduit 3 avec un débit de 21966 kmol/h (kilomoles par heure). Le combustible est constitué de gaz naturel introduit dans la chambre CO par la conduite 6 avec un débit de 2306 kmol/h. L'air total introduit est mélangé en amont du compresseur avec des fumées froides recyclées issues du ballon Bl et dont le débit est de 26600 kmol/h (correspondant à un taux de recyclage d'environ 60% des fumées).
Le mélange est comprimé à 30 bars par le compresseur Kl. Le gaz sous pression est refroidi à 500C puis passe dans le moyen d'absorption Sl qui est une colonne dans lequel une circulation liquide à contre courant d'aminé, et du gaz comprimé est effectuée. La colonne est dimensionnée de telle façon que 90% du CO2 contenu dans le mélange est absorbé. Le mélange débarrassé de la majorité de son CO2 est ensuite envoyé via le conduit 7 dans la chambre de combustion CO équipée de brûleurs catalytiques.
Les fumées dont la température est d'environ 1300°C sont introduites à l'entrée de la turbine de détente Tl. En sortie de la turbine de détente, le débit molaire des fumées traitées est de 48470 kmol/h dont environ 60% est recyclé vers le compresseur Kl. Le débit de dioxyde de carbone rejeté par le conduit 2 est dans ce cas d'environ 1026 kmol/h. Le taux de capture du CO2 sur cette unité est ainsi de 44,5 %.
Exemple 2 (selon l'invention) :
Un dispositif analogue à celui décrit en relation avec la figure 2 est utilisé dans cet exemple. Selon la simulation réalisée par le demandeur, l'air arrive par la conduite 3 avec un débit de 43920 kmol/h. Le combustible est constitué de gaz naturel introduit dans la chambre CO par la conduite 6 avec un débit de 2306 kmol/h. L'air total introduit est mélangé en amont du compresseur avec des fumées froides recyclées issues du ballon Bl et dont le
débit est de 41038 kmol/h (correspondant à un taux de recyclage de 100 % des fumées).
Le mélange est comprimé à 30 bars par le compresseur Kl. Une partie de ce mélange est acheminée via le conduit 9 vers la chambre de combustion CO. Les fumées dont la température est d'environ 13000C sont introduites à l'entrée de la turbine de détente Tl. L'autre partie du mélange comprimé est prélevée par le conduit 8. Ce gaz sous pression est refroidi à 50°C dans les échangeurs E2 et C2, puis passe dans le moyen d'absorption Sl qui est une colonne dans lequel une circulation liquide à contre courant d'aminé, et du gaz comprimé est effectuée. La colonne est dimensionnée de telle façon que 90% du CO2 contenu dans le mélange est absorbé par le courant d'aminé. Le mélange débarrassé de la majorité de son CO2 est ensuite envoyé via le conduit 2 dans la turbine de détente T2.
Le débit de dioxyde de carbone rejeté par le conduit 13 est dans ce cas d'environ 230 kmol/h. Le taux de capture du CO2 sur cette unité est ainsi de 90 %.
Exemple 3 (selon l'invention) :
Un dispositif analogue à celui décrit en relation avec la figure 4 est utilisé dans cet exemple. Selon la simulation réalisée par le demandeur, l'air arrive par le conduit 3 avec un débit de 21966 kmol/h. Il est comprimé à
30 bars par le compresseur K2. Le combustible est constitué de gaz naturel introduit dans la chambre CO par le conduit 6 avec un débit de 2306 kmol/h.
L'air est ensuite mélangé en amont de la chambre de combustion CO avec une partie des fumées recyclées issues du compresseur Kl et dont le débit est de
47816 kmol/h.
Les fumées dont la température est d'environ 1300°C sont introduites à l'entrée de la turbine de détente Tl puis recyclées vers le compresseur Kl.
Une partie du mélange est prélevée par le conduit 8. Ce gaz sous pression est refroidi à 5O0C puis passe dans le moyen d'absorption Sl qui est une colonne dans lequel une circulation liquide à contre courant d'aminé, et du gaz comprimé est effectuée. La colonne est dimensionnée de telle façon que 90% du CO2 contenu dans le mélange est absorbé. Le mélange débarrassé de la majorité de son CO2 est ensuite envoyé via le conduit 2 dans la turbine de détente T2.
Le débit de dioxyde de carbone rejeté par le conduit 13 est dans ce cas d'environ 230 kmol/h. Le taux de capture du CO2 sur cette unité est ainsi de 90 %.
Claims
REVENDICATIONS
1) Procédé pour diminuer le taux de GO2 présent dans les fumées rejetées par un générateur de puissance brûlant un mélange d'un comburant et d'un combustible contenant des hydrocarbures, dans lequel on effectue les étapes suivantes : a) on détend les fumées de combustion, b) on comprime un gaz composé au moins en partie des fumées de combustion, c) on élimine au moins une partie du CO2 présent dans une première partie du gaz comprimé obtenu à l'étape b), d) on recycle une deuxième partie du gaz comprimé obtenu à l'étape b), le comburant comportant au moins la deuxième partie du gaz comprimé.
2) Procédé selon la revendication 1, dans lequel avant l'étape b), on mélange les fumées de combustion avec un gaz comportant de l'oxygène de manière à ce que le gaz comprimé à l'étape b) comporte des fumées de combustion et de l'oxygène.
3) Procédé selon la revendication 1, dans lequel avant l'étape d), on mélange ladite deuxième partie du gaz comprimé avec un gaz comportant de l'oxygène.
4) Procédé selon l'une des revendications 2 et 3, dans lequel ledit gaz comportant de l'oxygène est de l'air.
5) Procédé selon l'une des revendications 2 à 4, dans lequel on ajuste la teneur en oxygène de manière à ce que la combustion soit réalisée dans des conditions stoechiométriques.
6) Procédé selon l'une des revendications 1 à 5, dans lequel on refroidit le gaz comprimé obtenu à l'étape b) et dans lequel, avant l'étape d), on comprime la deuxième partie du gaz comprimé.
7) Procédé selon l'une des revendications 1 à 6, dans lequel on détend puis on rejette à l'atmosphère les gaz appauvris en CO2 obtenus à l'étape c).
8) Procédé selon l'une des revendications 1 à 7, dans lequel on refroidit les fumées de combustion par échange de chaleur avec une solution absorbante mise en oeuvre à l'étape c).
9) Procédé selon l'une des revendications 1 à 8, dans lequel le générateur de puissance effectue une combustion catalytique.
10)Générateur de puissance brûlant un mélange d'un comburant et d'un combustible contenant des hydrocarbures, le générateur comportant un compresseur (Kl), des moyens de combustion (CO), une turbine de détente
(Tl) et des moyens de séparation (Sl) du CO2 contenu dans un flux gazeux, la sortie du compresseur (Kl) étant reliée d'une part à une entrée des moyens de combustion (CO) et d'autre part à l'entrée des moyens de séparation (Sl) du CO2.
lDGénérateur selon la revendication 10, dans lequel les moyens de combustion (CO) comprennent des brûleurs catalytiques.
12)Générateur selon l'une des revendications 10 et 11, dans lequel les moyens de séparation (Sl) du CO2 sont choisis dans le groupe constitué par les colonnes utilisant des solvants d'absorption, les colonnes de distillation cryogénique, les membranes, les tamis moléculaires adsorbants.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008530574A JP4995822B2 (ja) | 2005-09-16 | 2006-09-15 | ガスタービンによる二酸化炭素排出のないエネルギー生成 |
US12/066,835 US20090199566A1 (en) | 2005-09-16 | 2006-09-15 | Co2 emission-free energy production by gas turbine |
EP06808156A EP1929139A1 (fr) | 2005-09-16 | 2006-09-15 | Production d'energie par turbine a gaz sans emission de co2 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0509525 | 2005-09-16 | ||
FR0509525A FR2891013B1 (fr) | 2005-09-16 | 2005-09-16 | Production d'energie par turbine a gaz sans emission de c02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007031658A1 true WO2007031658A1 (fr) | 2007-03-22 |
Family
ID=36566017
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR2006/002134 WO2007031658A1 (fr) | 2005-09-16 | 2006-09-15 | Production d'energie par turbine a gaz sans emission de co2 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20090199566A1 (fr) |
EP (1) | EP1929139A1 (fr) |
JP (1) | JP4995822B2 (fr) |
FR (1) | FR2891013B1 (fr) |
WO (1) | WO2007031658A1 (fr) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100180565A1 (en) * | 2009-01-16 | 2010-07-22 | General Electric Company | Methods for increasing carbon dioxide content in gas turbine exhaust and systems for achieving the same |
FR2966511A1 (fr) * | 2010-10-22 | 2012-04-27 | Gen Electric | Centrale electrique a cycle combine incluant un systeme de recuperation du dioxyde de carbone |
WO2014070667A1 (fr) * | 2012-10-31 | 2014-05-08 | Membrane Technology And Research, Inc. | Séparation de gaz par membrane à base de balayage intégrée avec la production d'énergie par combustion de gaz et récupération de co2 |
EP2562384A3 (fr) * | 2011-08-25 | 2018-07-04 | General Electric Company | Procédé de fonctionnement d'une centrale électrique |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
PL2175967T3 (pl) * | 2007-06-22 | 2015-09-30 | Commw Scient Ind Res Org | Usprawniona metoda przenoszenia CO2 ze strumieni gazu do roztworów amoniaku |
EP2290202A1 (fr) * | 2009-07-13 | 2011-03-02 | Siemens Aktiengesellschaft | Installation de cogénération et procédé de cogénération |
KR101103549B1 (ko) | 2009-08-18 | 2012-01-09 | 삼성에버랜드 주식회사 | 증기 터빈 시스템 및 증기 터빈 시스템의 에너지 효율 증가 방법 |
AT508770B1 (de) * | 2009-09-11 | 2011-04-15 | Siemens Vai Metals Tech Gmbh | Verfahren zur entfernung von co2 aus abgasen von anlagen zur roheisenherstellung |
JP5759543B2 (ja) * | 2010-07-02 | 2015-08-05 | エクソンモービル アップストリーム リサーチ カンパニー | 排ガス再循環方式及び直接接触型冷却器による化学量論的燃焼 |
US9732675B2 (en) | 2010-07-02 | 2017-08-15 | Exxonmobil Upstream Research Company | Low emission power generation systems and methods |
JP5906555B2 (ja) * | 2010-07-02 | 2016-04-20 | エクソンモービル アップストリーム リサーチ カンパニー | 排ガス再循環方式によるリッチエアの化学量論的燃焼 |
TWI563166B (en) * | 2011-03-22 | 2016-12-21 | Exxonmobil Upstream Res Co | Integrated generation systems and methods for generating power |
TWI563164B (en) * | 2011-03-22 | 2016-12-21 | Exxonmobil Upstream Res Co | Integrated systems incorporating inlet compressor oxidant control apparatus and related methods of generating power |
TWI593872B (zh) * | 2011-03-22 | 2017-08-01 | 艾克頌美孚上游研究公司 | 整合系統及產生動力之方法 |
US9127598B2 (en) | 2011-08-25 | 2015-09-08 | General Electric Company | Control method for stoichiometric exhaust gas recirculation power plant |
US8245493B2 (en) | 2011-08-25 | 2012-08-21 | General Electric Company | Power plant and control method |
US8453461B2 (en) | 2011-08-25 | 2013-06-04 | General Electric Company | Power plant and method of operation |
US8266883B2 (en) | 2011-08-25 | 2012-09-18 | General Electric Company | Power plant start-up method and method of venting the power plant |
US8205455B2 (en) | 2011-08-25 | 2012-06-26 | General Electric Company | Power plant and method of operation |
US8266913B2 (en) | 2011-08-25 | 2012-09-18 | General Electric Company | Power plant and method of use |
US8245492B2 (en) | 2011-08-25 | 2012-08-21 | General Electric Company | Power plant and method of operation |
US8453462B2 (en) * | 2011-08-25 | 2013-06-04 | General Electric Company | Method of operating a stoichiometric exhaust gas recirculation power plant |
US8713947B2 (en) | 2011-08-25 | 2014-05-06 | General Electric Company | Power plant with gas separation system |
CN102305109B (zh) * | 2011-09-13 | 2014-03-26 | 华北电力大学 | 一种富氧-煤气化烟气再热联合循环动力系统 |
CN102337937B (zh) * | 2011-09-13 | 2014-08-20 | 华北电力大学 | 一种煤整体气化烟气再热联合循环动力系统 |
CN102337936A (zh) * | 2011-09-13 | 2012-02-01 | 华北电力大学 | 一种烟气再热联合循环动力系统 |
FR3067099B1 (fr) * | 2017-05-30 | 2019-10-25 | Madhav Rathour | Dispositif de separation de melange gazeux |
SE546350C2 (en) * | 2023-02-22 | 2024-10-08 | Stora Enso Oyj | Oxidation method with reduced carbon dioxide emisson |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030140786A1 (en) * | 2002-01-31 | 2003-07-31 | Masaki Iijima | Exhaust heat utilization method for carbon dioxide recovery process |
US20040170935A1 (en) * | 2001-06-14 | 2004-09-02 | Etienne Lebas | Power generator with low co2 emissions and associated method |
WO2004083615A1 (fr) * | 2003-03-18 | 2004-09-30 | Fluor Corporation | Cycle de turbine a air humide a recuperation de gaz carbonique carbone |
US20050028529A1 (en) * | 2003-06-02 | 2005-02-10 | Bartlett Michael Adam | Method of generating energy in a power plant comprising a gas turbine, and power plant for carrying out the method |
DE10360951A1 (de) * | 2003-12-23 | 2005-07-28 | Alstom Technology Ltd | Wärmekraftanlage mit sequentieller Verbrennung und reduziertem CO2-Ausstoß sowie Verfahren zum Betreiben einer derartigen Anlage |
WO2006018389A1 (fr) * | 2004-08-11 | 2006-02-23 | Alstom Technology Ltd | Procede de production d'energie dans une installation de production d'energie comprenant une turbine a gaz et installation de production d'energie appropriee pour mettre ledit procede en oeuvre |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2268270A (en) * | 1938-12-13 | 1941-12-30 | Sulzer Ag | Gas turbine plant |
US4733528A (en) * | 1984-03-02 | 1988-03-29 | Imperial Chemical Industries Plc | Energy recovery |
US6209307B1 (en) * | 1999-05-05 | 2001-04-03 | Fpl Energy, Inc. | Thermodynamic process for generating work using absorption and regeneration |
US6260349B1 (en) * | 2000-03-17 | 2001-07-17 | Kenneth F. Griffiths | Multi-stage turbo-machines with specific blade dimension ratios |
-
2005
- 2005-09-16 FR FR0509525A patent/FR2891013B1/fr not_active Expired - Fee Related
-
2006
- 2006-09-15 EP EP06808156A patent/EP1929139A1/fr not_active Withdrawn
- 2006-09-15 US US12/066,835 patent/US20090199566A1/en not_active Abandoned
- 2006-09-15 WO PCT/FR2006/002134 patent/WO2007031658A1/fr active Application Filing
- 2006-09-15 JP JP2008530574A patent/JP4995822B2/ja not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040170935A1 (en) * | 2001-06-14 | 2004-09-02 | Etienne Lebas | Power generator with low co2 emissions and associated method |
US20030140786A1 (en) * | 2002-01-31 | 2003-07-31 | Masaki Iijima | Exhaust heat utilization method for carbon dioxide recovery process |
WO2004083615A1 (fr) * | 2003-03-18 | 2004-09-30 | Fluor Corporation | Cycle de turbine a air humide a recuperation de gaz carbonique carbone |
US20050028529A1 (en) * | 2003-06-02 | 2005-02-10 | Bartlett Michael Adam | Method of generating energy in a power plant comprising a gas turbine, and power plant for carrying out the method |
DE10360951A1 (de) * | 2003-12-23 | 2005-07-28 | Alstom Technology Ltd | Wärmekraftanlage mit sequentieller Verbrennung und reduziertem CO2-Ausstoß sowie Verfahren zum Betreiben einer derartigen Anlage |
WO2006018389A1 (fr) * | 2004-08-11 | 2006-02-23 | Alstom Technology Ltd | Procede de production d'energie dans une installation de production d'energie comprenant une turbine a gaz et installation de production d'energie appropriee pour mettre ledit procede en oeuvre |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100180565A1 (en) * | 2009-01-16 | 2010-07-22 | General Electric Company | Methods for increasing carbon dioxide content in gas turbine exhaust and systems for achieving the same |
JP2010164051A (ja) * | 2009-01-16 | 2010-07-29 | General Electric Co <Ge> | ガスタービン排出ガス中の二酸化炭素含有量を増加させるための方法およびこれを達成するためのシステム |
FR2966511A1 (fr) * | 2010-10-22 | 2012-04-27 | Gen Electric | Centrale electrique a cycle combine incluant un systeme de recuperation du dioxyde de carbone |
EP2562384A3 (fr) * | 2011-08-25 | 2018-07-04 | General Electric Company | Procédé de fonctionnement d'une centrale électrique |
WO2014070667A1 (fr) * | 2012-10-31 | 2014-05-08 | Membrane Technology And Research, Inc. | Séparation de gaz par membrane à base de balayage intégrée avec la production d'énergie par combustion de gaz et récupération de co2 |
Also Published As
Publication number | Publication date |
---|---|
JP2009508056A (ja) | 2009-02-26 |
FR2891013A1 (fr) | 2007-03-23 |
FR2891013B1 (fr) | 2011-01-14 |
US20090199566A1 (en) | 2009-08-13 |
JP4995822B2 (ja) | 2012-08-08 |
EP1929139A1 (fr) | 2008-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1929139A1 (fr) | Production d'energie par turbine a gaz sans emission de co2 | |
EP1869385B1 (fr) | Procede et installation integres d'adsorption et de separation cryogenique pour la production de co2 | |
EP1402161B1 (fr) | Generateur de puissance a faibles rejets de co2 et procede associe | |
JP6186650B2 (ja) | 二酸化炭素分離方式を含む低エミッション動力発生システム及び方法 | |
JP5043602B2 (ja) | 二酸化炭素の単離を伴う発電用システム及び方法 | |
EP1941208B1 (fr) | Procede d'oxy-combustion permettant la capture de la totalite du dioxyde de carbone produit | |
JP5745844B2 (ja) | ガス混合物の分離のためのプロセスおよび装置 | |
US7827778B2 (en) | Power plants that utilize gas turbines for power generation and processes for lowering CO2 emissions | |
US20080127632A1 (en) | Carbon dioxide capture systems and methods | |
EP1552874A1 (fr) | Procédé de capture du dioxyde de carbone contenu dans des fumées | |
KR20080069523A (ko) | 이산화탄소의 정제 | |
JP2010533119A (ja) | ガス混合物の分離のためのプロセスおよび装置 | |
FR2872890A1 (fr) | Procede integre d'adsorption et de separation cryogenique pour la production de co2 et installation pour la mise en oeuvre du procede | |
CA2712643A1 (fr) | Procede de combustion de combustibles carbones avec filtration des fumees de combustion avant compression | |
JP2019537511A (ja) | ガス分離タービン内の統合されたco2捕捉プロセス | |
US20170136400A1 (en) | Integration of staged complementary psa system with a power plant for co2 capture/utilization and n2 production | |
AU2003220393B2 (en) | Humid air turbine cycle with carbon dioxide recovery | |
FR2900061A1 (fr) | Procede pour concentrer le dioxyde de carbone present dans des fumees rejetees par une installation de generation d'energie. | |
RU2619313C2 (ru) | Способ разделения газов с использованием мембран на основе продувки, объединённый с выработкой энергии на газовых электростанциях и извлечением co2 | |
EP1911505B1 (fr) | Procédé de capture du CO2 avec intégration thermique du régénérateur | |
FR2944217A1 (fr) | Procede de captage du dioxyde de carbone avec integration thermique de la regeneration avec la chaine de compression | |
KR101209704B1 (ko) | 순산소연소 발전시스템 및 그의 정제방법 | |
FR2860442A1 (fr) | Utilisation d'une turbine diphasique dans un procede de traitement de gaz | |
FR2884304A1 (fr) | Procede integre d'absorption et de separation cryogenique pour la production de co2 et installation pour la mise en oeuvre du procede | |
EP3944890A1 (fr) | Procédé et système de prétraitement d'effluent gazeux pour le captage de co2 en post combustion |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2006808156 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008530574 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWP | Wipo information: published in national office |
Ref document number: 2006808156 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12066835 Country of ref document: US |