WO2007031047A1 - Ventil für kolbenkühldüsen - Google Patents

Ventil für kolbenkühldüsen Download PDF

Info

Publication number
WO2007031047A1
WO2007031047A1 PCT/DE2006/001255 DE2006001255W WO2007031047A1 WO 2007031047 A1 WO2007031047 A1 WO 2007031047A1 DE 2006001255 W DE2006001255 W DE 2006001255W WO 2007031047 A1 WO2007031047 A1 WO 2007031047A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
oil
cooling nozzles
piston cooling
valve according
Prior art date
Application number
PCT/DE2006/001255
Other languages
English (en)
French (fr)
Inventor
Heiko Schulz-Andres
Original Assignee
Ixetic Hückeswagen Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ixetic Hückeswagen Gmbh filed Critical Ixetic Hückeswagen Gmbh
Priority to DE502006008042T priority Critical patent/DE502006008042D1/de
Priority to DE112006002368T priority patent/DE112006002368A5/de
Priority to AT06775712T priority patent/ATE483895T1/de
Priority to EP06775712A priority patent/EP1929130B1/de
Publication of WO2007031047A1 publication Critical patent/WO2007031047A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/06Arrangements for cooling pistons
    • F01P3/08Cooling of piston exterior only, e.g. by jets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/08Lubricating systems characterised by the provision therein of lubricant jetting means

Definitions

  • the invention relates to a valve for controlling an oil flow for piston cooling nozzles in the lubricating oil circuit of an internal combustion engine.
  • valves are known.
  • a type of pressure limiting valves is used for this, so that the volume flow, which is to flow through the piston cooling nozzles, only above a certain pressure (usually 2 bar) flows.
  • a certain pressure usually 2 bar
  • the disadvantage of this solution is that at very high temperatures in conjunction with low speeds, the pistons are not cooled because at low speeds, these pressures are not achieved by low pump performance and high leaks. Cooling at high temperatures and low rotational speeds would also be particularly helpful after high engine loads, since the pistons heat up in this reheating phase, although no further energy is supplied thermodynamically.
  • Piston cooling nozzles are used today in internal combustion engines, where due to the high power density overheating of the reciprocating piston can occur. To do this, the piston cooling nozzles inject engine oil from below onto the pistons. In order to achieve the required cooling capacity, a correspondingly large volume flow of the oil is necessary. At low speeds, this can lead to the total volume flow of the lubricating oil pump being insufficient to cover all these consumers.
  • a new, additional application for the piston cooling nozzles is to use them for oil heating in cold oil.
  • the ⁇ lericarmung generated via the pressure relief valve of the piston cooling nozzles is Another possibility.
  • electrically controlled valves which, however, is cost-intensive and space-intensive.
  • the object is achieved by a valve for controlling an oil flow for piston cooling nozzles in the lubricating oil circuit of an internal combustion engine, wherein the valve produces an oil flow to the piston cooling nozzles at low oil temperatures Interrupting oil flow to the piston cooling nozzles at medium oil temperatures and in turn produces an oil flow to the piston cooling nozzles at high oil temperatures.
  • a valve is preferred which adjusts the oil flow to the piston cooling nozzles depending on the temperature. This has the advantage that the oil flow is regulated independently of pressure, so that, especially in hot running at low speeds by low pressures, a still sufficient flow of oil can be provided by the pump. In addition, at low temperatures, no additional pressure loss is built up by interposing a pressure limiting valve, so that power is saved at the pump at this operating point.
  • a valve is preferred, which is adjustable by a temperature-dependent adjustable actuator (against a return spring).
  • a temperature-dependent adjustable actuator for example, has the advantage that no electromagnet and the necessary control circuit are necessary.
  • Another valve according to the invention is characterized in that an adjustable opening cross section for low oil temperatures is greater than the opening cross section for high oil temperatures. This has the advantage that viscosity-compliant oil flow metering is possible both for the cold operating condition and for the hot running operating condition, since with hot running the oil viscosity can be lower by a factor of 1000 than at low temperatures. In addition, a smaller flow area allows less space for the valve.
  • valve which has one inlet opening and two outlet openings, or two inlet openings and one outlet opening.
  • This has the advantage that, depending on the operating state (cold start or hot run) each have a different drain opening can be connected to the inlet or vice versa.
  • Another valve according to the invention is characterized in that the valve is designed as a slide valve (directional control valve).
  • a valve is preferred in which above the oil temperature of the slide path is adjusted continuously. The continuous adjustment has the advantage that the oil flows can be controlled slowly larger or smaller and no pressure peaks caused by the opening and closing of the opening cross-sections.
  • valve which is integrated in a cartridge sleeve. This has the advantage that the valve can be used as a preassembled, set and tested unit in the engine block.
  • valve is preferred in which the valve components are fixed in the cartridge by a retaining ring. This has the advantage of ease of manufacture and assembly (no thread necessary) and a quick assembly and disassembly of the components as needed. Furthermore, a valve is preferred in which the temperature-dependent adjustable actuator is designed as DehnMechelement or as a bimetallic element. Also preferred is a valve in which the valve is represented by a combination of poppet valves rather than a slide valve.
  • Figure 1 shows a first variant of a control valve according to the invention for
  • FIG. 2 shows another variant of a control valve for piston cooling nozzles in three control positions.
  • FIG. 1 shows a first variant 1 of a control valve for piston cooling nozzles.
  • the three representations of Figure 1a, Figure 1 b and Figure 1c shows the three possible switching positions of this control valve.
  • a valve housing 3 is a continuously displaceable piston 5 between a temperature-dependent adjustable actuator 7, for example, an expansion element, and a coil spring 9 clamped.
  • FIG. 1 a shows the position of the expansion element 7 at a low oil temperature, that is to say in a cold start.
  • the valve housing 1 further has an inlet opening 11 from the lubricating oil circuit of the engine and two drain openings 13 and 15, wherein the two drain openings 13 and 15 lead to the piston cooling nozzles.
  • the oil inlet 11 is connected via an annular groove 17 of the valve piston 5 to the drain 13 so that oil is supplied to the piston cooling nozzles in the cold state via this control valve and thereby after the start of the engine heating of the lubricating oil on the warming piston and the oil sprayed on it takes place.
  • the valve piston 17, the compression spring 9 and the temperature-dependent adjustable actuator 7 are housed in an opening 19 of the valve housing 3 and closed by an end plug 21, with which, if appropriate, the position of the valve piston can be adjusted.
  • the temperature-dependent adjustable expansion element When exceeding the 40 degrees Celsius oil temperature threshold, with a tolerance of + 5 degrees Celsius is sufficient for driving the valve piston in a different position, the temperature-dependent adjustable expansion element, as shown in Figure 1 b, by expansion of the expansion material, such as a wax filling , Extend a corresponding punch 23 within the element and thus move the piston 5 against the spring 9, so that the valve piston 5 now both the outflow 13 to the piston cooling nozzles closes and still closed the drain 15 to the piston cooling nozzles.
  • the expansion material such as a wax filling
  • the directional control valve 1 is used so that at low oil temperatures, a connection is generated from the lubricating oil supply area to the piston cooling nozzles.
  • This connection is generated with the largest possible cross-sections (opening cross-section for the line 13) in order to allow a large volume flow, which can flow off in the cold state via the piston cooling nozzles.
  • the actuator 7 closes this connection and then opens it again only at high temperatures (hot run). This also has the advantage that a possible pre-throttling can prevent the outflow of an impermissibly high volume flow.
  • connection is only opened again at very high temperatures, as shown in FIG. 1 c.
  • the openings 11 and 15 are connected to each other by the further extension of the actuator 7.
  • the hot run is cooled very well.
  • no pressure relief valves with, for example, a necessary opening pressure of 2 bar must be used.
  • oil is injected through the piston cooling nozzles.
  • oil will flow through the piston cooling nozzles only at engine speeds of 4000 rpm in the hot run because of the high leakage.
  • a control valve variant of Figure 2 can be used in which the control valve 28 is integrated into a cartridge sleeve 30 and now only as a pre-assembled, set and tested unit in the engine block 32 must be used.
  • Various solutions are available for fixing the valve components in the cartridge 30. Shown is a fuse by means of a retaining ring 34, which allows quick assembly and, if necessary, disassembly of the valve parts.
  • a solution is shown here in Figure 2, in which only two holes 36 and 38 are needed, which extend at an angle of 90 degrees in the engine block 32. The feed of the lubricating oil through the bore 36, the bore 38 is connected to the piston cooling nozzles. Through two bores 40 and 42 in the piston 44 and through two control openings 46 and 48 in the carton. ridge 30, the control function can now be realized again.
  • Figures 2a, 2b and 2c show again the three different positions.
  • FIG. 2a the cold start position is shown.
  • the temperature-dependent adjustable actuator 50 is retracted.
  • the control piston 44 is pressed against the actuator 50 by the compression spring 52, which is supported on the securing ring 34.
  • the supply line 36 is connected via the control port 46 of the cartridge 30, the radial bore 40 and the axial bore 42 of the piston 44 to the drain 38 to the piston cooling nozzles, so that now in the cold start lubricating oil is injected under the piston for heating.
  • the actuator 50 extended by a certain range, here to recognize the extended punch 54, which is supported in this valve variant 28 against the screw plug 56.
  • the radial transverse bore 40 of the piston is connected in this position neither with the radial inflow bore 46 of the sleeve 30 nor with the radial inflow bore 48 of the sleeve 30, so that via the drain 38 no lubricating oil can flow to the piston cooling nozzles.
  • the hot-running position is reached.
  • the actuator 50 has the punch 54 completely extended.
  • the radial transverse bore 40 of the piston 44 is now connected to the radial hot-flow inlet opening 48 of the sleeve 30, so that the lubricating oil inlet 36 is connected to the drain 38 to the piston cooling nozzles.
  • the opening cross-section 48 that is to say the inlet for the hot-running state of the internal combustion engine, can be decidedly smaller in cross section than the cold running inlet cross section 46, which, however, is not shown to scale in this picture.
  • the invention thus uses the principle with a single control valve, which is also controlled by a temperature-dependent actuator and does not have a pressure limiting function, an oil volume flow above the rising Tempe- first pass, then switch off and then let it through again.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)
  • Nozzles (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Compressor (AREA)

Abstract

Ventil zur Regelung eines Ölstroms für Kolbenkühldüsen im Schmierölkreislauf eines Verbrennungsmotors, dadurch gekennzeichnet, dass das Ventil (1, 28) bei niedrigen Temperaturen einen Öldurchfluss zu den Kolbenkühldüsen herstellt, bei mittleren Temperaturen einen Öldurchfluss zu den Kolbenkühldüsen unterbricht und bei hohen Öltemperaturen wiederum einen Öldurchfluss zu den Kolbenkühldüsen herstellt.

Description

Ventil für Kolbenkühldüsen
Die Erfindung betrifft ein Ventil zur Regelung eines Ölstromes für Kolbenkühldüsen im Schmierölkreislauf eines Verbrennungsmotors.
Derartige Ventile sind bekannt. Im Stand der Technik wird dafür eine Art von Druckbegrenzungsventilen eingesetzt, damit der Volumenstrom, der über die Kolbenkühldüsen fließen soll, erst oberhalb eines bestimmten Druckes (in der Regel 2 bar) abfließt. Der Nachteil dieser Lösung ist, dass bei sehr hohen Temperaturen in Verbindung mit niedrigen Drehzahlen die Kolben nicht gekühlt werden, da bei niedrigen Drehzahlen diese Drücke durch niedrige Pumpenleistung und hohe Leckagen nicht erreicht werden. Dabei wäre das Kühlen bei hohen Temperaturen und niedrigen Drehzahlen auch besonders hilfreich nach hohen Motorbeiastungen, da in dieser Nachheizphase sich die Kolben erhitzen, obwohl thermodynamisch keine weitere Energie zugeführt wird.
Kolbenkühldüsen werden heutzutage in Verbrennungsmotoren eingesetzt, bei denen aufgrund der hohen Leistungsdichte eine Überhitzung des Hubkolbens auftreten kann. Hierzu spritzen die Kolbenkühldüsen Motoröl von unten an die Kolben. Um die erforderliche Kühlleistung zu bewirken, ist ein entsprechend großer Volumenstrom des Öls notwendig. Dies kann bei niedrigen Drehzahlen dazu führen, dass der Gesamtvolumenstrom der Schmierölpumpe nicht ausreichend ist, um alle diese Verbraucher abzudecken.
Ein neuer, zusätzlicher Einsatz für die Kolbenkühldüsen besteht darin, diese auch zur Öler- wärmung bei kaltem Öl einzusetzen. Dazu wird im Stand der Technik die Ölerwärmung über das Druckbegrenzungsventil der Kolbenkühldüsen erzeugt. Eine andere Möglichkeit besteht darin, elektrisch angesteuerte Ventile einzusetzen, was allerdings kostenintensiv und bau- raumintensiv ist.
Es ist daher Aufgabe der Erfindung, ein Regelventil für Kolbenkühldüsen zu finden, welches diese Nachteile nicht aufweist.
Die Aufgabe wird gelöst durch ein Ventil zur Regelung eines Ölstromes für Kolbenkühldüsen im Schmierölkreislauf eines Verbrennungsmotors, wobei das Ventil bei niedrigen Öltemperaturen einen Öldurchfluss zu den Kolbenkühldüsen herstellt, bei mittleren Öltemperaturen einen Öldurchfluss zu den Kolbenkühldüsen unterbricht und bei hohen Öltemperaturen wiederum einen Öldurchfluss zu den Kolbenkühldüsen herstellt. Das hat den Vorteil, dass mit einem einzigen Ventil eine zusätzliche Ölerwär- mung bei kaltem Motor als auch eine Kolbenkühlung bei hohen Öltemperaturen, also bei Heißlauf des Motors, möglich ist.
Es wird ein Ventil bevorzugt, welches temperaturabhängig den Ölstrom zu den Kolbenkühldüsen einstellt/regelt. Das hat den Vorteil, dass der Ölstrom druckunabhängig geregelt wird, so dass vor allem bei Heißlauf mit niedrigen Drehzahlen durch niedrige Drücke ein noch hinreichender Ölstrom von der Pumpe zur Verfügung gestellt werden kann. Außerdem wird bei niedrigen Temperaturen nicht ein zusätzlicher Druckverlust durch Zwischenschalten eines Druckbegrenzungsventils aufgebaut, so dass in diesem Betriebspunkt Leistung an der Pumpe eingespart wird.
Auch wird ein Ventil bevorzugt, welches durch einen temperaturabhängig verstellbaren Aktor (gegen eine Rückstellfeder) verstellbar ist. Der Einsatz eines temperaturabhängig verstellbaren Aktors hat zum Beispiel den Vorteil, dass keine Elektromagneten und der dazu notwendige Ansteuerschaltkreis notwendig sind.
Ein weiteres erfindungsgemäßes Ventil zeichnet sich dadurch aus, dass ein einstellbarer Öffnungsquerschnitt für niedrige Öltemperaturen größer ist als der Öffnungsquerschnitt für hohe Öltemperaturen. Das hat den Vorteil, dass eine viskositätsgerechte Ölstromdosierung sowohl für den kalten Betriebszustand als auch für den Heißlauf- Betriebszustand möglich ist, da bei Heißlauf die Ölviskosität um den Faktor 1000 niedriger sein kann als bei niedrigen Temperaturen. Außerdem ermöglicht ein kleinerer Durchflussquerschnitt weniger Bauraum für das Ventil.
Auch wird ein Ventil bevorzugt, welches eine Zulauföffnung und zwei Ablauföffnungen aufweist, oder zwei Zulauföffnungen und eine Ablauföffnung. Das hat den Vorteil, dass je nach Betriebszustand (Kaltstart oder Heißlauf) jeweils eine andere Ablauföffnung mit dem Zulauf verbunden werden kann oder umgekehrt. Ein weiteres erfindungsgemäßes Ventil zeichnet sich dadurch aus, dass das Ventil als Schieberventil (Wegeventil) ausgeführt ist. Auch wird ein Ventil bevorzugt, bei welchem über der Öltemperatur der Schieberweg stufenlos verstellt wird. Die stufenlose Verstellung hat den Vorteil, dass die Ölströme langsam größer oder kleiner geregelt werden können und keine Druckspitzen durch das Öffnen und Schließen der Öffnungsquerschnitte entstehen.
Auch wird ein Ventil bevorzugt, welches in einer Cartridge-Hülse integriert ist. Das hat den Vorteil, dass das Ventil als vormontierte, eingestellte und geprüfte Einheit in den Motorblock eingesetzt werden kann.
Weiterhin wird ein Ventil bevorzugt, bei welchem die Ventilbauteile im Cartridge durch einen Sicherungsring fixiert sind. Das hat den Vorteil einer einfachen Fertigung und Montage (kein Gewinde notwendig) und einer schnellen Montage und Demontage der Bauteile bei Bedarf. Weiterhin wird ein Ventil bevorzugt, bei welchem der temperaturabhängig verstellbare Aktor als Dehnkörperelement oder als Bimetallelement ausgeführt ist. Auch wird ein Ventil bevorzugt, bei welchem das Ventil statt als Schieberventil durch eine Kombination von Sitzventilen dargestellt ist.
Die Erfindung wird nun anhand der Figuren beschrieben:
Figur 1 zeigt eine erste Variante eines erfindungsgemäßen Regelventils für
Kolbenkühldüsen in drei Regelpositionen,
Figur 2 zeigt eine andere Variante eines Regelventils für Kolbenkühldüsen in drei Regelpositionen.
In Figur 1 ist eine erste Variante 1 eines Regelventils für Kolbenkühldüsen dargestellt. Dabei zeigen die drei Darstellungen der Figur 1a, Figur 1 b und Figur 1c die drei möglichen Schaltstellungen dieses Regelventils. In einem Ventilgehäuse 3 ist ein stufenlos verschiebbarer Kolben 5 zwischen einem temperaturabhängig verstellbaren Aktor 7, beispielsweise einem Dehnstoffelement, und einer Schraubenfeder 9 eingespannt. In der Figur 1 a ist dabei die Stellung des Dehnstoffelementes 7 bei niedriger Öltempera- tur, also im Kaltstart, dargestellt. Das Ventilgehäuse 1 weist ferner eine Zulauföffnung 11 aus dem Schmierölkreislauf des Motors sowie zwei Ablauföffnungen 13 und 15 auf, wobei die beiden Ablauföffnungen 13 und 15 zu den Kolbenkühldüsen führen. Im hier dargestellten Kaltstart-Zustand ist der Ölzulauf 11 über eine Ringnut 17 des Ventilkolbens 5 mit dem Ablauf 13 verbunden, so dass im kalten Zustand Öl über dieses Regelventil den Kolbenkühldüsen zugeführt wird und dadurch nach dem Start des Motors eine Erwärmung des Schmieröls über die sich erwärmenden Kolben und das daran angespritzte Öl stattfindet. Der Ventilkolben 17, die Druckfeder 9 und der temperaturabhängig verstellbare Aktor 7 sind in einer Öffnung 19 des Ventilgehäuses 3 untergebracht und durch einen Abschlussstopfen 21 verschlossen, mit dem gegebenenfalls die Position des Ventilkolbens einjustiert werden kann. Die Kaltstartposition wird in diesem Falle für Öltemperaturen < = 40 Grad Celsius eingenommen.
Beim Überschreiten der 40 Grad Celsius-Öltemperaturschwelle, wobei eine Toleranz von + 5 Grad Celsius hinreichend ist für das Fahren des Ventilkolbens in eine andere Position, wird das temperaturabhängig verstellbare Dehnelement, wie in Figur 1 b gezeigt, durch Ausdehnung des Dehnstoffes, beispielsweise einer Wachsfüllung, innerhalb des Elementes einen entsprechenden Stempel 23 ausfahren und damit den Kolben 5 gegen die Feder 9 verfahren, so dass der Ventilkolben 5 jetzt sowohl den Ab- fluss 13 zu den Kolbenkühldüsen verschließt als auch noch den Abfluss 15 zu den Kolbenkühldüsen verschlossen hält. Durch entsprechende Überdeckung des Kolbens 5 und entsprechende Gestaltung der umlaufenden Nut 17 und der Abstände der Öffnungen 13 und 15 wird dieser geschlossene Zustand bei weiterem Ausfahren des Dehnstoffelementes 7 bis etwa 120 Grad Celsius Öltemperatur beibehalten.
Bei Überschreiten dieser Öltemperatur, also bei Eintreten des so genannten Heißlaufes, wird dann die Kolbenposition in Figur 1c erreicht. Der Stempel 23 des Dehnstoffelementes 7 ist nun so weit ausgefahren, dass die umlaufende Nut 17 des Regelkolbens 5 den Zufluss 11 mit dem zweiten Abfluss 15 zu den Kolbenkühldüsen verbindet, so dass jetzt das Schmieröl zur Kühlung der Kolben an deren Unterseite gespritzt werden kann. Dabei kann der Ablaufquerschnitt der Öffnung 15 wesentlich kleiner gestaltet werden als der Ablaufquerschnitt der Öffnung 13 für den Kaltstart, da jetzt das durch hohe Temperaturen viel dünnflüssigere Öl eine entschieden kleinere Öffnung benötigt, damit der gleiche Volumenstrom unter die Kolben gefördert werden kann.
Durch den Einsatz dieses temperaturgesteuerten Wegeventils 1 kann also die gewünschte Funktion zur doppelten Verwendung der Kolbenkühldüsen beim Kaltstart und beim Heißlauf kostengünstig erzeugt werden, wobei das Ventil bei niedrigen Öl- temperaturen (< = 40 Grad Celsius) ein Abspritzen des Öls über die Kolbenkühldüsen zum Zwecke der Ölerwärmung zulässt, ohne hohe Öldrücke zu erzeugen, in einem Zwischenbereich (40 Grad Celsius bis 120 Grad Celsius) keinen Ölstrom zu den Kolbenkühldüsen zuführt und dann im Hochtemperaturbereich (> = 120 Grad Celsius) wieder den Durchlass zu den Kolbenkühldüsen öffnet. Dabei wird das Wegeventil 1 so eingesetzt, dass bei niedrigen Öltemperaturen eine Verbindung vom Schmierölversorgungsbereich zu den Kolbenkühldüsen erzeugt wird. Diese Verbindung wird mit möglichst großen Querschnitten generiert (Öffnungsquerschnitt für die Leitung 13), um einen großen Volumenstrom zu ermöglichen, der im kalten Zustand über die Kolbenkühldüsen abfließen kann. Bei steigenden Öltemperaturen verschließt der Aktor 7 diese Verbindung und öffnet sie dann erst wieder bei hohen Temperaturen (Heißlauf). Dies hat auch den Vorteil, dass eine mögliche Vordrosselung das Abfließen eines unzulässig hohen Volumenstromes verhindern kann.
Da im Kaltstart der Verbrennungsmotor nur einen geringen Ölbedarf hat, bauen sich üblicherweise in diesem Betriebspunkt die höchsten Drücke auf. Durch eine geschickte Auslegung der Öffnungsquerschnitte und des Öffnungsdrucks der Kolbenkühldüsen kann der Druck im Ölkreislauf abgesenkt werden. Dies führt zusätzlich zu einer leichten Reduzierung der Pumpenleistung und damit der Antriebsleistung. Mit zunehmender Ölerwärmung fährt der Aktor 7 weiter aus und verschließt dann die Verbindung von der Zulaufleitung 11 zu den Kolbenkühldüsen. Die Genauigkeit für den Schaltpunkt ist mit ± 5 Grad Celsius ausreichend. Da das Schließen der Verbindung zu keinen dynamischen Druckspitzen führt und auch nicht absolut dicht sein muss, ist eine Ausführung des Ventils 1 als Schieberventil die richtige Wahl.
Geöffnet wird die Verbindung erst wieder bei sehr hohen Temperaturen, wie in Figur 1 c dargestellt. In diesem Fall werden durch das weitere Ausfahren des Aktors 7 die Öffnungen 11 und 15 miteinander verbunden. Hierdurch wird der Heißlauf sehr gut gekühlt. Durch die Schaltfunktion bzw. Regelfunktion ist es möglich, den Öffnungsdruck zu reduzieren, da hier keine Druckbegrenzungsventile mit beispielsweise einem notwendigen Öffnungsdruck von 2 Bar eingesetzt werden müssen. Damit lässt sich insbesondere der kritische Heißlauf bei niedrigen Motordrehzahlen viel besser abdecken, da dann wirklich Öl durch die Kolbenkühldüsen gespritzt wird. Im Stand der Technik mit einem Öffnungsdruck der Druckbegrenzungsventile von beispielsweise mehr als 2 bar wird im Heißlauf wegen der hohen Leckagen Öl erst ab Motordrehzahlen von 4000 U/min durch die Kolbenkühldüsen fließen.
Zur Reduzierung des Montageaufwandes, beispielsweise im Motormontageband, kann eine Regelventilvariante nach Figur 2 eingesetzt werden, bei welcher das Regelventil 28 in eine Cartridge-Hülse 30 integriert ist und nun nur noch als vormontierte, eingestellte und geprüfte Einheit in den Motorblock 32 eingesetzt werden muss. Zur Fixierung der Ventilbauteile im Cartridge 30 bieten sich verschiedene Lösungen an. Dargestellt ist eine Sicherung mittels eines Sicherungsringes 34, welcher eine schnelle Montage und gegebenenfalls Demontage der Ventileinzelteile ermöglicht. Zur Reduzierung des Herstellaufwandes für den Motorenhersteller wird hier in Figur 2 eine Lösung gezeigt, bei der nur zwei Bohrungen 36 und 38 benötigt werden, die im Winkel von 90 Grad im Motorblock 32 verlaufen. Der Zulauf des Schmieröls erfolgt durch die Bohrung 36, die Bohrung 38 ist mit den Kolbenkühldüsen verbunden. Durch zwei Bohrungen 40 und 42 im Kolben 44 und durch zwei Steueröffnungen 46 und 48 im Cart- ridge 30 kann nun wieder die Regelfunktion realisiert werden. Die Figuren 2a, 2b und 2c zeigen wieder die drei unterschiedlichen Positionen.
In Figur 2a ist die Kaltstartposition dargestellt. Der temperaturabhängig verstellbare Aktor 50 ist eingefahren. Der Regelkolben 44 wird durch die Druckfeder 52, welche sich auf dem Sicherungsring 34 abstützt, gegen den Aktor 50 gedrückt. Die Zulaufleitung 36 ist über die Steueröffnung 46 des Cartridge 30, die radiale Bohrung 40 und über die axiale Bohrung 42 des Kolbens 44 mit dem Ablauf 38 zu den Kolbenkühldüsen verbunden, so dass jetzt im Kaltstart Schmieröl unter die Kolben zur Erwärmung gespritzt wird.
In der Figur 2b ist bei mittleren Öltemperaturen der Aktor 50 um einen gewissen Bereich ausgefahren, hier an dem ausgefahrenen Stempel 54 zu erkennen, welcher sich in dieser Ventilvariante 28 gegen die Verschlussschraube 56 abstützt. Die radiale Querbohrung 40 des Kolbens ist in dieser Position weder mit der radialen Zuflussbohrung 46 der Hülse 30 noch mit der radialen Zuflussbohrung 48 der Hülse 30 verbunden, so dass über den Ablauf 38 kein Schmieröl zu den Kolbenkühldüsen strömen kann.
In Figur 2c ist schließlich bei dieser Ventilvariante 28die Heißlaufposition erreicht. Der Aktor 50 hat den Stempel 54 ganz ausgefahren. Die radiale Querbohrung 40 des Kolbens 44 ist nun mit der radialen Heißlaufzuflussöffnung 48 der Hülse 30 verbunden, so dass der Schmierölzulauf 36 mit dem Ablauf 38 zu den Kolbenkühldüsen verbunden ist. Wie vorab schon erwähnt, kann der Öffnungsquerschnitt 48, also der Zulauf für den Heißlaufzustand des Verbrennungsmotors, im Querschnitt entschieden kleiner gestaltet werden als der Kaltlaufzulaufquerschnitt 46, was in diesem Bild allerdings nicht maßstäblich dargestellt ist.
Die Erfindung verwendet also das Prinzip, mit einem einzigen Regelventil, welches außerdem durch einen temperaturabhängigen Aktor gesteuert wird und nicht über eine Druckbegrenzungsfunktion, einen Ölvolumenstrom über der ansteigenden Tempe- ratur erst durchzulassen, danach abzuschalten und anschließend wieder durchzulassen.
Bezugszeichenliste
I Regelventil für Kolbenkühldüsen (Variante 1) 3 Ventilgehäuse
5 Kolben
7 temperaturabhängig verstellbarer Aktor
9 Schraubenfeder
I 1 Zulauföffnung
13 Ablauföffnung Kaltstart
15 Ablauföffnung Heißlauf
17 Ringnut des Ventilkolbens 5
19 Öffnung des Ventilgehäuses 3
21 Abschlussstopfen
23 Stempel des Aktors 7
28 Regelventil für Kolbenkühldosen (Variante 2)
30 Cartridge-Hülse (Ventilhülse)
32 Motorblock
34 Sicherungsring
36 Bohrung im Motorblock
38 Bohrung im Motorblock
40 radiale Bohrung im Kolben 44
42 axiale Bohrung im Kolben 44
44 Ventilkolben
46 Steueröffnung für Kaltstart in der Cartridge-Hülse 30
48 Steueröffnung für Heißlauf in der Cartridge-Hülse 30
50 temperaturabhängig verstellbarer Aktor
52 Druckfeder
54 Stempel des Aktors 40
56 Verschlussschraube der Ventilvariante 28

Claims

Patentansprüche
1. Ventil zur Regelung eines Ölstroms für Kolbenkühldüsen im Schmierölkreislauf eines Verbrennungsmotors, dadurch gekennzeichnet, dass das Ventil (1 , 28) bei niedrigen Temperaturen einen Öldurchfluss zu den Kolbenkühldüsen herstellt, bei mittleren Temperaturen einen Öldurchfluss zu den Kolbenkühldüsen unterbricht und bei hohen Öl- temperaturen wiederum einen Öldurchfluss zu den Kolbenkühldüsen herstellt.
2. Ventil nach Anspruch 1, dadurch gekennzeichnet, dass das Ventil (1 , 28) temperaturabhängig den Ölstrom zu den Kolbenkühldüsen regelt.
3. Ventil nach Anspruch 1 oder Anspruch 2, dadurch gekennzeichnet, dass das Ventil (1 , 28) durch einen temperaturabhängig verstellbaren Aktor (7, 50) gegen eine Rückstellfeder (9, 32) verstellbar ist.
4. Ventil nach Anspruch 1 bis Anspruch 3, dadurch gekennzeichnet, dass ein einstellbarer Öffnungsquerschnitt (13, 46) für niedrige Öltemperaturen größer ist als der Öffnungsquerschnitt (15, 48) für hohe Öltemperaturen.
5. Ventil nach Anspruch 1 bis Anspruch 4, dadurch gekennzeichnet, dass das Ventil (1 , 28) eine Zulauföffnung (11) und zwei Ablauföffnungen (13, 15) aufweist oder zwei Zulauföffnungen (46, 48) und eine Ablauföffnung (42).
6. Ventil nach Anspruch 1 bis Anspruch 5, dadurch gekennzeichnet, dass das Ventil (1, 28) als Schieberventil (Wegeventil) ausgeführt ist.
7. Ventil nach Anspruch 6, dadurch gekennzeichnet, dass über der Temperatur der Schieberweg stufenlos verstellt wird.
8. Ventil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Ventil in einer Cartridge-Hülse (30) integriert ist.
9. Ventil nach Anspruch 8, dadurch gekennzeichnet, dass die einzelnen Ventilbauteile im Cartridge (30) durch einen Sicherungsring (34) fixiert sind.
10. Ventil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der temperaturabhängig verstellbare Aktor (7, 50) als Dehnkörperelement oder als Bimetallelement ausgeführt ist.
11. Ventil nach Anspruch 1 bis Anspruch 5 und Anspruch 8 bis Anspruch 10, dadurch gekennzeichnet, dass das Ventil statt als Schieberventil durch eine Kombination von Sitzventilen dargestellt ist.
PCT/DE2006/001255 2005-09-16 2006-07-20 Ventil für kolbenkühldüsen WO2007031047A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE502006008042T DE502006008042D1 (de) 2005-09-16 2006-07-20 Ventil für kolbenkühldüsen
DE112006002368T DE112006002368A5 (de) 2005-09-16 2006-07-20 Ventil für Kolbenkühldüsen
AT06775712T ATE483895T1 (de) 2005-09-16 2006-07-20 Ventil für kolbenkühldüsen
EP06775712A EP1929130B1 (de) 2005-09-16 2006-07-20 Ventil für kolbenkühldüsen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005044302.8 2005-09-16
DE102005044302 2005-09-16

Publications (1)

Publication Number Publication Date
WO2007031047A1 true WO2007031047A1 (de) 2007-03-22

Family

ID=37275782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2006/001255 WO2007031047A1 (de) 2005-09-16 2006-07-20 Ventil für kolbenkühldüsen

Country Status (4)

Country Link
EP (1) EP1929130B1 (de)
AT (1) ATE483895T1 (de)
DE (2) DE502006008042D1 (de)
WO (1) WO2007031047A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017223465A1 (de) * 2017-12-20 2019-06-27 Volkswagen Aktiengesellschaft Kolbenkühldüse

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE542029C2 (en) 2016-03-29 2020-02-11 Scania Cv Ab A system and a method for controlling cooling of a combustion engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3990424A (en) * 1975-09-15 1976-11-09 Miersch Roy T Oil cooler
FR2328111A1 (fr) * 1975-10-16 1977-05-13 Audi Ag Dispositif de reglage du refroidissement a l'huile du piston d'un moteur a combustion interne a piston
JPS61244820A (ja) * 1985-04-23 1986-10-31 Yanmar Diesel Engine Co Ltd ピストン冷却装置
US5819692A (en) * 1997-05-01 1998-10-13 Schafer; Timothy Vernon Piston cooling oil control valve
DE10261180A1 (de) * 2002-12-20 2004-07-01 Daimlerchrysler Ag Temperaturgeregelte Ölspritzdüse zur Kolbenkühlung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3990424A (en) * 1975-09-15 1976-11-09 Miersch Roy T Oil cooler
FR2328111A1 (fr) * 1975-10-16 1977-05-13 Audi Ag Dispositif de reglage du refroidissement a l'huile du piston d'un moteur a combustion interne a piston
JPS61244820A (ja) * 1985-04-23 1986-10-31 Yanmar Diesel Engine Co Ltd ピストン冷却装置
US5819692A (en) * 1997-05-01 1998-10-13 Schafer; Timothy Vernon Piston cooling oil control valve
DE10261180A1 (de) * 2002-12-20 2004-07-01 Daimlerchrysler Ag Temperaturgeregelte Ölspritzdüse zur Kolbenkühlung

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017223465A1 (de) * 2017-12-20 2019-06-27 Volkswagen Aktiengesellschaft Kolbenkühldüse

Also Published As

Publication number Publication date
EP1929130B1 (de) 2010-10-06
DE502006008042D1 (de) 2010-11-18
DE112006002368A5 (de) 2008-06-05
ATE483895T1 (de) 2010-10-15
EP1929130A1 (de) 2008-06-11

Similar Documents

Publication Publication Date Title
EP3311015B1 (de) Längenverstellbare pleuelstange
DE112007001131B4 (de) Kontinuierlich verstellbare Drehschieberpumpe und entsprechendes System
EP2558339B1 (de) Regelventil für einen öleingespritzten schraubenverdichter
EP2021595B1 (de) Thermostatventil
DE102015000805B3 (de) Regelbare Kühlmittelpumpe
EP2848787B1 (de) Steuerventil für eine Schmiermitteldüse
WO2018086886A1 (de) Elektrische kühlmittelpumpe
EP3387225B1 (de) Fluidversorgungssystem
WO2017029227A1 (de) Druck- und temperaturgesteuertes ventil in einem ölkreislauf einer brennkraftmaschine
DE102009048172A1 (de) Kolben für eine ein veränderbares Kompressionsverhältnis aufweisende Verbrennungskraftmaschine
DE102015211846A1 (de) Ablassvorrichtung für Öl-Kreislauf von Motor
DE10301448A1 (de) Vorrichtung zur Temperierung von Schmieröl eines Kraftfahrzeugs
EP2080943B1 (de) Regelventil
DE102015211929A1 (de) Ablassvorrichtung für Öl-Kreislauf von Motor
EP3452705B1 (de) Fluidversorgungssystem
DE19938285A1 (de) Einrichtung zur Regelung des Schmieröldruckes einer Brennkraftmaschine
EP1929130B1 (de) Ventil für kolbenkühldüsen
EP3470714B1 (de) Ventil zum einstellen eines kühlfluidflusses zur kolbenkühlung
DE10241461A1 (de) Volumenstromregelventil
EP3412944B1 (de) Steuerventil
DE102016207655A1 (de) Fluidversorgungssystem
DE102005011754A1 (de) Thermostatventil für einen Kühlmittelkreislauf einer Brennkraftmaschine
DE102011055406B4 (de) Ventileinrichtung für eine Ölversorgungseinrichtung einer Kraftfahrzeug-Brennkraftmaschine
DE102009024698A1 (de) Schmierstoffpumpensystem
DE112015005215T5 (de) Entlastungsventil

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006775712

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1120060023683

Country of ref document: DE

REF Corresponds to

Ref document number: 112006002368

Country of ref document: DE

Date of ref document: 20080605

Kind code of ref document: P

WWP Wipo information: published in national office

Ref document number: 2006775712

Country of ref document: EP