WO2007030888A1 - Process and apparatus for removal of sour species from a natural gas stream - Google Patents
Process and apparatus for removal of sour species from a natural gas stream Download PDFInfo
- Publication number
- WO2007030888A1 WO2007030888A1 PCT/AU2006/001356 AU2006001356W WO2007030888A1 WO 2007030888 A1 WO2007030888 A1 WO 2007030888A1 AU 2006001356 W AU2006001356 W AU 2006001356W WO 2007030888 A1 WO2007030888 A1 WO 2007030888A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sour species
- liquid
- zone
- gas
- gaseous
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L3/00—Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
- C10L3/06—Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
- C10L3/10—Working-up natural gas or synthetic natural gas
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/002—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by condensation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/14—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
- B01D53/1456—Removing acid components
- B01D53/1462—Removing mixtures of hydrogen sulfide and carbon dioxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/14—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
- B01D53/1493—Selection of liquid materials for use as absorbents
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L3/00—Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
- C10L3/06—Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
- C10L3/10—Working-up natural gas or synthetic natural gas
- C10L3/101—Removal of contaminants
- C10L3/102—Removal of contaminants of acid contaminants
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0204—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
- F25J3/0209—Natural gas or substitute natural gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0228—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
- F25J3/0233—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0228—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
- F25J3/0242—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 3 carbon atoms or more
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0228—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
- F25J3/0266—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of carbon dioxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/30—Sulfur compounds
- B01D2257/306—Organic sulfur compounds, e.g. mercaptans
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/30—Sulfur compounds
- B01D2257/308—Carbonoxysulfide COS
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/60—Heavy metals or heavy metal compounds
- B01D2257/602—Mercury or mercury compounds
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/02—Processes or apparatus using separation by rectification in a single pressure main column system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/90—Details relating to column internals, e.g. structured packing, gas or liquid distribution
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/02—Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
- F25J2205/04—Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/20—Processes or apparatus using other separation and/or other processing means using solidification of components
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/50—Processes or apparatus using other separation and/or other processing means using absorption, i.e. with selective solvents or lean oil, heavier CnHm and including generally a regeneration step for the solvent or lean oil
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2240/00—Processes or apparatus involving steps for expanding of process streams
- F25J2240/02—Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2240/00—Processes or apparatus involving steps for expanding of process streams
- F25J2240/40—Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/12—External refrigeration with liquid vaporising loop
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/60—Closed external refrigeration cycle with single component refrigerant [SCR], e.g. C1-, C2- or C3-hydrocarbons
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/66—Closed external refrigeration cycle with multi component refrigerant [MCR], e.g. mixture of hydrocarbons
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2290/00—Other details not covered by groups F25J2200/00 - F25J2280/00
- F25J2290/40—Vertical layout or arrangement of cold equipments within in the cold box, e.g. columns, condensers, heat exchangers etc.
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/40—Capture or disposal of greenhouse gases of CO2
Definitions
- the present invention relates to a process and apparatus for removal of sour species from a natural gas stream.
- the present invention relates to a process for removal of sour species in a liquid phase from a dehydrated natural gas stream.
- the present invention also relates to a process for recovering liquid carbon dioxide from a natural gas stream.
- Natural gas from either production reservoirs or storage reservoirs typically contains water, as well as other species, which form solids in low temperature conditions under which some process operations are performed.
- a cooled feed stream of natural gas enters a separation vessel where process means are provided to produce and separate carbon dioxide solids. Carbon dioxide is removed from the vessel as a carbon dioxide rich liquid stream, while purified cold vapour is removed from the separation vessel as a product stream.
- WO 03/062725 describes a process for the removal of freezable species such as carbon dioxide, water and heavy hydrocarbons from a natural gas feed stream during liquefaction to produce liquid natural gas (LNG) .
- the freezable species are removed as a LNG slurry of the freezable species.
- a dehydrated natural gas stream may be sweetened by solidifying sour species contained therein.
- the solid sour species has a characteristic fixed vapour pressure, and thus sour species will also be present in the vapour phase.
- the present invention is based on the realisation that it is possible to sequentially and selectively separate solid, liquid and gaseous fractions of a contaminant sour species from a dehydrated natural gas feed stream, thereby enhancing the removal of sour species from the dehydrated natural gas product stream.
- the present invention provides a process for removing a sour species from a dehydrated natural gas feed stream comprising the steps of : a) cooling the dehydrated natural gas feed stream and forming a slurry of solid sour species and hydrocarbon liquids, and a gaseous stream containing gaseous sour species; b) separating the gaseous stream containing gaseous sour species and the slurry; c) treating the gaseous stream containing gaseous sour species with a liquid solvent and forming a dehydrated sweetened gas stream and liquid solution of the sour species.
- dehydrated gas feed stream refers to a natural gas stream that has undergone a dehydration process.
- the dehydrated gas feed stream has a water content of less than 50 ppm, and preferably less than 7 ppm.
- Any suitable process for dehydrating the natural gas stream can be used. Typical examples of suitable dehydration processes include but are not limited to treatment of the natural gas stream with molecular sieves or dehydration using glycol or methanol.
- the natural gas stream can be dehydrated by formation of methane hydrates; for example, using a dehydration process as described in WO 2004/070297.
- dehydrated sweetened gas stream refers to the dehydrated gas feed stream from which sour species have been substantially removed.
- the sour species comprise but are not limited to any one of, or a mixture of any two or more of, CO 2 , H 2 S, mercaptans, COS, CS 2 , aromatic hydrocarbons and mercury.
- the step of cooling the dehydrated natural gas feed stream comprises adiabatically expanding the dehydrated natural gas stream.
- the cooling step achieves temperature and pressure conditions at which the sour species solidifies and hydrocarbon liquids forms.
- the step of separating the solid sour species and the hydrocarbons liquid from the gaseous stream containing the gaseous sour species is conducted under gravity, centrifugal force, or other suitable techniques known in the art .
- the process further comprises a step of removing the solid sour species from the slurry.
- the step of removing the solid sour species comprises heating the slurry and melting the solid sour species, thereby forming a liquid rich in sour species.
- the slurry is heated to a temperature just above the melting point of the solid sour species.
- the step of heating the slurry comprises adding a warm liquid to the slurry.
- the step of heating the slurry comprises immersing a heater into the slurry. The liquid rich in sour species can then be diverted to other parts of the plant .
- the step of treating the gaseous stream containing gaseous sour species with the liquid solvent comprises contacting the gaseous stream containing the gaseous sour species with the liquid solvent .
- the liquid solvent is one in which the gaseous sour species is more soluble at the operating conditions than the natural gas stream.
- suitable examples of liquid solvents include but are not limited to NGL [natural gas liquids] condensate comprising a mixture of C2, liquefied petroleum gas components, C3 and C4 and C5+ hydrocarbon components, or other solvents including methanol, ethanol, dimethyl sulfoxide, ionic liquids including imidazolium, quaternary ammonium, pyrrolidinium, pyridinium, or tetra alkylphosphonium.
- the step of contacting the gaseous stream containing the gaseous sour species with the liquid solvent comprises mixing the gaseous stream and the liquid solvent.
- the process further comprises a step of separating the sour species from the liquid solution of the sour species.
- the liquid solution of the sour species undergoes a stripping process to separate the sour species from the liquid solution.
- an apparatus for removing sour species from a dehydrated natural gas stream comprising: a vessel with a solids formation zone in fluid communication with a gas solvation zone, wherein the solids formation zone is configured to facilitate formation of a slurry of solid sour species and hydrocarbon liquids, and a gaseous stream containing gaseous sour species, and the gas solvation zone is configured to facilitate formation of a liquid solution of sour species; an inlet for introducing the dehydrated natural gas feed stream to the solids formation zone; a fluid communication device configured to direct the gaseous stream containing gaseous sour species from the solids formation zone to the gas solvation zone; an inlet for introducing liquid solvent into the gas solvation zone; a first outlet for removing the liquid solution of the sour species from the gas solvation zone; and, a second outlet for removing a dehydrated sweetened gas stream from the gas solvation zone.
- solids formation zone refers to a space defined by a first interior chamber of the vessel configured to facilitate formation of solid species therein.
- solids formation zone refers to an interior chamber of a first vessel configured to facilitate formation of solid species therein.
- gas solvation zone refers to a space defined by a second interior chamber of the vessel configured to facilitate formation of a liquid solution of the sour species.
- gas solvation zone refers to an interior chamber of a second vessel configured to facilitate formation of a liquid solution of the sour species.
- the apparatus further comprises a gas cooler for cooling the dehydrated natural gas feed stream entering the solids formation zone.
- the gas cooler comprises a gas - S -
- the gas expander for adiabatically expanding the dehydrated natural gas feed stream, such as, for example, a Joule-Thomson valve, an orifice or venturi, a turbo expander, or a turbo expander in sequential combination with a Joule-Thomson valve.
- the gas expander can define the inlet for introducing the dehydrated natural gas feed stream into the solids formation zone.
- the step of cooling the dehydrated natural gas feed stream entering the solids formation zone is performed under conditions to facilitate formation of solid sour species and a liquid condensate of hydrocarbons.
- the solids formation zone further comprises a collection zone into which the solid sour species and liquid concentrate collect and form a slurry. Separation may be accomplished by gravity, centrifugal force, or other suitable techniques known in the art .
- the apparatus further comprises a heater disposed in the collection zone to heat the slurry and melt the solid sour species.
- a heater disposed in the collection zone to heat the slurry and melt the solid sour species.
- the slurry is heated to a temperature just above the melting point of the solid sour species with the heater.
- Suitable examples of a heater include, but are not limited to, an immersion heater or a heat exchanger, in particular a heat exchanger tube bundle.
- the collection zone is provided with a warm liquid inlet configured to facilitate ingress of a warm liquid into the slurry to heat the slurry and melt the sour species.
- the apparatus further comprises an outlet from which the resultant liquid sour species can be removed from the collection zone.
- the density of the liquid hydrocarbon is less than the density of liquid carbon dioxide.
- the liquid hydrocarbon will settle under gravity above liquid sour species, such as liquid carbon dioxide.
- the apparatus further comprises an outlet from which a liquid hydrocarbon can be removed from the collection zone.
- the hydrocarbon outlet is disposed above the outlet from which the liquid carbon dioxide is removed in the collection zone.
- the apparatus is configured to provide fluid communication between the solids formation zone and the gas solvation zone via a fluid communication device, the fluid communication device being configured to prevent return of liquid phase from the gas solvation zone to the solids formation zone.
- the fluid communication device comprises a chimney tray or a non-return valve.
- the fluid communication device is disposed externally of the solids formation zone and the gas solvation zone with one end of the fluid communication device is in fluid communication with an upper portion of the solids formation zone and the opposing end of the fluid communication device is in fluid communication with a lower portion of the gas solvation zone.
- the fluid communication device comprises a conduit .
- the fluid communication device is disposed externally of the first and second vessels with one end of the fluid communication device in fluid communication with an upper portion of the solids formation zone of the first vessel and the opposing end of the fluid communication device is in fluid communication with a lower portion of the gas solvation zone of the second vessel.
- the fluid communication device comprises a conduit.
- the apparatus further comprises a liquid- gas contactor disposed in the gas solvation zone.
- the liquid-gas contactor comprises a plurality of trays or random packing or structured packing disposed in the gas solvation zone.
- the inlet for introducing the liquid solvent into the gas solvation zone is disposed above the liquid-gas contactor.
- the inlet comprises a plurality of spray nozzles or a liquid distributor.
- the spray nozzles or distributor maximize the contact area of the cooled liquid solvent with the dehydrated natural gas stream containing the gaseous sour species and facilitate liquid-gas contact.
- the spray nozzles are also configured to comprise the liquid- gas contactor.
- the first outlet for removing the liquid solution of the sour species from the gas solvation zone is in fluid communication with a stripper to remove the sour species from the liquid solution and recover liquid solvent.
- Recirculators can be provided to recycle the recovered liquid solvent to the inlet for re-introducing recovered liquid solvent to the gas solvation zone.
- a liquid solvent dispenser is also provided to introduce liquid solvent makeup as necessary to maintain inventory in the circuit. The stripped sour species may be recycled back into the upstream process or otherwise disposed in the plant fuel system or as a waste product.
- carbon dioxide is typically removed from the dehydrated natural gas feed stream by passing it through a physical or chemical absorption unit, and then stripping the carbon dioxide from the solvent and venting to atmosphere.
- the gaseous carbon dioxide can be liquefied with costly compression processes .
- a substantial number of potential gas fields are not regarded as economically viable as the carbon dioxide content of the natural gas feed stream at the well head is regarded as to high to be processed, and disposed of, economically.
- the present invention is based on the realisation that it is possible to separate liquid carbon dioxide from a dehydrated natural gas feed stream.
- the liquid carbon dioxide can then be pumped and sequestered with relatively little energy use, as opposed to a traditional solvent absorption unit which requires costly compression equipment .
- a process for recovering liquid carbon dioxide from a dehydrated natural gas feed stream comprising the steps of : a) cooling the dehydrated natural gas feed stream and forming a slurry of solid carbon dioxide particles and hydrocarbon liquids, and a gaseous stream containing gaseous carbon dioxide; b) separating the gaseous stream containing gaseous carbon dioxide and the slurry; c) treating the gaseous stream containing gaseous carbon dioxide with a liquid solvent and forming a liquid solution of carbon dioxide; and d) heating the slurry and melting the solid carbon dioxide particles and forming liquid carbon dioxide.
- Figure 1 shows schematically a process flow diagram in accordance with one embodiment of the present invention
- FIG. 2 shows schematically a process flow diagram in accordance with an alternative embodiment of the present invention.
- Figure 3 shows schematically a process flow diagram in accordance with a further embodiment of the present invention.
- the apparatus 10 includes a vessel 12 in which a dehydrated natural gas feed stream is treated to remove sour species therefrom.
- a natural gas stream from a well head or storage reservoir Prior to introduction of the dehydrated natural gas feed stream into the apparatus 10, a natural gas stream from a well head or storage reservoir will be subjected to a dehydration process.
- the resulting dehydrated natural gas feed stream will typically have a water content of less than 50 ppm, and preferably less than 7 ppm.
- Any suitable process for dehydrating the natural gas stream may be used. Typical examples of suitable dehydration processes include treatment of the natural gas stream with molecular sieves or dehydration using glycol or methanol .
- the natural gas stream can be dehydrated by formation of methane hydrates; for example, such as by using a dehydration process described in WO 2004/070297.
- the temperature and pressure of the dehydrated natural gas feed stream introduced to the apparatus 10 is dependent on the upstream dehydration process employed to dehydrate the natural gas stream.
- a dehydrated natural gas feed stream resulting from treatment with molecular sieves can be introduced to the apparatus 10 through conduit 14 at a temperature of up to 40°C and pressure of about 70 bar.
- the process and apparatus 10 of the present invention will accommodate a lower input pressure for the dehydrated natural feed gas stream if the dehydrated natural gas feed stream is pre-cooled to a temperature just above the theoretical freezing temperature of the CO 2 in the dehydrated gas stream.
- the dehydrated natural gas feed stream is fed through conduit 14 via a heat exchanger 16 to a flash vessel 18 in which a condensate of liquid petroleum gas (mainly comprising C3 and C4 hydrocarbons) and heavier hydrocarbons and a fraction (s) of the sour species is separated from the dehydrated natural gas stream.
- the condensate is then directed through conduit 20 to a condensate stabilizer or other fractionators (not shown) for further treatment to recover commercial product (s).
- the pressure and temperature conditions within the flash vessel 18 would typically be in the order of 30 to 70 bar and about -15 to -40 0 C
- further cooling of the dehydrated natural gas feed stream downstream of the heat exchanger 16 can be performed in a first refrigerated heat exchanger 70a, which is cooled by a first refrigerant such as propane or ammonia.
- a first refrigerant such as propane or ammonia.
- propane or ammonia The refrigerant would be provided from a closed refrigeration circuit external to the apparatus 10.
- the dehydrated natural gas feed stream is then directed through conduit 22 to heat exchanger 24 to cool the dehydrated natural gas feed stream to a temperature marginally greater than a temperature at which solidification of the sour species contained in the dehydrated natural gas stream occurs .
- the dehydrated natural gas feed stream can be further cooled by passing the dehydrated natural gas feed stream through a second refrigerated heat exchanger 70b located upstream of the gas expander, and which is cooled by a second refrigerant such as ethylene.
- the refrigerant would be provided from a closed refrigeration circuit external to the apparatus 10.
- the first and second refrigerants may be combined in a mixed refrigeration system.
- the cooled dehydrated natural gas feed stream is fed to the solids formation zone 80 of vessel 12 via inlet 28.
- the cooled dehydrated natural gas feed stream is expanded using a Joule-Thomson valve 26 or other suitable gas expander such as a turbo expander to further cool the stream as it enters the vessel 12.
- the cooled dehydrated natural gas stream is expanded using a turbo expander in sequential combination with the Joule-Thomson valve 26.
- the Joule-Thomson valve 26 defines the inlet 28 for the dehydrated natural gas stream to the vessel 12.
- the process of expanding the dehydrated natural gas feed stream upon introduction to the solids formation zone 80 of the vessel 12 achieves temperature and pressure conditions within the solids formation zone 80 at which the sour species contaminants contained in the dehydrated natural gas feed stream solidify.
- the process of expansion cools the dehydrated natural gas stream entering the solids formation zone 80 of the vessel 12 at inlet 28 to about -70 0 C to -160 0 C in a pressure range of 15 to 30 bar.
- the solid sour species and the liquid condensate migrate to a lower portion 30 of the vessel 12 under gravity separation, thereby forming a slurry of natural gas liquids and solid sour species.
- separation of the slurry from the remaining dehydrated gas stream may be achieved or enhanced by the use of centrifugal force or inlet devices configured to coalesce liquid droplets or agglomerate solid particles .
- the slurry of solid sour species is then heated to a temperature at least marginally greater than the solidification temperature of the solid sour species to convert the solid sour species to a liquid phase in the lower portion 30 of the vessel 12 and afford a liquid stream rich in the sour species .
- concentrations of carbon dioxide in the liquid phase can be >70%.
- the vessel 12 is provided with an immersion heater 32 which heats the slurry up to a temperature at least marginally greater than the melting point temperature of the solid sour species.
- the immersion heater 32 may be a heat exchanger tube bundle which affords cooling of the inlet gas or other process streams while heating the slurry.
- the immersion heater 32 may be powered by electricity.
- a liquid process stream derived from another part of the process plant and at a higher temperature than the melting point temperature of the solid sour species can be introduced into the lower portion 30 of the vessel 12 and mixed with the slurry to melt the solid sour species.
- the liquid stream rich in the sour species is removed from the vessel 12 through conduit 34 from outlet 96.
- the liquid stream may be directly pumped through heat exchanger 16 to a liquid carbon dioxide sequestration site, or disposed of for retail sale.
- the density of the liquid hydrocarbon is less than the density of liquid carbon dioxide, and the liquid hydrocarbon can be separated from the collection zone 30 via conduit 94 from outlet 92.
- the liquid stream may undergo one or more separation processes, typically in a fractionator (not shown) , to separate the sour species from any methane or NGL condensate.
- the fractionator can be disposed in the lowermost portion of the vessel 12.
- a methane-rich stream derived from fractionation may be returned to the bottom of the solid formation zone 80 or consumed as plant fuel .
- the remaining liquid stream is sufficiently rich in NGLs, these may be recovered by further fractionation.
- Such fractionation would necessarily produce a gaseous sour species which would require recompression and refrigeration to condense the sour species to liquid phase, or it would be incinerated and/or vented as a cold sour species gaseous stream. It is envisaged that the cold sour species gaseous stream so produced would be directed through heat exchanger 16 to cool the dehydrated natural gas stream before incineration or venting to conserve energy within the apparatus 10.
- a fraction of the sour species in the dehydrated natural gas stream will be solidified in the solids formation zone 80, under the processing conditions of the present invention a fraction of the sour species will remain in the gas phase and be contained in the remaining dehydrated natural gas stream disposed in the solids formation zone 80, thereby comprising a gaseous stream containing gaseous sour species.
- the fraction of sour species remaining in the gas phase is determined by the process conditions established within the solids formation zone and the nature and concentration of the sour species in the dehydrated natural gas feed stream.
- the gaseous stream containing the gaseous sour species is directed into a gas solvation zone 90 fluid communication device, such as a chimney tray 38.
- a gas solvation zone is disposed in an upper portion 36 of the vessel 12.
- the vessel 12 is provided with a seal pan 51 comprising a solid tray extending across the vessel 12.
- the fluid communication device comprises a conduit 53 disposed externally of the vessel 12 in fluid communication with the solids formation zone 80 and the gas solvation zone 90.
- one end of the conduit 53 is in fluid communication with an upper portion of the solids formation zone 80 and the opposing end of the conduit 53 is in fluid communication with a lower portion of the gas solvation zone 90.
- the solids formation zone 80 is disposed in a first vessel 12a and the gas solvation zone 90 is disposed in a second vessel 12b.
- fluid communication between the solids formation zone 80 and the gas solvation zone 90 is facilitated by a fluid communication device comprising conduit 53 disposed externally of the first and second vessels 12, 12b.
- One end of the conduit 53 is in fluid communication with an upper portion of the solids formation zone 80 and the opposing end of the conduit 53 is in fluid communication with the gas solvation zone 90.
- the gas solvation zone 90 is provided with a liquid-gas contactor 40.
- the liquid-gas contactor 40 is selected to optimize the contact area between a cooled liquid solvent and the dehydrated natural gas stream containing the gaseous sour species .
- the liquid-gas contactor 40 comprises a plurality of trays or random packing or structured packing disposed in the upper portion 36 of the vessel 12.
- the cooled liquid solvent is introduced into the upper portion 36 of the gas solvation zone 90 through inlet 42 disposed above the liquid-gas contactor 40.
- the inlet 42 is a distributor designed to deliver liquid evenly to the liquid-gas contactor 40.
- the cooled liquid solvent is selected to mix with and solvate the gaseous sour species and form a liquid solution of the gaseous sour species.
- Suitable examples of cooled liquid solvents in accordance with the present invention include but are not limited to NGL condensate comprising a mixture of C2, liquefied petroleum gas components, C3 and C4 and C5+ hydrocarbon components, or other solvents including methanol, ethanol, dimethyl sulfoxide, ionic liquids including imidazolium, quaternary ammonium, pyrrolidinium, pyridinium, or tetra alkylphosphonium.
- thermodynamics of forming solids of the sour species generates heat transfer to the dehydrated natural gas stream.
- the cooled liquid solvent is introduced into the upper portion 36 of the vessel 12 in a manner which also cools the gaseous stream containing gaseous sour species directed into the gas solvation zone 90 from the solids formation zone 80.
- the resulting liquid solution of the gaseous sour species collects in a lowermost portion 50 of the liquid-gas contactor 40 and is removed from the gas solvation zone 90 at outlet 55 via conduit 52.
- the liquid solution of the gaseous sour species is directed via conduit 52 to heat exchanger 54 and thence to a stripper 56 comprising a fractionation column to strip the sour species, in gaseous form, from the liquid solution.
- the stripper 56 can be provided with an immersion heater 57 or an exterior reboiler to assist in the stripping process.
- the sour species is vented via conduit 58. Alternatively, the sour species can undergo recompression to condense the sour species to a liquid phase.
- the sour species may also be recycled through apparatus 10 to conserve energy, or consumed as fuel, or incinerated.
- the stripped solvent is pumped with pump 60 via conduit 62 to heat exchanger 54 for cooling, and then to heat exchanger 48 for further cooling before reintroduction to inlet 42 in the gas solvation zone 90.
- liquid solvent dispenser 98 can also be provided to introduce liquid solvent make-up as necessary to maintain inventory in the circuit.
- a product stream comprising dehydrated sweetened natural gas is removed from the gas solvation zone at outlet 44 via conduit 45.
- the product stream is at a pressure of between 15 to 30 bar and a temperature of -70 0 C to -100 0 C.
- a product stream with concentrations of 200 ppm CO 2 has been obtained using the process described above.
- the product stream can be further cooled by expanding the gas in an expansion device 46, and the cooled product stream is used in one or more of heat exchangers 48 and 24 to cool the liquid solvent and the dehydrated natural gas feed stream, respectively, within the apparatus 10 to conserve as much energy within the apparatus 10 as possible.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- Organic Chemistry (AREA)
- Gas Separation By Absorption (AREA)
- Separation By Low-Temperature Treatments (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NZ566742A NZ566742A (en) | 2005-09-15 | 2006-09-15 | Process and apparatus for removal of sour species from a natural gas stream |
EP06774984A EP1931755A4 (en) | 2005-09-15 | 2006-09-15 | Process and apparatus for removal of sour species from a natural gas stream |
AU2006291954A AU2006291954C1 (en) | 2005-09-15 | 2006-09-15 | Process and apparatus for removal of sour species from a natural gas stream |
US11/992,068 US20100147022A1 (en) | 2005-09-15 | 2006-09-15 | Process and apparatus for removal of sour species from a natural gas stream |
CA002622570A CA2622570A1 (en) | 2005-09-15 | 2006-09-15 | Process and apparatus for removal of sour species from a natural gas stream |
EA200800827A EA012227B1 (en) | 2005-09-15 | 2006-09-15 | Process and apparatus for removal of sour species from a natural gas stream |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2005905089A AU2005905089A0 (en) | 2005-09-15 | Process and apparatus for removal of sour species from a natural gas stream | |
AU2005905089 | 2005-09-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007030888A1 true WO2007030888A1 (en) | 2007-03-22 |
Family
ID=37864568
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/AU2006/001356 WO2007030888A1 (en) | 2005-09-15 | 2006-09-15 | Process and apparatus for removal of sour species from a natural gas stream |
Country Status (9)
Country | Link |
---|---|
US (1) | US20100147022A1 (en) |
EP (1) | EP1931755A4 (en) |
CN (1) | CN101283078A (en) |
AU (2) | AU2006291954C1 (en) |
CA (1) | CA2622570A1 (en) |
EA (1) | EA012227B1 (en) |
MY (1) | MY145090A (en) |
NZ (1) | NZ566742A (en) |
WO (1) | WO2007030888A1 (en) |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008049827A2 (en) * | 2006-10-24 | 2008-05-02 | Shell Internationale Research Maatschappij B.V. | Process for removing mercaptans from liquefied natural gas |
WO2008095258A1 (en) * | 2007-02-09 | 2008-08-14 | Cool Energy Limited | Process and apparatus for depleting carbon dioxide content in a natural gas feedstream containing ethane and c3+ hydrocarbons |
WO2008139208A2 (en) * | 2007-05-16 | 2008-11-20 | Hydrogen Energy International Limited | Process for the removal of carbon dioxide from gas streams |
WO2008152030A1 (en) * | 2007-06-12 | 2008-12-18 | Shell Internationale Research Maatschappij B.V. | Process for the purification of methane containing streams by cooling and extraction |
WO2009144275A1 (en) * | 2008-05-30 | 2009-12-03 | Shell Internationale Research Maatschappij B.V. | Producing purified hydrocarbon gas from a gas stream comprising hydrocarbons and acidic contaminants |
WO2010006934A2 (en) * | 2008-07-18 | 2010-01-21 | Shell Internationale Research Maatschappij B.V. | Two stage process for producing purified gas |
EP2255863A1 (en) * | 2009-05-26 | 2010-12-01 | Shell Internationale Research Maatschappij B.V. | Process for removing gaseous contaminants from a liquid phase containing feed stream |
EP2255864A1 (en) * | 2009-05-26 | 2010-12-01 | Shell Internationale Research Maatschappij B.V. | Process for removing gaseous contaminants from a feed stream |
WO2011026170A1 (en) * | 2009-09-01 | 2011-03-10 | Cool Energy Limited | Process and apparatus for reducing the concentration of a sour species in a sour gas |
EP2307530A1 (en) * | 2008-07-10 | 2011-04-13 | Shell Internationale Research Maatschappij B.V. | Process for removing a gaseous contaminant from a contaminated gas stream |
US20110144407A1 (en) * | 2008-05-30 | 2011-06-16 | Adriaan Pieter Houtekamer | Process for producing purified hydrocarbon has |
WO2011114168A1 (en) * | 2010-03-19 | 2011-09-22 | The Queen's University Of Belfast | Removal of carbon dioxide from a gas stream by using aqueous ionic liquid |
WO2011135538A2 (en) | 2010-04-29 | 2011-11-03 | Total S.A. | Process for treating a natural gas containing carbon dioxide |
US20120031143A1 (en) * | 2009-01-08 | 2012-02-09 | Helmar Van Santem | Process and appartus for removing gaseous contaminants from gas stream comprising gaseous contaminants |
WO2012030223A1 (en) * | 2010-09-03 | 2012-03-08 | Twister B.V. | Refining system and method for refining a feed gas stream |
WO2012029021A1 (en) | 2010-09-03 | 2012-03-08 | Total S.A. | Method for treating a natural gas containing carbon dioxide |
US8312738B2 (en) | 2007-01-19 | 2012-11-20 | Exxonmobil Upstream Research Company | Integrated controlled freeze zone (CFZ) tower and dividing wall (DWC) for enhanced hydrocarbon recovery |
WO2010079175A3 (en) * | 2009-01-08 | 2015-04-16 | Shell Internationale Research Maatschappij B.V. | Process and apparatus for separating a gaseous product from a feed stream comprising contaminants |
US9149761B2 (en) | 2010-01-22 | 2015-10-06 | Exxonmobil Upstream Research Company | Removal of acid gases from a gas stream, with CO2 capture and sequestration |
US9396854B2 (en) | 2008-08-29 | 2016-07-19 | Shell Oil Company | Process and apparatus for removing gaseous contaminants from gas stream comprising gaseous contaminants |
US9423174B2 (en) | 2009-04-20 | 2016-08-23 | Exxonmobil Upstream Research Company | Cryogenic system for removing acid gases from a hydrocarbon gas stream, and method of removing acid gases |
US9829246B2 (en) | 2010-07-30 | 2017-11-28 | Exxonmobil Upstream Research Company | Cryogenic systems for removing acid gases from a hydrocarbon gas stream using co-current separation devices |
US10222121B2 (en) | 2009-09-09 | 2019-03-05 | Exxonmobil Upstream Research Company | Cryogenic system for removing acid gases from a hydrocarbon gas stream |
US10408534B2 (en) | 2010-02-03 | 2019-09-10 | Exxonmobil Upstream Research Company | Systems and methods for using cold liquid to remove solidifiable gas components from process gas streams |
Families Citing this family (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2683983A1 (en) * | 2009-10-21 | 2011-04-21 | Carbon Solutions Inc. | Stabilization and remote recovery of acid gas fractions from sour wellsite gas |
US8635885B2 (en) * | 2010-10-15 | 2014-01-28 | Fluor Technologies Corporation | Configurations and methods of heating value control in LNG liquefaction plant |
DE102011084733A1 (en) * | 2011-10-18 | 2013-04-18 | Victoria Capital Investments Group LTD. | Method and device for dewatering a CO 2 -containing gas |
CA2856573A1 (en) * | 2011-12-01 | 2013-06-06 | Statoil Petroleum As | Process with continuously stirred tank reactor absorber and flash tank stripper |
MY166180A (en) | 2012-03-21 | 2018-06-07 | Exxonmobil Upstream Res Co | Separating carbon dioxide and ethane from mixed stream |
WO2013144671A1 (en) * | 2012-03-27 | 2013-10-03 | Total Sa | Cryogenic separation process of a feed gas stream containing carbon dioxide and methane |
US20150093313A1 (en) * | 2013-09-30 | 2015-04-02 | Uop Llc | Ionic liquid and solvent mixtures for hydrogen sulfide removal |
US9562719B2 (en) | 2013-12-06 | 2017-02-07 | Exxonmobil Upstream Research Company | Method of removing solids by modifying a liquid level in a distillation tower |
WO2015084494A2 (en) | 2013-12-06 | 2015-06-11 | Exxonmobil Upstream Research Company | Method and device for separating hydrocarbons and contaminants with a spray assembly |
MY177942A (en) | 2013-12-06 | 2020-09-28 | Exxonmobil Upstream Res Co | Method and system for separating a feed stream with a feed stream distribution mechanism |
AU2014357666B2 (en) | 2013-12-06 | 2017-08-10 | Exxonmobil Upstream Research Company | Method and system of dehydrating a feed stream processed in a distillation tower |
AU2014357665B2 (en) | 2013-12-06 | 2017-06-22 | Exxonmobil Upstream Research Company | Method and device for separating a feed stream using radiation detectors |
AU2014357668B2 (en) | 2013-12-06 | 2017-05-25 | Exxonmobil Upstream Research Company | Method and system of modifying a liquid level during start-up operations |
EA031531B1 (en) | 2013-12-06 | 2019-01-31 | Эксонмобил Апстрим Рисерч Компани | Method and device for separating hydrocarbons and contaminants with a heating mechanism to destabilize and/or prevent adhesion of solids |
US9874395B2 (en) | 2013-12-06 | 2018-01-23 | Exxonmobil Upstream Research Company | Method and system for preventing accumulation of solids in a distillation tower |
WO2015084495A2 (en) | 2013-12-06 | 2015-06-11 | Exxonmobil Upstream Research Company | Method and system of maintaining a liquid level in a distillation tower |
US9964034B2 (en) | 2014-04-09 | 2018-05-08 | Exxonmobil Upstream Research Company | Methods for producing a fuel gas stream |
MY184436A (en) | 2015-02-27 | 2021-04-01 | Exxonmobil Upstream Res Co | Reducing refrigeration and dehydration load for a feed stream entering a cryogenic distillation process |
US10928128B2 (en) | 2015-05-04 | 2021-02-23 | GE Oil & Gas, Inc. | Preparing hydrocarbon streams for storage |
EP3317240B1 (en) * | 2015-05-06 | 2024-10-02 | Sustainable Energy Solutions, LLC | Method of cryogenic purification and ethane separation |
AU2016323618B2 (en) | 2015-09-18 | 2019-06-13 | Exxonmobil Upsteam Research Company | Heating component to reduce solidification in a cryogenic distillation system |
MY187623A (en) | 2015-09-24 | 2021-10-04 | Exxonmobil Upstream Res Co | Treatment plant for hydrocarbon gas having variable contaminant levels |
ES2755416T3 (en) * | 2015-12-03 | 2020-04-22 | Shell Int Research | Liquefaction method of a contaminated gas stream containing CO2 hydrocarbons |
CN108291769B (en) * | 2015-12-03 | 2020-09-15 | 国际壳牌研究有限公司 | Process for removing CO2 from a contaminated hydrocarbon stream |
CN108472574B (en) * | 2015-12-29 | 2022-04-29 | 环球油品公司 | Method and apparatus for recovering light hydrocarbons by sponge absorption |
WO2017172321A1 (en) | 2016-03-30 | 2017-10-05 | Exxonmobil Upstream Research Company | Self-sourced reservoir fluid for enhanced oil recovery |
DE102016010515A1 (en) * | 2016-08-30 | 2018-03-01 | Linde Aktiengesellschaft | Process and apparatus for effective stripping of partially loaded detergent in physical gas scrubbing |
US11124692B2 (en) | 2017-12-08 | 2021-09-21 | Baker Hughes Holdings Llc | Methods of using ionic liquid based asphaltene inhibitors |
US12030000B2 (en) * | 2017-12-22 | 2024-07-09 | Sustainable Energy Solutions, Llc | Vessel and method for solid-liquid separation |
WO2019215589A1 (en) * | 2018-05-07 | 2019-11-14 | 8 Rivers Capital, Llc | Separation of sulfurous materials |
US11306267B2 (en) | 2018-06-29 | 2022-04-19 | Exxonmobil Upstream Research Company | Hybrid tray for introducing a low CO2 feed stream into a distillation tower |
WO2020005553A1 (en) | 2018-06-29 | 2020-01-02 | Exxonmobil Upstream Research Company (Emhc-N1.4A.607) | Mixing and heat integration of melt tray liquids in a cryogenic distillation tower |
EA202091413A1 (en) | 2018-07-11 | 2020-09-24 | Бейкер Хьюз Холдингз Ллк | WELL ASPHALTEN INHIBITORS BASED ON IONIC LIQUID AND METHODS OF THEIR APPLICATION |
WO2021086547A1 (en) * | 2019-10-30 | 2021-05-06 | Exxonmobil Upstream Research Company | Integration of contaminant separation and regasification systems |
US11794127B2 (en) | 2020-03-30 | 2023-10-24 | Sustainable Energy Solutions, Inc | Methods and systems for separating compounds |
US20230021519A1 (en) * | 2021-07-23 | 2023-01-26 | The Tisdale Group, LLC | Atmospheric Water Harvester with Cryogenic System |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3977203A (en) * | 1974-03-25 | 1976-08-31 | Kansas University Endowment Association | Purification of natural gas by liquid/liquid extraction with a polar solvent |
US5451249A (en) * | 1994-06-14 | 1995-09-19 | International Fuel Cells | Landfill gas treatment system |
US5819555A (en) * | 1995-09-08 | 1998-10-13 | Engdahl; Gerald | Removal of carbon dioxide from a feed stream by carbon dioxide solids separation |
WO1999037741A1 (en) * | 1998-01-23 | 1999-07-29 | Exxon Research And Engineering Company | Production of low sulfur syngas from natural gas with c4+/c5+ hydrocarbon recovery |
US5983663A (en) * | 1998-05-08 | 1999-11-16 | Kvaerner Process Systems, Inc. | Acid gas fractionation |
WO2001019496A1 (en) * | 1999-09-15 | 2001-03-22 | Eickmeyer & Associates | Method and composition for removing co2 and h2s from gas mixtures |
US20020174678A1 (en) * | 2001-05-04 | 2002-11-28 | Wilding Bruce M. | Apparatus for the liquefaction of natural gas and methods related to same |
US20030103884A1 (en) * | 2001-11-30 | 2003-06-05 | The Regents Of The University Of California | Low-emission method of recovering sulfur from sour industrial gases |
WO2003062725A1 (en) * | 2002-01-18 | 2003-07-31 | Curtin University Of Technology | Process and device for production of lng by removal of freezable solids |
WO2004070297A1 (en) * | 2003-02-07 | 2004-08-19 | Shell Internationale Research Maatschappij B.V. | Removing contaminants from natural gas |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2996891A (en) * | 1957-09-23 | 1961-08-22 | Conch Int Methane Ltd | Natural gas liquefaction cycle |
US2991896A (en) * | 1957-12-30 | 1961-07-11 | Wheaton Glass Company | Reinforced glass aerosol containers |
GB997507A (en) * | 1963-11-04 | 1965-07-07 | Couch Internat Methane Ltd | Process for the cold separation of gas mixtures |
US3376709A (en) * | 1965-07-14 | 1968-04-09 | Frank H. Dickey | Separation of acid gases from natural gas by solidification |
US3398544A (en) * | 1966-07-27 | 1968-08-27 | Continental Oil Co | Solidification of acidic components in natural gas |
US4533372A (en) * | 1983-12-23 | 1985-08-06 | Exxon Production Research Co. | Method and apparatus for separating carbon dioxide and other acid gases from methane by the use of distillation and a controlled freezing zone |
US4923493A (en) * | 1988-08-19 | 1990-05-08 | Exxon Production Research Company | Method and apparatus for cryogenic separation of carbon dioxide and other acid gases from methane |
US5062270A (en) * | 1990-08-31 | 1991-11-05 | Exxon Production Research Company | Method and apparatus to start-up controlled freezing zone process and purify the product stream |
US5265428A (en) * | 1990-10-05 | 1993-11-30 | Exxon Production Research Company | Bubble cap tray for melting solids and method for using same |
CA2383283C (en) * | 2001-05-11 | 2010-09-07 | Institut Francais Du Petrole | Pretreatment process for a natural gas that contains acid compounds |
-
2006
- 2006-09-15 MY MYPI20080713A patent/MY145090A/en unknown
- 2006-09-15 NZ NZ566742A patent/NZ566742A/en not_active IP Right Cessation
- 2006-09-15 EA EA200800827A patent/EA012227B1/en not_active IP Right Cessation
- 2006-09-15 US US11/992,068 patent/US20100147022A1/en not_active Abandoned
- 2006-09-15 WO PCT/AU2006/001356 patent/WO2007030888A1/en active Application Filing
- 2006-09-15 AU AU2006291954A patent/AU2006291954C1/en active Active
- 2006-09-15 CA CA002622570A patent/CA2622570A1/en not_active Abandoned
- 2006-09-15 EP EP06774984A patent/EP1931755A4/en not_active Withdrawn
- 2006-09-15 CN CNA2006800376526A patent/CN101283078A/en active Pending
-
2010
- 2010-04-20 AU AU2010201570A patent/AU2010201570A1/en not_active Abandoned
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3977203A (en) * | 1974-03-25 | 1976-08-31 | Kansas University Endowment Association | Purification of natural gas by liquid/liquid extraction with a polar solvent |
US5451249A (en) * | 1994-06-14 | 1995-09-19 | International Fuel Cells | Landfill gas treatment system |
US5819555A (en) * | 1995-09-08 | 1998-10-13 | Engdahl; Gerald | Removal of carbon dioxide from a feed stream by carbon dioxide solids separation |
WO1999037741A1 (en) * | 1998-01-23 | 1999-07-29 | Exxon Research And Engineering Company | Production of low sulfur syngas from natural gas with c4+/c5+ hydrocarbon recovery |
US5983663A (en) * | 1998-05-08 | 1999-11-16 | Kvaerner Process Systems, Inc. | Acid gas fractionation |
WO2001019496A1 (en) * | 1999-09-15 | 2001-03-22 | Eickmeyer & Associates | Method and composition for removing co2 and h2s from gas mixtures |
US20020174678A1 (en) * | 2001-05-04 | 2002-11-28 | Wilding Bruce M. | Apparatus for the liquefaction of natural gas and methods related to same |
US20030103884A1 (en) * | 2001-11-30 | 2003-06-05 | The Regents Of The University Of California | Low-emission method of recovering sulfur from sour industrial gases |
WO2003062725A1 (en) * | 2002-01-18 | 2003-07-31 | Curtin University Of Technology | Process and device for production of lng by removal of freezable solids |
WO2004070297A1 (en) * | 2003-02-07 | 2004-08-19 | Shell Internationale Research Maatschappij B.V. | Removing contaminants from natural gas |
Non-Patent Citations (1)
Title |
---|
See also references of EP1931755A4 * |
Cited By (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008049827A3 (en) * | 2006-10-24 | 2008-11-06 | Shell Int Research | Process for removing mercaptans from liquefied natural gas |
EA014132B1 (en) * | 2006-10-24 | 2010-10-29 | Шелл Интернэшнл Рисерч Маатсхаппий Б.В. | Process for producing purified natural gas |
WO2008049827A2 (en) * | 2006-10-24 | 2008-05-02 | Shell Internationale Research Maatschappij B.V. | Process for removing mercaptans from liquefied natural gas |
US8312738B2 (en) | 2007-01-19 | 2012-11-20 | Exxonmobil Upstream Research Company | Integrated controlled freeze zone (CFZ) tower and dividing wall (DWC) for enhanced hydrocarbon recovery |
WO2008095258A1 (en) * | 2007-02-09 | 2008-08-14 | Cool Energy Limited | Process and apparatus for depleting carbon dioxide content in a natural gas feedstream containing ethane and c3+ hydrocarbons |
WO2008139208A2 (en) * | 2007-05-16 | 2008-11-20 | Hydrogen Energy International Limited | Process for the removal of carbon dioxide from gas streams |
WO2008139208A3 (en) * | 2007-05-16 | 2009-01-15 | Hydrogen Energy Internat Ltd | Process for the removal of carbon dioxide from gas streams |
EA015785B1 (en) * | 2007-05-16 | 2011-12-30 | Хайдроджен Энерджи Интернэшнл Лимитед | Process for the removal of carbon dioxide from gas streams |
AU2008249822B2 (en) * | 2007-05-16 | 2013-07-25 | Hydrogen Energy International Limited | Process for the removal of carbon dioxide from gas streams |
WO2008152030A1 (en) * | 2007-06-12 | 2008-12-18 | Shell Internationale Research Maatschappij B.V. | Process for the purification of methane containing streams by cooling and extraction |
AU2008263948B2 (en) * | 2007-06-12 | 2011-09-22 | Shell Internationale Research Maatschappij B.V. | Process for the purification of methane containing streams by cooling and extraction |
US20110144407A1 (en) * | 2008-05-30 | 2011-06-16 | Adriaan Pieter Houtekamer | Process for producing purified hydrocarbon has |
WO2009144275A1 (en) * | 2008-05-30 | 2009-12-03 | Shell Internationale Research Maatschappij B.V. | Producing purified hydrocarbon gas from a gas stream comprising hydrocarbons and acidic contaminants |
EP2307530A1 (en) * | 2008-07-10 | 2011-04-13 | Shell Internationale Research Maatschappij B.V. | Process for removing a gaseous contaminant from a contaminated gas stream |
WO2010006934A3 (en) * | 2008-07-18 | 2014-10-23 | Shell Internationale Research Maatschappij B.V. | Two stage process for producing purified gas |
WO2010006934A2 (en) * | 2008-07-18 | 2010-01-21 | Shell Internationale Research Maatschappij B.V. | Two stage process for producing purified gas |
US9396854B2 (en) | 2008-08-29 | 2016-07-19 | Shell Oil Company | Process and apparatus for removing gaseous contaminants from gas stream comprising gaseous contaminants |
WO2010079175A3 (en) * | 2009-01-08 | 2015-04-16 | Shell Internationale Research Maatschappij B.V. | Process and apparatus for separating a gaseous product from a feed stream comprising contaminants |
WO2010079177A3 (en) * | 2009-01-08 | 2014-03-27 | Shell Internationale Research Maatschappij B.V. | Process and apparatus for removing gaseous contaminants from gas stream comprising gaseous contaminants |
US20120031143A1 (en) * | 2009-01-08 | 2012-02-09 | Helmar Van Santem | Process and appartus for removing gaseous contaminants from gas stream comprising gaseous contaminants |
US9423174B2 (en) | 2009-04-20 | 2016-08-23 | Exxonmobil Upstream Research Company | Cryogenic system for removing acid gases from a hydrocarbon gas stream, and method of removing acid gases |
EP2255863A1 (en) * | 2009-05-26 | 2010-12-01 | Shell Internationale Research Maatschappij B.V. | Process for removing gaseous contaminants from a liquid phase containing feed stream |
EP2255864A1 (en) * | 2009-05-26 | 2010-12-01 | Shell Internationale Research Maatschappij B.V. | Process for removing gaseous contaminants from a feed stream |
WO2010136441A1 (en) * | 2009-05-26 | 2010-12-02 | Shell Internationale Research Maatschappij B.V. | Process for removing gaseous contaminants from a feed stream comprising contaminants |
WO2010136442A1 (en) * | 2009-05-26 | 2010-12-02 | Shell Internationale Research Maatschappij B.V. | Process for removing gaseous contaminants from a feed stream |
WO2011026170A1 (en) * | 2009-09-01 | 2011-03-10 | Cool Energy Limited | Process and apparatus for reducing the concentration of a sour species in a sour gas |
US10222121B2 (en) | 2009-09-09 | 2019-03-05 | Exxonmobil Upstream Research Company | Cryogenic system for removing acid gases from a hydrocarbon gas stream |
US9149761B2 (en) | 2010-01-22 | 2015-10-06 | Exxonmobil Upstream Research Company | Removal of acid gases from a gas stream, with CO2 capture and sequestration |
US10408534B2 (en) | 2010-02-03 | 2019-09-10 | Exxonmobil Upstream Research Company | Systems and methods for using cold liquid to remove solidifiable gas components from process gas streams |
US11112172B2 (en) | 2010-02-03 | 2021-09-07 | Exxonmobil Upstream Research Company | Systems and methods for using cold liquid to remove solidifiable gas components from process gas streams |
WO2011114168A1 (en) * | 2010-03-19 | 2011-09-22 | The Queen's University Of Belfast | Removal of carbon dioxide from a gas stream by using aqueous ionic liquid |
US10888814B2 (en) | 2010-03-19 | 2021-01-12 | The Queen's University Of Belfast | Removal of carbon dioxide from a gas stream by using aqueous ionic liquid |
WO2011135538A2 (en) | 2010-04-29 | 2011-11-03 | Total S.A. | Process for treating a natural gas containing carbon dioxide |
US9829246B2 (en) | 2010-07-30 | 2017-11-28 | Exxonmobil Upstream Research Company | Cryogenic systems for removing acid gases from a hydrocarbon gas stream using co-current separation devices |
WO2012030223A1 (en) * | 2010-09-03 | 2012-03-08 | Twister B.V. | Refining system and method for refining a feed gas stream |
FR2964390A1 (en) * | 2010-09-03 | 2012-03-09 | Total Sa | PROCESS FOR TREATING NATURAL GAS CONTAINING CARBON DIOXIDE |
US9551526B2 (en) | 2010-09-03 | 2017-01-24 | Twister B.V. | Refining system and method for refining a feed gas stream |
WO2012029021A1 (en) | 2010-09-03 | 2012-03-08 | Total S.A. | Method for treating a natural gas containing carbon dioxide |
Also Published As
Publication number | Publication date |
---|---|
US20100147022A1 (en) | 2010-06-17 |
EP1931755A4 (en) | 2011-08-03 |
NZ566742A (en) | 2010-07-30 |
CN101283078A (en) | 2008-10-08 |
MY145090A (en) | 2011-12-30 |
AU2006291954C1 (en) | 2014-01-09 |
EP1931755A1 (en) | 2008-06-18 |
EA012227B1 (en) | 2009-08-28 |
EA200800827A1 (en) | 2008-06-30 |
AU2006291954B2 (en) | 2010-01-21 |
AU2010201570A1 (en) | 2010-05-13 |
CA2622570A1 (en) | 2007-03-22 |
AU2006291954A1 (en) | 2007-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2006291954B2 (en) | Process and apparatus for removal of sour species from a natural gas stream | |
AU2008213739C1 (en) | Process and apparatus for depleting carbon dioxide content in a natural gas feedstream containing ethane and C3+ hydrocarbons | |
US20170122659A1 (en) | Process and apparatus for sweetening and liquefying a gas stream | |
CA2271359C (en) | Acid gas fractionation | |
EP1790927A2 (en) | Removing contaminants from natural gas by cooling | |
US20170157553A1 (en) | Separating Carbon Dioxide and Hydrogen Sulfide from a Natural Gas Stream Using Co-Current Contacting Systems | |
EA014650B1 (en) | A method for hydrocarbon processing purified from sulfur-containing compounds | |
WO2013142100A1 (en) | Separating carbon dioxide and ethane from a mixed stream | |
EP2496901A1 (en) | Cryogenic system for removing acid gases from a hydrocarbon gas stream, with removal of hydrogen sulfide | |
WO2010136442A1 (en) | Process for removing gaseous contaminants from a feed stream | |
US20090299122A1 (en) | Process for producing a purified hydrocarbon gas | |
AU2015272028B2 (en) | Method for separating a feed gas in a column | |
US11377401B2 (en) | Efficiency of a gas conditioning system via hydrate inhibitor injection | |
AU2013205631A1 (en) | Process and apparatus for removal of sour species from a natural gas stream | |
AU2006236093B2 (en) | Removing contaminants from natural gas by cooling | |
AU2013205633A1 (en) | Process and apparatus for depleting carbon dioxide content in a natural gas feedstream containing ethane and c3+hydrocarbons | |
CA2569069A1 (en) | Removing contaminants from natural gas by cooling |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200680037652.6 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2006291954 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 566742 Country of ref document: NZ Ref document number: 2622570 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006774984 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2582/DELNP/2008 Country of ref document: IN |
|
ENP | Entry into the national phase |
Ref document number: 2006291954 Country of ref document: AU Date of ref document: 20060915 Kind code of ref document: A |
|
WWP | Wipo information: published in national office |
Ref document number: 2006291954 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 200800827 Country of ref document: EA |
|
WWP | Wipo information: published in national office |
Ref document number: 2006774984 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 11992068 Country of ref document: US |