WO2007029390A1 - Control system for refrigerating machine employing non-azeotropic refrigerant - Google Patents

Control system for refrigerating machine employing non-azeotropic refrigerant Download PDF

Info

Publication number
WO2007029390A1
WO2007029390A1 PCT/JP2006/311961 JP2006311961W WO2007029390A1 WO 2007029390 A1 WO2007029390 A1 WO 2007029390A1 JP 2006311961 W JP2006311961 W JP 2006311961W WO 2007029390 A1 WO2007029390 A1 WO 2007029390A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
evaporator
temperature
pressure
internal temperature
Prior art date
Application number
PCT/JP2006/311961
Other languages
French (fr)
Japanese (ja)
Inventor
Susumu Kurita
Nobuyoshi Kurita
Original Assignee
Dairei Co., Ltd.
Nihon Freezer Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dairei Co., Ltd., Nihon Freezer Co., Ltd. filed Critical Dairei Co., Ltd.
Priority to US11/658,182 priority Critical patent/US20080302116A1/en
Priority to EP06766729A priority patent/EP1923645A4/en
Publication of WO2007029390A1 publication Critical patent/WO2007029390A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/006Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant containing more than one component
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/385Dispositions with two or more expansion means arranged in parallel on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/26Problems to be solved characterised by the startup of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2104Temperatures of an indoor room or compartment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters

Definitions

  • the present invention in a refrigeration system using a non-azeotropic refrigerant mixture, has a large scale, particularly in a freezer warehouse, and therefore requires a large capacity for starting up to a predetermined freezer temperature or
  • the present invention relates to a freezer for a freezer having a large fluctuation in the internal temperature due to the necessity of opening the door widely when taking in and out the contents.
  • Patent Document 1 Japanese Patent Laid-Open No. 11 99498
  • Freezer structure Prefabricated structure with double doors
  • Compressor discharge Compressor suction Heat exchanger Heat exchanger Operation
  • Compressor discharge Compressor suction
  • the inner wall of the container and the storage in the frozen state are already at the set temperature.
  • the greatly elevated interior atmosphere and new contents are subject to cooling. Therefore, the cooling load from the viewpoint of heat capacity is relatively small, but the cooling temperature range is large, and the refrigeration system of the present invention that has a quick response to the temperature change in the refrigerator has the contents in such a freezer. It is possible to quickly return to the steady operating temperature with respect to temperature changes caused by taking in and out, etc., and it is also suitable for the actual usage of the freezer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

[PROBLEMS] To improve the initial pulling-down performance of a refrigerating machine employing a non-azeotropic refrigerant immediately after starting when the chamber temperature is high. [MEANS FOR SOLVING PROBLEMS] A single-stage refrigerating machine which employs a non-azeotropic refrigerant and has a compressor (1), a condenser (2), and an evaporator (10), and in which heat exchange (3) is conducted between the refrigerant returned from the evaporator and the high-pressure refrigerant flowing from the condenser toward the evaporator is controlled in the following manner. When a high load is imposed as just after starting, capillary tubes (6-1) to (6-5) serving as expansion valves for the evaporator are made fully open with electromagnetic valves (5-1) to (5-5). As the internal temperature of the chamber declines, the tubes are successively closed. Thus, the pressure and flow amount of the refrigerant gas are regulated. When the internal temperature of the chamber is high and the condensation of a low-boiling ingredient does not proceed, the refrigerating ability of a high-boiling refrigerant can be exhibited in the highest degree.

Description

明 細 書  Specification
非共沸冷媒を用いた冷凍機制御システム  Refrigerator control system using non-azeotropic refrigerant
技術分野  Technical field
[0001] 本発明は、非共沸混合冷媒を用いた冷凍システムにおいて、特に冷凍倉庫などの ように規模が大きいため、所定の冷凍庫温度に達するまでの立ち上がりに大きな能 力を必要とし、或いは庫内収容物の出し入れ作業に当たって扉を広く開放するなど の必要から庫内温度の変動が大きい冷凍庫の冷凍機に関する。  [0001] The present invention, in a refrigeration system using a non-azeotropic refrigerant mixture, has a large scale, particularly in a freezer warehouse, and therefore requires a large capacity for starting up to a predetermined freezer temperature or The present invention relates to a freezer for a freezer having a large fluctuation in the internal temperature due to the necessity of opening the door widely when taking in and out the contents.
背景技術  Background art
[0002] 食肉や魚介類などの鮮度を比較的長期にわたって劣化させずに保つことができる 冷凍庫として、 50°C以下の超低温を達成する冷凍庫が生産地漁港や物流の拠点 などで用いられるようになってきているが、従来はこれらの超低温度を実現する冷凍 機システムとして、沸点がこれらの領域にある低沸点冷媒を用いた冷凍機と室温環 境下で作動する高沸点冷媒を用いた冷凍機とを組み合わせ、 2台のコンプレッサーと コンデンサからなる 2段式冷凍機システムなどが使用されてきた。  [0002] As a freezer that can maintain the freshness of meat, seafood, etc. for a relatively long time without deterioration, freezers that achieve ultra-low temperatures of 50 ° C or less are used at production ports, fishing ports and distribution bases. However, in the past, refrigeration systems that achieve these ultra-low temperatures are refrigerators that use low-boiling refrigerants with boiling points in these regions and refrigerations that use high-boiling refrigerants that operate at room temperature. A two-stage refrigerator system consisting of two compressors and a condenser has been used.
これに対し、本発明者らは超低温度を実現する低沸点冷媒と室温環境下で凝縮可 能な高沸点冷媒とを組合せた非共沸冷媒による超低温度を単純な単段式コンプレツ サ一により実現する冷凍機システムを提案してきた。 (特許文献 1)  In contrast, the present inventors have achieved a very low temperature by a simple single-stage compressor by combining a low boiling point refrigerant that realizes an ultra low temperature and a high boiling point refrigerant that can be condensed in a room temperature environment. We have proposed a refrigerator system to be realized. (Patent Document 1)
これらの超低温度用冷凍機システムにおいては、低温度にあるエバポレーターから 排出される戻り冷媒ガスとエバポレーターに向力 高圧冷媒ガスとの間で熱交換させ 、戻り冷媒ガス中の高沸点冷媒の気化熱により高圧冷媒ガス中の低沸点冷媒の凝 縮を行うことにより、エバポレーターの前後における非共沸冷媒の凝縮と気化のサイ クルを完結させる条件を確立し、非共沸冷媒を用いて単一冷媒、或いは共沸混合冷 媒を用いた場合と同様の単一のコンプレッサー及びコンデンサからなる単段式の単 純な冷凍システムにより超低温度を実現した。  In these ultra-low temperature refrigerator systems, heat is exchanged between the return refrigerant gas discharged from the evaporator at a low temperature and the high pressure refrigerant gas directed to the evaporator, and the heat of vaporization of the high boiling point refrigerant in the return refrigerant gas. By condensing the low-boiling point refrigerant in the high-pressure refrigerant gas, the conditions for completing the condensation and vaporization cycle of the non-azeotropic refrigerant before and after the evaporator are established, and a single refrigerant is used using the non-azeotropic refrigerant. Alternatively, ultra-low temperature was achieved by a single-stage simple refrigeration system consisting of a single compressor and condenser similar to the case of using an azeotropic refrigerant.
特許文献 1:特開 11 99498号公報  Patent Document 1: Japanese Patent Laid-Open No. 11 99498
[0003] このような非共沸冷媒を用いた冷凍機システムを、比較的小容量のいわゆるストツ カーなどに適用する場合は、熱容量も小さぐ構造上も一般に扉を冷凍庫上面で水 平に開閉する形式であるため収納物の出し入れに際して庫内冷気の換気量も少な いため、庫内温度の変動も小さぐ比較的安定した運転状態を維持することができる し力、しながら、マグロなどを解体しないままで収納 '保管するなど、業務用として庫内 容量が大きくなり、人が庫内に入って作業を行う必要が生じるような庫内容積数千リツ トル以上の冷凍庫となると、これらの作業や保管のためのスペース配分の必要などか ら縦型の扉開閉方式となり、容積拡大に伴う起動時の能力向上が求められるのみで なぐこれらの扉を開閉、若しくは開放して収納物の出し入れ作業を行う際の外気と の換気量も大きぐそのための庫内温度の維持、上昇した温度の保管温度への速や 力、な復帰が求められ、そのためのプノレダウン性能の向上が必要となった。 [0003] When such a refrigerator system using a non-azeotropic refrigerant is applied to a so-called stocker having a relatively small capacity, the door is generally placed on the upper surface of the freezer because of its small heat capacity. Because it opens and closes flatly, the amount of cool air in the cabinet is small when the storage is taken in and out, so the temperature fluctuation in the cabinet is small and it is possible to maintain a relatively stable operating state. For example, if the storage capacity of the storage becomes large for business use, such as storage without storage, etc. Due to the necessity of space allocation for these operations and storage, etc., the vertical door opening and closing method has been adopted, and only the improvement in capacity at start-up due to volume expansion is required. The amount of ventilation with the outside air when taking in and out the work is also increased.To this end, it is necessary to maintain the inside temperature, to speed up the power of the elevated temperature to the storage temperature, and to return to the storage temperature. became.
ところ力 これらの能力向上をコンプレッサー、コンデンサなどの冷凍機の個別要素 の容量増大で対処しょうとすると、これらの設備の容量増大にともなうコスト増が大き い負担となるばかりでなぐ定常運転時の条件からすれば過大な設備能力となる。 また、これらの一時的な負荷の増大に対してはコンプレッサーの出力を上げて対処 する力 これらの温度変化に対する立上りや追従性が悪ぐ出力に応じた冷却能力 が発揮されていない。  However, if we try to cope with these capacity improvements by increasing the capacities of the individual components of the refrigerator, such as compressors and condensers, the increase in the capacity associated with the increase in the capacity of these facilities will not only be a heavy burden, but also the conditions during steady operation. Therefore, it becomes an excessive facility capacity. In addition, the power to cope with these temporary increases in the load by increasing the output of the compressor. The cooling capacity corresponding to the output with poor rise and followability to these temperature changes has not been demonstrated.
特に、冷凍庫の収容物の出し入れが頻繁で、庫内温度の変動が著しい場合など、 速やかに定常状態の温度に復帰せず、安定した庫内温度が維持困難であった。 本発明者らは、その原因について種々考察したところ、以下のような非共沸冷媒固 有の特性によるものであることが突き止められた。  In particular, when the contents in the freezer were frequently taken in and out and the temperature inside the warehouse fluctuated significantly, it did not quickly return to the steady state temperature, and it was difficult to maintain a stable inside temperature. As a result of various studies on the cause, the present inventors have found that this is due to the following characteristics specific to non-azeotropic refrigerants.
すなわち、冷凍機の起動時や、庫内換気量が大きぐ庫内温度が大幅に上昇した場 合など、冷凍機の冷却能力をフルに発揮することが必要であるが、定常運転状態に なるまでの庫内温度が高い状態においては、熱交換器における戻り冷媒の温度も高 ぐ非共沸冷媒中の凝縮した高沸点冷媒成分が気化して高圧側冷媒を冷却しても充 分に温度を下げることができず、低沸点冷媒成分は凝縮しないまま冷凍機内を循環 する。このため圧縮機からの吐出圧力が上昇するが低沸点成分の凝縮には至らず、 他方キヤビラリチューブなどの減圧器の抵抗により このように非共沸冷媒中の低沸点成分が凝縮されず、気体状態のままで冷凍機シ ステム中を循環すると、コンプレッサーで高圧に圧縮しても凝縮器力 熱交換器を経 て蒸発器にいたるまでこれらの低沸点成分が気体状態のままであるため、コンプレツ サ一の負荷が大きぐし力もコンプレッサーの過負荷運転によって圧力が上昇してもIn other words, it is necessary to fully demonstrate the cooling capacity of the refrigerator, such as when the refrigerator is started up, or when the internal temperature of the refrigerator with a large amount of ventilation is large, but it will be in a steady operation state. In the state in which the internal temperature is high, the temperature of the return refrigerant in the heat exchanger is also high, and even if the condensed high-boiling-point refrigerant component in the non-azeotropic refrigerant is vaporized and the high-pressure side refrigerant is cooled, the temperature is sufficiently high. The low boiling point refrigerant component circulates in the refrigerator without condensing. For this reason, the discharge pressure from the compressor increases, but the low boiling point component does not condense. If the low-boiling components in the non-azeotropic refrigerant are not condensed in this way and are circulated in the refrigerator system in the gaseous state, the evaporator is passed through the condenser power heat exchanger even if compressed to a high pressure by the compressor. Since these low-boiling components remain in a gaseous state until the end of the process, even if the compressor's load increases and the pressure rises due to overload operation of the compressor,
、上記のように凝縮器からの放熱量は増大しないから、全体としての冷却能力も増大 せず、庫内温度もなかなか低下しなレ、。すなわち、これらの過渡的状態における冷却 効果は、主として高沸点成分の凝縮 ·気化によるものであるから、これら冷媒の循環 量が確保できないためにこれらによる冷却能力が維持 ·発揮できないこととなる。 これらの過渡的状態においては、低沸点成分は十分な温度に冷却されないまま、 その超低温度冷却能力を発揮できないばかりか、コンプレッサーによる圧力が上昇し ても凝縮せず、冷媒全体の循環、ひいては冷却能力の増大、定常運転状態への復 帰を阻害してレ、るのである。 As mentioned above, the amount of heat released from the condenser does not increase, so the overall cooling capacity does not increase, and the internal temperature does not decrease easily. That is, the cooling effect in these transient states is mainly due to the condensation and vaporization of high-boiling components. Therefore, since the circulation amount of these refrigerants cannot be secured, the cooling capacity by these cannot be maintained and exhibited. In these transient states, the low-boiling components are not cooled to a sufficient temperature and cannot exhibit their ultra-low temperature cooling capacity, but they do not condense even when the pressure of the compressor rises, and the entire refrigerant is circulated and thus cooled. This hinders the increase in capacity and the return to steady operation.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] 非共沸冷媒を用いた単段式冷凍システムにおいて、  [0005] In a single-stage refrigeration system using a non-azeotropic refrigerant,
起動時、庫内温度上昇時などの低沸点成分の凝縮が進行しなレ、状態における冷媒 の流量を増大させて冷却能力を向上し、庫内温度が低下して定常運転状態となるま での間の負荷変動を抑制し、安定した運転を可能とする。  Until the condensation of low-boiling components does not proceed at the time of startup or when the internal temperature rises, the refrigerant flow rate in the state is increased to improve the cooling capacity, and the internal temperature decreases to the steady operation state. The load fluctuation during the period is suppressed, and stable operation is possible.
課題を解決するための手段  Means for solving the problem
[0006] 本発明は、コンプレッサー、コンデンサー、エバポレーター及びエバポレーターから の戻り冷媒とコンデンサーからエバポレーターに向力 高圧冷媒との間で熱交換を行 う、非共沸混合冷媒を用いた単段式冷凍機において、 [0006] The present invention relates to a compressor, a condenser, an evaporator, and a single-stage refrigerator using a non-azeotropic mixed refrigerant that performs heat exchange between a return refrigerant from the evaporator and a counter-pressure high pressure refrigerant from the condenser to the evaporator. In
エバポレータの膨張弁の開度により冷媒ガスの圧力と流量を調整可能とし、 起動時、或いは庫内温度が高ぐ低沸点成分の凝縮が進行しない状態において、 エバポレータの膨張弁を開放して高沸点成分の凝縮条件に合わせた圧力を維持し て高沸点成分による冷却能力を向上し、庫内温度が低下して、低沸点成分の凝縮が 進行するにつれて、エバポレータの膨張弁を絞って順次低沸点成分の凝縮条件を 満たす圧力とすることにより定常運転状態とすることを特徴とする、非共沸混合冷媒 を用いた冷凍システムであり、 The refrigerant gas pressure and flow rate can be adjusted according to the opening of the evaporator expansion valve. At the time of start-up or in the state where condensation of low boiling components with high internal temperature does not proceed, the evaporator expansion valve is opened to increase the boiling point. Maintain the pressure according to the condensation conditions of the components to improve the cooling capacity of the high-boiling components, and as the internal temperature decreases and the condensation of the low-boiling components proceeds, the evaporator expansion valve is throttled to gradually lower the boiling point. Non-azeotropic refrigerant mixture characterized by being in a steady operation state by setting the pressure to satisfy the condensing conditions of the components Refrigeration system using
特に、エバポレータの膨張弁としてキヤビラリ一チューブを複数並列に設けて、それ らの開閉数により上記流量の制御を行うことを特徴とする。  In particular, a plurality of capillary tubes are provided in parallel as expansion valves for the evaporator, and the above flow rate is controlled by the number of opening and closing of the tubes.
発明の効果  The invention's effect
[0007] 本発明によれば、非共沸冷媒を用いた単段式冷凍システムにおいて、起動時や庫 内温度の上昇時などの冷凍システムの運転温度が高ぐ非共沸冷媒中の低沸点成 分の凝縮が不十分な状態からの立ち上げに際して、冷却能力を最大限に発揮し、ス ムーズに定常状態まで庫内温度を低下することが可能であり、かつ冷凍システムのコ ンプレッサーの負荷を低減することができる。  [0007] According to the present invention, in a single-stage refrigeration system using a non-azeotropic refrigerant, the low boiling point in the non-azeotropic refrigerant in which the operating temperature of the refrigeration system is high at the time of start-up or when the internal temperature rises. When starting up from a state where the condensation of components is insufficient, it is possible to maximize the cooling capacity, smoothly reduce the internal temperature to a steady state, and the compressor of the refrigeration system The load can be reduced.
図面の簡単な説明  Brief Description of Drawings
[0008] [図 1]本発明の冷凍システムの概念図である。  FIG. 1 is a conceptual diagram of a refrigeration system of the present invention.
[図 2]キヤビラリ数と冷却速度との関係を示す冷却速度曲線  [Fig.2] Cooling rate curve showing the relationship between the number of claws and the cooling rate
符号の説明  Explanation of symbols
[0009] 1 圧縮機 [0009] 1 compressor
2 凝縮器 (コンデンサー)  2 Condenser
3 熱交換器  3 Heat exchanger
5— :!〜 5— 5 電磁弁  5—:! To 5 — 5 Solenoid valve
6 1〜6 5 絞り弁(キヤビラリ-) 6 1-6 5 Throttle valve (Cabinet-)
7 冷凍庫  7 Freezer
10 蒸発器 (エバポレータ)  10 Evaporator (Evaporator)
11 温度検知器  11 Temperature detector
12 制御機器  12 Control equipment
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0010] 本発明の冷凍機に使用する冷媒は非共沸混合冷媒であって、特に一 50°C以下の 超低温度を達成するため、 50°C以下の標準沸点を有する低沸点冷媒成分と室温 下の環境で凝縮し、コンデンサーからの放熱を可能とする高沸点でかつ蒸気圧の低 い高沸点冷媒の組合せからなり、コンデンサーからエバポレータに向かう高温高圧 状態の冷媒とエバポレータからコンプレッサーに向力う低圧低温度の冷媒との間で 熱交換を行って、エバポレータに向力う高圧冷媒をその圧力下での沸点以下に冷却 し、コンプレッサーに吸入されるガスをその圧力における露点以上に加熱する条件で 運転される。 [0010] The refrigerant used in the refrigerator of the present invention is a non-azeotropic refrigerant mixture, and particularly a low boiling refrigerant component having a normal boiling point of 50 ° C or lower in order to achieve an ultra-low temperature of 50 ° C or lower. Condensed in an environment at room temperature and made of a combination of high boiling point refrigerant with high boiling point and low vapor pressure that enables heat dissipation from the condenser, high temperature and high pressure from the condenser to the evaporator Heat is exchanged between the refrigerant in the state and the low-pressure, low-temperature refrigerant from the evaporator toward the compressor, and the high-pressure refrigerant toward the evaporator is cooled below the boiling point under that pressure and sucked into the compressor Operates under conditions that heat the gas above its dew point at that pressure.
冷凍機の構成において、上記の条件を達成するため、コンプレッサー、コンデンサ 一、絞り弁、エバポレータ、からなり、コンデンサーと絞り弁、及びエバポレータとコン プレッサーの間に熱交換器を設けて、上記の熱交換条件を達成するが、絞り弁の開 度を調整可能とし、庫内温度を測定するセンサーとその検出した温度によって絞り弁 の開度を調整する制御機構を設ける。  In order to achieve the above conditions in the configuration of the refrigerator, a compressor, a condenser, a throttle valve, and an evaporator are used, and a heat exchanger is provided between the condenser and the throttle valve, and between the evaporator and the compressor. Although the replacement conditions are achieved, the opening of the throttle valve can be adjusted, and a sensor that measures the internal temperature and a control mechanism that adjusts the opening of the throttle valve based on the detected temperature are provided.
冷凍機の起動時、或いは冷凍庫内容物の出し入れによって庫内温度が一定値以上 に上昇したとき、該絞り弁の開度を最大とし、庫内温度が低下するのに対応して順次 絞り弁の開度を絞って冷媒流量を減少させ、庫内温度が所定温度以下となったとき、 絞り弁の開度を最小とする。 When the refrigerator is started or when the internal temperature rises above a certain value due to taking in and out of the freezer contents, the opening of the throttle valve is maximized, and the throttle valve When the refrigerant flow rate is reduced by reducing the opening, and the internal temperature falls below the specified temperature, the opening of the throttle valve is minimized.
非共沸混合冷媒の絞り弁として、より好適には複数のキヤビラリ一チューブを並列 に設け、庫内温度に応じてこれらのキヤビラリ一チューブを電磁弁で順次開閉するこ とによって、冷媒流量を制御する。  As a throttle valve for a non-azeotropic refrigerant mixture, more preferably, a plurality of capillary tubes are provided in parallel, and the refrigerant flow rate is controlled by sequentially opening and closing these capillary tubes with solenoid valves according to the internal temperature. To do.
実施例 Example
以下に本発明実施例の冷凍システム概要と諸元を挙げる。  The outline and specifications of the refrigeration system of the embodiment of the present invention are given below.
図 1は、本発明の冷凍機のシステム構成概念図で、 Fig. 1 is a conceptual diagram of the system configuration of the refrigerator of the present invention.
コンプレッサー 1で圧縮された冷媒ガスは、コンデンサー 2で大気中に放熱した後、 熱交換器 3を経由して 5本に分岐され、電磁弁 5_:!〜 5— 5によりキヤピラリーチュー ブ 6—1〜6 _ 5に導かれて膨張し、冷凍庫内壁に沿って配置されたエバポレーター 10内で気化し、冷凍庫 7を冷却する。  The refrigerant gas compressed by the compressor 1 is dissipated to the atmosphere by the condenser 2 and then branched into five via the heat exchanger 3, and the capillary valve 6_ :! 1-6_5 is led and expand | swells, it vaporizes within the evaporator 10 arrange | positioned along the freezer inner wall, and the freezer 7 is cooled.
エバポレータ内では、庫内温度、圧力に応じて一部(高沸点冷媒成分)が凝縮状態 で戻りガスに伴われて熱交換器に送られ、主としてその気化により高温 ·高圧の冷媒 を冷却し、低沸点冷媒成分の凝縮をおこなう。  In the evaporator, a part (high-boiling point refrigerant component) is condensed and sent to the heat exchanger along with the return gas according to the internal temperature and pressure. Condenses low-boiling refrigerant components.
冷凍庫内温度は温度センサー 11により検出され、制御装置 12により予め設定され た温度に応じて 5— :!〜 5— 5の電磁弁を開閉して、冷媒の導通するキヤビラリーチュ 一ブ数を制御する。 The temperature in the freezer is detected by the temperature sensor 11, and the solenoid valve 5— :! to 5—5 is opened / closed according to the temperature preset by the control device 12 to allow the refrigerant to flow through. Control the number of tracks.
起動時、及び庫内温度が一定以上高い状態において、各電磁弁はすべて開かれ 、すべてのキヤビラリチューブに冷媒が導通する。  At startup and in a state where the internal temperature is higher than a certain level, all the solenoid valves are opened, and the refrigerant is conducted to all the capillary tubes.
庫内温度が一定の設定温度以上になると順次電磁弁を閉じて、庫内温度に応じた 冷媒循環量とコンプレッサー吐出圧力に制御し、庫内温度が予め設定された定常状 態に達すると、キヤピラリーチューブ 1本のみで運転される。  When the internal temperature exceeds a certain set temperature, the solenoid valve is sequentially closed and controlled to the refrigerant circulation amount and the compressor discharge pressure according to the internal temperature, and when the internal temperature reaches a preset steady state, It is operated with only one capillary tube.
実機の諸元は、次のとおりである。  The specifications of the actual machine are as follows.
冷凍庫構造:観音開き式扉を備えたプレハブ構造  Freezer structure: Prefabricated structure with double doors
冷凍庫内容積: 4275リットル  Freezer volume: 4275 liters
常用温度:一 50°C以下、最大一 60°C  Normal temperature: 1 50 ° C or less, maximum 1 60 ° C
冷媒: EP-53Pを 4400g封入して使用した。混合冷媒の成分ガスの諸元は表 1のとお りである。非共沸冷媒 EP-53Pの組成は、 HFC_ 23 : 40重量0 /0、 HFC_ 134a : 60 重量%のものを使用した。 Refrigerant: 4400 g of EP-53P was enclosed and used. Table 1 shows the component gas specifications for the mixed refrigerant. The composition of the non-azeotropic refrigerant EP-53P, HFC_ 23: 40 weight 0/0, HFC_ 134a: was used in 60 wt%.
[表- 1]  [table 1]
使用した非共沸冷媒組成とその物理的特性
Figure imgf000008_0001
Non-azeotropic refrigerant composition used and its physical properties
Figure imgf000008_0001
[0013] 図 1のシステム構成において、キヤピラリーチューブ 1本として、起動した場合の庫 内温度変化を表 2に示す。庫内温度は、冷凍庫上段で計測した。 [0013] Table 2 shows the changes in the internal temperature when starting up with one capillary tube in the system configuration of FIG. The internal temperature was measured at the top of the freezer.
室温 34°Cから設定温度一 50°Cに到達するまでの所要時間は、約 5時間であった。  The time required to reach a set temperature of 50 ° C from a room temperature of 34 ° C was approximately 5 hours.
[0014] [表- 2] キヤビラリチューブ 1本の場合の運転条件 (室温 : 31 34°C) [0014] [Table-2] Operating conditions for a single tube (room temperature: 31 34 ° C)
Figure imgf000009_0001
Figure imgf000009_0001
[0015] 次に、キヤビラリチューブ 4本を用いた実施例の庫内温度変化を表 3に示す。 [0015] Next, Table 3 shows changes in the internal temperature of the example using the four tuberary tubes.
庫内温度は冷凍庫上段で測定し、 4本のキヤビラリチューブ切り替え温度: 0°C -10 °C _ 25°Cにおいて順次電磁弁を閉じ、それ以下の温度域でキヤビラリ チューブ 1を常時 ONとして運転した。結果を表 3に示す。  The internal temperature is measured in the upper stage of the freezer, and the solenoid valve is sequentially closed at the switching temperature of the four capillary tubes: 0 ° C -10 ° C _ 25 ° C, and the capillary tube 1 is always turned on in the lower temperature range. Drove as. The results are shown in Table 3.
一 50°Cの設定温度に到達するまでの所要時間は、約 4時間であった。  The time required to reach the set temperature of 50 ° C was about 4 hours.
[0016] [表- 3] キヤビラリチューブ 4本使用の場合の運転条件 (室温 : 31 ~33°C)  [0016] [Table 3] Operating conditions when using four tubes (room temperature: 31 to 33 ° C)
庫内 圧縮機吐出 圧縮機吸入 熱交換器 熱交換器 稼働 圧縮機吐出 圧縮機吸入  Compressor discharge Compressor suction Heat exchanger Heat exchanger Operation Compressor discharge Compressor suction
t ik. 圧力 圧力 入口温度 出口温度 時間 温度 (°c) 温度 (°c)  t ik. Pressure Pressure Inlet temperature Outlet temperature Time Temperature (° c) Temperature (° c)
(。c) (Mpa) (MPa) (°C) (°c) (.C) (Mpa) (MPa) (° C) (° c)
0:00 0:00
0:30 -15.3 2.20 0.25 101.0 - 3.8 78.4 -21.0 0:30 -15.3 2.20 0.25 101.0-3.8 78.4 -21.0
1 :00 -30.6 2.40 0.070 1 14.0 15.6 98.0 -33.81: 00 -30.6 2.40 0.070 1 14.0 15.6 98.0 -33.8
1 :30 -38.2 2.20 0.060 122.1 10.9 105.0 -38.61: 30 -38.2 2.20 0.060 122.1 10.9 105.0 -38.6
2:00 -41.8 2.20 0.060 122.0 10.5 10.4 -39.52:00 -41.8 2.20 0.060 122.0 10.5 10.4 -39.5
2:30 -45.1 ' 20.5 0.060 122.0 10.0 104.0 -41.42:30 -45.1 '20.5 0.060 122.0 10.0 104.0 -41.4
3:00 -47.9 20.0 0.050 125.0 10.7 104.0 -42.03:00 -47.9 20.0 0.050 125.0 10.7 104.0 -42.0
3:30 -48.5 19.0 0.050 123.0 10.2 105.0 -43.33:30 -48.5 19.0 0.050 123.0 10.2 105.0 -43.3
4:00 -50.2 19.0 0.050 1 19.0 10.6 105.0 -43.24:00 -50.2 19.0 0.050 1 19.0 10.6 105.0 -43.2
4:30 -50.0 19.0 0.040 125.0 9.0 1 1 1.0 -44.04:30 -50.0 19.0 0.040 125.0 9.0 1 1 1.0 -44.0
5:00 -50.2 19.0 0.040 120.0 6.2 101.0 -45.1 以上の結果を運転時間に対する庫内温度変化として図 2に示す。 5:00 -50.2 19.0 0.040 120.0 6.2 101.0 -45.1 The above results are shown in Fig. 2 as the internal temperature change with respect to the operating time.
図 2に示すとおり、キヤビラリ一チューブ 4本として庫内温度に応じて順次キヤビラリ一 チューブを閉じて冷媒の流量と圧力を制御した場合、室温力 の庫内温度が急激に 低下し、立上りが極めて大きいことが解る。この立上りの大きいことは _ 50°Cの定常 運転温度に達するまでの所要時間が小さいことと相俟って、温度変化に対する応答 が速やかであることを示す。 As shown in Fig. 2, when four capillary tubes are closed sequentially according to the internal temperature and the flow rate and pressure of the refrigerant are controlled according to the internal temperature, the internal temperature of the room-temperature force rapidly decreases and the rise is extremely high. I understand that it is big. This large rise, coupled with the short time required to reach the steady operating temperature of _50 ° C, indicates that the response to temperature changes is rapid.
定常運転状態において行われる収容物の出し入れによる設定温度からの温度変 化に対しては、庫内壁や予め冷凍状態にある収容物は既に設定温度であるから、扉 を開けたことによる換気効果によって大きく上昇した庫内雰囲気と新たな収容物が冷 却対象となる。したがって、熱容量からみた冷却についての負荷は比較的小さいが、 冷却温度幅は大きいという関係にあり、庫内温度変化に対する応答の速やかな本発 明の冷凍システムは、このような冷凍庫内の収容物出し入れなどに伴う温度変化に 対する、定常運転温度への速やかな復帰を可能とし、冷凍庫の使用実態に対しても 好適である。  For changes in temperature from the set temperature due to loading and unloading in the steady operation, the inner wall of the container and the storage in the frozen state are already at the set temperature. The greatly elevated interior atmosphere and new contents are subject to cooling. Therefore, the cooling load from the viewpoint of heat capacity is relatively small, but the cooling temperature range is large, and the refrigeration system of the present invention that has a quick response to the temperature change in the refrigerator has the contents in such a freezer. It is possible to quickly return to the steady operating temperature with respect to temperature changes caused by taking in and out, etc., and it is also suitable for the actual usage of the freezer.

Claims

請求の範囲 The scope of the claims
[1] コンプレッサー、コンデンサー、エバポレーター及びエバポレーターからの戻り冷媒と コンデンサーからエバポレーターに向かう高圧冷媒との間で熱交換を行う、非共沸冷 媒を用いた単段式冷凍機において、  [1] In a single-stage refrigerator using a non-azeotropic refrigerant that performs heat exchange between a compressor, a condenser, an evaporator, and a return refrigerant from the evaporator and a high-pressure refrigerant from the condenser to the evaporator.
エバポレータの膨張弁の開度により冷媒ガスの圧力と流量を調整可能とし、 起動時、或いは庫内温度が高ぐ低沸点成分の凝縮が進行しない状態において、 エバポレータの膨張弁を開放して高沸点成分の凝縮条件に合わせた圧力を維持し て高沸点成分による冷却能力を向上し、  The refrigerant gas pressure and flow rate can be adjusted according to the opening of the evaporator expansion valve. At the time of start-up or in the state where condensation of low boiling components with high internal temperature does not proceed, the evaporator expansion valve is opened to increase the boiling point. Maintaining the pressure according to the condensing conditions of the components to improve the cooling capacity by the high boiling point components,
庫内温度が低下して、低沸点成分の凝縮が進行するにつれて、  As the internal temperature decreases and condensation of low boiling point components proceeds,
エバポレータの膨張弁を絞って順次低沸点成分の凝縮条件を満たす圧力とすること により定常運転状態とすることを特徴とする、非共沸冷媒を用いた冷凍システム。  A refrigeration system using a non-azeotropic refrigerant, wherein the expansion valve of the evaporator is throttled so that the pressure satisfies the condensation conditions of the low-boiling components in order to achieve a steady operation state.
[2] エバポレータの膨張弁としてキヤビラリ一チューブを複数並列に設けて、それらの開 閉数により上記流量の制御を行うことを特徴とする、請求項 1記載の非共沸冷媒を用 いた冷凍機。  [2] The refrigerator using the non-azeotropic refrigerant according to claim 1, wherein a plurality of capillary tubes are provided in parallel as expansion valves of the evaporator, and the flow rate is controlled by the number of opening and closing of the tubes. .
PCT/JP2006/311961 2002-12-03 2006-06-14 Control system for refrigerating machine employing non-azeotropic refrigerant WO2007029390A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/658,182 US20080302116A1 (en) 2002-12-03 2006-06-14 Refrigerating Control System Using Non-Azeotropic Refrigerant
EP06766729A EP1923645A4 (en) 2005-09-08 2006-06-14 Control system for refrigerating machine employing non-azeotropic refrigerant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-260151 2005-09-08
JP2005260151A JP2007071468A (en) 2005-09-08 2005-09-08 Refrigerating machine control system using zeotropic refrigerant

Publications (1)

Publication Number Publication Date
WO2007029390A1 true WO2007029390A1 (en) 2007-03-15

Family

ID=37835521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/311961 WO2007029390A1 (en) 2002-12-03 2006-06-14 Control system for refrigerating machine employing non-azeotropic refrigerant

Country Status (7)

Country Link
US (1) US20080302116A1 (en)
EP (1) EP1923645A4 (en)
JP (1) JP2007071468A (en)
KR (1) KR20080042035A (en)
CN (1) CN101128707A (en)
TW (1) TWI310827B (en)
WO (1) WO2007029390A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011530280A (en) * 2008-08-06 2011-12-22 リジェネランド エス.アール.エル. Cell culture equipment

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2008035A4 (en) * 2006-03-30 2013-01-23 Carrier Corp Transport refrigeration unit
JP2010043758A (en) * 2008-08-08 2010-02-25 Fuji Electric Retail Systems Co Ltd Cooling device
DE102011006174B4 (en) * 2011-03-25 2014-07-24 Bruker Biospin Ag Refrigeration device with controllable evaporation temperature
EP2645018A3 (en) * 2012-04-01 2017-08-23 Liebherr-Hausgeräte Ochsenhausen GmbH Refrigeration and/or freezer device
US8739567B2 (en) 2012-06-08 2014-06-03 General Electric Company Dual evaporator refrigeration system using zeotropic refrigerant mixture
CN105371546A (en) * 2014-08-25 2016-03-02 谢德音 Method capable of changing refrigerant evaporation flow and controlling refrigerant channels
DK181305B1 (en) * 2019-01-15 2023-08-07 Maersk Container Ind A/S CALIBRATION OF COOLANT SATURATION TEMPERATURE IN A COOLING SYSTEM
CN114719471A (en) * 2022-03-08 2022-07-08 澳柯玛股份有限公司 Mixed refrigerant refrigerating system and refrigerating method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5984052A (en) * 1982-11-05 1984-05-15 三菱重工業株式会社 Method of controlling capability of refrigerator
JPH01200155A (en) * 1988-02-03 1989-08-11 Yazaki Corp Method of controlling quantity of coolant and device used therefor
JP2002039637A (en) * 2000-07-25 2002-02-06 Shin Meiwa Ind Co Ltd Freezer and freezing method
JP2003021473A (en) * 2001-07-03 2003-01-24 Nihon Freezer Kk Heat exchanger for circulating refrigerater system having non-azeotropic refrigerant

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5924161A (en) * 1982-07-30 1984-02-07 三菱電機株式会社 Freezing-refrigerator
US4580415A (en) * 1983-04-22 1986-04-08 Mitsubishi Denki Kabushiki Kaisha Dual refrigerant cooling system
AU581569B2 (en) * 1986-06-06 1989-02-23 Mitsubishi Denki Kabushiki Kaisha Multiroom air conditioner
JPH0650646A (en) * 1992-07-31 1994-02-25 Sanyo Electric Co Ltd Refrigerator
JPH11118202A (en) * 1997-08-13 1999-04-30 Toshiba Corp Split air conditioner
JP2002062020A (en) * 2000-08-17 2002-02-28 Toshiba Corp Refrigerator
US6631621B2 (en) * 2001-07-03 2003-10-14 Thermo King Corporation Cryogenic temperature control apparatus and method
US7299653B2 (en) * 2002-12-03 2007-11-27 Nihon Freezer Co., Ltd. Refrigerator system using non-azeotropic refrigerant, and non-azeotropic refrigerant for very low temperature used for the system
JP2004198063A (en) * 2002-12-20 2004-07-15 Sanyo Electric Co Ltd Non-azeotropic refrigerant mixture, refrigerating cycle and refrigerating device
JP4307878B2 (en) * 2003-03-24 2009-08-05 三洋電機株式会社 Refrigerant cycle equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5984052A (en) * 1982-11-05 1984-05-15 三菱重工業株式会社 Method of controlling capability of refrigerator
JPH01200155A (en) * 1988-02-03 1989-08-11 Yazaki Corp Method of controlling quantity of coolant and device used therefor
JP2002039637A (en) * 2000-07-25 2002-02-06 Shin Meiwa Ind Co Ltd Freezer and freezing method
JP2003021473A (en) * 2001-07-03 2003-01-24 Nihon Freezer Kk Heat exchanger for circulating refrigerater system having non-azeotropic refrigerant

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011530280A (en) * 2008-08-06 2011-12-22 リジェネランド エス.アール.エル. Cell culture equipment

Also Published As

Publication number Publication date
EP1923645A4 (en) 2009-02-18
US20080302116A1 (en) 2008-12-11
JP2007071468A (en) 2007-03-22
TW200710355A (en) 2007-03-16
TWI310827B (en) 2009-06-11
EP1923645A1 (en) 2008-05-21
CN101128707A (en) 2008-02-20
KR20080042035A (en) 2008-05-14

Similar Documents

Publication Publication Date Title
WO2007029390A1 (en) Control system for refrigerating machine employing non-azeotropic refrigerant
US20180245821A1 (en) Refrigerant vapor compression system with intercooler
TWI257472B (en) Refrigerator
US20050217292A1 (en) Refrigeration system
US20110041523A1 (en) Charge management in refrigerant vapor compression systems
US20100011791A1 (en) R422d heat transfer systems and r22 systems retrofitted with r422d
CN1168943C (en) Supercritical refrigerating apparatus
US9546647B2 (en) Gas balanced brayton cycle cold water vapor cryopump
JP3975664B2 (en) Refrigerating refrigerator, operation method of freezing refrigerator
US20240093921A1 (en) Cooling system with flooded low side heat exchangers
JP2007309585A (en) Refrigerating device
JP2003336918A (en) Cooling device
US20220363967A1 (en) Refrigerant Comprising Methane, And Refrigeration System And Cabinet With Such Refrigerant
JP2006125843A (en) Cooling cycle and refrigerator
JP2022013259A (en) Cooling device
KR20180056854A (en) High-capacity rapid-cooling cryogenic freezer capable of controlling the suction temperature of the compressor
CN103486751B (en) Refrigerating circulatory device
KR101820683B1 (en) Cryogenic refrigeration system capable of capacity control by intermediate pressure control
KR101370940B1 (en) Multi Stage Refrigerating System And Operating Method Thereof
CN111750574A (en) Refrigeration device and method for operating refrigeration device
JP4240715B2 (en) Refrigeration equipment
AU2022231364A1 (en) A freeze dryer and a method for operating a freeze dryer
JPS58123060A (en) Freezing refrigerator
KR20220073147A (en) Binary refrigeration system for low temperature storage of pharmaceuticals and industrial applications
CN113091340A (en) Double-temperature refrigerating system and refrigerating device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 11658182

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2006766729

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020077018676

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200680006182.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE