WO2007029314A1 - 無線通信制御装置および無線装置 - Google Patents

無線通信制御装置および無線装置 Download PDF

Info

Publication number
WO2007029314A1
WO2007029314A1 PCT/JP2005/016345 JP2005016345W WO2007029314A1 WO 2007029314 A1 WO2007029314 A1 WO 2007029314A1 JP 2005016345 W JP2005016345 W JP 2005016345W WO 2007029314 A1 WO2007029314 A1 WO 2007029314A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio
base station
unit
radio wave
timing
Prior art date
Application number
PCT/JP2005/016345
Other languages
English (en)
French (fr)
Inventor
Masataka Unno
Tsuyoshi Yoneta
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to JP2007534211A priority Critical patent/JP4616887B2/ja
Priority to PCT/JP2005/016345 priority patent/WO2007029314A1/ja
Priority to EP05782227A priority patent/EP1924010A4/en
Publication of WO2007029314A1 publication Critical patent/WO2007029314A1/ja
Priority to US12/071,459 priority patent/US20080161010A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations

Definitions

  • Wireless communication control device and wireless device are wireless communication control device and wireless device
  • the present invention relates to a radio communication control device and a radio device.
  • a channel that transmits radio waves from the base station device to the terminal device (as a downlink dedicated channel)
  • a radio wave transmission power control (closed loop transmission power control) using a channel for transmitting radio waves from the terminal device to the base station device (referred to as an uplink individual channel).
  • a terminal device When a terminal device receives a signal (radio radio wave) from a base station device through a downlink dedicated channel, a desired signal received power to interference signal power ratio (SIR) indicating the quality of the received signal is received. ). Next, the terminal device compares the SIR measurement result with the SIR target value, and creates transmission power control information (referred to as “TPC: Transmit Power Control (bit)”) based on the comparison result. At this time, when the measurement result is lower than the target value, a TPC bit for increasing the transmission power is created, and when the measurement result is higher than the target value, a TPC bit for reducing the transmission power is created. The The TPC bit is included in the data transmitted to the base station apparatus, and is transmitted to the base station apparatus through the uplink dedicated channel.
  • SIR signal received power to interference signal power ratio
  • the base station apparatus Upon receiving the TPC bit, the base station apparatus increases or decreases the transmission power of the downlink individual channel according to the TPC bit. As a result, radio waves with transmission power controlled by the TPC bit are transmitted to the base station apparatus through the downlink dedicated channel.
  • the transmission power of the downlink dedicated channel is controlled using a closed loop formed between the terminal device and the base station device. Note that the transmission power control of the uplink dedicated channel can also be performed by the closed loop transmission power control method as described above.
  • the radio wave transmission using the downlink dedicated channel and the uplink dedicated channel described above is performed by a terminal device that is executed when the call between the terminal device and the partner terminal device is terminated (end call). It is stopped after a procedure for releasing radio communication resources between base station apparatuses.
  • FIG. 15 is a sequence diagram showing a procedure for ending a call in a conventional cellular phone service.
  • FIG. 15 shows a procedure for ending calls between the terminal device, the base station device, and the base station control device.
  • FIG. 15 shows a sequence in a case where a partner terminal device (not shown) communicating with the terminal device sends a call termination request.
  • the terminal device responds to the dedicated channel release request received by the base station controller after responding to the call termination request of the base station controller that received the call termination request of the counterpart terminal. Then, the dedicated channel release response is transmitted and the uplink dedicated channel radio wave suspension process is performed. As a result, radio wave transmission to the uplink dedicated channel is stopped, and the uplink dedicated channel is released.
  • the base station apparatus performs downlink dedicated channel radio wave stop processing triggered by reception of a dedicated channel release request (radio resource) from the base station control apparatus. As a result, radio wave transmission to the lower dedicated channel is stopped, and the downlink dedicated channel is released.
  • a dedicated channel release request radio resource
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2004-112097
  • Patent Document 2 Japanese Patent Laid-Open No. 2004-32211
  • Non-Patent Document 1 3GPP TS25.331 V6.5.0, March 2005, Chapter 8.1.4.
  • Non-Patent Document 2 Keiji Tachikawa, “W—CDMA mobile communication system”, Maruzen, Japan, June 2001, P.178-179.
  • the terminal apparatus and the base station apparatus stop radio wave transmission to the downlink dedicated channel and the uplink dedicated channel according to the dedicated channel release request from the base station control apparatus.
  • the timing at which the dedicated channel release request arrives at the terminal device and the base station device is different, the timing at which the terminal device and the base station device stop radio wave transmission may be different.
  • the time A force at which the terminal device stops transmission A delay time T force S before the time B at which the base station device stops transmission
  • the base station apparatus does not perform transmission power control of the downlink dedicated channel.
  • the terminal device power transmission power control information (TPC bit) cannot be received.
  • TPC bit the terminal device power transmission power control information
  • the base station apparatus a transmission power control malfunction occurs, and there is a possibility that the transmission power of the downlink dedicated channel may fluctuate in a state where it cannot be predicted.
  • TPC bits are misrecognized because TPC bits cannot be received, and transmission power of the downlink dedicated channel is continuously increased.
  • T delay time
  • T A force is also between B
  • T can be regarded as a TPC misrecognition period.
  • the present invention has been made in view of the above-described problems.
  • An object of the present invention is to control the transmission power of a radio wave transmitted to the other party according to the control information from the other party, so that the control information does not arrive, thereby suppressing the malfunction of the transmission power control. It is to provide technology.
  • the present invention adopts the following configuration.
  • the wireless communication control device (corresponding to the base station control device 3) is a wireless radio wave between two wireless devices (one corresponds to the base station device 2 and the other corresponds to the terminal device 1).
  • For transmitting and receiving radio waves transmitted from the other radio device based on radio waves received from the other radio device by at least one radio device Transmits radio waves containing power control information to the other radio device
  • a generation unit (corresponding to the call connection processing unit 61) that generates control information for each wireless device to stop radio wave transmission at the same time, and transmits the control information to each wireless device Transmitting unit (corresponding to base station IF18).
  • a radio wave is transmitted to the other wireless device.
  • This wireless communication control device generates control information for each of such wireless devices to simultaneously stop radio wave transmission to other wireless devices, and transmits the control information to each of the wireless devices. It is out.
  • control information related to the radio communication control apparatus may be timing information indicating a timing at which each radio apparatus stops radio wave transmission.
  • the control information may be timing information indicating a timing at which the wireless device stops wireless transmission.
  • timing information indicating a timing at which the wireless device stops wireless transmission.
  • the generation unit according to the wireless communication control device of the present invention may generate timing information specified using a sequence number of a frame transmitted and received between the wireless devices using a radio wave.
  • the generation unit may generate timing information using a sequence number of a frame transmitted and received between wireless devices using wireless radio waves.
  • CFN Connection Frame Number
  • the wireless communication control device further includes a receiving unit that receives a message for terminating transmission / reception of the radio wave, wherein the generation unit is based on the reception time of the message.
  • the radio wave transmission stop timing of each wireless device may be determined, and control information including this timing may be generated.
  • the generation unit may determine a radio wave transmission stop timing of each wireless device based on a transmission time of the message, and generate control information including this timing.
  • the wireless communication control device may further include a receiving unit that receives a message for ending transmission / reception of wireless radio waves.
  • the generation unit of the wireless communication control device may determine the radio wave transmission stop timing of each wireless device on the basis of the reception time of the message for termination, and generate control information including this timing. .
  • the generation unit may determine the radio wave transmission stop timing of each wireless device on the basis of the transmission time of the message for termination, and may generate control information including this timing.
  • the message for ending may be an end call request or an end call response.
  • the wireless device according to the present invention is capable of bidirectional radio wave transmission / reception with the counterpart wireless device (one is for the base station device 2 and the other is for the bidirectional device corresponding to the terminal device 1).
  • a receiving unit that receives control information including a timing of radio wave transmission stoppage to the radio device performed by the counterpart radio device (the line IF35 of the base station device 2 or the terminal device 1).
  • Radio part of 46 and a control unit (radio resource processing unit 39 of the base station device 2 or terminal) that stops radio wave transmission to the counterpart wireless device according to the timing in the control information received by the receiving unit.
  • the baseband signal processing unit 45) of the device 1.
  • the wireless device is obtained based on the wireless radio wave received from the counterparty radio device at the time of bidirectional radio radio transmission / reception performed with the counterparty radio device!
  • a radio wave including power control information for controlling the transmission power of the radio wave transmitted by the partner radio device is transmitted to the partner radio device.
  • Such a wireless device and a wireless device that controls the transmission power of the radio wave to be transmitted to the other radio device based on Z or power control information contained in the radio wave received from the counterpart radio device! Receives control information including the timing of stopping radio wave transmission to the radio device performed by the partner radio device, and stops radio wave transmission to the partner radio device according to the timing in the received control information. Can do.
  • the present invention may be a wireless method executed by the wireless device as described above. Further, the present invention may be a wireless communication control method executed by the wireless communication control device as described above.
  • FIG. 1 is a configuration diagram of a communication system according to an embodiment of the present invention.
  • FIG. 2 is a basic block diagram in closed-loop power control.
  • FIG. 3 is a diagram showing a sequence of an end story according to the present invention.
  • FIG. 4 is a block diagram showing a system of a base station control apparatus according to the present invention.
  • FIG. 5 is a block diagram showing a system of a base station apparatus according to the present invention.
  • FIG. 6 is a configuration diagram showing a system of a terminal device according to the present invention.
  • FIG. 7 is a first flowchart showing processing in the base station control apparatus according to the present invention.
  • FIG. 8 is a second flowchart showing processing in the base station control apparatus according to the present invention.
  • FIG. 9 is a third flowchart showing processing in the base station control apparatus according to the present invention.
  • FIG. 10 is a fourth flowchart showing processing in the base station control apparatus according to the present invention.
  • FIG. 11 is a flowchart showing processing in the base station apparatus according to the present invention.
  • FIG. 12 is a flowchart showing processing in the terminal device according to the present invention.
  • FIG. 13 is a diagram showing the power consumed by the base station apparatus according to the present invention for the dedicated channel of the radio resource when the call ends.
  • FIG. 14 is a diagram showing a sequence of ending speech according to a modification of the present invention.
  • FIG. 15 is a diagram showing a sequence of ending speech in the prior art.
  • FIG. 16 is a diagram showing power consumed by a dedicated channel of radio resources when a base station apparatus according to the prior art ends a call.
  • Base station controller facing signal L2 termination unit Call processing control unit
  • FIG. 1 is a configuration diagram of a communication system according to an embodiment of the present invention.
  • a base station apparatus 2 can communicate with terminal apparatuses 1 (1 1) to 1 (15) through a wireless transmission path.
  • the range in which the base station device 2 can communicate with these terminal devices is called a cell, and the range is shown by a dotted line in FIG.
  • the base station apparatus 2 can communicate with the base station control apparatus 3 through a wired transmission path.
  • the base station control device 3 can communicate with the mobile switch 5 7 through a wired transmission path.
  • the mobile communication can communicate with the communication device 59 through the public network 58.
  • this communication system secures a communication resource called an individual channel between the terminal device 1 and the communication device 59.
  • an individual channel established between the terminal device 1 and the communication device 59 when the terminal device 1 and the communication device 59 communicate with each other will be described.
  • the terminal device 1 and the communication device 59 communicate, communication between the terminal device 1 and the mobile communication terminal 57 and between the mobile communication device 57 and the communication device 59 is established by call control. Is done.
  • the terminal device 1 communicates with the base station device 2 in the uplink number of radio resources.
  • a separate channel and a downlink dedicated channel for radio resources are established.
  • the uplink dedicated channel of the radio resource is used when transmitting radio waves from the terminal device 1 to the base station device 2.
  • the downlink dedicated channel of the radio resource is used when transmitting radio waves from the base station device 2 to the terminal device 1.
  • the uplink dedicated channel for radio resources and the downlink dedicated channel for radio resources are also called radio transmission paths.
  • Base station apparatus 2 establishes a dedicated channel for network side resources with base station control apparatus 3.
  • the dedicated channel of the network side resource is used for data communication between the base station apparatus 2 and the base station control apparatus 3.
  • the base station control device 3 establishes a dedicated channel for network side resources with the mobile exchange 57.
  • the dedicated channel of the network side resource is used for data communication between the base station controller 3 and the mobile station.
  • the mobile communication communicates with the communication device 59 through the public network 58.
  • the terminal device 1 and the communication device 59 communicate with each other by establishing the dedicated channel described above.
  • the terminal device 1 and the communication device 59 end the call (when the call ends), the terminal device 1, the base station device 2, the base station control device 3, and the mobile switch 57 receive a new call.
  • the communication system releases the dedicated channel established above by call control.
  • radio wave transmission power control closed loop transmission power control
  • FIG. 2 is a block diagram showing a system configuration example in which closed-loop transmission power control is performed between the terminal device 1 and the base station device 2 in the communication system.
  • FIG. 2 shows a configuration for performing transmission power control of radio waves transmitted on the uplink dedicated channel UC1 from the terminal device to the base station.
  • the base station apparatus 2 includes a receiving unit 4, an SIR measuring unit 5, an SIR target value setting unit 6, an SIR determining unit 7, a TPC bit generating unit 8, a TPC bit combining unit 9, and a transmitting unit 10. It has.
  • the terminal device 1 includes a reception unit 11, a TPC bit decoding unit 12, a TPC bit determination unit 13, a power control unit 14, and a transmission unit 15.
  • the receiving unit 4 of the base station device 2 receives a signal (radio wave) from the transmitting unit 15 of the terminal device 1.
  • the signal received from the transmission unit 15 is transmitted as uplink communication data to the base station control device side and is also transmitted to the SIR measurement unit 5.
  • the SIR measurement unit 5 measures the SIR of the signal received from the reception unit 4.
  • the SIR measurement unit 5 sends the SIR measurement result to the SIR determination unit 7.
  • the SIR target value setting unit 6 stores SIR target values in advance.
  • the SIR target value setting unit 6 may receive the SIR target value from the base station control device 3 and use it. In this communication system, the power of the terminal device 1 is controlled so that the SIR value of the received signal approaches this target value.
  • the SIR target value setting unit 6 gives this target value to the SIR determination unit 7.
  • the SIR determination unit 7 compares the SIR target value from the SIR target value setting unit 6 with the SIR measurement result from the SIR measurement unit 5. The SIR determination unit 7 determines to reduce the transmission power of the radio wave transmitted from the transmission unit 15 when the measurement result is larger than the target value. In contrast, the SIR determination unit 7 determines to increase the transmission power when the measurement result is smaller than the target value. The determination result is transmitted to the TPC bit generation unit 8.
  • the TPC bit generation unit 8 generates a TPC bit based on the determination result from the SIR determination unit 7. When the SIR determination unit 7 determines that the transmission power is to be reduced, the TPC bit generation unit 8 generates a TPC bit that instructs the transmission power down. On the other hand, when the SIR determination unit 7 determines that the transmission power is to be increased, the TPC bit generation unit 8 generates a TPC bit instructing an increase in transmission power. The TPC bit generation unit 8 sends the TPC bit to the TPC bit synthesis unit 9.
  • the TPC bit combining unit 9 combines the TPC bit from the TPC bit generating unit 8 and the downlink communication data.
  • the TPC bit synthesis unit 9 sends the synthesized data to the transmission unit 10.
  • the transmitting unit 10 transmits a radio signal (radio wave) including data received from the TPC bit combining unit 9 to the receiving unit 11 of the terminal device 1 via the lower dedicated channel DC 1.
  • the receiving unit 11 of the terminal apparatus 1 receives the signal transmitted from the transmitting unit 10.
  • the receiving unit 11 sends the signal received from the transmitting unit 10 to the TPC bit decoding unit 12.
  • the TPC bit decoding unit 12 separates the TPC bit and the downlink communication data from the signal received by the receiving unit 11.
  • the TPC decoding unit 12 converts the separated TPC bits into a TPC bit determination unit 13 Send to.
  • the TPC bit determination unit 13 determines the content of transmission power control based on the content of the TPC bit received from the TPC bit decoding unit 12. If the TPC bit is a down instruction, the TPC bit determination unit 13 determines that the transmission power is reduced, and if the TPC bit is an up instruction, determines that the transmission power is increased. The TPC bit determination unit 13 inputs the determination result to the power control unit 14. Based on the determination result of the TPC bit determination unit 13, the power control unit 14 gives an instruction for increasing or decreasing the power of the transmitted radio wave to the transmission unit 15.
  • the transmission unit 15 transmits the uplink communication data to the reception unit 4 through the uplink dedicated channel. Further, the transmission unit 15 increases or decreases the power of the radio wave transmitted from the terminal device 15 based on the instruction from the power control unit 14. When the transmission unit 15 receives the increase instruction, the transmission unit 15 increases the power of the transmission radio wave by a predetermined magnitude. On the other hand, when the transmission unit 15 receives the reduction instruction, the transmission unit 15 reduces the power of the transmitted radio wave by a predetermined magnitude.
  • the base station device 2 receives a signal transmitted from the terminal device 1 via the uplink dedicated channel UC1, and the base station device 2 receives the received signal.
  • the communication quality is measured using SIR, and the transmission power instruction of the terminal device 1 based on the measurement result is given to the terminal device 1 through the downlink dedicated channel DC1.
  • the terminal device 1 increases or decreases the power of the transmitted radio wave based on the instruction from the base station device 2. As a result, power control of the radio wave transmitted to the uplink individual channel UC1 is executed.
  • the terminal device 1 has the configuration of the base station device 2 shown in FIG. 2, and the base station device 2 is configured by the terminal device 1 shown in FIG. It has the composition which has. With these configurations, the closed loop transmission power control of the downlink dedicated channel DC1 is executed. In this way, the terminal device 1 and the base station device 2 can control the power of the transmitted radio waves in both the uplink dedicated channel and the downlink dedicated channel.
  • the communication disconnection signal transmitted from the communication device 59 is received by the mobile switch 57 through the public network 58, and the disconnection signal received by the mobile switch 57 is shown in FIG. It is sent to the base station controller 3 as a call end request, and the call end request This is the sequence of the end of conversation when the base station control device 3 receives it.
  • the base station control device 3 transmits the call termination request sent from the mobile switch 57 to the terminal device 1 (Sl).
  • the terminal device 1 When the terminal device 1 receives a call termination request from the base station control device 3 through the base station device 2, the terminal device 1 transmits a call termination response to the base station control device 3 (S2).
  • the base station control device 3 When the base station control device 3 receives the call end response from the terminal device 1 through the base station device 2, the base station control device 3 transmits an uplink dedicated channel release request (dedicated channel release request) for radio resources to the terminal device 1 ( S3).
  • This dedicated channel release request includes information on the timing at which the terminal device 1 stops transmitting radio waves using the uplink dedicated channel.
  • the terminal device 1 When the terminal device 1 receives the dedicated channel release request from the base station control device 3 through the base station device 2, the terminal device 1 sends an uplink dedicated channel release response (dedicated channel release response) of the radio resource to the base station control device 3. Send (S4).
  • an uplink dedicated channel release response dedicated channel release response
  • the terminal device 1 executes the uplink dedicated channel radio wave stop process of the radio resource based on the information on the radio stop timing included in the release request. In other words, terminal device 1 stops radio wave transmission to the uplink dedicated channel at timing A according to the timing information included in the dedicated channel release response (S
  • the terminal device 1 releases the uplink dedicated channel after the radio wave is stopped.
  • the base station control device 3 when receiving the dedicated channel release response from the terminal device 1 through the base station device 2, the base station control device 3 sends a downlink dedicated channel release request (dedicated channel release request) for the radio resource to the base station device. Send to 2 (S6).
  • This dedicated channel release request includes information on the timing at which the base station apparatus 2 stops transmission of radio waves using the downlink dedicated channel.
  • the base station apparatus 2 executes the downlink dedicated channel radio wave stop process of the radio resource based on the radio wave stop timing information included in the release request. That is, the base station apparatus 2 transmits radio waves to the downlink dedicated channel at timing B (same timing as timing A) according to the timing information included in the release response.
  • the base station apparatus 2 releases the downlink dedicated channel after the radio wave transmitted through the downlink dedicated channel stops. In this way, the terminal device 1 and the base station device 2 are Stops radio wave transmission at the same timing.
  • the base station apparatus 2 After releasing the downlink dedicated channel, the base station apparatus 2 transmits a downlink dedicated channel release response to the base station control apparatus 3 (S8).
  • the base station control device 3 Upon receiving the downlink dedicated channel release response from the base station device 2, the base station control device 3 transmits a dedicated channel release request for network side resources to the base station device 2 (S9).
  • the base station apparatus 2 When the base station apparatus 2 receives the dedicated channel release request from the base station control apparatus 3, the base station apparatus 2 performs individual channel network side line release processing (S10). The base station apparatus 2 releases the dedicated channel for the network side resource by performing dedicated channel network side line release processing.
  • the base station apparatus 2 After releasing the dedicated channel for the network side resource, the base station apparatus 2 transmits an individual channel release response for the network side resource (Sl l).
  • the base station control device 3 receives the dedicated channel release response for the network side resource from the base station device 2.
  • the terminal device 1 stops the radio wave transmission at the timing according to the uplink dedicated channel release request (time A in Fig. 3), and the base station device 2
  • Radio wave transmission is stopped at the timing of following another channel release request (time B in Fig. 3).
  • Timing information (such as 1 1).
  • terminal device 1 When terminal device 1 generates and transmits an end call request, terminal device 1 transmits the end call request and receives the end call response, and the end call sequence shown in FIG.
  • the other processes are executed in the same way as the above process, only by reversing (that is, the arrows in steps S1 and S2 are reversed).
  • this communication system uses a connection “frame number” (CFN) as a sequence number between the terminal device base station device 2 and the base station control device 3.
  • CFN is numbered from 0 to 255.
  • CFN increases by 1 per unit time in terminal device 1, base station device 2, and base station control device 3, and when the number increases to 255, it becomes 0 next.
  • CFN is independent for each call
  • a CFN is assigned to each call.
  • the CFN is synchronized among the terminal device 1, the base station device 2, and the base station control device 3. That is, the CFN in the terminal device 1, the CFN in the base station device 2, and the CFN in the base station control device 3 have the same value and increase at the same timing. Therefore, the base station control device 3 can notify the base station 2 or the terminal device 1 of a specific timing by notifying the base station device 2 or the terminal device 1 of the specific CFN.
  • the configurations of the base station control device 3, the base station device 2, and the terminal device 1 for realizing the call termination sequence shown in FIG. 3 will be described using FIG. 4 and FIG.
  • the configuration used at the end of a call (at the end of a call) in each device will be mainly described.
  • FIG. 4 is a diagram for explaining a system configuration example of the base station control device 3 according to the embodiment of the present invention.
  • a base station control device 3 includes a device control unit 16, an overhead switch 17, a base station interface (IF) 18 as a transmission / reception unit, a mobile switch interface (IF) 19 as a transmission / reception unit, and a terminal
  • IF base station interface
  • IF mobile switch interface
  • a device facing signal L2 termination unit 20 a base station device facing signal L2 termination unit 21, a mobile switching device facing signal L2 termination unit 22, a reference timing generation unit 23, and a diversity handover function unit 24 are provided.
  • the device control unit 16 includes a call connection processing unit 61, a mobility management unit 31, and a radio quality management unit 32. Further, the call connection processing unit 61 includes a radio resource management unit 25, a network-side resource management unit 26, an in-device resource management unit 27, a timer 28, as a function block for realizing the call termination sequence. A timing generation unit 29 and an offset storage unit 30 are provided.
  • the reference timing generation unit 23 includes a CFN counter 60.
  • Device control unit 16 generates control information for terminal device 1 and base station device 2. In addition, when receiving control information for the base station control device 3 from the terminal device 1 or the base station device 2, the device control unit 16 executes control based on the control information.
  • the device control unit 16 receives notification of timing information for synchronizing the base station control device 3, the base station device 2, and the terminal device 1 from the reference timing generation unit 23.
  • the device controller 16 The timing information notified from the timing generation unit 23 is used for synchronization among the base station control device 3, the base station device 2, and the terminal device 1.
  • the device control unit 16 transmits information to the mobile switch 57 and receives information from the mobile switch 57 through the mobile exchange device facing signal L2 terminal unit 22.
  • the device control unit 16 transmits information to the base station device 2 and receives information from the base station device 2 through the base station device facing signal L2 terminal unit 21.
  • the device control unit 16 transmits information to the terminal device 1 and receives information from the terminal device 1 through the terminal device facing signal L2 termination unit 20.
  • the on-board switch 17 includes a base station IF18, a mobile switch IF19, a terminal device facing signal L2 terminal unit 20, a base station device facing signal L2 terminal unit 21, and a mobile switch device counter signal L2 terminal unit 22. And the diversity handover function unit 24.
  • the base station IF18 receives a signal from the base station apparatus 2.
  • the base station IF18 transmits a signal to the base station apparatus 2.
  • the base station IF18 converts the received signal into a data format suitable for processing by the base station control device 3, and transmits a signal for transmission between the base station control device 3 and the base station device 2. Convert to a data format suitable for communication using a wired transmission path.
  • the mobile exchange IF 19 receives a signal from the mobile exchange. Mobile exchange IF 19 sends a signal to mobile switch 57. In addition, the mobile switch IF19 converts the received signal into a data format suitable for processing by the base station control device 3, and transmits a signal for transmission through a wired transmission path between the base station control device 3 and the mobile station. Convert to a data format suitable for the communication used.
  • the terminal device facing signal L2 termination unit 20 also extracts the data portion of the signal strength from the terminal device 1 in order to facilitate processing in the base station control device 3. Further, the terminal device facing signal L 2 termination unit 20 converts data to be transmitted to the terminal device 1 into a data format suitable for communication with the terminal device 1.
  • the base station apparatus facing signal L2 termination unit 21 extracts the signal strength data portion from the base station apparatus 2 in order to facilitate processing in the base station control apparatus 3. Further, the base station apparatus facing signal L2 termination unit 21 converts data to be transmitted to the base station apparatus 2 into a data format suitable for communication with the base station apparatus 2.
  • Mobile switch opposite signal L2 termination unit 22 facilitates processing in base station controller 3 Therefore, the signal power data portion from the mobile switch 57 is taken out. Further, the mobile switching direction signal L2 termination unit 22 converts the data to be transmitted to the mobile switching unit 57 into a data format suitable for communication with the mobile switching unit 57.
  • the reference timing generation unit 23 generates timing information for synchronizing the base station control device 3, the base station device 2, and the terminal device 1.
  • the reference timing generation unit 23 notifies the generated timing information to the timing generation unit 29 included in the device control unit 16 and the diversity handover function unit 24.
  • the diversity hando function unit 24 executes a handover of the terminal device 1 when, for example, the terminal device 1 also moves a certain cell power to another cell.
  • the diversity handover function unit 24 executes handover control on the base station control device 3 side based on the timing information from the reference timing generation unit 23 when the terminal device 1 is handed over.
  • the mobility management unit 31 provides information on the connection status of the terminal device, such as which base station control device of the base station devices connected to the base station control device 3 is connected to the terminal device 1. to manage.
  • the radio quality management unit 32 manages the communication quality of the terminal device 1. For example, the radio quality management unit 32 sets the SIR target value set in the SIR target value setting unit 6 (FIG. 2).
  • the timer 28 measures the time. This time may be any time as long as the base station control device 3, the base station device 2, and the terminal device 1 can be synchronized.
  • the offset storage unit 30 stores a predetermined CFN offset value and a predetermined time width. For example, the offset storage unit 30 stores 5 as an offset value of a predetermined CFN and 60 ms as a time width. Further, the offset storage unit 30 may store individual values for the offset value for uplink channel release processing and the offset value for downlink channel release processing.
  • the in-device resource management unit 27 manages the exchange of information among the radio resource management unit 25, the network side resource management unit 26, the timer 28, and the timing creation unit 29.
  • the CFN counter 60 has the same value of CFN in the base station control device 3, the base station device 2, and the terminal device 1 for each call.
  • the CFN counter 60 increments the CFN value once every predetermined time. I will.
  • the CFN value generated by the CFN counter 60 is used as timing information for synchronization between the base station control device 3, the base station device 2, and the terminal device 1 for each call.
  • FIG. 5 is a diagram for explaining a system configuration example of the base station apparatus 2 according to the embodiment of the present invention.
  • the base station device 2 includes a radio unit 33, a baseband signal processing unit 34, a line IF 35, a reference timing generation unit 36, a base station controller facing signal L2 termination unit 37, and a call processing control unit. And 38.
  • the baseband signal processing unit 34 includes a radio resource processing unit 39 and a network side resource processing unit 40.
  • the call processing control unit 38 includes an in-device resource management unit 42 and a timer 43.
  • the reference timing generation unit 36 includes a CFN counter 41.
  • the call processing control unit 38 generates control information for the terminal device 1 and the base station control device 3. Further, when the call processing control unit 38 receives control information for the base station device 2 from the terminal device 1 or the base station control device 3, the call processing control unit 38 performs control based on the control information.
  • the line IF 35 Upon receiving a signal from the base station controller 3, the line IF 35 sends the signal to the base station controller facing signal L2 termination unit 37 if the received signal is a control signal. If the received signal is voice or data, Send to baseband signal processor 34. In addition, the line IF35 receives a voice, data, or control signal from the baseband signal processing unit 34 or the base station control device facing signal L2 termination unit 37, and thus, between the base station device 2 and the base station control device 3. The data is converted into a data format suitable for the wired transmission path and transmitted to the base station controller 3.
  • the radio unit 33 When receiving a signal for transmission from the baseband signal processing unit 34 to the terminal device 1, the radio unit 33 converts the signal into a radio signal and transmits it to the terminal device 1. Further, when receiving a radio signal from the terminal device 1, the radio unit 33 converts the received radio signal into a data format suitable for processing in the base station device 2 and sends the data format to the baseband signal processing unit 34.
  • the base station controller facing signal L2 termination unit 37 When receiving the control signal from the line IF 35, the base station controller facing signal L2 termination unit 37 extracts the control signal power and sends it to the in-device resource management unit 42 provided in the call processing control unit 38. Further, upon receiving data from the in-device resource management unit 42, the base station control device facing signal L2 termination unit 37 converts it into a control signal and sends it to the line IF35. [0085]
  • the reference timing generation unit 36 generates timing information for synchronizing the base station control device 3, the base station device 2, and the terminal device 1. The reference timing generation unit 36 notifies the baseband signal processing unit 34 of the generated timing information.
  • the timer 43 has a time. This time may be any time as long as the base station control device 3, the base station device 2, and the terminal device 1 can be synchronized.
  • the timer 43 measures a predetermined time according to a command from the in-device resource management unit 42.
  • the CFN counter 41 has the same value of CFN in the base station control device 3, the base station device 2, and the terminal device 1 for each call.
  • the CFN counter 41 increments the CFN value every predetermined time.
  • the CFN value generated by the CFN counter 41 is used as timing information for synchronizing the base station control device 3, the base station device 2, and the terminal device 1 for each call.
  • FIG. 6 is a diagram for explaining a system configuration example of the terminal device 1 according to the embodiment of the present invention.
  • the terminal device 1 includes a CODEC unit 44, a baseband signal processing unit 45, a radio unit 46, a control signal termination unit 47, a reference timing generation unit 48, and a device control unit 49.
  • the terminal device 1 includes a CODEC unit 44, a baseband signal processing unit 45, a radio unit 46, a control signal termination unit 47, a reference timing generation unit 48, and a device control unit 49.
  • the control signal termination unit 47 includes a base station apparatus unit 52 and a base station control unit 53.
  • the reference timing generation unit 48 includes a CFN counter 54.
  • the device control unit 49 includes a call connection control unit 55 and a timer 56.
  • the terminal device 1 is also connected with a microphone 50 and a speaker 51! RU
  • the CODEC unit 44 receives audio from the microphone 50.
  • the CODEC unit 44 generates audio data in which the received audio is compression-encoded and sends it to the baseband signal processing unit 45.
  • the CODEC unit 44 performs a decoding (reproduction) process, converts the audio data into an audio signal for outputting audio from the speaker, and transmits the audio signal to the speaker 51.
  • Device control section 49 generates control information for base station device 2 and base station control device 3. In addition, when receiving control information for the terminal device 1 from the base station device 2 or the base station control device 3, the device control unit 49 executes control based on the control information.
  • radio section 46 converts the signal into a radio signal and transmits it to base station apparatus 2. Further, when receiving a radio signal from the base station device 2, the radio unit 46 converts the received radio signal into a data format suitable for processing in the terminal device 1 and sends it to the baseband signal processing unit 45.
  • the base station apparatus section 52 When receiving the control signal from the base station apparatus 2 from the baseband signal processing section 45, the base station apparatus section 52 converts the control signal into a command format for the call connection control section 55, and calls connection Notify controller 55. Further, when receiving an instruction for the base station apparatus 2 from the call connection control section 55, the base station apparatus section 52 converts the instruction signal into a control signal to be transmitted to the base station apparatus 2, and notifies the baseband signal processing section 45. .
  • the base station controller 53 Upon receiving the control signal from the base station controller 3 from the baseband signal processor 45, the base station controller 53 converts the control signal into a command format for the call connection controller 55, The call connection control unit 55 is notified. Also, when receiving a command for the base station controller 3 from the call connection controller 55, the base station controller 53 converts it into a control signal to be transmitted to the base station controller 3, and performs baseband signal processing. Notify Part 45.
  • the timer 56 has a time. This time may be any time as long as the base station control device 3, the base station device 2, and the terminal device 1 can be synchronized.
  • the timer 56 measures a predetermined time according to a command from the call connection control unit 55.
  • the CFN counter 54 has the same CFN in the base station control device 3, the base station device 2, and the terminal device 1 for each call.
  • the CFN counter 54 increments the CFN value every predetermined time.
  • the CFN value generated by the CFN counter 54 is used as timing information for synchronization between the base station control device 3, the base station device 2, and the terminal device 1 for each call.
  • the microphone 50 converts the sound into a signal and transmits it to the CODEC unit 44.
  • the speaker 51 receives a signal from the CODEC unit 44, the speaker 51 outputs a sound corresponding to the received signal.
  • Fig. 4 is used as appropriate.
  • FIG. 7 is a flowchart showing a processing example in the timing creation unit 29 of the base station control device 3 according to the present invention. With reference to the flowchart shown in FIG. 7, the operation of the base station control device 3 until calculating the timing for stopping the radio wave transmitted by the terminal device 1 and the timing for stopping the radio wave transmitted by the base station device 2 will be described. .
  • This flowchart shows a part of processing executed by the base station control device 3 between step S2 and step S3 in the sequence of FIG.
  • the mobile switch IF 19 receives the call termination request (disconnect signal) from the communication device 59 through the mobile switch 57.
  • the mobile exchange IF 19 sends a call termination request to the base station IF 18 through the on-site switch 17.
  • the base station IF 18 transmits the call termination request to the terminal device 1 through the base station device 2.
  • the terminal device 1 receives the call end request, it transmits a call end response to the call end request.
  • the base station IF18 receives the call-end response from the terminal device 1 through the base station device 2.
  • the base station IF18 inputs the end-call response to the terminal device facing L2 terminal unit 20 through the in-house switch 17.
  • the terminal device facing L2 termination unit 20 inputs the end-call response to the timing generation unit 29 through the radio resource management unit 25 and the in-device resource management unit 27.
  • the timing generator 29 receives the end-call response (S12). Then, the timing generation unit 29 acquires the current CFN (current CFN) from the CFN counter 60 provided in the reference timing generation unit 23 (S 13).
  • the timing generation unit 29 receives from the offset storage unit 30 an offset value related to the timing of the radio wave transmission stop transmitted by the terminal device 1, and the radio wave transmission stop of the base station device 2. Read the offset value related to timing.
  • the timing generation unit 29 calculates the timing (A) for stopping the radio wave transmitted from the terminal device 1 from the current CFN and the offset value.
  • the timing generator 29 calculates the timing (A) for stopping the radio wave transmitted from the terminal device 1 from the current CFN and the offset value.
  • the timing (B) for stopping the radio wave transmitted by the base station apparatus 2 is calculated (S14).
  • the device 1 and the base station device 2 can simultaneously stop radio waves transmitted from each device.
  • the timing generator 29 sends the timing A to be sent to the terminal device 1 to the in-device resource management unit.
  • the timing creation unit 29 notifies the radio resource management unit 25 through the in-device resource management unit 27 of the timing B to be sent to the base station device 2.
  • the processing in the timing creation unit 29 ends.
  • the timing generation unit 29 can calculate the timing of radio wave stop for the terminal device 1 and the base station device 2.
  • FIG. 8 is a flowchart showing an example of processing in the radio resource management unit 25 of the base station control device 3. This flowchart shows a part of processing executed by the base station control device 3 between step S2 and step S3 in the sequence of FIG.
  • the radio resource management unit 25 receives, via the in-device resource management unit 27, a notification regarding the timing A for stopping the radio wave transmitted from the terminal device 1 from the timing creation unit 29.
  • the radio resource management unit 25 performs uplink dedicated channel solution including radio wave stop timing A.
  • a release request is created (S 17).
  • the radio resource management unit 25 sends the created uplink dedicated channel release request to the base station IF 18 through the terminal device facing signal L2 termination unit 20 and the in-house switch 17 (S18).
  • the base station IF18 transmits an uplink dedicated channel release request to the terminal device 1 through the base station device 2.
  • the radio resource management unit 25 sets a set of timers (predetermined time) for determining whether or not to receive an uplink individual channel release response to an uplink individual channel release request within a predetermined time. Instructs the device resource management unit 27.
  • the in-device resource management unit 27 sets a predetermined time in the timer 28 (S19). Timer 28 starts counting a predetermined time.
  • the radio resource management unit 25 refers to the time counted by the timer 28, and checks whether or not the force has exceeded a predetermined time, that is, whether or not the timer has timed out (S20).
  • the radio resource management unit 25 determines that the predetermined time has not passed (S20; NO)
  • the process proceeds to step S21.
  • the radio resource management unit 25 ends the process (S22). In this case, a forced call release process is performed.
  • the radio resource management unit 25 determines whether or not it has received the uplink dedicated channel release response.
  • the radio resource management unit 25 receives an uplink dedicated channel release response from the terminal device facing signal L2 termination unit 20.
  • the radio resource management unit 25 stops the timer 28 and ends the process. If the radio resource management unit 25 determines in step S21 that the uplink dedicated channel release response has not been received (S21; NO), the process returns to step S20.
  • the radio resource management unit 25 creates an uplink dedicated channel release request including the radio wave transmission stop timing A in the terminal device 1, and
  • the device facing signal can be sent to the base station IF 18 through the L2 terminal unit 20 and the overhead switch 17.
  • the base station IF 18 transmits an uplink dedicated channel release request for radio resources to the terminal device 1 through the base station device 2 (S3 in FIG. 3).
  • FIG. 9 is a flowchart showing a processing example in the radio resource management unit 25 of the base station control device 3. This flowchart shows a part of processing executed by the base station control device 3 between step S4 and step S6 in FIG.
  • the radio resource management unit 25 receives a notification regarding the timing (B) of the stop of the radio wave transmitted from the base station device 2 from the timing generation unit 29 through the in-device resource management unit 27.
  • the radio resource management unit 25 sends a downlink dedicated channel release request for the created radio resource to the base station IF 18 through the base station apparatus facing signal L2 termination unit 21 and the in-house switch 17 (S25).
  • the base station IF18 transmits the received downlink dedicated channel release request to the base station apparatus 2 through the wired transmission path.
  • the radio resource management unit 25 sets a set of timers (predetermined time) for determining whether or not to receive an uplink dedicated channel release response of radio resources within a predetermined time to the in-device resource management unit 27 Instruct.
  • the in-device resource management unit 27 sets a predetermined time in the timer 28 (S26). Timer 28 starts counting a predetermined time.
  • the radio resource management unit 25 refers to the time counted by the timer 28, and whether or not a predetermined time has passed before receiving the downlink dedicated channel release response of the radio resource, that is, timed out. A check is made as to whether the force is correct (S27). If the radio resource management unit 25 determines that the predetermined time has not passed (S27; NO), it proceeds to the process of step S28. On the other hand, when the radio resource management unit 25 determines that the predetermined time has passed (S27; YES), the process is terminated. In this case, a forced call release process is executed.
  • the radio resource management unit 25 determines whether or not the radio resource downlink individual channel release response has been received.
  • the radio resource management unit 25 receives the downlink dedicated channel release response of the radio resource from the base station apparatus facing signal L2 termination unit 21.
  • step S28 If the radio resource management unit 25 determines that it has received the downlink dedicated channel release response for the radio resource (S28; YES), it ends the process. In the process of step S28, when the radio resource management unit 25 determines that the downlink dedicated channel release response for the radio resource has not been received (S28; NO), the process returns to the process of step S27.
  • the radio resource management unit 25 creates a downlink dedicated channel release request including the timing B for stopping the transmission of the base station device 2, and the base station device 2
  • Opposition signal is sent to the base station IF18 through the L2 terminal section 21 and the overhead switch 17.
  • the base station IF18 transmits a downlink dedicated channel release request to the base station apparatus 2 (S6 in FIG. 3).
  • FIG. 10 is a flowchart showing an example of processing in the network-side resource management unit 26 of the base station control device 3. This flowchart shows a part of processing executed by the base station control device 3 between step S8 and step S9 in FIG. The flow chart shown in FIG. 10 is described based on the system configuration of the base station controller 3 shown in FIG.
  • the network side resource management unit 26 receives a downlink dedicated channel release response of the radio resource through the base station apparatus facing signal L2 termination unit 21 (S30).
  • the network-side resource management unit 26 creates a network-side resource dedicated channel release request for causing the base station apparatus 2 to perform dedicated channel network-side line release processing (S31). Subsequently, the network-side resource management unit 26 sends the created dedicated channel release request to the base station IF 18 through the base station device facing signal L2 termination unit 21 and the in-house switch 17 (S32). The base station IF18 transmits the received individual channel release request to the base station apparatus 2 through the wired transmission path.
  • the network-side resource management unit 26 sets a timer (predetermined time) for determining whether or not to receive an individual channel release response to the individual channel release request within a predetermined time.
  • the timer 28 is set through the management unit 27 (S33).
  • the network side resource management unit 26 refers to the time counted by the timer 28, and whether or not the predetermined time has passed before receiving the downlink dedicated channel release response of the radio resource, that is, whether or not a timeout has occurred. Is checked (S34). At this time, if the network-side resource management unit 26 determines that the predetermined time has not passed (S34; NO), it proceeds to the process of step S35. On the other hand, when the network-side resource management unit 26 determines that the predetermined time has passed (S34; YES), it ends the process.
  • the network side resource management unit 26 determines whether or not a dedicated channel release response for the network side resource has been received (S35).
  • the network side resource management unit 26 receives the dedicated channel release response of the network side resource from the base station apparatus facing signal L2 termination unit 21.
  • step S35 the network side resource management unit 26 responds to the dedicated channel release response for the network-side resource. Is determined not to be received (S35; NO), the process returns to step S34.
  • the network-side resource management unit 26 creates an individual channel release request for the network-side resource, and through the base station apparatus facing signal L2 termination unit 21 and the in-house switch 17, Send to base station IF18.
  • the base station IF18 transmits a dedicated channel release request for network resources to the base station device 2 (S9 in FIG. 3).
  • FIG. 11 is a flowchart showing an example of processing operation in the base station apparatus 2.
  • This flowchart shows the process (S7) executed by the base station apparatus 2 between steps S6 and S8 in the sequence of FIG.
  • the description of the flowchart shown in FIG. 11 is based on the system configuration of base station apparatus 2 shown in FIG.
  • the in-device resource management unit 42 included in the call processing control unit 38 receives a downlink dedicated channel release request (dedicated channel release request) for radio resources from the line IF35 through the base station controller facing signal L2 termination unit 37. Is started by receiving (S37).
  • the in-device resource management unit 42 sends the received downlink dedicated channel release request to the radio resource processing unit 39 provided in the baseband signal processing unit 34.
  • the radio resource processing unit 39 acquires the current CFN from the CFN counter 41 included in the reference timing generation unit 36 (S38).
  • the radio resource processing unit 39 acquires a CFN number that is a timing A at which the radio wave transmitted from the base station apparatus 2 is stopped by a release request from the in-device resource management unit 42
  • the radio resource processing unit 39 calculates the time T (2) from the acquired CFN number and the current CFN until the radio wave transmission is stopped. For example, the radio wave included in the release request
  • T (2) T X [ ⁇ (2) ⁇ ]
  • the radio resource processing unit 39 determines that the calculated time T (2) until radio wave transmission stop is 100.
  • step S39 the calculated time T (2) is 100. If it is determined that it is shorter than ms (T (2) 100 ms) (S39; NO), the radio resource processing unit 39
  • step S39 the calculated time T (2) is 100 ms or less.
  • step S39 is a process of providing a predetermined time and accelerating radio wave transmission stop and individual channel release when the calculated time is longer than the predetermined time. By this process, it is possible to reduce the time until the radio stop process and the individual channel release, and to reduce the waste of electric power required for radio wave transmission by reducing the time.
  • the radio resource processing unit 39 acquires the current CFN from the CFN counter 41 provided in the reference timing generation unit 36 (S40). Let this CFN be N.
  • the radio resource processing unit 39 uses the CFN acquired in the process of step S40 to determine whether it is a radio wave stop timing (S41). If it is determined in step S41 that it is not the time to stop radio waves (N> N) (S41; NO), the radio resource processing unit 39
  • step S41 it is the timing of radio wave stop (N
  • the radio resource processing unit 39 performs the process f in step S44.
  • step S42 the radio resource processing unit 39 starts a 100 ms timer using the timer 43 through the in-device resource management unit 42 (S42).
  • the radio resource processing unit 39 refers to the time counted by the timer 43 and determines whether or not a 100 ms timer force S has timed out (S43). If it is not determined that the 100 ms timer has timed out (S43; NO), the radio resource processing unit 39 returns to the process of step S43. If it is determined that the 100 ms timer has timed out (S43; YES), the radio resource processing unit 39 proceeds to the process of S44.
  • the radio resource processing unit 39 instructs the radio unit 33 to perform a radio channel downlink individual channel radio wave stop process (radio wave stop process).
  • the radio unit 33 Upon receiving a command for stopping the radio channel downlink dedicated channel radio wave, the radio unit 33 stops the radio wave transmitted using the downlink dedicated channel for the terminal device 1. The radio unit 33 cancels the downlink dedicated channel of the radio resource after the transmission radio wave to the terminal device 1 is stopped. Let go.
  • the radio resource processing unit 39 sends a downlink dedicated channel release response of the radio resource to the line IF35 through the in-device resource management unit 42 and the base station controller facing signal L2 termination unit 37 (S45).
  • the line IF35 transmits a downlink dedicated channel release response to the base station controller 3.
  • the line IF 35 receives the dedicated channel release request for the network side resource from the base station controller 3, the line IF 35 sends the received release request through the base station controller opposite signal L 2 termination unit 37 to the in-device resource management unit. Send to 42.
  • the in-device resource management unit 42 receives the network side resource dedicated channel release request from the line IF 35, it requests the network side resource processing unit 40 to release the individual channel of the network side resource.
  • the network side resource processing unit 40 receives the request for releasing the individual channel of the network side resource, the network side resource processing unit 40 performs the individual channel network side line releasing process using the line IF 35 (S46; S10 in FIG. 3). As a result, network resources are released.
  • the network side resource processing unit 40 notifies the in-device resource management unit 42 of a release response.
  • the in-device resource management unit 42 receives a release response related to the network-side resource from the network-side resource processing unit 40, it creates a release response and sends it to the line IF35 through the base station controller facing signal L2 termination unit 37 to complete the processing. To do.
  • the release response is transmitted from the line IF 35 to the base station controller 3 (SI 1 in FIG. 3).
  • the base station apparatus 2 receives the radio resource downlink dedicated channel release request including the radio transmission stop timing designation from the base station control apparatus 3, thereby At the specific timing specified from 3, the base station apparatus 2 stops using the downlink dedicated channel to stop the transmission of radio waves and releases the downlink dedicated channel. Next, when receiving the network-side resource release request, the base station device 2 releases the dedicated channel of the network-side resource between the base station device 2 and the base station control device 3.
  • FIG. 12 is a flowchart showing an example of processing operation in the terminal device 1. This flowchart shows a process executed by the terminal device 1 during steps S3 to S5 in the sequence of FIG. The flowchart shown in FIG. 12 will be described based on the system configuration of base station apparatus 2 shown in FIG. [0147]
  • the call connection control unit 55 included in the device control unit 49 sends an uplink dedicated channel release request for radio resources through the radio unit 46, the baseband signal processing unit 45, and the base station control unit unit 53.
  • Receive S48
  • the call connection control unit 55 creates an uplink dedicated channel release response for the radio resource, and sends it to the radio unit 46 through the base station control device unit 53 and the baseband signal processing unit 45 (S49).
  • the radio unit 46 transmits the received release response to the base station controller 3 through the base station 2.
  • the call connection control unit 55 notifies the baseband signal processing unit 45 of an uplink dedicated channel release request.
  • the baseband signal processing unit 45 obtains the CFN counter 54 power CFN at the present time (S50).
  • the baseband signal processing unit 45 acquires a CFN number that is a timing for stopping transmission of radio waves from the terminal device 1 to the base station device 2 from the release request from the call connection control unit 55. Subsequently, the baseband signal processing unit 45 calculates the time T (1) from the acquired CFN number and the current CFN to the time when the transmission radio wave is stopped. For example, radio resource uplink d
  • the current CFN number obtained in step S50 is N (1), and the CFN number is incremented by 1.
  • the baseband signal processing unit 45 determines whether or not the calculated time T (1) until the radio wave stop is 100 dms or more (S51). If it is determined in step S51 that the calculated time T (1) is shorter than 100 d ms (T (1) less than 100 ms) (S51; NO), the baseband signal processing unit 4 d
  • step S51 the calculated time T (1) is 10 d.
  • step S51 is a process of providing a predetermined time and accelerating radio wave transmission stop and individual channel release when the calculated time is longer than the predetermined time. By this process, it is possible to reduce the time until the radio stop process and the individual channel release, and to reduce the waste of electric power required for radio wave transmission by reducing the time.
  • the baseband signal processing unit 45 acquires the current CFN from the CFN counter 54 (S52). . Let this CFN be N.
  • the baseband signal processor 45 uses N and N acquired in the process of step S52,
  • step S53 It is determined whether or not the radio wave stop timing N is reached (S53).
  • step 5 the process proceeds to step S56.
  • the baseband signal processing unit 45 sets and activates a 100 ms timer using the timer 56 through the call connection control unit 55 (S54).
  • the baseband signal processing unit 45 refers to the time counted by the timer 56 and determines whether or not the 100 ms timer has timed out (S55). When it is determined that the 100 ms timer has timed out (S55; NO), the baseband signal processing unit 45 returns to the processing of S55. If it is determined that the 100 ms timer has timed out (S55; YES), the baseband signal processing unit 45 proceeds to the processing of S56.
  • step S56 the baseband signal processing unit 45 performs uplink individual channel radio wave stop processing (radio wave stop processing) of radio resources (S56). At this time, the baseband signal processing unit 45 instructs the radio unit 46 to stop radio wave transmission.
  • radio section 46 Upon receiving the instruction of the actual radio resource uplink stop process for radio resources, radio section 46 stops uplink individual channel radio transmission to base station apparatus 2 and releases the uplink individual channel.
  • step S56 ends, the process of FIG. 12 ends.
  • the terminal device 1 receives the radio resource uplink individual channel release request from the base station control device 3 including the designation of the timing to stop transmission radio waves. Stops the radio wave transmitted from terminal device 1 using the uplink dedicated channel at the specific timing specified by, and releases the uplink dedicated channel.
  • FIG. 13 is a diagram showing the power consumed by the base station device 2 for the downlink dedicated channel of the radio resource when the call ends. For comparison, refer to FIG. In the communication system to which the present invention is applied, as shown in FIG. Base A and the downlink dedicated channel radio wave suspension processing execution timing B are the same.
  • the station control device 3 includes the timing A included in the dedicated channel release request transmitted to the terminal device 1 and the timing included in the dedicated channel release request transmitted to the base station device 2.
  • Ming B is specified.
  • the stop processing of the radio wave transmitted by the terminal device 1 is not performed. Therefore, in the base station device 2, reception of the TPC bits transmitted from the terminal device 1 is not interrupted. From this, the transmission power used for the downlink dedicated channel from the base station apparatus 2 is controlled by the TPC bit until the radio wave transmission is stopped, so that the transmission power increases due to malfunction as shown in FIG. There is nothing. In this way, this communication system can suppress malfunctions.
  • the power consumed by the base station apparatus 2 can be suppressed as compared with the prior art by suppressing a useless increase in power. Therefore, this communication system can suppress waste of wasted power.
  • the transmission power used for the uplink individual channel is also the terminal apparatus power. Since it is controlled by the TPC bit until the stop, it becomes as shown in Figure 13. In this way, this communication system can suppress malfunctions even on the terminal device side.
  • the dedicated channel release request used in the communication system is control information used in the conventional system
  • the present invention is used in the conventional system and covers the improvement of the control information. This can be done simply by Therefore, the control information in the conventional system and The present invention can be implemented with the same amount of information.
  • the terminal device 1 and the base station device 2 stop the radio waves transmitted using the individual channels based on the CFN specified by the base station control device 3. It was. On the other hand, as will be described below, by modifying this embodiment, the terminal device 1 and the base station device 2 have their respective device powers based on the time and time width specified by the base station control device 3. The transmitted radio wave can be stopped.
  • the timing generator 29 provided in the base station controller 3 Refer to timer 28 to store the time when Subsequently, the timing generation unit 29 reads an offset value having a predetermined time width from the offset storage unit 30. Next, the timing generation unit 29 calculates a time obtained by adding the offset value read from the offset storage unit 30 and the time when the end-call response is received. The timing creation unit 29 notifies the radio resource management unit 25 of the calculation result.
  • the radio resource management unit 25 of the base station control device 3 includes the time input from the timing generation unit 29 in the uplink dedicated channel release request and the downlink dedicated channel release request, respectively.
  • the baseband signal processing unit 45 of the terminal device 1 receives the uplink dedicated channel release request for the radio resource including the timing of stopping the transmission radio wave via the call connection control unit 55, the time measurement by the timer 56 is performed.
  • the radio unit 46 is instructed to stop the radio wave transmitted from the terminal device 1 using the uplink dedicated channel at the time included in the received release request.
  • the radio unit 46 instructed to stop the transmission radio wave stops the radio wave transmitted using the uplink individual channel and releases the uplink channel.
  • the radio resource processing unit 39 of the base station apparatus 2 receives the downlink dedicated channel release request for the radio resource including the timing of stopping the transmission radio wave
  • the release request received by referring to the time count by the timer 43 is received.
  • the radio unit 33 is instructed to stop the radio wave transmitted from the base station apparatus 2 at the time included in.
  • the radio unit 33 instructed to stop the transmission radio wave stops the radio wave transmitted using the downlink individual channel.
  • the terminal device 1 and the base station device 2 stop transmitting radio waves based on the time included in the dedicated channel release request created by the base station control device 3. be able to.
  • the offset storage unit 30 included in the base station control device 3 includes the offset value related to the time width until the transmission radio wave is stopped for the base station device 2 and the time width until the transmission radio wave for the terminal device 1 is stopped. Is stored.
  • the time span until the transmission radio wave for base station apparatus 2 is stopped is as follows: terminal apparatus 1 transmits an uplink dedicated channel release response for radio resources, base station control apparatus 3 receives the release response, and base station control apparatus 3
  • the time for transmitting the downlink dedicated channel release request for the radio resource and for the base station apparatus 2 to receive the release request is shorter than the time width until the transmission radio wave for the terminal apparatus 1 is stopped.
  • the timing generation unit 29 reads these two offset values from the offset storage unit 30, and calculates the offset value related to the time width until the transmission radio wave for the terminal device 1 is stopped and the transmission radio wave for the base station device 2 until the radio wave transmission is stopped.
  • the offset value related to the time width is notified to the radio resource management unit 25, respectively.
  • Radio resource uplink dedicated channel release processing unit 22 and radio resource downlink dedicated channel release processing unit 26 include the time width input from timing generation unit 25 in the dedicated channel release request, respectively.
  • the baseband signal processing unit 45 included in the terminal device 1 receives the uplink dedicated channel release request for the radio resource including the timing of stopping the transmission radio wave
  • the baseband signal processing unit 45 receives the reception by referring to the time count by the timer 56
  • the radio unit 46 is instructed to stop the radio wave transmitted from the terminal device 1 using the uplink individual channel after the time included in the release request.
  • the radio unit 46 instructed to stop the transmission radio wave stops the radio wave transmitted using the uplink individual channel and releases the uplink individual channel.
  • the radio resource processing unit 34 provided in the base station device 2 receives a downlink dedicated channel release request for radio resources including the timing of transmission radio wave stoppage through the in-device resource management unit 42, Refer to and after the time included in the received release request Next, the radio unit 33 is instructed to stop the radio wave transmitted from the base station apparatus 2.
  • the radio unit 33 instructed to stop the transmission radio wave stops the radio wave transmitted using the downlink dedicated channel and releases the downlink dedicated channel.
  • the terminal device 1 and the base station device 2 stop the transmission radio wave based on the time width included in the dedicated channel release request created by the base station control device 3. Can be stopped.
  • FIG. 14 is a diagram showing an end-speaking sequence according to a modification of the present invention.
  • FIG. 14 shows that in the communication system as shown in FIG. 1, the communication disconnection signal transmitted from the communication device 59 is received by the mobile exchange through the public network 58, and the disconnection signal received by the mobile exchange is terminated. This is a sequence of ending when it is transmitted to the base station control device 3 as a call request and the base station control device 3 receives the call end request.
  • the base station control device 3 transmits a call termination request from the communication device 59 to the terminal device 1 through the base station device 2 (S57).
  • the terminal device 1 receives the call end request from the base station control device 3 through the base station device 2, the terminal device 1 transmits a call end response to the base station control device 3 (S58).
  • the base station control device 3 When the base station control device 3 receives the call end response from the terminal device 1 through the base station device 2, the base station control device 3 transmits an uplink dedicated channel release request (dedicated channel release request) for radio resources to the terminal device 1 ( S59).
  • an uplink dedicated channel release request (dedicated channel release request) for radio resources to the terminal device 1 ( S59).
  • the terminal device 1 has a predetermined CFN offset value as a radio wave transmission stop timing.
  • the terminal device 1 creates an uplink dedicated channel release response including this offset value.
  • the terminal device 1 transmits the created uplink individual channel release response to the base station control device 3 (S60).
  • the terminal device 1 executes the uplink dedicated channel radio wave stopping process of the radio resource at the timing provided by the terminal device 1. That is, the terminal device 1 stops radio wave transmission to the uplink dedicated channel at timing A (S61).
  • the terminal device 1 releases the uplink dedicated channel after the radio wave is stopped.
  • the base station control device 3 passes through the base station device 2 through the individual channel from the terminal device 1.
  • a downlink dedicated channel release request for radio resources is transmitted to the base station apparatus 2 (S62).
  • This dedicated channel release request is included in the uplink dedicated channel release response! /, And includes information on the timing of stopping radio transmission! /.
  • the base station apparatus 2 executes the downlink dedicated channel radio wave stop process for the radio resource based on the radio wave stop timing information included in the release request. That is, the base station apparatus 2 transmits radio waves to the downlink dedicated channel at timing B (same timing as timing A) according to the timing information included in the release response.
  • the base station apparatus 2 releases the downlink dedicated channel after stopping the radio wave transmitted through the downlink dedicated channel. In this way, the terminal device 1 and the base station device 2 stop radio wave transmission at the same timing. After releasing the downlink dedicated channel, the base station apparatus 2 transmits a downlink dedicated channel release response to the base station control apparatus 3 (S64).
  • the base station control device 3 Upon receiving the downlink dedicated channel release response from the base station device 2, the base station control device 3 transmits a dedicated channel release request for network resources to the base station device 2 (S65).
  • the base station device 2 Upon receiving the dedicated channel release request from the base station control device 3, the base station device 2 performs the individual channel network side line release processing (S66). The base station apparatus 2 releases the dedicated channel for the network side resource by performing dedicated channel network side line release processing.
  • the base station apparatus 2 After releasing the dedicated channel for the network side resource, the base station apparatus 2 transmits an individual channel release response for the network side resource (S67).
  • the base station control device 3 receives the dedicated channel release response for the network side resource from the base station device 2.
  • terminal device 1 stops radio wave transmission at the timing according to the uplink dedicated channel release request (time A in Fig. 14), and base station device 2
  • terminal device 1 When terminal device 1 generates and transmits an end call request, terminal device 1 transmits the end call request and receives the end call response as shown in FIG. Reverse In other words, only the arrows of step SI and step S2 are reversed), and the other processing is executed in the same manner as the above processing.
  • the terminal device 1 has an offset value for timing for stopping radio wave transmission, and the offset value is transmitted to the base station device 2, whereby the terminal device 1 and the base station At the same time as device 2, radio wave transmission can be stopped to stop radio wave transmission.

Abstract

 無線通信制御装置は、無線装置間で双方向の無線電波の送受信が行われているときに、少なくとも一方の無線装置が他方の無線装置から受信する無線電波に基づいて、他方の無線装置が送信する無線電波の送信電力を制御するための電力制御情報を含む無線電波を他方の無線装置に送信する二つの無線装置について、各無線装置が無線電波送信を同時に停止するための制御情報を生成する生成部と、制御情報を各無線装置に向けて送信する送信部とを含む。

Description

明 細 書
無線通信制御装置および無線装置
技術分野
[0001] 本発明は、無線通信制御装置および無線装置に関する。
背景技術
[0002] W— CDMA方式のような携帯電話サービスシステムでは、端末装置と基地局装置 との間の無線通信において、基地局装置から端末装置へ無線電波を送信するチヤ ネル (下り個別チャネルとする)と、端末装置から基地局装置へ無線電波を送信する チャネル (上り個別チャネルとする)とを用いた無線電波の送信電力制御 (閉ループ送 信電力制御)が行われて ヽる。
[0003] 端末装置は、下り個別チャネルを通じて基地局装置から信号 (無線電波)を受信す ると、この受信信号の品質を示す希望波受信電力対干渉信号電力比(SIR; Signal t o Interference Power Ratio)を測定する。続いて、端末装置は、 SIRの測定結果と SI Rの目標値とを比較し、この比較結果に基づく送信電力制御情報 (「TPC ; Transmit P ower Control)ビット」と呼ばれる)を作成する。このとき、測定結果が目標値より低いと きは、送信電力を増加する旨の TPCビットが作成され、測定結果が目標値より高い 場合には、送信電力を低減する旨の TPCビットが作成される。 TPCビットは、基地局 装置へ送信されるデータに含められ、上り個別チャネルを通じて基地局装置に伝達 される。
[0004] 基地局装置は、 TPCビットを受信すると、 TPCビットにしたがって、下り個別チヤネ ルの送信電力を増減させる。これによつて、 TPCビットによって制御された送信電力 による無線電波が下り個別チャネルを通じて基地局装置へ送信される。このような端 末装置と基地局装置との間に形成された閉ループを用いて、下り個別チャネルの送 信電力が制御される。なお、上り個別チャネルの送信電力制御も、上述したような閉 ループ送信電力制御方式で行うことができる。
[0005] 上述した下り個別チャネル及び上り個別チャネルを用いた無線電波送信は、端末 装置と相手方の端末装置との通話の終了 (終話)を契機として実行される端末装置と 基地局装置間の無線通信リソースの解放手順を経て停止される。
[0006] 図 15は、従来の携帯電話サービスにおける終話の手順を示すシーケンスの図であ る。図 15には、端末装置、基地局装置、基地局制御装置との間の終話の手順が示さ れている。また、図 15には、端末装置と通信している相手側の端末装置(図示せず) が終話要求を送出した場合のシーケンスが示されている。
[0007] 図 15に示すように、端末装置は、相手端末の終話要求を受けた基地局制御装置 力 の終話要求に応答した後に基地局制御装置力 受信する個別チャネル解放要 求に応じて、個別チャネル解放応答の送信、及び上り個別チャネル電波停止処理を 実施する。これによつて、上り個別チャネルへの無線電波送信が停止され、上り個別 チャネルが解放される。
[0008] 一方、基地局装置は、基地局制御装置からの個別チャネル解放要求 (無線リソース )の受信を契機として、下り個別チャネル電波停止処理を実施する。これによつて、下 り個別チャネルへの無線電波送信が停止され、下り個別チャネルが解放される。
[0009] 本発明に係る先行技術文献としては、次に示すものがある。
特許文献 1:特開 2004 - 112097号公報
特許文献 2:特開 2004 - 32211号公報
非特許文献 1 : 3GPP TS25.331 V6.5.0、 2005年 3月、 8.1.4章.
非特許文献 2 :立川敬二著、「W— CDMA移動通信方式」、丸善、日本、 2001年 6 月、 P.178- 179.
発明の開示
発明が解決しょうとする課題
[0010] 図 15に示したシーケンスでは、端末装置及び基地局装置は、基地局制御装置から の個別チャネル解放要求に従って、下り個別チャネル及び上り個別チャネルへの無 線電波送信を停止する。このとき、端末装置及び基地局装置へ個別チャネル解放要 求が到着するタイミングが異なるので、端末装置及び基地局装置が無線電波送信を 停止するタイミングが異なることがある。図 15に示す例では、端末装置が送信を停止 した時刻 A力 基地局装置が送信を停止した時刻 Bまでの間に、遅延時間 T 力 S
0 0 delay 発生している。 [0011] この遅延時間 T では、基地局装置は下り個別チャネルの送信電力制御を行わな aelay
ければならないにも拘わらず、端末装置力 の送信電力制御情報 (TPCビット)を受 信できない状態となる。このため、基地局装置において、送信電力制御の誤動作が 生じ、下り個別チャネルの送信電力が予測できないような状態で変動する可能性が あった。例えば、基地局装置において、 TPCビットを受信できないが故に TPCビット の誤認識が生じ、下り個別チャネルの送信電力を増加し続けることが考えられる。こ の場合、例えば、図 16に示すように、遅延時間 T (A力も B間)において、下り個別 delay 0 0
チャネルの送信電力が上限値まで上がり続け (p )、下り個別チャネル解放処理
Increase
によって電波送信が停止されるときまで、上限値の送信電力が維持される場合が考 えられる。図 16において、 T は、 TPC誤認識期間と捉えることができる。
delay
[0012] このような電力制御が行われると、電力浪費のみならず、下り個別チャネルの電波 が他のチャネルに干渉してしまうおそれがあった。この問題は、基地局装置が端末よ りも先に電波送信を停止した場合に、端末装置で起こり得る。
[0013] また、基地局装置が、新規呼の受付判断のために、下り方向への割当可能な総電 力から割当済み電力を差し引いた残りの電力を参照するシステムを搭載している場 合には、割当済み電力の無駄な増加 (電力浪費)によって、新規呼の受付が拒絶され るおそれがあった。
[0014] 本発明は、上述した問題に鑑みてなされたものである。本発明の目的は、相手側か らの制御情報に従って相手側へ送信する無線電波の送信電力制御にぉ 、て、制御 情報が到達しな 、ことで、送信電力制御の誤動作が生じることを抑える技術を提供 することである。
課題を解決するための手段
[0015] 上記課題を解決するために、本発明は以下の構成を採用した。
(1)すなわち、本願発明による無線通信制御装置 (基地局制御装置 3に対応)は、無 線装置間(一方は基地局装置 2に、他方は端末装置 1に対応)で双方向の無線電波 の送受信が行われているときに、少なくとも一方の無線装置が他方の無線装置から 受信する無線電波に基づ 、て、前記他方の無線装置が送信する無線電波の送信電 力を制御するための電力制御情報を含む無線電波を前記他方の無線装置に送信 する二つの無線装置について、各無線装置が無線電波送信を同時に停止するため の制御情報を生成する生成部(呼接続処理部 61に対応)と、前記制御情報を各無 線装置に向けて送信する送信部 (基地局 IF18に対応)とを含む。
[0016] この構成によれば、双方向で無線電波の送受信が行われている無線装置がある。
この無線装置のうちの少なくとも一方の無線装置が他方の無線装置から受信する無 線電波に基づいて、他方の無線装置が送信する無線電波の送信電力を制御するた めの電力制御情報を含む無線電波を他方の無線装置に送信する。この無線通信制 御装置は、このような無線装置の各々が他の無線装置に対する無線電波送信を同 時に停止するための制御情報を生成し、その制御情報を無線装置の各々に送信す ることがでさる。
(2)また、本願発明による無線通信制御装置に係る前記制御情報は、前記各無線装 置が無線電波送信を停止するタイミングを示すタイミング情報でもよい。
[0017] この構成によれば、この制御情報は、無線装置が無線送信を停止するタイミングを 示すタイミング情報でもよい。この無線通信制御装置によるタイミングの指定により、 無線装置の各々はそのタイミングによって互!、の無線装置に対する電波送信を停止 できる。
(3)また、本願発明による無線通信制御装置に係る前記生成部は、前記無線装置間 で無線電波を用いて送受信されるフレームのシーケンス番号を用いて特定されるタイ ミング情報を生成してもよ 、。
[0018] この構成によれば、この生成部は、無線装置間で無線電波を用いて送受信される フレームのシーケンス番号を用いてタイミング情報を生成してもよい。また、このシー ケンス番号として、 CFN (Connection Frame Number)が使用されてもよい。
(4)また、本願発明による無線通信制御装置は、前記無線電波の送受信を終了させ るためのメッセージを受信する受信部とをさらに含み、前記生成部が、前記メッセ一 ジの受信時を基準として各無線装置の電波送信停止タイミングを決定し、このタイミ ングを含む制御情報を生成してもよい。また、前記生成部は、前記メッセージの送信 時を基準として各無線装置の電波送信停止タイミングを決定し、このタイミングを含む 制御情報を生成してもよい。 [0019] この構成によれば、この無線通信制御装置は、無線電波の送受信を終了させるた めのメッセージを受信する受信部とをさらに含んでもよい。続いて、この無線通信制 御装置の生成部は、終了させるためのメッセージの受信時を基準として各無線装置 の電波送信停止タイミングを決定し、このタイミングを含む制御情報を生成してもよ ヽ 。また、この生成部は、終了させるためのメッセージの送信時を基準として各無線装 置の電波送信停止タイミングを決定し、このタイミングを含む制御情報を生成してもよ い。この終了させるためのメッセージは、終話要求でも、終話応答であってもよい。 (5)また、本願発明による無線装置は、相手側無線装置との間で行われる双方向の 無線電波の送受信時 (一方は基地局装置 2に、他方は端末装置 1に対応する双方 向の無線電波の送受信時に対応)に、前記相手側無線装置から受信した無線電波 に基づいて得られる前記相手側無線装置が送信する無線電波の送信電力を制御す るための電力制御情報を含む無線電波を前記相手側無線装置に送信する、及び Z 又は、前記相手側無線装置から受信した無線電波中に含まれる電力制御情報に基 づいて前記相手側無線装置へ送信する無線電波の送信電力を制御する無線装置 であって、前記相手側無線装置で行われる前記無線装置への無線電波送信停止の タイミングを含む制御情報を受信する受信部 (基地局装置 2の回線 IF35、または、端 末装置 1の無線部 46に対応)と、前記受信部によって受信された前記制御情報中の タイミングに従って前記相手側無線装置への電波送信を停止する制御部 (基地局装 置 2の無線リソース処理部 39、または、端末装置 1のベースバンド信号処理部 45)と を含む。
[0020] この構成によれば、この無線装置は、相手側無線装置との間で行われる双方向の 無線電波の送受信時に、相手側無線装置から受信した無線電波に基づ!、て得られ る相手側無線装置が送信する無線電波の送信電力を制御するための電力制御情報 を含む無線電波を相手側無線装置に送信する。このような無線装置、及び Zまたは 、相手側無線装置から受信した無線電波中に含まれる電力制御情報に基づ!、て相 手側無線装置へ送信する無線電波の送信電力を制御する無線装置は、相手側無 線装置で行われる無線装置への無線電波送信停止のタイミングを含む制御情報を 受信し、受信された制御情報中のタイミングに従って相手側無線装置への電波停止 をすることができる。
[0021] 本発明は、以上のような無線装置が実行する無線方法であってもよい。また、本発 明は、以上のような無線通信制御装置が実行する無線通信制御方法であってもよい 発明の効果
[0022] 相手側からの制御情報に従って相手側へ送信する無線電波の送信電力制御にお いて、制御情報が到達しないことで、送信電力制御の誤動作が生じることを抑える技 術を提供できる。
図面の簡単な説明
[0023] [図 1]本発明の実施形態の通信システムの構成図である。
[図 2]閉ループの電力制御における基本ブロック図である。
[図 3]本発明に係る終話のシーケンスを示す図である。
[図 4]本発明に係る基地局制御装置のシステムを示す構成図である。
[図 5]本発明に係る基地局装置のシステムを示す構成図である。
[図 6]本発明に係る端末装置のシステムを示す構成図である。
[図 7]本発明に係る基地局制御装置における処理を示す第 1のフローチャートである
[図 8]本発明に係る基地局制御装置における処理を示す第 2のフローチャートである
[図 9]本発明に係る基地局制御装置における処理を示す第 3のフローチャートである
[図 10]本発明に係る基地局制御装置における処理を示す第 4のフローチャートであ る。
[図 11]本発明に係る基地局装置における処理を示すフローチャートである。
[図 12]本発明に係る端末装置における処理を示すフローチャートである。
[図 13]本発明に係る基地局装置が終話の際に無線リソースの個別チャネルに消費 する電力を示す図である。
[図 14]本発明の変形例に係る終話のシーケンスを示す図である。 [図 15]従来技術における終話のシーケンスを示す図である。
[図 16]従来技術に係る基地局装置が終話の際に無線リソースの個別チャネルに消 費する電力を示す図である。
符号の説明
UC1 上り個別チャネル(無線リソース)
DC1 下り個別チャネル(無線リソース)
1, 1 1〜1 5 端末装置
2 基地局装置
3 基地局制御装置
4 受信部
5 SIR測定部
6 SIR目標値設定部
7 SIR判定部
8 TPCビット生成部
9 TPCビット合成部
10 送信部
11 受信部
12 TPCビット復号部
13 TPCビット判定部
14 電力制御部
15 送信部
16 装置制御部
17 架内スィッチ
18 基地局 IF
19 移動交換機 IF
20 端末装置対向信号 L2終端部
21 基地局装置対向信号 L2終端部
22 移動交換機装置対向信号 L2終端部 基準タイミング生成部
ダイバーシチハンドオーバ機能部 無線リソース管理部
網側リソース管理部
装置内リソース管理部
タイマ
タイミング作成部
オフセット記憶部
移動管理部
無線品質管理部
無線部
ベースバンド信号処理部
回線 IF
基準タイミング生成部
基地局制御装置対向信号 L2終端部 呼処理制御部
無線リソース処理部
網側リソース処理部
CFNカウンタ
装置内リソース管理部
タイマ
CODECS
ベースバンド信号処理部
無線部
制御信号終端部
基準タイミング生成部
装置制御部
マイク 51 スピーカ
52 対基地局装置部
53 対基地局制御装置部
54 CFNカウンタ
55 呼接続制御部
56 タイマ
57 移動交換機
58 公衆網
59 通信装置
60 CFNカウンタ
61 呼接続処理部
発明を実施するための最良の形態
[0025] 以下、図面を参照して、本発明の実施形態を説明する。以下の実施形態の構成は 例示であり、本発明は実施形態の構成に限定されない。
[0026] 《システム構成》
図 1は、本発明の実施形態における通信システムの構成図である。図 1において、 基地局装置 2は、端末装置 1 (1 1)〜1 (1 5)と無線伝送路を通じて通信できる。 基地局装置 2がこれらの端末装置と通信可能な範囲はセルと呼ばれ、図 1ではその 範囲が点線で示されている。加えて、基地局装置 2は、有線伝送路を通じて基地局 制御装置 3と通信できる。基地局制御装置 3は、有線伝送路を通じて、移動交換機 5 7と通信できる。移動交 は、公衆網 58を通じて、通信装置 59と通信できる。
[0027] 端末装置 1と通信装置 59とが通信する場合、この通信システムは、端末装置 1と通 信装置 59との間に、個別チャネルと呼ばれる通信リソースを確保する。以下に、端末 装置 1と通信装置 59とが通信する際に、端末装置 1と通信装置 59との間に確立され る個別チャネルにつ 、て説明する。
[0028] 端末装置 1と通信装置 59とが通信する際、端末装置 1と移動交浦 57との間およ び移動交^ «57と通信装置 59との間の通信は、呼制御によって確立される。以上 のような呼制御により、端末装置 1は、基地局装置 2との間に、無線リソースの上り個 別チャネルと無線リソースの下り個別チャネルとを確立する。無線リソースの上り個別 チャネルは、端末装置 1から基地局装置 2へ電波を送出する際に使用される。無線リ ソースの下り個別チャネルは、基地局装置 2から端末装置 1へ電波を送出する際に 使用される。また、無線リソースの上り個別チャネルと無線リソースの下り個別チヤネ ルは、無線伝送路とも呼ばれる。基地局装置 2は、基地局制御装置 3との間に、網側 リソースの個別チャネルを確立する。網側リソースの個別チャネルは、基地局装置 2と 基地局制御装置 3との間のデータ通信に使用される。基地局制御装置 3は、移動交 «57との間に、網側リソースの個別チャネルを確立する。この網側リソースの個別 チャネルは、基地局制御装置 3と移動交 との間のデータ通信に使用される。 続いて、移動交 は、公衆網 58を通じて、通信装置 59と通信する。端末装置 1 と通信装置 59とは、以上で述べた個別チャネルを確立させて力も通信する。
[0029] 一方で、端末装置 1と通信装置 59とが通話を終了する際 (終話する際)、端末装置 1、基地局装置 2、基地局制御装置 3および移動交換機 57が新たな呼のための通信 リソースを確保するために、この通信システムは、以上で確立した個別チャネルを呼 制御によって解放する。
[0030] また、この通信システムにおいて、端末装置 1と基地局装置 2との間の無線通信に おいて、無線リソースの下り個別チャネル DC1と、無線リソースの上り個別チャネル U C1とを用いた無線電波の送信電力制御 (閉ループ送信電力制御)が行われる。
[0031] 本実施形態では、主に、端末装置 1と基地局装置 2と基地局制御装置 3との間で実 行される処理に関して説明する。まず、この通信システムにおける送信電力制御につ いて説明する。
[0032] 《送信電力制御》
図 2は、本通信システムにおいて、端末装置 1と基地局装置 2との間で、閉ループ 送信電力制御を実行するシステム構成例を示すブロック図である。図 2には、端末装 置カゝら基地局へ上り個別チャネル UC1で送信される電波の送信電力制御を行うた めの構成が示されている。
[0033] 図 2において、基地局装置 2は、受信部 4、 SIR測定部 5、 SIR目標値設定部 6、 SI R判定部 7、 TPCビット生成部 8、 TPCビット合成部 9および送信部 10を備えている。 これに対し、端末装置 1は、受信部 11、 TPCビット復号部 12、 TPCビット判定部 13、 電力制御部 14および送信部 15を備えている。
[0034] 基地局装置 2の受信部 4は、端末装置 1の送信部 15から信号 (電波)を受信する。送 信部 15から受信された信号は、上り通信データとして、基地局制御装置側へ送信さ れるとともに、 SIR測定部 5に送られる。 SIR測定部 5は、受信部 4から受信された信 号の SIRを測定する。 SIR測定部 5は、 SIRの測定結果を SIR判定部 7に送る。
[0035] SIR目標値設定部 6には、予め SIRの目標値が納められている。また、 SIR目標値 設定部 6は、基地局制御装置 3から SIR目標値を受信して使用してもよい。本通信シ ステムでは、受信信号の SIRの値がこの目標値に近づくように端末装置 1の電力制 御が行われる。 SIR目標値設定部 6は、この目標値を SIR判定部 7に与える。
[0036] SIR判定部 7は、 SIR目標値設定部 6からの SIRの目標値と、 SIR測定部 5からの SI Rの測定結果とを比較する。 SIR判定部 7は、測定結果が目標値よりも大きいとき、送 信部 15から送信される電波の送信電力を減らすと判定する。これに対し、 SIR判定 部 7は、測定結果が目標値よりも小さいとき、送信電力を増やすと判定する。判定結 果は、 TPCビット生成部 8に送信される。
[0037] TPCビット生成部 8は、 SIR判定部 7からの判定結果を基にして TPCビットを生成 する。 SIR判定部 7が送信電力を減らすと判定した場合、 TPCビット生成部 8は、送 信電力ダウンを指示する TPCビットを生成する。一方、 SIR判定部 7が送信電力を増 やすと判定した場合、 TPCビット生成部 8は、送信電力アップを指示する TPCビット を生成する。 TPCビット生成部 8は、 TPCビットを TPCビット合成部 9に送る。
[0038] TPCビット合成部 9は、 TPCビット生成部 8からの TPCビットと下り通信データとを合 成する。 TPCビット合成部 9は、合成されたデータを送信部 10に送る。
[0039] 送信部 10は、 TPCビット合成部 9から受信したデータを含む無線信号 (電波)を、下 り個別チャネル DC 1を介して、端末装置 1の受信部 11に送る。
[0040] 端末装置 1の受信部 11は、送信部 10から送出された信号を受信する。受信部 11 は、送信部 10から受信した信号を TPCビット復号部 12に送る。
[0041] TPCビット復号部 12は、受信部 11で受信された信号から TPCビットと下り通信デ 一タとを分離する。 TPC復号部 12は、分離された TPCビットを TPCビット判定部 13 に送る。
[0042] TPCビット判定部 13は、 TPCビット復号部 12から受信した TPCビットの内容に基 づき、送信電力制御の内容を判定する。 TPCビット判定部 13は、 TPCビットがダウン 指示であれば、送信電力減少と判定し、 TPCビットがアップ指示であれば、送信電力 増加と判定する。 TPCビット判定部 13は、その判定結果を電力制御部 14に入力す る。電力制御部 14は、 TPCビット判定部 13の判定結果に基づいて送出電波の電力 の増減に関する指示を送信部 15に与える。
[0043] 送信部 15は、上り通信データを上り個別チャネルを通じて受信部 4へ送信する。ま た、送信部 15は、電力制御部 14からの指示に基づいて、端末装置 15から送出する 電波の電力を増減する。送信部 15は、増加指示を受け取ると、送出電波の電力を所 定の大きさだけ増加させる。一方、送信部 15は、減少指示を受け取ると送出電波の 電力を所定の大きさだけ減らす。
[0044] 以上述べたように、図 2に示す閉ループ送信電力制御では、端末装置 1が上り個別 チャネル UC1で送信した信号を基地局装置 2が受信し、基地局装置 2がその受信信 号の通信品質を SIRを使用して測定し、測定結果に基づく端末装置 1の送信電力指 示を下り個別チャネル DC1を通じて端末装置 1に与える。端末装置 1は、基地局装 置 2からの指示に基づいて送出電波の電力を増減する。これによつて、上り個別チヤ ネル UC1に送出される電波の電力制御が実行される。
[0045] 図 2には示していないが、端末装置 1は、図 2に示された基地局装置 2が有する構 成を有し、基地局装置 2は、図 2に示された端末装置 1が有する構成を有している。こ れらの構成によって、下り個別チャネル DC1の閉ループ送信電力制御が実行される 。このようにして、端末装置 1及び基地局装置 2は、上り個別チャネルと下り個別チヤ ネルの両方の個別チャネルにおける送出電波の電力を制御することができる。
[0046] 次に、本通信システムにおける終話シーケンスについて説明する。
[0047] 《本通信システムにおける終話シーケンス》
図 3は、図 1に示したような通信システムにおいて、通信装置 59から送信された通 信の切断信号が公衆網 58を通じて移動交換機 57で受信され、移動交換機 57で受 信された切断信号が終話要求として基地局制御装置 3に送信され、その終話要求を 基地局制御装置 3が受信した場合の終話のシーケンスである。
[0048] まず、基地局制御装置 3は、移動交換機 57から送られた終話要求を端末装置 1に 送信する(Sl)。
[0049] 端末装置 1は、基地局装置 2を通じて、基地局制御装置 3から終話要求を受信する と、基地局制御装置 3に終話応答を送信する(S2)。
[0050] 基地局制御装置 3は、基地局装置 2を通じて、端末装置 1から終話応答を受信する と、端末装置 1に無線リソースの上り個別チャネル解放要求 (個別チャネル解放要求 )を送信する(S3)。この個別チャネル解放要求には、端末装置 1が上り個別チャネル を使用する電波の送出を停止するタイミングの情報が含まれている。
[0051] 端末装置 1は、基地局装置 2を通じて、基地局制御装置 3から個別チャネル解放要 求を受信すると、無線リソースの上り個別チャネル解放応答 (個別チャネル解放応答 )を基地局制御装置 3に送信する (S4)。
[0052] 端末装置 1は、個別チャネル解放要求を受信すると、その解放要求に含まれる電 波の停止タイミングの情報に基づいて、無線リソースの上り個別チャネル電波停止処 理を実行する。すなわち、端末装置 1は、個別チャネル解放応答に含まれたタイミン グの情報にしたがったタイミング Aで、上り個別チャネルへの電波送信を停止する(S
1
5)。端末装置 1は、電波の停止後、上り個別チャネルを解放する。
[0053] 一方、基地局制御装置 3は、基地局装置 2を通じて、端末装置 1からの個別チヤネ ル解放応答を受信すると、無線リソースの下り個別チャネル解放要求 (個別チャネル 解放要求)を基地局装置 2に送信する(S6)。この個別チャネル解放要求には、基地 局装置 2が下り個別チャネルを使用する電波の送出を停止するタイミングの情報が含 まれている。
[0054] 基地局装置 2は、個別チャネル解放要求を受信すると、その解放要求に含まれる 電波の停止タイミングの情報に基づ 、て、無線リソースの下り個別チャネル電波停止 処理を実行する。すなわち、基地局装置 2は、解放応答に含まれたタイミングの情報 に従ったタイミング B (タイミング Aと同じタイミング)で下り個別チャネルへの電波送
1 1
信を停止する(S7)。基地局装置 2は、下り個別チャネルを通じて送出する電波の停 止後、下り個別チャネルを解放する。このようにして、端末装置 1と基地局装置 2とは、 同一のタイミングで電波送信を停止する。
[0055] 基地局装置 2は、下り個別チャネルの解放後、基地局制御装置 3に下り個別チヤネ ル解放応答を送信する(S8)。
[0056] 基地局制御装置 3は、基地局装置 2から下り個別チャネル解放応答を受信すると、 基地局装置 2に網側リソースの個別チャネル解放要求を送信する(S9)。
[0057] 基地局装置 2は、基地局制御装置 3からの個別チャネル解放要求を受信すると、個 別チャネル網側回線解放処理を実施する(S10)。基地局装置 2は、個別チャネル網 側回線解放処理を実施することにより、網側リソースに対する個別チャネルを解放す る。
[0058] 基地局装置 2は、網側リソースに対する個別チャネルの解放後、網側リソースの個 別チャネル解放応答を送信する(Sl l)。基地局制御装置 3は、基地局装置 2から、 網側リソースの個別チャネル解放応答を受信する。
[0059] 以上述べたように、本通信システムでは、端末装置 1が上り個別チャネル解放要求 にしたがうタイミング(図 3では時刻 A )で電波送出を停止し、基地局装置 2が下り個
1
別チャネル解放要求にしたがうタイミング(図 3では時刻 B )で電波送出を停止する。
1
このため、基地局制御装置 3は、上り個別チャネル解放要求と下り個別チャネル解放 要求とに送出する電波停止のタイミングが同時になるような (すなわち、 A =Bとなる
1 1 ような)タイミングの情報を含ませる。
[0060] なお、端末装置 1が終話要求を生成して送信する場合では、端末装置 1が終話要 求を送信し、終話応答を受信することが図 3に示した終話シーケンスと逆になる (すな わち、ステップ S1とステップ S2の矢印が逆になる)のみで、他の処理は上記の処理と 同様に実行される。
[0061] 《コネクション'フレーム'ナンバー》
また、本通信システムは、端末装置 基地局装置 2および基地局制御装置 3の間 で、シーケンス番号として、コネクション'フレーム'ナンバー(CFN ; Connection Fram e Number)を使用する。 CFNには 0〜255までの番号が付されている。 CFNは、端 末装置 1、基地局装置 2、および基地局制御装置 3の中で単位時間当たりに 1ずつ 増加し、 255まで数字が増加すると、次は 0となる。 CFNは、各々の呼に対して独立 に存在し、呼の割り当ての際に、各々の呼に対して各々に CFNが割り当てられる。ま た、 CFNは、端末装置 1、基地局装置 2および基地局制御装置 3の中で同期してい る。すなわち、端末装置 1における CFNと、基地局装置 2における CFNと、基地局制 御装置 3における CFNとは、同じ値を持ち、同じタイミングで増加する。したがって、 基地局制御装置 3は、特定の CFNを基地局装置 2や端末装置 1に通知することで、 基地局 2や端末装置 1に特定のタイミングを通知できる。
[0062] 《装置構成》
次に、図 4 図 6を用いて、図 3に示した終話シーケンスを実現するための基地局 制御装置 3、基地局装置 2および端末装置 1の構成をそれぞれ説明する。以下の構 成例では、各装置において、通話の終了時 (終話時)に使用される構成を主として説 明する。
[0063] 〈基地局制御装置の構成〉
図 4は、本発明の実施形態に係る基地局制御装置 3のシステム構成例を説明する ための図である。図 4において、基地局制御装置 3は、装置制御部 16と、架内スイツ チ 17と、送受信部としての基地局インターフェース (IF) 18、送受信部としての移動 交換機インターフェース (IF) 19と、端末装置対向信号 L2終端部 20と、基地局装置 対向信号 L2終端部 21と、移動交換機対向信号 L2終端部 22と、基準タイミング生成 部 23と、ダイバーシチハンドオーバ機能部 24とを備えている。
[0064] 装置制御部 16は、呼接続処理部 61と、移動管理部 31と、無線品質管理部 32とを 備えている。更に、呼接続処理部 61は、終話シーケンスを実現するための機能プロ ックとして、無線リソース管理部 25と、網側リソース管理部 26と、装置内リソース管理 部 27と、タイマ 28と、タイミング作成部 29と、オフセット記憶部 30とを備えている。基 準タイミング生成部 23は、 CFNカウンタ 60を備えて 、る。
[0065] 装置制御部 16は、端末装置 1や基地局装置 2に対する制御情報を生成する。また 、装置制御部 16は、端末装置 1や基地局装置 2から基地局制御装置 3に対する制御 情報を受信したときに、その制御情報に基づく制御を実行する。装置制御部 16は、 基準タイミング生成部 23から、基地局制御装置 3と、基地局装置 2と、端末装置 1との 間で同期を取るためのタイミングの情報の通知を受ける。装置制御部 16は、基準タイ ミング生成部 23から通知されるタイミングの情報を基地局制御装置 3と、基地局装置 2と、端末装置 1との間の同期のために使用する。装置制御部 16は、移動交浦装 置対向信号 L2終端部 22を通じて、移動交換機 57に対して情報を送信したり、移動 交換機 57から情報を受信したりする。装置制御部 16は、基地局装置対向信号 L2終 端部 21を通じて、基地局装置 2に対して情報を送信したり、基地局装置 2から情報を 受信したりする。装置制御部 16は、端末装置対向信号 L2終端部 20を通じて、端末 装置 1に対して情報を送信したり、端末装置 1から情報を受信したりする。
[0066] 架内スィッチ 17は、基地局 IF18と、移動交換機 IF19と、端末装置対向信号 L2終 端部 20と、基地局装置対向信号 L2終端部 21と、移動交換機装置対向信号 L2終端 部 22と、ダイバーシチハンドオーバ機能部 24との間の通信のために使用される。
[0067] 基地局 IF18は、基地局装置 2から信号を受信する。基地局 IF18は、基地局装置 2 に信号を送信する。また、基地局 IF18は、受信した信号を基地局制御装置 3での処 理に適するデータ形式に変換したり、送信するための信号を基地局制御装置 3と基 地局装置 2との間の有線伝送路を使用する通信に適したデータ形式に変換する。
[0068] 移動交 IF19は、移動交 から信号を受信する。移動交 IF19は、移 動交換機 57に信号を送信する。また、移動交換機 IF19は、受信した信号を基地局 制御装置 3での処理に適するデータ形式に変換したり、送信するための信号を基地 局制御装置 3と移動交 との間の有線伝送路を使用する通信に適したデータ 形式に変換する。
[0069] 端末装置対向信号 L2終端部 20は、基地局制御装置 3内での処理を容易にするた めに、端末装置 1からの信号力もデータ部分を取り出す。また、端末装置対向信号 L 2終端部 20は、端末装置 1に送信するためのデータを、端末装置 1に対する通信に 適するデータ形式に変換する。
[0070] 基地局装置対向信号 L2終端部 21は、基地局制御装置 3内での処理を容易にする ために、基地局装置 2からの信号力 データ部分を取り出す。また、基地局装置対向 信号 L2終端部 21は、基地局装置 2に送信するためのデータを、基地局装置 2に対 する通信に適するデータ形式に変換する。
[0071] 移動交換機対向信号 L2終端部 22は、基地局制御装置 3内での処理を容易にする ために、移動交換機 57からの信号力 データ部分を取り出す。また、移動交換機対 向信号 L2終端部 22は、移動交換機 57に送信するためのデータを、移動交換機 57 に対する通信に適するデータ形式に変換する。
[0072] 基準タイミング生成部 23は、基地局制御装置 3と、基地局装置 2と、端末装置 1とで 同期を取るためのタイミングの情報を生成する。基準タイミング生成部 23は、生成し たタイミングの情報を、装置制御部 16が備えるタイミング作成部 29と、ダイバーシチ ハンドオーバ機能部 24とに通知する。
[0073] ダイバーシチハンドォーノ機能部 24は、例えば、端末装置 1があるセル力も他のセ ルに移動する場合の端末装置 1のハンドオーバを実行する。ダイバーシチハンドォ ーバ機能部 24は、端末装置 1のハンドオーバの際、基準タイミング生成部 23からの タイミングの情報に基づいて基地局制御装置 3側でのハンドオーバの制御を実行す る。
[0074] 移動管理部 31は、基地局制御装置 3に接続する基地局装置のうちのどの基地局 制御装置に端末装置 1が接続しているか等に関する、端末装置の接続状況に関す る情報を管理する。無線品質管理部 32は、端末装置 1の通信品質を管理する。無線 品質管理部 32は、例えば、 SIR目標値設定部 6 (図 2)に設定される SIR目標値を設 定する。
[0075] タイマ 28は、時刻を計時する。この時刻は、基地局制御装置 3と基地局装置 2と端 末装置 1とで同期を取れるものであれば、どのような時刻であってもよい。
[0076] オフセット記憶部 30は、所定の CFNのオフセット値や所定の時間幅を記憶してい る。オフセット記憶部 30は、例えば、所定の CFNのオフセット値として 5を、時間幅と して 60msを記憶している。また、オフセット記憶部 30は、上りチャネル解放処理用の オフセット値と、下りチャネル解放処理用のオフセット値とで、個別の値を記憶してお いてもよい。
[0077] 装置内リソース管理部 27は、無線リソース管理部 25と、網側リソース管理部 26と、 タイマ 28と、タイミング作成部 29との間の情報のやりとりを管理する。
[0078] CFNカウンタ 60は、呼ごとに、基地局制御装置 3と、基地局装置 2と、端末装置 1と で同一の値の CFNを持つ。 CFNカウンタ 60は、所定時間ごとに、 CFNの値を 1進 める。 CFNカウンタ 60によって生成される CFNの値は、呼ごとに、基地局制御装置 3 と、基地局装置 2と、端末装置 1とで同期を取るためのタイミング情報として使用される
[0079] 〈基地局装置の構成〉
図 5は、本発明の実施形態に係る基地局装置 2のシステム構成例を説明するため の図である。図 5において、基地局装置 2は、無線部 33と、ベースバンド信号処理部 34と、回線 IF35と、基準タイミング生成部 36と、基地局制御装置対向信号 L2終端 部 37と、呼処理制御部 38とを備えている。
[0080] ベースバンド信号処理部 34は、無線リソース処理部 39および網側リソース処理部 4 0を備えている。呼処理制御部 38は、装置内リソース管理部 42およびタイマ 43を備 えている。基準タイミング生成部 36は、 CFNカウンタ 41を備えている。
[0081] 呼処理制御部 38は、端末装置 1や基地局制御装置 3に対する制御情報を生成す る。また、呼処理制御部 38は、端末装置 1や基地局制御装置 3から基地局装置 2に 対する制御情報を受信したときに、その制御情報に基づく制御を実行する。
[0082] 回線 IF35は、基地局制御装置 3から信号を受信すると、受信した信号が制御信号 であれば基地局制御装置対向信号 L2終端部 37に送り、受信した信号が音声または データであればベースバンド信号処理部 34に送る。また、回線 IF35は、ベースバン ド信号処理部 34または基地局制御装置対向信号 L2終端部 37から音声、データま たは制御信号を受けると、基地局装置 2と基地局制御装置 3との間の有線伝送路に 適したデータ形式に変換し、基地局制御装置 3に送信する。
[0083] 無線部 33は、ベースバンド信号処理部 34から端末装置 1に送信するための信号を 受けると、無線信号に変換し、端末装置 1に送信する。また、無線部 33は、端末装置 1から無線信号を受信すると、受信した無線信号を基地局装置 2内での処理に適し たデータ形式に変換し、ベースバンド信号処理部 34に送る。
[0084] 基地局制御装置対向信号 L2終端部 37は、回線 IF35から制御信号を受けると、制 御信号力もデータを取り出し、呼処理制御部 38が備える装置内リソース管理部 42に 送る。また、基地局制御装置対向信号 L2終端部 37は、装置内リソース管理部 42か らデータを受けると、制御信号に変換し、回線 IF35に送る。 [0085] 基準タイミング生成部 36は、基地局制御装置 3と、基地局装置 2と、端末装置 1とで 同期を取るためのタイミングの情報を生成する。基準タイミング生成部 36は、生成し たタイミングの情報をベースバンド信号処理部 34に通知する。
[0086] タイマ 43は、時刻を備えている。この時刻は、基地局制御装置 3と基地局装置 2と 端末装置 1とで同期を取れるものであれば、どのような時刻であってもよい。タイマ 43 は、装置内リソース管理部 42からの指令によって所定時間を計時する。
[0087] CFNカウンタ 41は、呼ごとに、基地局制御装置 3と、基地局装置 2と、端末装置 1と で同一の値の CFNを持つ。 CFNカウンタ 41は、所定時間ごとに、 CFNの値を 1進 める。 CFNカウンタ 41によって生成される CFNの値は、呼ごとに、基地局制御装置 3 と、基地局装置 2と、端末装置 1とで同期を取るためのタイミング情報として使用される
[0088] 〈端末装置の構成〉
図 6は、本発明の実施形態に係る端末装置 1のシステム構成例を説明するための 図である。図 6において、端末装置 1は、 CODEC部 44と、ベースバンド信号処理部 45と、無線部 46と、制御信号終端部 47と、基準タイミング生成部 48と、装置制御部 49とを備えて ヽる。
[0089] 制御信号終端部 47は、対基地局装置部 52および対基地局制御装置部 53を備え ている。基準タイミング生成部 48は、 CFNカウンタ 54を備えている。装置制御部 49 は、呼接続制御部 55およびタイマ 56を備えている。また、端末装置 1には、マイク 50 およびスピーカ 51が接続されて!、る。
[0090] CODEC部 44は、マイク 50から音声を受信する。 CODEC部 44は、受信した音声 が圧縮符号化された音声データを生成し、ベースバンド信号処理部 45に送る。 CO DEC部 44は、ベースバンド信号処理部 45から音声データを受信すると、復号 (再生 )処理を行って、スピーカから音声を出力するための音声信号に変換し、スピーカ 51 に送信する。
[0091] 装置制御部 49は、基地局装置 2や基地局制御装置 3に対する制御情報を生成す る。また、装置制御部 49は、基地局装置 2や基地局制御装置 3から端末装置 1に対 する制御情報を受信したときに、その制御情報に基づく制御を実行する。 [0092] 無線部 46は、ベースバンド信号処理部 45から基地局装置 2に送信するための信 号を受けると、無線信号に変換し、基地局装置 2に送信する。また、無線部 46は、基 地局装置 2から無線信号を受信すると、受信した無線信号を端末装置 1内での処理 に適したデータ形式に変換し、ベースバンド信号処理部 45に送る。
[0093] 対基地局装置部 52は、基地局装置 2からの制御信号をベースバンド信号処理部 4 5から受けると、その制御信号を呼接続制御部 55に対する指令の形式に変換し、呼 接続制御部 55に通知する。また、対基地局装置部 52は、呼接続制御部 55から基地 局装置 2に対する指令を受けると、基地局装置 2へ送信するための制御信号に変換 し、ベースバンド信号処理部 45に通知する。
[0094] 対基地局制御装置部 53は、基地局制御装置 3からの制御信号をベースバンド信 号処理部 45から受けると、その制御信号を呼接続制御部 55に対する指令の形式に 変換し、呼接続制御部 55に通知する。また、対基地局制御装置部 53は、呼接続制 御部 55から基地局制御装置 3に対する指令を受けると、基地局制御装置 3へ送信す るための制御信号に変換し、ベースバンド信号処理部 45に通知する。
[0095] タイマ 56は、時刻を備えている。この時刻は、基地局制御装置 3と基地局装置 2と 端末装置 1とで同期を取れるものであれば、どのような時刻であってもよい。タイマ 56 は、呼接続制御部 55からの指令によって所定時間を計時する。
[0096] CFNカウンタ 54は、呼ごとに、基地局制御装置 3と、基地局装置 2と、端末装置 1と で同一の値の CFNを持つ。 CFNカウンタ 54は、所定時間ごとに、 CFNの値を 1進 める。 CFNカウンタ 54によって生成される CFNの値は、呼ごとに、基地局制御装置 3 と、基地局装置 2と、端末装置 1とで同期を取るためのタイミング情報として使用される
[0097] マイク 50は、音を受けると、信号に変換し、 CODEC部 44に送信する。スピーカ 51 は、 CODEC部 44から信号を受信すると、受信した信号に応じた音を出力する。
[0098] 《基地局制御装置の動作例》
以下、本発明に係る基地局制御装置 3の動作例を図 7—図 10に基づいて説明する 。動作例において、図 4を適宜使用する。
[0099] <タイミング作成部における処理例 > 図 7は、本発明に係る基地局制御装置 3のタイミング作成部 29における処理例を示 すフローチャートである。図 7に示すフローチャートを用いて、端末装置 1が送出する 電波を停止するタイミングと、基地局装置 2が送出する電波を停止するタイミングとを 算出するまでの基地局制御装置 3の動作を説明する。このフローチャートは、図 3の シーケンスにおけるステップ S2とステップ S3との間に、基地局制御装置 3で実行され る処理の一部を示している。
[0100] 移動交換機 IF19は、移動交換機 57を通じて、通信装置 59からの終話要求 (切断 信号)を受信する。移動交 IF19は、架内スィッチ 17を通じて、終話要求を基地 局 IF18に送る。基地局 IF18は、終話要求を基地局装置 2を通じて、端末装置 1に送 信する。端末装置 1は、終話要求を受信すると、終話要求に対する終話応答を送信 する。
[0101] 基地局 IF18は、端末装置 1からの終話応答を基地局装置 2を通じて受信する。基 地局 IF18は、架内スィッチ 17を通じて、終話応答を端末装置対向 L2終端部 20に 入力する。端末装置対向 L2終端部 20は、終話応答を無線リソース管理部 25および 装置内リソース管理部 27を通じて、タイミング作成部 29に入力する。
[0102] タイミング作成部 29は、終話応答を受ける(S12)。すると、タイミング作成部 29は、 基準タイミング生成部 23が備える CFNカウンタ 60から現時点での CFN (現 CFN)を 取得する(S 13)。
[0103] 次に、タイミング作成部 29は、オフセット記憶部 30から、端末装置 1が送出する無 線電波送信停止のタイミングに関するオフセットの値と、基地局装置 2が送出する無 線電波送信停止のタイミングに関するオフセットの値とを読み出す。
[0104] 次に、タイミング作成部 29は、現時点での CFNと、オフセットの値とから、端末装置 1が送出する無線電波停止のタイミング (A )を算出する。タイミング作成部 29は、現
1
時点での CFNと、オフセットの値とから、基地局装置 2が送出する無線電波停止のタ イミング (B )を算出する(S 14)。
1
[0105] ここで、端末装置 1が送出する電波停止のタイミングと基地局装置 2が送出する電 波停止のタイミングの算出の例を述べる。例えば、端末装置 1の電波送出停止のタイ ミングを Aとし、基地局装置 2の電波送出停止のタイミングを Bとする。ここで、オフセ ット記憶部 30には、所定の CFNに関する数、 Dが格納されている。例えば、 D = 3と
1 1 する。現時点での CFNが Eであったとすると、 A =B =E +Dとなるように Aと Bと
1 1 1 1 1 1 1 をセットする。
[0106] このようにして、タイミング Aとタイミング Bとを同じ CFNにセットすることにより、端末
1 1
装置 1と基地局装置 2とは、同時に、それぞれが送出する電波を停止させることがで きる。
[0107] タイミング作成部 29は、端末装置 1へ送るべきタイミング Aを装置内リソース管理部
1
27を通じて無線リソース管理部 25に通知するとともに、タイミング作成部 29は、基地 局装置 2へ送るべきタイミング Bを装置内リソース管理部 27を通じて無線リソース管
1
理部 25に通知する(S15)。以上の処理が実行されると、タイミング作成部 29におけ る処理は終了する。以上述べた処理を実行することによって、タイミング生成部 29は 、端末装置 1及び基地局装置 2に対する無線電波停止のタイミングを算出できる。
[0108] <無線リソース管理部における上り個別チャネル解放要求の作成例 >
図 8は、基地局制御装置 3の無線リソース管理部 25における処理例を示すフロー チャートである。このフローチャートは、図 3のシーケンスにおけるステップ S2とステツ プ S3との間において、基地局制御装置 3で実行される処理の一部を示している。
[0109] 最初に、無線リソース管理部 25は、装置内リソース管理部 27を通じて、タイミング作 成部 29から端末装置 1が送出する電波の停止のタイミング Aに関する通知を受信す
1
る(S16)。
[0110] 次に、無線リソース管理部 25は、電波停止タイミング Aを含む上り個別チャネル解
1
放要求を作成する(S 17)。次に、無線リソース管理部 25は、端末装置対向信号 L2 終端部 20および架内スィッチ 17を通じて、作成した上り個別チャネル解放要求を基 地局 IF18に送る(S18)。基地局 IF18は、上り個別チャネル解放要求を基地局装置 2を通じて端末装置 1に送信する。
[0111] 次に、無線リソース管理部 25は、所定時間内に上り個別チャネル解放要求に対す る上り個別チャネル解放応答を受信するか否かを判定するためのタイマ (所定時間) のセットを、装置内リソース管理部 27に指示する。装置内リソース管理部 27は、タイ マ 28に所定時間をセットする(S19)。タイマ 28は所定時間の計時を開始する。 [0112] 次に、無線リソース管理部 25は、タイマ 28により計時される時間を参照して、所定 時間が過ぎた力否力、すなわちタイマがタイムアウトした力否かをチェックする(S20) 。このとき、無線リソース管理部 25は、所定時間が過ぎていないと判定すると(S20 ; NO)、ステップ S21の処理に進む。一方、無線リソース管理部 25は、所定の時間が 過ぎたと判定すると (S20 ;YES)、処理を終了する(S22)。この場合、呼の強制的な 解放処理が実行される。
[0113] ステップ S21の処理では、無線リソース管理部 25が、上り個別チャネル解放応答を 受信した力否かを判定する。無線リソース管理部 25は、上り個別チャネル解放応答 を、端末装置対向信号 L2終端部 20から受信するようになっている。無線リソース管 理部 25は、上り個別チャネル解放応答を受信したと判定すると (S21 ; YES)、タイマ 28を停止して、処理を終了する。また、ステップ S21の処理にて、無線リソース管理 部 25は、上り個別チャネル解放応答が受信されていないと判定すると(S21; NO)、 ステップ S20の処理に戻る。
[0114] 以上の処理を実行することによって、無線リソース管理部 25は、端末装置 1におけ る電波送出停止のタイミング Aを含めた上り個別チャネル解放要求を作成し、端末
1
装置対向信号 L2終端部 20および架内スィッチ 17を通じて、基地局 IF18に送ること ができる。基地局 IF 18は、無線リソースの上り個別チャネル解放要求を基地局装置 2 を通じて端末装置 1に送信する(図 3の S3)。
[0115] <無線リソース管理部における下り個別チャネル解放要求の作成例 >
図 9は、基地局制御装置 3の無線リソース管理部 25における処理例を示すフロー チャートである。このフローチャートは、図 3のステップ S4とステップ S6との間におい て、基地局制御装置 3で実行される処理の一部を示して ヽる。
[0116] 最初に、無線リソース管理部 25は、装置内リソース管理部 27を通じて、タイミング作 成部 29から基地局装置 2が送出する電波の停止のタイミング (B )に関する通知を受
1
ける(S23)。
[0117] 次に、基地局 IF18から架内スィッチ 17および端末装置対向信号 L2終端部 20を 通じて無線リソースの上り個別チャネル解放応答が受信されると、無線リソース管理 部 25は、タイミング作成部 29から受けた電波停止タイミング Bを含む無線リソースの 下り個別チャネル解放要求を作成する(S24)。
[0118] 続いて、無線リソース管理部 25は、基地局装置対向信号 L2終端部 21および架内 スィッチ 17を通じて、作成した無線リソースの下り個別チャネル解放要求を基地局 IF 18に送る(S25)。基地局 IF18は、受けた下り個別チャネル解放要求を有線伝送路 を通じて基地局装置 2に送信する。
[0119] 無線リソース管理部 25は、所定時間内に無線リソースの上り個別チャネル解放応 答を受信する力否かを判定するためのタイマ (所定時間)のセットを、装置内リソース 管理部 27に指示する。装置内リソース管理部 27は、タイマ 28に所定時間をセットす る(S26)。タイマ 28は所定時間の計時を開始する。
[0120] 無線リソース管理部 25は、タイマ 28で計時される時間を参照して、無線リソースの 下り個別チャネル解放応答を受信するまでの間に所定時間が過ぎたか否か、すなわ ちタイムアウトした力否かをチェックする(S27)。もしも、無線リソース管理部 25は、所 定時間が過ぎていないと判定すると (S27 ;NO)、ステップ S28の処理に進む。これに 対し、無線リソース管理部 25は、所定時間が過ぎたと判定する (S27 ; YES)と、処理 を終了する。この場合、呼の強制的な解放処理が実行される。
[0121] ステップ S28の処理では、無線リソース管理部 25が、無線リソースの下り個別チヤ ネル解放応答を受信したカゝ否かを判定する。無線リソース管理部 25は、無線リソース の下り個別チャネル解放応答を、基地局装置対向信号 L2終端部 21から受信するよ うになつている。
[0122] 無線リソース管理部 25は、無線リソースの下り個別チャネル解放応答を受信したと 判定すると (S28 ;YES)、処理を終了する。また、ステップ S28の処理にて、無線リソ ース管理部 25は、無線リソースの下り個別チャネル解放応答を受信していないと判 定する (S28 ;NO)と、ステップ S27の処理に戻る。
[0123] 以上の処理を実行することによって、無線リソース管理部 25は、基地局装置 2の電 波送出停止のタイミング Bを含めた下り個別チャネル解放要求を作成し、基地局装
1
置対向信号 L2終端部 21および架内スィッチ 17を通じて、基地局 IF18に送る。基地 局 IF18は、下り個別チャネル解放要求を基地局装置 2に送信する(図 3の S6)。
[0124] <網側リソース管理部における処理の例 > 図 10は、基地局制御装置 3の網側リソース管理部 26における処理例を示すフロー チャートである。このフローチャートは、図 3のステップ S8とステップ S9との間におい て、基地局制御装置 3で実行される処理の一部を示している。また、図 10に示すフロ 一チャートの説明は、図 4に示した基地局制御装置 3のシステム構成に基づいて行う
[0125] 最初に、網側リソース管理部 26は、基地局装置対向信号 L2終端部 21を通じて無 線リソースの下り個別チャネル解放応答を受信する(S30)。
[0126] 次に、網側リソース管理部 26は、基地局装置 2に個別チャネル網側回線解放処理 を実施させるための網側リソースの個別チャネル解放要求を作成する(S31)。続い て、網側リソース管理部 26は、基地局装置対向信号 L2終端部 21および架内スイツ チ 17を通じて、作成した個別チャネル解放要求を基地局 IF18に送る(S32)。基地 局 IF18は、受けた個別チャネル解放要求を有線伝送路を通じて基地局装置 2に送 信する。
[0127] 次に、網側リソース管理部 26は、所定時間内に個別チャネル解放要求に対する個 別チャネル解放応答を受信するカゝ否かを判定するためのタイマ (所定時間)を、装置 内リソース管理部 27を通じて、タイマ 28を使用してセットする(S33)。網側リソース管 理部 26は、タイマ 28で計時される時間を参照して、無線リソースの下り個別チャネル 解放応答を受信するまでの間に所定時間が過ぎた力否か、すなわちタイムアウトした か否かをチェックする(S34)。このとき、網側リソース管理部 26は、所定時間が過ぎ ていないと判定すると (S34 ;NO)、ステップ S35の処理に進む。これに対し、網側リソ ース管理部 26は、所定時間が過ぎたと判定する (S34 ; YES)と、処理を終了する。
[0128] ステップ S35の処理では、網側リソース管理部 26が、網側リソースの個別チャネル 解放応答を受信したか否かを判定する(S35)。網側リソース管理部 26は、網側リソ ースの個別チャネル解放応答を、基地局装置対向信号 L2終端部 21から受信するよ うになつている。
[0129] 網側リソース管理部 26は、網側リソースの個別チャネル解放応答を受信したと判定 する(S35 ;YES)と、網側リソース管理部 26における処理を終了する。また、ステップ S35の処理にて、網側リソース管理部 26は、網側リソースの個別チャネル解放応答 が受信されていないと判定する(S35 ;NO)と、ステップ S34の処理に戻る。
[0130] 以上の処理を実行することによって、網側リソース管理部 26は、網側リソースの個 別チャネル解放要求を作成し、基地局装置対向信号 L2終端部 21および架内スイツ チ 17を通じて、基地局 IF18に送る。基地局 IF18は、網側リソースの個別チャネル解 放要求を基地局装置 2に送信する(図 3の S9)。
[0131] 《基地局装置の動作例》
以下、本発明に係る基地局装置 2の動作例を図 11に基づいて説明する。図 11は、 基地局装置 2における処理動作例を示すフローチャートである。このフローチャート は、図 3のシーケンスにおけるステップ S6と S8の間で、基地局装置 2で実行される処 理 (S7)を示している。図 11に示すフローチャートの説明は、図 5に示した基地局装 置 2のシステム構成に基づいて行う。
[0132] 最初に、呼処理制御部 38が備える装置内リソース管理部 42は、回線 IF35から基 地局制御装置対向信号 L2終端部 37を通じて無線リソースの下り個別チャネル解放 要求 (個別チャネル解放要求)を受信することで処理を開始する(S37)。装置内リソ ース管理部 42は、受信された下り個別チャネル解放要求をベースバンド信号処理部 34が備える無線リソース処理部 39に送る。
[0133] 無線リソース処理部 39は、基準タイミング生成部 36が備える CFNカウンタ 41から 現時点での CFNを取得する(S38)。
[0134] 次に、無線リソース処理部 39は、装置内リソース管理部 42からの解放要求によって 、基地局装置 2から送出する電波を停止するタイミング Aとなる CFN番号を取得する
1
。続いて、無線リソース処理部 39は、取得した CFN番号と、現時点での CFNから、 電波送出停止までの時間 T (2)を算出する。例えば、その解放要求に含まれる電波
d
送出停止のタイミングとなる CFN番号を N、ステップ S38の処理で取得した現時点
a
での CFN番号を N (2)、 CFNが 1進む際に力かる時間を Tとすると、基地局装置 2 力 端末装置 1に向けて送出する電波を停止させる指令を出すまでの時間 T (2)は
d
T (2) =T X [Ν (2) Ν ]と求まる。
d c b a
[0135] 次に、無線リソース処理部 39は、算出された電波送出停止までの時間 T (2)が 100
d
ms以上か否かを判定する(S39)。ステップ S39の処理で、算出した時間 T (2)が 100 msより短い (T (2)く 100ms)と判定される(S39 ;NO)と、無線リソース処理部 39はス d
テツプ S40の処理に進む。ステップ S39の処理で、算出された時間 T (2)が 100ms以
d
上であると判定される(T (2) > = 100ms) (S39 ;YES)と、無線リソース処理部 39は
d
ステップ S42の処理に進む。
[0136] ステップ S39の処理は、所定時間を設け、算出された時間がその所定時間よりも長 い場合、電波送出停止と個別チャネル解放を早める処理である。この処理により、電 波停止処理および個別チャネル解放までの時間の短縮と、当該の時間の短縮により 電波送出にかかる電力の浪費を抑えることができる。
[0137] ステップ S40の処理にて、無線リソース処理部 39は、基準タイミング生成部 36が備 える CFNカウンタ 41から現時点での CFNを取得する(S40)。この CFNを Nとする。
f 無線リソース処理部 39は、ステップ S40の処理で取得した CFNを用いて、電波停止 のタイミングであるか否かを判定する(S41)。ステップ S41の処理にて、電波停止の タイミングではない(N >N )と判定されると(S41 ;NO)、無線リソース処理部 39はス
a f
テツプ S40の処理に戻る。ステップ S41の処理にて、電波停止のタイミングである(N
a
< =N )と判定されると(S41; YES)、無線リソース処理部 39はステップ S44の処理 f
に進む。
[0138] ステップ S42の処理にて、無線リソース処理部 39は、装置内リソース管理部 42を通 じて、タイマ 43を用いて、 100msのタイマを起動する(S42)。
[0139] 無線リソース処理部 39は、タイマ 43で計時される時間を参照して、 100msのタイマ 力 Sタイムアウトしたか否かを判定する(S43)。 100msのタイマがタイムアウトしたと判定 されない(S43 ;NO)と、無線リソース処理部 39はステップ S43の処理に戻る。また、 100msのタイマがタイムアウトしたと判定される(S43; YES)と、無線リソース処理部 3 9は S44の処理に進む。
[0140] ステップ S44の処理では、無線リソース処理部 39は無線部 33に対して無線リソース の下り個別チャネル電波停止処理 (電波停止処理)を実施するよう指令する。
[0141] 無線部 33は、無線リソースの下り個別チャネル電波停止処理の指令を受けると、端 末装置 1に対する下り個別チャネルを使用して送出する電波を停止させる。無線部 3 3は、端末装置 1に対する送出電波の停止後、無線リソースの下り個別チャネルを解 放させる。
[0142] 次に、無線リソース処理部 39は、装置内リソース管理部 42および基地局制御装置 対向信号 L2終端部 37を通じて、回線 IF35に無線リソースの下り個別チャネル解放 応答を送る(S45)。回線 IF35は、下り個別チャネル解放応答を基地局制御装置 3に 送信する。
[0143] 次に、回線 IF35は、基地局制御装置 3から網側リソースの個別チャネル解放要求 を受信すると、受信した解放要求を基地局制御装置対向信号 L2終端部 37を通じて 、装置内リソース管理部 42に送る。装置内リソース管理部 42は、回線 IF35から網側 リソースの個別チャネル解放要求を受信すると、網側リソース処理部 40に網側リソー スの個別チャネルの解放を要求する。網側リソース処理部 40は、網側リソースの個別 チャネルの解放要求を受けると、回線 IF35を用いて個別チャネル網側回線解放処 理を実施する(S46 ;図 3の S10)。これによつて、網側リソースは解放される。
[0144] ステップ S46の処理の終了後、網側リソース処理部 40は、解放応答を装置内リソー ス管理部 42に通知する。装置内リソース管理部 42は、網側リソース処理部 40から網 側リソースに関する解放応答を受けると、解放応答を作成して基地局制御装置対向 信号 L2終端部 37を通じて回線 IF35に送り、処理を終了する。解放応答は、回線 IF 35から基地局制御装置 3に送信される(図 3の SI 1)。
[0145] 以上述べたようにして、基地局装置 2は、基地局制御装置 3から電波送出停止のタ イミングの指定を含む無線リソースの下り個別チャネル解放要求を受信することにより 、基地局制御装置 3から指定された特定のタイミングで基地局装置 2から下り個別チ ャネルを使用して電波の送出を停止し、下り個別チャネルを解放する。次に、基地局 装置 2は、網側リソースの解放要求を受信すると、基地局装置 2と基地局制御装置 3 との間の網側リソースの個別チャネルを解放する。
[0146] 《端末装置の動作例》
図 12は、端末装置 1における処理動作例を示すフローチャートである。このフロー チャートは、図 3のシーケンスにおけるステップ S3〜5の間に、端末装置 1で実行され る処理を示している。図 12に示すフローチャートの説明は、図 6に示した基地局装置 2のシステム構成に基づ!/、て行う。 [0147] 最初に、装置制御部 49が備える呼接続制御部 55は、無線部 46、ベースバンド信 号処理部 45および対基地局制御装置部 53を通じて、無線リソースの上り個別チヤネ ル解放要求を受けとる(S48)。すると、呼接続制御部 55は、無線リソースの上り個別 チャネル解放応答を作成し、対基地局制御装置部 53およびベースバンド信号処理 部 45を通じて、無線部 46に送る(S49)。無線部 46は、受けた解放応答を基地局 2 を通じて基地局制御装置 3に送信する。
[0148] 次に、呼接続制御部 55は、ベースバンド信号処理部 45に上り個別チャネルの解放 要求を通知する。ベースバンド信号処理部 45は、 CFNカウンタ 54力 現時点での C FNを取得する(S50)。
[0149] また、ベースバンド信号処理部 45は、呼接続制御部 55からの解放要求から、端末 装置 1から基地局装置 2に対する電波の送出を停止するタイミングとなる CFN番号を 取得する。続いて、ベースバンド信号処理部 45は、取得した CFN番号と、現時点で の CFNから、送出電波停止までの時間 T (1)算出する。例えば、無線リソースの上り d
個別チャネル解放要求に含まれる送出電波停止のタイミング Bとなる CFN番号を N
1
、ステップ S50の処理で取得した現時点での CFN番号を N (1)、 CFN番号が 1進む
b
のにかかる時間を τとすると、送出する電波を停止するまでの時間 τ (1)は τ (1) =
c d d
Τ X [N (1)— N ]と求まる。
[0150] 続いて、ベースバンド信号処理部 45は、算出した電波停止までの時間 T (1)が 100 d ms以上か否かを判定する(S51)。ステップ S51の処理で、算出した時間 T (1)が 100 d msより短い(T (1)く 100ms)と判定されると(S51 ;NO)、ベースバンド信号処理部 4 d
5はステップ S52の処理に進む。ステップ S51の処理で、算出された時間 T (1)が 10 d
0ms以上 (T (1) > = 100ms)と判定されると(S51 ; YES)、ベースバンド信号処理部 d
45はステップ S54の処理に進む。
[0151] ステップ S51の処理は、所定時間を設け、算出された時間がその所定時間よりも長 い場合、電波送出停止と個別チャネル解放を早める処理である。この処理により、電 波停止処理および個別チャネル解放までの時間の短縮と、当該の時間の短縮により 電波送出にかかる電力の浪費を抑えることができる。ステップ S52の処理にて、ベー スバンド信号処理部 45は、 CFNカウンタ 54から現時点での CFNを取得する(S52) 。この CFNを Nとする。
f
[0152] ベースバンド信号処理部 45は、ステップ S52の処理で取得した Nと Nとを用いて、
f a
電波停止のタイミング Nであるか否かを判定する(S53)。ステップ S53の処理にて、
a
電波停止のタイミングではない(N >N )と判定されると(S53 ;NO)と、ベースバンド
a f
信号処理部 45はステップ S52の処理に戻る。ステップ S53の処理にて、電波停止の タイミングである(N < =N )と判定されると(S53; YES)、ベースバンド信号処理部 4
a f
5はステップ S56の処理に進む。
[0153] ステップ S54の処理にて、ベースバンド信号処理部 45は、呼接続制御部 55を通じ て、タイマ 56を使用して 100msのタイマをセットし、起動する(S54)。ベースバンド信 号処理部 45は、タイマ 56で計時される時間を参照して、 100msのタイマがタイムァゥ トしたか否かを判定する(S55)。 100msのタイマがタイムアウトしたと判定される(S55 ; NO)と、ベースバンド信号処理部 45は S55の処理に戻る。また、 100msのタイマがタ ィムアウトしたと判定される(S55; YES)と、ベースバンド信号処理部 45は S56の処 理に進む。
[0154] ステップ S56では、ベースバンド信号処理部 45は無線リソースの上り個別チャネル 電波停止処理 (電波停止処理)の実施する(S56)。このとき、ベースバンド信号処理 部 45は、無線部 46に電波送信停止を指示する。
[0155] 無線部 46は、無線リソースの上り個別チャネル電波停止処理の実地の指令を受け ると、基地局装置 2に対する上り個別チャネル電波送出を停止し、上り個別チャネル を解放する。ステップ S56が終了すると、図 12の処理が終了する。
[0156] 以上述べたようにして、端末装置 1は、基地局制御装置 3から送出電波停止のタイ ミングの指定を含む無線リソースの上り個別チャネル解放要求を受信することにより、 基地局制御装置 3から指定された特定のタイミングで端末装置 1から上り個別チヤネ ルを使用して送出する電波を停止し、上り個別チャネルを解放する。
[0157] 《基地局装置が終話の際に個別チャネルに消費する電力》
図 13は、基地局装置 2が終話の際に無線リソースの下り個別チャネルに消費する 電力を示す図である。ここでは比較のために図 16を参照する。本発明を適用した通 信システムでは、図 3に示したように、上り個別チャネル電波停止処理の実施タイミン グ Aと下り個別チャネル電波停止処理の実施タイミング Bとが同じとなるように、基地
1 1
局制御装置 3は、端末装置 1に対して送信する個別チャネル解放要求に含まれるタ イミング Aと、基地局装置 2に対して送信する個別チャネル解放要求に含まれるタイ
1
ミング Bとをそれぞれ指定する。
1
[0158] したがって、基地局装置 2及び端末装置 1が同時に電波の送出を停止するので、 図 3のステップ S4の処理にて端末装置 1が個別チャネル解放応答を送信した時刻 C
1 から、基地局装置 2が送出する電波が停止処理を行う時刻 Aまでの間、電波送信停
1
止タイミングの待ち時間として、端末装置 1が送出する電波の停止処理は行われない 。したがって、基地局装置 2において、端末装置 1から送信される TPCビットの受信は 途切れない。このことから、基地局装置 2から下り個別チャネルに使用される送信電 力は、電波送信の停止まで TPCビットによって制御されるために、図 13に示すように 、誤作動により送信電力が上昇することがない。このようにして、本通信システムは、 誤作動を抑えることができる。
[0159] また、基地局装置 2が消費する電力は、無駄な電力上昇が抑えられることで、従来 よりも抑えられる。したがって、本通信システムは、無駄な電力の浪費を抑えることが できる。
[0160] 基地局装置 2が、下り方向への割当可能な総電力から割当済み電力を差し引いた 残りの電力を参照する新規呼受付判断を実施するシステムを搭載している場合にお いては、図 13に示すように、割当済みの呼が無駄な電力を消費しないことから、従来 のシステムよりも新規呼を多く受け付けられる可能性がある。
[0161] また、端末装置よりも基地局装置の方が早く送出電波を停止するシステムにおいて も、本発明を適用することにより、端末装置力も上り個別チャネルに使用される送信 電力は、電波送信の停止まで TPCビットによって制御されるために、図 13に示すよう になる。このようにして、本通信システムは、端末装置側においても誤動作を抑えるこ とがでさる。
[0162] また、本通信システムで使用する個別チャネル解放要求は、従来のシステムでも使 用される制御情報であるので、本発明は従来のシステムで使用されて 、た制御情報 に改良をカ卩えるのみで実施できる。そのため、従来のシステムにおける制御情報とほ ぼ変わらない情報量で、本発明を実施できる。
[0163] 《変形例 1》
以上、本発明の実施形態において、端末装置 1と基地局装置 2とは、基地局制御 装置 3が指定した CFNに基づいて、それぞれの装置力も個別チャネルを使用して送 出する電波を停止させていた。一方で、以下で説明するように、本実施形態を変形 することにより、端末装置 1と基地局装置 2とは、基地局制御装置 3が指定する時刻や 時間幅に基づいて、それぞれの装置力も送出させる電波を停止させることができる。
[0164] <基地局制御装置が指定する時刻に基づ!/、て電波停止処理を実施する変形例 > 本変形例の場合、基地局制御装置 3が備えるタイミング作成部 29は、終話応答を 受信した時刻をタイマ 28を参照して記憶する。続いて、タイミング作成部 29は、オフ セット記憶部 30から所定の時間幅のオフセット値を読み出す。次に、タイミング作成 部 29は、オフセット記憶部 30から読み出したオフセット値と終話応答を受信した時刻 とを加えた時刻を算出する。タイミング作成部 29は、この算出結果を無線リソース管 理部 25に通知する。
[0165] 基地局制御装置 3の無線リソース管理部 25は、タイミング作成部 29から入力された 時刻を、上り個別チャネル解放要求と下り個別チャネル解放要求とにそれぞれ含ま せる。
[0166] 続いて、端末装置 1のベースバンド信号処理部 45は、呼接続制御部 55を通じて、 送出電波停止のタイミングを含む無線リソースの上り個別チャネル解放要求を受信し た際、タイマ 56による計時を参照して、受信した解放要求に含まれる時刻に端末装 置 1から上り個別チャネルを使用して送出する電波の停止を無線部 46に指示する。 送出電波停止の指示がされた無線部 46は、上り個別チャネルを使用して送出する 電波を停止させ、上りチャネルを解放する。
[0167] 一方、基地局装置 2の無線リソース処理部 39は、送出電波停止のタイミングを含む 無線リソースの下り個別チャネル解放要求を受信した際、タイマ 43による計時を参照 して、受信した解放要求に含まれる時刻に基地局装置 2から送出する電波の停止を 無線部 33に指示する。送出電波停止の指示がされた無線部 33は、下り個別チヤネ ルを使用して送出する電波を停止させる。 [0168] 以上述べたように、本変形例では、基地局制御装置 3が作成した個別チャネル解 放要求に含まれる時刻に基づいて、端末装置 1と基地局装置 2とが送出電波を停止 することができる。
[0169] <基地局制御装置が指定する時間幅に基づいて電波停止処理を実施する変形例
>
本変形例の場合、基地局制御装置 3が備えるオフセット記憶部 30は、基地局装置 2用の送出電波停止までの時間幅に関するオフセット値と、端末装置 1用の送出電 波停止までの時間幅に関するオフセット値とを記憶している。基地局装置 2用の送出 電波停止までの時間幅は、端末装置 1が無線リソースの上り個別チャネル解放応答 を送信し、基地局制御装置 3がその解放応答を受信し、基地局制御装置 3が無線リ ソースの下り個別チャネル解放要求を送信し、基地局装置 2がその解放要求を受信 する時間に関して、端末装置 1用の送出電波停止までの時間幅よりも短くなつている 。タイミング作成部 29は、オフセット記憶部 30から、これら二つのオフセット値を読み 取り、端末装置 1用の送出電波停止までの時間幅に関するオフセット値と、基地局装 置 2用の送出電波停止までの時間幅に関するオフセット値とを無線リソース管理部 2 5にぞれぞれ通知する。
[0170] 無線リソースの上り個別チャネル解放処理部 22と、無線リソースの下り個別チヤネ ル解放処理部 26とは、タイミング作成部 25から入力された時間幅を個別チャネル解 放要求にそれぞれ含ませる。
[0171] 続いて、端末装置 1が備えるベースバンド信号処理部 45は、送出電波停止のタイミ ングを含む無線リソースの上り個別チャネル解放要求を受信した際、タイマ 56による 計時を参照して、受信した解放要求に含まれる時間後に端末装置 1から上り個別チ ャネルを使用して送出する電波の停止を無線部 46に指示する。送出電波停止の指 示がされた無線部 46は、上り個別チャネルを使用して送出する電波を停止させ、上 り個別チャネルを解放する。
[0172] 一方、基地局装置 2が備える無線リソース処理部 34は、送出電波停止のタイミング を含む無線リソースの下り個別チャネル解放要求を装置内リソース管理部 42を通じ て受信した際、タイマ 43による計時を参照して、受信した解放要求に含まれる時間後 に基地局装置 2から送出する電波の停止を無線部 33に指示する。送出電波停止の 指示がされた無線部 33は、下り個別チャネルを使用して送出する電波を停止させ、 下り個別チャネルを解放する。
[0173] 以上述べたように、本変形例では、基地局制御装置 3が作成した個別チャネル解 放要求に含まれる時間幅に基づいて、端末装置 1と基地局装置 2とが送出電波を停 止することができる。
《変形例 2》
図 14は、本発明の変形例に係る終話のシーケンスを示す図である。図 14は、図 1 に示したような通信システムにお 、て、通信装置 59から送信された通信の切断信号 が公衆網 58を通じて移動交 で受信され、移動交 で受信された切断 信号が終話要求として基地局制御装置 3に送信され、その終話要求を基地局制御 装置 3が受信した場合の終話のシーケンスである。
[0174] まず、基地局制御装置 3は、基地局装置 2を通じて、通信装置 59からの終話要求 を端末装置 1に送信する(S57)。端末装置 1は、基地局装置 2を通じて、基地局制御 装置 3からの終話要求を受信すると、基地局制御装置 3に終話応答を送信する (S58
) o
[0175] 基地局制御装置 3は、基地局装置 2を通じて、端末装置 1から終話応答を受信する と、端末装置 1に無線リソースの上り個別チャネル解放要求 (個別チャネル解放要求 )を送信する(S59)。
[0176] 端末装置 1は、電波送出停止のタイミングとして、所定の CFNのオフセット値を備え ている。端末装置 1は、上り個別チャネル解放要求を受信すると、このオフセット値を 含む上り個別チャネル解放応答を作成する。端末装置 1は、作成した上り個別チヤネ ル解放応答を基地局制御装置 3に向けて送信する(S60)。
[0177] また、端末装置 1は、上り個別チャネル解放要求を受信すると、端末装置 1が備える タイミングで、無線リソースの上り個別チャネル電波停止処理を実行する。すなわち、 端末装置 1は、タイミング Aで、上り個別チャネルへの電波送信を停止する(S61)。
2
端末装置 1は、電波の停止後、上り個別チャネルを解放する。
[0178] 一方、基地局制御装置 3は、基地局装置 2を通じて、端末装置 1からの個別チヤネ ル解放応答を受信すると、無線リソースの下り個別チャネル解放要求を基地局装置 2 に送信する(S62)。この個別チャネル解放要求には、上り個別チャネル解放応答に 含まれて!/、た電波送出停止のタイミング情報が含まれて!/、る。
[0179] 基地局装置 2は、個別チャネル解放要求を受信すると、その解放要求に含まれる 電波の停止タイミングの情報に基づ 、て、無線リソースの下り個別チャネル電波停止 処理を実行する。すなわち、基地局装置 2は、解放応答に含まれたタイミングの情報 に従ったタイミング B (タイミング Aと同じタイミング)で下り個別チャネルへの電波送
2 2
信を停止する(S63)。基地局装置 2は、下り個別チャネルを通じて送出する電波の 停止後、下り個別チャネルを解放する。このようにして、端末装置 1と基地局装置 2と は、同一のタイミングで電波送信を停止する。基地局装置 2は、下り個別チャネルの 解放後、基地局制御装置 3に下り個別チャネル解放応答を送信する(S64)。
[0180] 基地局制御装置 3は、基地局装置 2から下り個別チャネル解放応答を受信すると、 基地局装置 2に網側リソースの個別チャネル解放要求を送信する(S65)。
[0181] 基地局装置 2は、基地局制御装置 3からの個別チャネル解放要求を受信すると、個 別チャネル網側回線解放処理を実施する(S66)。基地局装置 2は、個別チャネル網 側回線解放処理を実施することにより、網側リソースに対する個別チャネルを解放す る。
[0182] 基地局装置 2は、網側リソースに対する個別チャネルの解放後、網側リソースの個 別チャネル解放応答を送信する(S67)。基地局制御装置 3は、基地局装置 2から、 網側リソースの個別チャネル解放応答を受信する。
[0183] 以上述べたように、本通信システムでは、端末装置 1が上り個別チャネル解放要求 にしたがうタイミング(図 14では時刻 A )で電波送出を停止し、基地局装置 2が下り個
2
別チャネル解放要求にしたがうタイミング(図 14では時刻 B )で電波送出を停止する
2
。このため、端末装置 1は、上り個別チャネル解放要求と下り個別チャネル解放要求 とに送出する電波停止のタイミングが同時になるような (すなわち、 A =Bとなるような
2 2
)タイミングの情報を含ませる。
[0184] なお、端末装置 1が終話要求を生成して送信する場合では、端末装置 1が終話要 求を送信し、終話応答を受信することが図 14に示した終話シーケンスと逆になる (す なわち、ステップ SIとステップ S2の矢印が逆になる)のみで、他の処理は上記の処 理と同様に実行される。
したがって、この変形例で示したように、端末装置 1が電波送出停止のためのタイミ ングのオフセット値を備え、そのオフセット値が基地局装置 2に伝達されることにより、 端末装置 1と基地局装置 2とは同時に電波送出を停止するように電波送出停止を実 行できる。

Claims

請求の範囲
[1] 無線装置間で無線電波の送受信が行われているときに、少なくとも一方の無線装置 が他方の無線装置から受信する無線電波に基づいて、前記他方の無線装置が送信 する無線電波の送信電力を制御するための電力制御情報を含む無線電波を前記他 方の無線装置に送信する無線装置にっ 、て、各無線装置が無線電波送信を同時に 停止するための制御情報を生成する生成部と、
前記制御情報を各無線装置に向けて送信する送信部と、
を含む無線通信制御装置。
[2] 前記制御情報は、前記各無線装置が無線電波送信を停止するタイミングを示すタイ ミング'青報である
請求項 1記載の無線通信制御装置。
[3] 前記生成部は、前記無線装置間で無線電波を用いて送受信されるフレームのシー ケンス番号を用いて特定されるタイミング情報を生成する
請求項 2記載の無線通信制御装置。
[4] 前記生成部は、時刻を用いて特定されるタイミング情報を生成する
請求項 2記載の無線通信制御装置。
[5] 前記生成部は、現在のシーケンス番号を管理するシーケンス番号管理部と、シーケ ンス番号のオフセット値を記憶したオフセット記憶部とを含み、
前記生成部は、前記シーケンス番号管理部力 得られる現在のシーケンス番号に 前記オフセット記憶部から得られるオフセット値を加えたシーケンス番号を前記タイミ ング情報として生成する
請求項 3記載の無線通信制御装置。
[6] 前記無線装置の一方は、無線端末装置であり、
前記無線装置の他方は、基地局装置であり、
前記無線端末装置が相手方の無線端末装置と双方向の通信を行う場合に、前記 無線端末装置と前記基地局装置との間に、前記通信に使用される個別チャネルとし て、前記無線端末装置から前記基地局装置への無線電波送信に使用される第 1の チャネルと、前記基地局装置から前記無線端末装置への無線電波送信に使用され る第 2のチャネルとが確保され、
前記送信部は、前記通信の終了要求受信を契機として、前記制御情報を含む前 記第 1のチャネルの解放要求を前記無線端末装置へ送信するとともに、前記制御情 報を含む前記第 2のチャネルの解放要求を前記基地局装置へ送信する
請求項 1記載の無線通信制御装置。
[7] 相手側無線装置との無線電波の送受信時に、前記相手側無線装置から受信した無 線電波に基づいて得られる前記相手側無線装置が送信する送信電力を制御するた めの電力制御情報を含む無線電波を前記相手側無線装置に送信する、及び Z又 は、前記相手側無線装置から受信した電力制御情報に基づ!、て前記相手側無線装 置へ送信する送信電力を制御する無線装置であって、
前記相手側無線装置で行われる前記無線装置への無線電波送信停止のタイミン グを含む制御情報を受信する受信部と、
前記受信部によって受信された前記タイミングに従って前記相手側無線装置への 電波送信を停止する制御部と
を含む無線装置。
[8] 第 1の無線装置から第 2の無線装置への無線電波送信に使用される第 1のチャネル と、前記第 2の無線装置から前記第 1の無線装置への無線電波送信に使用される第 2のチャネルとを用いた無線通信が実行され、且つ前記第 1及び第 2のチャネルの少 なくとも一方についての無線電波の送信電力制御の制御情報が前記第 1及び Z又 は第 2のチャネルを用いて送受信される状況下において、前記無線通信の終了を制 御する無線通信制御装置であって、
前記第 1の無線装置に対し、前記第 1の無線装置が無線電波送信を停止するため の前記第 1のチャネルの解放要求を前記第 1の無線装置に送信する手段と、 前記第 1の無線装置で生成される、前記第 1のチャネルの解放要求に対する応答 であって、前記第 1の無線装置での無線電波送信の停止タイミングを示すタイミング 情報を含む応答を受信する手段と、
前記第 2の無線装置が前記タイミング情報に従って無線電波送信を停止するように 、前記タイミング情報を含む前記第 2のチャネルの解放要求を前記第 2の無線装置 へ送信する手段と、
を含む無線通信制御装置。
前記無線電波の送受信を終了させるためのメッセージを受信する受信部とをさらに 含み、
前記生成部は、前記メッセージの受信時を基準として各無線装置の電波送信停止 タイミングを決定し、該タイミングを含む制御情報を生成する
請求項 1記載の無線通信制御装置。
PCT/JP2005/016345 2005-09-06 2005-09-06 無線通信制御装置および無線装置 WO2007029314A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007534211A JP4616887B2 (ja) 2005-09-06 2005-09-06 無線通信制御装置および無線装置
PCT/JP2005/016345 WO2007029314A1 (ja) 2005-09-06 2005-09-06 無線通信制御装置および無線装置
EP05782227A EP1924010A4 (en) 2005-09-06 2005-09-06 RADIO COMMUNICATION CONTROL AND RADIO DEVICE
US12/071,459 US20080161010A1 (en) 2005-09-06 2008-02-21 Wireless communication control device and wireless device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/016345 WO2007029314A1 (ja) 2005-09-06 2005-09-06 無線通信制御装置および無線装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/071,459 Continuation US20080161010A1 (en) 2005-09-06 2008-02-21 Wireless communication control device and wireless device

Publications (1)

Publication Number Publication Date
WO2007029314A1 true WO2007029314A1 (ja) 2007-03-15

Family

ID=37835451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/016345 WO2007029314A1 (ja) 2005-09-06 2005-09-06 無線通信制御装置および無線装置

Country Status (4)

Country Link
US (1) US20080161010A1 (ja)
EP (1) EP1924010A4 (ja)
JP (1) JP4616887B2 (ja)
WO (1) WO2007029314A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023089789A1 (ja) * 2021-11-19 2023-05-25 株式会社Nttドコモ 基地局及び通信方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10178377A (ja) * 1996-12-17 1998-06-30 Nec Corp 多方向多重通信システムの送信出力電力制御方法
JPH11234201A (ja) * 1998-02-19 1999-08-27 Mitsubishi Electric Corp 無線通信システム
JP2004032211A (ja) 2002-06-24 2004-01-29 Ntt Docomo Inc 移動通信システムにおける無線チャネル設定方法、移動通信システム及び移動通信制御装置
JP2004112097A (ja) 2002-09-13 2004-04-08 Toshiba Corp 電力制御モジュールおよび無線通信端末

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3163254B2 (ja) * 1996-05-31 2001-05-08 松下電器産業株式会社 デジタル/アナログ共用携帯電話装置とその待ち受け方法
US6275478B1 (en) * 1998-07-10 2001-08-14 Qualcomm Incorporated Methods and apparatuses for fast power control of signals transmitted on a multiple access channel
US7230932B2 (en) * 2000-08-18 2007-06-12 Nokia Mobile Phones Ltd. Method and apparatus for discontinuous reception scheme and power saving mode for user equipment in packet access mode
US7113538B1 (en) * 2000-11-01 2006-09-26 Nortel Networks Limited Time diversity searcher and scheduling method
FR2818485B1 (fr) * 2000-12-18 2003-03-28 Eads Defence & Security Ntwk Procede d'allocation de ressources radio, station de base pour sa mise en oeuvre et systeme l'incorporant
TW595145B (en) * 2003-03-21 2004-06-21 Benq Corp Method and related apparatus for reducing cell phone transmission power consumption by longer discrete receiving time interval
SE0402003D0 (sv) * 2004-08-06 2004-08-06 Ericsson Telefon Ab L M Method and system of radio communications
US7564914B2 (en) * 2004-12-14 2009-07-21 Broadcom Corporation Method and system for frame formats for MIMO channel measurement exchange
KR101103213B1 (ko) * 2005-03-28 2012-01-05 소니 주식회사 통신 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10178377A (ja) * 1996-12-17 1998-06-30 Nec Corp 多方向多重通信システムの送信出力電力制御方法
JPH11234201A (ja) * 1998-02-19 1999-08-27 Mitsubishi Electric Corp 無線通信システム
JP2004032211A (ja) 2002-06-24 2004-01-29 Ntt Docomo Inc 移動通信システムにおける無線チャネル設定方法、移動通信システム及び移動通信制御装置
JP2004112097A (ja) 2002-09-13 2004-04-08 Toshiba Corp 電力制御モジュールおよび無線通信端末

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KEIJI TACHIKAWA: "W-CDMA Mobile Communication System", June 2001, MARUZEN IN JAPAN, pages: 178 - 179
See also references of EP1924010A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023089789A1 (ja) * 2021-11-19 2023-05-25 株式会社Nttドコモ 基地局及び通信方法

Also Published As

Publication number Publication date
EP1924010A4 (en) 2011-12-07
JPWO2007029314A1 (ja) 2009-03-12
US20080161010A1 (en) 2008-07-03
EP1924010A1 (en) 2008-05-21
JP4616887B2 (ja) 2011-01-19

Similar Documents

Publication Publication Date Title
JP5563699B2 (ja) 移動局装置、基地局装置及び無線通信システム
JP3251293B2 (ja) セルラー遠隔通信システムの制御ハンドオフ方法
US7808953B2 (en) Communication control method, wireless communication system, mobile station, base station and base station control unit
CN101480080B (zh) 分组交换切换后的传输参数协商
US20050180338A1 (en) Swapping voice and video calls
CN106937073A (zh) 基于VoLTE的视频通话码率调整方法、装置及移动终端
WO2004114552A1 (ja) Wcdma移動通信システム
JPH09505948A (ja) セルラー遠隔通信システムの交換機間ソフトハンドオフ方法
KR20060036123A (ko) 시스템 지연을 감소시키는 방법
JPH09511107A (ja) セルラー電気通信システムにおけるセミ・ハード・ハンドオフ
CN107172700A (zh) 无线通信系统中终端及其发送上行链路信息的方法
JP2008521296A (ja) ハイブリッド加入者ユニットのシステム間アクティブ・ハンドオフのための方法および装置
KR20070065412A (ko) 서비스 고유 전송 시간 제어를 동반한 고속 업링크 패킷액세스 (hsupa) 자율 전송을 위한 저속 mac-e
TW200832991A (en) Method of enhancing continuous packet connectivity in a wireless communications system and related apparatus
WO2004095860A1 (ja) 移動通信のためのシステム及び方法
JP2006521046A (ja) パケット交換音声接続の動作モードを選択及び変更するための、方法、通信ネットワーク構成、通信ネットワークサーバ、端末、及びソフトウェア手段
WO2012059051A1 (zh) 控制语音编码速率的方法、设备及系统
RU2351099C2 (ru) Способ управления скоростью передачи и контроллер радиосети
JP2004297591A (ja) 移動通信端末装置および移動通信端末装置における回線交換/VoIP音声通話間のハンドオーバ方法
JPH05501484A (ja) セルラー無線通信システム
US11632691B1 (en) Dynamic PDCP duplication with bearer modification, to help overcome reduced wireless quality
WO2005115041A1 (ja) 移動体パケット通信システム
JP2000507426A (ja) ワイヤレス通信システム用に多者音声接続を行う方法および装置
JP4616887B2 (ja) 無線通信制御装置および無線装置
CN106576271B (zh) 语音编码速率调整的方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007534211

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005782227

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005782227

Country of ref document: EP