WO2007026516A1 - Novel drug delivery system - Google Patents

Novel drug delivery system Download PDF

Info

Publication number
WO2007026516A1
WO2007026516A1 PCT/JP2006/315741 JP2006315741W WO2007026516A1 WO 2007026516 A1 WO2007026516 A1 WO 2007026516A1 JP 2006315741 W JP2006315741 W JP 2006315741W WO 2007026516 A1 WO2007026516 A1 WO 2007026516A1
Authority
WO
WIPO (PCT)
Prior art keywords
tricellulin
drug
pharmaceutical composition
factor
delivery system
Prior art date
Application number
PCT/JP2006/315741
Other languages
French (fr)
Japanese (ja)
Inventor
Junichi Ikenouchi
Sachiko Tsukita
Shoichiro Tsukita
Original Assignee
Kyoto University
Sachiko Tsukita
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University, Sachiko Tsukita filed Critical Kyoto University
Publication of WO2007026516A1 publication Critical patent/WO2007026516A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0048Eye, e.g. artificial tears

Definitions

  • the present invention relates to a factor that suppresses the expression of a tricellulin gene or the action of a tricellulin protein.
  • Tight junction is a mechanism that prevents the movement of substances between cells, and is composed of special adhesion molecules. As such adhesion molecules, occuludin and claudin have been studied.
  • the present inventors conducted research on claudin among proteins constituting tight junctions (see Non-Patent Document 1), and in claudin-1 knockout mice, the permeability of the cerebrovascular barrier was investigated. It was clear that the property was increased only for compounds with a molecular weight of 800 or less (see Non-Patent Document 2).
  • the barrier mechanism against the migration of such substances functions only in blood vessels, and thus functions strictly throughout the body such as the digestive tract and skin before reaching the blood. Yes. For this reason, there has long been a demand for a method for transdermally, transmucosally noninvasively and noninvasively transferring drugs into the body.
  • claudin that forms a tight junction
  • a force that can be considered as one possibility to inhibit the function of claudin on the skin and mucous membranes More generally, epithelial cells in many tissues simultaneously form multiple types of claudin force S-tight junctions. Many of them have functional redundancy, so in order to temporarily break tight junctions in each tissue and improve drug migration, Forces that need to inhibit multiple claudin functions at the same time. Such methods are currently difficult.
  • Non-Patent Document 1 Tsukita et al., Nature Review Molecular Cell Biology, Vol. 2, No. 4, 20 April 2001, pages 285-293
  • Non-Patent Document 2 Nitta et al., The Journal of Cell Biology, No. 161, No. 3, May 2003, pages 653–660
  • the problem to be solved by the present invention is to provide a drug delivery system capable of suppressing a barrier mechanism against substance transferability and transferring a drug into the body noninvasively and noninvasively throughout the body. It was to develop methods as well as pharmaceutical compositions.
  • the present inventors have conducted extensive research and have identified a new molecule called tricellulin, which is located in a tricellular junction where three cells face each other.
  • the inventors have found that by using a factor that suppresses the function of the tricellulin gene or tricellulin protein, the substance permeability of the living body can be improved and the drug can be efficiently taken into the body, and the present invention has been completed.
  • the present invention provides:
  • the factor according to (1) selected from the group consisting of siRNA, antisense oligonucleotide, antibody, inhibitory peptide, and dominant negative mutant;
  • the factor according to (1) which is a siRNA having the nucleotide sequence shown in SEQ ID NO: 7 or 8, or a homologous RNA having an equivalent function;
  • the factor according to (1) which is an antisense oligonucleotide against trisenorelin DNA
  • the factor according to (1) which is an antibody against tricellulin protein
  • a drug delivery system comprising the factor according to any one of (1) to (5)
  • a pharmaceutical composition for enhancing the substance permeability of a living body, comprising the factor according to any one of (1) to (5);
  • a pharmaceutical composition comprising the factor and drug according to any one of (1) to (5);
  • composition according to (7) or (8) which is a transdermal dosage form or a transmucosal dosage form;
  • (11) A method for increasing the substance permeability of a living body, comprising using the factor according to any one of (1) to (5);
  • a method for treating and / or preventing a disease characterized by administering the agent of the present invention before administration of a drug or simultaneously with administration of the drug;
  • a drug can be efficiently taken into the body, and in particular, a large number of drugs can be transferred into the body transdermally, transmucosally and noninvasively. it can.
  • FIG. 2 shows an image stained with a fluorescently labeled antibody of tricellulin (left) and an image stained with a fluorescently labeled antibody of otaldine (right).
  • FIG. 3 shows the results of examining the suppression of tricellulin protein production by siRNA by Western blotting.
  • WT is a wild type Eph4 cell
  • KD-1 is an Eph4 cell into which an HI promoter vector is introduced so as to express the siRNA shown in SEQ ID NO: 7 (see Example 2)
  • KD-2 is an siRNA shown in SEQ ID NO: 8. This is an Eph4 cell (see Example 2) into which a HI promoter vector has been introduced so as to express.
  • FIG. 4 shows the results of examining suppression of tricellulin protein production by siRNA by the fluorescent antibody method.
  • WT, KD-1 and KD-2 have the same meaning as in Figure 2.
  • siRNA-introduced cells The top row shows the results for tricellulin, and the bottom row shows the results for E-force doherin.
  • the scale bar in the lower right panel indicates 10 ⁇ m.
  • FIG. 5 shows the histological observation results obtained by the fluorescent antibody method in wild-type cells and cells in which expression of tricellulin has been lost by siRNA (KD-1 and KD-2).
  • WT, KD-1 and KD_2 have the same meaning as in Figure 2.
  • the top row shows the results for tricellulin, and the bottom row shows the results for E-cadherin.
  • the scale bar in the upper right panel indicates 10 ⁇ m, and the scale bar in the lower right panel indicates 3 x m.
  • FIG. 6 shows the results of examining tricellulin expression inhibitory effect of siRNA by quantifying the permeability in the cell gap using the TER method.
  • WT, KD-1 and KD-2 have the same meaning as in Figure 2.
  • FIG. 7 shows the results of examining the effect of siRNA on the suppression of tricellulin expression by examining changes in permeability to dextran having various molecular weights labeled with FITC.
  • WT, KD-1 and KD-2 have the same meaning as in Figure 2.
  • the target molecule of the present invention is a tricellulin gene or tricellulin protein. Therefore, in one embodiment, the present invention relates to a factor that suppresses the function of a tricellulin gene or tricellulin protein. In other words, by suppressing the function of the tricellulin gene or tricellulin protein, the permeability of substances passing through the tricellular junction and tight junction can be increased, and the drug can be efficiently taken into the body. Many drugs can be transferred into the body non-mucosally and noninvasively.
  • the tight junction is formed by a pair of adhesion molecules (cludins) between adjacent cells.
  • the structure that seals such cells has three cells. Are weakened in the tricellular junction structure facing each other.
  • Figure 1 shows a schematic diagram of the tricellular junction structure.
  • the Tricellular Large Cyan has only been described morphologically so far, and its molecular construction was completely unknown.
  • the present inventors have identified the adhesion protein tricellulin localized in the tricellular junction, and revealed the nucleotide sequence of the DNA and the amino acid sequence encoded thereby.
  • Tricellular junction structures and tricellulin are widely distributed in mammals.
  • nucleotide sequence (Genebank Accession number AB219936) of DNA encoding human 'Tricellulin is shown in SEQ ID NO: 1
  • amino acid sequence of human' Tricellulin is shown in SEQ ID NO: 2.
  • nucleotide sequence of the DNA encoding another form of human 'tricellulin is shown in SEQ ID NO: 3
  • amino acid sequence of another form of human' tricerulin is shown in SEQ ID NO: 4.
  • the target molecules of the present invention are a tricellulin gene and a tricellulin protein, and preferred target molecules are a human-derived tricellulin gene and a tricellulin protein.
  • tricellulin gene is included, and in this case, "tricellulin DNA” is included. Therefore, “expression of tricellulin gene” includes “expression of tricellulin DNA”.
  • gene or “oligonucleotide” refers to DNA. And both RNA. In the present specification, the nucleotide sequence is indicated with 5 'force and 3' direction to the left and right.
  • factors that suppress the expression of the tricellulin gene include, but are not limited to, factors and drugs such as siRNA, antisense oligonucleotides, antibodies, inhibitory peptides, and dominant negative mutants.
  • factors and drugs such as siRNA, antisense oligonucleotides, antibodies, inhibitory peptides, and dominant negative mutants.
  • a method using a vector for example, a method using an adenovirus vector, etc.
  • cell fusion for example, a method using an adenovirus vector, etc.
  • electoporation for example, cell fusion
  • gene gun for example, cell fusion
  • lipofection for example, lipofection
  • a direct introduction method etc.
  • Those skilled in the art can appropriately select and use these methods according to the type of cells at the desired site, the type of factors used, and the like.
  • expression of the trisenorelin gene can also be suppressed by methods other than those described above known in the art.
  • Examples of preferable factors that suppress the expression of the tricellulin gene used in the present invention include tricellulin siRNA, antisense oligonucleotides to the tricellulin gene, and the like.
  • Anti-sense oligo for tricellulin siRNA and tricellulin gene Nucleotides have the advantage of high knock-down specificity for the tricellulin gene, high knock-out efficiency, and low risk of side effects.
  • Methods for producing antisense oligonucleotides and siRNA, preferred sequences and sequences are also known to those skilled in the art, and can be easily obtained.
  • Methods for introducing antisense oligonucleotides and siRNA into cells have also been established, which has the advantage of being easy to introduce and use.
  • a method for introducing the siRNA of the present invention into the body a known method such as a direct introduction method, a method using an adenovirus vector, a transdermal lipofusion, or an electoral position can be used.
  • a preferred method for introducing the siRNA of the present invention into the body is a direct introduction method. By adopting the direct introduction method, it is possible to simplify the configuration and use of the drug delivery system and the pharmaceutical composition described below. Conditions and factors for direct introduction of siRNA can be appropriately selected by those skilled in the art.
  • siRNA homologue of the siRNA having the nucleotide sequence shown in SEQ ID NO: 7 or 8 means all the tricellulin gene expression inhibitory effects equivalent to the siRNA having the nucleotide sequence shown in SEQ ID NO: 7 or 8.
  • siRNA homologue RNA of the present invention has one to several nucleotides deleted, substituted and / or added (set of them) in the nucleotide sequence shown in SEQ ID NO: 7 or SEQ ID NO: 8. (Which may be combined).
  • the term “several” means usually 5, preferably 3, more preferably 2, and most preferably 1.
  • “suppressing the function” of a protein includes reducing the function of the protein below a normal level and completely eliminating the function.
  • “suppressing the function” of a protein includes reducing the function of the protein below a normal level and completely eliminating the function.
  • proteins of the same kind for example, isozymes
  • one or more of them may be suppressed, or all functions may be suppressed.
  • Examples of factors that suppress the function of tricellulin include, but are not limited to, a tricellulin antibody, a tricellulin-inhibiting peptide, and a dominant-negative mutant of tricellulin.
  • An example of a preferable factor that suppresses the function of tricellulin used in the present invention is an antibody against trisenorelin protein.
  • Various antibodies are known, such as polyclonal antibodies. It may be an internal antibody or a monoclonal antibody. Chimeric antibodies and humanized antibodies may be prepared and used. Methods for producing antibodies are known to those skilled in the art, and can be appropriately selected depending on the type and use of the antibody to be prepared.
  • the cells at the desired site to be delivered with these factors trycellulin in the cells at the desired site. Can be suppressed.
  • the cells may be treated with a gene encoding a factor that suppresses the function of these tricellulins.
  • Methods for treating cells with these factors and genes for example, methods for contacting or introducing these factors or genes encoding these factors into cells are known in the art, and those skilled in the art can These methods can be appropriately selected and used according to the type, the type of factor, and the like.
  • the means and method as described above can be used.
  • the present invention is a factor that suppresses the expression of the tricellulin gene or the function of the tricellulin protein (hereinafter, “ The present invention relates to a drug delivery system characterized by using the “factor of the present invention”.
  • the factor of the present invention By applying the factor of the present invention to a living body and increasing the permeability of the applied portion, the drug can be transferred into the body in a large amount, rapidly, noninvasively and noninvasively.
  • the agent of the present invention may be applied to the drug application site in advance, and the permeability of the drug application site may be increased to administer the drug with force.
  • the agent of the present invention may be administered to the application site together with the drug.
  • a drug delivery device for example, an application brush, a patch, an eye drop container, etc.
  • a technique that increases penetration into the skin by mixing a drug to be permeated into a fat-soluble cream or the like by using a tight seal may be applied.
  • the drug delivery system of the present invention it is possible to suppress the expression of the tricellulin gene or the function of the tricellulin protein, increase the permeability of the drug to the cell layer, and deliver a large amount of drug to the body quickly and forcefully. Can do. In other words, drugs that could not be delivered to the body by administration to these sites or could not be delivered to the body. By applying the drug delivery system of the invention to these sites, the amount of force can be transferred into the body in a noninvasive and noninvasive manner. This also reduces the burden on the target.
  • the drug delivered by the drug delivery system of the present invention may be one type or multiple types.
  • the application site of the drug delivery system of the present invention is not particularly limited, and may be applied to 2 or more sites.
  • Preferred delivery forms include transdermal, transmucosal, or ophthalmic.
  • Preferable application sites include skin, mucous membrane, eyeball, especially cornea.
  • the amount of the factor of the present invention is not particularly limited and can be set according to the purpose. For example, the amount and number of uses of the factor of the present invention can be changed according to the required degree of permeability, the drug to be delivered, the type of disease, the state of the subject, the application site, and the like.
  • drug refers to a substance that has or is expected to have a desired therapeutic or prophylactic effect when administered.
  • the present invention relates to a pharmaceutical composition for increasing the substance permeability of a living body, comprising the factor of the present invention.
  • the pharmaceutical composition of the present invention suppresses the expression of the tricellulin gene or the function of the tricellulin protein by the action of the factor of the present invention, thereby increasing the permeability of the substance to the cell layer and thus increasing the substance permeability of the living body. Can be increased. Therefore, by administering the pharmaceutical composition of the present invention, it is possible to promote the transfer of a drug administered at the same time or later into the body. Therefore, a large amount of drugs can be quickly transferred into the body.
  • the pharmaceutical composition of the present invention may be administered to a drug administration site to increase the substance permeability at that site, and then the drug may be administered to the site. Further, for example, the pharmaceutical composition of the present invention and the drug may be simultaneously administered to a desired site in the living body.
  • the present invention relates to a pharmaceutical composition
  • a pharmaceutical composition comprising the agent according to any one of claims:! To 5 and a drug.
  • the dosage form of the pharmaceutical composition of the present invention is not particularly limited, but is preferably a transdermal dosage form (such as lotion, cream, ointment, clothing agent) or transmucosal dosage form. Or eye drops.
  • the manufacturing method of these dosage forms is well-known, and those skilled in the art can select suitably.
  • the present invention relates to a method for enhancing substance permeability of a living body, characterized by using the factor of the present invention.
  • the present invention relates to a method for delivering a drug, characterized in that the agent of the present invention is used.
  • the factor of the present invention may be applied before the drug administration, or the factor of the present invention may be applied simultaneously with the drug administration.
  • the drug delivery is preferably a force transcutaneous or transmucosal that can be performed by any means or method. Delivery by eye drops is also preferred. The drug delivery is as described above.
  • the present invention also relates to a method for treating and / or preventing a disease, characterized in that the agent of the present invention is administered before or simultaneously with the administration of the drug.
  • the agent of the present invention is administered before or simultaneously with the administration of the drug.
  • the present invention relates to the use of the agent of the present invention for producing the drug delivery system or pharmaceutical composition of the present invention described above.
  • the drug delivery system or pharmaceutical composition produced using the factor of the present invention is a drug delivery system or pharmaceutical composition that cannot be transferred to the body by the conventional drug delivery system or pharmaceutical composition. It can be transferred to the body in a large amount, promptly, and noninvasively and noninvasively, and the burden on the subject can be reduced.
  • the above description applies to the delivery system or pharmaceutical composition produced.
  • the delivery system or pharmaceutical composition produced by the above use may not contain a drug. In such cases, the delivery system or pharmaceutical composition is applied or administered prior to administration of the drug, or at the same time as administration of the drug.
  • the manufactured delivery system or pharmaceutical composition may contain a drug.
  • Application or administration of the delivery system or pharmaceutical composition to the living body may be by any means, but those applied or administered transdermally or transmucosally are preferred. Also preferred are those that are applied or administered by eye drops.
  • mice tricellulin The N-terminal and C-terminal cytoplasmic regions of mouse tricellulin were expressed in E. coli in the form of GST fusion proteins and purified by conventional methods. Purified protein mixed well with Mycobacterium tuberculosis adjuvant was injected subcutaneously into rabbits and rats. Polyclonal antibodies were made from rabbits and monoclonal antibodies were made from rats. Secondary antibodies include commercially available donkey anti-rabbit IgG with FITC and Cy3 fluorescent dyes, or donkey anti-rat IgG with FITC and Cy3 fluorescent dyes. Using. When cultured epithelial cells (Eph4) derived from the mammary gland of mice were stained with the fluorescent antibody method, as shown in Fig. 2 (left), a signal for tricellulin was observed only in the tricellular large junction formed by three cells. . Figure 2 (right) is an antibody staining image of otaldine that is normally found between cells.
  • Eph4 epithelial cells
  • nucleotides 1542 to 1560 (GAATGA of the protein coding region of mouse 'Tricellulin cDNA
  • Each of the prepared vectors was introduced into cultured mammary gland-derived epithelial cells (Eph4) using lipofectamin plus from Invitrogen and cultured in DMEM medium for 48 hours. Thereafter, the cells were cultured for about 2 weeks in a DMEM medium containing neomycin (400 ug / ml) to obtain cells having acquired neomycin resistance (that is, having stably acquired the HI promoter vector).
  • RNAi against trisenorelin lost about 95% of the tricellulin protein (Fig. 3). Also by the fluorescent antibody method, it was confirmed that RNAi for tricellulin has lost the protein of tricellulin. That is, compared to wild-type (WT) cells, the fluorescence in the tricellular junction disappeared in the cells (KD-1 and KD-2) in which the expression of tricellulin disappeared (FIG. 4, upper panel).
  • E cadherin (adherens junction adhesion molecule) does not change.
  • Figure 4 bottom As shown in Fig. 5, in cells where the expression of tricellulin was lost in cultured epithelial cells (Fig. 5, upper panel, middle and right panels), the ability to construct tight junctions (1) Compared to the normal formation of the crossing point (tricellular center) in the wild type (WT) (Fig. 5, upper panel, left panel), cells in which the expression of tricellulin disappeared (KD_1 and KD-2) was confirmed to be open, and (2) as shown by the arrowheads, KD-1 and KD-2 were found to be vulnerable to tight junction formation between the two cells. I was strong. These results were judged by comparison with staining for otaldin (a membrane protein localized at the tit junction) (bottom of Fig. 5).
  • otaldin a membrane protein localized at the tit junction
  • Permeability in the cell gap was quantified using the TER (trans-mark ithelial electrical resistance) method, which is one of the functional quantification methods of tight junctions.
  • TER trans-mark ithelial electrical resistance
  • epithelial cells are cultured in a two-chamber culture dish, and the electrical resistance values (TER) generated above and below the epithelial cell sheet are measured to facilitate the permeation of solutes between epithelial cells. It is a means to measure.
  • cells in which expression of tricellulin disappeared KD-1 and KD-2) were cultured in a DMEM medium using a two-chamber culture dish. The results are shown in Fig. 6.
  • TER Compared to normal wild type cells (WT), TER was greatly reduced in cells in which expression of tricellulin was lost (KD-1 and KD-2). This result indicates that the function of the tight junction due to the disappearance of trisenorelin is reduced, and the permeability of ions in the cell gap is increased.
  • the present invention can be used in fields such as pharmaceutical development and manufacture, and medicine, physiology, and pharmaceutical research.
  • SEQ ID NO: 1 shows the nucleotide sequence of DNA encoding human tricellulin.
  • SEQ ID NO: 2 shows the amino acid sequence of human tricellulin.
  • SEQ ID NO: 3 shows the nucleotide sequence of DNA encoding another form of human 'Tricellulin.
  • SEQ ID NO: 4 shows the amino acid sequence of another form of human tricellulin.
  • SEQ ID NO: 5 shows the nucleotide sequence of DNA encoding mouse 'Tricellulin.
  • SEQ ID NO: 6 shows the amino acid sequence of mouse 'Tricellulin.
  • SEQ ID NO: 7 shows the nucleotide sequence of the siRNA of the present invention that suppresses the expression of the tricellulin gene.
  • SEQ ID NO: 8 shows the nucleotide sequence of the siRNA of the present invention that suppresses the expression of the tricellulin gene.

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Epidemiology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Plant Pathology (AREA)
  • Molecular Biology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Preparation (AREA)
  • Peptides Or Proteins (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

Disclosed is a drug delivery system or method or pharmaceutical composition which can suppress the barrier mechanism against the transfer of a substance to transfer a medicinal substance at any part of the body in a non-invasive and bloodless manner. A factor capable of suppressing the expression of a tricellulin gene or the function of a tricellulin protein; a drug delivery system or method using the factor; a pharmaceutical composition comprising the factor; and a non-human animal having a knockout tricellulin gene.

Description

明 細 書  Specification
新規薬剤デリバリー系  New drug delivery system
技術分野  Technical field
[0001] 本発明は、トリセルリン遺伝子の発現またはトリセルリン蛋白の作用を抑制する因子 [0001] The present invention relates to a factor that suppresses the expression of a tricellulin gene or the action of a tricellulin protein.
、それを用いた薬剤デリバリー系および方法、該因子を含む医薬組成物等に関する , Drug delivery system and method using the same, pharmaceutical composition containing the factor, etc.
背景技術 Background art
[0002] 脳、網膜、精巣、胎盤など体の各部においては、血管からの物質の移行が著しく制 限されている。特に、血液中力 脳への薬剤移行性の低さ(脳血管関門)は、中枢神 経系疾患に対する薬物の選択肢、ひいては治療の手段を大きく制限している。この ような薬剤移行性の低さは、タイトジャンクション (tight junction)と呼ばれる特別なバリ ァ機構によるものである。タイトジャンクションは細胞間を通る物質の移動を防止する 機構であり、特殊な接着分子を構成成分としている。このような接着分子として、オタ ルディン(occuludin)やクローディン(claudin)が研究されている。本発明者らは、タイト ジャンクションを構成する蛋白のうち、クローディン(claudin)に関して研究を行レ、(非 特許文献 1参照)、クローディン一 5のノックアウトマウスにおいては、脳血管関門の透 過性が分子量 800以下の化合物に限られて上昇していることが明カ^なつた(非特 許文献 2参照)。  [0002] In various parts of the body such as the brain, retina, testis, and placenta, the transfer of substances from blood vessels is remarkably restricted. In particular, the low drug transferability to the blood-powered brain (the cerebrovascular barrier) has severely limited drug options for central nervous system diseases, and thus the means of treatment. Such poor drug transfer is due to a special barrier mechanism called tight junction. Tight junction is a mechanism that prevents the movement of substances between cells, and is composed of special adhesion molecules. As such adhesion molecules, occuludin and claudin have been studied. The present inventors conducted research on claudin among proteins constituting tight junctions (see Non-Patent Document 1), and in claudin-1 knockout mice, the permeability of the cerebrovascular barrier was investigated. It was clear that the property was increased only for compounds with a molecular weight of 800 or less (see Non-Patent Document 2).
[0003] しかし、このような物質の移行性に対するバリア機構は血管においてのみ機能して レ、るわけでなぐ血中に至る以前にも消化管、皮膚など体の至る所において厳密に 機能している。このため、経皮、経粘膜的に非侵襲的、非観血的に薬剤を体内へ移 行させる方法が長らく求められてきた。脳血管の場合と同様に、皮膚や粘膜に対して クローディンの機能を阻害することが 1つの可能性として考えられる力 S、タイトジャンク シヨンを形成するクローディンには 24種類の遺伝子が存在することが知られており、 さらに一般に多くの組織の上皮細胞では、同時に複数の種類のクローディン力 Sタイト ジャンクションを形成している。それらの多くには機能的冗長性が認められるため、各 組織においてタイトジャンクションを一時的に破壊して薬剤の移行性を高めるには、 同時に複数のクローディンの機能を阻害する必要がある力 そのような方法は現時点 において困難である。 [0003] However, the barrier mechanism against the migration of such substances functions only in blood vessels, and thus functions strictly throughout the body such as the digestive tract and skin before reaching the blood. Yes. For this reason, there has long been a demand for a method for transdermally, transmucosally noninvasively and noninvasively transferring drugs into the body. As in the case of cerebrovascular, there are 24 types of genes in claudin that forms a tight junction, a force that can be considered as one possibility to inhibit the function of claudin on the skin and mucous membranes. More generally, epithelial cells in many tissues simultaneously form multiple types of claudin force S-tight junctions. Many of them have functional redundancy, so in order to temporarily break tight junctions in each tissue and improve drug migration, Forces that need to inhibit multiple claudin functions at the same time. Such methods are currently difficult.
非特許文献 1 : Tsukitaら、 Nature Review Molecular Cell Biology,第 2卷、第 4号、 20 01年 4月、 285— 293ページ  Non-Patent Document 1: Tsukita et al., Nature Review Molecular Cell Biology, Vol. 2, No. 4, 20 April 2001, pages 285-293
非特許文献 2 : Nittaら、 The Journal of Cell Biology,第 161卷、第 3号、 2003年 5月、 653— 660ページ  Non-Patent Document 2: Nitta et al., The Journal of Cell Biology, No. 161, No. 3, May 2003, pages 653–660
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] 本発明の解決課題は、物質の移行性に対するバリア機構を抑制し、体の至る所に おいて非侵襲的、非観血的に薬剤を体内へ移行させることのできる薬剤デリバリー 系および方法ならびに医薬組成物などを開発することであつた。 [0004] The problem to be solved by the present invention is to provide a drug delivery system capable of suppressing a barrier mechanism against substance transferability and transferring a drug into the body noninvasively and noninvasively throughout the body. It was to develop methods as well as pharmaceutical compositions.
課題を解決するための手段  Means for solving the problem
[0005] 上記事情に鑑みて、本発明者らは鋭意研究を重ね、 3つの細胞が向かい合うトリセ ノレラージャンクション (tricellular junction)に局在するトリセノレリン (tricellulin)という新 規分子を同定した。そして、トリセルリン遺伝子またはトリセルリン蛋白の機能を抑制 する因子を用いることにより、生体の物質透過性を向上させ、効率よく薬剤を体内に 取り込ませることができることを見出し、本発明を完成するに至った。  [0005] In view of the above circumstances, the present inventors have conducted extensive research and have identified a new molecule called tricellulin, which is located in a tricellular junction where three cells face each other. The inventors have found that by using a factor that suppresses the function of the tricellulin gene or tricellulin protein, the substance permeability of the living body can be improved and the drug can be efficiently taken into the body, and the present invention has been completed.
[0006] すなわち、本発明は、  That is, the present invention provides:
(1)トリセルリン遺伝子の発現またはトリセルリン蛋白の機能を抑制する因子;  (1) a factor that suppresses the expression of the tricellulin gene or the function of the tricellulin protein;
(2) siRNA、アンチセンスオリゴヌクレオチド、抗体、阻害ペプチド、ドミナントネガテ イブ変異体からなる群より選択される(1)記載の因子;  (2) The factor according to (1), selected from the group consisting of siRNA, antisense oligonucleotide, antibody, inhibitory peptide, and dominant negative mutant;
(3)配列番号: 7または 8に示すヌクレオチド配列を有する siRNA、あるいはそれと 同等の機能を有する相同体 RNAである( 1 )記載の因子;  (3) The factor according to (1), which is a siRNA having the nucleotide sequence shown in SEQ ID NO: 7 or 8, or a homologous RNA having an equivalent function;
(4)トリセノレリン DNAに対するアンチセンスオリゴヌクレオチドである( 1 )記載の因 子;  (4) The factor according to (1), which is an antisense oligonucleotide against trisenorelin DNA;
(5)トリセルリン蛋白に対する抗体である( 1 )記載の因子;  (5) The factor according to (1), which is an antibody against tricellulin protein;
(6) (1)〜(5)のいずれかに記載の因子を用いることを特徴とする薬剤デリバリー系 (7) (1)〜(5)のいずれかに記載の因子を含む、生体の物質透過性を高めるため の医薬組成物; (6) A drug delivery system comprising the factor according to any one of (1) to (5) (7) A pharmaceutical composition for enhancing the substance permeability of a living body, comprising the factor according to any one of (1) to (5);
(8) (1)〜(5)のいずれかに記載の因子および薬剤を含む医薬組成物;  (8) A pharmaceutical composition comprising the factor and drug according to any one of (1) to (5);
(9)経皮剤形または経粘膜剤形である(7)または (8)記載の医薬組成物; (9) The pharmaceutical composition according to (7) or (8), which is a transdermal dosage form or a transmucosal dosage form;
(10)点眼剤である(7)または(8)記載の医薬組成物; (10) The pharmaceutical composition according to (7) or (8), which is an eye drop;
(11) (1)〜(5)のいずれかに記載の因子を用いることを特徴とする、生体の物質透 過性を高める方法;  (11) A method for increasing the substance permeability of a living body, comprising using the factor according to any one of (1) to (5);
(12) (1)〜(5)のいずれかに記載の因子を用いることを特徴とする、薬剤のデリバ リー方法;  (12) A method for delivering a drug, wherein the factor according to any one of (1) to (5) is used;
(13)デリバリーが経皮的または経粘膜的である(12)記載の方法;  (13) The method according to (12), wherein the delivery is transdermal or transmucosal;
(14)デリバリーが点眼によるものである(12)記載の方法;  (14) The method according to (12), wherein the delivery is by eye drops;
(15)本発明の因子を薬剤の投与前あるいは薬剤の投与と同時に投与することを特 徴とする、疾病の治療および/または予防方法;  (15) A method for treating and / or preventing a disease, characterized by administering the agent of the present invention before administration of a drug or simultaneously with administration of the drug;
(16)生体の物質透過性を高めるための薬剤デリバリー系または医薬組成物の製 造における、 (1)〜(5)のレ、ずれかに記載の因子の使用;  (16) Use of the factors described in (1) to (5), or any one of them in the manufacture of a drug delivery system or pharmaceutical composition for increasing the substance permeability of a living body;
(17)薬剤デリバリー系または医薬組成物がさらに薬剤を含むものである、(16)記 載の使用;  (17) Use according to (16), wherein the drug delivery system or pharmaceutical composition further comprises a drug;
(18)薬剤デリバリー系または医薬組成物が経皮的または経粘膜的に適用または 投与されるものである、(16)または(17)記載の使用;  (18) The use according to (16) or (17), wherein the drug delivery system or pharmaceutical composition is applied or administered transdermally or transmucosally;
(19)薬剤デリバリー系または医薬組成物が点眼により適用または投与されるもの である、 (16)または(17)記載の使用;  (19) Use according to (16) or (17), wherein the drug delivery system or pharmaceutical composition is applied or administered by eye drops;
(20)トリセルリン遺伝子またはトリセルリン蛋白がヒト由来である、 (1)〜(5)のいず れかに記載の因子、(6)記載のデリバリー系、 (7)〜(: 10)のいずれかに記載の医薬 組成物、 (11)〜(: 15)のいずれかに記載の方法、あるいは(16)〜(: 19)のいずれか に記載の使用;ならびに  (20) The factor according to any one of (1) to (5), the delivery system according to (6), or any one of (7) to (: 10), wherein the tricellulin gene or tricellulin protein is derived from human. The pharmaceutical composition according to (11) to (: 15), or the use according to any of (16) to (: 19); and
(21)トリセルリン遺伝子をノックアウトしたヒト以外の動物  (21) Non-human animals knocked out of the tricellulin gene
を提供するものである。 Is to provide.
発明の効果 [0007] 本発明によれば、効率よく薬剤を体内に取り込ませることができ、特に、経皮、経粘 膜的に非侵襲的、非観血的に多くの薬剤を体内へ移行させることができる。 The invention's effect [0007] According to the present invention, a drug can be efficiently taken into the body, and in particular, a large number of drugs can be transferred into the body transdermally, transmucosally and noninvasively. it can.
図面の簡単な説明  Brief Description of Drawings
[0008] [図 1]図 1は、トリセルラージャンクションの構造を示す模式図である。  FIG. 1 is a schematic diagram showing the structure of a tricellular junction.
[図 2]図 2は、トリセルリンの蛍光標識抗体による染色像 (左)およびオタルディンの蛍 光標識抗体による染色像 (右)を示す。  [FIG. 2] FIG. 2 shows an image stained with a fluorescently labeled antibody of tricellulin (left) and an image stained with a fluorescently labeled antibody of otaldine (right).
[図 3]図 3は、 siRNAによるトリセルリン蛋白の生成の抑制を、ウェスタンブロッテイン グにより調べた結果を示す。 WTは野生型 Eph4細胞、 KD— 1は配列番号: 7に示す siRNAを発現するように HIプロモーターベクターを導入した Eph4細胞(実施例 2参 照)、 KD— 2は配列番号: 8に示す siRNAを発現するように HIプロモーターベクタ 一を導入した Eph4細胞(実施例 2参照)である。  [FIG. 3] FIG. 3 shows the results of examining the suppression of tricellulin protein production by siRNA by Western blotting. WT is a wild type Eph4 cell, KD-1 is an Eph4 cell into which an HI promoter vector is introduced so as to express the siRNA shown in SEQ ID NO: 7 (see Example 2), and KD-2 is an siRNA shown in SEQ ID NO: 8. This is an Eph4 cell (see Example 2) into which a HI promoter vector has been introduced so as to express.
[図 4]図 4は、 siRNAによるトリセルリン蛋白の生成の抑制を、蛍光抗体法により調べ た結果を示す。 WT、 KD— 1および KD— 2は図 2と同じ意味である。 siRNA導入細 胞である。上段はトリセルリンに関する結果を示し、下段は E—力ドヘリンに関する結 果を示す。下段右パネルのスケールバーは 10 μ mを示す。  [FIG. 4] FIG. 4 shows the results of examining suppression of tricellulin protein production by siRNA by the fluorescent antibody method. WT, KD-1 and KD-2 have the same meaning as in Figure 2. siRNA-introduced cells. The top row shows the results for tricellulin, and the bottom row shows the results for E-force doherin. The scale bar in the lower right panel indicates 10 μm.
[図 5]図 5は、野生型細胞、 siRNAによりトリセルリンの発現が消失した細胞(KD— 1 および KD— 2)における、蛍光抗体法による組織学的観察結果を示す。 WT、 KD- 1および KD_ 2は図 2と同じ意味である。上段はトリセルリンに関する結果を示し、下 段は E—カドヘリンに関する結果を示す。上段右パネル中のスケールバーは 10 μ m 、下段右パネル中のスケールバーは 3 x mを示す。  FIG. 5 shows the histological observation results obtained by the fluorescent antibody method in wild-type cells and cells in which expression of tricellulin has been lost by siRNA (KD-1 and KD-2). WT, KD-1 and KD_2 have the same meaning as in Figure 2. The top row shows the results for tricellulin, and the bottom row shows the results for E-cadherin. The scale bar in the upper right panel indicates 10 μm, and the scale bar in the lower right panel indicates 3 x m.
[図 6]図 6は、 TER法を用いて細胞間隙における透過性を定量することにより、 siRN Aによるトリセルリン発現抑制効果を調べた結果を示す。 WT、 KD—1および KD— 2 は図 2と同じ意味である。  [FIG. 6] FIG. 6 shows the results of examining tricellulin expression inhibitory effect of siRNA by quantifying the permeability in the cell gap using the TER method. WT, KD-1 and KD-2 have the same meaning as in Figure 2.
[図 7]図 7は、 FITCで標識した様々な分子量をもつデキストランに対する透過性の変 化を調べることにより、 siRNAによるトリセルリン発現抑制効果を調べた結果を示す。  [FIG. 7] FIG. 7 shows the results of examining the effect of siRNA on the suppression of tricellulin expression by examining changes in permeability to dextran having various molecular weights labeled with FITC.
WT、 KD— 1および KD— 2は図 2と同じ意味である。  WT, KD-1 and KD-2 have the same meaning as in Figure 2.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0009] 本発明の標的分子はトリセルリン遺伝子またはトリセルリン蛋白である。したがって、 本発明は、 1の態様において、トリセルリン遺伝子またはトリセルリン蛋白の機能を抑 制する因子に関するものである。すなわち、トリセルリン遺伝子またはトリセルリン蛋白 の機能を抑制することによって、トリセルラージャンクションおよびタイトジャンクション を通る物質の透過性を増加させ、効率よく薬剤を体内に取り込ませることができ、特 に、経皮、経粘膜的に非侵襲的、非観血的に多くの薬剤を体内へ移行させることが できる。 [0009] The target molecule of the present invention is a tricellulin gene or tricellulin protein. Therefore, In one embodiment, the present invention relates to a factor that suppresses the function of a tricellulin gene or tricellulin protein. In other words, by suppressing the function of the tricellulin gene or tricellulin protein, the permeability of substances passing through the tricellular junction and tight junction can be increased, and the drug can be efficiently taken into the body. Many drugs can be transferred into the body non-mucosally and noninvasively.
[0010] 上述のごとぐタイトジャンクションは隣り合った細胞の間で接着分子(クローディン) 同士が一対となることにより形成されている、しかし、このような細胞をシールする構造 は、 3つの細胞が向かい合うトリセルラージャンクション構造において弱体化している 。トリセルラージャンクション構造の模式図を図 1に示す。本発明者らは、トリセルラー ジャンクションに局在する接着分子トリセルリンを始めて同定した。トリセルラージヤン クシヨンについては今まで形態学的な記載があるのみで、その分子構築に関しては 全く未知であった。本発明者らは、トリセルラージャンクションに局在する接着蛋白トリ セルリンを同定し、その DNAのヌクレオチド配列およびそれによりコードされるァミノ 酸配列を明かにした。  [0010] As described above, the tight junction is formed by a pair of adhesion molecules (cludins) between adjacent cells. However, the structure that seals such cells has three cells. Are weakened in the tricellular junction structure facing each other. Figure 1 shows a schematic diagram of the tricellular junction structure. We have identified for the first time the adhesion molecule tricellulin localized at the tricellular junction. The Tricellular Large Cyan has only been described morphologically so far, and its molecular construction was completely unknown. The present inventors have identified the adhesion protein tricellulin localized in the tricellular junction, and revealed the nucleotide sequence of the DNA and the amino acid sequence encoded thereby.
[0011] トリセルラージャンクション構造およびトリセルリンは哺乳動物に広く分布している。  [0011] Tricellular junction structures and tricellulin are widely distributed in mammals.
典型例として、ヒト'トリセルリンをコードする DNAのヌクレオチド配列(Genebank Acce ssion number AB219936)を配列番号: 1に、ヒト'トリセルリンのアミノ酸配列を配列番 号: 2に示す。ヒト'トリセルリンの別形態をコードする DNAのヌクレオチド配列(Geneb ank Accession number AB219937)を配列番号: 3に、ヒト'トリセルリンの別形態のアミ ノ酸配列を配列番号: 4に示す。さらに、マウス'トリセルリンをコードする DNAのヌク レオチド配列(Genebank Accession number AB219935)を配列番号: 5に、マウス'トリ セルリンのアミノ酸配列を配列番号: 6に示す。本発明の標的分子は、トリセルリン遺 伝子およびトリセルリン蛋白であり、好ましい標的分子はヒト由来のトリセルリン遺伝子 およびトリセルリン蛋白である。  As a typical example, the nucleotide sequence (Genebank Accession number AB219936) of DNA encoding human 'Tricellulin is shown in SEQ ID NO: 1, and the amino acid sequence of human' Tricellulin is shown in SEQ ID NO: 2. The nucleotide sequence of the DNA encoding another form of human 'tricellulin (Genebane Accession number AB219937) is shown in SEQ ID NO: 3, and the amino acid sequence of another form of human' tricerulin is shown in SEQ ID NO: 4. Further, the nucleotide sequence (Genebank Accession number AB219935) of the DNA encoding mouse 'Tricellulin is shown in SEQ ID NO: 5, and the amino acid sequence of mouse' Tricellulin is shown in SEQ ID NO: 6. The target molecules of the present invention are a tricellulin gene and a tricellulin protein, and preferred target molecules are a human-derived tricellulin gene and a tricellulin protein.
[0012] 本明細書にぉレ、て「トリセルリン遺伝子」とレ、う場合には「トリセルリン DNA」を包含 する。したがって、「トリセルリン遺伝子の発現」という場合には「トリセルリン DNAの発 現」を包含する。また、「遺伝子」または「オリゴヌクレオチド」という場合には、 DNAお よび RNAの両方を含む。本明細書においてヌクレオチド配列の表記は左力 右に 5 '力ら 3 '向きである。 [0012] In the present specification, the term "tricellulin gene" is included, and in this case, "tricellulin DNA" is included. Therefore, “expression of tricellulin gene” includes “expression of tricellulin DNA”. In addition, “gene” or “oligonucleotide” refers to DNA. And both RNA. In the present specification, the nucleotide sequence is indicated with 5 'force and 3' direction to the left and right.
[0013] 本明細書において、特に断らないかぎり、遺伝子の「発現を抑制する」とは、遺伝子 の発現を通常レベルよりも低下させること、ならびに完全に消失させてしまうことを包 含する。具体的には、トリセルリン遺伝子の「発現を抑制する」とは、トリセルリン遺伝 子の合成を不活性化あるいは消失させること、トリセルリン遺伝子の制御 ·調節機構を 発現抑制の方向にシフトさせることなどを包含する。例えば、細胞のトリセルリン遺伝 子を、公知の方法によりノックダウン、ノックアウト、あるいは欠失させてもよレ、。また例 えば、同種の機能を有する蛋白、例えばアイソザィムをコードする遺伝子が複数ある 場合において、それらの遺伝子のうち 1つまたはそれ以上、あるいはすべての発現を 抑制してもよい。  In the present specification, unless otherwise specified, “suppressing the expression” of a gene includes reducing the expression of the gene from a normal level and completely eliminating it. Specifically, “inhibiting expression” of the tricellulin gene includes inactivating or eliminating the synthesis of the tricellulin gene and shifting the control / regulatory mechanism of the tricellulin gene in the direction of expression suppression. To do. For example, the tricellulin gene of a cell may be knocked down, knocked out, or deleted by known methods. For example, in the case where there are a plurality of genes encoding the same type of function, for example, isozymes, the expression of one or more or all of these genes may be suppressed.
[0014] トリセルリン遺伝子の発現を抑制する因子の例としては、 siRNA、アンチセンスオリ ゴヌクレオチド、抗体、阻害ペプチド、ドミナントネガティブ変異体のごとき因子や薬剤 が挙げられるが、これらに限らなレ、。薬剤デリバリーのための所望部位の細胞をこれ らの因子で処理することにより、例えば、細胞をこれらの因子と接触させ、あるいは細 胞にこれらの因子を導入することにより、所望部位の細胞におけるトリセルリン遺伝子 の発現を抑制することができる。これらの因子をコードする遺伝子で細胞を処理して もよレ、。これらの因子や遺伝子で細胞を処理する方法、例えば、これらの因子または これらの因子をコードする遺伝子を細胞に接触させ、あるいは細胞に導入する方法 は当該分野で公知である。例えば、細胞への遺伝子の導入には、ベクターによる方 法 (例えば、アデノウイルスベクター等用いる方法)、細胞融合、エレクト口ポレーショ ン、遺伝子銃、リポフエクシヨン、直接導入法などの方法を用いることができる。当業 者は所望部位の細胞の種類、使用する因子の種類等に応じて、これらの方法を適宜 選択して用いることができる。また、当該分野で公知の上記以外の方法により、トリセ ノレリン遺伝子の発現を抑制することもできる。  [0014] Examples of factors that suppress the expression of the tricellulin gene include, but are not limited to, factors and drugs such as siRNA, antisense oligonucleotides, antibodies, inhibitory peptides, and dominant negative mutants. By treating cells at the desired site for drug delivery with these factors, for example, by contacting the cells with these factors or introducing these factors into the cells, trycellulin in the cells at the desired site. Gene expression can be suppressed. Treat cells with genes that encode these factors. Methods for treating cells with these factors and genes, for example, methods for bringing these factors or genes encoding these factors into contact with cells or introducing them into cells are known in the art. For example, a method using a vector (for example, a method using an adenovirus vector, etc.), cell fusion, electoporation, gene gun, lipofection, a direct introduction method, etc. can be used to introduce a gene into a cell. . Those skilled in the art can appropriately select and use these methods according to the type of cells at the desired site, the type of factors used, and the like. In addition, expression of the trisenorelin gene can also be suppressed by methods other than those described above known in the art.
[0015] 本発明に用いられるトリセルリン遺伝子の発現を抑制する好ましい因子の例として は、トリセルリン siRNA、トリセルリン遺伝子に対するアンチセンスオリゴヌクレオチドな どが挙げられる。トリセルリン siRNAやトリセルリン遺伝子に対するアンチセンスオリゴ ヌクレオチドはトリセルリン遺伝子に対する特異性が高ぐノックダウンあるレ、はノックァ ゥト効率も高ぐ副作用のリスクも小さいという利点を有する。アンチセンスオリゴヌタレ ォチドや siRNAの製造方法や好ましレ、配列も当業者に公知であり、これらを容易に 得ること力 Sできる。アンチセンスオリゴヌクレオチドや siRNAの細胞への導入方法(例 えば、アンチセンス DNAを導入する場合にはトランスフエクシヨン法)も確立されてお り、導入が容易で使用しやすいという利点もある。本発明の siRNAの体内への導入 方法としては、直接導入法、アデノウイルスベクターを用いる方法、経皮的なリポフエ クシヨン、エレクト口ポレーシヨンなどの公知の方法を用いることができる。本発明の si RNAの体内への導入のための好ましい方法は直接導入法である。直接導入法を採 用することにより、以下に説明する薬剤デリバリー系や医薬組成物の構成や使用を 単純化することができる。 siRNAを直接導入するための条件や因子は当業者が適宜 選択しうるものである。 [0015] Examples of preferable factors that suppress the expression of the tricellulin gene used in the present invention include tricellulin siRNA, antisense oligonucleotides to the tricellulin gene, and the like. Anti-sense oligo for tricellulin siRNA and tricellulin gene Nucleotides have the advantage of high knock-down specificity for the tricellulin gene, high knock-out efficiency, and low risk of side effects. Methods for producing antisense oligonucleotides and siRNA, preferred sequences and sequences are also known to those skilled in the art, and can be easily obtained. Methods for introducing antisense oligonucleotides and siRNA into cells (for example, the transfection method when introducing antisense DNA) have also been established, which has the advantage of being easy to introduce and use. As a method for introducing the siRNA of the present invention into the body, a known method such as a direct introduction method, a method using an adenovirus vector, a transdermal lipofusion, or an electoral position can be used. A preferred method for introducing the siRNA of the present invention into the body is a direct introduction method. By adopting the direct introduction method, it is possible to simplify the configuration and use of the drug delivery system and the pharmaceutical composition described below. Conditions and factors for direct introduction of siRNA can be appropriately selected by those skilled in the art.
[0016] 配列番号: 7または 8に示すヌクレオチド配列を有する siRNAの相同体 RNAとは、 配列番号: 7または 8に示すヌクレオチド配列を有する siRNAと同等のトリセルリン遺 伝子発現抑制効果を有するすべての RNAを包含する。好ましくは、本発明の siRN Aの相同体 RNAは、配列番号: 7または配列番号: 8に示すヌクレオチド配列におい て、 1個ないし数個のヌクレオチドが欠失、置換および/または付加(それらの組み 合わせであってもよい)された配列を有するものである。ここに数個とは、通常には 5 個、好ましくは 3個、さらに好ましくは 2個、最も好ましくは 1個を意味する。  [0016] The siRNA homologue of the siRNA having the nucleotide sequence shown in SEQ ID NO: 7 or 8 means all the tricellulin gene expression inhibitory effects equivalent to the siRNA having the nucleotide sequence shown in SEQ ID NO: 7 or 8. Includes RNA. Preferably, siRNA homologue RNA of the present invention has one to several nucleotides deleted, substituted and / or added (set of them) in the nucleotide sequence shown in SEQ ID NO: 7 or SEQ ID NO: 8. (Which may be combined). The term “several” means usually 5, preferably 3, more preferably 2, and most preferably 1.
[0017] 本明細書において、特に断らないかぎり、ある蛋白の「機能を抑制する」とは、その 蛋白の機能を通常レベルよりも低下させること、ならびに完全に消失させてしまうこと を包含する。同種の蛋白(例えば、アイソザィム)が複数存在する場合に、それらのう ちの 1つまたはそれ以上の作用を抑制してもよぐあるいは全部の機能を抑制しても よい。  In the present specification, unless otherwise specified, “suppressing the function” of a protein includes reducing the function of the protein below a normal level and completely eliminating the function. When there are a plurality of proteins of the same kind (for example, isozymes), one or more of them may be suppressed, or all functions may be suppressed.
[0018] トリセルリンの機能を抑制する因子の例としては、トリセルリン抗体、トリセルリン阻害 ペプチド、トリセルリンのドミナントネガティブ変異体などが挙げられる力 これらに限ら ない。本発明に用いられるトリセルリンの機能を抑制する好ましい因子の一例はトリセ ノレリン蛋白に対する抗体である。抗体は、種々のものが知られており、例えばポリクロ ーナル抗体であっても、モノクローナル抗体であってもよい。キメラ抗体、ヒト化抗体を 作成し、使用してもよい。抗体の製造方法は当業者に公知であり、作成すべき抗体 の種類、用途等に応じて、適宜選択することができる。薬剤デリバリーすべき所望部 位の細胞をこれらの因子で処理することにより、例えば、細胞をこれらの因子と接触さ せ、あるいは細胞にこれらの因子を導入することにより、所望部位の細胞におけるトリ セルリンの機能を抑制することができる。また、これらのトリセルリンの機能を抑制する 因子をコードする遺伝子で細胞を処理してもよい。これらの因子や遺伝子で細胞を 処理する方法、例えば、これらの因子またはこれらの因子をコードする遺伝子を細胞 に接触させ、あるいは細胞に導入する方法は当該分野で公知であり、当業者は細胞 の種類、因子の種類等に応じて、これらの方法を適宜選択して用いることができる。 細胞への遺伝子の導入には、例えば、上述のごとき手段 ·方法を用いることができる 本発明は、もう 1つの態様において、トリセルリン遺伝子の発現またはトリセルリン蛋 白の機能を抑制する因子(以下、「本発明の因子」ということがある)を用いることを特 徴とする薬剤デリバリー系に関するものである。本発明の因子を生体に適用し、適用 部分の透過性を高めることによって、薬剤を大量かつ迅速に、しかも非侵襲的、非観 血的に体内へ移行させることができる。本発明の薬剤デリバリー系を使用するに際し 、あらかじめ本発明の因子を薬剤適用部位に適用しておいて、薬剤適用部位の透過 性が高まって力も薬剤を投与してもよい。また、本発明の薬剤デリバリー系を使用す るに際し、薬剤とともに本発明の因子を適用部位に投与してもよい。本発明の薬剤デ リバリー系において、上記以外の他の成分や手段を用いてもよぐ例えば、薬剤デリ バリー用の器具 (例えば、塗布用ブラシ、パッチ、点眼用容器など)などを用いてもよ ぐあるいは密封性のシールを用いて、透過させたい薬剤を脂溶性のクリームなどに 混ぜて皮膚への浸透を高める手法などを適用してもよい。 [0018] Examples of factors that suppress the function of tricellulin include, but are not limited to, a tricellulin antibody, a tricellulin-inhibiting peptide, and a dominant-negative mutant of tricellulin. An example of a preferable factor that suppresses the function of tricellulin used in the present invention is an antibody against trisenorelin protein. Various antibodies are known, such as polyclonal antibodies. It may be an internal antibody or a monoclonal antibody. Chimeric antibodies and humanized antibodies may be prepared and used. Methods for producing antibodies are known to those skilled in the art, and can be appropriately selected depending on the type and use of the antibody to be prepared. By treating cells at the desired site to be delivered with these factors, for example, by contacting the cells with these factors or introducing these factors into the cells, trycellulin in the cells at the desired site. Can be suppressed. Alternatively, the cells may be treated with a gene encoding a factor that suppresses the function of these tricellulins. Methods for treating cells with these factors and genes, for example, methods for contacting or introducing these factors or genes encoding these factors into cells are known in the art, and those skilled in the art can These methods can be appropriately selected and used according to the type, the type of factor, and the like. For the introduction of the gene into the cell, for example, the means and method as described above can be used. In another embodiment, the present invention is a factor that suppresses the expression of the tricellulin gene or the function of the tricellulin protein (hereinafter, “ The present invention relates to a drug delivery system characterized by using the “factor of the present invention”. By applying the factor of the present invention to a living body and increasing the permeability of the applied portion, the drug can be transferred into the body in a large amount, rapidly, noninvasively and noninvasively. When using the drug delivery system of the present invention, the agent of the present invention may be applied to the drug application site in advance, and the permeability of the drug application site may be increased to administer the drug with force. In addition, when using the drug delivery system of the present invention, the agent of the present invention may be administered to the application site together with the drug. In the drug delivery system of the present invention, other components and means other than those described above may be used. For example, a drug delivery device (for example, an application brush, a patch, an eye drop container, etc.) may be used. Alternatively, a technique that increases penetration into the skin by mixing a drug to be permeated into a fat-soluble cream or the like by using a tight seal may be applied.
本発明の薬剤デリバリー系を用いることにより、トリセルリン遺伝子の発現またはトリ セルリン蛋白の機能を抑制し、細胞層への薬剤の透過性を高め、多量の薬剤を速や 力、に体内にデリバリーすることができる。すなわち、従来これらの部位への投与では 体内にデリバリーすることが不可能、あるいは不十分にしかできなかった薬剤を、本 発明の薬剤デリバリー系をこれらの部位に適用することにより、大量かつ速やかに、 し力も非侵襲的、非観血的に体内へ移行させることができる。このことは、対象の負 担を軽減することにもつながる。 By using the drug delivery system of the present invention, it is possible to suppress the expression of the tricellulin gene or the function of the tricellulin protein, increase the permeability of the drug to the cell layer, and deliver a large amount of drug to the body quickly and forcefully. Can do. In other words, drugs that could not be delivered to the body by administration to these sites or could not be delivered to the body. By applying the drug delivery system of the invention to these sites, the amount of force can be transferred into the body in a noninvasive and noninvasive manner. This also reduces the burden on the target.
本発明の薬剤デリバリー系によりデリバリーされる薬剤はいずれのものであってもよ ぐ特に制限はない。デリバリーされる薬剤は 1種類であっても、複数種類であっても よい。本発明の薬剤デリバリー系の適用部位についても特に制限はなぐまた、 2箇 所以上の部位に適用してもよい。好ましいデリバリー形態としては経皮的、経粘膜的 、あるいは点眼によるものが挙げられる。好ましい適用部位としては皮膚、粘膜、眼球 、特に角膜等が挙げられる。本発明の因子の使用量は特に制限はなぐ 目的に応じ たものとすることができる。例えば、必要とされる透過性の程度、デリバリーされる薬剤 、疾病の種類、対象の状態、適用部位等に応じて、本発明の因子の使用量および使 用回数を変更することができる。なお、本明細書において「薬剤」とは、投与された場 合に所望の治療効果または予防効果を有する、あるいは有することが期待される物 質をいう。  There are no particular limitations on the drug delivered by the drug delivery system of the present invention. The drug to be delivered may be one type or multiple types. The application site of the drug delivery system of the present invention is not particularly limited, and may be applied to 2 or more sites. Preferred delivery forms include transdermal, transmucosal, or ophthalmic. Preferable application sites include skin, mucous membrane, eyeball, especially cornea. The amount of the factor of the present invention is not particularly limited and can be set according to the purpose. For example, the amount and number of uses of the factor of the present invention can be changed according to the required degree of permeability, the drug to be delivered, the type of disease, the state of the subject, the application site, and the like. As used herein, “drug” refers to a substance that has or is expected to have a desired therapeutic or prophylactic effect when administered.
本発明は、もう 1つの態様において、本発明の因子を含む、生体の物質透過性を 高めるための医薬組成物に関するものである。本発明の医薬組成物は、本発明の因 子の作用によりトリセルリン遺伝子の発現またはトリセルリン蛋白の機能を抑制するこ とにより、細胞層への物質の透過性を高め、ひいては生体の物質透過性を高めること ができる。したがって、本発明の医薬組成物を投与することにより、これと同時あるい は後で投与される薬剤の体内への移行を促進することができる。それゆえ、多量の薬 剤を速やかに体内に移行させることができる。例えば、本発明の医薬組成物を薬剤 投与部位に投与して、その部位の物質透過性を高めておき、次いで薬剤を当該部 位に投与してもよい。また例えば、本発明の医薬組成物と薬剤とを同時に生体の所 望部位に投与してもよい。  In another aspect, the present invention relates to a pharmaceutical composition for increasing the substance permeability of a living body, comprising the factor of the present invention. The pharmaceutical composition of the present invention suppresses the expression of the tricellulin gene or the function of the tricellulin protein by the action of the factor of the present invention, thereby increasing the permeability of the substance to the cell layer and thus increasing the substance permeability of the living body. Can be increased. Therefore, by administering the pharmaceutical composition of the present invention, it is possible to promote the transfer of a drug administered at the same time or later into the body. Therefore, a large amount of drugs can be quickly transferred into the body. For example, the pharmaceutical composition of the present invention may be administered to a drug administration site to increase the substance permeability at that site, and then the drug may be administered to the site. Further, for example, the pharmaceutical composition of the present invention and the drug may be simultaneously administered to a desired site in the living body.
この点において、本発明は、請求項:!〜 5のいずれか 1項記載の因子および薬剤を 含む医薬組成物に関するものである。  In this respect, the present invention relates to a pharmaceutical composition comprising the agent according to any one of claims:! To 5 and a drug.
上記のような本発明の医薬組成物を用いることにより、従来の医薬組成物では体内 に移行させることが不可能、あるいは不十分にしかできなかった薬剤を大量かつ速 やかに、し力も非侵襲的、非観血的に体内へ移行させることができる。このことは、対 象の負担を軽減することにもつながる。本発明の医薬組成物中の本発明の因子の量 、薬剤、他の成分、適用部位等については、本発明の薬剤デリバリー系のところで説 明したとおりである。本発明の医薬組成物の剤形はいずれのものであってもよぐ特 に限定されないが、好ましくは、経皮剤形(ローション、クリーム、軟膏、発布剤など)ま たは経粘膜剤形、あるいは点眼剤である。これらの剤形の製造方法は公知であり、当 業者は適宜選択することができる。 By using the pharmaceutical composition of the present invention as described above, a large amount and a high speed of a drug that could not be transferred into the body by the conventional pharmaceutical composition or could only be insufficient. The force can be transferred into the body noninvasively and noninvasively. This also reduces the burden on the subject. The amount of the factor of the present invention, drug, other components, application site, etc. in the pharmaceutical composition of the present invention are as described in the drug delivery system of the present invention. The dosage form of the pharmaceutical composition of the present invention is not particularly limited, but is preferably a transdermal dosage form (such as lotion, cream, ointment, clothing agent) or transmucosal dosage form. Or eye drops. The manufacturing method of these dosage forms is well-known, and those skilled in the art can select suitably.
[0021] もう 1つの態様において、本発明は、本発明の因子を用いることを特徴とする、生体 の物質透過性を高める方法に関するものである。さらにもう 1つの態様において、本 発明は、本発明の因子を用いることを特徴とする、薬剤のデリバリー方法に関するも のである。本発明の薬剤のデリバリー方法において、薬剤投与前に本発明の因子を 適用してもよぐ薬剤投与と同時に本発明の因子を適用してもよい。本発明の方法に おいて、薬剤のデリバリーはいかなる手段 ·方法によっても行われうる力 経皮的また は経粘膜的であることが好ましい。また、点眼によるデリバリーも好ましい。薬剤のデリ バリーについては上で説明したとおりである。 [0021] In another aspect, the present invention relates to a method for enhancing substance permeability of a living body, characterized by using the factor of the present invention. In yet another embodiment, the present invention relates to a method for delivering a drug, characterized in that the agent of the present invention is used. In the drug delivery method of the present invention, the factor of the present invention may be applied before the drug administration, or the factor of the present invention may be applied simultaneously with the drug administration. In the method of the present invention, the drug delivery is preferably a force transcutaneous or transmucosal that can be performed by any means or method. Delivery by eye drops is also preferred. The drug delivery is as described above.
さらにもう 1つの態様において、本発明は、本発明の因子を薬剤の投与前あるいは 薬剤の投与と同時に投与することを特徴とする、疾病の治療および/または予防方 法にも関する。本発明の方法によれば、従来の方法では体内に移行させることが不 可能、あるいは不十分にしかできなかった薬剤を、大量かつ速やかに、しかも非侵襲 的、非観血的に体内へ移行させることができるので、優れた治療および/または予 防効果が得られるとともに、対象の負担も軽減されうる。  In yet another embodiment, the present invention also relates to a method for treating and / or preventing a disease, characterized in that the agent of the present invention is administered before or simultaneously with the administration of the drug. According to the method of the present invention, a large amount of a drug that could not be transferred into the body by the conventional method or was insufficiently transferred to the body in a non-invasive and non-invasive manner. Therefore, excellent treatment and / or prevention effects can be obtained, and the burden on the subject can be reduced.
[0022] さらにもう 1つの態様において、本発明は、上で説明した本発明の薬剤デリバリー系 あるいは医薬組成物を製造するための、本発明の因子の使用に関する。本発明の 因子を用いて製造される薬剤デリバリー系あるいは医薬組成物は、従来の薬剤デリ バリー系あるいは医薬組成物では体内に移行させることが不可能、あるいは不十分 にしかできなかった薬剤を、大量かつ速やかに、しかも非侵襲的、非観血的に体内 へ移行させることができ、し力、も対象の負担を軽減することが可能である。製造される デリバリー系または医薬組成物については上の説明があてはまる。 上記使用により製造されるデリバリー系または医薬組成物は薬剤を含むものでなく てもよレ、。そのような場合、デリバリー系または医薬組成物は、薬剤の投与前に、ある レ、は薬剤の投与と同時に適用または投与される。また、製造されるデリバリー系また は医薬組成物は薬剤を含んでいてもよい。デリバリー系または医薬組成物の生体へ の適用または投与はいずれの手段 '方法によるものであってもよいが、経皮的または 経粘膜的に適用または投与されるものが好ましい。また、点眼により適用または投与 されるものも好ましい。 [0022] In yet another embodiment, the present invention relates to the use of the agent of the present invention for producing the drug delivery system or pharmaceutical composition of the present invention described above. The drug delivery system or pharmaceutical composition produced using the factor of the present invention is a drug delivery system or pharmaceutical composition that cannot be transferred to the body by the conventional drug delivery system or pharmaceutical composition. It can be transferred to the body in a large amount, promptly, and noninvasively and noninvasively, and the burden on the subject can be reduced. The above description applies to the delivery system or pharmaceutical composition produced. The delivery system or pharmaceutical composition produced by the above use may not contain a drug. In such cases, the delivery system or pharmaceutical composition is applied or administered prior to administration of the drug, or at the same time as administration of the drug. In addition, the manufactured delivery system or pharmaceutical composition may contain a drug. Application or administration of the delivery system or pharmaceutical composition to the living body may be by any means, but those applied or administered transdermally or transmucosally are preferred. Also preferred are those that are applied or administered by eye drops.
[0023] 本発明は、さらにもう 1つの態様において、トリセルリン遺伝子をノックアウトしたヒト 以外の動物に関する。ノックアウト動物の作出方法は当業者に公知であり、いずれの 動物からも作出可能である。好ましい動物種は哺乳動物であり、サル、ィヌ、ネコ、ゥ シ、ゥマ、ヒッジ、マウス、ラット等である。本発明のトリセルリン遺伝子ノックアウト動物 は、皮膚や粘膜を介した物質移行が亢進しているので、薬物デリバリーのモデル動 物として薬物の研究、開発に使用することができる。また、公知の方法によりコンディ ショナルノックアウト(conditional knock out)動物(ある特定の臓器のみでトリセルリン 遺伝子がノックアウトされている)を作成し、それらの動物を、各臓器のバリア機構の 性質およびその破綻による病理学的解析についてのモデル動物として使用すること あでさる。  [0023] In yet another embodiment, the present invention relates to a non-human animal in which the tricellulin gene is knocked out. Methods for producing knockout animals are known to those skilled in the art and can be produced from any animal. Preferred animal species are mammals, such as monkeys, dogs, cats, horses, horses, hidges, mice, rats and the like. The tricellulin gene knockout animal of the present invention can be used for drug research and development as a model animal for drug delivery since substance transfer through the skin and mucous membrane is enhanced. In addition, conditional knockout animals (tricellin gene knocked out only in a specific organ) are prepared by a known method, and those animals are determined according to the nature of the barrier mechanism of each organ and its breakdown. Use as a model animal for pathological analysis.
[0024] 以下に実施例を示して本発明をさらに詳細かつ具体的に説明するが、実施例は本 発明を限定するものと解してはならない。  [0024] The present invention will be described in more detail and specifically with reference to the following examples. However, the examples should not be construed as limiting the present invention.
実施例 1  Example 1
[0025] トリセルリンに対する抗体の作成、およびトリセルラージャンクションにおけるトリセルリ ンの存在の確認  [0025] Production of antibodies against tricellulin and confirmation of the presence of tricellulin in tricellular junctions
マウスのトリセルリンの N末端細胞質領域および C末端細胞質領域を、 GST融合蛋 白の形で大腸菌中で発現させ、それらを常法により精製した。精製蛋白を結核菌の アジュバントとよく混和させたものをゥサギおよびラットの皮下に注射した。ゥサギから はポリクローナル抗体を作成し、ラットからはモノクローナル抗体を作成した。二次抗 体には商業的に入手可能な、ロバ抗ゥサギ IgGに FITCおよび Cy3の蛍光色素がつ いたもの、あるいはロバ抗ラットの IgGに FITCおよび Cy3の蛍光色素がついたものを 用いた。蛍光抗体法にてマウスの乳腺由来の培養上皮細胞(Eph4)を染色すると、 図 2 (左)に示すように、トリセルリンに対するシグナルは 3つの細胞が形成するトリセ ルラージヤンクシヨンにのみ認められた。なお、図 2 (右)は、細胞間に通常見出される オタルディンの抗体染色像である。 The N-terminal and C-terminal cytoplasmic regions of mouse tricellulin were expressed in E. coli in the form of GST fusion proteins and purified by conventional methods. Purified protein mixed well with Mycobacterium tuberculosis adjuvant was injected subcutaneously into rabbits and rats. Polyclonal antibodies were made from rabbits and monoclonal antibodies were made from rats. Secondary antibodies include commercially available donkey anti-rabbit IgG with FITC and Cy3 fluorescent dyes, or donkey anti-rat IgG with FITC and Cy3 fluorescent dyes. Using. When cultured epithelial cells (Eph4) derived from the mammary gland of mice were stained with the fluorescent antibody method, as shown in Fig. 2 (left), a signal for tricellulin was observed only in the tricellular large junction formed by three cells. . Figure 2 (right) is an antibody staining image of otaldine that is normally found between cells.
実施例 2  Example 2
[0026] トリセルリンに対する siRNAの効果  [0026] Effect of siRNA on tricellulin
マウス'トリセルリン cDNAの蛋白コード領域のヌクレオチド 1590〜1608 (GAAC Nucleotides 1590-1608 of the protein coding region of mouse 'Tricellulin cDNA (GAAC
AAACTCTCTCACATA)を HIプロモーターベクターに組み込んだ。同様に、マ ウス'トリセルリン cDNAの蛋白コード領域のヌクレオチド 1542〜: 1560 (GAATGAAAACTCTCTCACATA) was incorporated into the HI promoter vector. Similarly, nucleotides 1542 to 1560 (GAATGA of the protein coding region of mouse 'Tricellulin cDNA
CCCTTCGTTTCTG)を HIプロモーターベクターに組み込んだ。 HIプロモータ 一ベクターにはネオマイシン耐性遺伝子が組み込まれていた。これらのベクターの作 成の際に、 T. R. Brummelkamp, R. Bernards, R. Agami, Science 296, 550 (2002)の 記載を参照した。 CCCTTCGTTTCTG) was incorporated into the HI promoter vector. The neomycin resistance gene was integrated into one HI promoter vector. In preparing these vectors, the description of T. R. Brummelkamp, R. Bernards, R. Agami, Science 296, 550 (2002) was referred to.
[0027] 調製した各ベクターを、 Invitrogen社の lipofectamin plusを用いてマウスの乳腺由来 の培養上皮細胞(Eph4)に導入して、 DMEM培地にて 48時間培養した。その後、 ネオマイシン(400ug/ml)を含む DMEM培地で 2週間程度培養し、ネオマイシン 耐性を獲得した(すなわち HIプロモーターベクターを安定的に獲得した)細胞を得 た。上記操作により、 19merの siRNA: GAACAAACUCUCUCACAUA (配列 番号: 7)を安定的に発現する細胞(KD _ 1 )、および 19merの siRNA: GAAUGA CCCUUCGUUUCUG (配列番号: 8)を安定的に発現する細胞(KD - 2)を得た。  [0027] Each of the prepared vectors was introduced into cultured mammary gland-derived epithelial cells (Eph4) using lipofectamin plus from Invitrogen and cultured in DMEM medium for 48 hours. Thereafter, the cells were cultured for about 2 weeks in a DMEM medium containing neomycin (400 ug / ml) to obtain cells having acquired neomycin resistance (that is, having stably acquired the HI promoter vector). By the above operation, cells that stably express 19mer siRNA: GAACAAACUCUCUCACAUA (SEQ ID NO: 7) (KD _ 1) and cells that stably express 19mer siRNA: GAAUGA CCCUUCGUUUCUG (SEQ ID NO: 8) (KD -2) got.
[0028] このようにして得られた細胞の、細胞抽出物のウェスタンブロッテイング、蛍光抗体 法による染色、および蛍光抗体法による染色を用いて組織学的観察を行った。トリセ ノレリンに対する RNAiがトリセルリンの蛋白を 95%程度消失させていること力 ウェス タンブロッテイングにより確認された(図 3)。蛍光抗体法によっても、トリセルリンに対 する RNAiがトリセルリンの蛋白を消失させていることが確認された。すなわち、野生 型 (WT)細胞と比較して、トリセルリンの発現が消失した細胞 (KD— 1および KD— 2 )ではトリセルラージャンクションにおける蛍光が消失していた(図 4上段)。一方、 E— カドヘリン (アドへレンスジャンクション (adherens junction)の接着分子)には変化がな かった(図 4下段)。図 5に示すように、培養上皮細胞においてトリセルリンの発現を消 失させた細胞(図 5上段、中および右パネル)では、タイトジャンクションの構築力 (1 )矢印部分に示す通り、 3つの細胞の交わる点(トリセルラーセンター(tricellular cent er) )の形成が、野生型 (WT) (図 5上段、左パネル)では正常であるのに比べて、トリ セルリンの発現が消失した細胞(KD_ 1および KD— 2)では開いていることが確認さ れ、(2)矢頭で示す通り、 KD— 1および KD— 2では 2つの細胞の間のタイトジャンク シヨンの形成が脆弱になっていることがわ力 た。これらの結果は、オタルディン (タイ トジャンクションに局在する膜蛋白)の染色(図 5下段)と比較することにより判断され た。 [0028] The cells thus obtained were subjected to histological observation using Western blotting of the cell extract, staining by the fluorescent antibody method, and staining by the fluorescent antibody method. It was confirmed by Western blotting that RNAi against trisenorelin lost about 95% of the tricellulin protein (Fig. 3). Also by the fluorescent antibody method, it was confirmed that RNAi for tricellulin has lost the protein of tricellulin. That is, compared to wild-type (WT) cells, the fluorescence in the tricellular junction disappeared in the cells (KD-1 and KD-2) in which the expression of tricellulin disappeared (FIG. 4, upper panel). On the other hand, E—cadherin (adherens junction adhesion molecule) does not change. (Figure 4 bottom). As shown in Fig. 5, in cells where the expression of tricellulin was lost in cultured epithelial cells (Fig. 5, upper panel, middle and right panels), the ability to construct tight junctions (1) Compared to the normal formation of the crossing point (tricellular center) in the wild type (WT) (Fig. 5, upper panel, left panel), cells in which the expression of tricellulin disappeared (KD_1 and KD-2) was confirmed to be open, and (2) as shown by the arrowheads, KD-1 and KD-2 were found to be vulnerable to tight junction formation between the two cells. I was strong. These results were judged by comparison with staining for otaldin (a membrane protein localized at the tit junction) (bottom of Fig. 5).
実施例 3  Example 3
[0029] siRNAによりトリセルリン発現を抑制したことによる、細胞間隙における透過性変化の 定量的測定  [0029] Quantitative measurement of permeability change in cell gap due to suppression of tricellulin expression by siRNA
タイトジャンクションの機能的な定量法の 1つである TER (trans-印 ithelial electrical resistance)法を用いて、細胞間隙における透過性を定量した。 TER法とは、上皮細 胞を two-chamberの培養ディッシュで培養して、上皮細胞のシートの上下に発生する 電気抵抗値 (TER)を測定し、上皮細胞の間の溶質の透過しやすさを測定する手段 である。この実験では、トリセルリンの発現が消失した細胞(KD— 1および KD— 2)を two-chamberの培養ディッシュを用いて DMEM培地中で培養した。結果を図 6に示 す。正常の野生型細胞 (WT)に比較して、トリセルリンの発現が消失した細胞 (KD— 1および KD— 2)では、 TERが大きく減少した。この結果により、トリセノレリンの消失に よるタイトジャンクションの機能が低下して、イオンの細胞間隙における透過性が亢進 したことを示す。  Permeability in the cell gap was quantified using the TER (trans-mark ithelial electrical resistance) method, which is one of the functional quantification methods of tight junctions. In the TER method, epithelial cells are cultured in a two-chamber culture dish, and the electrical resistance values (TER) generated above and below the epithelial cell sheet are measured to facilitate the permeation of solutes between epithelial cells. It is a means to measure. In this experiment, cells in which expression of tricellulin disappeared (KD-1 and KD-2) were cultured in a DMEM medium using a two-chamber culture dish. The results are shown in Fig. 6. Compared to normal wild type cells (WT), TER was greatly reduced in cells in which expression of tricellulin was lost (KD-1 and KD-2). This result indicates that the function of the tight junction due to the disappearance of trisenorelin is reduced, and the permeability of ions in the cell gap is increased.
[0030] また、図 7に示すように、 FITCで標識した様々な分子量をもつデキストランに対す る透過性の変化を調べた。この実験では、トリセルリンの発現が消失した細胞 (KD— 1および KD— 2)を two-chamberの培養ディッシュを用いて DMEM培地中で培養し た。トリセルリンの発現が消失した細胞(KD—1および KD— 2)では、 4kD以下の物 質に対して非常に透過性が亢進していることが判明した。多くの薬剤および増殖因 子などの生理活性物質の分子量がせいぜい数 kDであることを考慮すると、このォー ダ一の分子量のものが選択的に透過することは大きな意味がある。以上の実施例で 得られたデータは、トリセルリンの機能を一時的に、局所的に阻害して、当該部分の バリア機構を一時的に破綻させることにより、薬剤や生理活性物質を自由に拡散させ て所望部位に移行させることが可能であることを示すものである。 [0030] Further, as shown in Fig. 7, changes in permeability to dextran having various molecular weights labeled with FITC were examined. In this experiment, cells in which expression of tricellulin disappeared (KD-1 and KD-2) were cultured in DMEM medium using a two-chamber culture dish. In cells where the expression of tricellulin disappeared (KD-1 and KD-2), it was found that the permeability to substances below 4 kD was greatly enhanced. Considering that the molecular weight of many drugs and growth factors such as bioactive substances is at most several kD, this It is of great significance to selectively penetrate those with the same molecular weight. The data obtained in the above examples show that the function of tricellulin is temporarily and locally inhibited, and the barrier mechanism of the relevant part is temporarily broken, so that the drug and physiologically active substance can be freely diffused. This indicates that it can be transferred to a desired site.
産業上の利用可能性  Industrial applicability
[0031] 本発明は、医薬品の開発および製造、ならびに医学、生理学および薬学的研究な どの分野において利用可能である。  [0031] The present invention can be used in fields such as pharmaceutical development and manufacture, and medicine, physiology, and pharmaceutical research.
[0032] 配列表フリーテキスト [0032] Sequence Listing Free Text
配列番号: 1はヒト ·トリセルリンをコードする DNAのヌクレオチド配列を示す。  SEQ ID NO: 1 shows the nucleotide sequence of DNA encoding human tricellulin.
配列番号: 2はヒト ·トリセルリンのアミノ酸配列を示す。  SEQ ID NO: 2 shows the amino acid sequence of human tricellulin.
配列番号: 3はヒト'トリセルリンの別形態をコードする DNAのヌクレオチド配列を示 す。  SEQ ID NO: 3 shows the nucleotide sequence of DNA encoding another form of human 'Tricellulin.
配列番号: 4はヒト ·トリセルリンの別形態のアミノ酸配列を示す。  SEQ ID NO: 4 shows the amino acid sequence of another form of human tricellulin.
配列番号: 5はマウス'トリセルリンをコードする DNAのヌクレオチド配列を示す。 配列番号: 6はマウス'トリセルリンのアミノ酸配列を示す。  SEQ ID NO: 5 shows the nucleotide sequence of DNA encoding mouse 'Tricellulin. SEQ ID NO: 6 shows the amino acid sequence of mouse 'Tricellulin.
配列番号: 7はトリセルリン遺伝子の発現を抑制する本発明の siRNAのヌクレオチド 配列を示す。  SEQ ID NO: 7 shows the nucleotide sequence of the siRNA of the present invention that suppresses the expression of the tricellulin gene.
配列番号: 8はトリセルリン遺伝子の発現を抑制する本発明の siRNAのヌクレオチド 配列を示す。  SEQ ID NO: 8 shows the nucleotide sequence of the siRNA of the present invention that suppresses the expression of the tricellulin gene.

Claims

請求の範囲 The scope of the claims
[I] トリセルリン遺伝子の発現またはトリセルリン蛋白の機能を抑制する因子。  [I] A factor that suppresses the expression of the tricellulin gene or the function of the tricellulin protein.
[2] siRNA、アンチセンスオリゴヌクレオチド、抗体、阻害ペプチド、ドミナントネガティブ 変異体からなる群より選択される請求項 1記載の因子。  [2] The factor according to claim 1, wherein the factor is selected from the group consisting of siRNA, antisense oligonucleotide, antibody, inhibitory peptide, and dominant negative mutant.
[3] 配列番号: 7または 8に示すヌクレオチド配列を有する siRNA、あるいはそれと同等 の機能を有する相同体 RNAである請求項 1記載の因子。 [3] The factor according to claim 1, which is a siRNA having the nucleotide sequence shown in SEQ ID NO: 7 or 8, or a homologous RNA having a function equivalent thereto.
[4] トリセルリン DNAに対するアンチセンスオリゴヌクレオチドである請求項 1記載の因 子。 [4] The factor according to claim 1, which is an antisense oligonucleotide against tricellulin DNA.
[5] トリセルリン蛋白に対する抗体である請求項 1記載の因子。  5. The factor according to claim 1, which is an antibody against a tricellulin protein.
[6] 請求項:!〜 5のいずれか 1項記載の因子を含む薬剤デリバリー系。 [6] Claim: A drug delivery system comprising the factor according to any one of! To 5.
[7] 請求項 1〜5のいずれ力 1項記載の因子を含む、生体の物質透過性を高めるため の医薬組成物。 [7] A pharmaceutical composition for enhancing substance permeability of a living body, comprising the factor according to any one of claims 1 to 5.
[8] 請求項:!〜 5のいずれか 1項記載の因子および薬剤を含む医薬組成物。  [8] Claims: A pharmaceutical composition comprising the factor according to any one of! To 5 and a drug.
[9] 経皮剤形または経粘膜剤形である請求項 7または 8記載の医薬組成物。 9. The pharmaceutical composition according to claim 7 or 8, which is a transdermal dosage form or a transmucosal dosage form.
[10] 点眼剤である請求項 7または 8記載の医薬組成物。 [10] The pharmaceutical composition according to claim 7 or 8, which is an eye drop.
[II] 請求項:!〜 5のいずれか 1項記載の因子を用いることを特徴とする、生体の物質透 過性を高める方法。  [II] Claim: Use of the factor according to any one of! To 5 to increase the material permeability of a living body.
[12] 請求項:!〜 5のいずれか 1項記載の因子を用いることを特徴とする、薬剤のデリバリ 一方法。  [12] Claim: A method for delivering a drug, characterized by using the factor according to any one of! To 5.
[13] デリバリーが経皮的または経粘膜的である請求項 12記載の方法。  13. The method according to claim 12, wherein the delivery is transdermal or transmucosal.
[14] デリバリーが点眼によるものである請求項 12記載の方法。 14. The method according to claim 12, wherein the delivery is by eye drops.
[15] 本発明の因子を薬剤の投与前あるいは薬剤の投与と同時に投与することを特徴と する、疾病の治療および Zまたは予防方法。  [15] A method for treating and / or preventing a disease, which comprises administering the agent of the present invention before administration of a drug or simultaneously with administration of the drug.
[16] 生体の物質透過性を高めるための薬剤デリバリー系または医薬組成物の製造にお ける、請求項 1〜5のいずれ力 1項記載の因子の使用。 [16] Use of the factor according to any one of claims 1 to 5 in the manufacture of a drug delivery system or a pharmaceutical composition for increasing the substance permeability of a living body.
[17] 薬剤デリバリー系または医薬組成物がさらに薬剤を含むものである、請求項 16記 載の使用。 [17] The use according to claim 16, wherein the drug delivery system or the pharmaceutical composition further comprises a drug.
[18] 薬剤デリバリー系または医薬組成物が経皮的または経粘膜的に適用または投与さ れるものである、請求項 16または 17記載の使用。 [18] The drug delivery system or pharmaceutical composition is applied or administered transdermally or transmucosally 18. Use according to claim 16 or 17, wherein:
[19] 薬剤デリバリー系または医薬組成物が点眼により適用または投与されるものである[19] A drug delivery system or pharmaceutical composition is applied or administered by eye drops
、請求項 16または 17記載の使用。 Use according to claim 16 or 17.
[20] トリセルリン遺伝子またはトリセルリン蛋白がヒト由来である、請求項:!〜 5のいずれ 力、 1項記載の因子、請求項 6記載のデリバリー系、請求項 7〜: 10のいずれか 1項記載 の医薬組成物、請求項 11〜: 15のいずれか 1項記載の方法、あるいは請求項 16〜1[20] The tricellulin gene or tricellulin protein is derived from a human, claim: any one of! To 5, the factor according to 1, the delivery system according to claim 6, and any one of claims 7 to 10 A pharmaceutical composition according to claim 11, claims 11 to 15, or a method according to claim 1, or claims 16 to 1.
9のレ、ずれか 1項記載の使用。 Use of 9 items, deviation or 1 item.
[21] トリセルリン遺伝子をノックアウトしたヒト以外の動物。 [21] A non-human animal knocked out of the tricellulin gene.
PCT/JP2006/315741 2005-08-09 2006-08-09 Novel drug delivery system WO2007026516A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005230648A JP2008271784A (en) 2005-08-09 2005-08-09 New medicine delivery system
JP2005-230648 2005-08-09

Publications (1)

Publication Number Publication Date
WO2007026516A1 true WO2007026516A1 (en) 2007-03-08

Family

ID=37808618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/315741 WO2007026516A1 (en) 2005-08-09 2006-08-09 Novel drug delivery system

Country Status (2)

Country Link
JP (1) JP2008271784A (en)
WO (1) WO2007026516A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009118807A (en) * 2007-11-16 2009-06-04 Jentekku:Kk Drp1-KNOCKOUT NON-HUMAN MAMMAL
WO2016190310A1 (en) * 2015-05-26 2016-12-01 国立大学法人名古屋大学 Tight junction mitigator, drug absorption auxiliary comprising same, and medicinal composition comprising same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003029423A2 (en) * 2001-10-02 2003-04-10 Curagen Corporation Therapeutic polypeptides, nucleic acids encoding same, and methods of use

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003029423A2 (en) * 2001-10-02 2003-04-10 Curagen Corporation Therapeutic polypeptides, nucleic acids encoding same, and methods of use

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DATABASE GENBANK [online] XP003002172, accession no. EMBL Database accession no. (BC033689) *
IKENOUCHI J. ET AL.: "Tricellulin constitutes a novel barrier at tricellular contacts of epithelial cells", J. CELL BIOL., vol. 171, no. 6, 19 December 2005 (2005-12-19), pages 939 - 945, XP003002174 *
SCHULTE J. ET AL.: "Gliotactin, a novel marker of tricellular junctions, is necessary for septate junction development in Drosophila", J. CELL BIOL., vol. 161, no. 5, 2003, pages 991 - 1000, XP003002173 *
WALKER D.C. ET AL.: "A re-assessment of the tricellular region of epithelial cell tight junctions in trachea of guinea pig", ACTA ANAT., vol. 122, no. 1, 1985, pages 35 - 38, XP008072481 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009118807A (en) * 2007-11-16 2009-06-04 Jentekku:Kk Drp1-KNOCKOUT NON-HUMAN MAMMAL
WO2016190310A1 (en) * 2015-05-26 2016-12-01 国立大学法人名古屋大学 Tight junction mitigator, drug absorption auxiliary comprising same, and medicinal composition comprising same

Also Published As

Publication number Publication date
JP2008271784A (en) 2008-11-13

Similar Documents

Publication Publication Date Title
US11660341B2 (en) mRNA combination therapy for the treatment of cancer
US11185510B2 (en) Combinations of mRNAs encoding immune modulating polypeptides and uses thereof
EP2902035A1 (en) Use of cell-permeable peptide inhibitors of the JNK signal transduction pathway for the treatment of chronic or non-chronic inflammatory eye diseases
CN107050424A (en) Activin A CTRIIA antagonists and the purposes in breast cancer is treated or prevented
US20110046067A1 (en) COMPOSITIONS COMPRISING HUMAN EGFR-siRNA AND METHODS OF USE
CN105189752A (en) Compositions and methods for reducing skin pigmentation
WO2007026516A1 (en) Novel drug delivery system
US10925933B2 (en) Method of preventing rheumatoid arthritis comprising administering polynucleotide encoding SSU72
US11407826B2 (en) Screening method for pain suppressor and pharmaceutical composition for prevention or treatment of pain
EP1670425A2 (en) Bone morphogenetic protein (bmp) 2a and uses thereof
EP2370092A1 (en) Modulation of olfml-3 mediated angiogenesis
EP1959999A2 (en) Polynucleotides and polypeptide of human kv1.3, compositions comprising same and methods of using same
DK2257299T3 (en) Modulation of SRPX2-mediated angiogenesis
US20240108652A1 (en) Enhancing metabolic fitness of t cells to treat cancer
US20200360481A1 (en) USE OF MRNAS ENCODING OX40L, IL-23 AND IL-36gamma IN COMBINATION WITH IMMUNE CHECKPOINT BLOCKADE FOR TREATING CANCER
CN108697772B (en) Compositions and methods for treating retinopathy
CN101237884A (en) Int6 protein involved in hypoxia stress induction and use thereof
CN107847557B (en) Therapeutic gene cocktail formulation for cardiac regeneration
US20220001026A1 (en) Use of mrna encoding ox40l to treat cancer in human patients
CN116135233A (en) Application of CPE in preparation of drugs for promoting in-situ neurogenesis and treating aging-related neurodegenerative diseases
KR20130009104A (en) Neuritin for treating the depression
WO2017202814A1 (en) Methods and pharmaceutical compositions for the treatment of neuropathological disorders characterized by a loss of cortical neurons
KR20130091044A (en) COMPOSITION FOR PREVENTING OR TREATING IMMUNE DISEASE COMPRISING J u n B INHIBITOR
JP2009535392A (en) Combination therapy products and their use

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06782557

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP