WO2007026408A1 - 生物学的実験に用いることができる安定な標識媒体 - Google Patents

生物学的実験に用いることができる安定な標識媒体 Download PDF

Info

Publication number
WO2007026408A1
WO2007026408A1 PCT/JP2005/015818 JP2005015818W WO2007026408A1 WO 2007026408 A1 WO2007026408 A1 WO 2007026408A1 JP 2005015818 W JP2005015818 W JP 2005015818W WO 2007026408 A1 WO2007026408 A1 WO 2007026408A1
Authority
WO
WIPO (PCT)
Prior art keywords
dye
polymer
substituted
color
labeling substance
Prior art date
Application number
PCT/JP2005/015818
Other languages
English (en)
French (fr)
Inventor
Keiji Nagai
Zhongze Gu
Xiang Wei Zhao
Original Assignee
Osaka University
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University, Southeast University filed Critical Osaka University
Priority to PCT/JP2005/015818 priority Critical patent/WO2007026408A1/ja
Publication of WO2007026408A1 publication Critical patent/WO2007026408A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/531Production of immunochemical test materials
    • G01N33/532Production of labelled immunochemicals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54393Improving reaction conditions or stability, e.g. by coating or irradiation of surface, by reduction of non-specific binding, by promotion of specific binding
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2458/00Labels used in chemical analysis of biological material

Definitions

  • the present invention relates to a labeling dye. More particularly, the present invention relates to a stable labeling medium that can be used in biological experiments.
  • the plate used in the multi-component immunoassay so far is a well array (Fig. 1).
  • An antibody for detecting each component is immobilized on the surface of the well, and this antibody reacts with the antigen in the test solution (first step). Furthermore, it reacts with a labeled second antibody such as a fluorescent molecule or enzyme (second step). Thereafter, the presence or absence of the target antibody is determined for each well using fluorescent molecules and enzymes.
  • reaction rate is limited because the antibody of the probe is immobilized on the surface of the well. If the probe can be stirred together with the test solution, the test time can be shortened. 2) Basically, only one component can be inspected with one well. As more components are tested, the number of wells used increases and the amount of sample used for testing also increases. In order to reduce the burden on patients, a method that requires as little blood collection as possible is required.
  • organic fluorescent probe molecules are unstable to ultraviolet light, heat, etc., it is difficult to distinguish them during storage or inspection. In addition, organic fluorescent probe molecules are expensive and multicolor design is difficult.
  • Japanese Patent Application Laid-Open No. 2001-279111 discloses a technique relating to a method of mixing ordinary pigments without fading.
  • JP 2002-154927 discloses a cosmetic composition and is intended for use in emulsions.
  • Japanese Unexamined Patent Application Publication No. 2004-226234 discloses a technique for providing a coat layer on the surface.
  • Japanese Patent Application Laid-Open No. 2002-311027 assumes that nanoparticles have luminescent properties.
  • JP 2004-510718 relates to cosmetics having a volume effect.
  • Japanese Unexamined Patent Application Publication No. 2005-214 940 discloses a technique for identifying the array state of beads based on color information and position information.
  • JP 2005-29766 discloses acrylic polymers.
  • JP 2004-271652 and JP 200 4 269922 discloses certain dyes having a particle size of 100-500 nm.
  • JP 2002 501184 discloses particles utilizing fluorescence.
  • JP 2001-520323 discloses colored dyes that do not utilize structural color development.
  • Japanese Patent Laid-Open No. 2001-8951 discloses a coloring dye that does not utilize structural color development.
  • JP 2000-248063 A particle using polyimide is disclosed.
  • the problem of the present invention is that, when detecting a biomolecule such as an antigen-antibody, a labeled particle that can be detected in a small amount and quickly, particularly in a harsh environment, and visible to the naked eye. Is to provide.
  • the above problem is solved by providing a labeling substance containing a dye and a polymer.
  • the above problem has been solved by providing particles using structural color pigments as pigments.
  • the probe antibody is immobilized on the surface of the bead instead of the well.
  • Each bead is encoded with a color or the like to identify the probe.
  • When testing place the required beads in one well and react with the antigen and the second antibody. Finally, the presence or absence of the antigen is detected by light emission or catalytic reaction of the beads. The type of antigen is identified by the color of the beads.
  • the advantage of this method is that the beads and the test solution can be stirred, The reaction rate increases. Since multiple components can be detected with a single well, the amount of sample required is reduced. This method requires an encoder to identify after mixing the beads. In general, beads can be encoded with a luminescent dye.
  • Figure 2 Multi-component immunoassay using beads.
  • the present invention provides encoding of beads with structural color dyes.
  • Structural color pigments are colored by light diffraction and interference.
  • Structural color pigments can be composed of stable oxides and polymers (Fig. 3). Therefore, the structural color is much more stable than ordinary pigments.
  • the color design is very simple because the color is a physical structure.
  • Fig. 4 is a photograph and an SEM diagram of polystyrene beads with structural colors prepared by the method developed by the present inventors. The color of the beads is clearly visible. The surface of the beads is also smooth and is suitable for immobilizing biomolecules.
  • the present invention can be applied in a multi-component immunoassay. Using structural colored beads, it was verified that it can be used for multicomponent inspection. First, three colored beads were prepared. Human IgG was fixed on red beads, rabbit IgG on yellow beads, and goat IgG on green beads. The three colored beads were then reacted with a solution containing goat anti-hig HgG and goat anti-usagi IgG, labeled with FITC, a dye that emits green light in the same well. The results are shown in Fig. 5. Fig. 5a is a photograph of the beads when they are exposed to visible light, and Fig. 5b is a photograph of them when they are irradiated with ultraviolet light. Beads that react with biomolecules in the test solution emit light, but they do not react and the beads do not emit light!
  • the most preferred method for detecting, distinguishing, separating, quantifying, and Z or analyzing the status or portion of an analyte in a sample is flow cytometry. ELISA.
  • the present invention provides the following.
  • a labeling substance comprising a polymer and a complex of a dye having structural color development characteristics.
  • the above polymers are silica gel, polypropylene, polyurethane, polystyrene (PS), polymethyl methacrylate (PMMA), tetrafluoroethylene, poly-4-methylpentene.
  • PS polystyrene
  • PMMA polymethyl methacrylate
  • tetrafluoroethylene poly-4-methylpentene.
  • the labeling substance according to item 1 selected from the group consisting of polyamide, polyethylene glycol, polyacrylic acid, polymethacrylic acid and their copolymer power.
  • a particle comprising the labeling substance according to item 1, for use in labeling a biomolecule.
  • a labeled capture carrier comprising a capture carrier for capturing a biomolecule and the labeling substance according to item 1.
  • the dye has Si (R 1 ) (R 2 ) (R 3 ) —O—, wherein R 1 is a hydrophobic group and R 2 is a hydrophobic group or — Item 26.
  • the hydrophobic group may be unsubstituted or substituted alkyl, unsubstituted or substituted cycloalkyl, unsubstituted or substituted alkenyl, unsubstituted or substituted cycloalkenyl, unsubstituted or substituted alkynyl, unsubstituted or substituted Alkoxy, unsubstituted or substituted carbocyclic group, unsubstituted or substituted heterocyclic group, halogen, hydroxy, thiol, cyano, nitro, amino, carboxy, strength rubamoyl, asil, acylamino, thiocarboxy, amide, substituted 28.
  • a capture carrier according to item 27, wherein the capture carrier is also selected from the group consisting of a substituted carbol, a substituted thiocarbol, a substituted sulphonyl and a substituted sulfinylca.
  • the dye has Si (R 1 ) (R 2 ) (R 3 ) — O—, where R 1 is hydrogen Substituted or unsubstituted alkyl group or —O—, R 2 is hydrogen, substituted or unsubstituted alkyl group or —O—, and R 3 is hydrogen, substituted or substituted.
  • R 1 is hydrogen Substituted or unsubstituted alkyl group or —O—
  • R 2 is hydrogen, substituted or unsubstituted alkyl group or —O—
  • R 3 is hydrogen, substituted or substituted.
  • the dye has Si (R 1 ) (R 2 ) (R 3 ) —O—, wherein RR 2 and R 3 are each alkyl or fluorinated alkyl.
  • An article comprising carrier microparticles having a predetermined amount of a polymer labeled with at least one structural color dye bonded to the surface.
  • the polymer is Inn! The article according to item 32, comprising polymer particles having a diameter of ⁇ 100, OOOnm.
  • a set of labeling substances including a complex of a polymer and a dye, wherein the dye has a dye having two or more absorption wavelengths.
  • a method for producing a structural color article comprising a step of binding at least one set of polymers having different structural color signals for each set to the surface of a carrier polymer microparticle. (44) The method according to item 43, wherein the another structural color signal is provided by at least one structural color dye.
  • the material injection pipe is present in a fluid environment providing pipe containing a fluid, and includes a material injection port on one side and an injection port on the other side, and the injection port has a diameter ⁇ ;
  • the opening has a diameter As, and the particle-forming tube is at a distance d from the injection port;
  • An apparatus for producing a labeled particle comprising a complex of a polymer and a dye, a) a material providing means capable of providing a mixture containing the dye and the polymer;
  • a material injection tube capable of holding the mixture containing the dye and the polymer, the material injection tube including an opening for receiving the material from the material providing means, and the material injection A material injection tube comprising an injection opening for carrying out;
  • a fluid environment providing tube wherein the fluid environment providing tube accommodates the material injection tube in a fluid provided therein and includes a fluid providing opening;
  • fluid amount adjusting means for adjusting the amount of fluid provided to the fluid environment providing pipe
  • a particle forming tube for receiving the material to be injected from the material injection tube; and f) a container for receiving the labeled particles formed over the particle forming tube.
  • the amount of the particles is a known amount, and the analyte is compared with a known amount of a reference substance.
  • the above analyte is an antigen, antibody, receptor, hapten, enzyme, protein, peptide 53.
  • a structural color particle group including a plurality of structural color particles, including a structural color pigment and an analysis reactant specific to the analyte, wherein the structural color particle is in accordance with the type of the analysis reactant.
  • the analyte is identified by the color of a structural color particle comprising the analytical reactant
  • a structural color particle group including a plurality of structural color particles including a structural color dye and an analytical reaction product specific to the analyte, wherein the structural color particles are each in accordance with the type of the analytical reactant. Structured color particle populations having different colors, and wherein the analytical reactant specifically interacts or reacts with one analyte in the sample; and
  • Detection means for detecting the analytical reaction product Including a kit.
  • kit according to item 65 further comprising a competing molecule capable of competing with the specific binding reaction with the analyte to the analyte.
  • kit of item 65 further comprising a reference material that is essentially the same as the analyte associated with each of the above analytical reactants.
  • the present invention provides at least the following advantages and applications: 1) Color development is very stable. 2) Simple color design; 3) Low manufacturing cost; 4) Small amount of sample required for multi-component testing !; 5) Inspection speed is low Provide effects and benefits such as! Therefore, the present invention can be used in clinical examinations, earthquake disasters, terrorist disaster sites, and the like. Brief Description of Drawings
  • FIG. 1 shows a multi-component immunoassay using a well array.
  • FIG. 2 shows an example of a multi-component immunoassay using beads.
  • FIG. 3 is a schematic diagram for explaining the mechanism by which structural color dyes develop color.
  • the left shows a layered structure, and the right shows a granular structure.
  • the calculation formula for the interference is shown below.
  • FIG. 4 is a photograph and an SEM diagram of polystyrene beads with structural colors prepared by the method developed by the present inventors. The color of the beads is clearly visible. The surface of the beads is also smooth and is suitable for fixing biomolecules.
  • Figure 4A shows multi-colored beads in a well in a 96-well microphone mouthplate.
  • Figure 4B shows an SEM image of the same colored beads.
  • FIG. 5 Human IgG was immobilized on red beads, rabbit IgG on yellow beads, and goat IgG on green beads. After that, the three colored beads were reacted with FITC in the same well! And a solution containing goat anti-hig HgG and goat anti-usagi IgG labeled with a light emitting dye. The result is shown in Fig. 5.
  • Fig. 5a is a photograph when the beads are irradiated with visible light
  • Fig. 5b is a photograph when the beads are irradiated with ultraviolet light.
  • Fig. 6 is a schematic diagram of a capturing medium production apparatus of the present invention. Detailed in the generator of Figure 6 Please tell me the explanation.
  • (1) is an oil phase supply syringe, (4) oil phase flow path, (5) water phase supply valve, (3) water phase flow path, (6) oil drop oil phase tube, (7) oil drop reservoir .
  • FIG. 7 shows that different sized beads can be produced.
  • FIG. 7B shows that different sized beads can be produced in various colors.
  • FIG. 8A shows the correlation between the bead diameter and the injection rate of the polystyrene solution.
  • the y-axis is the diameter (mm) and the X-axis shows the injection rate ( ⁇ 1 / ml) of the polystyrene solution.
  • FIG. 8B shows that the size of the particles produced is inversely proportional to V (V).
  • FIG. 8C shows that the size of the particles produced is dependent (proportional) on d.
  • FIG. 9A shows multi-colored beads in a tool in a 96-well microphone mouthplate.
  • Figure 9B shows an SEM image of beads of the same color.
  • FIG. 9C shows an optical photograph and an SEM photograph when the pearl pigment is not uniformly dispersed.
  • FIG. 10 shows the coloring mechanism of a pearl pigment, which is a representative example of structural color pigments.
  • A shows a SEM image of the pearl pigment.
  • B and C show the mechanism (incident light and reflected light, etc.).
  • FIG. 10 shows high-concentration pearl pigment beads (A).
  • B the pearl pigment is not treated with trimethylchlorosilane.
  • C the pearl pigment is treated with trimethylchlorosilane.
  • FIG. 12 shows the difference in enzyme coloration between ultrasonically washed beads (top) and beads flushed twice (bottom).
  • FIG. 13 shows the principle of multidimensional immunoassay using multicolor beads used in a sandwich form.
  • label refers to a means for imparting characteristics different from those of others in order to identify a substance.
  • label substance refers to a substance. For identification purposes, a substance that gives it different characteristics than others.
  • polymer refers to any molecule having a large molecular weight, preferably a molecule capable of forming a particle.
  • examples of the polymer used in the present invention include glass, silica gel, polypropylene, polyurethane, polystyrene (PS), polymethyl methacrylate (PMMA), tetrafluoroethylene, poly-4-methylpentene 1, polybenzyl methacrylate.
  • polyphenylene methacrylate polycyclohexylene methacrylate, polyethylene terephthalate, styrene 'acrylonitrile copolymer, poly salt butyl, poly vinylidene chloride, poly butyl acetate, poly butyl alcohol can be used .
  • the “dye” is also called a dye, and refers to a compound used for staining a substance (for example, biological substance, cell, tissue, etc.).
  • a substance for example, biological substance, cell, tissue, etc.
  • Each dye has a color index number classified by chemical structure, and its molecular structure, molecular weight, solubility in water and alcohol, and absorption light wavelength are shown.
  • hydrophobic is used in the same meaning as commonly used, and is measured by “contact angle” in the present specification. Therefore, in this specification, the “contact angle” refers to an angle formed by the liquid surface and the solid surface (takes an angle inside the liquid) where the free surface of the stationary liquid is in contact with the solid wall.
  • the contact angle with water is measured.
  • Contact The antenna is determined by the relationship between the cohesive force between the liquid molecules and the adhesion force (surface tension) between the liquid and the solid wall.
  • the liquid wets the solid surface such as water in a glass tube
  • the sharp angle does not wet.
  • mercury in glass tubes is obtuse. For example, 8 ° to 9 ° for water and glass, and about 140 ° for mercury and glass.
  • hydrophobicity with a contact angle with water of 90 ° or more is preferred.
  • biomolecule specifically interacts with a biomolecule means that a certain biomolecule has a greater interaction than other substances (particularly other biomolecules).
  • a molecule that does not affect the color tone of a dye means a molecule that does not affect the color of the dye, particularly when mixed with the structural color dye used in the present invention. . Even with the same chemical composition, depending on its structure, it may or may not affect the structural color pigment, which can be easily determined by those skilled in the art. The determination can be made by checking whether the color of the dye fluctuates before and after mixing the dye of interest with the molecule.
  • a molecule that “influences the color tone of a dye” particularly affects the color of the dye when mixed with the structural color dye used in the present invention and changes the color.
  • such a substance changes color when mixed with a structural color pigment, and is used when it is desired to change the color. Whether or not a desired color is exhibited can be confirmed by checking whether or not the color of the dye changes before and after mixing the dye of interest with the molecule.
  • structural color or “structural color development” means that a surface structure of a living body such as a layered structure that does not absorb light by a dye produces a color, and light diffraction 'refraction' Interference ⁇ A color developed based on scattering. Color is developed by optical phenomena that occur due to the fine structure of the same order as the wavelength of light in the visible region. “Dye having structural color” or “structural color dye” refers to a dye imparted with a color by a structural color. The structural color is a color development phenomenon by the cooperation of light with the fine structure of the wavelength of light or less and the light, and the finished color 'color change according to the viewing direction' has a unique texture.
  • Ordinary colors are also called chemical colors, and dye molecules are colored by absorbing light other than a specific color, whereas structural colors are colored according to the structure, that is, the shape, as the name suggests.
  • the structural color that is Although there is no such thing, it is a phenomenon that has a color by having a fine structure at or below the wavelength of light, and is related to light interference, diffraction, and scattering. Modern physics can handle light freely by artificially creating a regular structure below the wavelength of light.
  • the structural color is generated by diffraction or the like in a layered structure or a structure in which granular materials are regularly arranged as shown in FIG. 3, and the layered compound forms a crystal lattice plane. It may be observed as follows. Therefore, the visible light force applied to the surface is affected by the reflection efficiency reflected by the diffraction interference related to the particulate lattice surface (particulate laminate surface), and this affects the coloring of the structural color pigment.
  • the polymer is a monodisperse particle.
  • the Cv value which is the degree of uniformity of the particle diameter representing the monodispersity, is 5% or less, and more preferably 3% or less from the intensity of color of the reflected light color and vividness.
  • the monodispersed particles are preferable.
  • the surface of the particulate laminate preferably has at least two longitudinal regular arrays, so that the reflected light color is clearer and deeper colored structures Presents a color.
  • Structural colors can be created using various optical phenomena as shown below.
  • Thin film interference Light reflected from the front and back of a thin film interferes and strengthens and weakens depending on the wavelength;
  • Multilayer interference Interference caused by multilayers is strongly reflected only by light of a specific wavelength for a specific incident / reflection direction;
  • Diffraction Light is diffracted when the wavefront of light is blocked by matter. Diffraction angle varies with wavelength;
  • Diffraction grating Diffraction of directional light depending on wavelength by regularly arranged objects
  • Light scattering Light scattering by particles smaller than the wavelength is not directional, but the scattering intensity increases in proportion to the fourth power of the frequency;
  • Mie scattering The scattering of light by particles of the same size as the wavelength varies in direction depending on the ratio of wavelength to particle size;
  • Anisotropic material Material sandwiched between polarizing plates is anisotropic (refractive index varies depending on direction) The color changes with the rotation angle of polarized light depending on the wavelength.
  • Refraction Light with different wavelengths is separated by refraction as the refractive index of the material varies (disperses) depending on the wavelength.
  • the visible wavelength region (380 to 780 nm)
  • the specific wavelength region (nm) that enters our eyes and the color light of the material system
  • the red color is reflected light in the entire wavelength region of 600 nm or more
  • the yellow color is reflected in the entire wavelength region of 490 nm or more
  • the green color is 460.
  • Reflected light in the entire wavelength region within ⁇ 590 nm blue light is reflected in the entire wavelength region of 5 lOnm or less
  • purple light is absorbed in the entire wavelength region in the range of 460 to 590 nm, which is the opposite of green.
  • Japanese Patent Laid-Open No. 2001-206719 discloses a thin film obtained by depositing monodisperse titanium oxide titanium particles that do not use a colorant such as a pigment on a base material, and the appearance thereof according to the particle diameter of the particles. Monodispersed monodispersed titanium oxide monolayers and multilayer thin films that change from red to blue interference colors are described! Speak.
  • Japanese Patent Application Laid-Open No. 2001-239661 discloses that a synthetic color having a lightness of 6 or less and a saturation of 8 or less in a standard color solid is black or dark because colored light due to interference can be clearly seen.
  • An adherent consisting of a regular periodic structure in which non-colored monodispersed solid fine particles are aggregated and arranged on the surface of a liquid repellent base layer such as fat may exhibit clear monochromatic light of light interference color development.
  • These color products can be used as color display materials (recorded materials) for ink jet recording as dots, for example.
  • the particle size distribution of the non-colored solid particles constituting the adhered recorded matter is monodisperse.
  • Such solid fine particles include silica, acid aluminum, titanium, silica and aluminum oxide.
  • Inorganic oxide fine particles such as titer 'selenium, titer' selenium 'silica, and organic polymer fine particles such as (meth) acrylic resin, styrene resin, and olefin resin.
  • the average particle size is described as being in the range of 100 to 1000 nm.
  • the particle size is in the visible light wavelength region (380 to 780 nm)
  • the irradiated visible light is effectively diffracted and interfered on the surface of the particulate layered structure, and a specific particle size
  • a specific particle size As a result, it is spectrally reflected as wavelength region light that emits a specific chromatic color such as red, blue, green, etc. due to diffraction interference.
  • the structural color pigment that can be used in the present invention is an achromatic black monodisperse particle having no color and having a brightness of 5 or less on the spherical fine particle force Munsell color chart.
  • a part of the irradiated visible light effectively absorbs and reduces stray light such as scattered light and transmitted light other than the desired reflected light that is supposed to be generated around the particle.
  • the reflected light color effectively diffracted and interfered can be perceived as a chromatic color with a clearer color.
  • a color (for example, a structural color dye) used in the present invention for example, the vertical reflected light color which is perceived by irradiating visible light onto the surface related to the particle is, for example, It may be a vertically reflected light color such as purple, blue, green, yellow and red.
  • the inorganic monodispersed spherical particles forming the particulate laminate that is the structural color pigment according to the present invention are not necessarily limited to the following inorganic polymers.
  • examples thereof include silica, acid aluminum, silica monoacid aluminum, acid zirconium zirconium, acid titanium and acid titanium titanium, silicon carbide, silicon nitride, and the like.
  • inorganic polymer particles prepared by a sol-gel method of metal alkoxides such as silica, aluminum, and titanium can be suitably used because they are relatively easily colored.
  • metal alkoxide examples include methyltrimethoxysilane, butyltrimethoxysilane, tetraethinosilicate, tetraisopropylsilicate, tetraptinosilicate; anoleminium methoxide, aluminum triethoxide, isobutylaluminum methoxide, isobutylaluminum ethoxide.
  • the structural color pigment used in the present invention may contain mica and a metal oxide.
  • a structure in which an acid metal layer is laminated on a mica layer may be used.
  • a suspension in which particles in the range of 100 to 500 nm prepared as described above are dispersed is transferred to a flat bottom transparent glass container, and 40 ° C or higher, preferably 50 ° C or higher, 80 ° Dry at C or lower.
  • the dried surface is confirmed by taking SEM photographic images as necessary to confirm that a particulate stack regularly aligned in the vertical and horizontal directions is formed.
  • the surface of the particulate laminate makes a chromatic light color with a bright vertical reflected light color visible under visible light irradiation. From the above, such a chromatic light color provides a structural color pigment in which the above-described particulate laminate according to the present invention exhibits a chromatic light color as a structural color different from the pigment as the conventional object color. can do.
  • sia is used for the meaning and fluctuation that are usually used, and is typically represented by the general formula (K, Na, Ca) (Mg, Fe, Li, Al) (Al, Si) O (OH, F) Is a class of silicate minerals with a layered 'foil-like structure. Characterized by low hardness (2 to 2.5) and complete ground cleavage. In the mica, the polymerization of the SiO chain further proceeds and the total SiO 4
  • Tetrahedral groups share three vertices (Si 2 O 3)
  • Examples of the acid metal or oxide that can be used in the structural color pigment that can be used in the present invention include copper oxide, silicon oxide, titanium oxide, tin oxide, iron oxide, Zirconium oxide and acid zinc power may contain at least one selected material.
  • the structural color pigment used in the present invention can be formed by laminating a layered material of silicate such as mica and a layered material of metal oxide. Such a formation can be performed by a method well known in the art, and a person skilled in the art can appropriately design according to a desired color.
  • a dye having structural color development that is, a structural color dye
  • an interference angle color change dye is also called an interference angle color change dye, and has a color change effect.
  • structural color dyes can produce different colors depending on the incidence and viewing angle of light, which is mainly achieved by the presence of angle-changing dyes with an interference multilayer structure and its specific Angular discoloration effects are usually not hidden within the composition.
  • color is understood to mean various colors in the visible spectrum. Dyes are present in one of the media phases in a dispersed or solid state and are used to color objects (create or change color shades) and to make them Z or opaque.
  • the structural color dye is an angle discoloration dye that usually has an interference multilayer structure, and is a dye that has at least a two-layer structure.
  • an angle discoloration dye that usually has an interference multilayer structure, and is a dye that has at least a two-layer structure.
  • the multilayer structure has at least two layers, each layer independently or depending on the other layers, the following materials: MgF, CeF, ZnS , Zn
  • the multilayer structure may be inorganic or organic in nature. Different colors, ie different effects, are obtained by the thickness of each of the various layers.
  • Structural color pigments according to the present invention are, for example, U.S. Pat. No. 3438796, European Patent Application 227423, U.S. Patent 5135812, European Patent Application 1704 39, European Patent Application 341002, U.S. Patent 4930866, U.S. Pat.
  • European patent application 472371 European patent application 395410, European patent application 753545, European patent application 768343, European patent application 571836, European patent application 708154, European patent application 579091, US patent 5411586, US patent 5364467 publication, international patent application 97/39066 publication, German patent application 4225031 publication, international patent application 95Z17479 publication (BASF), or German patent application 19614637 publication, the contents of which are related The portions are incorporated herein by reference.
  • an interference multilayer structure in a structural color dye may have the following structure: metal oxide or oxide (eg, SiO, TiO, Fe 2 O, FeO, Fe 2 O
  • multilayer structures in structural color dyes can be composed of alternating layers having low optical constants (refractive index) and high V, optical constants.
  • the structural color pigment used in the present invention can be mixed with a polymer and formed into particles in an amount that can be easily determined by those skilled in the art based on the common general knowledge of those skilled in the art.
  • the amount of structural color dye used is in particular but not limited to 0.01 to 50% by weight, preferably 0.5 to 25% by weight, based on the total weight of the composition. Even at high concentrations, structural color dyes have little structural destructibility to other components and compositions.
  • the medium that can be used in producing the particles of the present invention may comprise at least one hydrophilic substance.
  • the hydrophilic continuous layer that a hydrophilic substance can form is , At least partially miscible with water, or water soluble, liquid, paste at ambient temperature (typically 25 ° C) and normal pressure (760 mmHg, ie 1.013 x 10 5 Pa) Alternatively, it may be in a solid state.
  • the medium that can be used in the present invention is a suspension, dispersion, or solution in water, or optionally gelled water, optionally gelled water Z alcohol medium; tarim, paste, or solid form. Oil-in-water (OZW) or composite (WZOZW
  • Emulsion aqueous or water z alcoholic gel or hydrophilic foam; emulsified gel, in particular in the form of vesicle dispersions of ionic or nonionic lipids.
  • emulsified gel in particular in the form of vesicle dispersions of ionic or nonionic lipids.
  • composition used in the present invention may also contain a fatty phase.
  • This fatty phase may in particular contain at least one fatty substance that is liquid at ambient temperature and pressure, and at least one fatty substance that is solid at Z or ambient temperature and pressure.
  • Fatty substances that can be used in the present invention include, for example, animal-derived hydrocarbon oils such as perhydrosqualene; vegetable hydrocarbon oils such as liquid triglycerides of fatty acids having 4 to 10 carbon atoms, such as heptane.
  • Acid or octanoic acid triglyceride castor oil, corn oil, soybean oil, grape seed oil, sesame oil, apricot oil, macadamia nut oil, castor oil, avocado oil, capry Z power puric acid triglyceride, jojoba oil, or karitte butter Oils; linear or branched hydrocarbons derived from minerals or synthetics, such as liquid paraffin and derivatives thereof, ⁇ serine, polydecene, or hydrogenated polyisobutenes, such as Parleam; isododecane; synthetic esters, especially of fatty acids And ethers such as perserine oil, myristic acid Sopropyl, 2-ethylhexyl palmitate, 2-octyldodecyl stearate, 2-octyldodecyl succinate, isostearyl isostearate or isononyl isononanoate; Hydroxyl ester such as isoste
  • fatty alcohols having 12 to 26 carbon atoms such as otatildodeol, 2-butyloctanol, 2-hexyldecanol, 2-undecylpentadecanol, or oleyl alcohol; partially hydrocarbon-containing And fluorinated oils containing Z or silicon; silicone oils, for example liquid or paste at room temperature and pressure, volatile or non-volatile linear or cyclic polymethylsiloxane (PDMS), eg, optionally Cyclomethicone, dimethicone containing a phenyl group, such as felt trimethicone, phenyltrimethylcyclodiphenylsiloxane, diphenylmethyldimethyltrimethylsiloxane, diphenyldimethicone, phenyldimethicone Or polymethylphenol siloxane; and any mixture thereof Can be mentioned substances are not limited thereto.
  • PDMS volatile or non-volatile linear or cyclic polymethylsiloxan
  • the fatty phase of the composition used in the present invention contains at least one compound selected from the group consisting of waxes, pasty fatty substances, gums, and mixtures thereof. It can contain a fatty phase that is solid at normal temperature and pressure.
  • Waxes that may be used may be hydrocarbon-based, fluorinated, and z or silicone waxes, and may be of plant, mineral, animal, and Z or synthetic origin. In particular
  • the wax has a melting point above about 25 ° C, preferably above about 45 ° C, and the pasty fatty material has a melting point from about 25 ° C to about 45 ° C.
  • Waxes that can be used in the composition of the present invention include, for example, beeswax, carnauba wax, candelilla wax, jojoba wax (hydrogenated or non-hydrogenated), paraffin wax, microphone oral crystallin wax, ceresin, or ozokerite.
  • synthetic waxes such as polyethylene wax or Fitzish troche wax
  • silicone waxes such as alkyl or alkoxy dimethicones having from 16 to 45 carbon atoms; and mixtures thereof.
  • pearl pigment may be used as the structural color pigment.
  • the terms “pearl pigment” or “pearlescent agent” are to be understood as meaning iridescent particles made in particular or synthesized from shellfish shells. These pearlescent agents are compositions It is especially used to change the texture.
  • the pearlescent agents usable in the present invention include mica coated with titanium oxide, mica coated with iron oxide, mica coated with natural pigment, mica coated with oxysalt-bismuth, such as colored titanium-coated mica, And a mixture of these.
  • a method for preparing a composition used in the present invention containing a structural phase dye having an interference multilayer structure characteristic of a fatty phase, a hydrophilic phase, and a structural color pigment includes the following steps.
  • A. Prepare a hydrophilic phase and heat the hydrophilic phase to a temperature at which the hydrophilic phase boils
  • Step C contacting the fatty phase prepared in Step B with the hydrophilic phase prepared in Step 1 to form an emulsion, for example, using a suitable turbine, such as a Mortiz microdispersion device,
  • This production method can be used in the preparation of the composition used in the present invention when the interference angle-changing dye is not compatible with the hydrophilic continuous phase.
  • a dye other than the structural color dye is understood to mean white or colored, inorganic or organic particles which are insoluble in the liquid hydrophilic phase and are intended to color and make the composition opaque or Z.
  • the amount of the other dyes may be arbitrary, but is preferably 5% or less of the total. This is because the presence of these may hide the effect of the interference angle discoloration dye according to the present invention.
  • inorganic dyes that can be used in the present invention as dyes other than structural color dyes include titanium oxide, zirconium oxide, zirconium oxide, zinc oxide, iron oxide, chromium oxide, flick blue, and these. A mixture is mentioned.
  • organic dyes that can be used in the present invention as dyes other than structural color dyes are Chikichi Bon Black, Norium Lake, Stochon Lake, Zircon Lake, Calcium Lake, Aluminum Lake, Literature: European Patent Application No. 542669, Europe Patent application No. 787730, European patent application No. 78773 No. 1, and diketopyrrole bite pyrrole (DPP) described in International Patent Application No. 96Z08537, and mixtures thereof.
  • DPP diketopyrrole bite pyrrole
  • the dye used in the present invention has light absorption at a wavelength between 380 nm and 780 nm. This wavelength is known as visible light, and having light absorption at this wavelength means that it is colored. 380 ⁇ ! Light absorption at wavelengths between ⁇ 780 nm can be measured using any technique well known in the art (eg, an absorptiometer).
  • Such methods provide other methods for detection and analysis, including but not limited to visual inspection, digital (CCD) cameras, video cameras, photographic films, or laser scanning devices, fluorometers, Use of distribution equipment such as luminometer, photosensitive semiconductor element (photodiode), quantum counter, plate reader, epifluorescence microscope, scanning microscope, confocal microscope, capillary electrophoresis detector, or photomultiplier tube, Other methods to amplify the signal, such as presence, localization, intensity, excitation and emission spectra, fluorescence polarization, fluorescence lifetime, and other optical detectors capable of detecting the physical properties of other fluorescence signals It is a further object of the present invention to provide.
  • the particle size is in the visible light wavelength region (380 to 780 nm), so that the irradiated visible light is effectively diffracted on the surface of the particulate laminated structure. Due to the interference, the light is spectrally reflected as a wavelength region light that emits a specific chromatic color such as red, blue, green, etc. due to diffraction interference due to a specific particle size in the range of 100 to 500 nm.
  • the particles that can be used in the present invention may be black achromatic monodisperse particles having no color with a brightness of 5 or less in the Munsell color chart.
  • a part of the irradiated visible light effectively absorbs stray light such as scattered light and transmitted light other than the reflected light, which is the object of the present invention, which is supposed to be generated around the particles. Reduce. As a result, the reflected light color effectively diffracted and interfered is made visible as a chromatic color with a clearer color.
  • the organic polymer monodisperse spherical particles are not necessarily specified as the polymer species described below.
  • poly (meth) methyl acrylate, tetrafluoroethylene, poly-4-methylenopentene 1 Polybenzyl metatalylate, polyphenylene-metatalylate, polysic Mention may be made of oral hexyl methacrylate, polyethylene terephthalate, polystyrene, styrene acrylate-tolyl copolymer, polyvinyl chloride, polyvinyl chloride, polyvinyl acetate, polyvinyl alcohol and the like.
  • the polymer resin is particularly weather-resistant because the reflected light color of the structural color pigment related to the visible wavelength region light is observable under irradiation of natural light such as sunlight or white light. It is also important that the resin itself has excellent weather resistance that is unlikely to cause light deterioration and discoloration.
  • the (meth) acrylic type, (meth) acrylic-styrene type, fluorine-substituted (meth) acrylic type, and fluorine-substituted (meth) acrylic-styrene which are excellent in weather resistance, which is also a well-known fact, from this viewpoint Any acrylic organic polymer fine particles whose system power is also selected are suitably used.
  • acrylic resin represented by the monomer species examples include methyl (meth) acrylate, (meth) ethyl acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, (Meth) isobutyl acrylate, (meth) acrylic acid pentyl, (meth) acrylic acid hexyl, (meth) acrylic acid 2-ethylhexyl, (meth) acrylic acid octyl, (meth) acrylic acid lauryl, ( Noel (meth) acrylate, decyl (meth) acrylate, dodecyl (meth) acrylate, fur (meth) acrylate, methoxyethyl (meth) acrylate, ethoxyethyl (meth) acrylate, (meth) acryl Such as propoxycetyl acid, butoxyethyl (meth) acrylate, ethoxy
  • monomers other than the (meth) acrylic monomer described above include, for example, styrene, methyl styrene, dimethyl styrene, trimethyl styrene, ethyl styrene, jetyl styrene, trichinole styrene, propino styrene, butyl styrene.
  • Hexyl styrene, heptyl styrene and Examples thereof include alkyl styrenes such as cutyl styrene; halogenated styrenes such as fluorostyrene, chlorostyrene, bromostyrene, dib-mouthed styrene, chronolemethylol styrene, and styrene monomers such as nitrostyrene, acetyl styrene, and methoxy styrene.
  • alkyl styrenes such as cutyl styrene
  • halogenated styrenes such as fluorostyrene, chlorostyrene, bromostyrene, dib-mouthed styrene, chronolemethylol styrene
  • styrene monomers such as nitrostyrene, acetyl styren
  • styrene monomers include, for example, kale-containing butyl monomers such as butyltrimethoxysilane and butyltriethoxysilane; butyl acetate, butyl propionate, butyl n-butyrate, and isobutyric acid.
  • Bull esters such as bull, pivalate bull, caproic acid bull, versatic acid bull, lauric acid bull, vinyl stearate, benzoic acid bull, p-t-butyl benzoate bull, salicylate bull, etc .
  • vinylidene chloride chloro Examples thereof include vinyl hexanecarboxylate.
  • a monomer having a functional group for example, (meth) acrylic acid, tetrahydrophthalic acid, itaconic acid, citraconic acid, crotonic acid, isocrotonic acid, norbornene dicarboxylic acid, bicycline [2 , 2, 1] hepto-2-en-5,6 and unsaturated carboxylic acids such as dicarboxylic acid, and derivatives thereof include maleic anhydride, itaconic anhydride, citraconic anhydride, tetrahydrophthalic anhydride, bicyclo [ 2, 2, 1] hepto-2-ene 5,6 dicarboxylic acid anhydride, for example, as a monomer having a hydroxyl group (OH; hydroxyl group), 1, 1, 1-trihydroxymethylethanetri (meth) Atalylate, 1, 1, 1-Trishydroxymethylmethylethanetri (meth) atalylate, 1, 1, 1-Trishydroxymethylpropanetri (meth) Att
  • OH hydroxyl
  • (meth) acrylic acid moiety or a completely fluorine-substituted monomer for example, (meth) acrylic acid trifluoromethylmethyl, (meth) acrylic acid 2-trifluoromethylethyl, (meth) 2-perfluoromethylethyl acrylate, 2-methacrylic acid 2-perfluoroethyl 2-perfluorobutylethyl, 2-methacrylic acid 2-perfluoroethyl methacrylate, perfluoro- (meth) acrylic acid Fluorine-substituted (meth) acrylic acid monomer (or fluoro (meth) alkyl) such as methyl, diperfluoromethyl (meth) acrylate And fluoreolefins such as fluoroethylene, bi-lidene fluoride, tetrafluoro-orbital ethylene, hexa-f-no-reo-ethylene, hexa-f-no-reo-propy
  • a label comprising a particle having a first diameter and a plurality of particles having a second diameter smaller than the first diameter and bound to a bead.
  • Material is provided.
  • one or more pre-determined concentrations of different types of labeled molecules, one or more pre-determined concentrations of one or more different types of labeled molecules, or A particle with at least one type of label molecule of a predetermined concentration that is effective to distinguish the article from another article that has both has a pre-determined concentration that has a maximum zero force. It may be in the range up to the value.
  • the concentration determined by force is not zero, and a certain value force can reach up to the maximum value.
  • the maximum value is determined by a number of factors, including the physical and chemical properties of a given label molecule type, which is the upper bound of the label molecule that can be introduced into, associated with, or incorporated into the particle.
  • the concentration can be limited.
  • the labeled molecule includes a dye, for example, one characteristic of a dye that can determine the maximum effective concentration is a spectral characteristic including soluble or absorption and Z or emission characteristics.
  • the maximum value approaches or is essentially equivalent to the saturation point of the labeled molecule on or within the surface of the particle or polymer.
  • the polymer or particles used in the present invention may be particles having a diameter ranging from about 10 nanometers (nm) to about 100, OOOnm, and commercially available ones may be used. The most preferred diameter is between about lOnm and about 1, OOOnm, preferably between about 200nm and about 500nm.
  • the polymers or particles used in the present invention usually have a diameter in the range of about 0.01 to about 1000 micrometers (m).
  • the particles can have any size, but a preferred size is from about 0.1 to about 500 ⁇ m, more preferably from about 1 ⁇ m to about 200 ⁇ m.
  • the particles are uniform (approximately the same size) or their differences can be determined by size dependent properties such as light scattering or light refraction. The size is variable.
  • the particles can optionally have a uniformly shaped material force.
  • U shape is spherical force
  • Particle shape can serve as an additional fractionation parameter and is separated by flow cytometry, a high resolution slit scanning method.
  • these particles can be made of the same material, such as polystyrene or latex (these are commonly used), carboxylic acid-based polymers, polyaliphatic alcohols, poly (vinyls).
  • Typical combination polymers composed of polymer particles are, for example, styrene benzene benzene benzene acrylic acid copolymer (85: 10: 5 molar ratio), styrene acrylic acid copolymer (99: 1 molar ratio) , Styrene-methacrylic acid copolymer (90:10 mole ratio), styrene-acrylic acid-m & p dibutenebenzene copolymer (89: 10: 1 mole ratio), styrene-2 carboxylethylacrylic acid copolymer (90 : 10 mole ratio), methylmethacrylic acid-acrylic acid copolymer (70:30 mole ratio) and styrene butylacrylic acid-methacrylic acid copolymer (45:45:10 weight ratio).
  • styrene benzene benzene acrylic acid copolymer 85: 10: 5 molar ratio
  • beads formed from synthetic polymers such as polystyrene, polyacrylamide, polyacrylic acid, or latex are currently available in some! /, Such as Bio—RadLaboratories (Richmond, Calif.) And LKBGener (Stockholm, Sweden). Sold by the company It is. Beads with natural macromolecular forces and particles such as moth mouthpiece, cross-linked moth mouth mouth, globulin, deoxyribonucleic acid, and liposome are Bio-RadLaboratories, Pharmacia (Piscataway, NJ) and IBF. It is commercially available from companies such as (France). Beads formed from polyacrylamide and agarose copolymer are commercially available from IBF and Pharmacia et al.
  • These polymers may also incorporate magnets or magnetically responsive metal oxides selected from groupers including superparamagnetic, paramagnetic, or ferromagnetic metal oxides.
  • Magnetic beads are commercially available from companies such as Dynal Inc. (Great Neck, NY) or, for example, US Pat. Nos. 4,358,388, 4,654,267, 4,774,265, 5 , 320, 944, 5,356,713, using methods known in the art.
  • Hydrocarbons such as carboxymethylcellulose and hydroxymethylcellulose, protein polymers, polypeptides, prokaryotic and eukaryotic cells, viruses, lipids, metals, resins, rubbers, silicas such as polydimethyldiphenylsiloxane
  • Other materials such as silicon, glass, ceramic, etc. can be used as well.
  • the polymer is preferably made of the same material force as the microparticles. However, different material forces may be created if necessary.
  • first and second are applied to polymer species including microparticles and macromolecules, they are used for identification purposes only and priorities are used. It should be understood, not shown.
  • the microparticles can also be dibutylbenzene, ethylene glycol dimethacrylic acid, trimethylolpropane trimethacrylic acid, N, N'methylenebisacrylamide, or other functionally equivalent material known in the art. Such as about 0% to 50% of a crosslinking agent. Crosslinking of hydrocarbon polymers such as hydroxypropylcellulose is performed with adipic acid, sebacic acid, succinic acid, succinic acid, 1, 2, 3, 4 butanetetracarboxylic acid, or 1,10 decanedicarboxylic acid.
  • the core microspheres and nanospheres are composed of polystyrene and contain about 0% to 30% dibutenebenzene.
  • the particles may have additional surface functionality to facilitate attachment and bonding! These groups are carboxylic acids, esters, alcohols, power rubamides, aldehydes, amines, Sulfur oxides, nitrogen oxides, or halogen compounds may be included.
  • Carboxylate latus status particles were used to prepare diagnostic materials as described, for example, in US Pat. No. 4,181,636.
  • conventional approaches for covalently attaching immunologically reactive species to particles having surface carboxyl groups involve the use of water-soluble rubodiimides.
  • it is important that the polymer particles have surface carboxyl groups that allow the attachment of reactive amine- or sulfohydroxyl-containing compounds.
  • Such groups are preferably encapsulated in the particles by incorporating monomers containing such groups into the polymer (eg acrylic acid, methacrylic acid, itaconic acid and the like).
  • these groups may be by further chemical reaction of a polymer having other precursor reactive groups that can be converted to carboxyl groups (e.g., by hydrolysis of anhydrides such as maleic anhydride, or by surface methylol). Or by aldehyde end group acid).
  • Other compound forces such as diamine, dihydrazide, mercaptoalkylamine, and dimercaptan can be used as linking moieties for subsequent binding of other reactive species such as drugs, enzymes, or nanospheres.
  • the binding method is by covalent linkage, but other methods such as adsorption can be used equally.
  • Other novel methods, such as surrounding a microparticle polymer composite with a polymer shell, are equally acceptable.
  • At least three methods are known for producing particles.
  • (I) Covalent bonding of the dye on the particle surface (ii) Incorporation of the dye into the interior during particle polymerization (iii) Dyeing after the particles are already polymerized.
  • a 1% wZw particulate material solution (300 nm diameter polyethylene, amino functionalized) is stirred in a round bottom flask. To this is added a dye in an organic solvent such as black mouth form. If the dye solution is no longer absorbed by the particles, stop adding the dye and move the container under vacuum.
  • the particles used in the present invention may be used as other additives in advance as necessary, for example, as a lubricant, an ultraviolet absorber, an antioxidant, an antistatic agent, a charge imparting agent, a surfactant, a dispersion stabilizer, An antifoaming agent, a stabilizer, and the like can be appropriately added depending on the intended use.
  • a lubricant for example, an ultraviolet absorber, an antioxidant, an antistatic agent, a charge imparting agent, a surfactant, a dispersion stabilizer, An antifoaming agent, a stabilizer, and the like can be appropriately added depending on the intended use.
  • the particles used in the present invention can be appropriately prepared by generally used soap-free emulsion polymerization, emulsion polymerization, suspension polymerization and the like.
  • a persulfate such as persulfuric acid lithium or ammonium persulfate as long as it is usually soluble in an aqueous medium at the time of polymerization.
  • the polymerization initiator may be added in an amount of 0.1 to 10 parts by weight, preferably 0.2 to 2 parts by weight, per 100 parts by weight of the polymerization monomer.
  • an emulsifier such as an alkylbenzene sulfonate such as sodium dodecylbenzenesulfonate or a polyethylene glycol alkyl ether such as polyethylene glycol norphenyl ether is used for 100 parts by weight of the polymerization monomer.
  • a persulfate polymerization initiator such as potassium persulfate or ammonium persulfate is polymerized. It is sufficient to add 0.1 to 10 parts by weight, preferably 0.2 to 2 parts by weight with respect to 100 parts by weight of the monomer.
  • key-on surfactants include dodecyl benzene sulfonate and undecyl base.
  • cationic surfactants include cetyltrimethylammopromide, hexadecylpyridium chloride, and chloride.
  • Oxadecyltrimethyl ammonium and the like, and nonionic surfactants include lipidine-um and the like.
  • reactive emulsifiers for example, emulsifiers having a polymerizable group such as an attalyloyl group or a methacryl group
  • reactive emulsifiers include, but are not limited to, a cationic emulsifier, a cationic emulsifier, or a nonionic reactive emulsifier. used.
  • conventionally used are reactive emulsifiers having dispersibility and tendency to increase the particle diameter of colored particles, and anionic emulsifiers, such as sulfonic acid (salt) type, carboxylic acid. acid
  • the black resin particles used in the present invention for example, a black type oil-soluble pigment or carbon black containing carbon black as a colorant in a mixed system of a polymerization monomer, an emulsifier and water.
  • the pigment is dispersed or suspended as appropriate.
  • a black system such as C.I Solvent Black 27
  • a polymerization initiator such as potassium persulfate is added in the range of 0.3 to 0.6 parts by weight, and the polymerization reaction is carried out at 70 to 90 ° C. for 4 to 8 hours.
  • monodispersed black spherical polymer particles having an average particle diameter in the range of 100 to 500 nm expressed on a volume basis have a solid content concentration of 20 to Prepared at 40% by weight.
  • particles in which the coloring matter is encapsulated in the particle and Z or particle surface layer is coated and colored can be appropriately used.
  • a pair of opposing colloidal black achromatic organic polymers or inorganic monodisperse fine particles dispersed in a suspension is dispersed. Immerse the electrode plate, migrate it under a predetermined applied voltage, and make a structural color on the electrode surface. Electrophoretic deposition (or electrodeposition) of a particulate laminate that develops color.
  • a structural color pigment exhibiting a clear chromatic light color can be produced by irradiating natural light (or white light) light in the visible wavelength region to the deposited particulate laminate.
  • the organic polymer or inorganic particles having a specific particle size of the present invention are contained in the suspension in a concentration of, for example, 5 to 50% by weight, preferably 10 to Suspended at a concentration of 30% by weight.
  • a pair of opposing electrode plates are immersed, a voltage of 1.5 V or more is applied between the electrodes, the suspended particles are migrated, and one of the opposing electrode plates is placed on the opposite electrode plate.
  • Electrophoretic deposition This deposit is formed as a multi-layered particulate laminate in which organic polymer or inorganic particles are regularly aligned in the vertical and horizontal directions, and has a structural color exhibiting a clear chromatic light color as a structural color according to the present invention.
  • the particulate laminate formed on the electrode plate in this way is dried at 40 ° C. or lower, if necessary, and preferably air-dried at 10-30 ° C. as appropriate.
  • the layered structure of the electrophoretic deposit can be photographed by SEM.
  • the polymer used herein can be an organic molecule.
  • the terms that can be used for this polymer are described below.
  • alkyl refers to a monovalent group generated by loss of one hydrogen atom in an aliphatic hydrocarbon (alkane) force such as methane, ethane, or propane.
  • n 2n + l is represented by one (where n is a positive integer).
  • Alkyl can be linear or branched.
  • substituted alkyl refers to an alkyl in which H of the alkyl is substituted by the substituent specified below.
  • C1-C2 alkyl C1-C3 alkyl, C1-C4 alkyl, C1-C5 alkyl, C1-C6 alkyl, C1-C7 alkyl, C1-C8 alkyl, C1-C9 alkyl, C1-C10 alkyl Cl-C11 alkyl or C1-C12 alkyl, C1-C2 substituted alkyl, C1-C3 substituted alkyl, C1-C4 substituted alkyl, C1-C5 substituted alkyl, C1-C6 substituted Alkyl, C1-C7 substituted alkyl, C1-C8 substituted alkyl, C1-C9 substituted alkyl, C1-C10 substituted alkyl, C1-C11 substituted alkyl or C1-C12 substituted Or alkyl.
  • C 1 -C 10 alkyl means a straight or branched alkyl having 1 to 10 carbon atoms, methyl (CH—), ethyl (CH 1), n-propyl (CH 2 CH 2 CH—) , Iso
  • An alkyl refers to a C1-C10 alkyl having one or more hydrogen atoms replaced by a substituent.
  • alkyl or “substituted alkyl” as defined above may be a deviation.
  • alkylene refers to a divalent group formed by loss of two hydrogen atoms in an aliphatic hydrocarbon (alkane) force such as methylene, ethylene, and propylene, generally, -CH-(where n is a positive integer). Alkylene is linear or branched n 2n
  • substituted alkylene refers to an alkylene in which H of the alkylene is substituted by the substituent specified below. Specific examples of these include Cl to C2 alkylene, C1 to C3 alkylene, C1 to C4 alkylene, C1 to C5 alkylene, C1 to C6 alkylene, C1 to C7 alkylene, C1 to C8 alkylene, C1 to C9 alkylene, C1 to C10 Alkylene, 1 to 11 alkylene or 1 to 12 alkylene, C1 to C2 substituted alkylene, C1 to C3 substituted alkylene, C1 to C4 substituted alkylene, C1 to C5 substituted alkylene, C1-C6 substituted alkylene, C1-C7 substituted alkylene, C1-C8 substituted alkylene, C1-C9 substituted alkylene, C1-C10 substituted alkylene, C1-C11 substituted It can be Cl to C2 alkylene, C1 to C3 alkylene
  • C1-C10 substituted alkylene is C1-C1
  • alkylene having one or more hydrogen atoms replaced by a substituent.
  • alkylene may contain one or more atoms selected from an oxygen atom and a sulfur atom.
  • substituted and optionally alkylene may mean a deviation from “alkylene” or “substituted alkylene” as defined above. means.
  • cycloalkyl refers to alkyl having a cyclic structure.
  • “Substituted cycloalkyl” refers to cycloalkyl in which H of cycloalkyl is substituted by a substituent specified below. Specific examples include C3-C4 cycloalkyl, C3-C5 cycloalkyl, C3-C6 cycloalkyl, C3-C7 cycloalkyl, C3-C8 cycloalkyl, C3-C9 cycloalkyl, C3-C10 cycloalkyl, C3-C11.
  • Cycloalkyl C3-C12 cycloalkyl, C3-C4 substituted cycloalkyl, C3-C5 substituted cycloalkyl, C3-C6 substituted cycloalkyl, C3-C7 substituted cycloalkyl, C3-C8 substituted Cycloalkyl, C3-C9 substituted cycloalkyl, C3-C10 substituted cycloalkyl, C3-C11 substituted cycloalkyl or C3-C12 substituted cycloalkyl.
  • cycloalkyl is exemplified by cyclopropyl, cyclohexyl and the like.
  • cycloalkyl As used herein, the term "optionally substituted cycloalkyl” means that the "cycloalkyl” or “substituted cycloalkyl” defined above may be a deviation.
  • alkenyl refers to a monovalent group formed by losing one hydrogen atom from an aliphatic hydrocarbon having one double bond in the molecule.
  • Substituted alkenyl refers to an alkenyl in which the H of the alkenyl is substituted by the substituent specified below.
  • C2 to C10 alkyl means a linear or branched alkaryl containing 2 to
  • H CH.
  • a C2-C10 substituted alcohol is
  • a C2 to C10 hydrocarbon in which one or more hydrogen atoms are replaced by a substituent is replaced by a substituent.
  • substituted or substituted refers to the "alkke" defined above.
  • alkerene refers to a divalent group formed by losing two hydrogen atoms from an aliphatic hydrocarbon having one double bond in the molecule.
  • N 2n-2 (where n is a positive integer greater than or equal to 2).
  • Substituted alkylene refers to an alkylene obtained by substituting H of the alkylene by the substituent specified below. Specific examples include C2-C25 alkylene or C2-C25 substituted alkylene, especially C2-C3 alkene, C2-C4 alkene, C2-C5 alkylene.
  • a C2-C10 substituted alkylene is a C2-C10 alkylene having one or more hydrogen atoms substituted with substituents.
  • “alkellen” may include one or more atoms that are also selected for oxygen atoms and sulfur nuclear energy!
  • optionally substituted alkylene may be a deviation from the above-defined “alkylene” or "substituted alkylene”. Means.
  • cycloalkenyl refers to an alkali having a cyclic structure.
  • substituted cycloalkenyl refers to a cycloalkenyl in which H of the cycloalkenyl is substituted by the substituent specified below.
  • C3-C4 cycloalk C3-C5 cycloalk, C3-C6 cycloalk, C3-C7 cycloalk, C3-C8 cycloalk, C3-C9 cycloalk, C3-C10 Cycloalkenyl, C3-C11 Cycloalkell, C3-C12 Cycloalkenyl, C3-C4-Substituted Cycloalkale, C3-C5-Substituted Cycloalkenyl, C3-C6-Substituted Cycloalkenyl, C3 ⁇ C7 substituted cycloalkenyl, C3 ⁇ C8 substituted cycloalkenyl, C3 ⁇ C9 substituted cycloalkenyl, C3 ⁇ C10 substituted cycloalkenyl, 1 ⁇ 3 ⁇ 11 substituted cycloalkyl Or 3- to 12-substituted cycloalkyl.
  • the "optionally substituted cycloalkenyl” may be a deviation from the "cycloalkenyl” or "substituted cycloalkenyl” defined above. Means.
  • alkyl refers to a monovalent group formed by losing one hydrogen atom from an aliphatic hydrocarbon having one triple bond in the molecule, such as acetylene. Generally, it is represented by CH 1 (where n is a positive integer of 2 or more). "Substituted al n 2n_3
  • alkyl refers to an alkyl in which H of the alkyl is substituted by the substituent specified below. Specific examples include C2-C3 alkyl, C2-C4 alkyl, C2-C5 alkyl, C2-C6 alkyl, C2-C7 alkyl, C2-C8 alkyl, C2- C9 Alkyls, C2-C10 alkyls, C2-C11 alkyls, C2-C12 alkynyls, C2-C3 substituted alkyls, C2-C4 substituted alkyls, C2-C5 substituted alkyls -Alkyl, C2-C6 substituted alkyl, C2-C7 substituted alkyl, C2-C8 substituted alkyl, C2-C9 substituted alkyl, C2-C10 substituted It can be an alkyl, a C2-C11 substituted alkyl or a C2-C12 substituted alkyl.
  • C2 to C10 alkyl means, for example, a linear or branched alkyl containing 2 to 10 carbon atoms, such as ethur (CH ⁇ C—), 1 propynyl ( CH C ⁇ C) and the like are exemplified. Also, for example, C2-C10 substituted alkyl
  • Nyl refers to a C2 to C10 alkyl having one or more hydrogen atoms replaced by a substituent.
  • substituted and may be alkyl means “alkyl as defined above”.
  • alkoxy refers to a monovalent group formed by loss of a hydrogen atom of a hydroxy group of an alcohol, and is generally represented by CHO (where n is 1 or more n 2n + l
  • Substituted alkoxy refers to alkoxy in which H of alkoxy is substituted by the substituent specified below. Specific examples include C1-C2 alkoxy, C1-C3 alkoxy, C1-C4 alkoxy, C1-C5 alkoxy, C1-C6 alkoxy, C1-C7 alkoxy, C1-C8 alkoxy, C1-C9 alkoxy, C1-C10 alkoxy C1-C11 alkoxy, C1-C12 alkoxy, C1-C2 substituted alkoxy, C1-C3 substituted alkoxy, C1-C4 substituted alkoxy, C1-C5 substituted alkoxy, C1-C6 substituted Alkoxy, C1-C7 substituted alkoxy, C1-C8 substituted alkoxy, C1-C9 substituted alkoxy, C1-C10 substituted alkoxy, C1-C11 substituted alkoxy or C1-C12 substitute
  • Mouth poxy (CH 2 CH 2 CH 2 O 3) and the like are exemplified.
  • the “optionally substituted alkoxy” means that it may be a deviation from the above-mentioned “alkoxy” or “substituted alkoxy”.
  • the term “heterocycle (group)” refers to a group having a cyclic structure including carbon and a heteroatom.
  • the heteroatom is selected from the group consisting of 0, S and N forces, and may be the same or different, and may be contained in one or two or more.
  • Heterocyclic groups can be aromatic or non-aromatic and can be monocyclic or polycyclic. The heterocyclic group may be substituted.
  • optionally substituted heterocycle (group) means “heterocyclic ring (group)” or “substituted heterocycle (group)” as defined above. Mean, even if it ’s a gap
  • alcohol refers to an organic compound in which one or more hydrogen atoms of an aliphatic hydrocarbon are substituted with a hydroxyl group. In this specification, it is also expressed as ROH.
  • R is an alkyl group. Preferably, R may be C1-C6 alkyl.
  • examples of the alcohol include, but are not limited to, methanol, ethanol, 1-propanol, and 2-propanol.
  • Carbocyclic group means a group containing a cyclic structure containing only carbon, and the above-mentioned “cycloalkyl”, “substituted cycloalkyl”, “cycloalkenyl” And a group other than “substituted cycloalkenyl”.
  • Carbocyclic groups can be aromatic or non-aromatic and can be monocyclic or polycyclic.
  • the “substituted carbocyclic group” refers to a carbocyclic group in which H of the carbocyclic group is substituted by the substituent specified below.
  • C3-C4 carbocyclic group C3-C5 carbocyclic group, C3-C6 carbocyclic group, C3-C7 carbocyclic group, C3-C8 carbocyclic group, C3-C9 carbocyclic group, C3-C10.
  • Carbocyclic group C3-C11 carbocyclic group, C3-C12 carbocyclic group, C3-C4-substituted carbocyclic group, C3-C5-substituted carbocyclic group, C3-C6-substituted carbocyclic group, C3- C7 substituted carbocyclic group, C3-C8 substituted carbocyclic group, C3-C9 substituted carbocyclic group, C3-C10 substituted carbocyclic group, C3-C11 substituted carbocyclic group or C3 It can be a C12 substituted carbocyclic group.
  • the carbocyclic group can also be a C4-C7 carbocyclic group or a C4-C7 substituted carbocyclic group.
  • Examples of the carbon ring group include those in which one phenyl hydrogen atom is deleted.
  • the hydrogen deletion position may be any position chemically possible, whether on an aromatic ring or on a non-aromatic ring.
  • substituted or optionally carbocyclic group means a deviation from the above-defined “carbocyclic group” or “substituted carbocyclic group”. Moyo means that.
  • heterocyclic group refers to a group having a cyclic structure including carbon and heteroatoms.
  • the heteroatoms are selected from the group consisting of 0, S and N forces, and may be the same or different, and may be contained in one or more than one.
  • Heterocyclic groups can be aromatic or non-aromatic and can be monocyclic or polycyclic.
  • “Substituted hetero ring group” means a hetero ring group in which H of the hetero ring group is substituted by the substituent specified below.
  • C3-C4 carbocyclic group C3-C5 carbocyclic group, C3-C6 carbocyclic group, C3-C7 carbocyclic group, C3-C8 carbocyclic group, C3-C9 carbocyclic group, C3-C10.
  • Carbocyclic group C3-C11 carbocyclic group, C3-C12 carbocyclic group, C3-C4-substituted carbocyclic group, C3-C5-substituted carbocyclic group, C3-C6-substituted carbocyclic group, C3 -C7 substituted carbocyclic group, C3-C8 substituted carbocyclic group, C3-C9 substituted carbocyclic group, C3-C10 substituted carbocyclic group, 3-3-111 substituted carbocycle
  • One or more carbon atoms of the group or the same 3- to C12-substituted carbocyclic group may be substituted with a heteroatom.
  • a heterocyclic group can also be one in which one or more heteroatoms are substituted for the carbon atoms of a C4-C7 carbocyclic group or a C4-C7 substituted carbocyclic group.
  • the heterocyclic group include a cetyl group, a pyrrolyl group, a furyl group, an imidazolyl group, and a pyridyl group.
  • the hydrogen deletion position may be any position chemically possible, and may be on an aromatic ring or a non-aromatic ring.
  • a carbocyclic group or a heterocyclic group may be substituted with a divalent substituent in addition to being able to be substituted with a monovalent substituent as defined below.
  • halogen refers to a monovalent group of elements such as fluorine (F), chlorine (Cl), bromine (Br), iodine (I) belonging to Group 7B of the periodic table.
  • hydroxy refers to a group represented by OH.
  • substituted hydroxy refers to a hydroxy in which H is substituted with a substituent as defined below.
  • thiol is a group in which an oxygen atom of a hydroxy group is substituted with a sulfur atom (mercapto group), and is represented by —SH. “Substituted thiol” means mercapto Wherein H is substituted with a substituent as defined below.
  • cyan refers to a group represented by —CN.
  • Niro means -NO
  • carboxy refers to a group represented by —COOH.
  • substituted carboxy refers to a carboxy H substituted with a substituent as defined below.
  • acyl refers to a monovalent group formed by removing OH from a carboxylic acid.
  • Representative examples of the acyl group include acetyl (CH 2 CO 3), benzoyl (C 3 H 2 CO 3), etc.
  • Substituted acyl refers to a hydrogen substituted with the substituent defined below.
  • amide is a group in which hydrogen of ammonia is substituted with an acid group (acyl group), preferably —CONH
  • Substituted amide refers to a substituted amide.
  • substituted carbonyl means a carbonyl group substituted with a substituent selected as described below.
  • thiocarbol is a group in which an oxygen atom in carbonyl is substituted with a sulfur atom, and includes a characteristic group — (C ⁇ S) —.
  • Thiocarbol includes thioketones and thioaldehydes.
  • Substituted thiocarbol means thiocarbonyl substituted with a substituent selected as described below.
  • sulfol is a generic term for a substance containing SO which is a characteristic group.
  • Substituted sulfol means sulfol substituted with a substituent selected below.
  • sulfiel refers to a generic term for substances containing SO- which is a characteristic group. “Substituted sulfiel” means a sulfiel that is substituted with a substituent selected below!
  • aryl refers to a group formed by leaving one hydrogen atom bonded to an aromatic hydrocarbon ring, and is included in the carbocyclic group in the present specification.
  • substitution refers to replacement of one or more hydrogen atoms in an organic compound or substituent with another atom or atomic group.
  • One hydrogen atom can be removed and substituted with a monovalent substituent, and two hydrogen atoms can be removed and substituted with a divalent substituent.
  • substitution refers to replacing one or more hydrogen atoms in a certain organic compound or substituent with another atom or atomic group.
  • One hydrogen atom can be removed and substituted with a monovalent substituent, and two hydrogen atoms can be removed and substituted with a divalent substituent.
  • Substituents in the present invention include alkyl, cycloalkyl, alkyl, cycloalkyl, alkyl, alkoxy, carbocyclic group, heterocyclic group, halogen, hydroxy, thiol, and silane. Examples include, but are not limited to, nitro, amide-containing carboxy, rubamoyl, acyl, acylamino, thiocarboxy, amide, substituted carbol, substituted thiocarbole, substituted sulfol or substituted sulfiel. Not. Such substituents can be appropriately used in the present invention when designing amino acids.
  • each when a plurality of substituents are present, each may independently be a hydrogen atom or an alkyl, but not all of the plurality of substituents are hydrogen atoms. More preferably, independently, when there are a plurality of substituents, each may be independently selected from the group consisting of hydrogen and C1-C6 alkyl. All of the substituents may have a substituent other than hydrogen, but preferably have at least one hydrogen, more preferably 2 to n (where n is the number of substituents) hydrogen. Can do. It may be preferred that the number of hydrogens in the substituent is large.
  • substituents or polar substituents are also capable of impeding the effects of the present invention (particularly the interaction with aldehyde groups). Therefore, as a substituent other than hydrogen, preferably Can be C1-C6 alkyl, C1-C5 alkyl, C1-C4 alkyl, C1-C3 alkyl, C1-C2 alkyl, methyl, and the like. However, since the effect of the present invention may be enhanced, it may be preferable to have a large substituent.
  • Cl, C2,... Cn represents the number of carbon atoms. Therefore, C1 is used to represent a 1 carbon substituent.
  • optical isomer refers to one or a pair of a pair of compounds that have a mirror-image relationship with a crystal or molecule and cannot be superimposed. It is a form of stereoisomer, and the other properties are the same, but only the optical rotation is different.
  • protection reaction refers to a reaction in which a protecting group such as Boc is added to a functional group desired to be protected. By protecting the functional group with the protecting group, the reaction of the functional group having higher reactivity can be suppressed and only the functional group having lower reactivity can be reacted.
  • the protection reaction can be performed by, for example, a dehydration reaction.
  • the term "deprotection reaction” refers to a reaction for removing a protecting group such as Boc.
  • Examples of the deprotection reaction include a reaction such as a reduction reaction using PdZC.
  • the deprotection reaction can be performed, for example, by hydrolysis.
  • examples of the “protecting group” include, for example, a fluorenylmethoxycarbol (F moc) group, a acetyl group, a benzyl group, a benzoyl group, a t-butoxycarbol group, t-Butyldimethyl group, silyl group, trimethylsilylethyl group, N-phthalimidyl group, trimethylsilylethyloxycarboxyl group, 2--troe 4, 5-dimethoxybenzyl group, 2-nitro-4, 5 —Typical protecting groups include dimethoxybenzyloxycarbol group and force rubamate group.
  • F moc fluorenylmethoxycarbol
  • the target product is a contaminant (unreacted weight loss, by-product, solvent, etc.) from the reaction solution, and a method commonly used in the art (for example, extraction, distillation, After removal by washing, concentration, precipitation, filtration, drying, etc.), followed by a combination of post-treatment methods commonly used in the art (eg adsorption, elution, distillation, precipitation, precipitation, chromatography, etc.) obtain.
  • a method commonly used in the art for example, extraction, distillation, After removal by washing, concentration, precipitation, filtration, drying, etc.
  • post-treatment methods commonly used in the art
  • the present invention provides a labeling substance containing a complex of a polymer and a dye.
  • the polymer used may have oil solubility (for example, hydrophobicity with a contact angle with water of 90 ° or more).
  • polymers examples include glass, silica gel, polypropylene, polyurethane, polystyrene (PS), polymethylmetatalylate (PMMA), tetrafluoroethylene, poly-4-methylpentene 1, and polybenzyl.
  • Meta attalylate poly (phenylene metathalate), poly (cyclohexeno) methalate, polyethylene terephthalate, styrene 'acrylate-tolyl copolymer, polyvinyl chloride, polyvinyl chloride, polyvinylidene, polyvinyl acetate, polyvinyl alcohol, polyimide, Examples thereof include polyamide, polyethylene glycol, polyacrylic acid, polymethacrylic acid and copolymers thereof, and preferably, polystyrene can be used. This is because polystyrene has a high affinity for living organisms and is easy to use. This is because in a preferred embodiment, the macromolecule is advantageously capable of interacting specifically with the biomolecule. It is also the force that can be used in a noise experiment.
  • the polymer used is oil soluble.
  • the polymer used may be a molecule that may or may not affect the color tone of the dye used in the present invention. It will be understood that any given molecule can be used as long as the desired color results from the interaction.
  • the dye used has higher hydrophobicity than polystyrene, but it is not limited thereto. More preferably, the dyes used are further significantly different in hydrophobicity.
  • the dye used is a structural color dye.
  • the structural color pigment develops color based on at least one of interference, diffraction and scattering of light, and includes, for example, mica and metal oxide, and is colored by the interference.
  • the acid metal or acid compound used in the present invention includes copper oxide, acid titanium, Aluminum oxide, silicon oxide, tin oxide, iron oxide, zirconium oxide, zinc oxide and the like can be used.
  • the dye used has light absorption at a wavelength between 380 nm and 780 nm.
  • the visible wavelength region (380 to 780 nm)
  • after sunlight or white light is irradiated onto a material it is spectrally reflected and enters a specific wavelength region (nm) that enters our eyes, and the color that develops as colored light of the material system.
  • the red system is reflected light in the entire wavelength region of 600 nm or more
  • the yellow system is reflected light in the entire wavelength region of 490 nm or more
  • the green system is all wavelengths in the range of 460 to 590 nm.
  • the structural color pigment that can be used in the present invention is an achromatic black monodisperse particle having no color and having a brightness of 5 or less in the spherical fine particle force Munsell color chart.
  • a part of the irradiated visible light effectively absorbs and reduces stray light such as scattering and transmission other than the desired reflected light that appears to be generated around the particle. Let As a result, the reflected light color effectively diffracted and interfered is made visible as a chromatic color with a clearer color.
  • the dyes used in the present invention are preferably at least partially at about 380 to about 780 nm (eg one point, preferably at least about 50 nm wavelength range), more preferably all of them. It has a measurable absorbance at a wavelength (for example, a concentration of 10 1 (> 1 Zml or more, 0.1 or more under measurement conditions with an optical path length of 1 cm).
  • the lower limit may be less than 380 nm, and the upper limit may exceed 780 nm, for example, the lower limit is about 100 ⁇ m, about 110, about 120 nm, about 130 nm, about 140nm, about 150 °, about 160nm, about 170 nm, about 180 nm, about 190 nm, about 200 nm, about 210 nm, about 220 nm, about 230 nm, about 24 Onm, about 250 nm, about 260 nm, about 270 nm, about 280 nm, about 290 nm, about 300 nm, about 3 10 nm, about 320 nm, about 330 nm, about 340 nm, about 350 nm, about 360 nm, about 370 nm, about 380 nm, about 390 nm, about 400 nm, about 410 nm, about 420 nm, about 430 nm, about 440 nm
  • the upper limit is about 110 nm, about 120 nm, about 130 nm, about 140, about 150 nm, about 160 nm, about 170 nm, about 180, about 190, about 200 nm, about 210, about 220, about 230 nm, About 240 nm, about 250 nm, about 260, about 270 ⁇ m, about 280, about 290 nm, about 300 nm, about 310 nm, about 320, about 330 nm, about 340 nm, about 350 nm, about 360 nm, about 370, about 380 About 390 nm, about 400 nm, about 41 Onm, about 420 nm, about 430 nm, about 440 nm, about 450, about 460 nm, about 470 nm, about 480, about 490 nm, about 500 nm, about 510 nm, about 520 nm, about 530
  • the particles usually have a particle size of lOnm or more and 10 m or less. In one embodiment, it may have an absorbance measurable over the wavelength range above at least about 50 nm, preferably lOOnm, more preferably 150 nm.
  • the wavelength range with this measurable absorbance is about 200, about 250, about 300 ⁇ if the total wavelength range to be covered is greater than about 150nm (eg about 400, about 600, etc.).
  • m about 350 nm, about 400 nm, about 450 nm, about 500 nm, about 550 nm, about 600 nm, and the like.
  • the above wavelength range at least in a range over at least two different locations (eg, 3 locations, 4 locations, etc.), preferably about 50 nm, more preferably at least about 100 nm, more preferably , About 200 nm, about 250, about 300 ⁇ m, about 350 nm, about 400 nm, and the like. In preferred embodiments, it may have a measurable absorbance for all wavelengths in the wavelength range.
  • the measurable absorbance can be about 0.1 or more under the measurement conditions of a concentration of 101 (> Zml or more and an optical path length of 1 cm.
  • this absorbance is Can be about 0.2 or more under these conditions, more preferably, the absorbance is about 0.3 or more, about 0.4 or more, about 0.5 or more, about 0.75 or more, about 1. It can be zero or more.
  • Such detection of absorbance may be detection with the naked eye or detection using an apparatus.
  • the measurement using the apparatus may be spectrophotometric measurement, ultraviolet absorption measurement, infrared absorption measurement, X-ray measurement, fluorescence intensity measurement, and turbidimetric measurement.
  • polystyrene microbeads having a diameter of 5.6 m can be used as the support in the Luminex® system as particles. Since the beads are spherical, a series of reactions, washing, and measurements can be performed efficiently and quickly.
  • Luminex registered trademark
  • particles are stained with two colors of fluorescent dyes combined in different concentrations, and the content of each fluorescent dye is used as an identification code.
  • 10 levels of microbeads are produced by selecting and multiplying concentrations of each fluorescent dye that can be reliably distinguished by a reading sensor, for example, 10 levels.
  • bead functional groups can also optionally be added.
  • Luminex® beads There are two types of Luminex® beads: carboxylate-coated beads and avidin-bound beads. Coated with a carboxyl group! /, The beads are most commonly used today, and can bind various substances such as DNA or protein with aminated amination.
  • beads coated with avidin can bind a pyotinylated substance onto the bead surface.
  • the 0 types of beads are created by setting the amount of two fluorescent dyes (hereinafter referred to as “Fl” and “F2”) in 10 stages and mixing them in a unique combination.
  • the fluorescence wavelengths of Fl and F2 are 657 nm and 720 nm, respectively.
  • the beads falling by the flow site are excited with a 635 nm laser.
  • Excitation fluorescence is passed through bandpass filters of 657 nm and 720 nm, respectively, and converted into current by an optical sensor (APD: avalanche photodiode). Since all types of beads have different Fl and F2 ratios, the amount of emitted fluorescence differs, and the beads are identified by the difference in the current value converted by the APD.
  • the dye is prepared to have the desired color.
  • the color of the dye used is adjusted by controlling the periodic structure on the order of submicrons. Different colors, ie different effects, are obtained by the thickness of each of the various layers.
  • the structural color dyes according to the present invention are, for example, U.S. Pat.No. 3,438796, European Patent Application 227423, U.S. Patent 5,135812, European Patent Application 170439, European Patent Application 341002, Gazette U.S. Pat.No. 4,930,866, U.S. Pat.
  • European patent application 472371 European patent application 395410, European patent application 753545, European patent application 768343, European patent application 571836, European patent application 708154, European patent application 579091, US patent 5411586, US This is described in Japanese Patent No. 5364467, International Patent Application 97/39066, German Patent Application 422 5031, International Patent Application 95Z17479 (BASF), or German Patent Application 19614 637.
  • the dye may have an absorbance of about 0.1 or more under measurement conditions at a concentration of 101 (> Zml or more and an optical path length of 1 cm).
  • the labeling substance of the present invention has hydrophobicity with a contact angle of 90 ° or less.
  • the contact angle can be measured by the method described above in this specification.
  • the color of the labeling substance of the present invention is determined by adjusting a polymer and a dye. Adjustment can be easily made by those skilled in the art with reference to the description of the present specification.
  • the labeling substance of the present invention has the ability to interact with a biomolecule.
  • the labeling substance of the present invention has the ability to form a complex with a biomolecule.
  • the complex may be, for example, a covalent bond, a hydrophobic interaction bond, or a van der Waals force.
  • the labeling substance of the present invention is biocompatible. Biocompatibility can be performed, for example, by actually conducting preliminary experiments for in vivo experiments.
  • the dye is bound to the polymer surface by silane coupling.
  • Trimethylsilane may be used for this coupling.
  • the labeling substance of the present invention is used for labeling a biomolecule.
  • the present invention provides a particle containing the labeling substance of the present invention for use in labeling a biomolecule.
  • the labeling substance any form described in the present specification can be used.
  • the present invention provides a labeled capture carrier comprising a capture carrier that captures a biomolecule and the labeling substance of the present invention.
  • the capture carrier of the present invention is bound to a labeling substance.
  • the capture carrier of the present invention is bound to the surface of a labeling substance by silane coupling.
  • Silane coupling can be achieved, for example, with trimethylsilane.
  • the capture carrier of the present invention has Si (R 1 ) (R 2 ) (R 3 ) -O bonded to the surface of the labeling substance, wherein R 1 is hydrophobic.
  • R 2 can be a hydrophobic group or —O 3
  • R 3 can be a hydrophobic group or —O 2 , where one, two or three of RR 2 and R 3 are O Can have.
  • the hydrophobic group is unsubstituted or substituted alkyl, unsubstituted or substituted cycloalkyl, unsubstituted or substituted alkenyl, unsubstituted or substituted.
  • the capture carrier of the present invention is bonded to Si (R 1 ) (R 2 ) (R 3 )-O on the surface of the labeling substance, where R 1 is hydrogen, substituted Substituted or unsubstituted alkyl group or —O 2 , R 2 is hydrogen, substituted or unsubstituted alkyl group or —O 2, and R 3 is hydrogen , Substituted or unsubstituted, may be an alkyl group or O! / ,.
  • the capture carrier of the present invention is bonded to Si (R 1 ) (R 2 ) (R 3 )-O on the surface of a labeling substance, wherein R 2 and R 3 may best be an alkyl group or a fluorinated alkyl group, respectively.
  • the capture carrier of the present invention comprises an antibody or antibody derivative.
  • antibody refers to polyclonal antibodies, monoclonal antibodies, human antibodies, humanized antibodies, multispecific antibodies, chimeric antibodies, and anti-idiotype antibodies, and fragments thereof such as F (ab ′ ) 2 and Fab fragments, as well as other recombinantly produced conjugates.
  • such antibodies can be covalently linked or recombinantly fused to enzymes such as alkaline phosphatase, horseradish peroxidase, ⁇ -galactosidase, and the like.
  • the term "monoclonal antibody” as used herein refers to an antibody composition having a homogeneous antibody population. This term is not limited by the manner in which it is made. The term includes whole immunoglobulin molecules as well as Fab molecules, F (ab ′) 2 fragments, Fv fragments, and other molecules that exhibit the immunological binding properties of the original monoclonal antibody molecule. Methods for making polyclonal and monoclonal antibodies are known in the art and are described more fully below.
  • Monoclonal antibodies use standard techniques well known in the art (eg, Kohler and Milstein, Nature (1975) 256: 495) or modifications thereof (eg, Buck et al. (1982) In Vitro 18: 377).
  • a mouse or rat is immunized with a protein coupled to a protein carrier, boosted, and the spleen (and necessary) Remove several large lymph nodes) and dissociate single cells.
  • the spleen cells can be screened by applying the cell suspension to a plate or well coated with antigen after removal of non-specific adherent cells.
  • B cells expressing an immunoglobulin specific for the antigen bind to the plate and are not rinsed away in the suspension residue.
  • the resulting B cells ie, all exfoliated spleen cells
  • myeoma cells to obtain hybridomas and hybridomas that are used to produce monoclonal antibodies.
  • antigen refers to any substrate that can be specifically bound by an antibody molecule.
  • immunogen refers to an antigen capable of initiating lymphocyte activity that produces an antigen-specific immune response.
  • the present invention provides an article comprising carrier microparticles having a predetermined amount of a polymer labeled with at least one structural color dye bound to the surface.
  • the carrier microparticle or polymer, or both the carrier microparticle and polymer comprise a polymer.
  • the carrier fine particles may include polymer particles having a diameter of 0.1 / ⁇ ⁇ to 1,000 ⁇ m.
  • the carrier microparticles comprise at least one structural color dye.
  • the polymer used is Inn! ⁇ 100,0 polymer particle force with a diameter of OOnm.
  • the polymer used includes 50% by weight or less of a crosslinking agent.
  • the polymer used comprises a magnet or a magnetically responsive metal oxide.
  • the polymer used further comprises functional groups or substituents.
  • the present invention provides a set of labeling substances including a complex of a polymer and a dye, the dye having a dye having two or more absorption wavelengths To do. 41.
  • the set of claim 40 wherein preferably the dye used is a structural color dye.
  • the polymer used has a hydrophobicity with a contact angle of 90 ° or less
  • a structural color article comprising the step of binding at least one set of polymers having different structural color signals for each set to the surface of a carrier polymer microparticle is produced. Provide a way to build.
  • another structural color signal is provided by at least one structural color dye.
  • the carrier polymer microparticles also contain a structural color dye.
  • the polymer used is covalently bonded to the carrier polymer microparticle.
  • Covalent bonding can be achieved by methods well known in the art.
  • a set of polymers is bound to the carrier polymer microparticles by adsorption. Adsorption can be achieved by methods well known in the art.
  • the structural color article is surrounded by a polymer shell.
  • Embedding by the shell can be realized by a method well known in the art.
  • the present invention provides a method for producing a labeling particle comprising a complex of a polymer and a dye.
  • the method comprises: A) providing a mixture comprising a dye and a polymer in a material injection tube, wherein the material injection tube is present in a fluid environment providing tube containing a fluid; B) fluid environment Injecting the mixture from the material injection tube into the particle forming tube as fluid flows in the donor tube; and C) recovering the particles formed in the particle forming tube.
  • the present invention provides a method for producing a labeled particle having desired properties, comprising a polymer and a complex of a dye.
  • This method comprises: A) providing a mixture comprising a dye and a polymer into a material injection tube at a rate ⁇ , wherein the material injection tube is a fluid
  • the injection port has a diameter ⁇ ; step ii) while the fluid flows in the fluid environment providing tube at a velocity ⁇ , the mixture is ejected from the material injection tube to the particle forming tube at a velocity ⁇ .
  • the particle-forming tube has an opening for receiving the mixture, the opening has a diameter As, and the particle-forming tube is at a distance d from the outlet; and C) Recovering the particles formed in the particle forming tube, wherein d, ⁇ ,
  • the present invention provides an apparatus for producing a labeled particle, which comprises a complex of a polymer and a dye.
  • This apparatus is provided with: a) a material providing means capable of providing a mixture containing the dye and the polymer (1) in FIG. 6; b) a material capable of holding the mixture containing the dye and the polymer.
  • An injection pipe (0 in FIG. 6), which has an opening (or orifice 1 in FIG. 6) for receiving the material from the material providing means and an injection for injecting the material.
  • a fluid environment providing pipe which accommodates the material injection pipe and having a fluid providing opening; d) a fluid amount adjusting means for adjusting the amount of fluid provided to the fluid environment providing pipe (referred to as 8 in FIG. 6); e ) The particle forming tube for receiving the material to be injected from the material injection tube ((6) in FIG. 6); and f) The particle forming tube accommodates the formed labeled particles. Because of the container (7 referred to in FIG. 6), and a.
  • the present invention provides a method for determining the presence or absence of at least one analyte in a sample.
  • This method consists of (a) mixing a sample with a particle having a surface with at least one structural color labeled particle and a force that interacts with each of the analytes or at least one analytical reactant that reacts with the sample. Producing a reaction mixture; (b) analyzing the particles that have reacted or interacted with the analyte to determine if the analyte is present in the sample. .
  • the method of the present invention includes a step in which the amount of the particles is a known amount, and the mixing step (a) further comprises mixing a predetermined amount of a competing molecule into the reaction mixture. To do.
  • the method of the invention comprises an analysis step (b) 1S flow cytometry, ELISA (eg, chromogenic ELISA, chemiluminescent ELISA, enzyme-linked fluorescent immunoassay (ELFIA) and dissociation enhanced lanthanoid) Includes analysis using FIA (DELFIA), West Lot, fluorescence measurement, luminescence measurement or electrochemiluminescence measurement.
  • ELISA eg, chromogenic ELISA, chemiluminescent ELISA, enzyme-linked fluorescent immunoassay (ELFIA) and dissociation enhanced lanthanoid
  • the method of the present invention comprises (c) the amount of the particles is a known amount.
  • the analyte of the method of the invention comprises an antigen, an antibody, a receptor , Hapten, enzyme, protein, peptide, nucleic acid, drug, hormone, chemical, macromolecule, pathogen, toxin, and combinations thereof.
  • the analytical reactant comprises an analyte binding pair.
  • the binding pair used can be any.
  • the competitor molecule comprises a molecule that prevents binding of each analyte to the analyte.
  • competing molecules are well known in the art.
  • the reference material is essentially identical to the analyte in interaction or reaction with the respective analyte.
  • the present invention provides a method for detecting a plurality of analytes in a sample.
  • the method comprises: a) a structural color particle population comprising a plurality of structural color particles comprising a structural color dye and an analytical reactant specific for the analyte, wherein the structural color particles are of the analytical reactant.
  • the method of the present invention is realized by means of realizing flow cytometry, ELISA, western lot, fluorescence measurement, luminescence measurement or electrochemiluminescence measurement.
  • Such means can be commercially available, or you can make your own using techniques well known in the field!
  • the population of structural color particles is further determined by their size and shape.
  • the structural color particle further contains a magnetic substance.
  • the present invention provides a kit suitable for detection of a plurality of analytes of interest.
  • the kit comprises: A) a structural color particle population comprising a plurality of structural color particles comprising a structural color dye and an analyte specific to the analyte, wherein the structural color particles Depending on the type of reactant, each has a different color and the analytical reactant specifically interacts or reacts with one analyte in the sample; and B) the analytical reactant Detection means for detecting
  • kits refers to a unit in which parts to be provided (eg, reagents, enzymes, vertical nucleic acids, standards, etc.) are usually divided into two or more compartments. .
  • This kit form is preferred when it is intended to provide a composition that should preferably be used in admixture immediately prior to use.
  • kits preferably include the provided moieties (eg, reagents, enzymes, nucleotides, labeled nucleotides, nucleotides that stop the extension reaction (and their triphosphates), vertical nucleic acids, standards, etc.). It is advantageous to have instructions that describe how the power to be processed.
  • the kit usually includes reagent components, buffers, salt concentrates, auxiliary means for use, instructions describing the method of use, etc. .
  • instructions describe to the user how to use the reagent of the present invention, how to react, and the like.
  • This instruction manual includes a word indicating a procedure such as an enzyme reaction of the present invention.
  • This instruction is prepared according to the format prescribed by the national supervisory authority where the present invention is implemented as necessary, and it is clearly stated that it has been approved by the supervisory authority. Instructions are so-called package inserts and are usually provided on paper media, but are not limited to this, for example, films affixed to bottles, electronic media (e.g., homepages provided on the Internet). (Website), e-mail).
  • the detection means is an antibody that specifically reacts with an analytical reaction product.
  • an antibody can be arbitrarily selected.
  • the kit of the present invention further comprises a competing molecule capable of competing with a specific binding reaction with the analyte to the analyte.
  • the kit of the invention further comprises a reference material that is essentially identical to the analyte associated with each of the analytical reactants.
  • the kit of the present invention further comprises a reagent for a bioreaction.
  • reagents may include, but are not limited to, buffers, necessary ion concentrates, salt concentrates, pH adjusters and the like.
  • Polystyrene PS, molecular weight 158K was obtained from Yangtze Petrochemical Co., Ltd.
  • Poly (bulualcohol) (PVA) degree of polymerization: 500) was obtained from VAM & POVAL Co., Ltd, Japan.
  • Benzene and 1,2-dichloroethane were purchased from Shiyi Chemical Reagent Co., LTD and Jiuyi and hemical Reagent Co., Ltd; g, respectively.
  • Nonor pigments were obtained from Dongzhu Pearlescent Pigments Manufacturing Co., Ltd.
  • Trimethylchlorosilane is a product of Sinopharm Chemical
  • Polystyrene beads containing pearl pigments were prepared using a droplet generator ( Figure 6). (24) o The principle of this generator is that the aqueous (fluid phase) poly (bull alcohol) solution passes through a glass orifice. The flow of water merges with the oil phase polystyrene solution to produce droplets. After the organic solvent in the droplets was evaporated by a rotary evaporator, the droplets were applied to polystyrene beads.
  • Optical “encoded” beads were prepared with the droplets shown in FIG.
  • Polystyrene was dissolved in a mixture of benzene: 1,2-dichloroethane (2: 3) to prepare 7% -concentrated beads and filtered through a glass filter before use.
  • the “pearl pigment” pretreated with trimethylchlorosilane was immersed in the polystyrene solution overnight with continuous stirring.
  • Polystyrene solution was continuously fed to an orifice in the tube where a stable flow of aqueous solution containing 5% PVA was created. Feeding the polymer solution through the orifice produced droplets in the aqueous PVA solution. This was collected in a beaker.
  • benzene and 1,2-dichloroethane in droplets were evaporated and solidified.
  • the evaporation temperature was 5 ° C per 10 minutes and increased from room temperature to 70 ° C.
  • the solidified beads were ultrasonically washed 8 times in 15 minutes, and then flow assembly was performed to remove the PVA on the bead surface.
  • the color of the beads is derived from a pearl pigment which is a structural color pigment.
  • This consists of the mica plate force with a layer of acid metal film, such as acid titanium film, on its surface.
  • the light emitted from the dye is reflected at the interface between air Z metal oxide and metal oxide Z mica.
  • a certain color is generated by interference of reflected light. This depends on the thickness of the metal oxide film.
  • Variation in the thickness of the acid metal layer changes the color of the pearl pigment ( Figure 11).
  • These types of dyes can have acids or alkalis, and therefore can withstand temperatures up to 800 ° C., are stable to light irradiation, and are harmless to the human body.
  • the disadvantages of photobleaching, quenching, photoinstability, and chemical instability are solved by using the present invention.
  • Figure 11A is an SEM image of red pearl pigment powder.
  • the powder will also have a flake force with a size of 10-60. Because flakes have irregular shapes and surface morphology, they are difficult to sort and fix. If the flakes are used directly in biological or chemical assays as an indicator, the code readout optical system must have high resolution. Another problem is that when pearl pigment flakes are used in bioassays, aggregation and accumulation occur during detection. This can prevent the target molecule from reacting in solution with probe molecules on the flake surface. These problems are solved by embedding a par pigment in polymer particles, and the particles can be used for detection as a probe molecule carrier.
  • the high molecule used to embed the pearl pigment is polystyrene, which has a high affinity primarily for proteins due to hydrophobic interaction forces. Polystyrene is commonly used in the production of Imuno Atsei microtiter plates.
  • Droplet size depends on the following four parameters: orifice caliper (c), polystyrene Ren velocity (v) (generally indicated as v), PVA velocity PVA (v) (generally indicated as V)
  • FIG. 8A shows that the size of the particles produced depends on (proportional to) V (V).
  • Figure 8B shows that the size of the particles produced is ps o
  • the bead diameter was 110 ⁇ m when the polystyrene injection rate was 20 ⁇ m, and the bead size increased to 0.70 mm when the flow rate was increased to 1501 / min.
  • the bead size depends linearly on the flow rate of polymer solution V. Therefore, assume the bead size before production.
  • the surface greatly affects the immobilization of biomolecules. As a result, it affects Imunoatsusei.
  • a surface that has a high binding ability and is smooth and on which an immobilized biomolecule can retain its activity is desired.
  • the dye for encoding when present on the bead surface, it produces a rough surface and affects the binding of biomolecules to the bead surface.
  • the bead be spherical and that the structural color dye should not be present on the bead surface.
  • FIG. 11A shows beads made with 20 mg Znd pearl pigment. The beads were observed to exhibit irregular shapes at this concentration. Experiments have found that spherical beads are produced when the concentration of pearl pigment is less than 20 mgZml.
  • FIG. 11B shows beads made with a polymer solution containing 0.6 mgZml. It is found that the beads are spherical. Another factor that affects bead shape is the wettability of pearl pigments.
  • the surface of the pearl pigment is a hydrophilic acid, it is preferably stable in an aqueous phase solution that is not an oily phase such as benzene and 1,2-dichloroethane. Accordingly, the par pigment moves to the interface between the polymer solution droplet and the aqueous solution. In this case, the pearl pigment remains on the surface of the beads after solidification, and the surface of the beads can become rough. Such a reduction can be avoided by making the surface of the pearl pigment oleophilic and stabilizes the oil solution.
  • FIG. 11C shows beads made using pearl pigment modified with trimethylchlorosilane. The pearl pigment disappears from the bead surface and the surface becomes smooth.
  • the beads are combined and rocked continuously for 1 hour in the presence of a solution containing FITC-tagged anti-human IgG and goat-anti-rabbit IgG. Incubated at 37 ° C. (1: 100 dilution with PBS). The beads were then washed with PBST and then 3 times with PBS for 5 minutes each time. The fluorescence images were captured with a Laser Scanning Confocal Microscope (LSCM) at an excitation wavelength of 488 nm and an emission wavelength of 500-530 nm.
  • LSCM Laser Scanning Confocal Microscope
  • polystyrene beads are formed in a solution of PVA, which acts as a stabilizer for oily droplets in aqueous solution. PVA binds to the surface of the beads, thereby reducing the adsorption of protein molecules. Therefore, PVA should be removed from the bead surface prior to protein immobilization.
  • the inventors repeatedly performed ultrasonic cleaning to remove the PVA surface force. The inventors quantitatively and repeatedly evaluated the effect of ultrasonic cleaning. This was evaluated by ELISA. Polystyrene beads were coated with human IgG and detected with HRP-labeled goat anti-human IgG. Enzymes catalyze color development Under the ground, protein adsorption effect is observed by color depth. A darker color means that more protein molecules are adsorbed.
  • the antibody molecule was successfully immobilized on the polystyrene bead surface by physical adsorption using a simple method.
  • Multiplex detection is often a function of multiple analytes simultaneously in a biological sample. Or it is often selected as a method for efficiently detecting the structure.
  • SMIA simultaneous multiple analysis assay
  • two or more analytes are measured simultaneously in a single assay, which has been evaluated to be a significant effect in the facet assembly method.
  • SMIA is preferable because it does not use too many samples, the assembly can be miniaturized, test performance is increased, and costs are reduced.
  • Verpoorte, E., Beads and Chips new recipes for analysis.LAB ON A CHIP 20 03,3, (4), 60N-80N.
  • the droplet generator allows us to obtain uniformly encoded polystyrene beads, which is by a solvent evaporation method.
  • a simple multiple immunoassay has demonstrated that the code is stable and efficient. Surface modification and a variety of detection methods were applicable to the encoded beads.
  • We demonstrate that simple and cost-effective encoding strategies are used in genomic research, proteome research, drug discovery, clinical diagnostics and combinatorial chemistry. For applications such as general clinical diagnostics, low-throughput assembly, and pipettes, a single bead It is enough to function as a “microlab”.

Abstract

 本発明の課題は、抗原抗体などの生体分子を検出するときなどにおいて、少量かつ素早く検出すること、特に過酷な環境においても検出することができ、かつ、肉眼でも見える標識粒子を提供することにある。上記課題は、本発明において、色素と高分子とを含む標識物質を提供することによって解決される。特に、限定されないが、色素として構造色色素(例えば、雲母および酸化金属を含むパール顔料)を用いた粒子を提供することによって、上記課題が解決された。

Description

明 細 書
生物学的実験に用いることができる安定な標識媒体
技術分野
[0001] 本発明は、標識色素に関する。より詳細には、本発明は、生物学的実験に用いるこ とができる安定な標識媒体に関する。
背景技術
[0002] 今までの多成分免疫検査で用いられているものはゥエルアレーを有するプレートで ある (図 1)。各成分を検出するための抗体をゥエルの表面に固定し、この抗体が検査 液中の抗原と反応する (第 1工程)。さらに、蛍光分子、酵素などラベル化されている 第二抗体と反応する (第 2工程)。その後、蛍光分子、酵素を利用して、各ゥエルで目 的の抗体の有無を決定する。
[0003] この方法で改良するべきことは二つある:
1)プローブの抗体がゥエルの表面に固定するため、反応速度が制限されている。 プローブが検査液と一緒に撹拌できれば、検査の時間が短縮できる。 2)基本的にひ とつのゥエルで一つで成分しか検査できな 、。検査する成分が増えるにつれて使用 するゥエルの数も増えると同時に検査に使うサンプルの量も増える。患者への負担軽 減のため、採血の量ができるだけ少ない方法が求められる。
[0004] 有機蛍光プローブ分子が紫外光、熱などに不安定のため、保存や検査するときの 識別は困難である。また、有機蛍光プローブ分子が高い、多色の設計も困難などの 問題があった。
[0005] 特開 2001— 279111は、通常の色素を色落ちせずに混合させる方法に関する技術 を開示している。特開 2002— 154927は、化粧用組成物を開示しており、ェマルジヨン で使用することが想定されている。特開 2004— 226234は、表面にコート層を設ける技 術を開示する。特開 2002— 311027は、ナノ粒子に発光特性を持つものを想定してい る。特開 2004— 510718は、ボリューム効果を有する化粧品に関する。特開 2005— 214 940は、色情報、位置情報により、ビーズの配列状態を識別する技術を開示する。特 開 2005— 29766は、アクリル系高分子を開示する。特開 2004— 271652および特開 200 4 269922は、粒子径として 100〜500nmを有する特定の色素を開示する。特開 2002 501184は、蛍光を利用した粒子を開示する。特開 2001— 520323は、構造性発色 は利用しない着色色素を開示する。特開 2001— 8951は、構造性発色は利用しない 着色色素を開示する。特開 2000— 248063ポリイミドを用いた粒子を開示する。
[0006] しかし、これらの技術は、一つのゥエルで多成分の検出を容易にかつ簡便に検出 する技術は開示も示唆もして 、な 、。
発明の開示
発明が解決しょうとする課題
[0007] そこで、本発明の課題は、抗原抗体などの生体分子を検出するときなどにおいて、 少量かつ素早く検出すること、特に過酷な環境においても検出することができ、かつ 、肉眼でも見える標識粒子を提供することにある。
課題を解決するための手段
[0008] 上記課題は、本発明において、色素と高分子とを含む標識物質を提供することによ つて解決される。特に、限定されないが、色素として構造色色素を用いた粒子を提供 すること〖こよって、上記課題が解決された。
[0009] 本発明者らは、構造色色素を用いた単分散ポリマービーズの生成のための流体小 滴生成方法を提供する。複数の色を有するポリスチレンビーズを、構造色色素 (例え ば、パール顔料)を包埋することによって合成した。均質な色を生成するための方法 、ビーズサイズを制御する方法および表面を制御する方法を開発して、ビーズを多色 ィムノアツセィに適切なものとした。抗原抗体反応の複数色アツセィにより、多色ェン コードビーズが安定であり、コストが安い担体であることを見出した。ゲノム学、プロテ オーム学、薬物探索、臨床診断、コンビナトリアルケミストリにおいて広範な応用が企 図される。本発明によって、ビーズによる多成分検査が提供される。ビーズを用いて 以上の問題が解決できる。そのとき、プローブの抗体はゥエルの代わりにビーズの表 面に固定する。各ビーズはプローブを識別ために色などでエンコードされている。検 查する際、必要なビーズを一つのゥエルに入れ、抗原そして第二抗体と反応する。最 後、ビーズの発光あるいは触媒反応による抗原の有無を検出する。抗原のタイプは ビーズの色などで識別する。この方法でメリットはビーズと検査液を撹拌できるため、 反応速度は速くなる。一つのゥエルで多成分の検出ができるため、必要なサンプル 量が減少する。本方法は必要なのはビーズを混合した後で識別するためのェンコ一 ドである。一般的に、発光する色素でビーズをエンコードできる。図 2 :ビーズを用い た多成分免疫検査を示す。
[0010] 本発明は、構造色色素によるビーズのエンコードを提供する。構造色色素は光の 回折、干渉などによって発色するものである。構造色色素は安定な酸化物や高分子 などで構成できる(図 3)。そのため、構造色は普通の色素よりはるかに安定である。し 力も、その色は物理的な構造によるものであるため、色の設計が非常に簡単である。
=3ス卜ち安くなる。
[0011] 図 4は本発明者らが開発した方法で作成した構造色入りポリスチレンビーズの写真 と SEM図である。ビーズの色は鮮明に目で見える。ビーズの表面もスム—スで、生体 分子の固定に相応してある。
[0012] 本発明は、多成分免疫検査において応用され得る。構造色ビーズを用いて、多成 分検査に使えるのを検証した。まず、三色のビーズを用意した。赤いビーズに人 IgG 、黄色いビーズにゥサギ IgG、緑ビーズにャギ IgGを固定した。その後三色のビーズを 同じゥエルで FITCという緑の光を発光する色素をラベルイ匕されたャギ抗ヒ HgGおよび ャギ抗ゥサギ IgG,を含む溶液と反応した。その結果は図 5で示す。図 5aはビーズに 可視光照射する時の写真、図 5bは紫外光照射するときの写真である。検査液中の 生体分子と反応するビーズは発光するが、反応しな 、ビーズは発光しな!、。
[0013] 本発明の上記およびさらなる目的によると、試料内の分析物の状況あるいは部分を 検出し、区別し、分離し、定量し、および Zまたは分析するためのもっとも好ましい方 法はフローサイトメトリー、 ELISAである。
[0014] このように、本発明は、以下を提供する。
(1)高分子と構造性発色特性を有する色素との複合体とを含む、標識物質。
(2)上記高分子は、水との接触角が 90° 以上の疎水性を有する、項目 1に記載の標 識物質。
(3)上記高分子は、シリカゲル、ポリプロピレン、ポリウレタン、ポリスチレン (PS)、ポリ メチルメタタリレート(PMMA)、テトラフルォロエチレンン、ポリー4ーメチルペンテン 1、ポリベンジルメタアタリレート、ポリフエ-レンメタタリレート、ポリシクロへキシノレメ タクリレート、ポリエチレンテレフタレート、スチレン.アクリロニトリル共重合体、ポリ塩 化ビュル、ポリ塩化ビ-リデン、ポリ酢酸ビュル、ポリビュルアルコール、ポリイミド、ポ リアミド、ポリエチレングリコール、ポリアクリル酸、ポリメタクリル酸およびそれらの共重 合体力 なる群より選択される、項目 1に記載の標識物質。
(4)上記高分子は、ポリスチレンである、項目 1に記載の標識物質。
(5)上記高分子は、油溶性である、項目 1に記載の標識物質。
(6)上記高分子は、生体分子と特異的に相互作用し得る、項目 1に記載の標識物質
(7)上記高分子は、上記色素の色調に影響を与えない分子である、項目 1に記載の 標識物質。
(8)上記高分子は、上記色素の色調に影響を与え、その結果所望の色を呈する、項 目 1に記載の標識物質。
(9)上記色素は、構造性発色特性を有しない色素をさらに含む、項目 1に記載の標 識物質。
(10)上記色素は、光の干渉、回折および散乱作用のうちの少なくともいずれかの作 用に基づいて発色することを特徴とする、項目 1に記載の標識物質。
(11)上記色素は、雲母と酸化物とを含む、項目 1に記載の標識物質。
(12)上記酸化物は、酸化銅、酸化ケィ素、酸化チタン、酸化スズ、酸化鉄、酸化ジ ルコニゥムおよび酸化亜鈴から選択される少なくとも 1つの酸化金属を含む、項目 11 に記載の標識物質。
(13)上記酸化物は、酸化金属を含む、項目 11に記載の標識物質。
(14)上記色素は、 380nm〜780nmの間の波長において光吸収を有する、項目 1 に記載の標識物質。
(15)上記色素は、所望の色を有するように調製される、項目 1に記載の標識物質。
(16)上記色素の上記色は、サブミクロンオーダーでの周期構造の調整をすることに よって調整される、項目 1に記載の標識物質。
(17)上記色素は、濃度 101(>個 Zml以上、光路長 lcmでの測定条件下で、約 0. 1 以上の吸光度を有する、項目 1に記載の標識物質。
(18)上記標識物質は、水との接触角が 90° 以上の疎水性を有する、項目 1に記載 の標識物質。
(19)上記標識物質の色は、上記高分子と上記色素とを調整することによって決定さ れる、項目 1に記載の標識物質。
(20)上記標識物質は、生体分子と相互作用する能力を有する、項目 1に記載の標 識物質。
(21)上記標識物質は、生体分子と複合体を形成する能力を有する、項目 1に記載 の標識物質。
(22)上記色素がシランカップリング処理されたものである、項目 1に記載の標識物質
(23)生体分子の標識に使用するための、項目 1に記載の標識物質を含む粒子。
(24)生体分子を捕捉する捕捉担体と、項目 1に記載の標識物質とを含む、標識され た捕捉担体。
(25)上記捕捉担体は、上記標識物質に結合される、項目 24に記載の捕捉担体。
(26)上記捕捉担体は、上記色素がシランカップリング処理されたものである、項目 2 5に記載の捕捉担体。
(27)上記捕捉担体は、上記色素が Si (R1) (R2) (R3)— O—を有し、ここで R1は疎水 性基であり、 R2は疎水性基または— O—であり、 R3は疎水性基または— O—である、 項目 25に記載の捕捉担体。
(28)上記疎水性基は、非置換または置換のアルキル、非置換または置換のシクロア ルキル、非置換または置換のアルケニル、非置換または置換のシクロアルケニル、非 置換または置換のアルキニル、非置換または置換のアルコキシ、非置換または置換 の炭素環基、非置換または置換のへテロ環基、ハロゲン、ヒドロキシ、チオール、シァ ノ、ニトロ、ァミノ、カルボキシ、力ルバモイル、ァシル、ァシルァミノ、チォカルボキシ、 アミド、置換されたカルボ-ル、置換されたチォカルボ-ル、置換されたスルホ -ルぉ よび置換されたスルフィニルカもなる群より選択される、項目 27に記載の捕捉担体。
(29)上記捕捉担体は、上記色素が Si (R1) (R2) (R3)— O—を有し、ここで R1は水素 、置換されたか置換されてないアルキル基または—O—であり、 R2は水素、置換され たか置換されてないアルキル基または—O—であり、 R3は水素、置換されたか置換さ れてないアルキル基または— O—である、項目 25に記載の捕捉担体。
(30)上記捕捉担体は、上記色素は Si (R1) (R2) (R3)— O—を有し、ここで、 R R2、 R3は、それぞれ、アルキルまたはフッ化アルキルである、項目 25に記載の捕捉担体
(31)上記捕捉担体は、抗体または抗体誘導体を含む、項目 25に記載の捕捉担体。
(32)少なくとも 1つの構造色色素により標識された所定量の高分子を、表面に結合 して有して!/ヽる担体微小粒子を含む物品。
(33)担体微小粒子もしくは高分子、または担体微小粒子と高分子両方が高分子を 含む項目 32に記載の物品。
(34)上記担体微小粒子が 0. 1 m〜l, 000 mの直径を有する高分子粒子から なる項目 32に記載の物品。
(35)上記担体微小粒子が少なくとも 1つの構造色色素を含む項目 32に記載の物品
(36)上記高分子が Inn!〜 100, OOOnmの直径を有する高分子粒子からなる項目 3 2に記載の物品。
(37)上記高分子が、 50重量%以下の架橋剤を含む項目 33の物品。
(38)上記高分子が磁石または磁気応答性の金属酸化物を含む項目 33に記載に記 載の物品。
(39)上記高分子がさらに官能基を含む項目 33の物品。
(40)高分子と色素との複合体とを含む標識物質のセットであって、上記色素は、 2種 類以上の吸収波長を有する色素を有する、セット。
(41)上記色素は、構造色色素である、項目 40に記載のセット。
(42)上記高分子は、接触角が 90° 以下の疎水性を有する、項目 40に記載のセット
(43)セットごとに別の構造色シグナルを持っている高分子の少なくとも 1セットを担体 高分子微小粒子の表面に結合させる工程を包含する構造色物品を製造する方法。 (44)上記別の構造色シグナルが少なくとも 1つの構造色色素によって提供される項 目 43に記載の方法。
(45)上記担体高分子微小粒子もまた構造色色素を含む項目 44に記載の方法。
(46)上記高分子が上記担体高分子微小粒子に共有結合する項目 45に記載の方 法。
(47)上記高分子のセットが上記担体高分子微小粒子に吸着によって結合される項 目 43に記載の方法。
(48)上記構造色物品が高分子シェルによって囲まれる項目 43に記載の方法。
(49)高分子と色素との複合体とを含む、標識粒子を製造する方法であって、
A)色素と高分子とを含む混合物を材料射出管中に提供する工程であって、上記材 料射出管は流体を含む流体環境提供管中に存在する、工程;
B)流体環境提供管において流体が流れる中、上記混合物を上記材料射出管から 粒子形成管へと射出する工程;および
C)粒子形成管にお ヽて形成された粒子を回収する工程、
を包含する、方法。
(50)高分子と色素との複合体とを含む、所望の特性を有する標識粒子を製造する 方法であって、
A)色素と高分子とを含む混合物を材料射出管中に速度 Δνで提供する工程であつ
0
て、上記材料射出管は流体を含む流体環境提供管中に存在し、一方に材料射出口 および他方に射出口を備え、上記射出口は直径 Αρを有する、工程;
Β)流体環境提供管において流体が速度 Δν で流れる中、上記混合物を上記材料
W
射出管から粒子形成管へと速度 Δν で射出する工程であって、上記粒子形成管
ΟΤ
は混合物を受け取る開口部を有し上記開口部は直径 Asを有し、上記粒子形成管は 上記射出口から距離 dのところに存在する、工程;および
C)粒子形成管にお ヽて形成された粒子を回収する工程、
を包含し、ここで、
d、 AV、 AV および Δν を調整することによって、所望の特性が得られる、
0 W ΟΤ
方法。 (51)高分子と色素との複合体とを含む、標識粒子を製造する装置であって、 a)上記色素と上記高分子とを含む混合物を提供し得る材料提供手段;
b)上記色素と上記高分子とを含む上記混合物を保持し得る材料射出管であって、 上記材料射出管は、材料提供手段カゝら材料の提供を受けるための開口部と、材料を 射出するための射出開口部とを備える、材料射出管;
c)流体環境提供管であって、上記流体環境提供管はその中に提供される流体中に 上記材料射出管を収容し、流体提供開口部を備える、流体環境提供管;
d)流体環境提供管に提供される流体量を調整する流体量調整手段;
e)上記材料射出管カゝら射出される材料を受けるための粒子形成管;および f)上記粒子形成管にぉ ヽて形成された標識粒子を収容するための容器、 を備える、装置。
(52)試料内に少なくとも 1つの分析物の存在または不存在を決定する方法であって
(a)少なくとも 1つの構造色標識された粒子と分析物のそれぞれに相互作用するか または反応する少なくとも 1つの分析反応物とを表面に備えた粒子と、試料とを混合 して反応混合液を作製する工程;
(b)上記分析物に反応した力または相互作用した上記粒子を分析し、上記試料内 に上記分析物が存在するかしな 、かを確定する工程、
を包含する、方法。
(53)上記粒子の量が既知量であり、上記混合工程 (a)がさらに、反応混合液中に所 定量の競合分子を混合する工程を包含する項目 52に記載の方法。
(54)上記分析工程 (b)力 フローサイトメトリー、 ELISA、ウェスタンプロット、蛍光測 定、発光測定または電気化学発光測定を用いて分析する工程
を包含する、項目 52に記載の方法。
(55) (c)上記粒子の量が既知量であり、上記分析物を既知量の基準物質と比較す る工程
をさらに含む項目 52に記載の方法。
(56)上記分析物が抗原、抗体、レセプター、ハプテン、酵素、タンパク質、ペプチド 、核酸、薬剤、ホルモン、化学物質、高分子、病原体、毒素、およびそれらの組合せ 力 なる群力 選択される、項目 52に記載の方法。
(57)上記分析反応物が分析物の結合対を含む、項目 52に記載の方法。
(58)上記競合分子が、各分析反応物と分析物との結合を妨げる分子を含む、項目 53に記載の方法。
(59)上記基準物質が、それぞれの分析反応物との相互作用または反応において分 析物と本質的に同一である項目 55の方法。
(60)試料内にお 、て、複数の分析物を検出する方法であって、
a)構造色色素および上記分析物に特異的な分析反応物を含む、複数の構造色粒 子を含む構造色粒子集団であって、上記構造色粒子は、上記分析反応物の種類に 応じてそれぞれが異なる色を有し、上記分析反応物が特異的に試料内の 1つの分析 物に相互作用または反応する、構造色粒子集団を、試料と接触させる工程、
b)上記構造色色素の色を検出することにより、上記分析反応物が分析物と相互作 用または反応した力どうかを分析する工程
を包含する方法であって、
上記分析物は、上記分析反応物を含む構造色粒子の色によって識別される、方法
(61)上記方法がフローサイトメトリー、 ELISA、ウェスタンプロット、蛍光測定、発光 測定または電気化学発光測定を含む項目 60に記載の方法。
(62)上記構造色粒子の集団がさらに、それらのサイズと形状によって決定される項 目 62に記載の方法。
(63)上記構造色粒子がさらに磁性体を含む、項目 60に記載の方法。
(64)対象とする複数の分析物の検出用に適したキットであって、
A)構造色色素および上記分析物に特異的な分析反応物を含む、複数の構造色 粒子を含む構造色粒子集団であって、上記構造色粒子は、上記分析反応物の種類 に応じてそれぞれが異なる色を有し、上記分析反応物が特異的に試料内の 1つの分 析物に相互作用または反応する、構造色粒子集団;および
B)上記分析反応物を検出するための検出手段 を包含する、キット。
(65)上記検出手段は、上記分析反応物と特異的に反応する抗体である、項目 64に 記載のキット。
(66)上記分析物に対する上記分析反応物との特異的結合反応と競合することがで きる競合分子をさらに含む項目 65のキット。
(67)上記分析反応物のそれぞれと結びつく分析物と本質的に同一である基準物質 をさらに含む、項目 65のキット。
発明の効果
[0015] 本発明は、少なくとも以下のメリットと応用を提供する: 1)発色が非常に安定。保存 や検査に手間が力からな 、; 2)色の設計が簡単; 3)製造コストが安 、; 4)多成分検 查に必要なサンプルの量が少な!、; 5)検査速度がはや!/、などの効果および利点を 提供する。従って、本発明は、臨床検査、地震災害、テロ災害現場などで使える。 図面の簡単な説明
[0016] [図 1]図 1は、ゥエルアレーを用いた多成分免疫検査を示す。
[図 2]図 2は、ビーズを用いた多成分免疫検査例を示す。
[図 3]図 3は、構造色色素がどのようなメカニズムで発色するかを説明する模式図であ る。左は、層状構造の場合、右は粒状構造の場合を示す。下には、その干渉の計算 式を示す。
[図 4]図 4は本発明者らが開発した方法で作成した構造色入りポリスチレンビーズの 写真と SEM図である。ビーズの色は鮮明に目で見える。ビーズの表面もスム—スで、 生体分子の固定に相応してある。図 4Aは、 96ウェルマイク口プレートにおけるゥエル 中の多元着色ビーズを示す。図 4Bは、同じ色のビーズの SEM画像を示す。
[図 5]赤いビーズに人 IgG、黄色いビーズにゥサギ IgG、緑ビーズにャギ IgGを固定した 。その後三色のビーズを同じゥエルで FITCと!、う緑の光を発光する色素をラベル化さ れたャギ抗ヒ HgGとャギ抗ゥサギ IgG,を含む溶液と反応した。その結果は図 5で示す 。図 5aはビーズに可視光照射する時の写真、図 5bは紫外光照射するときの写真で ある。
[図 6]本発明の捕捉媒体の製造装置の模式図である。図 6の生成器における詳細な 説明をご教示願います。 (1)は、油相供給シリンジ、 (4)油相流路、(5)水相供給バ ルブ、(3)水相流路、(6)油滴油相チューブ、(7)油滴だめ。
[図 7]図 7は、異なるサイズのビーズが製造可能であることを示す。
[図 7B]図 7Bは、異なるサイズのビーズが種々の色で製造可能であることを示す。
[図 8A]図 8Aは、ビーズ直径とポリスチレン溶液の注射速度との相関を示す。 y軸は 直径 (mm)であり、 X軸は、ポリスチレン溶液の注射速度( μ 1/ml)を示す。
[図 8B]図 8Bは、製造される粒子のサイズが、 V (V )に逆比例することを示す。
PVA W
[図 8C]図 8Cは、製造される粒子のサイズが、 dに依存 (比例)することを示す。
[図 9]図 9Aは、 96ウェルマイク口プレートにおけるゥヱル中の多元着色ビーズを示す
。図 9Bは、同じ色のビーズの SEM画像を示す。
[図 9C]図 9Cは、パール顔料が均一に分散していない場合の光学写真と SEM写真 を示す。
[図 10]図 10は、構造色色素の代表例であるパール顔料の発色のメカニズムを示す。 Aには、パール顔料の SEM画像を示す。 Bおよび Cには、そのメカニズム(入射光お よび反射光など)を示す。
[図 11]図 10は、高濃度のパール顔料のビーズを示す (A)。 Bでは、パール顔料は、ト リメチルクロロシランで処理していない。 Cでは、パール顔料は、トリメチルクロロシラン で処理している。
[図 12]図 12は、超音波洗浄したビーズ (上)および 2回フラッシュさせたビーズ (下)に おける酵素発色の相違を示す。
[図 13]図 13は、サンドイッチ形態で用いた多色ビーズを用いた多次元免疫アツセィ の原理を示す。 A:捕捉抗体は、個々の多色ビーズにおいて固定されている。 B:分 析物を含むサンプルは、関連するビーズ上でインキュベートされる。 C :異なるェピト ープを認識する標識された検出抗体がビーズ上で捕捉されるべき分析物に結合し、 そして別個に検出される。
発明を実施するための最良の形態
以下、本発明を説明する。本明細書の全体にわたり、単数形の表現は、特に言及 しない限り、その複数形の概念をも含むことが理解されるべきである。従って、単数形 の冠詞 (例えば、英語の場合は「a」、「an」、「the」など)は、特に言及しない限り、そ の複数形の概念をも含むことが理解されるべきである。また、本明細書において使用 される用語は、特に言及しない限り、当該分野で通常用いられる意味で用いられるこ とが理解されるべきである。したがって、他に定義されない限り、本明細書中で使用さ れる全ての専門用語および科学技術用語は、本発明の属する分野の当業者によつ て一般的に理解されるのと同じ意味を有する。矛盾する場合、本明細書 (定義を含め て)が優先する。
[0018] (用語の定義)
以下に本明細書において特に使用される用語の定義を記載する。
[0019] 本明細書において「標識」とは、物質を同定するために,他とは異なった特徴をそ の物質に付与させる手段をいい、本明細書において「標識物質」とは、物質を同定す るために,他とは異なった特徴をその物質に付与させる物質を 、う。
[0020] 本明細書にぉ 、て「高分子」とは、分子量の大きな任意の分子を 、 、、好ましくは 粒子を形成することができる分子をさす。本発明において使用される高分子としては 、例えば、ガラス、シリカゲル、ポリプロピレン、ポリウレタン、ポリスチレン(PS)、ポリメ チルメタタリレート(PMMA)、テトラフルォロエチレンン、ポリー4ーメチルペンテン 1、ポリベンジルメタアタリレート、ポリフエ-レンメタタリレート、ポリシクロへキシノレメタ タリレート、ポリエチレンテレフタレート、スチレン'アクリロニトリル共重合体、ポリ塩ィ匕 ビュル、ポリ塩化ビ-リデン、ポリ酢酸ビュル、ポリビュルアルコールを用いることがで きる。
[0021] 本明細書において「色素」とは色素ともいい、物質 (例えば、生体物質、細胞、組織 など)の染色に用いられる化合物をいう。それぞれの色素は化学構造によって分類さ れた色指数番号(color index number)があり、その分子構造 ·分子量 ·水やアル コールに対する溶解度 ·吸収光波長などが示されている。
[0022] 本明細書において「疎水性」とは、通常使用される意味と同じ意味で用いられ、本 明細書においては「接触角」により測定される。従って、本明細書において「接触角」 とは、静止液体の自由表面が固体壁に接する場所で液面と固体面とのなす角 (液の 内部にある角をとる)をいう。疎水性を測定するときは、水との接触角を測定する。接 触角は、液体分子間の凝集力と液体と固体壁間の付着力 (表面張力)の大小関係に よって定まり、液体が固体面を濡らす場合 (ガラス管中の水など)は鋭角、濡らさない 場合 (ガラス管中の水銀など)は鈍角である。たとえば水とガラスで 8° 〜9° ,水銀と ガラスで約 140° である。本発明においては、水との接触角が 90° 以上の疎水性が 好ましい。
[0023] 本明細書において「生体分子と特異的に相互作用する」とは、ある生体分子に対し て、他の物質 (特に、他の生体分子)よりも大きな相互作用を有することをいう。
[0024] 本明細書において「色素の色調に影響を与えない」分子とは、特に、本発明におい て用いられる構造色色素と混合したときに、その色素の色に影響を与えない分子を いう。同じィ匕学組成であっても、その構造によっては、構造色色素に影響を与えること もあり、与えないこともあり、これは、当業者は容易に決定することができる。決定は、 対象となる色素とその分子との混合の前後にお 、てその色素の色が変動するかどう かを確認することによって行うことができる。
[0025] 本明細書において「色素の色調に影響を与える」分子とは、特に、本発明において 用いられる構造色色素と混合したときに、その色素の色に影響を与え、色を変化させ る分子をいう。このような物質は、本発明において、構造色色素と混合したときに、色 を変化させるので、色を改変したいときに用いられる。所望の色を呈するようになるか どうかは、対象となる色素とその分子との混合の前後にお 、てその色素の色が変動 するかどうかを確認することによって確認することができる。
[0026] 本明細書において「構造色」または「構造性発色」とは、色素による光の吸収ではな ぐ層状構造などの生物の表面構造が色を出すことをいい、光の回折 '屈折'干渉 · 散乱に基づいて発色された色をいう。可視領域の光の波長と同じオーダーの微細構 造を持つことで起こる光学現象によって発色する。「構造性発色を有する色素」また は「構造色色素」とは、構造色によって色が付与された色素を言う。構造色は、光の 波長あるいはそれ以下の微細構造と光との協調による発色現象であり、済んだ色'見 る方向による色味の変化'独特な質感等を呈する。通常の色は化学色とも呼ばれ, 色素分子が特定の色以外の光を吸収することで着色して 、るのに対して,構造色は その名の通り構造一すなわち形一によつて色がつくのである構造色はそれ自体は色 のないものであるが、光の波長あるいはそれ以下の細かな構造をもつことで色を持つ 現象で、光の干渉や回折、散乱が関係した現象です。現代物理学は光の波長以下 の規則構造を人工的につくることで、光を自由に扱うことができる。
[0027] (構造色)
構造色は図 3に示されるような層状の構造物または粒状物質が規則的に配列され た構造において回折などによって生じるものであり、層状ィ匕合物は、結晶格子面を形 成しているように観察される場合もある。従って、その表面に照射される可視光力 こ の粒子状格子面 (粒子状積層物面)に係わって回折干渉して反射される反射効率が 、構造色色素の発色する色みに及ぼすことから、好ましくは、高分子が単分散粒子で あることが好適である。 1つの実施形態では、その単分散性を表す粒子径の均斉度 である Cv値が、 5%以下であって、反射光色の色みの濃さ、鮮明さから、より好ましく は 3%以下の単分散粒子であることが好適である。別の実施形態では、この粒子状 積層物面は、好ましくは縦方向の規則配列が、少なくとも 2配列以上であることが、垂 直反射光色をより鮮明に、より深みのある色めの構造色を呈する。
[0028] 構造色は次に示すような 、ろ 、ろな光学現象を使って作り出すことができる。
[0029] 薄膜干渉:薄い膜の表と裏とから反射された光は干渉して波長により強め合ったり 弱め合ったりする;
多層膜干渉:多層膜による干渉は特定の入射 ·反射方向に対し決まった波長の光 だけ強く反射される;
回折:光の波面が物質により妨げられると光は回折される。回折角は波長により異 なる;
回折格子:規則的に並んだ物体によって、波長に依存した方向性のある光の回折 を行う;
光散乱:波長より微小な粒子による光の散乱は方向性はないが、振動数の 4乗に比 例して散乱強度が増す;
Mie散乱:波長と同じ程度の粒子による光の散乱は波長と粒子サイズの比により方 向'性が異なる;
異方性のある物質:偏光板で挟まれた物質が異方性 (方向により屈折率が異なる) をもっと波長により偏光の回転角が異なることで色がつく;
屈折:物質の屈折率が波長によって違う (分散)ことにより波長の異なる光が屈折に より分離する。
[0030] 可視光波長領域(380〜780nm)において、太陽光または白色光が物質に照射さ れた後、分光反射されて我々の目に入る特定波長領域 (nm)とその物質系の色光と して発色する色との関係を反射率曲線で表すと、例えば、赤色系は 600nm以上の 全波長領域の反射光で、黄色系は 490nm以上の全波長領域の反射光で、緑色系 は 460〜590nm内の全波長領域の反射光で、青色系は 5 lOnm以下の全波長領域 の反射光で、また、紫色系は緑色系の丁度逆の 460〜590nm内全波長領域が吸 収されて、それ以外の全波長領域の反射光等であって、可視光が照射されて我々が 視感する特定色の反射発色 (または反射光色)とは、対応するこの特定波長領域の 反射光色である。特開 2001— 206719号公報には、顔料等の着色材を用いない単 分散酸ィ匕チタン粒子を基材上に堆積させた薄膜にぉ 、て、その粒子の粒径に応じ て、その外観色調が、赤色系から青色系の干渉色調になる単分散酸化チタンの単層 および多層薄膜が記載されて!ヽる。
[0031] 特開 2001— 239661号公報には、には、干渉による着色光が明瞭に見えるために 、標準色立体において明度が 6以下で、彩度が 8以下の黒色或いは暗色である合成 榭脂等の撥液性の下地層表面上に、無着色の単分散の固体微粒子が凝集配列さ れている規則的周期構造物なる付着物が、光干渉発色の明瞭な単色光を呈すること が記載されている。 これらの発色物を例えば、ドットとしてインクジェット記録の発色表 示物 (記録物)に用いることができる。この付着記録物を構成する無着色の固体微粒 子の粒径分布は単分散であって、このような固体微粒子としては、シリカ、酸ィ匕アルミ -ゥム、チタ-ァ、シリカ'酸化アルミニウム、チタ-ァ 'セレン、チタ-ァ'セレン'シリカ 等の無機酸化物微粒子や、(メタ)アクリル系榭脂、スチレン系榭脂、ォレフィン系榭 脂等の有機ポリマー微粒子が挙げられ、その数平均粒子径が 100〜1000nmの範 囲にあると記載されている。
[0032] また、従来から、その発色が顔料に由来せずに鮮やかな群青色や、青空のォパー ル様回折発色を視認させるモルフォ蝶は、その羽のリン粉の表面構造としてサイズが 、 0. 65 /z mの光の波長程度の規則的な線状回折格子が存在していることが知られ ている。そこで、特開平 08— 234007号公報〖こは、ポリスチレンや、シリカ等の 0. 1 〜10 mオーダー微粒子 (球)が最密充填された六方格子単層微粒子膜を有する 角度異存のな 、ォパ—ル様回折発色膜にっ 、て記載されて 、る。両者の回折発色 を比較すると、モルフォ蝶のきらきら光る美しいオパール様回折光は、極めて規則的 な線状回折格子力も生まれるのに対して、特開平 08 - 234007号公報では極めて 規則的な点状回折格子が係わって 、ると記載されて 、る。
[0033] 粒子サイズが可視光波長領域内(380〜780nm)にあることにより、照射された可 視光がこの粒子状積層構造物の表面において、効果的に回折干渉されて、特定の 粒子径に係わって、回折干渉されて赤、青、緑等の特定の有彩色を発色する波長領 域光として分光反射される。また、本発明において使用され得る構造色色素におい ては、この球状微粒子力 マンセル色票における明度が 5以下の色みの無い黒色系 の無彩色単分散粒子である。これによつて、照射された可視光の一部が、その粒子 の周辺で発生すると思われる目的とする反射光以外の散乱、透過等の迷光を、適宜 に効果的に吸収して削減させる。その結果、効果的に回折干渉した反射光色が、よ り色みが鮮明な有彩色として視感させる。
[0034] 本発明にお 、て用いられる色素(例えば、構造色色素)を形成する、例えば、粒子 に係わる表面に、可視光線が照射されて視感されるその垂直反射光色は、例えば、 紫色系、青色系、緑色系、黄色系および赤色系等の色みの垂直反射光色であって もよい。既に上述するように、これらの垂直反射光色は、以下に記載するように特定 の平均粒子径(d)なる係わりを有している。すなわち、(ィ) d= 160〜170nmの範囲 においては、発色する有彩光色が紫色系(P)である。(口) d= 180〜195nmの範囲 にお 、ては、発色する有彩光色が青色系(B)である。(ハ) d= 200〜230nmの範囲 にお 、ては、発色する有彩光色が緑色系(G)である。(二) d= 240〜260nmの範囲 にお 、ては、発色する有彩光色が黄色系(Y)である。(ホ) d= 270〜290nmの範囲 においては、発色する有彩光色が赤色系(R)である。
[0035] 本発明にお ヽて、本発明による構造色色素である粒子状積層物を形成する無機単 分散球状粒子として、必ずしも以下の無機ポリマーに限定されないが、本発明にお いて、例えば、シリカ、酸ィ匕アルミニウム、シリカ一酸ィ匕アルミニウム、酸ィ匕ジルコユウ ム、酸ィ匕チタンおよび酸ィ匕チタン シリカ、炭化珪素、窒化珪素等を挙げることがで きる。特に、シリカ、アルミニウム、チタニウム等の金属アルコキシドのゾルーゲル法で 調製した無機ポリマー粒子は比較的着色が容易であり好適に使用できる。その金属 アルコキシドとしては、例えば、メチルトリメトキシシラン、ビュルトリメトキシシラン、テト ラエチノレシリケート、テトライソプロピルシリケート、テトラプチノレシリケート;ァノレミニゥ ムェトキシド,アルミニウムトリエトキシド,イソブチルアルミニウムメトキシド,イソブチル アルミニウムエトキシド,アルミニウムイソプロポキシド,イソブチルアルミニウムイソプロ ポキシド,アルミニウムブトキシド,アルミニウム tーブトキサイド,スズ tーブトキサイド; アルミ-ゥムトリ— n—プロポキシド,アルミニウムトリ— n—ブトキシド;テトラエトキシチ タン,テトラー n プロポキシチタン,テトラー n ブトキシチタン,テトラー i プロポキ シチタン,チタンメトキサイド,チタンェトキサイド,チタン n プロポキサイド,チタン イソプロポキサイド,チタン n—ブトキサイド,チタンイソブトキサイド;ジルコニウムェ トキサイド,ジルコニウム n プロポキサイド,ジルコニウムイソプロポキサイド,ジノレ コ-ゥムー n—ブトキサイド,ェトキサイドテトラー n プロポキシジルコニウム等が挙げ られる。
[0036] 好ましくは、本発明において用いられる構造色色素は、雲母と酸化金属とを含み得 る。例えば、雲母の層に酸ィ匕金属の層が積層された構造をしていてもよい。
[0037] このように調製される代表的には 100〜500nmの範囲にある粒子が分散する懸濁 物を平底透明ガラス容器に移して、 40°C以上、好ましくは 50°C以上、 80°C以下で乾 燥処理を行う。その乾燥された表面は必要に応じて SEM写真像を撮ることによって 確認して、縦および横の方向に規則的に整合された粒子状積層物が形成されること を確認する。この粒子状積層物面は可視光照射下に、その垂直反射光色が鮮やか な色みのある有彩光色を視感させる。以上から、このような有彩光色は、既に上述し た本発明による粒子状積層物が、従来の物体色としての色素とは異なる構造色とし て有彩光色を呈する構造色色素を提供することができる。
[0038] 本明細書において、「雲母」とは、通常用いられる意味と動揺に用いられ、代表的に は、一般式 (K, Na, Ca) (Mg, Fe, Li, Al) (Al, Si) O (OH, F) で表わされ る層状'箔状構造を有するケィ酸塩鉱物の類である。低い硬度 (2〜2. 5)と完全な基 底劈開で特徴づけられる。雲母においては、 SiO鎖の重合がさらに進み,全 SiO 4
3 4 面体原子団が 3つの頂点を共有して(Si O )
4 10 ∞の 2次元シートをなす。
[0039] 本発明にお 、て用いられ得る構造色色素中で用いられ得る酸ィ匕金属または酸ィ匕 物としては、例えば、酸化銅、酸化ケィ素、酸化チタン、酸化スズ、酸化鉄、酸化ジル コ -ゥムおよび酸ィ匕亜鉛力 選択される少なくとも 1つの物質を含み得る。
[0040] 雲母のようなケィ酸塩の層状物質と、酸化金属の層状物質とを積層することによつ て本発明にお 、て用いられる構造色色素を形成させることができる。そのような形成 は、当該分野において周知の手法を用いることができ、当業者は所望の色に応じて 適宜設計することができる。
[0041] 構造性発色を有する色素すなわち構造色色素は、干渉角度変色色素とも呼ばれ、 変色効果を有する。従って構造色色素は、光の入射および見る角度に依存して異な る色を生じることが可能であり、これは主に、干渉多層構造を有する角度変色色素の 存在により達成され、その特異的な角度変色効果は組成物内で通常隠されない。
[0042] 本明細書において「色」とは、可視スペクトルにおける種々の色を意味すると理解さ れる。色素は、媒体の相の 1つに分散または固体状態で存在し、対象物を着色する( 色の濃淡を創り出すまたは変更する)および Zまたは不透明にするために使用され る。
[0043] 構造色色素は、通常干渉多層構造を有する角度変色色素であり、少なくとも 2層構 造を有する色素である。 2層構造以上の層構造を有することによって、層によって異 なって回折し分散する、光線の干渉による色の効果を創り出すことが可能である。こ のような色素は、見る角度および光の入射により変化する色を示し、場合により虹色 のハイライトを付与することができる。
[0044] 1つの実施形態では、構造色色素においては多層構造は、少なくとも 2層を有し、 各層は、他の層と独立して、または依存して、以下の材料: MgF、 CeF、 ZnS、 Zn
2 3
Se、 Siゝ SiO、 Ge、 Te、 Fe O、 FeO、 Fe O、 Pt、 Va、 Al O、 MgO、 Y O、 S O
2 2 3 3 4 2 3 2 3 2
、 SiO、 HfO、 ZrO、 CeO、 Nb O、 Ta O、 TiO、 Ag、 Al、 Au、 Cuゝ Rb、 Ti、 T
3 2 2 2 2 5 2 5 2
a、 W、 Zn、 MoS、氷晶石、合金、高分子、およびこれらの組み合わせからなる群か ら選択された少なくとも 1つの材料を使用することができる。従って、多層構造は本質 的には無機でも有機でもよい。異なる色、すなわち異なる効果は、種々の層の各層 の厚みによって得られる。本発明による構造色色素は、例えば、米国特許 3438796 公報、欧州特許出願 227423公報、米国特許 5135812公報、欧州特許出願 1704 39公報、欧州特許出願 341002公報、米国特許 4930866公報、米国特許 56417 19公報、欧州特許出願 472371公報、欧州特許出願 395410公報、欧州特許出願 753545公報、欧州特許出願 768343公報、欧州特許出願 571836公報、欧州特 許出願 708154公報、欧州特許出願 579091公報、米国特許 5411586公報、米国 特許 5364467公報、国際特許出願 97/39066公報、独国特許出願 4225031公 報、国際特許出願 95Z17479公報 (BASF)、または独国特許出願 19614637公 報に記載されており、これらの内容は、その関連する部分が本明細書において参考 として援用される。
[0045] 例示的な実施形態では、例えば、構造色色素における干渉多層構造は、以下の構 造を有し得る:酸化金属または酸化物(例えば、 SiO、 TiO、 Fe O、 FeO、 Fe O
2 2 2 3 3 4 など) Z雲母 Z酸化金属 Z雲母; AlZSiO /Al/SiO /Al;Cr/MgF /Al/M
2 2 2 gF /Al;MoS /SiO /Al/SiO /MoS; Fe O /SiO /Al/SiO /Fe O;
2 2 2 2 2 2 3 2 2 2 3
Fe O /SiO /Fe O /SiO /Fe O; MoS /SiO Z酸化雲母 ZSiO /MoS
2 3 2 2 3 2 2 3 2 2 2 2
; Fe O /SiO Z酸化雲母 ZSiO /Fe O。
2 3 2 2 2 3
[0046] 一般的には、構造色色素における多層構造は、低い光学定数 (屈折率)および高 V、光学定数を有する交互の層から構成され得る。
[0047] 本発明で使用する構造色色素は、当業者の技術常識に基づいて当業者によって 容易に定めることの可能な量で、高分子と混合可能であり、粒子化することができる。 使用される構造色色素の量は特に、組成物の全重量に対して、 0. 01から 50重量% 、好ましくは 0. 5から 25重量%であるがこれらに限定されない。高濃度でも、構造色 色素は他の成分および組成物に対してほとんど構造破壊性を有さない。
[0048] (媒体)
本発明によれば、本発明の粒子を製造するにおいて使用され得る媒体は、少なくと も 1つの親水性物質を含んで ヽてもよ ヽ。親水性物質が形成し得る親水性連続層は 、水と少なくとも部分的に混和性である力、または水溶性であり、常温 (一般的には 2 5°C)および常圧(760mmHg、すなわち 1. 013 X 105Pa)で、液体、ペースト、また は固体状態であってもよい。本発明において使用され得る媒体は、水中、または任 意に増粘した実際にはゲルィヒした水 Zアルコール媒体中の懸濁液、分散液、または 溶液;タリ—ム、ぺ—スト、または固体状の水中油型 (OZW)または複合 (WZOZW
)ェマルジヨン;水性または水 zアルコール性ゲルまたは親水性フォーム;乳化ゲル、 特にイオン性または非イオン性脂質の、べシクルの分散物などの形態で提供可能で ある。当業者は、当該分野において周知の技法を考慮して、使用される成分の性質 、特にビヒクル中での溶解度を考慮し、他方で組成物の適用を考慮して、例えば、生 体に投与される場合は、適当な生体適合性投与形態およびその調製方法を選択可 能である。
(種々の成分)
本発明で使用される組成物はまた、脂肪相を含有可能である。この脂肪相は特に、 常温常圧で液体である少なくとも 1つの脂肪物質、および Zまたは、常温常圧で固体 である少なくとも 1つの脂肪物質を含有してもよい。本発明で使用可能な脂肪物質は 、例えば、動物由来の炭化水素系油、例えばペルヒドロスクアレン;植物性炭化水素 系油、例えば 4から 10の炭素原子を有する脂肪酸の液状トリグリセリド、例えばへプタ ン酸またはオクタン酸のトリグリセリド、ヒマヮリ油、トウモロコシ油、ダイズ油、グレープ シード油、ゴマ油、アプリコット油、マカダミアナッツ油、ヒマシ油、アボカド油、カプリ ル Z力プリン酸のトリグリセリド、ホホバ油、またはカリテバタ—油;鉱物または合成由 来の直鎖または分岐の炭化水素、例えば流動パラフィンおよびこれらの誘導体、ヮセ リン、ポリデセン、または水素化ポリイソブテン、例えばパルレアム(Parleam);ィソド デカン;特に脂肪酸の、合成エステルおよびエーテル、例えばパーセリン油、ミリスチ ン酸イソプロピル、パルミチン酸 2—ェチルへキシル、ステアリン酸 2—オタチルドデシ ル、エル力酸 2—オタチルドデシル、イソステアリン酸イソステアリル、またはイソノナン 酸イソノニル;水酸ィ匕エステル、例えば乳酸イソステアリル、ヒドロキシステアリン酸オタ チル、ヒドロキシステアリン酸オタチルドデシル、リンゴ酸ジイソステアリル、またはタエ ン酸トリイソセチル;脂肪アルコールのヘプタノアート、オタタノアート、またはデカノア ート;ポリオールエステル、例えばジオクタン酸プロピレングリコール、ジヘプタン酸ネ ォペンチルグリコール、ジイソノナン酸ジエチレングリコール、およびペンタエリスリト
—ルエステル; 12から 26の炭素原子を有する脂肪アルコール、例えばオタチルドデ 力ノール、 2—ブチルォクタノール、 2—へキシルデカノール、 2—ゥンデシルペンタ デカノール、またはォレイルアルコール;部分的に炭化水素含有のおよび Zまたはシ リコ ン含有のフッ化オイル;シリコ ン油、例えば常温常圧で液体またはペースト状 の、揮発性または非揮発性で直鎖または環状ポリメチルシロキサン (PDMS)、例え ば、任意にフエ-ル基を含有する、シクロメチコ—ン、ジメチコ—ン、例えばフエ-ルト リメチコーン、フエニルトリメチルシ口キシジフエニルシロキサン、ジフエ二ルメチルジメ チルトリシロキサン、ジフエ二ルジメチコ—ン、フエ二ルジメチコ—ン、またはポリメチル フエ-ルシロキサン;およびこれらの混合物などの任意の物質を挙げることができるが それらに限定されない。
[0050] 別の実施形態では、本発明で使用される組成物の脂肪相は、ワックス、ペースト状 脂肪物質、ガム、およびこれらの混合物からなる群から選択される、少なくとも 1つの 化合物を含有する、常温常圧で固体である脂肪相を含有することができる。使用され 得るワックスは、炭化水素系、フッ素化、および zまたはシリコーンワックスであっても よぐまた、植物、鉱物、動物、および Zまたは合成由来のものであってもよい。特に
、ワックスは、約 25°Cよりも高い温度、好ましくは約 45°Cよりも高い温度の融点を有し 、ペースト状脂肪物質は、約 25°Cから約 45°Cまでの融点を有する。
[0051] 本発明の組成物で使用可能なワックスは、例えば、ミツロウ、カルナウパロウ、キャン デリラロウ、ホホバロウ(水素化されたまたは非水素化のもの)、パラフィンロウ、マイク 口クリスタリンワックス、セレシン、またはォゾケライト;合成ロウ、例えばポリエチレンヮ ックスまたはフイツシャ一トロッシュワックス;シリコ一ンロウ、例えば 16から 45の炭素原 子を有するアルキルまたはアルコキシジメチコ ン;およびこれらの混合物からなる群 から選択される。
[0052] 本明細書において構造色色素としては、「パール顔料」が使用され得る。「パール 顔料」または「真珠光沢剤」という用語は、特に貝殻の貝から製造された、または合成 された虹色粒子を意味すると理解されるべきである。これらの真珠光沢剤は、組成物 の質感を変えるのに特に使用される。本発明で使用可能な真珠光沢剤は、着色チタ ン被覆雲母等の、酸化チタンで被覆した雲母、酸化鉄で被覆した雲母、天然色素で 被覆した雲母、ォキシ塩ィ匕ビスマスで被覆した雲母、およびこれらの混合物カゝらなる 群から選択される。
[0053] 脂肪相、親水性相、および構造色色素に特有な干渉多層構造を有する構造色色 素を含有する、本発明で使用される組成物の調製方法は、以下の工程を含む。
[0054] A.親水性相を調製し、親水性相を、親水性相が沸騰する温度まで加熱し、
B.脂肪相を調製し、必要に応じて加熱して液状にした干渉角度変色色素を親水 性相に分散させ、
C.工程 Bで調製した脂肪相を、工程 1で調製した親水性相と、例えば適当なター ビン、例えばモルティズ (Mortiz)ミクロ分散装置により接触させて、エマルシヨンを形 成し、
D.常温に戻るまで、例えばタービンを用いて、次いでパドルを用いて攪拌し続ける
[0055] この製造方法は、干渉角度変色色素が親水性連続相と相容性でない場合、本発 明で使用する組成物の調製において使用することができる。
[0056] 本明細書では、色素として構造色色素以外の色素を用いることも当然に可能である 。このような色素は、液状親水性相に不溶であり、組成物を着色するおよび Zまたは 不透明にすることを意図した、白または着色した、無機または有機粒子を意味するも のと理解される。構造色色素とそれ以外の色素とを混合して用いる場合は、それ以外 の色素の量は、任意であり得るが、好ましくは、全体の 5%以下であることが有利であ る。これらの存在が、本発明による干渉角度変色色素の効果を隠す可能性があるか らである。構造色色素以外の色素として本発明で使用可能な無機色素としては、酸 化チタン、酸ィ匕ジルコニウム、酸ィ匕セリウム、並びに、酸化亜鉛、酸化鉄、酸化クロム 、フ リックブルー、およびこれらの混合物が挙げられる。構造色色素以外の色素とし て本発明で使用可能な有機色素としては、力一ボンブラック、ノリウムレーキ、スト口 ンチウムレーキ、ジルコニウムレーキ、カルシウムレーキ、アルミニウムレーキ、文献: 欧州特許出願第 542669号、欧州特許出願第 787730号、欧州特許出願第 78773 1号、および国際特許出願第 96Z08537号に記載されたジケトピロ一口ピロ—ル (D PP)、およびこれらの混合物が挙げられる。
[0057] 本発明において用いられる色素は、 380nm〜780nmの間の波長において光吸 収を有する。この波長が可視光として知られており、この波長における光吸収を有す ることはすなわち着色されて ヽることを意味するカゝらである。 380ηπ!〜 780nmの間 の波長において光吸収は、当該分野において周知の任意の技法 (例えば、吸光度 計)を用いて測定することができる。このような方法は、視検、デジタル (CCD)カメラ、 ビデオカメラ、写真フィルムを含むがこれに限定されない、検出および分析のための 他の方法を提供し、またはレーザースキャニング装置、フルォロメートル、ルミノメート ル、感光性半導体素子 (フォトダイオード)、量子計数器、プレートリーダー、ェピフル オレセンス顕微鏡、走査性顕微鏡、共焦点顕微鏡、毛管電気泳動検出器等の流通 機器の使用、またはフォトマルチプライヤーチューブまたは、存在、局在、強度、励起 および放射スペクトル、蛍光偏光、蛍光寿命、および他の蛍光シグナルの物理的特 性を検出可能な他の光学検出器などのシグナルを増幅するための他の方法、を提 供することは本発明のさらなる目的である。
[0058] 本発明の 1つの実施形態では、粒子サイズが可視光波長領域内(380〜780nm) にあることにより、照射された可視光がこの粒子状積層構造物の表面において、効果 的に回折干渉されて、この粒子径 100〜500nmの範囲における特定の粒子径に係 わって、回折干渉されて赤、青、緑等の特定の有彩色を発色する波長領域光として 分光反射される。また、本発明において使用され得る粒子は、マンセル色票における 明度が 5以下の色みの無い黒色系の無彩色単分散粒子であり得る。これによつて、 照射された可視光の一部が、その粒子の周辺で発生すると思われる本発明が目的と する反射光以外の散乱、透過等の迷光を、適宜に効果的に吸収して削減させる。そ の結果、効果的に回折干渉した反射光色が、より色みが鮮明な有彩色として視感さ せる。
[0059] 有機高分子単分散球状粒子として、必ずしも以下に記載する高分子種に特定され ないが、例えば、ポリ(メタ)アクリル酸メチル、テトラフルォロエチレンン、ポリ— 4—メ チノレペンテン 1、ポリベンジルメタアタリレート、ポリフエ-レンメタタリレート、ポリシク 口へキシルメタタリレート、ポリエチレンテレフタレート、ポリスチレン、スチレン'アタリ 口-トリル共重合体、ポリ塩化ビニル、ポリ塩ィ匕ビユリデン、ポリ酢酸ビニル、ポリビ- ルアルコール等を挙げることができる。本発明では、太陽光等の自然光または白色 光の照射下に、その可視光波長領域光に係わる構造色色素の反射光色を視感する ことから、その高分子榭脂は、特に耐候性に優れて榭脂自体が、光劣化変色を起こ し難い耐候性に優れていることも重要である。このような観点から、好ましくは、従来 力も周知の事実である耐候性に優れる (メタ)アクリル系、(メタ)アクリル—スチレン系 、フッ素置換 (メタ)アクリル系およびフッ素置換 (メタ)アクリル—スチレン系力も選ば れる何れかのアクリル系の有機高分子微粒子が適宜好適に使用される。
モノマ—種で表すアクリル系榭脂としては、例えば、(メタ)アクリル酸メチル, (メタ) アクリル酸ェチル, (メタ)アクリル酸プロピル, (メタ)アクリル酸イソプロピル, (メタ)ァ クリル酸ブチル, (メタ)アクリル酸イソブチル, (メタ)アクリル酸ペンチル, (メタ)アタリ ル酸へキシル, (メタ)アクリル酸 2—ェチルへキシル, (メタ)アクリル酸ォクチル, (メ タ)アクリル酸ラウリル, (メタ)アクリル酸ノエル, (メタ)アクリル酸デシル, (メタ)アタリ ル酸ドデシル, (メタ)アクリル酸フ -ル, (メタ)アクリル酸メトキシェチル, (メタ)ァク リル酸エトキシェチル, (メタ)アクリル酸プロポキシェチル, (メタ)アクリル酸ブトキシ ェチル, (メタ)アクリル酸エトキシプロピル等の(メタ)アクリル酸アルキルエステル;ジ ェチルアミノエチル (メタ)アタリレート等のジアルキルアミノアルキル (メタ)アタリレート ; (メタ)アクリルアミド, N—メチ口—ル (メタ)アクリルアミドおよびジアセトンアクリルアミ ド等の (メタ)アクリルアミド類並びにグリシジル (メタ)アタリレート;エチレングリコール のジ (メタ)アクリル酸エステル,ジェチルダリコールのジ (メタ)アクリル酸エステル,トリ エチレングリコールのジ(メタ)アクリル酸エステル,ポリエチレングリコールのジ(メタ) アクリル酸エステル,ジプロピレングリコールのジ(メタ)アクリル酸エステル,トリプロピ レングリコールのジ (メタ)アクリル酸エステル等の(ポリ)アルキレングリコールのジ (メ タ)アクリル酸エステル類等を挙げることができる。また、上述する (メタ)アクリル系モノ マ一以外のその他のモノマ一としては、例えば、スチレン,メチルスチレン,ジメチル スチレン, トリメチルスチレン,ェチルスチレン,ジェチルスチレン, トリェチノレスチレン ,プロピノレスチレン,ブチルスチレン,へキシルスチレン,へプチルスチレンおよびォ クチルスチレン等のアルキルスチレン;フロロスチレン,クロルスチレン,ブロモスチレ ン,ジブ口モスチレン,クロノレメチノレスチレン等のハロゲンィ匕スチレン;ニトロスチレン ,ァセチルスチレン,メトキシスチレン等のスチレン系モノマーを挙げることができる。 更に、スチレン系モノマ一以外の他のモノマ一として、例えば、ビュルトリメトキシシラ ン、ビュルトリエトキシシラン等のケィ素含有ビュル系モノマー;酢酸ビュル,プロピオ ン酸ビュル, n—酪酸ビュル,イソ酪酸ビュル,ピバリン酸ビュル,カプロン酸ビュル ,バーサティック酸ビュル,ラウリル酸ビュル,ステアリン酸ビニル,安息香酸ビュル, p— t ブチル安息香酸ビュル、サリチル酸ビュル等のビュルエステル類;塩化ビ-リ デン、クロ口へキサンカルボン酸ビニル等が挙げられる。更にはまた、必要に応じて 、官能基を有するモノマ一として、例えば、(メタ)アクリル酸、テトラヒドロフタル酸、ィ タコン酸、シトラコン酸、クロトン酸、イソクロトン酸、ノルボルネンジカルボン酸、ビシク 口 [2, 2, 1]ヘプトー 2 ェンー 5, 6 ジカルボン酸等の不飽和カルボン酸が挙げら れ、また、これらの誘導体として、無水マレイン酸、無水ィタコン酸、無水シトラコン酸 、テトラヒドロ無水フタル酸、ビシクロ [2, 2, 1]ヘプトー 2 ェン 5, 6 ジカルボン 酸無水物、また、例えば、水酸基 (OH ;ヒドロキシル基)を有するモノマーとしては、 1 , 1, 1—トリヒドロキシメチルェタントリ(メタ)アタリレート, 1, 1, 1—トリスヒドロキシメ チルメチルェタントリ(メタ)アタリレート, 1, 1, 1—トリスヒドロキシメチルプロパントリ(メ タ)アタリレート,ヒドロキシビニルエーテル,ヒドロキシプロピルビニルエーテル,ヒドロ キシブチルビ-ルエーテル等のヒドロキシアルキルビュルエーテル, 2—ヒドロキシェ チル (メタ)アタリレート, 2—ヒドロキシプロピル (メタ)アタリレート,ジエチレングリコー ルモノ (メタ)アタリレート等のヒドロキシアルキル (メタ)アタリレート等が挙げられ、これ らの単独または 2種以上の複合モノマーを適宜好適に使用することができる。更には また、(メタ)アクリル酸の部分または完全フッ素置換系モノマ—として、例えば、(メタ )アクリル酸トリフルォロメチルメチル, (メタ)アクリル酸 2—トリフルォロメチルェチル , (メタ)アクリル酸 2—ペルフルォロメチルェチル, (メタ)アクリル酸 2—ペルフル ォロェチル 2—ペルフルォロブチルェチル, (メタ)アクリル酸 2—ペルフルォロ ォロェチル, (メタ)アクリル酸ペルフルォロメチル, (メタ)アクリル酸ジペルフルォロメ チルメチル等のフッ素置換 (メタ)アクリル酸モノマ—(またはフルォロ(メタ)アルキル アタリレート)が挙げられ、また、フルォロエチレン、ビ-リデンフルオリド、テトラフルォ 口エチレン、へキサフノレオ口エチレン、へキサフノレオ口プロピレン、ペルフノレオロー 2, 2—ジメチルー 1, 3—ジォキソール等のフロォロォレフインが挙げられる。本発明に おいては、これらの単独重合体、または他の重合性モノマーとの共重合体であって ちょい。
[0061] 本発明の別の具体的な実施形態において、第 1の直径を有する粒子と、第 1の直 径より小さい第 2の直径を持ち、ビーズに結合する複数の粒子を含んでなる標識物 質が提供される。本発明のある実施形態において、異なる少なくとも標識分子の 1つ の型のあら力じめ決められた濃度、 1つ以上の異なる標識分子の型のあら力じめ決め られた濃度のいずれ力、あるいは両方を持っているもう 1つの物品から、物品を区別 するために効果的なすでに決められた濃度の少なくとも 1つの標識分子の型を持つ 粒子は、あら力じめ決められた濃度がゼロ力も最大値までの範囲であってよい。好ま L 、実施形態にぉ 、て、あら力じめ決められた濃度はゼロでな 、ある値力も最大値ま でおよび得る。最大値は与えられた標識分子のタイプの物理的およびィ匕学的特性を 含む多数の要因によって決定され、その特性は、粒子に導入し、会合させまたは組 み込むことのできる標識分子の上限濃度を限定し得る。標識分子が色素を含むとこ ろでは、例えば、最大の効果的濃度を決定しうる色素の 1つの特性は、可溶性あるい は吸収および Zまたは放射特性を含むスペクトル特性である。代替の実施形態にお いては、最大値は、粒子または高分子の表面上または内部分にある標識分子の飽 和点に近づくか、または本質的に等価である。
[0062] 本発明で用いられる高分子または粒子は、直径約 10ナノメ—トル (nm)から約 100 , OOOnmの範囲のサイズの粒子であり得、市販されているものを利用し得る。最も好 ましい直径は約 lOnmと約 1, OOOnmの間であり、好ましくは約 200nmと約 500nm の間である。生体分子が結合する担体粒子として、本発明で用いられる高分子また は粒子は、通常直径が約 0. 01〜約 1000マイクロメートル( m)のサイズの範囲に ある。粒子は任意のサイズをとつて良いが、好ましいサイズは約 0. 1〜約 500 μ mで あり、より好ましくは約 1 μ m〜約 200 μ mである。この粒子は均一(ほぼ同じサイズで ある)かまたはその差異が光散乱または光屈折等のサイズ依存特性によって決定で きるような可変サイズである。
[0063] 粒子は任意に、一定に整形された物質力もできて 、る。好ま U、形状は球状である 力 しかし、このパラメ一タは本発明の本質において重要ではないので、他の形状の 粒子が使用できる。粒子の形状は追加的な分別パラメ—タとして役割を果たすことが でき、フローサイトメトリー、すなわち高分離能スリットスキャニング法によって分別され る。
[0064] 担体粒子と同様にこれらの粒子は、ポリスチレンまたラテックス等の同一の物質 (こ れらが通常使用される)〖こカ卩えて、カルボン酸ベースポリマー、ポリ脂肪族アルコール 、ポリ(ビニル)ポリマー、ポリアクリル酸、ポリ有機酸、ポリアミノ酸、コポリマー、ブロッ クコポリマー、 3量体ポリマー、ポリエーテル、天然ポリマー、ポリイミド、界面活性剤、 ポリエステル、分岐鎖ポリマー、環状ポリマー、ポリアルデヒド、およびその混合物から なる化学的な群力も選択されたポリマーを含み得る。さらに具体的には、臭素処理ポ リスチレン、ポリアクリル酸、ポリアクリロニトリル、ポリアミド、ポリアクリルアミド、ポリアク ロレイン、ポリブタジエン、ポリ力プロラタトン、ポリエステル、ポリエチレン、ポリエチレ ンテレフタレート、ポリジメチノレシロキサン、ポリイソプレン、ポリウレタン、ポリ酢酸ビ- ル、ポリ塩化ビュル、ポリビュルピリジン、ポリビュルべンジルクロライド、ポリビュルト ルェン、塩化ポリビ-リデン、ポリジビュルベンゼン、ポリメタクリル酸メチル、ラクチド ーグリコリド共重合体、ポリ酸無水物、ポリオルトエステル、ポリホスファゼン、ポリホス ファ一ゼ、あるいはその組合せが好ましい。ポリマー粒子が構成している代表的な組 合せポリマーは、例えば、スチレン一塩化ビュルベンゼン アクリル酸共重合体(85 : 10: 5モル比)、スチレン アクリル酸共重合体(99: 1モル比)、スチレンーメタクリル 酸共重合体(90 : 10モル比)、スチレン—アクリル酸— m&p ジビュルベンゼン共 重合体(89: 10: 1モル比)、スチレン 2 カルボキシルェチルアクリル酸共重合体( 90: 10モル比)、メチルメタクリル酸—アクリル酸共重合体(70: 30モル比)およびス チレン ブチルアクリル酸ーメタクリル酸共重合体(45 : 45 : 10重量比)を含む。ポリ スチレン、ポリアクリルアミド、ポリアクリル酸、またはラテックス等の合成ポリマーから 形成されるほとんどのビーズは、現在 Bio— RadLaboratories (Richmond, Calif. )および LKBProdukter (Stockholm, Sweden)などの!/、くつかの会社から巿販さ れている。天然の巨大分子力も形成されたビーズと、ァガ口—ス、架橋ァガ口—ス、グ ロブリン、デォキシリボ核酸、およびリポソ—ム等の粒子は Bio— RadLaboratories、 Pharmacia (Piscataway, NJ)および IBF (France)等の会社より市販されて 、る。 ポリアクリルアミドおよびァガ口—スのコポリマーで形成されるビーズは IBFおよび Pha rmacia等より市販されている。
[0065] これらのポリマーはまた、磁石あるいは過常磁性、常磁性、または強磁性金属酸ィ匕 物を含むグループカゝら選択される磁気応答性の金属酸ィ匕物を組み込んでも良い。 磁気ビーズは Dynal Inc. (Great Neck, NY)等の会社より市販されており、また は例えば米国特許第 4, 358, 388号、第 4, 654, 267号、 4, 774, 265号、 5, 32 0, 944号、第 5, 356, 713号で開示されたような当該分野で知られている方法を用 いて調製できる。
[0066] 例えばカルボキシメチルセルロース、ヒドロキシメチルセルロース等の炭化水素、タ ンパク質のポリマー、ポリペプチド、原核および真核細胞、ウィルス、脂質、金属、レ ジン、ゴム、シリカ、例えばポリジメチルジフエ-ルシロキサン等のシリコン、ガラス、セ ラミック等の他の物質が同様に使用できる。
[0067] 高分子は好ましくは微小粒子と同じ物質力 作られる。し力しながら、もし必要なら ば、異なる物質力も作成しても良い。本明細書において、微小粒子および高分子を 含むポリマー種に対して「第 1の」および「第 2の」という語を適用したときは、識別の目 的のためのみに使用し、優先順位を示すわけではな 、ことを理解すべきである。
[0068] 微小粒子はまた、ジビュルベンゼン、エチレングリコールジメタクリル酸、トリメチロー ルプロパントリメタクリル酸、 N, N'メチレン ビス アクリルアミド、または当該分野で 知られている他の機能的に同等な物質のような、架橋剤をおよそ 0%〜50%含む。ヒ ドロキシプロピルセルロースなどの炭化水素ポリマーの架橋は、アジピン酸、セバシン 酸、コハク酸、クェン酸、 1, 2, 3, 4 ブタンテトラカルボン酸、あるいは 1, 10デカン ジカルボン酸によって行われる。好ましい実施形態において、コアのミクロスフエアと ナノスフエアはポリスチレンからなり、約 0%〜30%のジビュルベンゼンを含む。
[0069] 粒子は、付着し結合することを促進するための付加的な表面官能基を持って!/ヽてよ い。これらの基はカルボン酸、エステル、アルコール、力ルバミド、アルデヒド、ァミン、 硫黄酸化物、窒素酸化物、あるいはハロゲン化合物を含んでよい。カルボン酸ラテツ タス粒子は例えば米国特許第 4, 181, 636号で記載されたように診断物質を調製す るために用いられた。その中に記載されたように、表面カルボキシル基を持っている 粒子に免疫学的に反応性の種を共有結合でつけるための従来の手法は、水溶性力 ルボジイミドの使用を含む。多くの実用的な適用に対して、ポリマー粒子が反応性の ァミン—またはスルホヒドロキシルー含有ィ匕合物の結合を可能にする表面カルボキシ ル基を持つことが重要である。このような基は、好ましくはこのような基を含むモノマー をポリマーに組み込むことによって (例えばアクリル酸、メタクリル酸、ィタコン酸および その類似物)粒子にカ卩えられる。あるいは、これらの基は、カルボキシル基に変換で きる他の前駆体反応基を持っているポリマーのさらなる化学的反応によって (例えば 、無水マレイン酸などの無水物の加水分解によって、または表面のメチロールあるい はアルデヒド末端基の酸ィ匕によって)粒子にカ卩えられ得る。ジァミン、ジヒドラジド、メ ルカプトアルキルァミン、およびジメルカプタン等の他の化合物力 薬剤、酵素あるい はナノスフ アなどの他の反応種の後の結合のための連結部分として使用されうる。 好まし 、結合ある ヽは結合方法は共有結合連結によるものであるが、吸着などの他 の方法が同等に使用されうる。ポリマーシェルによって微小粒子 高分子複合体を 取り囲むような他の新規な方法も同様に許容される。
[0070] 粒子の作製には、少なくとも 3つの方法が知られている。 (i)粒子表面上への色素 の共有結合 (ii)粒子重合間での色素の内部への組み込み (iii)粒子がすでに重合し た後の染色、が含まれる。
[0071] (i)米国特許第 5, 194, 300号 Cheung;米国特許第 4, 774, 189号 Schwartz 例えば微粒子を 1つ以上の色素をその表面に共有結合することでコートすることを開 示する。
[0072] (ii)米国特許第 5, 073, 498号 Schwartz ;米国特許第 4, 717, 655号 Fulwyle r色素を粒子重合工程の間に添加することを開示する。
[0073] (iii)第 3の方法の原理、すなわち粒子がすでに重合した後に色素を内部に埋め込 むか拡散することは、最初に L. B. Bangs (均一なラテックス粒子; SeragenDiagno sties Inc. 1984, p. 40)によって記載された。 Hauglandらに付与された米国特許 第 5, 723, 218号は Bangs法と本質的に類似した工程を用いて 1つ以上のジピロメ テンボロン 2硫酸色素で拡散させて微小粒子を色素化することを開示する。上記方 法の組合せもまた可能であり、これらの例は例示のために提示し、限定するものでは ない。このような技術の 1つを本明細書で参考として援用する。
[0074] 1% wZwの粒子材料溶液(直径 300nmポリエチレン、ァミノ官能性化)を丸底フラ スコ内で攪拌する。これにクロ口ホルムなどの有機溶媒中の色素を加える。色素溶液 がそれ以上粒子に吸収されなくなったならば、色素を加えるのをやめて容器を減圧 下に移動させる。
[0075] 本発明に用いる粒子は、必要に応じて予め他の添加剤として、例えば、滑剤、紫外 線吸収剤、酸化防止剤、帯電防止剤、帯電付与剤、界面活性剤、分散安定剤、消 泡剤、安定剤、等を目的用途等に応じて適宜添加させることができる。
[0076] 本発明において用いられる粒子は、通常、一般的に用いられているソープフリー乳 化重合、乳化重合、懸濁重合等で適宜調製することができる。
[0077] 例えば、ソープフリー乳化重合では、通常、用いる重合開始剤として、過硫酸力リウ ム、過硫酸アンモニゥム等の過硫酸塩が重合時に水性媒体に可溶であればよい。通 常、重合単量体 100重量部に対して、重合開始剤を 0. 1〜10重量部、好ましくは 0 . 2〜2重量部の範囲で添加すればよい。
[0078] 乳化重合法の場合では、ドデシルベンゼンスルホン酸ナトリウム等のアルキルベン ゼンスルホン酸塩、ポリエチレングリコールノ-ルフエ-ルエーテル等のポリエチレン グリコールアルキルエーテル等の乳化剤を重合単量体 100重量部に対して、通常、 0. 01〜5重量部、好ましくは 0. 1〜2重量部で水性媒体に混合させて乳化状態にし 、過硫酸カリウム、過硫酸アンモニゥム等の過硫酸塩の重合開始剤を、重合単量体 1 00重量部に対して、 0. 1〜10重量部、好ましくは 0. 2〜2重量部で添加すればよい
[0079] 懸濁重合を含め、上記する乳化剤も特に特定する必要がなぐ通常に使用されて いるァ-オン系界面活性剤、カチオン系界面活性剤または必要に応じてノ-オン系 界面活性剤等から選んで、その単独または組み合わせて使用することができる。例 えば、ァ-オン系界面活性剤としてはドデシルベンゼンスルホネート、ゥンデシルべ ンゼンスルホネート、トリデシルベンゼンスルホネート、ノ-ルベンゼンスルホネート、 これらのナトリウム、カリウム塩等が挙げられ、また、カチオン系界面活性剤としてはセ チルトリメチルアンモ -ゥムプロミド、塩化へキサデシルピリジ-ゥム、塩化へキサデシ ルトリメチルアンモ -ゥム等が挙げられ、また、ノ-オン系界面活性剤としては、リピリ ジ -ゥム等が挙げられる。また、反応性乳化剤(例えば、アタリロイル基、メタクロィル 基等の重合性基を有する乳化剤)としては、例えば、ァ-オン性、カチオン性または ノニオン性の反応性乳化剤が挙げられ、特に限定することなく使用される。また、乳 ィ匕剤に係わって従来から、分散性や、着色粒子の粒子径が大きくなる傾向力 ァニ オン性の反応性乳化剤が好適に使用され、例えば、スルホン酸 (塩)型、カルボン酸
(塩)型、リン酸エステル型等が挙げられ、具体的には、例えば、ポリオキシエチレン ァリルグリシジルノ-ルフエ-ルエーテルの硫酸塩、ポリオキシエチレンノ-ルプロべ
-ルエーテルの硫酸エステル塩等が挙げられる。また、本発明に用いる黒色系榭脂 粒子にするために、例えば、重合単量体、乳化剤および水との混合系に着色剤であ る黒色系の油溶性色素またはカーボンブラックを含む黒色系の顔料を適宜分散混合 または懸濁混合させる。
[0080] 上述する重合性モノマ-力も適宜選んだ単量体 100重量部当たり、水 200〜350 重量部の範囲にある水を含む系に、例えば、 C. Iソルベントブラック 27のような黒色 系色素の 5〜10重量部と、攪拌下に加温し、次いで、乳化剤の 0. 05〜0. 7とを添 加させて、充分に攪拌混合後、窒素パ―ジ下に攪拌しながら 60〜80°Cに昇温させ る。次いで、 0. 3〜0. 6重量部の範囲で過硫酸カリウム等の重合開始剤を添加させ て、 70〜90°Cで 4〜8時間重合反応を行う。このようなソープフリー乳化重合で得ら れる反応分散液中には、体積基準で表して平均粒子径が 100〜500nmの範囲にあ る単分散の黒色球状ポリマー粒子が、固形分濃度として 20〜40重量%で調製され る。本発明においては、このような粒子は、その色素が、粒子内に内包着色および Z または粒子表層に被覆着色された粒子を適宜用いることができる。
[0081] また、本発明によれば、このような構造色色素の製造方法として、コロイド状黒色系 無彩色の有機ポリマーまたは無機の単分散微粒子が分散する懸濁液中に、対向す る一対の電極板を浸漬させ、所定の印加電圧下に泳動させて、電極面上に構造色 を発色する粒子状積層物を泳動堆積 (または電着)させる。この堆積粒子状積層物 に自然光 (または白色光)可視光波長領域光を照射させて視感される垂直反射光色 力 明確な有彩光色を呈する構造色色素を製造することができる。
[0082] この方法では、懸濁物中には、本発明の特定の特定粒子径を有する有機高分子ま たは無機の粒子が、例えば、 5〜50重量%濃度で、好ましくは、 10〜30重量%濃度 で懸濁されている。この懸濁物中に、対向する一対の電極板を浸漬させ、電極間に 1 . 5V以上の電圧を印加させ、懸濁した粒子を泳動させて、対向する何れか一方の電 極板上に泳動堆積させる。この堆積物は、有機高分子または無機粒子が縦および横 方向に規則的に整合された数層の粒子状積層物として形成され、本発明による構造 色として明確な有彩光色を呈する構造色色素である。また、このようにして電極板に 形成された粒子状積層物は、必要に応じて 40°C以下で乾燥させ、好ましくは、 10〜 30°Cで適宜風乾させる。その泳動堆積物の粒子状積層構造は SEMにより写真撮影 され得る。
[0083] (有機化学)
本明細書において用いられる高分子は、有機分子であり得る。この高分子に用いら れ得る用語を以下に説明する。
[0084] 本明細書にぉ 、て「アルキル」とは、メタン、ェタン、プロパンのような脂肪族炭化水 素(アルカン)力も水素原子が一つ失われて生ずる 1価の基をいい、一般に C H
n 2n+ l 一で表される(ここで、 nは正の整数である)。アルキルは、直鎖または分枝鎖であり得 る。本明細書において「置換されたアルキル」とは、以下に規定する置換基によって アルキルの Hが置換されたアルキルをいう。これらの具体例は、 C1〜C2アルキル、 C1〜C3アルキル、 C1〜C4アルキル、 C1〜C5アルキル、 C1〜C6アルキル、 C1 〜C7アルキル、 C1〜C8アルキル、 C1〜C9アルキル、 C1〜C10アルキル、 Cl〜 C11アルキルまたは C1〜C12アルキル、 C1〜C2置換されたアルキル、 C1〜C3置 換されたアルキル、 C1〜C4置換されたアルキル、 C1〜C5置換されたアルキル、 C 1〜C6置換されたアルキル、 C1〜C7置換されたアルキル、 C1〜C8置換されたァ ルキル、 C1〜C9置換されたアルキル、 C1〜C10置換されたアルキル、 C1〜C11 置換されたアルキルまたは C1〜C 12置換されたアルキルであり得る。ここで、例えば C 1〜C 10アルキルとは、炭素原子を 1〜 10個有する直鎖または分枝状のアルキル を意味し、メチル(CH—)、ェチル(C H一)、 n—プロピル(CH CH CH—)、イソ
3 2 5 3 2 2 プロピル((CH ) CH―)、 n—ブチル(CH CH CH CH―)、 n—ペンチル(CH C
3 2 3 2 2 2 3
H CH CH CH 一)、 n—へキシル(CH CH CH CH CH CH 一)、 n—ヘプチル
2 2 2 2 3 2 2 2 2 2
(CH CH CH CH CH CH CH― )、 n—ォクチル(CH CH CH CH CH CH C
3 2 2 2 2 2 2 3 2 2 2 2 2
H CH―)、 n—ノニル(CH CH CH CH CH CH CH CH CH―)、 n—デシル
2 2 3 2 2 2 2 2 2 2 2
(CH CH CH CH CH CH CH CH CH CH 一)、 C (CH ) CH CH CH (C
3 2 2 2 2 2 2 2 2 2 3 2 2 2
H ) 、— CH CH (CH ) などが例示される。また、例えば、 C1〜C10置換されたァ
3 2 2 3 2
ルキルとは、 C1〜C10アルキルであって、そのうち 1または複数の水素原子が置換 基により置換されて 、るものを 、う。
[0085] 本明細書において「置換されていてもよいアルキル」とは、上で定義した「アルキル」 または「置換されたアルキル」の 、ずれであってもよ 、ことを意味する。
[0086] 本明細書にぉ 、て「アルキレン」とは、メチレン、エチレン、プロピレンのような脂肪 族炭化水素 (アルカン)力も水素原子が二つ失われて生ずる 2価の基を 、 、、一般に ― C H —で表される(ここで、 nは正の整数である)。アルキレンは、直鎖または分枝 n 2n
鎖であり得る。本明細書において「置換されたアルキレン」とは、以下に規定する置換 基によってアルキレンの Hが置換されたアルキレンをいう。これらの具体例は、 Cl〜 C2アルキレン、 C1〜C3アルキレン、 C1〜C4アルキレン、 C1〜C5アルキレン、 C1 〜C6アルキレン、 C1〜C7アルキレン、 C1〜C8アルキレン、 C1〜C9アルキレン、 C 1〜C10アルキレン、じ1〜じ11ァルキレンまたはじ1〜じ12ァルキレン、 C1〜C2置 換されたアルキレン、 C1〜C3置換されたアルキレン、 C1〜C4置換されたアルキレ ン、 C1〜C5置換されたアルキレン、 C1〜C6置換されたアルキレン、 C1〜C7置換 されたアルキレン、 C1〜C8置換されたアルキレン、 C1〜C9置換されたアルキレン、 C 1〜C 10置換されたアルキレン、 C 1〜C 11置換されたアルキレンまたは C 1〜C 12 置換されたアルキレンであり得る。ここで、例えば C1〜C10アルキレンとは、炭素原 子を 1〜: LO個有する直鎖または分枝状のアルキレンを意味し、メチレン(一 CH―)、
2 エチレン(一 C H —)、 n プロピレン(一 CH CH CH 一)、イソプロピレン(一(CH
2 4 2 2 2 3
) C一)、 n—ブチレン(一 CH CH CH CH 一)、 n—ペンチレン(一 CH CH CH C
2 2 2 2 2 2 2 2 H CH 一)、 n—へキシレン(一 CH CH CH CH CH CH 一)、 n—ヘプチレン(一
2 2 2 2 2 2 2 2
CH CH CH CH CH CH CH 一)、 n—オタチレン(一CH CH CH CH CH C
2 2 2 2 2 2 2 2 2 2 2 2
H CH CH 一)、 n—ノニレン(一 CH CH CH CH CH CH CH CH CH —)、 n
2 2 2 2 2 2 2 2 2 2 2 2 デシレン(一 CH CH CH CH CH CH CH CH CH CH 一)、 CH C (CH )
2 2 2 2 2 2 2 2 2 2 2 3
—などが例示される。また、例えば、 C1〜C10置換されたアルキレンとは、 C1〜C1
2
0アルキレンであって、そのうち 1または複数の水素原子が置換基により置換されてい るものをいう。本明細書において「アルキレン」は、酸素原子および硫黄原子から選 択される原子を 1またはそれ以上含んで 、てもよ 、。
[0087] 本明細書にぉ 、て「置換されて 、てもよ 、アルキレン」とは、上で定義した「アルキレ ン」または「置換されたアルキレン」の 、ずれであってもよ 、ことを意味する。
[0088] 本明細書にお!、て「シクロアルキル」とは、環式構造を有するアルキルを 、う。「置換 されたシクロアルキル」とは、以下に規定する置換基によってシクロアルキルの Hが置 換されたシクロアルキルをいう。具体例としては、 C3〜C4シクロアルキル、 C3〜C5 シクロアルキル、 C3〜C6シクロアルキル、 C3〜C7シクロアルキル、 C3〜C8シクロ アルキル、 C3〜C9シクロアルキル、 C3〜C10シクロアルキル、 C3〜C11シクロアル キル、 C3〜C12シクロアルキル、 C3〜C4置換されたシクロアルキル、 C3〜C5置換 されたシクロアルキル、 C3〜C6置換されたシクロアルキル、 C3〜C7置換されたシク 口アルキル、 C3〜C8置換されたシクロアルキル、 C3〜C9置換されたシクロアルキ ル、 C3〜C10置換されたシクロアルキル、 C3〜C11置換されたシクロアルキルまた は C3〜C12置換されたシクロアルキルであり得る。例えば、シクロアルキルとしては、 シクロプロピル、シクロへキシルなどが例示される。
[0089] 本明細書において「置換されていてもよいシクロアルキル」とは、上で定義した「シク 口アルキル」または「置換されたシクロアルキル」の 、ずれであってもよ 、ことを意味す る。
[0090] 本明細書において「ァルケニル」とは、分子内に二重結合を一つ有する脂肪族炭 化水素から水素原子が一つ失われて生ずる 1価の基をいい、一般に C H 一で表
n 2n- l される(ここで、 nは 2以上の正の整数である)。「置換されたァルケニル」とは、以下に 規定する置換基によってァルケ-ルの Hが置換されたァルケ-ルを!、う。具体例とし ては、 C2〜C3ァノレケニノレ、 C2〜C4ァノレケニノレ、 C2〜C5ァノレケニノレ、 C2〜C6ァ ルケ-ル、 C2〜C7ァルケ-ル、 C2〜C8アルケ -ル、 C2〜C9ァルケ-ル、 C2〜C 10ァルケ-ル、じ2〜じ11ァルケ-ルまたはじ2〜じ12ァルケ-ル、 C2〜C3置換さ れたァルケ-ル、 C2〜C4置換されたァルケ-ル、 C2〜C5置換されたァルケ-ル、 C2〜C6置換されたァルケ-ル、 C2〜C7置換されたァルケ-ル、 C2〜C8置換され たァルケ-ル、 C2〜C9置換されたァルケ-ル、 C2〜C10置換されたァルケ-ル、 C2〜C11置換されたァルケ-ルまたは C2〜C12置換されたァルケ-ルであり得る。 ここで、例えば C2〜C10アルキルとは、炭素原子を 2〜: LO個含む直鎖または分枝状 のァルケ-ルを意味し、ビュル(CH =CH )、ァリル(CH =CHCH―)、 CH C
2 2 2 3
H = CH などが例示される。また、例えば、 C2〜C10置換されたァルケ-ルとは、
C2〜C10ァルケ-ルであって、そのうち 1または複数の水素原子が置換基により置 換されているものをいう。
[0091] 本明細書にぉ 、て「置換されて 、てもよ 、ァルケ-ル」とは、上で定義した「ァルケ
-ル」または「置換されたァルケ-ル」の 、ずれであってもよ 、ことを意味する。
[0092] 本明細書において「ァルケ-レン」とは、分子内に二重結合を一つ有する脂肪族炭 化水素から水素原子が二つ失われて生ずる 2価の基をいい、一般に C H 一で n 2n-2 表される(ここで、 nは 2以上の正の整数である)。「置換されたァルケ-レン」とは、以 下に規定する置換基によってァルケ-レンの Hが置換されたァルケ-レンを!、う。具 体例としては、 C2〜C25ァルケ-レンまたは C2〜C25置換されたァルケ-レンが挙 げられ、なかでも特に C2〜C3アルケ-レン、 C2〜C4アルケ-レン、 C2〜C5アル ケ-レン、 C2〜C6ァルケ-レン、 C2〜C7ァルケ-レン、 C2〜C8ァルケ-レン、 C2 〜C9ァルケ-レン、 C2〜C10ァルケ-レン、じ2〜じ11ァルケ-レンまたはじ2〜じ 12ァルケ-レン、 C2〜C3置換されたァルケ-レン、 C2〜C4置換されたァルケ-レ ン、 C2〜C5置換されたァルケ-レン、 C2〜C6置換されたァルケ-レン、 C2〜C7 置換されたァルケ-レン、 C2〜C8置換されたァルケ-レン、 C2〜C9置換されたァ ルケ-レン、 C2〜C10置換されたァルケ-レン、 C2〜C11置換されたァルケ-レン または C2〜C12置換されたァルケ-レンが好ましい。ここで、例えば C2〜C10アル キルとは、炭素原子を 2〜10個含む直鎖または分枝状のァルケ-レンを意味し、 - CH = CH―、 一 CH = CHCH―、 - (CH ) C = CH—などが例示される。また、例
2 3
えば、 C2〜C10置換されたァルケ-レンとは、 C2〜C10ァルケ-レンであって、そ のうち 1または複数の水素原子が置換基により置換されているものをいう。本明細書 において「ァルケ-レン」は、酸素原子および硫黄原子力も選択される原子を 1また はそれ以上含んで!/ヽてもよ!/ヽ。
[0093] 本明細書において「置換されていてもよいァルケ-レン」とは、上で定義した「アル ケ-レン」または「置換されたァルケ-レン」の 、ずれであってもよ 、ことを意味する。
[0094] 本明細書にぉ 、て「シクロアルケ-ル」とは、環式構造を有するァルケ-ルを 、う。「 置換されたシクロアルケ-ル」とは、以下に規定する置換基によってシクロアルケ-ル の Hが置換されたシクロアルケ-ルをいう。具体例としては、 C3〜C4シクロアルケ- ル、 C3〜C5シクロアルケ-ル、 C3〜C6シクロアルケ-ル、 C3〜C7シクロアルケ- ル、 C3〜C8シクロアルケ-ル、 C3〜C9シクロアルケ-ル、 C3〜C10シクロアルケ -ル、 C3〜C11シクロアルケ-ル、 C3〜C12シクロアルケ-ル、 C3〜C4置換され たシクロアルケ-ル、 C3〜C5置換されたシクロアルケ-ル、 C3〜C6置換されたシク ロアルケ-ル、 C3〜C7置換されたシクロアルケ-ル、 C3〜C8置換されたシクロアル ケ -ル、 C3〜C9置換されたシクロアルケ-ル、 C3〜C10置換されたシクロアルケ- ル、じ3〜じ11置換されたシクロァルケ-ルまたはじ3〜じ12置換されたシクロァルケ -ルであり得る。例えば、好ましいシクロアルケ-ルとしては、 1—シクロペンテ-ル、 2—シクロへキセ-ルなどが例示される。
[0095] 本明細書において「置換されていてもよいシクロアルケ-ル」とは、上で定義した「シ クロアルケ-ル」または「置換されたシクロアルケ-ル」の 、ずれであってもよ 、ことを 意味する。
[0096] 本明細書において「アルキ -ル」とは、アセチレンのような、分子内に三重結合を一 つ有する脂肪族炭化水素から水素原子が一つ失われて生ずる 1価の基を 、い、一 般に C H 一で表される(ここで、 nは 2以上の正の整数である)。「置換されたアル n 2n_3
キ -ル」とは、以下に規定する置換基によってアルキ-ルの Hが置換されたアルキ- ルをいう。具体例としては、 C2〜C3アルキ-ル、 C2〜C4アルキ-ル、 C2〜C5アル キ -ル、 C2〜C6アルキ-ル、 C2〜C7アルキ-ル、 C2〜C8アルキ-ル、 C2〜C9 アルキ -ル、 C2〜C10アルキ-ル、 C2〜C11アルキ-ル、 C2〜C12アルキニル、 C2〜C3置換されたアルキ-ル、 C2〜C4置換されたアルキ-ル、 C2〜C5置換され たアルキ-ル、 C2〜C6置換されたアルキ-ル、 C2〜C7置換されたアルキ-ル、 C 2〜C8置換されたアルキ-ル、 C2〜C9置換されたアルキ-ル、 C2〜C10置換され たアルキ-ル、 C2〜C11置換されたアルキ-ルまたは C2〜C12置換されたアルキ -ルであり得る。ここで、例えば、 C2〜C10アルキ-ルとは、例えば炭素原子を 2〜1 0個含む直鎖または分枝状のアルキ-ルを意味し、ェチュル(CH≡C—)、 1 プロ ピニル(CH C≡C )などが例示される。また、例えば、 C2〜C10置換されたアルキ
3
ニルとは、 C2〜C10アルキ-ルであって、そのうち 1または複数の水素原子が置換 基により置換されて 、るものを 、う。
[0097] 本明細書にぉ 、て「置換されて 、てもよ 、アルキ -ル」とは、上で定義した「アルキ
-ル」または「置換されたアルキ-ル」の 、ずれであってもよ 、ことを意味する。
[0098] 本明細書において「アルコキシ」とは、アルコール類のヒドロキシ基の水素原子が失 われて生ずる 1価の基をいい、一般に C H O で表される(ここで、 nは 1以上の n 2n+ l
整数である)。「置換されたアルコキシ」とは、以下に規定する置換基によってアルコ キシの Hが置換されたアルコキシをいう。具体例としては、 C1〜C2アルコキシ、 C1 〜C3アルコキシ、 C1〜C4アルコキシ、 C1〜C5アルコキシ、 C1〜C6アルコキシ、 C 1〜C7アルコキシ、 C1〜C8アルコキシ、 C1〜C9アルコキシ、 C1〜C10アルコキシ 、 C1〜C11アルコキシ、 C1〜C12アルコキシ、 C1〜C2置換されたアルコキシ、 C1 〜C3置換されたアルコキシ、 C1〜C4置換されたアルコキシ、 C1〜C5置換されたァ ルコキシ、 C1〜C6置換されたアルコキシ、 C1〜C7置換されたアルコキシ、 C1〜C 8置換されたアルコキシ、 C1〜C9置換されたアルコキシ、 C1〜C10置換されたアル コキシ、 C1〜C11置換されたアルコキシまたは C 1〜C 12置換されたアルコキシであ り得る。ここで、例えば、 C1〜C10アルコキシとは、炭素原子を 1〜: L0個含む直鎖ま たは分枝状のアルコキシを意味し、メトキシ(CH O )、エトキシ(C H O— )、 n—プ
3 2 5
口ポキシ(CH CH CH O )などが例示される。
3 2 2
[0099] 本明細書において「置換されていてもよいアルコキシ」とは、上で定義した「アルコキ シ」または「置換されたアルコキシ」の 、ずれであってもよ 、ことを意味する。 [0100] 本明細書にぉ 、て「ヘテロ環 (基)」とは、炭素およびへテロ原子をも含む環状構造 を有する基をいう。ここで、ヘテロ原子は、 0、 Sおよび N力もなる群より選択され、同 一であっても異なっていてもよぐ 1つ含まれていても 2以上含まれていてもよい。へテ 口環基は、芳香族系または非芳香族系であり得、そして単環式または多環式であり 得る。ヘテロ環基は置換されていてもよい。
[0101] 本明細書において「置換されていてもよいへテロ環 (基)」とは、上で定義した「へテ 口環 (基)」または「置換されたへテロ環 (基)」の 、ずれであってもよ 、ことを意味する
[0102] 本明細書において「アルコール」とは、脂肪族炭化水素の 1または 2以上の水素原 子をヒドロキシル基で置換した有機化合物をいう。本明細書においては、 ROHとも表 記される。ここで、 Rは、アルキル基である。好ましくは、 Rは、 C1〜C6アルキルであり 得る。アルコールとしては、例えば、メタノール、エタノール、 1—プロパノール、 2—プ ロパノールなどが挙げられるがそれらに限定されない。
[0103] 本明細書にぉ 、て「炭素環基」とは、炭素のみを含む環状構造を含む基であって、 前記の「シクロアルキル」、「置換されたシクロアルキル」、「シクロアルケ-ル」、「置換 されたシクロアルケ-ル」以外の基を 、う。炭素環基は芳香族系または非芳香族系で あり得、そして単環式または多環式であり得る。「置換された炭素環基」とは、以下に 規定する置換基によって炭素環基の Hが置換された炭素環基を 、う。具体例として は、 C3〜C4炭素環基、 C3〜C5炭素環基、 C3〜C6炭素環基、 C3〜C7炭素環基 、 C3〜C8炭素環基、 C3〜C9炭素環基、 C3〜C10炭素環基、 C3〜C11炭素環基 、 C3〜C12炭素環基、 C3〜C4置換された炭素環基、 C3〜C5置換された炭素環 基、 C3〜C6置換された炭素環基、 C3〜C7置換された炭素環基、 C3〜C8置換さ れた炭素環基、 C3〜C9置換された炭素環基、 C3〜C10置換された炭素環基、 C3 〜C11置換された炭素環基または C3〜C12置換された炭素環基であり得る。炭素 環基はまた、 C4〜C7炭素環基または C4〜C7置換された炭素環基であり得る。炭 素環基としては、フエニル基力 水素原子が 1個欠失したものが例示される。ここで、 水素の欠失位置は、化学的に可能な任意の位置であり得、芳香環上であってもよぐ 非芳香環上であってもよ 、。 [0104] 本明細書にぉ 、て「置換されて 、てもよ 、炭素環基」とは、上で定義した「炭素環基 」または「置換された炭素環基」の 、ずれであってもよ ヽことを意味する。
[0105] 本明細書にぉ 、て「ヘテロ環基」とは、炭素およびへテロ原子をも含む環状構造を 有する基をいう。ここで,ヘテロ原子は、 0、 Sおよび N力もなる群より選択され、同一 であっても異なっていてもよく、 1つ含まれていても 2以上含まれていてもよい。ヘテロ 環基は、芳香族系または非芳香族系であり得、そして単環式または多環式であり得 る。「置換されたへテロ環基」とは、以下に規定する置換基によってへテロ環基の Hが 置換されたへテロ環基をいう。具体例としては、 C3〜C4炭素環基、 C3〜C5炭素環 基、 C3〜C6炭素環基、 C3〜C7炭素環基、 C3〜C8炭素環基、 C3〜C9炭素環基 、 C3〜C10炭素環基、 C3〜C11炭素環基、 C3〜C12炭素環基、 C3〜C4置換さ れた炭素環基、 C3〜C5置換された炭素環基、 C3〜C6置換された炭素環基、 C3 〜C7置換された炭素環基、 C3〜C8置換された炭素環基、 C3〜C9置換された炭 素環基、 C3〜C10置換された炭素環基、じ3〜じ11置換された炭素環基またはじ3 〜C 12置換された炭素環基の 1つ以上の炭素原子をへテロ原子で置換したものであ り得る。ヘテロ環基はまた、 C4〜C7炭素環基または C4〜C7置換された炭素環基 の炭素原子を 1つ以上へテロ原子で置換したものであり得る。ヘテロ環基としては、 チェニル基、ピロリル基、フリル基、イミダゾリル基、ピリジル基などが例示される。水 素の欠失位置は、化学的に可能な任意の位置であり得、芳香環上であってもよぐ非 芳香環上であってもよい。
[0106] 本明細書において、炭素環基またはへテロ環基は、下記に定義されるように 1価の 置換基で置換され得ることに加えて、 2価の置換基で置換され得る。そのような二価 の置換は、ォキソ置換 ( = O)またはチォキソ置換( = S)であり得る。
[0107] 本明細書において「ハロゲン」とは、周期表 7B族に属するフッ素 (F)、塩素(Cl)、 臭素(Br)、ヨウ素(I)などの元素の 1価の基をいう。
[0108] 本明細書において「ヒドロキシ」とは、 OHで表される基をいう。「置換されたヒドロ キシ」とは、ヒドロキシの Hが下記で定義される置換基で置換されて 、るものを 、う。
[0109] 本明細書において「チオール」とは、ヒドロキシ基の酸素原子を硫黄原子で置換し た基 (メルカプト基)であり、—SHで表される。「置換されたチオール」とは、メルカプト の Hが下記で定義される置換基で置換されて 、る基を 、う。
[0110] 本明細書において「シァノ」とは、—CNで表される基をいう。「ニトロ」とは、 -NO
2 で表される基をいう。「ァミノ」とは、 -NHで表される基をいう。「置換されたァミノ」と
2
は、ァミノの Hが以下で定義される置換基で置換されたものを 、う。
[0111] 本明細書において「カルボキシ」とは、—COOHで表される基をいう。「置換された カルボキシ」とは、カルボキシの Hが以下に定義される置換基で置換されたものをいう
[0112] 本明細書において「チォカルボキシ」とは、カルボキシ基の酸素原子を硫黄原子で 置換した基をいい、 C ( = S) OH、— C ( = 0) SHまたは— CSSHで表され得る。「 置換されたチォカルボキシ」とは、チォカルボキシの Hが以下に定義される置換基で 置換されたものをいう。
[0113] 本明細書において「ァシル」とは、カルボン酸から OHを除いてできる 1価の基をいう 。ァシル基の代表例としては、ァセチル(CH CO )、ベンゾィル(C H CO )など
3 6 5
が挙げられる。「置換されたァシル」とは、ァシルの水素を以下に定義される置換基で 置換したものをいう。
[0114] 本明細書において「アミド」とは、アンモニアの水素を酸基 (ァシル基)で置換した基 であり、好ましくは、 -CONH
2で表される。「置換されたアミド」とは、アミドが置換され たものをいう。
[0115] 本明細書において「カルボ-ル」とは、アルデヒドおよびケトンの特性基である一(C
= o) を含むものを総称したものをいう。「置換されたカルボ-ル」は、下記におい て選択される置換基で置換されているカルボ二ル基を意味する。
[0116] 本明細書において「チォカルボ-ル」とは、カルボニルにおける酸素原子を硫黄原 子に置換した基であり、特性基—(C = S)—を含む。チォカルボ-ルには、チオケト ンおよびチォアルデヒドが含まれる。「置換されたチォカルボ-ル」とは、下記におい て選択される置換基で置換されたチォカルボニルを意味する。
[0117] 本明細書において「スルホ -ル」とは、特性基である SO を含むものを総称し
2
たものをいう。「置換されたスルホ -ル」とは、下記において選択される置換基で置換 されたスルホ -ルを意味する。 [0118] 本明細書において「スルフィエル」とは、特性基である SO—を含むものを総称し たものをいう。「置換されたスルフィエル」とは、下記において選択される置換基で置 換されて!/、るスルフィエルを意味する。
[0119] 本明細書において「ァリ—ル」とは、芳香族炭化水素の環に結合する水素原子が 1 個離脱して生ずる基をいい、本明細書において、炭素環基に包含される。
[0120] 本明細書においては、特に言及がない限り、置換は、ある有機化合物または置換 基中の 1または 2以上の水素原子を他の原子または原子団で置き換えることをいう。 水素原子を 1つ除去して 1価の置換基に置換することも可能であり、そして水素原子 を 2つ除去して 2価の置換基に置換することも可能である。
[0121] 本明細書においては、特に言及がない限り、置換は、ある有機化合物または置換 基中の 1または 2以上の水素原子を他の原子または原子団で置き換えることをいう。 水素原子を 1つ除去して 1価の置換基に置換することも可能であり、そして水素原子 を 2つ除去して 2価の置換基に置換することも可能である。
[0122] 本発明における置換基としては、アルキル、シクロアルキル、ァルケ-ル、シクロア ルケ-ル、アルキ -ル、アルコキシ、炭素環基、ヘテロ環基、ハロゲン、ヒドロキシ、チ ォ一ル、シァ入ニトロ、アミ入カルボキシ、力ルバモイル、ァシル、ァシルァミノ、チォ カルボキシ、アミド、置換されたカルボ-ル、置換されたチォカルボ-ル、置換された スルホ-ルまたは置換されたスルフィエルが挙げられるがそれらに限定されな 、。こ のような置換基は、本発明において、アミノ酸の設計のときに、適宜利用することがで きる。
[0123] 好ましくは、置換基は、複数存在する場合それぞれ独立して、水素原子またはアル キルであり得るが、複数の置換基全てが水素原子であることはない。より好ましくは、 独立して、置換基は、複数存在する場合それぞれ独立して、水素および C1〜C6ァ ルキルカもなる群より選択され得る。置換基は、すべてが水素以外の置換基を有して いても良いが、好ましくは、少なくとも 1つの水素、より好ましくは、 2〜n (ここで nは置 換基の個数)の水素を有し得る。置換基のうち水素の数が多いことが好ましくあり得る 。大きな置換基または極性のある置換基は本発明の効果 (特に、アルデヒド基との相 互作用)に障害を有し得る力もである。従って、水素以外の置換基としては、好ましく は、 C1〜C6アルキル、 C1〜C5アルキル、 C1〜C4アルキル、 C1〜C3アルキル、 C1〜C2アルキル、メチルなどであり得る。ただし、本発明の効果を増強し得ることも あることから、大きな置換基を有することもまた好ましくあり得る。
[0124] 本明細書において、 Cl、 C2、、、 Cnは、炭素数を表す。従って、 C1は炭素数 1個 の置換基を表すために使用される。
[0125] 本明細書において、「光学異性体」とは、結晶または分子の構造が鏡像関係にあつ て、重ねあわせることのできない一対の化合物の一方またはその組をいう。立体異性 体の一形態であり、他の性質は同じであるにもかかわらず、旋光性のみが異なる。
[0126] 本明細書において「保護反応」とは、 Bocのような保護基を、保護が所望される官能 基に付加する反応をいう。保護基により官能基を保護することによって、より反応性の 高い官能基の反応を抑制し、より反応性の低い官能基のみを反応させることができる 。保護反応は、例えば、脱水反応により行うことができる。
[0127] 本明細書にぉ ヽて「脱保護反応」とは、 Bocのような保護基を脱離させる反応を ヽぅ 。脱保護反応としては、 PdZCを用いる還元反応のような反応が挙げられる。脱保護 反応は、例えば、加水分解により行うことができる。
[0128] 本明細書にぉ 、て「保護基」としては、例えば、フルォレニルメトキシカルボ-ル(F moc)基、ァセチル基、ベンジル基、ベンゾィル基、 t—ブトキシカルボ-ル基、 tーブ チルジメチル基、シリル基、トリメチルシリルェチル基、 N—フタルイミジル基、トリメチ ルシリルェチルォキシカルボ-ル基、 2— -トロー 4, 5—ジメトキシベンジル基、 2— ニトロ—4, 5—ジメトキシベンジルォキシカルボ-ル基、力ルバメート基などが代表的 な保護基として挙げられる。
[0129] 本発明の各方法において、 目的とする生成物は、反応液から夾雑物 (未反応減量 、副生成物、溶媒など)を、当該分野で慣用される方法 (例えば、抽出、蒸留、洗浄、 濃縮、沈澱、濾過、乾燥など)によって除去した後に、当該分野で慣用される後処理 方法 (例えば、吸着、溶離、蒸留、沈澱、析出、クロマトグラフィ—など)を組み合わせ て処理して単離し得る。
[0130] (発明の詳細な説明)
以下に本発明の好ましい実施形態を説明する。以下に提供される実施形態は、本 発明のよりよい理解のために提供されるものであり、本発明の範囲は以下の記載に 限定されるべきでないことが理解される。従って、当業者は、本明細書中の記載を参 酌して、本発明の範囲内で適宜改変を行うことができることは明らかである。
[0131] 1つの局面において、本発明は、高分子と色素との複合体とを含む、標識物質を提 供する。使用される高分子は、油溶性 (例えば、水との接触角が 90° 以上の疎水性 )を有し得る。
[0132] 使用され得る高分子としては、例えば、ガラス、シリカゲル、ポリプロピレン、ポリウレ タン、ポリスチレン(PS)、ポリメチルメタタリレート(PMMA)、テトラフルォロエチレン ン、ポリー4ーメチルペンテン 1、ポリベンジルメタアタリレート、ポリフエ-レンメタタリ レート、ポリシクロへキシノレメタタリレート、ポリエチレンテレフタレート、スチレン'アタリ 口-トリル共重合体、ポリ塩化ビニル、ポリ塩ィ匕ビユリデン、ポリ酢酸ビニル、ポリビ- ルアルコール、ポリイミド、ポリアミド、ポリエチレングリコール、ポリアクリル酸、ポリメタ クリル酸およびそれらの共重合体等を挙げることができ、好ましくは、ポリスチレンを用 いることができる。ポリスチレンは、生体に対する親和性が高ぐ使用が容易であるか らである。好ましい実施形態では、高分子は、生体分子と特異的に相互作用し得るこ とが有利であるからである。ノィォ実験で用いられ得る力もである。
[0133] 1つの実施形態では、使用される高分子は、油溶性である。
[0134] 1つの実施形態では、使用される高分子は、本発明において用いられる色素の色 調に影響を与える分子であっても与えない分子であっても良い。与える分子であれ ば、相互作用の結果所望される色になるようにすれば、用いることができることが理解 される。
[0135] 使用される色素は、ポリスチレンよりも疎水性が高くなつていることが好ましいがそれ に限定されない。より好ましくは、使用される色素は、さらに有意に疎水性が異なるこ とが好ましい。
[0136] 1つの実施形態では、使用される色素は構造色色素である。構造色色素は、光の 干渉、回折および散乱作用のうちの少なくともいずれかの作用に基づいて発色し、例 えば、雲母と酸化金属とを含み、その干渉によって着色する。
[0137] 本発明において使用される酸ィ匕金属または酸ィ匕物としては、酸化銅、酸ィ匕チタン、 酸化アルミニウム、酸化ケィ素、酸化スズ、酸化鉄、酸化ジルコニウムおよび酸化亜 鉛などを使用することができる。
[0138] 1つの実施形態において、使用される色素は、 380nm〜780nmの間の波長にお いて光吸収を有する。可視光波長領域(380〜780nm)において、太陽光または白 色光が物質に照射された後、分光反射されて我々の目に入る特定波長領域 (nm)と その物質系の色光として発色する色との関係を反射率曲線で表すと、例えば、赤色 系は 600nm以上の全波長領域の反射光で、黄色系は 490nm以上の全波長領域 の反射光で、緑色系は 460〜590nm内の全波長領域の反射光で、青色系は 510 nm以下の全波長領域の反射光で、また、紫色系は緑色系の丁度逆の 460〜590n m内全波長領域が吸収されて、それ以外の全波長領域の反射光等であって、可視 光が照射されて我々が視感する特定色の反射発色 (または反射光色)とは、対応す るこの特定波長領域の反射光色である。粒子サイズが可視光波長領域内(380〜78 Onm)にあることにより、照射された可視光がこの粒子状積層構造物の表面において 、効果的に回折干渉されて、この粒子径 100〜500nmの範囲における特定の粒子 径に係わって、回折干渉されて赤、青、緑等の特定の有彩色を発色する波長領域光 として分光反射される。また、本発明において使用され得る構造色色素においては 、この球状微粒子力 マンセル色票における明度が 5以下の色みの無い黒色系の無 彩色単分散粒子である。これによつて、照射された可視光の一部が、その粒子の周 辺で発生すると思われる目的とする反射光以外の散乱、透過等の迷光を、適宜に効 果的に吸収して削減させる。その結果、効果的に回折干渉した反射光色が、より色 みが鮮明な有彩色として視感させる。
[0139] 本発明において用いられる色素は、好ましくは約 380〜約 780nmにおいて少なく とも部分的(例えば、その 1点、好ましくは例えば、少なくとも約 50nmの波長範囲)、 より好ましくはそのすベての波長に測定可能な吸光度 (例えば、濃度 101(>個 Zml以 上、光路長 lcmでの測定条件下で 0. 1以上)を有する。この波長範囲の上限および 下限は、測定対象、測定条件などによって任意に設定することができ、下限は、 380 nm未満でもあり得、上限は、 780nmを超過し得る。例えば、下限としては、約 100η m、約 110應、約 120nm、約 130nm、約 140nm、約 150應、約 160nm、約 170 nm、約 180nm、約 190nm、約 200nm、約 210nm、約 220nm、約 230nm、約 24 Onm、約 250nm、約 260nm、約 270nm、約 280nm、約 290nm、約 300nm、約 3 10nm、約 320nm、約 330nm、約 340nm、約 350nm、約 360nm、約 370nm、約 380nm、約 390nm、約 400nm、約 410nm、約 420nm、約 430nm、約 440nm、 約 450nm、約 460nm、約 470nm、約 480nm、約 490nm、約 500nm、約 510nm 、約 520nm、約 530nm、約 540nm、約 550nm、約 560nm、約 570nm、約 580n m、約 590nm、約 600nm、約 610nm、約 620nm、約 630nm、約 640nm、約 650 nm、約 660nm、約 670nm、約 680nm、約 690nm、約 700nm、約 710nm、約 72 Onm、約 730nm、約 740nm、約 750nm、約 760nm、約 770nm、約 780nm、約 7 90nmなどが挙げられる。他方、上限としては、約 110nm、約 120nm、約 130nm、 約 140應、約 150nm、約 160nm、約 170nm、約 180應、約 190應、約 200nm 、約 210應、約 220應、約 230nm、約 240nm、約 250nm、約 260應、約 270η m、約 280應、約 290nm、約 300nm、約 310nm、約 320應、約 330nm、約 340 nm、約 350nm、約 360nm、約 370應、約 380應、約 390nm、約 400nm、約 41 Onm、約 420nm、約 430nm、約 440nm、約 450應、約 460nm、約 470nm、約 4 80應、約 490nm、約 500nm、約 510nm、約 520應、約 530nm、約 540nm、約 550應、約 560nm、約 570nm、約 580nm、約 590應、約 600應、約 610nm、 約 620應、約 630nm、約 640nm、約 650nm、約 660應、約 670應、約 680nm 、約 690應、約 700應、約 710nm、約 720nm、約 730nm、約 740應、約 750η m、約 760應、約 770nm、約 780nm、約 790nm、約 800應、約 810nm、約 820 nm、約 830nm、約 840nm、約 850應、約 860應、約 870nm、約 880nm、約 89 Onm、約 900nm、約 910nm、約 920nm、約 930應、約 940nm、約 950nm、約 9 60應、約 970nm、約 980nm、約 990nmなど力挙げられる。
本発明において、粒子は、通常、その粒径が lOnm以上 10 m以下であり得る。 1 つの実施形態では、上記波長範囲において、少なくとも約 50nm、好ましくは lOOnm 、より好ましくは 150nmの範囲にわたって測定可能な吸光度を有し得る。この測定可 能な吸光度を有する波長範囲は、カバ すべき全体の波長範囲が約 150nmを超え る場合(例えば、約 400 、約 600 など)〖こは、約 200 、約 250 、約 300η m、約 350nm、約 400nm、約 450nm、約 500nm、約 550nm、約 600nmなどであ り得る。別の実施形態では、上記波長範囲において、少なくとも異なる 2箇所 (例えば 、 3箇所、 4箇所など)にわたつて少なくともある範囲において、好ましくは約 50nm、よ り好ましくは、少なくとも約 100nm、より好ましくは、約 200nm、約 250應、約 300η m、約 350nm、約 400nmなどの範囲にわたる測定可能な吸光度を有し得る。好まし い実施形態では、上記波長範囲におけるすべての波長について測定可能な吸光度 を有し得る。
[0141] 1つの実施形態では、上記測定可能な吸光度は、濃度 101(>個 Zml以上、光路長 1 cmでの測定条件下で、約 0. 1以上であり得る。好ましくは、この吸光度は、この条件 下で約 0. 2以上であり得る。より好ましくは、この吸光度は、約 0. 3以上、約 0. 4以上 、約 0. 5以上、約 0. 75以上、約 1. 0以上などであり得る。
[0142] このような吸光度の検出は、肉眼による検出または装置を用いた検出であり得る。
装置を用いた測定には、分光光度測定、紫外線吸収測定、赤外線吸収測定、 X線 測定、蛍光強度測定、比濁測定による測定であり得る。
[0143] 1つの好ましい実施形態では、粒子として、 Luminex (登録商標)システムでは、担 体として直径 5. 6 mのポリスチレン製マイクロビーズを使うことができる。ビーズは球 形であるため、一連の反応、洗浄、測定を高効率かつ迅速に行うことが可能である。
[0144] Luminex (登録商標)システムでは、粒子を 、ろ 、ろな濃度に組み合わせた 2色の 蛍光色素で染色し、各蛍光色素の含有量を識別コードとして用いる。具体的には、 各蛍光色素に付き、読取センサで確実に区別可能な、例えば、 10段階の濃度を選 定し、それを掛け合わせることにより 100種類のマイクロビーズを作製する。
[0145] 1つの実施形態にお!、て、ビーズの官能基もまた、任意に付加することができる。 L uminex (登録商標)ビーズには、カルボキシル基をコ—ティングしたビーズとァビジ ンを結合させたビーズの 2種類がある。カルボキシル基がコ—ティングされて!/、るビー ズは、現在最もよく使用されており、末端をァミノ化した DNAやタンパク質などの様々 な物質を結合させることが可能である。また、アビジンがコ一ティングされているビー ズは、ピオチンィ匕された物質をビーズ表面上に結合させることができる。
[0146] 1つの実施形態において、ビーズ識別方法として、例えば、例示的に使用される 10 0種類のビーズは、 2色の蛍光色素(以下、 Fl、 F2とする)量をそれぞれ 10段階設定 し、固有の組み合わせで混合することで作成されている。 Fl、 F2の蛍光波長はそれ ぞれ 657nmと 720nmである。ビーズを識別する際は、フローサイトによって落ちてく るビーズに対し、 635nmのレツドレ—ザで励起する。励起蛍光はそれぞれ 657nm、 720nmのバンドパスフィルタに通され、光センサ(APD:ァバランシュフォトダイォ一 ド)によって電流に変換される。全ての種類のビーズは Fl、 F2の比率が違うため、出 てくる蛍光光量が異なり、 APDによって変換された電流値の違いでビーズが識別さ れる。
[0147] 1つの実施形態では、この色素は、所望の色を有するように調製される。
[0148] 別の実施形態では、使用される色素の前記色は、サブミクロンオーダーの周期構 造の制御をすることによって調整される。異なる色、すなわち異なる効果は、種々の 層の各層の厚みによって得られる。本発明による構造色色素は、例えば、米国特許 3 438796公報、欧州特許出願 227423公報、米国特許 5135812公報、欧州特許出 願 170439公報、欧州特許出願 341002公報、米国特許 4930866公報、米国特許 5641719公報、欧州特許出願 472371公報、欧州特許出願 395410公報、欧州特 許出願 753545公報、欧州特許出願 768343公報、欧州特許出願 571836公報、 欧州特許出願 708154公報、欧州特許出願 579091公報、米国特許 5411586公 報、米国特許 5364467公報、国際特許出願 97/39066公報、独国特許出願 422 5031公報、国際特許出願 95Z17479公報 (BASF)、または独国特許出願 19614 637公報に記載されて 、る。
[0149] 前記色素は、濃度 101(>個 Zml以上、光路長 lcmでの測定条件下で、約 0. 1以上 の吸光度を有して 、てもよ 、。
[0150] 1つの実施形態において、本発明の標識物質は、接触角が 90° 以下の疎水性を 有する。接触角は、本明細書において上記した方法によって測定することができる。
[0151] 1つの実施形態では、本発明の標識物質の色は、高分子と色素とを調整することに よって決定される。調整は、本明細書の記載を参酌すれば、当業者は、容易にその 改変を行うことができる。
[0152] 別の実施形態では、本発明の標識物質は、生体分子と相互作用する能力を有する [0153] 別の実施形態では、本発明の標識物質は、生体分子と複合体を形成する能力を 有する。複合体は、例えば、共有結合による結合、疎水性相互作用による結合であ つてもよく、ファンデルワールス力であってもよい。
[0154] 別の実施形態では、本発明の標識物質は、生体適合性である。生体適合性は、例 えば、実際にインビボ実験の予備実験を行うことによって実施することができる。
[0155] 別の実施形態では、色素は、高分子表面にシランカップリングにより結合されてい る。このカップリングには、トリメチルシランを用いても良い。
[0156] 別の実施形態では、本発明の標識物質は、生体分子の標識に使用するために用 いられる。
[0157] 別の局面において、本発明は、生体分子の標識に使用するための、本発明の標識 物質を含む粒子を提供する。ここで標識物質としては、本明細書において記載される 任意の形態を使用することができる。
[0158] 別の局面において、本発明は、生体分子を捕捉する捕捉担体と、本発明の標識物 質とを含む、標識された捕捉担体を提供する。
[0159] 別の実施形態では、本発明の捕捉担体は、標識物質に結合される。
[0160] 別の実施形態では、本発明の捕捉担体は、標識物質の表面にシランカップリング により結合されている。シランカップリングは、例えば、トリメチルシランによって達成さ れ得る。
[0161] 別の実施形態では、本発明の捕捉担体は、前記標識物質の表面に Si (R1) (R2) ( R3)—O と結合している、ここで R1は疎水性基またはであり、 R2は疎水性基または — O であり、 R3は疎水性基または— O であり得、ここで、 R R2および R3の 1つ、 2つまたは 3つは、 O を有し得る。
[0162] 別の実施形態では、本発明の捕捉担体において、記疎水性基は、非置換または置 換のアルキル、非置換または置換のシクロアルキル、非置換または置換のアルケニ ル、非置換または置換のシクロアルケニル、非置換または置換のアルキニル、非置 換または置換のアルコキシ、非置換または置換の炭素環基、非置換または置換のへ テロ環基、ハロゲン、ヒドロキシ、チォ—ル、シァ入ニトロ、アミ入カルボキシ、力ルバ モイル、ァシル、ァシルァミノ、チォカルボキシ、アミド、置換されたカルボ-ル、置換 されたチォカルボ-ル、置換されたスルホ-ルおよび置換されたスルフィエルからな る群より選択されてちよい。
[0163] 別の実施形態では、本発明の捕捉担体は、標識物質の表面に Si (R1) (R2) (R3) - O と結合している、ここで R1は水素、置換されていても置換されていなくてもよいァ ルキル基または—O であり、 R2は水素、置換されていても置換されていなくてもよ いアルキル基または—O であり、 R3は水素、置換されていても置換されていなくて もよ 、アルキル基または O あってもよ!/、。
[0164] 別の実施形態では、本発明の捕捉担体は、標識物質の表面に Si (R1) (R2) (R3) - O と結合している、ここで、
Figure imgf000050_0001
R2、 R3は、それぞれ、アルキル基またはフッ素化ァ ルキル基であることが最良であり得る。
[0165] 別の実施形態では、本発明の捕捉担体は、抗体または抗体誘導体を含む。 本明 細書において用いられる用語「抗体」は、ポリクローナル抗体、モノクローナル抗体、 ヒト抗体、ヒト化抗体、多重特異性抗体、キメラ抗体、および抗ィディオタイブ抗体、な らびにそれらの断片、例えば F (ab' ) 2および Fab断片、ならびにその他の組換えに より生産された結合体を含む。さらにこのような抗体を、酵素、例えばアルカリホスファ ターゼ、西洋ヮサビペルォキシダーゼ、 αガラクトシダーゼなど、に共有結合させまた は組換えにより融合させてょ ヽ。
[0166] 本明細書中で使用される用語「モノクローナル抗体」は、同質な抗体集団を有する 抗体組成物をいう。この用語は、それが作製される様式によって限定されない。この 用語は、全免疫グロブリン分子ならびに Fab分子、 F (ab' ) 2フラグメント、 Fvフラグメ ント、およびもとのモノクローナル抗体分子の免疫学的結合特性を示す他の分子を 含む。ポリクローナル抗体およびモノクロ ナル抗体を作製する方法は当該分野で 公知であり、そして以下でより十分に記載される。
[0167] モノクローナル抗体は、当該分野で周知の標準的な技術 (例えば、 Kohlerおよび Milstein, Nature (1975) 256 :495)またはその改変(例えば、 Buckら(1982) In Vitro 18 : 377)を使用して調製される。代表的には、マウスまたはラットを、タンパ ク質キャリアに結合したタンパク質で免疫化し、追加免疫し、そして脾臓 (および必要 に応じていくつかの大きなリンパ節)を取り出し、そして単一細胞を解離する。必要に 応じて、この脾臓細胞は、非特異的接着細胞の除去後、抗原でコーティングされたプ レートまたはゥエルに細胞懸濁液を適用することにより、スクリーニングされ得る。抗原 に特異的なィムノグロブリンを発現する B細胞がプレートに結合し、そして懸濁液の残 渣でもリンス除去されない。次いで、得られた B細胞 (すなわちすべての剥離した脾 臓細胞)をミエ口—マ細胞と融合させて、ノ、イブリド—マを得、このハイブリド—マを用 Vヽてモノクロ ナル抗体を産生させる。
[0168] 本明細書において「抗原」(antigen)とは、抗体分子によって特異的に結合され得 る任意の基質をいう。本明細書において「免疫原」(immunogen)とは、抗原特異的 免疫応答を生じるリンパ球活性ィ匕を開始し得る抗原をいう。
[0169] 別の局面において、本発明は、少なくとも 1つの構造色色素により標識された所定 量の高分子を、表面に結合して有している担体微小粒子を含む物品を提供する。
[0170] 1つの実施形態では、担体微小粒子もしくは高分子、または担体微小粒子と高分 子両方が高分子を含む。ここで、好ましくは、担体微小粒子が 0. 1 /ζ πι〜1, 000 ^ mの直径を有する高分子粒子を含んでいても良い。好ましい実施形態では、担体微 小粒子が少なくとも 1つの構造色色素を含む。使用される高分子は、 Inn!〜 100, 0 OOnmの直径を有する高分子粒子力 なる。
[0171] ここで、好ましくは、使用される高分子は、 50重量%以下の架橋剤を含む。
[0172] 1つの実施形態では、使用される高分子が磁石または磁気応答性の金属酸ィ匕物を 含む。
[0173] 1つの実施形態では、使用される高分子がさらに官能基または置換基を含む。
[0174] 別の局面では、本発明は、高分子と色素との複合体とを含む標識物質のセットであ つて、該色素は、 2種類以上の吸収波長を有する色素を有する、セットを提供する。 好ましくは、使用される色素は、構造色色素である、請求項 40に記載のセット。
[0175] 1つの実施形態では、使用される高分子は、接触角が 90° 以下の疎水性を有する
[0176] 別の局面では、セットごとに別の構造色シグナルを持っている高分子の少なくとも 1 セットを担体高分子微小粒子の表面に結合させる工程を包含する構造色物品を製 造する方法を提供する。
[0177] 別の実施形態では、本発明では、別の構造色シグナルが少なくとも 1つの構造色 色素によって提供される。
[0178] 別の実施形態では、本発明では、担体高分子微小粒子もまた構造色色素を含む。
[0179] 別の実施形態では、本発明では、使用される高分子は前記担体高分子微小粒子 に共有結合している。共有結合は、当該分野において周知の方法により実現するこ とがでさる。
[0180] 別の実施形態では、本発明では、高分子のセットが前記担体高分子微小粒子に吸 着によって結合される。吸着は、当該分野において周知の方法により実現することが できる。
[0181] 別の実施形態では、本発明では、前記構造色物品が高分子シェルによって囲まれ る。シェルによる包埋は、当該分野において周知の方法により実現することができる。
[0182] 1つの局面において、本発明は、高分子と色素との複合体とを含む、標識粒子を製 造する方法を提供する。この方法は、 A)色素と高分子とを含む混合物を材料射出管 中に提供する工程であって、該材料射出管は流体を含む流体環境提供管中に存在 する、工程; B)流体環境提供管において流体が流れる中、該混合物を該材料射出 管から粒子形成管へと射出する工程;および C)粒子形成管において形成された粒 子を回収する工程、を包含する。
[0183] 別の局面において、本発明は、高分子と色素との複合体とを含む、所望の特性を 有する標識粒子を製造する方法を提供する。この方法は、 A)色素と高分子とを含む 混合物を材料射出管中に速度 Δνで提供する工程であって、該材料射出管は流体
0
を含む流体環境提供管中に存在し、一方に材料射出口および他方に射出口を備え
、該射出口は直径 Αρを有する、工程; Β)流体環境提供管において流体が速度 Δν で流れる中、該混合物を該材料射出管から粒子形成管へと速度 Δν で射出する
W ΟΤ
工程であって、該粒子形成管は混合物を受け取る開口部を有し該開口部は直径 As を有し、該粒子形成管は該射出口から距離 dのところに存在する、工程;および C)粒 子形成管において形成された粒子を回収する工程、を包含し、ここで、 d、 Δν、
0 Δ
V および ΔΥ を調整することによって、所望の特性が得られる。 [0184] 別の局面において、本発明は、高分子と色素との複合体とを含む、標識粒子を製 造する装置を提供する。この装置は、 a)該色素と該高分子とを含む混合物を提供し 得る材料提供手段 (図 6で ヽぅ 1); b)該色素と該高分子とを含む該混合物を保持し 得る材料射出管(図 6でいう 0)であって、該材料射出管は、材料提供手段から材料 の提供を受けるための開口部(図 6で 、う orifice 1)と、材料を射出するための射出開 口部とを備える、材料射出管; c)流体環境提供管(図 6でいう 3)であって、該流体環 境提供管はその中に提供される流体 (図 6でいう 4)中に該材料射出管を収容し、流 体提供開口部を備える、流体環境提供管; d)流体環境提供管に提供される流体量 を調整する流体量調整手段(図 6でいう 8) ;e)該材料射出管カゝら射出される材料を 受けるための粒子形成管((図 6で 、う 6) );および f)該粒子形成管にお!、て形成さ れた標識粒子を収容するための容器(図 6でいう 7)、を備える。
[0185] 別の局面において、本発明は、試料内に少なくとも 1つの分析物の存在または不存 在を決定する方法を提供する。この方法は、(a)少なくとも 1つの構造色標識された 粒子と分析物のそれぞれに相互作用する力または反応する少なくとも 1つの分析反 応物とを表面に備えた粒子と、試料とを混合して反応混合液を作製する工程;(b)該 分析物に反応したかまたは相互作用した該粒子を分析し、該試料内に該分析物が 存在するカゝしないかを確定する工程、を包含する。
[0186] 1つの好ましい実施形態では、本発明の方法は、上記粒子の量が既知量であり、 混合工程 (a)がさらに、反応混合液中に所定量の競合分子を混合する工程を包含 する。
[0187] 1つの好ましい実施形態では、本発明の方法は、分析工程 (b) 1S フローサイトメトリ 一、 ELISA (例えば、発色 ELISA,化学発光 ELISA,酵素結合蛍光免疫アツセィ( ELFIA)および解離増強ランタノイド FIA(DELFIA)、フォトエンコードビーズ)、ゥェ スタンプロット、蛍光測定、発光測定または電気化学発光測定を用いて分析するェ 程を包含する。
[0188] 1つの好ましい実施形態では、本発明の方法は、(c)前記粒子の量が既知量であり
、前記分析物を既知量の基準物質と比較する工程をさらに含む。
[0189] 1つの好ましい実施形態では、本発明の方法の分析物は、抗原、抗体、レセプター 、ハプテン、酵素、タンパク質、ペプチド、核酸、薬剤、ホルモン、化学物質、高分子 、病原体、毒素、およびそれらの組合せからなる群から選択される。
[0190] 1つの好ましい実施形態では、本発明の方法では分析反応物が分析物の結合対 を含む。使用される結合対は任意のものであり得る。
[0191] 1つの好ましい実施形態では、本発明の方法では、競合分子が、各分析反応物と 分析物との結合を妨げる分子を含む。このような競合分子は、当該分野において周 知である。
[0192] 1つの好ましい実施形態では、本発明の方法では、基準物質が、それぞれの分析 反応物との相互作用または反応において分析物と本質的に同一である。
[0193] 別の局面において、本発明は、試料内において、複数の分析物を検出する方法を 提供する。この方法は、 a)構造色色素および該分析物に特異的な分析反応物を含 む、複数の構造色粒子を含む構造色粒子集団であって、該構造色粒子は、該分析 反応物の種類に応じてそれぞれが異なる色を有し、該分析反応物が特異的に試料 内の 1つの分析物に相互作用または反応する、構造色粒子集団を、試料と接触させ る工程、 b)該構造色色素の色を検出することにより、該分析反応物が分析物と相互 作用または反応したかどうかを分析する工程を包含し、ここで、分析物は、該分析反 応物を含む構造色粒子の色によって識別される。
[0194] 1つの好ましい実施形態では、本発明の方法は、フローサイトメトリー、 ELISA、ゥェ スタンプロット、蛍光測定、発光測定または電気化学発光測定を実現する手段により 実現される。このような手段は、市販されているものを利用しても良ぐ当該分野にお Vヽて周知の技術を用いて自作してもよ!、。
[0195] 1つの好ましい実施形態では、本発明の方法では、構造色粒子の集団は、さらに、 それらのサイズと形状によって決定される。
[0196] 1つの好ましい実施形態では、本発明の方法は、構造色粒子がさらに磁性体を含 む。
[0197] 別の局面において、本発明は、対象とする複数の分析物の検出用に適したキットを 提供する。このキットは、 A)構造色色素および該分析物に特異的な分析反応物を含 む、複数の構造色粒子を含む構造色粒子集団であって、該構造色粒子は、該分析 反応物の種類に応じてそれぞれが異なる色を有し、該分析反応物が特異的に試料 内の 1つの分析物に相互作用または反応する、構造色粒子集団;および B)該分析 反応物を検出するための検出手段
を包含する。
[0198] 本明細書において「キット」とは、通常 2つ以上の区画に分けて、提供されるべき部 分 (例えば、試薬、酵素、铸型核酸、標準など)が提供されるユニットをいう。混合され て提供されるべきでなぐ使用直前に混合して使用することが好ましいような組成物 の提供を目的とするときに、このキットの形態は好ましい。そのようなキットは、好ましく は、提供される部分 (例えば、試薬、酵素、ヌクレオチド、標識されたヌクレオチド、伸 長反応を止めるヌクレオチドなど(およびその三リン酸)、铸型核酸、標準など)をどの ように処理すべき力を記載する説明書を備えていることが有利である。本明細書にお いてキットが試薬キットとして使用される場合、キットには、通常、試薬成分、緩衝液、 塩濃縮液、使用するための補助手段、使用方法を記載した指示書などが含まれる。
[0199] 本明細書において「指示書」は、本発明の試薬の使用方法、反応方法などを使用 者に対して記載したものである。この指示書は、本発明の酵素反応などの手順を指 示する文言が記載されている。この指示書は、必要に応じて本発明が実施される国 の監督官庁が規定した様式に従って作成され、その監督官庁により承認を受けた旨 が明記される。指示書は、いわゆる添付文書 (package insert)であり、通常は紙媒 体で提供されるが、それに限定されず、例えば、瓶に貼り付けられたフィルム、電子 媒体 (例えば、インターネットで提供されるホームページ (ウェブサイト)、電子メール) のような形態でも提供され得る。
[0200] 1つの実施形態では、本発明のキットにおいて、検出手段は、分析反応物と特異的 に反応する抗体である。このような抗体は、任意に選択することができる。
[0201] 1つの実施形態では、本発明のキットは、分析物に対する前記分析反応物との特 異的結合反応と競合することができる競合分子をさらに含む。
[0202] 1つの実施形態では、本発明のキットは、分析反応物のそれぞれと結びつく分析物 と本質的に同一である基準物質をさらに含む。
[0203] 別の実施形態では、本発明のキットは、バイオ反応のための試薬をさらに含む。こ のような試薬には、緩衝液、必要なイオン濃縮液、塩濃縮液、 pH調整剤などを挙げ ることができるがそれらに限定されない。
[0204] 本発明のキットにおいて、種々の構成要件が採るべき状態は、本発明の他の形態 において詳述される任意の形態を採り得ることが理解される。
[0205] 本明細書において引用された、科学文献、特許、特許出願などの参考文献は、そ の全体が、各々具体的に記載されたのと同じ程度に本明細書において参考として援 用される。
[0206] 以上のように、本発明の好ましい実施形態を用いて本発明を例示してきた力 本発 明は、この実施形態に限定して解釈されるべきものではない。本発明は、特許請求 の範囲によってのみその範囲が解釈されるべきであることが理解される。当業者は、 本発明の具体的な好ましい実施形態の記載から、本発明の記載および技術常識に 基づいて等価な範囲を実施することができることが理解される。本明細書において引 用した特許、特許出願および文献は、その内容自体が具体的に本明細書に記載さ れているのと同様にその内容が本明細書に対する参考として援用されるべきであるこ とが理解される。
[0207] (実施例 1:構造色色素を含むビーズの作製)
(方法および材料)
ポリスチレン(PS、分子量 158K)は、 Yangtze Petrochemical Co. , Ltd.力 ら入手した。ポリ(ビュルアルコール)(PVA) (重合度: 500)は、 VAM & POVAL Co. , Ltd, 日本から入手した。ベンゼンおよび 1, 2—ジクロロェタンは、 Shiyi Che mical Reagent Co. , LTDおよび Jiuyi し hemical Reagent Co. , Ltd;gらそ れぞれ購入した。ノーノレ顔料は、 Dongzhu Pearlescent Pigments Manufact uring Co. , Ltd.から入手した。トリメチルクロロシランは、 Sinopharm Chemical
Reagent Co. , Ltd.力 購入した。 3種類の IgG (ヒト、ゥサギおよびマウス)、セィ ヨウヮサビペルォキシダーゼ(HRP)—ャギ抗ヒト IgGおよび 3種類のフルォレセイン イソチオシァネ一 HFITC) (ャギ IgGにタグイ匕されている)(抗ヒトおよび抗ゥサギ)は 、 Biodee Biotechnology Co. , LTD, Beijing力も購入した。発色液は、 Shen Zhen Sciarray Biotech Co. , LTD, Shenzhen力ら入手した。リン酸緩衝 化生理食塩水(PBS pH7. 4)、リン酸緩衝化生理食塩水 Tween— 20 (PBST, P BS中 0. 05% tween— 20)および重炭酸ナトリウム緩衝液(SCB pH9. 6)は、自 分で調製した。二回蒸留水を実験に使用した。
[0208] (装置)
小滴生成器(図 6)を用いて、パール顔料を含むポリスチレンビーズを調製した (24 ) oこの生成器の原理は、ガラスのオリフィスを通る水相(流体相)ポリ(ビュルアルコー ル)溶液の流れが、油相ポリスチレン溶液と合流して小滴が生成されるというものであ る。小滴中の有機溶媒をロータリーエバポレーターによりエバポレートした後、小滴を ポリスチレンビーズに当てた。
[0209] 小滴中の有機溶媒がロータリーエバポレーターでエバポレートされた後、固化し、 小滴をポリスチレンビーズに合流させた。カラービーズのデジタル画像は、 EPSON PERFECTION 1670スキャナを用いて走査することによって得た。走査型電子顕 微鏡(SEM)による観察は、 HITACHI S— 3000N Scanning Electron Micr oscopeを用いた。明野および蛍光顕微鏡画像は、 Leica TCSSP II共焦点レ— ザ走査顕微鏡 (CLSM)を用いた。
[0210] (ビーズの調製)
光「エンコード」されたビーズを、図 6において示される小滴で調製した。ポリスチレ ンをベンゼン: 1, 2—ジクロロェタン(2 : 3)の混合液中に溶解し、 7%濃度のビーズを 調製し、使用前にガラスフィルターで濾過した。トリメチルクロロシランで前処理した「 パール顔料」をポリスチレン溶液中に連続的攪拌を伴 ヽながら一晩浸した。ポリスチ レン溶液を連続して、チューブの中にあるオリフィスに供給し、そこで、 5%PVAを含 む水溶液の安定した流れを作り出した。ポリマー溶液の供給をオリフィスを通じて供 給すると、 PVA水溶液における小滴を生じた。これをビーカーに集めた。ロータリー エバポレーシヨンを用いて、小滴中のベンゼンおよび 1, 2—ジクロロェタンをエバポ レートし、固化させた。エバポレーシヨン温度は、 10分あたり 5°Cとし、室温から 70°C まで上昇させた。最後に、固化させたビーズを 1回 15分で 8回、超音波洗浄を行い、 その後、ビーズ表面の PVAを取り除くために流れアツセィを行った。
[0211] (結果および考察) 本発明者らが開発した小滴溶媒エバポレーシヨン方法を用いて、エンコードしたポ リスチレンビーズを、種々の均一色および平滑な表面を有するように製造することが できた(図 9)。
[0212] ビーズの色は、構造色色素であるパール顔料に由来する。これは、酸ィ匕チタンフィ ルムのような酸ィ匕金属フィルムの層をその表面に備える雲母の板力 構成される。色 素の照射光は、空気 Z酸化金属および酸化金属 Z雲母の界面において反射される 。反射光の干渉によって、一定の色が生じる。これは、酸化金属フィルムの厚さに依 存する。酸ィ匕金属層の厚さにおける変動により、パール顔料の色が変わる(図 11)。 このような種類の色素は、酸またはアルカリを有し得、従って、 800°Cまでの温度に耐 え得、光照射に安定であり、人体に無害である。従って、有機または蛍光色素を使用 する他のエンコード方法とは異なり、光脱色、消光、光不安定性、化学不安定性とい う欠点は、本発明を用いることによって解決される。
[0213] 図 11Aは、赤色パール顔料粉末の SEM画像である。粉末は、 10〜60のサイズで を有するフレーク力もなる。フレークは不規則な形状および表面形態を有するので、 ソートし、固定するのは困難である。カロえて、フレークが直接指示体として生物学的ァ ッセィまたは化学アツセィに用 ヽられる場合、コ―ド読み出し光学システムは解像度 が高くなければならない。別の問題は、パール顔料のフレークをバイオアツセィに用 いた場合、凝集、集積が検出の間に生じる。これは、標的分子が、フレーク表面にお けるプローブ分子を有する溶液中で反応しないようにさせ得る。これらの問題は、パ ール顔料を高分子粒子に埋め込むことによって解決され、そしてこの粒子をプローブ 分子担体として検出に用いることができる。パール顔料を埋め込むのに使用した高 分子は、ポリスチレンであり、これは、疎水性相互作用力によって主にタンパク質につ いて高い親和性を有する。ポリスチレンは、ィムノアツセィのマイクロタイタープレート の製造にぉ 、て通常用いられて 、るものである。
[0214] 小滴生成器において、ポリスチレン溶液をオリフィス力 搾り出すと、これは、 PVA 溶液の流れにぉ 、て、表面エネルギ を減少させるために表面張力のために粒状 · 球状の小滴となる。
[0215] 小滴のサイズは以下の 4パラメータに依存する:オリフィスのキヤリパー(c)、ポリスチ レンの速度 (v ) (一般的には vと示す。 )、 PVAの速度 PVA(v ) (一般的には V と示
PS PVA W
す。)およびガラス管とオリフィスとの間の距離 (d)。一般に、小滴サイズは、 V が増え
PS
ると増加し、 V が減少すると増加し、あるいは、 dが増加すると増加する。エンコード
PVA
されたポリスチレンビーズのサイズはまた、ポリスチレンの溶液中の濃度に応じて増加 する。これまで、 0. lmm〜3mmの直径範囲のビーズがこれらのパラメータを用いて 製造された(図 7)。これらの制御パラメータのうち、本発明者らは、本実験で用いたポ リスチレンの速度制御によって再現性よぐかつ、制御性よぐ大きな範囲の異なるサ ィズでビーズを製造することができることが見出した。図 8Aは、製造される粒子のサ ィズが、 V (V )に依存 (比例)することを示す。図 8Bは、製造される粒子のサイズが、 ps o
V (v )に逆比例することを示す。図 8Cは、製造される粒子のサイズ力 dに依存(
PVA W
比例)することを示す。製造のためのポリスチレン濃度は、 7%、 c = 200マイクロメート ル、 vPVA= 25mlZ分であり、かつ、 d=0. 5mmであった。ビーズの直径は、ポリス チレンの注入速度が 20 μ 1Ζ分のとき 110 μ mであり、ビーズのサイズは、流速を 15 0 1/分にまで増大させたときに 0. 70mmまで増えた。ビーズサイズは、ポリマー溶 液 V の流速に線形的に依存する。従って、製造前にビーズサイズを想定しておくこと ps
は容易である。ビーズサイズの多様性は、異なる実験において 4. 8%もの低さに制 御され得る。その理由は、 vPS力 比較的低ぐそして正確な注入ポンプによって制 御され得るからである力 他方で、 dは、さらなる測定デバイスおよび PVAの流入を必 要とするからである。
バイオアツセィ適用において、表面は、生体分子の固定に多大に影響する。結果と して、ィムノアツセィに影響する。一般的に、高結合能を有し平滑であり、かつ、固定 された生体分子が活性を保持し得る表面が所望される。構造色色素が埋め込まれた 粒子については、エンコードするための色素がビーズ表面に存在するとき、それは、 粗い面を生じ、そして生体分子がビーズ表面に結合することに影響する。従って、ビ ーズ均一性を制御し、そして多大な表面化学を提供するために、ビーズは球面であ り、そして構造色色素はビーズ表面に存在しないべきであることが好ましい。製造に おいて、本発明者らは、構造色色素の濃度およびその湿潤性は、ビーズ表面に影響 を与えることを見出した。まず、構造色色素の高分子溶液中の濃度は、高すぎるべき でない。図 11Aは、 20mgZndパール顔料を用いて製造したビーズを示す。ビーズ は、この濃度で不規則形状を示すことが観察された。実験によって、パール顔料の濃 度が 20mgZml未満である場合に、球状ビーズが製造されることが見出された。図 1 1Bは、 0. 6mgZmlを含むポリマー溶液を用いて製造したビーズを示す。ビーズが 球状であることが見出される。ビーズ形状に影響する別の因子としては、パール顔料 の湿潤性が挙げられる。パール顔料の表面が親水性である酸ィ匕物であることから、 ベンゼンおよび 1, 2—ジクロロェタンのような油状の相ではなぐ水性の相溶液中で 安定であることが好ましい。従って、ポリマー溶液小滴と水溶液との間の界面へとパ ール顔料が移動する。この場合、パール顔料は、固化の後ビーズの表面にとどまり、 ビーズの表面が粗く成り得る。そのような減少は、パール顔料の表面を親油性にする ことによって回避され得、そして油溶液を安定ィ匕させる。図 11Cは、トリメチルクロロシ ランを用いて改変されたパール顔料を用いて製造されたビーズを示す。パール顔料 は、ビーズ表面から消え、表面はスムーズになる。
[0217] このような構造色色素が製造されたのは、従来無かったことである。
[0218] (実施例 2 :他の高分子)
次に、本発明者らは、ポリメチルメタタリレート(PMMA)およびカルボキシポリスチ レンのビーズにパール顔料のフォトニック結晶を埋め込ませる。これらについても同 様の結果が得られる。
[0219] (実施例 3 :多重検出)
実施例 1にお!、て製造した粒子を用いて以下のバイオ実験を行った。
[0220] (タンパク質吸着および多元バイオアツセィ)
超音波洗浄したビーズおよび単なるビーズを、室温でインキュベートした後 100 1 のヒト IgG dO /z g/ml)とともに 4°Cでインキュベートした。ビーズを PBS緩衝液 (pH 7. 4)で 3回洗浄した(各回 5分)。ゥシ血清アルブミン(BSA, PBS中 1%)をビーズ 表面に 2時間加えてブロッキングした。 PBSで洗浄した後、 HRPタグイ匕したャギ抗ヒト IgG (1 : 20000)をビーズに加え、そして 1時間 37°Cでインキュベートした。次いで、 このビーズを PBSTで洗浄し、そして PBSで 1回当たり 5分間で 3回連続して洗浄した 。最後に、発色溶液 (例えば、アビジン、ストレプトアビジンなど)を加えて、発色反応 を行わせ、そしてマイクロウェルプレートに移して検出に使用した。
[0221] 100 1の SCB緩衝液 (0.05mol/L炭酸重炭酸緩衝液; l,000mL中炭酸水素ナトリ ゥム 3.0 g、炭酸ナトリウム 1.5 g、水残量 pHを 9.6に調整する。 )中(pH9. 6)中でのヒ ト IgG lO /z g/ml)、ゥサギ IgG lO /z g/ml)およびマウス IgG lO /z g/ml)を、それぞれ赤、 黄色および緑のポリスチレンビーズ (約 400 m)に加えてカ卩えた。同じタンパク質吸 収およびブロッキングプロセスを上記同様に行った後、ビーズを一緒にして、 FITCタ グ化ャギ抗ヒト IgGおよびャギ抗ゥサギ IgGを含む溶液の存在下で連続的に 1時間 揺らすことによって 37°Cでインキュベートした(PBSにより 1 : 100希釈)。次いで、ビ ーズを PBSTで洗浄し、次いで 1回当たり 5分間で 3回 PBSで洗浄した。蛍光イメージ を Laser Scanning Confocal Microscope (LSCM)で、励起波長 488nmで 、かつ、発光波長 500— 530nmで捉えた。
[0222] (結果および考察)
本発明者らのポリスチレンビーズは、 PVAの溶液中で形成され、それは、水溶液中 で油状の小滴の安定化剤として作用する。 PVAは、ビーズの表面に結合し、これに より、タンパク質分子の吸着を減少させる。従って、 PVAは、タンパク質固定の前にビ ーズ表面カゝら除去されるべきである。本発明者らは、反復して超音波洗浄を行って、 PVAをビーズ表面力 取り除いた。本発明者らは、定量的に、反復して超音波洗浄 の効果を評価した。これは、 ELISAにて評価した。ポリスチレンビーズは、ヒト IgGで コ—ティングし、そして HRP標識したャギ抗ヒト IgGで検出した。酵素が発色を触媒 下の地、タンパク質吸着効果は、色の深さによって観察される。より濃い色は、タンパ ク質分子がより多く吸着されていることを意味する。図 12において、反復して超音波 洗浄したビーズと 2回フラッシュしたビーズとの間のタンパク質固定の相違(5回反復 した)を示す。反復した超音波洗浄後、はるかに濃い色が発色し、そしてより多くのタ ンパク質分子がビーズに固定された。本発明者らの実験において、 8回(1回 15分) の超音波洗浄によって、この条件が達成された。
[0223] この実験にぉ 、て、単純な方法を用いて抗体分子をポリスチレンビーズ表面に、物 理的吸着させることによって固定することに成功した。
[0224] 多重検出は、しばしば、生物学的サンプルにおいて同時に多数の分析物の機能ま たは構造を効率よく検出するための方法としてよく選択される。同時多重分析アツセ ィ(SMIA)では、 2以上の分析物が単一のアツセィにおいて同時に測定され、これは 、面器アツセィ方法において顕著な効果であると評価されている。 SMIAは、余りサ ンプルを使用せず、アツセィが微小化でき、試験の性能が増加し、コストが下げられ るので好ましい。
[0225] 以上のように、本発明の好ましい実施形態を用いて本発明を例示してきた力 本発 明は、特許請求の範囲によってのみその範囲が解釈されるべきであることが理解され る。本明細書において引用した特許、特許出願および文献は、その内容自体が具体 的に本明細書に記載されているのと同様にその内容が本明細書に対する参考として 援用されるべきであることが理解される。
[0226] (参考文献)
丄. Battersby, B.; Trau, M., Novel miniaturized systems in high-throughput scree ning. TRENDS IN BIOTECHNOLOGY 2002, 20, (4), 167-173.
2. Verpoorte, E., Beads and Chips: new recipes for analysis. LAB ON A CHIP 20 03,3, (4), 60N-80N.
3. Braeckmans, K.; De Smedt, S.; Leblans, M.;Pauwels, R.; Demeester, J., Enco ding microcarriers: Present and future technologies. NATURERE VIEWS DRUG DIS COVERY 2002, 1, (6), 447-456.
4. Cullen, C. J.; Wootton, R. C. R.; de Mello, A. J., Micro fluidic systems for hig h— throughput and combinatorial chemistry. Current Opinion in Drug Discovery& De velopment 2004, 7, (6), 798—806.
5. Ferguson, J.; Steemers, F.; Walt, D., High-density fiber-optic DNA random m icrosphere array. ANALYTICAL CHEMISTRY 2000, 72, (22), 5618-5624.
6. Fulton, R. J.; McDade, R. L.; Smith, P. L.; Kienker, L. J.; John R. KettmanJ., Advanced multiplexed analysis with the Flow MetrixTM system. CLINICAL CHEMI STRY 1997, 43, 1749-1756.
7. Fenniri, H.; Hedderich, H.; Haber, K.; Acnkar, J.; Taylor, B.; Ben— Amotz, D. , Towards the DRED of resin-supported combinatorial libraries: A non-invasive meth odology based on bead self-encoding and multispectral imaging. ANGEWANDTECH EMIE— INTERNATIONAL EDITION 2000, 39, (24), 4483-4485.
8. Han, M.; Gao, X·; Su, J.; Nie, S., Quantum-dot-tagged microbeads for multipl exed optical coding of biomolecules. NATURE BIOTECHNOLOGY 2001, 19, (7),63 1-635.
9. Nicewarner— Pena, S. R.; Freeman, R. G.; Reiss, B. D.; He, L.; Pena, D. J.;Wa lton, I. D.; Cromer, R.; Keating, C. D.; Natan, M. J., Submicrometer metallic barco des. Science 2001, 294, (5540), 137-141.
10. Cunin, F.; Schmedake, T.; Link, J.; Li, Y.; Koh, J.; Bhatia, S.; Sailor, M.,Bio molecular screening with encoded porous-silicon photonic crystals. NATURE MATE RIALS 2002, 1,(1), 39-41.
11. Pantano, P.; Meek, C; Wang, J.; Coutinho, D.; Balkus, Κ·, Optical encoding with shaped DAM— 1 molecular sieve particles. LAB ON A CHIP 2003, 3,(2),132— 13 5.
12. Vaino, A. R.; Janda, K. D., Euclidean shape-encoded combinatorial chemical 1 ibraries. Proceedings of the National Academy of Sciences of the United States of A merica 2000, 97, (14), 7692-7696.
13. Xu, H. X·; Sha, M. Y.; Wong, E. Y.; Uphoff, J.; Xu, Y. H.; Treadway, J. A.;Tr uong, A.; O'Brien, E.; As quit h, S.; Stubbins, M.; Spurr, N. Κ·; Lai, E. H.;Mahoney, W., Multiplexed SNP genotyping using the Qbead (TM) system: a quantum- dot- enc oded microsphere- based assay. Nucleic Acids Research 2003, 31, (8), e43.
14. Chen, Z.; Tsai, J.; Merriman, B.; Chen, J.; Kim, C; Nelson, S., Shape encode d particles for biological probes. American Journal of Human Genetics 2003, 73,(5), 434-434.
15. Meiring, J. E.; Schmid, M. J.; Grayson, S. M.; Kirby, R.; Manthiram, Κ·; Hsia, B. I.; Ellington, A. D.; Willson, C. G., Development of a shape-encoded self— assem bled hydrogel biosensor array. Abstracts of Papers of the American Chemical Societ y 2004, 227, U515— U515. 16. Moran, E. J.; Sarshar, S.; Cargill, J. F.; Shahbaz, M. M.; Lio, A.; Mjalli, A.M. M.; Armstrong, R. W., Radio Frequency Tag Encoded Combinatorial Library Metho d for the Discovery of Tripeptide— Substituted Cinnamic Acid Inhibitors of the Protei n Tyrosine Phosphatase PTPIB Journal of the American Chemical Societyl995, 117,
10787-10788.
17. Fu, A. Y.; Spence, C; Scherer, A.; Arnold, F. H.; Quake, S. R., A micro fabr icated fluorescence-activated cell sorter. NATURE BIOTECHNOLOGY 1999, 17, 1 109-1111.
18. http: 11 www.dpcweb . com/ .
19. www.bangslabs.com.
20. Park, M. Κ·; Briles, D. E.; Nahm, M. Η·, A latex bead-based flow cytometric i mmunoassay capable of simultaneous typing of multiple pneumococcal serotypes(mul tibead assay). Clinical and Diagnostic Laboratory Immunology 2000, 7, (3),48b-489.
21. Harma, H.; Aronkyto, P.; Lovgren, Τ·, Multiplex immunoassays onsize— catego rized individual beads using time-resolved fluorescence. Analytica Chimica Acta 200 0, 410, (1-2), 85-96.
22. Battersby, B. J.; Lawrie, G. A.; Trau, M., Optical encoding of microbeads for gene screening: alternatives to microarrays. Drug Discovery Today 2001, 6,(12), ύ丄 9-S26.
23. CZARNIK, A. W., Encoding methods for combinatorial chemistry. CURRENT OPINION IN CHEMICAL BIOLOGY 1997, 1, 60-66.
24. Nagai, K.; Nakajima, M.; Norimatsu, T.; Izawa, Y.; Yamanaka, 丁 ·, Solvent rem oval during curing process or highly spheric and monodispersed— sized polystyrene ca psules from density-matched emulsions composed of water and benzene/1,2— dichlor oethane. Journal of Polymer Science: Part A: Polymer Chemistry 2000, 38, 3412—34 18.
25. Kettman, J.; Davies, T.; Chandler, D.; Oliver, Κ·; Fulton, R., Classification a nd properties of 64 multiplexed microsphere sets. CYTOMETRY 1998, 33, (2),234- 243.
26. Lawrie, G. A.; Battersby, B. J.; Trau, M., Synthesis of optically complex core -shell colloidal suspensions: Pathways to multiplexed biological screening. Advanced
Functional Materials 2003, 13, (11), 887-896.
27. Yamada, Y.; Sakamoto, T.; Gu, S.; Konno, M., Soap-free synthesis for produc ing highly monodisperse, micrometer-sized polystyrene particles up to 6 μ m. Journ alof Colloid and Interface Science 2005, 281, (1), 249-252.
28. Braeckmans, K.; De Smedt, S.; Roelant, C; Leblans, M.; Pauwels, R.; Demee sterj., Encoding microcarriers by spatial selective photobleaching. NATURE MATE RIALS 2003, 2, (3), 169—173·
29. Moreira, R.; Havranek, M.; Sames, D., New fluorogenic probes for oxygen and carbene transfer: A sensitive assay for single bead-supported catalysts.JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 2001, 123, (17), 3927—3931·
30. Moreira, R.; Havranek, M.; Sames, D., New Fluorogenic Probes for Oxygen a nd Carbene Transfer: A Sensitive Assay for Single Bead-Supported Catalysts. 2001, 123 (17), 3927 -3931·
31. Vignali, D. A., Multiplexed particle-based flow cytometric assays. J Immunol Methods 2000, 243, (1-2), 243-55.
32. Harma, H.; Pelkkikangas, A. M.; Soukka, T.; Huhtinen, P.; Huopalahti, S.;Lo vgren, Τ·, Sensitive miniature single-particle immunoassay of prostate-specific antig en using time-resolved fluorescence. Analytica Chimica Acta 2003, 482, (2), 157-16 4.
33. Kusnezow, W.; D.Hoheisel, J., Solid supports for microarray immunoassays. J OURNAL OF MOCULAR RECOGNITION 2003, 16, 165—176.
34. Vynios, D. H.; Vamvacas, S. S.; Kalpaxis, D. L.; Tsiganos, C. P., Aggrecan i mmobilization onto polystyrene plates through electrostatic interactions with spermi ne. Analytical Biochemistry 1998, 260, (1), 64—70.
35. Efficient Immobilization of Proteins by Modification of Plate Surface with Polys tyrene Derivatives ANALYTICAL BIOCHEMISTRY 1997, 247, 412-416.
36. Mason, M.; Vercruysse, K. P.; Kirker, K. R.; Frisch, R.; Marecak, D. M.;Pres twich, G. D.; Pitt, W. G., Attachment of hyaluronic acid to polypropylene, polystyre ne, and polytetrafluoroethylene. Biomaterials 2000, 21, 31—36.
37. Godfrey, S. P.; Kinmond, E. J.; Badyal, J. P. S., Chemistry of Materials 2001, 13, 513-518.
38. Su, X.; Zhang, J.; Sun, L.; Koo, T.; Chan, S.; Sundararajan, N.; Yamakawa, M .;Berlin, A., Composite organic-inorganic nanoparticles (COINs) with chemically en coded optical signatures. NANO LETTERS 2005, 5, (1), 49—54.
39. Gooding, C; Choudary, P., Detection of Escherichia coli 0157: H7 in groun d beef in eight hours. JOURNAL OF MICROBIOLOGICAL METHODS 1998, 34, (2 ), 89-98.
40. Goodey, A.; Lavigne, J.; Savoy, S.; Rodriguez, M.; Curey, T.; Tsao, A.;Simm ons, G.; Wright, J.; Yoo, S.; Sohn, Y.; Anslyn, E.; Shear, J.; Neikirk, D.;McDevitt, J., Development of multi analyte sensor arrays composed of chemically derivatized p olymeric microspheres localized in micromachined cavities. JOURNAL OF THE AM ERICAN CHEMICAL SOCIETY 2001, 123, (11), 2559-2570.
4丄. Zhu, H.; Snyder, M., Protein arrays and microarrays. Current Opinion in Che mical Biology 2001, 5, 40-45.
産業上の利用可能性
本発明者らは、構造色色素を用いたユニークな光学的特性を利用して多重ェンコ ード戦略を提供する。小滴生成器によって、本発明者らは、均一にエンコードされた ポリスチレンビーズを得ることができ、これは、溶媒エバポレーシヨン方法による。単純 な多重免疫アツセィは、コ―ドが安定であり効率よいことを実証した。表面改変および 多種類の検出方法は、エンコードされたビーズに適用可能であった。本発明者らは、 単純で費用効果の高いエンコード戦略がゲノム研究、プロテオーム研究、薬物探索 、臨床診断およびコンビナトリアルケミストリにおいて用いられることを実証する。一般 的な臨床診断、低スループットアツセィ、ピペットなどの用途には、単一のビーズが「 マイクロラボ」として機能するに十分である。

Claims

請求の範囲
[I] 高分子と構造性発色特性を有する色素との複合体とを含む、標識物質。
[2] 前記高分子は、水との接触角が 90° 以上の疎水性を有する、請求項 1に記載の標 識物質。
[3] 前記高分子は、シリカゲル、ポリプロピレン、ポリウレタン、ポリスチレン (PS)、ポリメチ ルメタタリレート(PMMA)、テトラフルォロエチレンン、ポリー4ーメチルペンテン 1 、ポリベンジルメタアタリレート、ポリフエ-レンメタタリレート、ポリシクロへキシノレメタタリ レート、ポリエチレンテレフタレート、スチレン'アクリロニトリル共重合体、ポリ塩化ビ- ル、ポリ塩化ビ-リデン、ポリ酢酸ビュル、ポリビュルアルコール、ポリイミド、ポリアミド 、ポリエチレングリコール、ポリアクリル酸、ポリメタクリル酸およびそれらの共重合体か らなる群より選択される、請求項 1に記載の標識物質。
[4] 前記高分子は、ポリスチレンである、請求項 1に記載の標識物質。
[5] 前記高分子は、油溶性である、請求項 1に記載の標識物質。
[6] 前記高分子は、生体分子と特異的に相互作用し得る、請求項 1に記載の標識物質。
[7] 前記高分子は、前記色素の色調に影響を与えない分子である、請求項 1に記載の標 識物質。
[8] 前記高分子は、前記色素の色調に影響を与え、その結果所望の色を呈する、請求 項 1に記載の標識物質。
[9] 前記色素は、構造性発色特性を有しない色素をさらに含む、請求項 1に記載の標識 物質。
[10] 前記色素は、光の干渉、回折および散乱作用のうちの少なくともいずれかの作用に 基づ 1ヽて発色することを特徴とする、請求項 1に記載の標識物質。
[II] 前記色素は、雲母と酸化物とを含む、請求項 1に記載の標識物質。
[12] 前記酸化物は、酸化銅、酸化ケィ素、酸化チタン、酸化スズ、酸化鉄、酸化ジルコ二 ゥムおよび酸ィ匕亜鉛力 選択される少なくとも 1つの酸ィ匕金属を含む、請求項 11に 記載の標識物質。
[13] 前記酸化物は、酸化金属を含む、請求項 11に記載の標識物質。
[14] 前記色素は、 380ηπ!〜 780nmの間の波長において光吸収を有する、請求項 1に記 載の標識物質。
[15] 前記色素は、所望の色を有するように調製される、請求項 1に記載の標識物質。
[16] 前記色素の前記色は、サブミクロンオーダーでの周期構造の調整をすることによって 調整される、請求項 1に記載の標識物質。
[17] 前記色素は、濃度 101(>個 Zml以上、光路長 lcmでの測定条件下で、約 0. 1以上の 吸光度を有する、請求項 1に記載の標識物質。
[18] 前記標識物質は、水との接触角が 90° 以上の疎水性を有する、請求項 1に記載の 標識物質。
[19] 前記標識物質の色は、前記高分子と前記色素とを調整することによって決定される、 請求項 1に記載の標識物質。
[20] 前記標識物質は、生体分子と相互作用する能力を有する、請求項 1に記載の標識物 質。
[21] 前記標識物質は、生体分子と複合体を形成する能力を有する、請求項 1に記載の標 識物質。
[22] 前記色素がシランカップリング処理されたものである、請求項 1に記載の標識物質。
[23] 生体分子の標識に使用するための、請求項 1に記載の標識物質を含む粒子。
[24] 生体分子を捕捉する捕捉担体と、請求項 1に記載の標識物質とを含む、標識された 捕捉担体。
[25] 前記捕捉担体は、前記標識物質に結合される、請求項 24に記載の捕捉担体。
[26] 前記捕捉担体は、前記色素がシランカップリング処理されたものである、請求項 25に 記載の捕捉担体。
[27] 前記捕捉担体は、前記色素が Si (R1) (R2) (R3)— O—を有し、ここで R1は疎水性基 であり、 R2は疎水性基または— O—であり、 R3は疎水性基または— O—である、請求 項 25に記載の捕捉担体。
[28] 前記疎水性基は、非置換または置換のアルキル、非置換または置換のシクロアルキ ル、非置換または置換のアルケニル、非置換または置換のシクロアルケニル、非置 換または置換のアルキニル、非置換または置換のアルコキシ、非置換または置換の 炭素環基、非置換または置換のへテロ環基、ハロゲン、ヒドロキシ、チオール、シァノ 、ニトロ、ァミノ、カルボキシ、力ルバモイル、ァシル、ァシルァミノ、チォカルボキシ、 アミド、置換されたカルボ-ル、置換されたチォカルボ-ル、置換されたスルホ -ルぉ よび置換されたスルフィニルカもなる群より選択される、請求項 27に記載の捕捉担体
[29] 前記捕捉担体は、前記色素が Si (R1) (R2) (R3)— O を有し、ここで R1は水素、置 換されたか置換されてないアルキル基または— O であり、 R2は水素、置換されたか 置換されてないアルキル基または—O であり、 R3は水素、置換されたか置換されて な!、アルキル基または O である、請求項 25に記載の捕捉担体。
[30] 前記捕捉担体は、前記色素は Si (R1) (R2) (R3)— O を有し、ここで、
Figure imgf000070_0001
R2、 R3は 、それぞれ、アルキルまたはフッ化アルキルである、請求項 25に記載の捕捉担体。
[31] 前記捕捉担体は、抗体または抗体誘導体を含む、請求項 25に記載の捕捉担体。
[32] 少なくとも 1つの構造色色素により標識された所定量の高分子を、表面に結合して有 して ヽる担体微小粒子を含む物品。
[33] 担体微小粒子もしくは高分子、または担体微小粒子と高分子両方が高分子を含む 請求項 32に記載の物品。
[34] 前記担体微小粒子が 0. 1 m〜l, 000 mの直径を有する高分子粒子力 なる請 求項 32に記載の物品。
[35] 前記担体微小粒子が少なくとも 1つの構造色色素を含む請求項 32に記載の物品。
[36] 前記高分子が Inn!〜 100, OOOnmの直径を有する高分子粒子からなる請求項 32 に記載の物品。
[37] 前記高分子が、 50重量%以下の架橋剤を含む請求項 33の物品。
[38] 前記高分子が磁石または磁気応答性の金属酸化物を含む請求項 33に記載に記載 の物品。
[39] 前記高分子がさらに官能基を含む請求項 33の物品。
[40] 高分子と色素との複合体とを含む標識物質のセットであって、該色素は、 2種類以上 の吸収波長を有する色素を有する、セット。
[41] 前記色素は、構造色色素である、請求項 40に記載のセット。
[42] 前記高分子は、接触角が 90° 以下の疎水性を有する、請求項 40に記載のセット。
[43] セットごとに別の構造色シグナルを持っている高分子の少なくとも 1セットを担体高分 子微小粒子の表面に結合させる工程を包含する構造色物品を製造する方法。
[44] 前記別の構造色シグナルが少なくとも 1つの構造色色素によって提供される請求項 4 3に記載の方法。
[45] 前記担体高分子微小粒子もまた構造色色素を含む請求項 44に記載の方法。
[46] 前記高分子が前記担体高分子微小粒子に共有結合する請求項 45に記載の方法。
[47] 前記高分子のセットが前記担体高分子微小粒子に吸着によって結合される請求項 4 3に記載の方法。
[48] 前記構造色物品が高分子シェルによって囲まれる請求項 43に記載の方法。
[49] 高分子と色素との複合体とを含む、標識粒子を製造する方法であって、
A)色素と高分子とを含む混合物を材料射出管中に提供する工程であって、該材料 射出管は流体を含む流体環境提供管中に存在する、工程;
B)流体環境提供管において流体が流れる中、該混合物を該材料射出管から粒子 形成管へと射出する工程;および
C)粒子形成管にお ヽて形成された粒子を回収する工程、
を包含する、方法。
[50] 高分子と色素との複合体とを含む、所望の特性を有する標識粒子を製造する方法で あって、
A)色素と高分子とを含む混合物を材料射出管中に速度 Δνで提供する工程であつ
0
て、該材料射出管は流体を含む流体環境提供管中に存在し、一方に材料射出口お よび他方に射出口を備え、該射出口は直径 Αρを有する、工程;
Β)流体環境提供管において流体が速度 Δν で流れる中、該混合物を該材料射出
W
管から粒子形成管へと速度 Δν で射出する工程であって、該粒子形成管は混合
ΟΤ
物を受け取る開口部を有し該開口部は直径 Asを有し、該粒子形成管は該射出口か ら距離 dのところに存在する、工程;および
C)粒子形成管にお ヽて形成された粒子を回収する工程、
を包含し、ここで、
d、 ΔΥ、 ΔΥ および ΔΥ を調整することによって、所望の特性が得られる、 方法。
[51] 高分子と色素との複合体とを含む、標識粒子を製造する装置であって、
a)該色素と該高分子とを含む混合物を提供し得る材料提供手段;
b)該色素と該高分子とを含む該混合物を保持し得る材料射出管であって、該材料 射出管は、材料提供手段カゝら材料の提供を受けるための開口部と、材料を射出する ための射出開口部とを備える、材料射出管;
c)流体環境提供管であって、該流体環境提供管はその中に提供される流体中に該 材料射出管を収容し、流体提供開口部を備える、流体環境提供管;
d)流体環境提供管に提供される流体量を調整する流体量調整手段;
e)該材料射出管カゝら射出される材料を受けるための粒子形成管;および
f)該粒子形成管において形成された標識粒子を収容するための容器、
を備える、装置。
[52] 試料内に少なくとも 1つの分析物の存在または不存在を決定する方法であって、
(a)少なくとも 1つの構造色標識された粒子と分析物のそれぞれに相互作用するか または反応する少なくとも 1つの分析反応物とを表面に備えた粒子と、試料とを混合 して反応混合液を作製する工程;
(b)該分析物に反応したかまたは相互作用した該粒子を分析し、該試料内に該分 析物が存在するかしな!ヽかを確定する工程、
を包含する、方法。
[53] 前記粒子の量が既知量であり、前記混合工程 (a)がさらに、反応混合液中に所定量 の競合分子を混合する工程を包含する請求項 52に記載の方法。
[54] 前記分析工程 (b)力 フローサイトメトリー、 ELISA、ウェスタンプロット、蛍光測定、 発光測定または電気化学発光測定を用いて分析する工程
を包含する、請求項 52に記載の方法。
[55] (c)前記粒子の量が既知量であり、前記分析物を既知量の基準物質と比較する工程 をさらに含む請求項 52に記載の方法。
[56] 前記分析物が抗原、抗体、レセプター、ハプテン、酵素、タンパク質、ペプチド、核酸
、薬剤、ホルモン、化学物質、高分子、病原体、毒素、およびそれらの組合せ力 な る群から選択される、請求項 52に記載の方法。
[57] 前記分析反応物が分析物の結合対を含む、請求項 52に記載の方法。
[58] 前記競合分子が、各分析反応物と分析物との結合を妨げる分子を含む、請求項 53 に記載の方法。
[59] 前記基準物質が、それぞれの分析反応物との相互作用または反応において分析物 と本質的に同一である請求項 55の方法。
[60] 試料内において、複数の分析物を検出する方法であって、
a)構造色色素および該分析物に特異的な分析反応物を含む、複数の構造色粒子 を含む構造色粒子集団であって、該構造色粒子は、該分析反応物の種類に応じて それぞれが異なる色を有し、該分析反応物が特異的に試料内の 1つの分析物に相 互作用または反応する、構造色粒子集団を、試料と接触させる工程、
b)該構造色色素の色を検出することにより、該分析反応物が分析物と相互作用ま たは反応したかどうかを分析する工程
を包含する方法であって、
該分析物は、該分析反応物を含む構造色粒子の色によって識別される、方法。
[61] 前記方法がフローサイトメトリー、 ELISA、ウェスタンプロット、蛍光測定、発光測定ま たは電気化学発光測定を含む請求項 60に記載の方法。
[62] 前記構造色粒子の集団がさらに、それらのサイズと形状によって決定される請求項 6
2に記載の方法。
[63] 前記構造色粒子がさらに磁性体を含む、請求項 60に記載の方法。
[64] 対象とする複数の分析物の検出用に適したキットであって、
A)構造色色素および該分析物に特異的な分析反応物を含む、複数の構造色粒 子を含む構造色粒子集団であって、該構造色粒子は、該分析反応物の種類に応じ てそれぞれが異なる色を有し、該分析反応物が特異的に試料内の 1つの分析物に 相互作用または反応する、構造色粒子集団;および
B)該分析反応物を検出するための検出手段
を包含する、キット。
[65] 前記検出手段は、前記分析反応物と特異的に反応する抗体である、請求項 64に記 載のキット。
[66] 前記分析物に対する前記分析反応物との特異的結合反応と競合することができる競 合分子をさらに含む請求項 65のキット。
[67] 前記分析反応物のそれぞれと結びつく分析物と本質的に同一である基準物質をさら に含む、請求項 65のキット。
PCT/JP2005/015818 2005-08-30 2005-08-30 生物学的実験に用いることができる安定な標識媒体 WO2007026408A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/015818 WO2007026408A1 (ja) 2005-08-30 2005-08-30 生物学的実験に用いることができる安定な標識媒体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/015818 WO2007026408A1 (ja) 2005-08-30 2005-08-30 生物学的実験に用いることができる安定な標識媒体

Publications (1)

Publication Number Publication Date
WO2007026408A1 true WO2007026408A1 (ja) 2007-03-08

Family

ID=37808512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/015818 WO2007026408A1 (ja) 2005-08-30 2005-08-30 生物学的実験に用いることができる安定な標識媒体

Country Status (1)

Country Link
WO (1) WO2007026408A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013522420A (ja) * 2010-10-29 2013-06-13 Dic株式会社 構造色発色成形体の製造方法
JP2013532821A (ja) * 2010-07-23 2013-08-19 ルミネックス コーポレーション イムノアッセイにおける試薬の反応性を制御するためのコカップリング
TWI828124B (zh) * 2017-09-29 2024-01-01 荷蘭商耐克創新有限合夥公司 鞋類物件

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001096635A2 (en) * 2000-06-15 2001-12-20 Merck Patent Gmbh A method for producing sphere-based crystals
JP2004093461A (ja) * 2002-09-02 2004-03-25 Japan Science & Technology Corp 逆オパール構造を備えた屈折率センサ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001096635A2 (en) * 2000-06-15 2001-12-20 Merck Patent Gmbh A method for producing sphere-based crystals
JP2004093461A (ja) * 2002-09-02 2004-03-25 Japan Science & Technology Corp 逆オパール構造を備えた屈折率センサ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013532821A (ja) * 2010-07-23 2013-08-19 ルミネックス コーポレーション イムノアッセイにおける試薬の反応性を制御するためのコカップリング
JP2013522420A (ja) * 2010-10-29 2013-06-13 Dic株式会社 構造色発色成形体の製造方法
TWI828124B (zh) * 2017-09-29 2024-01-01 荷蘭商耐克創新有限合夥公司 鞋類物件

Similar Documents

Publication Publication Date Title
JP6379149B2 (ja) 被覆ナノ粒子を使用した高感度免疫学的検定
JP5400297B2 (ja) 蛍光ナノシリカ粒子、ナノ蛍光材料、それを用いたバイオチップ及びそのアッセイ法
Jun et al. Surface-enhanced Raman spectroscopic-encoded beads for multiplex immunoassay
Yang et al. Direct and highly selective drug optosensing in real, undiluted biological samples with quantum-dot-labeled hydrophilic molecularly imprinted polymer microparticles
US7221457B2 (en) Imaging platform for nanoparticle detection applied to SPR biomolecular interaction analysis
Martynenko et al. Magneto-fluorescent microbeads for bacteria detection constructed from superparamagnetic Fe3O4 nanoparticles and AIS/ZnS quantum dots
JP6495382B2 (ja) 空間分解リガンド−受容体結合アッセイ
US20210396747A1 (en) Ultrabright fluorescent nanoconstructs as universal enhancers
JP2000510582A (ja) 微粒子標識を使用した分析物アッセイ
JP2018522221A (ja) S−アデノシルメチオニン、s−アデノシルホモシステイン及びホモシステインを迅速かつ簡単に測定するための蛍光の使用
Khlebtsov et al. Optical properties and biomedical applications of nanostructures based on gold and silver bioconjugates
WO2012030961A2 (en) A nanotube array for optical detection of protein-protein interactions
JP5089511B2 (ja) 吸光物質含有コロイドシリカ粒子を用いた生体分子の検出ないしは定量方法
Wei et al. Multiplex assays of bladder cancer protein markers with magnetic structural color hydrogel microcarriers based on microfluidics
JP5810195B1 (ja) 紫外励起蛍光粒子、これを用いた検出方法、画像表示方法、画像表示スクリーンおよび画像表示装置
KR20140094035A (ko) Dna 라벨 형광 자성 코어/쉘 나노입자를 이용하는 바이오액티브 물질의 검출방법
Rauf et al. Application of quantum dot barcodes prepared using biological self-assembly to multiplexed immunoassays
Sankova et al. Spectrally encoded microspheres for immunofluorescence analysis
Herbáth et al. Exploiting fluorescence for multiplex immunoassays on protein microarrays
Hartman et al. Supported lipid bilayers as dynamic platforms for tethered particles
Sjoberg et al. Time-resolved and label-free evanescent light-scattering microscopy for mass quantification of protein binding to single lipid vesicles
WO2007026408A1 (ja) 生物学的実験に用いることができる安定な標識媒体
KR101514894B1 (ko) 파장-의존성 미분간섭대비 현미경법을 이용한 표적 생체분자의 비형광 검출방법 및 시스템
RU2624853C2 (ru) Способ создания наборов микросфер, оптически кодированных флуоресцентными нанокристаллами и несущих на своей поверхности распознающие биологические молекулы
Lobmaier et al. Direct monitoring of molecular recognition processes using fluorescence enhancement at colloid‐coated microplates

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 05781292

Country of ref document: EP

Kind code of ref document: A1