WO2007026041A2 - Compuestos 1,4 antraquinonicos, su procedimiento de obtencion y su aplicacion como antiumorales. - Google Patents

Compuestos 1,4 antraquinonicos, su procedimiento de obtencion y su aplicacion como antiumorales. Download PDF

Info

Publication number
WO2007026041A2
WO2007026041A2 PCT/ES2006/000499 ES2006000499W WO2007026041A2 WO 2007026041 A2 WO2007026041 A2 WO 2007026041A2 ES 2006000499 W ES2006000499 W ES 2006000499W WO 2007026041 A2 WO2007026041 A2 WO 2007026041A2
Authority
WO
WIPO (PCT)
Prior art keywords
anthraquinone
bromo
methoxy
chloro
hydroxy
Prior art date
Application number
PCT/ES2006/000499
Other languages
English (en)
French (fr)
Other versions
WO2007026041A3 (es
Inventor
Maria Teresa Molina Orden
Sun Honghao
Sandra Taliansky Chamudis
Amancio Carnero Moya
Fernando Blanco Rodriguez
Maria Victoria MONEO OCAÑA
Original Assignee
Consejo Superior De Investigaciones Cientificas
Centro Nacional De Investigaciones Oncologicas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Cientificas, Centro Nacional De Investigaciones Oncologicas filed Critical Consejo Superior De Investigaciones Cientificas
Publication of WO2007026041A2 publication Critical patent/WO2007026041A2/es
Publication of WO2007026041A3 publication Critical patent/WO2007026041A3/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C50/00Quinones
    • C07C50/24Quinones containing halogen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C205/00Compounds containing nitro groups bound to a carbon skeleton
    • C07C205/45Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by at least one doubly—bound oxygen atom, not being part of a —CHO group
    • C07C205/46Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by at least one doubly—bound oxygen atom, not being part of a —CHO group the carbon skeleton containing carbon atoms of quinone rings
    • C07C205/47Anthraquinones containing nitro groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C225/00Compounds containing amino groups and doubly—bound oxygen atoms bound to the same carbon skeleton, at least one of the doubly—bound oxygen atoms not being part of a —CHO group, e.g. amino ketones
    • C07C225/24Compounds containing amino groups and doubly—bound oxygen atoms bound to the same carbon skeleton, at least one of the doubly—bound oxygen atoms not being part of a —CHO group, e.g. amino ketones the carbon skeleton containing carbon atoms of quinone rings
    • C07C225/26Compounds containing amino groups and doubly—bound oxygen atoms bound to the same carbon skeleton, at least one of the doubly—bound oxygen atoms not being part of a —CHO group, e.g. amino ketones the carbon skeleton containing carbon atoms of quinone rings having amino groups bound to carbon atoms of quinone rings or of condensed ring systems containing quinone rings
    • C07C225/32Compounds containing amino groups and doubly—bound oxygen atoms bound to the same carbon skeleton, at least one of the doubly—bound oxygen atoms not being part of a —CHO group, e.g. amino ketones the carbon skeleton containing carbon atoms of quinone rings having amino groups bound to carbon atoms of quinone rings or of condensed ring systems containing quinone rings of condensed quinone ring systems formed by at least three rings
    • C07C225/34Amino anthraquinones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C50/00Quinones
    • C07C50/16Quinones the quinoid structure being part of a condensed ring system containing three rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C50/00Quinones
    • C07C50/16Quinones the quinoid structure being part of a condensed ring system containing three rings
    • C07C50/18Anthraquinones, i.e. C14H8O2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C50/00Quinones
    • C07C50/16Quinones the quinoid structure being part of a condensed ring system containing three rings
    • C07C50/20Quinones the quinoid structure being part of a condensed ring system containing three rings with unsaturation outside the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C50/00Quinones
    • C07C50/26Quinones containing groups having oxygen atoms singly bound to carbon atoms
    • C07C50/34Quinones containing groups having oxygen atoms singly bound to carbon atoms the quinoid structure being part of a condensed ring system having three rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/22Ortho- or ortho- and peri-condensed systems containing three rings containing only six-membered rings
    • C07C2603/24Anthracenes; Hydrogenated anthracenes

Definitions

  • the present invention is of interest to the pharmaceutical sector. It refers to 1,4-dioxaanthracenic derivatives, - mainly 1,4-anthraquinonic, of general formula I as inhibitors of tumor cell growth, as well as to useful procedures for their preparation, to pharmaceutical compositions containing them and their clinical applications.
  • Quinones are widely distributed in Nature, where they are pigments of great importance and their reactivity and synthesis have been collected profusely in the literature 1 "3. Quinones have an interesting biological activity: in addition to their antitumor activity 4 they have antimicobacterial activity 5 , molluscicide 6 , trypanocide 7 , antimalarial 8 "10 and antiviral 11 among others.
  • anthracyclines that were isolated in the early 1960s from Streptomyces peucetius, used to obtain 4 '12 pigments. They were called doxorubicin and daunorubicin and proved to be some of the most effective anti-cancer drugs, especially in the treatment of solid tumors.
  • 9, 10-anthraquinones are important antitumor agents and, thus, in the 70s, the substituted anthraquinone ametantrone developed in principle to be used as pen ink, proved to have an excellent antitumor activity 13 .
  • the mitoxantrone was developed. Both 9, 10-anthraquinones were shown to have healing activity against the lines Cellular developed by the American National Cancer Institute (NCI) 14 of P388 leukemia and B16 melanoma. Mitoxantrone showed even better activity against colon carcinoma 26, L1210 leukemia and, very importantly, P388 leukemia sublines that have been shown to be resistant to anthracyclines.
  • mitoxantrone showed activity against breast cancer, acute leukemia and non-Hodgkin lymphom ' a, in addition to observing a marginal activity against lung cancer cells, Hodgkin lymphoma, myeloma, liver cancer, prostate, bladder and neck
  • epoxide ring in natural products is very wide and the range of interesting biological activities presented by the substrates that contain it is also wide.
  • quinones 15 we can find epoxides in simple structures such as that of filostin, terreic acid, 2,3-epoxy-vitamin K (simple naphthoquinonic system that contains some structural elements of the compounds described in this invention), flagranones , epoxyquinomycin or lachnumol A and also in complex structures such as those of spiroxin A, torreynic acid, palmarumicin C2, cladospirone C or diepoxin ⁇ .
  • the therapeutic properties of these compounds range from angiogenesis inhibitors to antihemorrhagic activity, NF-KB inhibitors or agrochemical applications 15 .
  • topoisomerases 19 topological enzymes that catalyze changes in DNA
  • telomerase 22 or, more recently discovered, on Cdc25 23 , a common target for cancer and Alzheimer 24 .
  • quinones can enter a redox cycle and be reduced to the corresponding radical semiquinone, or hydroquinone, generating superoxide (O 2) radical anion • Furthermore, its potential as acceptor Michael 25 '27 and therefore its ability to form covalent bond and act as an alkylating agent of primary cellular components (proteins, DNA).
  • 1,4-anthraquinone (60) has an anticancer activity comparable to that of daunorubicin.
  • This compound which is commercial (Lancaster), although it can also be easily synthesized from quinizarin 48 showed, unlike daunorubicin, to be a nucleoside transport blocker and inducer of DNA fragmentation, studying as cell line L1210.
  • the following year 49 they extended the study to resistant lines (MDR) and in addition to 60 they investigated 6, 7-dichloro-1, 4-anthraquinone, that is, modified in the C ring.
  • Aguilera et al. 59 have recently studied the cytotoxicity of 1,4-naphthoquinone, 2-alkyl-l, 4-naphthoquinones, 2, 3-dialkyl-l, 4-naphthoquinones and the corresponding epoxies based on knowledge of the antitumor activity of natural products plumbagin (5-hydroxy-2-methyl-l, 4- naphthoquinone) and menadione (2-methyl-l, 4-naphthoquinone, vitamin K3) and its low toxicity.
  • Rigaudy 60 described the preparation of base compound 75, by a very long route, without performance or express therapeutic application.
  • the invention focuses on the preparation and study thereof.
  • the present invention is based on the fact that the inventors have observed that compounds of general formula I exhibit growth inhibitory activity of human tumor cells.
  • An object of the present invention is a compound useful as a therapeutic agent, hereinafter compound of the invention, of general formula (I):
  • R 1 is selected from -H, Ci_i 4 alkyl substituted with straight chain or branched (with doubles or triple bonds), Ci- 1 4 haloalkyl, C 1-14 hydroxyalkyl, C 1-14 aminoalkyl, C 1-14 carboxyalkyl ( ester), aryl, heteroaryl, -OH, OCOR 8 where R 8 is Ci- 14 linear or branched alkyl, aryl or heteroaryl, OR 9 (alkoxy- or haloalkoxy-, -OCF 3 ), where R 9 is a short alkyl chain , thioether, 0-acyloxy, O-triflate, O-tosylate, halogen (F, Cl, Br, I), -COOH, -CF 3 , -SO 3 H, sulfonate, -NO 2 , N 3 , unsubstituted aryl or substituted, saturated and unsaturated heteroaryl, -NH2, NHR 10 , where R 10 is
  • R 3 is selected from -H, C1 January 4 alkyl substituted with linear or branched chain (with double or triple bonds it), Ci- 14 haloalkyl, C1-1 hydroxyalkyl 4, CI_ 14 aminoalkyl, C 1-14 carboxyalkyl (ester ), aryl, heteroaryl, -OH, OCOR 8 where R 8 is Ci- I4 linear or branched alkyl, aryl or heteroaryl, OR 9 (alkoxy- or haloalkoxy, -OCF 3), where R 9 is a short alkyl chain, thioether, 0-acyloxy, O-triflate, O- tosylate, halogen (F, Cl, Br, I), -COOH, -CF 3 , -SO 3 H, sulfonate, -NO 2 , N 3 , unsubstituted or substituted aryl, saturated and unsaturated heteroaryl, -NH 2 , NHR 10 , where R 10
  • R 2 if present is selected from the same groups as R 1 and can be the same or different than R 1 ,
  • R 4 if present is selected from the same groups as R 3 and can be the same or different than R 3 ,
  • R 5 and R 6 are independently H, -OH, -Oalkoxy (with short linear chain), -Oacyloxy, halogen (F, Cl, Br, I),
  • R 7 is H, only when one or more of the remaining radicals in (I), that is R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are different from H, that is, the claim is not explicitly claimed 1,4-anthraquinone, where all the radicals in (I) are equal to H, and the ⁇ bond is a double bond, since it is a compound known and studied previously,
  • R 7 may have the nature described in the previous cases mentioned for R 1 .
  • the invention in another aspect, relates to a therapeutic composition
  • a therapeutic composition comprising a compound of formula (I), together with an inert carrier.
  • said compound of formula (I) is selected from the group described in Table I and mixtures thereof, together with, optionally, one or more inert vehicles.
  • Said therapeutic composition is particularly useful against human and animal tumor cells, although not limited to them.
  • An important field where the compounds of formula (I) find application, in particular, the compounds of the Table I, is in human and animal health. Therefore, in a particular embodiment, the invention provides a pharmaceutical composition comprising a compound of formula (I), together with, optionally, one or more pharmaceutically acceptable excipients.
  • said compound of formula (I) is selected from the compounds included in Table I and mixtures thereof.
  • Said pharmaceutical composition can be used to prevent and / or treat human or animal tumor diseases; as well as infectious diseases caused by pathogenic parasites of humans or animals and neurodegenerative diseases in humans.
  • said pharmaceutical composition is an antitumor composition and can be used in the treatment of human tumor diseases.
  • said pharmaceutical composition is an antiparasitic composition and can be used in the prevention and / or treatment of infections caused by parasites, for example, Trypanosoma and Leishmania.
  • the invention also relates to the use of a compound of formula (I) in the preparation of a medicament useful for the treatment of human or animal tumor diseases, of infectious diseases caused by parasites and neurodegenerative.
  • said compound of formula (I) is selected from Table I and mixtures thereof.
  • Another object of the invention is a process for the preparation of the compounds of general formula (I) of the invention.
  • the present invention is based on the fact that the inventors have observed that compounds of general formula I have growth inhibitory activity of human tumor cells.
  • This invention includes the preparation of a long series of alkyl- and dialkylquinones (62-74) by adding the radical formed by oxidative decarboxylation of carboxylic acids to 1,4-anthraquinones, this being a genuine invention of this work that is unprecedented in literature and that results from low environmental impact.
  • free radicals have received great attention in recent years 61 '62
  • the vast majority of existing methods for the generation of C-radicals are based on the use of tin derivatives, highly polluting and Toxic to health.
  • Torssell carried out radical additions to benzoquinones, forming the same by oxidative decarboxylation of carboxylic acids with ammonium persulfate and silver nitrate as a catalyst 63 '64.
  • This method is environmentally benign, does not require high dilution conditions or devices to carry out the slow addition of the formed radical.
  • Torssell 64 to 1, 4-anthraquinones, a wide range of mono- and dial-builders have been prepared.
  • the radicals chosen were alkyl (linear or branched), allylic, cycloalkyl and benzyl in nature, being selected for their potential therapeutic properties.
  • the introduction of the cyclohexane ring is based on the structure of atovaquone 65 , a hydroxynaphthoquinone used against malaria and babesiosis and which has that ring in its structure.
  • the yields obtained were moderate, since in most cases, dialkylquinones were isolated together with the monoaddition products, indicating that the reaction of adding the radical to the monosubstituted derivative is faster than the unsubstituted derivative.
  • small quantities of the corresponding reduction products or "leuco forms" were also isolated, which demonstrated unusual stability, since in the naphthoquinonic series they oxidize easily regenerating the quinonic system.
  • Halo- and dihaloquinones Halobenzo- and halonaphthoquinones are important syntheses for the preparation of complex polycyclic compounds, and Cameron's work in this field has already been mentioned previously 44 . They have also been used for subsequent reactions of halogen replacement by different oxygenated nucleophiles, nitrogen 68 , etc.
  • the bibliographic background is very scarce, with few experimental details and, especially in the case of chlorination of 1,4-anthraquinone, the existing methods 53 are complicated since they include interrupt the reaction every 20 minutes to control it by NMR and the management of gaseous chlorine, with the possibility of spills or an uncontrolled reaction (Figure 6).
  • This product could be obtained in a more convenient way and this new method is the object of this invention using thionyl chloride and non-chlorine gas as the chlorinating agent.
  • the reaction time was 10 hours.
  • the reactivity is similar, although the handling of bromine does not involve as much risk as that of chlorine.
  • the initial opening was tested with oxygenated nucleophiles such as sodium hydroxide and methoxide, obtaining in all cases the 2-hydroxy- (103) and 2-methoxy-l, 4-anthraquinone (104) that have already been described by Fieser 38 in 1928, without spectroscopic data, of course.
  • oxygenated nucleophiles such as sodium hydroxide and methoxide
  • 2-hydroxy- (103) and 2-methoxy-l, 4-anthraquinone (104) that have already been described by Fieser 38 in 1928, without spectroscopic data, of course.
  • 2-acetoxy-1, 4-anthraquinone (105) was obtained, which is a new product. Opening reactions with anhydrides of different carboxylic acids have also been studied in detail.
  • an object of the present invention is a compound useful as a therapeutic agent, hereinafter compound of the invention, of general formula (I):
  • R 3 and R 4 the same or different from H
  • R 1 is selected from -H, C 1-14 alkyl substituted with straight chain or branched (with double or triple bonds it), Ci- 14 haloalkyl, C 1-14 hydroxyalkyl, C 1-14 aminoalkyl, C 1-14 carboxyalkyl (ester), aryl, heteroaryl, -OH, OCOR 8 where R 8 is Ci- 14 linear or branched alkyl, aryl or heteroaryl, OR 9 (alkoxy- or haloalkoxy-, -OCF 3 ), where R 9 is an alkyl chain short, thioether, 0-acyloxy, 0-triflate, O-tosylate, halogen (F, Cl, Br, I), -COOH, -CF 3 , -SO 3 H, sulfonate, -NO 2 , N 3 , aryl without substitute or substituted, saturated and unsaturated heteroaryl, -NH 2 , NHR 10 , where R 10 is a short alkyl
  • R 3 is selected from -H, C 1 -. 14 alkyl substituted with straight chain or branched (with double or triple bonds it), Ci- 14 haloalkyl, C 1-14 hydroxyalkyl, C1-14 aminoalkyl, carboxyalkyl Ci_i 4 (ester), aryl, heteroaryl, -OH, OCOR 8 wherein R 8 is Ci- 14 linear or branched alkyl, aryl or heteroaryl, OR 9 (alkoxy- or haloalkoxy-, -OCF 3 ), where R 9 is a short alkyl chain, thioether, 0-acyloxy, O-triflate, O-tosylate, halogen (F, Cl, Br, I), -COOH , -CF 3 , -SO 3 H, sulfonate, -NO 2 , N 3 , unsubstituted or substituted aryl, saturated and unsaturated heteroaryl, -NH 2 , NHR 10
  • R 2 if present is selected from the same groups as R 1 and can be the same or different than R 1 ,
  • R 4 if present is selected from the same groups as R 3 and can be the same or different than R 3 ,
  • R 5 and R 6 are independently H, -OH, -Oalkoxy (with short linear chain), -Oacyloxy, halogen (F, Cl, Br, I),
  • R 7 is H, only when one or more of the remaining radicals in (I), that is R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are different from H, that is, the claim is not explicitly claimed 1,4-anthraquinone, where all the radicals in (I) are equal to H, and the ⁇ bond is a double bond, since it is a compound known and studied previously,
  • R 7 may have the nature described in the previous cases mentioned for R 1 .
  • the compounds of the present invention represented by the formula (I) described above may include isomers, depending on the presence of multiple bonds in the side chain (eg, Z, E), including optical or enantiomeric isomers, depending on the presence of chiral centers, particularly in the epoxides formed.
  • the individual isomers, enantiomers or diastereoisomers and mixtures thereof fall within the scope of the present invention.
  • the individual enantiomers or diastereoisomers, as well as mixtures thereof, can be separated by conventional techniques.
  • the term "derivative” includes both pharmaceutically acceptable compounds, that is, derivatives of the compound of formula (I) that can be used in the manufacture of a medicament, as pharmaceutically unacceptable derivatives since they may be useful. in the preparation of pharmaceutically acceptable derivatives.
  • the nature of the pharmaceutically acceptable derivative is not critical as long as it is pharmaceutically acceptable. Also, within the scope of this invention are the prodrugs of the compounds of formula (I).
  • prodrug includes any compound derived from a compound of formula (I), for example, esters, including carboxylic acid esters, amino acid esters, phosphate esters, metal salt sulphonate esters, etc., carbamates, amides, etc., which, when administered to an individual, is capable of providing, directly or indirectly, said compound of formula (I) in said individual.
  • said derivative is a compound that increases the bioavailability of the compound of formula (I) when administered to an individual or that enhances the release of the compound of formula (I) in a biological compartment.
  • the nature of said derivative is not critical as long as it can be administered to an individual and provide the compound of formula (I) in a biological compartment of an individual.
  • the preparation of said prodrug can be carried out by conventional methods known to those skilled in the art.
  • solvate includes both pharmaceutically acceptable solvates, that is, solvates of the compound of formula (I) that can be used in the manufacture of a medicament, as pharmaceutically acceptable solvates, which may be useful in the preparation of pharmaceutically acceptable solvates or salts.
  • pharmaceutically acceptable solvate is not critical as long as it is pharmaceutically acceptable.
  • the solvate is a hydrate. Solvates can be obtained by conventional solvation methods well known to those skilled in the art.
  • the compounds of formula (I), their isomers, salts, prodrugs or solvates will preferably be found in a pharmaceutically acceptable or substantially pure form, that is, having a pharmaceutically acceptable level of purity excluding normal pharmaceutical additives such as diluents and carriers, and not including material considered toxic at normal dosage levels.
  • the purity levels for the active ingredient are preferably greater than 50%, more preferably greater than 70%, or more preferably greater than 90%. In a preferred embodiment, they are greater than 95% of the compound of formula (I), or of its salts, solvates or prodrugs.
  • the compounds of the invention also include compounds that differ only in the presence of one or more isotopically enriched atoms. For example, compounds having said structure, except for the replacement of a hydrogen by a deuterium tritium, or the replacement of a carbon by a carbon enriched in 13 C or C or a nitrogen enriched in 1 N, they are within the scope of this invention.
  • a particular object of the present invention is a compound of general formula (II), which constitutes a subfamily of (I), and in which the covalent bond D is a double bond and R 2 and R 4 of (I) are missing
  • R 1 is defined as in claim 1, preferably being halogen (F, Cl, Br, I), ether, -OR (alkoxy- or haloalkoxy-, -OCF 3 ), wherein R is a short alkyl chain, thioether, 0 -acryloxy, O-triflate, O-tosylate.
  • R 1 can also be a linear or branched C 1 -C 14 alkyl radical (with double or triple bonds), NO 2, aryl or heteroaryl,
  • R 3 may be H or different from H and preferably halogen (F, Cl, Br, I), ether, -OR (alkoxy- or haloalkoxy-, -OCF 3 ), where R is a short alkyl chain, thioether, 0- acyloxy, O-triflate,
  • R 1 can also be a Ci-Ci 4 alkyl radical linear or branched (with double or triple bonds it), NO 2A aryl or heteroaryl
  • R 5 and R 6 are independently H, -OH, -Oalkoxy (with short linear chain), -Oacyloxy, halogen (F, Cl, Br, I), and
  • R 7 is H, only when one or more of the remaining radicals in (II), that is R 1 , R 3 , R 5 and R 6 are different from H.
  • R 7 can have the nature described in the previous cases: halogen (F, Cl, Br, I), ether, -OR (alkoxy- or haloalkoxy-, -OCF 3 ), where R is a short alkyl chain, thioether, 0-acyloxy, O-triflate, 0-tosylate.
  • R 1 can also be a linear or branched C 1 -C 14 alkyl radical (with double or triple bonds), NO 2, aryl or heteroaryl.
  • a particular embodiment of the invention is a compound of formula II, by way of illustration and without limiting the scope of the invention, belonging to the following group: • 2-chloro-1, 4-anthraquinone (1)
  • Another particular object of the present invention is a compound of general formula (III), which constitutes a subfamily of (I),
  • R 1 and R 3 are independent of each other and may preferably be H or halogen (F, Cl, Br, I), or ether, -OR (alkoxy- or haloalkoxy-, -OCF 3 ), or -NH 2 , NHR ' , where R ' is a short alkyl chain, or cycloalkyl (aziridine system, cyclobutylamine, pyrrolidine, piperidine, morpholine), or R' is a benzene or heterocyclic system (pyrazole, imidazole), or R is a benzyl system or heterocycle-CH 2 -,
  • R 5 and R 6 are independent of each other and can be H, -OH, - Oalkoxy (with short linear chain), -Oacyloxy, halogen (F, Cl, Br, I), and R 7 is preferably H.
  • Another particular embodiment of the invention is a compound of formula III, by way of illustration and without limiting the scope of the invention, belonging to the following group:
  • Another particular object of the present invention is a compound of general formula (IV), which constitutes a subfamily of (I), and in which the covalent bond of (I) ⁇ is a single bond and R 2 and R 4 of (I) are present:
  • R 1 is defined as in claim 1, preferably being halogen (F, Cl, Br, I), ether, -OR (alkoxy- or haloalkoxy-, -OCF 3 ), wherein R is a short alkyl chain, thioether, 0 -acryloxy, O-triflate, O-tosylate.
  • R 1 can also be a linear or branched Ci-Ci 4 alkyl radical (with double or triple bonds), NO2, aryl or heteroaryl,
  • R 3 may be H or different from H and preferably halogen (F, Cl, Br, I), ether, -OR (alkoxy- or haloalkoxy-, -OCF 3 ), where R is a short alkyl chain, thioether, 0- acyloxy, O-triflate, O-tosylate.
  • R 1 can also be a linear or branched Ci-Ci 4 alkyl radical (with double or triple bonds), NO 2 , aryl or heteroaryl,
  • R 5 and R 6 are independently H, -OH, -Oalkoxy (with short linear chain), -Oacyloxy, halogen (F, Cl, Br, I), and
  • R 7 is H, only when one or more of the remaining radicals in (II), that is R 1 , R 3 , R 5 and R 6 are different from H.
  • R 7 can have the nature described in the previous cases: halogen (F, Cl, Br, I), ether, -OR (alkoxy- or haloalkoxy-, -OCF 3 ), where R is a short alkyl chain, thioether, 0-acyloxy, O-triflate, 0-tosylate.
  • R 1 can also be a linear or branched Ci-Ci 4 alkyl radical (with double or triple bonds), NO2, aryl or heteroaryl.
  • Another more particular object of the invention is a compound belonging to the formula V where R 2 , R 3 are equal to -0- giving rise to an epoxy ring:
  • R and R are independent of each other and may preferably be H or halogen (F, Cl, Br, I), or ether, -OR
  • R ' is a short alkyl or cycloalkyl chain (aziridine system, cyclobutylamine, pyrrolidine, piperidine, morpholine), or R 'is a benzene or heterocyclic system
  • R 1 and R 4 may also be a linear or branched Ci-Ci4 alkyl radical (with double or triple bonds), or aryl or heteroaryl,
  • R 5 and R 6 are independent of each other and can be H, -OH,
  • Oalkoxy (with short linear chain), -Oacyloxy, halogen (F, Cl, Br, I), and
  • R 7 is preferably H
  • Another particular embodiment of the invention is a compound of formula V, by way of illustration and without limiting the scope of the invention, belonging to the following group:
  • Another more particular object of the invention is a compound belonging to formula IV and formula (VI):
  • R and R 4 are independent of each other and may preferably be H or halogen (F, Cl, Br, I), or ether, -OR (alkoxy- or haloalkoxy-, -OCF 3 ), or -NH 2 , NHR ' , where R 'is a short alkyl or cycloalkyl chain (aziridine, cyclobutylamine, pyrrolidine, piperidine, morpholine system), or R ' is a benzene or heterocyclic system
  • R 1 and R 4 may also be a linear or branched Ci-Ci 4 alkyl radical (with double or triple bonds), or aryl or heteroaryl, R 2 and R 3 are independent of each other and can be acyl radicals, -COR 8 , where R 8 is linear or branched C x- C 6 alkyl or aryl or heteroaryl,
  • R 5 and R 6 are independent of each other and can be H, -OH, Oalkoxy (with short linear chain), -Oacyloxy, halogen (F, Cl, Br, I), and
  • R 7 is preferably H.
  • Another particular embodiment of the invention is a compound of formula VI, by way of illustration and without limiting the scope of the invention, belonging to the following group:
  • the compounds of formula (I) have, in general, therapeutic activity, and, in particular, antitumor activity against human tumor cells, so they are potentially useful as antitumor agents.
  • an "antitumor” is a chemical substance that stops the growth of a tumor cell.
  • said compounds of formula (I), in particular, the compounds described in Table I are potentially useful as antitumor agents.
  • said compounds are more useful as antiparasitic agents, compared to Leishmania and Trypanosoma.
  • quinonic compounds against Leishmania 69 , trypanosomiasis 7 , toxoplasmosis 70 and malaria 8 "10 the case of atovaquone 65 has already been cited.
  • quinones not only find application as antitumor agents, but also have ample potential in the treatment of neurodegenerative diseases, particularly Alzheimer's disease.
  • anthraquinone reduction products that is, the antrones
  • the antrones are traditionally active against inflammatory processes atorios, such as ditranol against psoriasis 73 .
  • Rheine (Artrodar) is a diacetyl-9, 10-anthraquinone marketed against rheumatoid arthritis 74 .
  • the application of quinones also extends to products of agrochemical interest as herbicides for pest control 75 and appetite suppressants in insects
  • the invention relates to a therapeutic composition
  • a therapeutic composition comprising a compound of formula (I), together with an inert carrier.
  • said compound of formula (I) is selected from the group described in Table I and mixtures thereof, together with, optionally, one or more inert vehicles.
  • Said therapeutic composition is particularly useful against human and animal tumor cells, although not limited to them.
  • the term "inert” means that said vehicle does not have a significant biocidal activity.
  • said therapeutic composition may also contain other natural, recombinant or synthetic antitumor compounds, which, eventually, enhance the action of said compound of formula (I) or that increase its spectrum of action.
  • Table I is in human and animal health. Therefore, in a particular embodiment, the invention provides a pharmaceutical composition comprising a compound of formula
  • said compound of formula (I) is selected from the compounds included in Table I and mixtures thereof.
  • pharmaceutically acceptable excipient refers to those substances, or combination of substances, known in the pharmaceutical sector, used in the preparation of pharmaceutical administration forms and includes adjuvants, solids or liquids, solvents , surfactants, etc.
  • said pharmaceutical composition may also contain one or more therapeutic agents that, if necessary, enhance the therapeutic action of said compound of formula (I) or that increase its spectrum of action.
  • Said pharmaceutical composition can be used to prevent and / or treat human or animal tumor diseases; as well as infectious diseases caused by pathogenic parasites of humans or animals.
  • tumor diseases refers to pathologies created by the growth of human or animal tumor cells, and more specifically we refer, by way of illustration and without limiting the scope of the invention, to breast cancer, lung cancer, prostate cancer, central nervous system cancer, preferably glioblastomas, and sarcoma.
  • said pharmaceutical composition is an antitumor composition and can be used in the treatment of human tumor diseases.
  • said antitumor composition may also contain one or more antitumor agents that, if necessary, enhance the action of said compound of formula (I) or increase its spectrum of action.
  • said pharmaceutical composition is an antiparasitic composition and can be used in the prevention and / or treatment of infections caused by parasites, for example, Trypanosoma and Leishmania.
  • said antiparasitic composition may also contain one or more antiparasitic agents that, eventually, enhance the therapeutic action of said compound of formula (I) or that increase its spectrum of action.
  • the compound of formula (I) will be present in the pharmaceutical composition in a therapeutically effective amount, that is, in an amount appropriate to exert its therapeutic effect.
  • the pharmaceutical composition provided by this invention contains between 0.01% and 99.99% by weight of a compound of formula (I), such as a compound selected from Table I and mixtures thereof, and may present in any appropriate pharmaceutical form of administration depending on the route of administration chosen, for example, oral, parenteral or topical.
  • a compound of formula (I) such as a compound selected from Table I and mixtures thereof.
  • the invention also relates to the use of a compound of formula (I) in the preparation of a medicament useful for the treatment of human or animal tumor diseases, of infectious diseases caused by parasites and neurodegenerative.
  • said compound of formula (I) is selected from Table I and mixtures thereof.
  • the invention also provides a method for preventing and / or treating infections caused by parasites of humans or animals and for treating tumor diseases of humans or animals, comprising the step of administering to an animal or a human being, in need of treatment, a therapeutically effective amount of a pharmaceutical composition provided by this invention.
  • Another object of the invention is a process for the preparation of the compounds of general formula (I) of the invention based on the following steps, which are not necessarily consecutive: a) Addition of the radical formed by oxidative decarboxylation of different acids differently substituted 1,4-anthraquinone carboxylics, to give a wide range of 2- alkyl- and 2,3-dialkyl-1, 4-anthraquinones. Preferred conditions include the use of ammonium persulfate and silver nitrate in a mixture of water-dioxane, b) Generation of o-quinodimethanes from halogenated geminal derivatives and subsequent reaction with differently substituted benzoquinones.
  • the halogenated derivatives are preferably tri- and tetrabromides and o-quinodimethane is formed by reaction with sodium iodide, c) Selective chemical transformations on the 5,9-diacetoxy-1,4-anthraquinone core, consisting of hydrolysis, alkylations (in particular methylations), acylations (in particular acetylations) to give rise to a wide range of 5,9-disubstituted quinones, d) Halogenation (preferably chlorination and bromination) selective of different 1,4-anthraquinones providing monohalogenated derivatives with excellent yield, e) Halogenation (preferably chlorination and bromination) of different 1,4-anthraquinones improving, especially in the case of chlorination, notably the methods described in the literature, since gaseous chlorine is not used but thionyl chloride, f) Reactions of ammonolysis and selective amination, consisting of the treatment of monohalo-
  • Figure 1. Ana-quinonic and 1,4-anthraquinonic forms.
  • Figure 2. Synthesis of 9-hydroxy-, 9-acetoxy- and 9-methoxy-l, 4- anthraquinone.
  • Figure 3. Synthesis of alkyl- and dialkyl-1,4-anthraquinones by the addition of free radicals.
  • Figure 4. Route of o-quinodimethanes for the generation of 1,4-anthraquinones.
  • Figure 5. Selective transformations of 5,9-diacetoxy-1, 4- anthraquinones (94).
  • Figure 6. Synthesis of mono- and dihalo-1, 4-anthraquinones
  • Figure 7. Chlorination of 9-hydroxy-l, 4-anthraquinone
  • Figure 9. Synthesis of monoamine-, bromoamino-, chloroamino- and diamino-1,4-anthraquinone Figure 10.- Formation of epoxides of 1,4-anthraquinone Figure 11.- Opening of epoxides of 1,4-anthraquinone Figure 12 .
  • Figure 13
  • Figure 13 Biological activity of the compounds of the invention in the CNIO AA cell line at 96 hours
  • Figure 14 Biological activity of the compounds of the invention in the PC3 cell line at 72 hours Figure 15.- Biological activity of the compounds of the invention in the PC3 cell line at 96 hours Figure 16.- Biological activity of the compounds of the invention in the MCF7 cell line at 96 h.
  • Figure 17. Biological activity of the compounds of the invention in the cell line A549 and NCI-H-460 at 96 h.
  • Figure 18 - Biological activity of the compounds of the invention in the SF268 cell line at 96 h.
  • Vm ax (KBr) / can "1 1711, 1617, 1268, 1180, 761 1 H-NMR (CDCl 3 , 300MHz) ⁇ 4.82 (s, IH, H 3 ), 7.78 (m, 2H, H 6 , H 7 ), 8.10 (m, 2H, H 5 , H 8 ), 8.70 (s, 2H, H 9 or Hi 0 ), 8.76 (s, 2H, H 9 or H 10 ) m / z (IE) 243, 207 .
  • Chlorine gas was bubbled to a solution of 9-hydroxy-1, A-anthraquinone (1Og, 44.6mmol) in acetic acid (25OmI) and stirred for 30 min. at room temperature. The mixture was poured onto ice and filtered. The red solid was washed with distilled water (4 x 10OmI) and dried to give 2,3-dichloro-2,3-dihydro-9-hydroxy-l, 4-anthraquinone.
  • the mixture of regioisomers (2) (Ig, 4.5mmol) was stirred with methyl iodide (2ml) and silver oxide (I) (5g, 22mmol) in chloroform (2OmI) for 24h at room temperature.
  • the silver oxide was filtered and the reaction crude was concentrated in vacuo. It was purified by silica gel chromatography using chloroform as eluent to obtain a mixture of the two regioisomers (3) in a 1: 2 ratio as an orange solid (l.lg, 90%).
  • Method A Pyridine (14ml, 144mmol) was added to a solution of 1,4-anthraquinone (5g, 24mmol) and SOCl 2 (8.9ml, 120mmol) in chloroform (20OmI) with stirring at reflux for 1Oh.
  • Sodium bicarbonate was added to the reaction mixture to basic pH and the product precipitated as a yellow solid that was washed with distilled water (3 x 5 Ohm) and ethanol (3 x 5 Ohm) and dried to give 2,3-dichloro- l, 4-anthraquinone (5.3g, 19.2mmol, 80%), 99% purity (HPLC).
  • Method B Pyridine (14ml, 144mmol) was added to a solution of 1,4-anthraquinone (5g, 24mmol) and SOCl 2 (8.9ml, 120mmol) in chloroform (20OmI) with stirring at reflux for 1Oh.
  • Sodium bicarbonate was added to the reaction mixture to basic pH
  • Example 5 10-Dichloro-9-hydroxy-l, 4-anthraquinone (5)
  • Chlorine gas was bubbled to a solution of 9-hydroxy-l, 4- anthraquinone (4g, 17.9mmol) in acetic acid (10OmI ) for 3h stirring at reflux.
  • the reaction mixture was poured into water and the product was filtered.
  • the solid obtained was chromatographed to give 5 (4.1g, 15mmol, 83%), mp 241-243 ° C; 99% purity (HPLC).
  • V max (KBr) / can "1 1669, 1611, 1421, 1399, 1339, 1251, 751.
  • V Xa3x (KBr) ZCm "1 3435, 3314, 1673 (-CH O), 1603, 1507, 1265, 1219,
  • V 113x (KBr) / can "1 3726, 1476, 1583, 1567, 1295, 1188, 760.
  • Example 23 2-Bromo-3- (4'-chlorobenzyl) -amino-1, 4-anthraquinone (35) Yield 62%, mp 202-203 0 C; 95% purity (HPLC).
  • Example 24 3-bis (pyrazolyl) -1,4-anthraquinone (36) P.f. 286-288 ° C; 97% purity (HPLC).
  • Example 29 2- (2'-Chlorobenzyl) -amino-3-bromo-l, 4-anthraquinone (41) Yield 60%, m.p. 212-214 ° C; 97% purity (HPLC).
  • Example 33 2-Chloro-3-piperidinyl-l, 4-anthraquinone (46) P.f. 166-167 ° C; 96% purity (HPLC).
  • a suspension of 2g of 9-hydroxy-1, 4-anthraquinone (58) in 10 ml of water is heated at 70 ° C with strong magnetic stirring. acetic anhydride and llml of pyridine. The suspension changes from the initial red color to dark brown, an orange solid separating from the reaction medium. After 20 minutes it is allowed to cool and the precipitate is filtered, then washed with water. It is dried and 1.95g (82%) are obtained.
  • reaction crude (2OmI), water (3 x 2OmI) and with saturated sodium chloride solution (2OmI). It is dried over sodium sulfate and the solvent is evaporated to give the reaction crude.
  • the reaction products are separated by silica gel chromatography, using chloroform as eluent.
  • Example 49 2,3-epoxy-2-ethyl-3-hydro-l, 4-anthraquinone (77) Yield: 85%. Recrystallization of ethanol gave the epoxide as white needles, mp 120-122 ° C; 97% purity, (HPLC). ⁇ ⁇ ax (MeOH) 375 (3.76), 359 (3.64), 278 (4.79).
  • Example 50 - cis-2, 3-diacetoxy-2, 3-dihydro-l, 4-anthraquinone (74) To a suspension of 2,3-epoxy-2, 3-dihydro-l, 4-anthraquinone
  • the analytical sample of 91 is prepared by filtering by silica gel column (CHCl 3 -AcOEt 9: 1) the reaction product obtained above. The eluent is removed and the solid is crushed with a little ether. Filter and dry at 0.5mmHg. Red powder, mp> 310 0 C ⁇ max (CHCl 3 ) 251 (4.75), 294 (3.83), 305 (3.88), 328h (3.65), 349h (3.34), 460 (3.78).
  • v max (nujol) / can '1 3390 (d, 0-H phenol), 1668 (f, C O quinone), 1618 and 1305 (f), 1288, 1135 and 1055 (m, CO), 969 (d ), 846 and 755 (m).
  • Method A from 5,9-diacetoxy-1, 4-anthraquinone (94): They are placed in a flask provided with magnetic stirring and cooling externally with an ice bath, 4.54g of 5,9-diacetoxy-1 , 4-anthraquinone (94) and 70ml of commercial trifluoroacetic acid are added. Once the reaction stops The bath is exothermic, leaving the process at room temperature. The reaction is monitored by thin layer chromatography (CH 3 Cl: AcOEt, 8: 1). After 75 minutes of reaction, 5 ml of trifluoroacetic acid are added and when there is no starting product left, after 3 hours of reaction, the mixture is poured onto 11 of ice-water and the precipitate is collected by filtration. It is washed repeatedly with water and dried, thus obtaining 3.9g (99%) of the product
  • Method B (from 5, 9-dihydroxy-l, 4-anthraquinone (97)): 800mg of 5, 9-dihydroxy-l, 4-anthraquinone (97) are dissolved in 250ml of acetone with 0.5ml of pyridine and 25ml of acetic anhydride are added with strong magnetic stirring and for one hour. After two hours it is observed in thin layer chromatography (CHCl 3 : AcOEt, 4: 1) that all the starting product has been consumed, appearing a new orange product of greater Rf than 97 and a small amount of 5, 9- diacetoxy-l, 4- anthraquinone (94). The reaction mixture is poured onto 11 salt-ice water and the red precipitate is filtered. This product is purified by low pressure column chromatography (CHCl 3 : AcOEt, 10: 1). Thus 650mg (70%) of 95 are obtained.
  • the analytical sample of product 98 is prepared by passing it through a short column of silica gel (CHCl 3 ) and, once the eluent has evaporated, crushing the red product obtained with a little ether, mp 243-245 ° C (d.) ⁇ 3x (CHCl 3 ) 250 (4.58), 324 (3.69), 349h (3.30), 502 (3.93).
  • V n ⁇ x (nujol) / can "1 3040 (d, aromatic CH), 1669 and 1660 (f, a,
  • MCF-7 breast cancer
  • NCI-H-460 non-cell lung cancer small
  • A-549 human lung carcinoma
  • PC-3 central nervous system of glioblastoma
  • SF-268 sarcoma, specifically leiomyosarcoma
  • CNIO AA central nervous system of glioblastoma
  • the CNIO AA line was generated in the CNIO from a fresh tumor sample and has been partially characterized in the reference (C. Blanco, V. Moneo, L. Romero, B. Small, JFM Leal, J. Fominaya, J. Velasco and A. Carnero Inhibition of PI3K synergize with Gemcitabine in low passaged tumor cell lines correlating with bax traslocation to mitochondria (Anti Cancer Drugs 2005).
  • cytotoxic tests have been carried out, which consist of the measurement of cell viability in vitro when the cells are subjected to treatment with the chemical compounds under study.
  • the compounds were weighed and dissolved in DMSO at a concentration of 2 mM (200 x of the final test concentration that will be 10 microM). These concentrations were chosen so that the DMSO in culture does not exceed 0.5% before adding the compounds, the culture medium is removed and 200 microliters of fresh medium is added. 1 microliter of compound solution was added per well automatically with a Beckman FX 96 tip robotic system to reach the final concentration of each drug that will be 10 microM. Each concentration is tested in triplicate. A group of wells is left as an untreated control or by adding solvent (DMSO) alone. Another control is fixed on other plates before adding the compounds (Control day 0).
  • the plates with the cell assays were incubated for 72 hours in a sterile environment at 37 ° C and 5% CO 2 . After incubation the medium was removed, the cells washed with PBS twice and fixed with 0.5% glutaraldehyde for 30 minutes. After fixing the cells were washed twice with PBS and stained with 0.5% violet crystal in PBS for 30 minutes. Then the violet crystal is removed and the cells washed extensively. After washing the violet crystal is dissolved in 15% acetic acid in water and the absorbance measured with a 595 A filter. The raw values obtained from the measurement were processed as follows in the Excell program: The average of each triplicate test. Cells treated with DMSO were only considered 100% cell growth during the 72 hours.
  • Compounds 2 and 4 were less active in SF268, while compounds 4, 11, 16, 20, 21, 30, 38, 45, 47, 49, 50, 51 and 53 were less active in PC3 and MCF7. In this last line, compounds 2, 7, 13 and 40 were also somewhat less active. On the contrary, the compounds ' number 19, 55, 59 and 73 were more active in these lines than in CNIO AA or A549. Compounds number 60 and 1 showed differential activity in A549, being a probable basis for specific cytotoxic activity. Compound 1 was not active, being the only line that presented no mortality under this compound. On the contrary, the A549 line was very sensitive to compound number 60. These data may present the beginning of a specificity in the sensitivity or resistance of the different tumors.
  • halogenated quinones are very active against the vast majority of cell lines and this happens for mono- and dihalo derivatives.
  • alkylquinones it was found that the activity of the quinones initially prepared was quite interesting, although it was not possible to improve with alkyl substituents in positions 2 and 3.
  • amino derivatives some compounds are very active such as those containing chains of aziridine (suggesting an alkylating effect) or 2,4-dichlorobenzyl derivatives, a classic substituent in medical chemistry.
  • epoxides formed showed excellent activity, as did some of their opening products.
  • the epoxides of the unsubstituted quinones in positions 2 and 3 were very active against almost all cell lines, except that of lung cancer NCI-H-460.
  • the 2-ethyl-l, 4-anthraquinone also showed a strong activity in some of the lines, but not the rest of the epoxides of rented quinones.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

La presente invención describe unos compuestos derivados 1,4- dioxaantracénicós, principalmente 1, 4-antraquinónicos, de formula I como inhibidores del crecimiento de células tumorales, asi como a procedimientos utiles para su preparación, composiciones farmaceuticas que los contienen y sus aplicaciones clinicas como antitumoral y antiparasitario.

Description

COMPUESTOS QUINÓNICOS ANTITUMORALES Y SUS DERIVADOS, PROCEDIMIENTO DE OBTENCIÓN Y SUS APLICACIONES
SECTOR DE LA TÉCNICA
La presente invención es de interés para el sector farmacéutico. Se refiere a derivados 1, 4-dioxaantracénicos,- principalmente 1, 4-antraquinónicos, de fórmula general I como inhibidores del crecimiento de células tumorales, asi como a procedimientos útiles para su preparación, a composiciones farmacéuticas que los contienen y sus aplicaciones clínicas.
ESTADO DE LA TÉCNICA
Las quinonas se encuentran ampliamente distribuidas en la Naturaleza, donde son pigmentos de gran importancia y su reactividad y síntesis han sido recogidas profusamente en la literatura1"3. Las quinonas presentan una interesante actividad biológica: además de su actividad antitumoral4 presentan actividad antimicobacteriana5, moluscicida6, tripanocida7, antimalárica8"10 y antiviral11 entre otras. Entre las quinonas con mayor aplicación terapéutica se encuentran las antraciclinas que fueron aisladas a principios de los años 60 del Streptomyces peucetius, empleado para la obtención de pigmentos4'12. Se denominaron doxorubicina y daunorrubicina y demostraron ser unos fármacos anticancerosos de los más eficaces existentes, especialmente en el tratamiento de tumores sólidos.
También las 9, 10-antraquinonas son importantes antitumorales y, asi, en los años 70 la antraquinona disustituida ametantrona desarrollada en principio para ser usada como tinta de bolígrafos, demostró tener una excelente actividad antitumoral13. Por variaciones estructurales se desarrolló la mitoxantrona. Ambas 9, 10-antraquinonas demostraron tener actividad curativa frente a las lineas celulares desarrolladas por el Instituto Nacional del Cáncer norteamericano (NCI)14 de leucemia P388 y melanoma B16. La mitoxantrona mostró aún mejor actividad frente a carcinoma de colon 26, leucemia L1210 y, muy importante, sublineas de leucemia P388 que hablan demostrado ser resistentes a las antraciclinas. En estudios clínicos, la mitoxantrona mostró actividad frente a cáncer de mama, leucemia aguda y linfom'a de no-Hodgkin, además de observarse una actividad marginal frente a células cancerosas de pulmón, linfoma de Hodgkin, mieloma, cáncer de hígado, próstata, vejiga y cuello.
Por otra parte, es muy amplia la presencia del anillo epóxido en productos naturales y es también amplia la gama de actividades biológicas interesantes que presentan los sustratos que la contienen. Dentro de las quinonas15 podemos encontrar epóxidos en estructuras simples como la de la filostina, el ácido terreico, la 2, 3-epoxi-vitamina K (sistema simple naftoquinónico que contiene algunos elementos estructurales de los compuestos descritos en esta invención) , las flagranonas, las epoxiquinomicinas o el lachnumol A y también en estructuras complejas como las de la espiroxina A, el ácido torreyánico, la palmarumicina C2, la cladospirona C o la diepoxina α. Las propiedades terapéuticas de estos compuestos van desde inhibidores de angiogénesis a actividad antihemorrágica, inhibidores NF-KB ó aplicaciones agroquimicas15.
En cuanto a las enfermedades cancerosas, es conocido que a pesar de todos los esfuerzos en la lucha contra el cáncer, las estadísticas siguen arrojando datos escalofriantes16. El mecanismo de acción de las antraciclinas en las células cancerosas sigue siendo un tema muy controvertido17. Los mecanismos que se barajan como posibles son17: 1) actuación como agentes intercalantes del ADN e inhibición de la síntesis de proteínas; 2) generación de radicales libres que causan daños en el ADN o peroxidación de los lipidos; 3) enlace al ADN y alquilación; 4) entrecruzamientos en el ADN; 5) interferencia en la apertura del ADN o separación de las hebras de éste y actividad helicasa; 6) efectos directos en la membrana; 7) inicio de lesión sobre el ADN via la inhibición de topoisomerasa II; 8) inducción de apoptosis18 como respuesta a la inhibición de topoisomerasa II. Como dianas moleculares más aceptadas, las quinonas suelen actuar sobre las topoisomerasas19 (enzimas topológicas que catalizan cambios en el ADN) I20 y/o II21, la telomerasa22 ó, descubierto más recientemente, sobre la Cdc2523, diana común a cáncer y a Alzheimer24.
Dos de las características químicas de las quinonas explicarían estas actividades. Por un lado su actividad redox25'26: las quinonas pueden entrar en un ciclo redox y ser reducidas a los correspondientes radicales semiquinona, o a la hidroquinona, generando el anión radical superóxido (O2 ) • Por otro lado, su potencial como aceptor de Michael25'27 y por tanto su capacidad de formar enlace covalente y actuar como agente alquilante de componentes celulares primordiales (proteínas, ADN) .
Conociendo la importante actividad antitumoral de ametantrona y mitoxantrona se ha investigado mucho en el desarrollo de nuevos fármacos antitumorales que porten, como motivo central, la 9, 10-antraquinona diversamente sustituida28" 37
Sin embargo, han sido pocos los estudios hechos con derivados de 1, 4-antraquinona (Tabla 1, compuesto 60). Desde el punto de vista químico, Fieser describió el primer derivado, la 2-hidroxi-l, 4-antraquinona, en 192838, asignándole también una alta participación de su tautómero, 4- hidroxi-1, 2-orto-antraquinona. Posteriormente Zahn39 describió en 1934 unos derivados obtenidos a partir de quinizarina (1,4- dihidroxi-9, 10-antraquinona) y a los que, sin técnicas espectroscópicas existentes, asignó la forma ana-quinónica (Figura 1, estructura a) , describiendo en ese trabajo el derivado hidroxilado y el acetilado. En 1958, Muxfeldt y Koppe40 basándose en los espectros de UV-visible y por comparación con la 1, 4-antraquinona (60) asignan a estos derivados la estructura b de 1, 4-antraquinona. El grupo del CSIC de Madrid ha trabajado con derivados de este tipo empleándolos como precursores sintéticos de antraciclinonas41. También Fariña y colaboradores han preparado 1, 4-antraquinonas que posteriormente se transformaron en 9, 10-antraquinonas de origen natural como la islandicina y digitopurpona42. Igualmente estudiaron la adición de alcoholes sencillos a 9- metoxi- y 9-hidroxi-l, 4-antraquinona43, realizando modificaciones en el anillo A del sistema. Más tarde el grupo de Cameron también ha utilizado sintones de este tipo como precursores de antraciclinonas y otros compuestos tetraciclicos44. Por último, el grupo del CSIC ha estudiado en colaboración con un grupo búlgro la interacción de algunos de estos compuestos con membranas biológicas de thylakoides, pero sin detallar su síntesis ni estudiar propiedades terapéuticas45.
Es de resaltar que, a diferencia de las 9,10- antraquinonas de las que se conocen miles en la naturaleza y son importantísimos colorantes, las 1, 4-antraquinonas naturales son escasísimas, 4 compuestos hasta la fecha, y dos de ellos se han aislado de plantas del género Hedyotisi6 en Malasia.
En el año 2000 Perchellet et al47 descubrieron que la 1, 4-antraquinona (60) tiene una actividad anticancerosa comparable a la de la daunorrubicina. Este compuesto, que es comercial (Lancaster) , aunque también se puede sintetizar fácilmente a partir de quinizarina48 mostró, a diferencia de daunorrubicina, ser un bloqueante del transporte de nucleósidos e inductor de la fragmentación del ADN, estudiando como linea celular L1210. Al año siguiente49, ampliaron el estudio a lineas resistentes (MDR) y además de 60 investigaron la 6, 7-dicloro-l, 4-antraquinona, es decir modificada en el anillo C. En el año 2004, y cuando los estudios que se detallan en esta invención estaban ya muy avanzados, publicaron dos artículos50'51 en el que estudiaron la actividad biológica de varias 1, 4-antraquinonas con sustituyentes en la posición 6. En el primero de ellos50 estudiaron fenómenos de apoptosis (actividad frente a caspasa-3, 8 y 9) de varias quinonas sustituidas en posición 6 y una de ellas bromada adicionalmente en 2 y 3. Esta resultó ser una de las menos activas en la serie de 8 compuestos estudiados. A finales de 200451 publicaron los datos de variaciones estructurales en el anillo C y una en el anillo A, consistente en la introducción del grupo metilamino. La ausencia total de actividad en este compuesto y la buena actividad encontrada en los 7 compuestos modificados en el anillo C (con sustituyentes -metil, bromometil e -hidroximetil, lleva a los autores a concluir que "la modificación del anillo A de las 1, 4-antraquinonas disminuye la actividad antitumoral"51. Muy al contrario, esta invención demuestra, mediante la síntesis de más de 100 productos y ensayo biológico de unos 70, que las modificaciones estructurales en 2, 3, 5, 9 y 10 proporcionan compuestos con fuerte actividad antitumoral frente a 5 tipos de cánceres humanos.
Por lo tanto, en esta invención se ha llevado a cabo un estudio detallado de 1, 4-antraquinonas con sustituyentes alquilo, amino, éter, halógeno y acilo principalmente en las posiciones 2, 3, 5, 9 y 10. Algunas 2-alquil-l, 4-antraquinonas son compuestos conocidos, como la 2-metil-l, 4-antraquinona52 aunque no se ha comunicado actividad terapéutica alguna pues todos los estudios existentes, realizados por Perchellet y Hua, se han descrito en el párrafo anterior. En esta invención se han preparado numerosas alquil- y dialquil-1, 4-antraquinonas empleando metodología sintética nueva basada en la química de radicales libres.
En lo referente a halo-1, 4-antraquinonas existen precedentes de su preparación por métodos difíciles que requieren control por RMN en el caso de la cloración (para la 2, 3-dicloro-l, 4-antraquinona (4))53, y estos productos han sido caracterizados estructuralmente de forma incompleta. Un estudio estructural detallado ha sido también objeto de esta invención.
Entre las amino-1, 4-antraquinonas sólo se conocen dos descritas, la 2-piperidinil-l, 4-antraquinona (22) y la 2- morfolinil-1, 4-antraquinona (21), descritas por Kallmayer54 con un 8% de rendimiento y por Russkikh55 con un 67-75% de rendimiento. Nosotros hemos preparado éstas y otras semejantes por diferente método y con rendimientos medios excelentes.
En cuanto a las I14-antraquinonas con función éter, ya se ha mencionado que la 9-metoxi-l, 4-antraquinona (61) es conocida40 y la 2, 3-dimetoxi-9-hidroxi-l, 4-antraquinona (15) se ha descrito como producto natural56.
Una variación estructural más notable en el sistema de 1, 4-antraquinona lo constituyen la formación de epóxidos, ya que se pierde la planaridad y las propiedades redox se ven notablemente alteradas. Pero se ha demostrado que la presencia de un anillo epóxido en algunas estructuras relacionadas con quinonas pueden mejorar la actividad de éstas57"59.
Aguilera et al.59 han estudiado recientemente la citotoxicidad de 1, 4-naftoquinona, 2-alquil-l, 4-naftoquinonas, 2, 3-dialquil-l, 4-naftoquinonas y los correspondientes epóxidos basándose en el conocimiento de la actividad antitumoral de los productos naturales plumbagina (5-hidroxi-2-metil-l, 4- naftoquinona) y menadiona (2-metil-l, 4-naftoquinona, vitamina K3) y a su baja toxicidad. Los compuestos más activos que obtuvieron fueron los epóxidos: 2,3-epoxi- 1, 4-naftoquinona, 2-fenil-3-metil-2/ 3-epoxi-l, 4-naftoquinon y 2-fenil-2,3- epoxi-1, 4-naftoquinona, mientras que los epóxidos disustituidos en posiciones 2 y 3 con dos sustituyentes de mayor tamaño (2, 3-epoxi-2, 3-difenil-l, 4-naftoquinona y 2,3- dietil-2, 3-epoxi-l, 4-naftoquinona) resultaron bastante menos activos .
En lo referente a epóxidos de 1, 4-antraquinona, Rigaudy60 describió la preparación del compuesto base 75, por una ruta muy larga, sin rendimiento ni aplicación terapéutica expresa.
Por todas estas razones, a la vista de los antecedentes expuestos y por el interés potencial de los compuestos resultantes que combinen una ó varias de las caracteristicas estructurales anteriores, la invención se centra en la preparación y el estudio de los mismos.
DESCRIPCIÓN DE LA INVENCIÓN Descripción breve
La presente invención se basa en que los inventores han observado que compuestos de fórmula general I presentan actividad inhibidora del crecimiento de células humanas tumorales .
Un objeto de la presente invención lo constituye un compuesto útil como agente terapéutico, en adelante compuesto de la invención, de fórmula general (I) :
Figure imgf000008_0001
(I) donde
el enlace covalente marcado como α. puede ser simple y R1, R2, R3 y R4 iguales o diferentes de H,
el enlace covalente α. puede ser simple y R2, R3 ser igual a - 0- dando lugar a un anillo de epóxido,
ó el enlace covalente marcado como α es doble y tanto R2 como R4 están ausentes,
en los que:
R1 es seleccionado de -H, Ci_i4 alquilo sin sustituir con cadena lineal ó ramificada (con dobles ó triples enlaces) , Ci- 14 haloalquilo, C1-14 hidroxialquilo, C1-14 aminoalquilo, C1-14 carboxialquilo (éster) , arilo, heteroarilo, -OH, OCOR8 donde R8 es Ci-14 alquilo lineal o ramificado, arilo ó heteroarilo, OR9 (alcoxi- ó haloalcoxi-, -OCF3) , donde R9 es una cadena alquilica corta, tioéter, 0-aciloxi, O-triflato, O-tosilato, halógeno (F, Cl, Br, I), -COOH, -CF3, -SO3H, sulfonate, -NO2, N3, arilo sin sustituir ó sustituido, heteroarilo saturado e insaturado, -NH2, NHR10, donde R10 es una cadena alquilica de corta, ó bien cicloalquilica (sistema de aziridina, ciclobutilamina, pirrolidina, piperidina, morfolina) , ó bien R10 es un sistema bencénico o heterociclico (pirazol, imidazol) , ó R10 es un sistema bencílico, arilalquilico ó heterociclo-CH2- ,
R3 es seleccionado de -H, C1-14 alquilo sin sustituir con cadena lineal ó ramificada (con dobles ó triples enlaces), Ci- 14 haloalquilo, C1-14 hidroxialquilo, Ci_14 aminoalquilo, C1-14 carboxialquilo (éster) , arilo, heteroarilo, -OH, OCOR8 donde R8 es Ci-I4 alquilo lineal o ramificado, arilo ó heteroarilo, OR9 (alcoxi- ó haloalcoxi-, -OCF3) , donde R9 es una cadena alquilica corta, tioéter, 0-aciloxi, O-triflato, O-tosilato, halógeno (F, Cl, Br, I), -COOH, -CF3, -SO3H, sulfonate, -NO2, N3, arilo sin sustituir ó sustituido, heteroarilo saturado e insaturado, -NH2, NHR10, donde R10 es una cadena alquilica de corta, ó bien cicloalquilica (sistema de aziridina, ciclobutilamina, pirrolidina, piperidina, morfolina) , ó bien R10 es un sistema bencénico o heterociclico (pirazol, imidazol) , ó R10 es un sistema bencilico ó heterociclo-CH2- ,
R2 si está presente es seleccionado de los mismos grupos que R1 y puede ser igual ó diferente que R1,
R4 si está presente es seleccionado de los mismos grupos que R3 y puede ser igual ó diferente que R3,
R5 y R6 son independientemente H, -OH, -Oalcoxi (con cadena lineal corta), -Oaciloxi, halógeno (F, Cl, Br, I),
R7 es H, sólo cuando uno ó más de los radicales restantes en (I), es decir R1, R2, R3, R4, R5 y R6 son diferentes de H, es decir no se reivindica explícitamente la 1, 4-antraquinona, donde todos los radicales en (I) son iguales a H, y el enlace α es un doble enlace, ya que se trata de un compuesto conocido y estudiado previamente,
Cuando alguno de los radicales R3--R6 es diferente de H, R7 puede tener la naturaleza descrita en los casos anteriores mencionados para R1.
o, sus isómeros, sales farmacéuticamente aceptables, derivados solvatos, amidas, esteres y éteres.
Además, una realización particular de la invención lo constituye un compuesto de fórmula II, a titulo ilustrativo y sin que limite el alcance de la invención, perteneciente al siguiente grupo:
• 2-cloro-l, 4-antraquinona (1)
• 2-cloro-9-hidroxi-l, 4-antraquinona (2)
• 2-cloro-9-metoxi-l, 4-antraquinona (3) • 2, 3-dicloro-l, 4-antraquinona (4)
• 2, 9-dicloro-10-hidroxi-l, 4-antraquinona (5)
• 2, 9-dicloro-10-metoxi-l, 4-antraquinona (6)
• 2, 3-dicloro-9-metoxi-l, 4-antraquinona (7)
• 2-bromo-l, 4-antraquinona (8) • 2-bromo-9-hidroxi-l, 4-antraquinona (9)
• 2-bromo-9-metoxi-l, 4-antraquinona (10)
• 2, 3-dibromo-l, 4-antraquinona (11)
• 2, 3-dibromo-9-hidroxi-l, 4-antraquinona (12)
• 2, 3-dibromo-9-metoxi-l, 4-antraquinona (13) • 2-metoxi-3-bromo~9-hidroxi-l, 4-antraquinona (14)
• 2, 3-dimetoxi-9-hidroxi-l, 4-antraquinona (15)
• 2, 3-dimetoxi-l, 4-antraquinona (16)
• 2-cloro-3-metoxi-l, 4-antraquinona (17)
• 9-hidroxi-l, 4-antraquinona (58) • 9-acetoxi-l, 4-antraquinona (59)
• 1, 4-antraquinona (60)
• 9-metoxi-l, 4-antraquinona (61)
• 2-metil-l, 4-antraquinona (62)
• 2-etil-l, 4-antraquinona (63) • 2-alil-l, 4-antraquinona (64) • 2-isopropil-l, 4-antraquinona (65)
• 2-tercbutil-l, 4-antraquinona (66)
• 2-ciclohexil-l, 4-antraquinona (67)
• 2-bencil-l, 4-antraquinona (68) • 2-p-metoxibencil-l, 4-antraquinona (69)
• 2, 3-dimetil-l, 4-antraquinona (70)
• 2, 3-dietil-l, 4-antraquinona (71)
• 2, 3-dialil-l, 4-antraquinona (72)
• 2, 3-dibencil-l, 4-antraquinona (73) • 2, 3-di-p-metoxibencil-l, 4-antraquinona (74)
• 5-acetoxi-l, 4-antraquinona (90)
• 5-hidroxi-l, 4-antraquinona (91)
• 5-nitro-l, 4-antraquinona (92)
• 5-metoxi-l, 4-antraquinona (93) • 5, 9-diacetoxi-l, 4-antraquinona (94)
• 5-acetoxi-9-hidroxi-l, 4-antraquinona (95)
• 5-acetoxi-9-metoxi-l, 4-antraquinona (96)
• 5, 9-dihidroxi-l, 4-antraquinona (97)
• 5-metoxi-9-hidroxi-l, 4-antraquinona (98) • 5-metoxi-9-acetoxi-l, 4-antraquinona (99)
• 5-hidroxi-9-acetoxi-l, 4-antraquinona (100)
• 5-hidroxi-9-metoxi-l, 4-antraquinona (101)
• 5, 9-dimetoxi-l, 4-antraquinona (102)
• 2-hidroxi-l, 4-antraquinona (103) • 2-metoxi-l, 4-antraquinona (104)
• 2-acetoxi-l, 4-antraquinona (105)
• 2-picolilamino-l, 4-antraquinona (18)
• 2-bencilamino-l, 4-antraquinona (19)
• 2-ciclopropilamino-l, 4-antraquinona (20) • 2-pirrolidinil-l, 4-antraquinona (21) • 2-piperidinil-l, 4-antraquinona (22)
• 2- (3' -fluorobencil) -amino-1, 4-antraquinona (23)
• 2- (4' -clorobencil) -amino-1, 4-antraquinona (24)
• 2- (2' , 4' -diclorobencil) -amino-1, 4-antraquinona (25) • 2-aziridinil-l, 4-antraquinona (26)
• 2-morfolinil-1, 4-antraquinona (27)
• 2- (3' -clorobencil) -amino-1, 4-antraquinona (28)
• 2-bromo-3- {2r -picolilamino) -1, 4-antraquinona (29)
• 2-bromo-3-bencilam.ino-l, 4-antraquinona (30) • 2-bromo-3-ciclopropilamino-l, 4-antraquinona (31)
• 2-bromo-3-pirrolidinil-l, 4-antraquinona (32)
• 2-bromo-3-piperidinil-l, 4-antraquinona (33)
• 2-bromo-3- (4' -fluorbencil) -amino-1, 4-antraquinona (34)
• 2-bromo-3- (4' -clorobencil) -amino-1, 4-antraquinona (35) • 2, 3-bis (pirazolil) -1, 4-antraquinona (36)
• 2- (2' , 4' -diclorobencil) -amino-3-bromo-l, 4-antraquinona (37)
• 2-imidazolil-3-bromo-l, 4-antraquinona (38)
• 2-aziridinil-3-bromo-l, 4-antraquinona (39)
• 2-bromo~3-morfolinil-1, 4-antraquinona (40) • 2- (2' -clorobencilamino) -3-bromo-l, 4-antraquinona (41)
• 2-aziridinil-3-cloro-l, 4-antraquinona (42)
• 2-cloro-3-bencilamino-l, 4-antraquinona (43)
• 2-cloro-3-ciclopropilamino-l, 4-antraquinona (44)
• 2-cloro-3-pirrolidinil-l, 4-antraquinona (45) • 2-cloro-3-piperidinil-l, 4-antraquinona (46)
• 2-cloro-3-morfolinil-l, 4-antraquinona (47)
• 2-cloro-3- (4' -clorobencil) -amino-1, 4-antraquinona (48)
• 2-cloro-3- (2' -clorobencil) -amino-1, 4-antraquinona (49)
• 2-cloro-3- (4' -fluorbencil) -amino-1, 4-antraquinona (50) • 2- (2' , 4' -diclorobencil) -amino-3-cloro-l, 4-antraquinona (51) • 2-cloro-3- (2' -picolilamino) -1, 4-antraquinona (52)
• 2-etoxi-3-imidazolil-l, 4-antraquinona (53)
• 2, 3-bis (pirrolidinil) -1, 4-antraquinona (54)
• 2, 3-bis (piperidinil) -1, 4-antraquinona (55) • 2, 3-bis (aziridinil) -1, 4-antraquinona (56)
• 2, 3-bis (morfolinil) -1, 4-antraquinona (57)
• 2, 3-epoxi-2, 3-dihidro-l, 4-antraquinona (75)
• 2, 3~epoxi-2, 3-dihidro-9-metoxi-l, 4-antraquinona (76)
• 2, 3-epoxi-2-etil-3-hidro-l, 4-antraquinona (77) • 2, 3-epoxi-3-hidro-2-isopropil-l, 4-antraquinona (78)
• 2, 3-epoxi~3-hidro-2-tercbutil-l, 4-antraquinona (79)
• 2, 3-epoxi-2, 3-dietil-l, 4-antraquinona (80)
• 2-bencil-2, 3-epoxi-3~hidro-l, 4-antraquinona (81)
• 2, 3-epoxi-2-metil-3-hidro-l, 4-antraquinona (89) • 2, 3-diacetoxi~2, 3-dihidro-l, 4-antraquinona (82)
• 2, 3-diacetoxi~2, 3-dihidro-9-metoxi-l, 4-antraquinona (83)
• 2, 3-dipropionoxi-2, 3-dihidro-l, 4-antraquinona (84)
• 2, 3-dibutiroxi-2, 3-dihidro-l, 4-antraquinona (85)
• 2, 3-divaleroxi-2, 3-dihidro-l, 4-antraquinona (86) • 2, 3-bisisobutiroxi-2, 3-dihidro-l, 4-antraquinona (87)
• 2, 3-bistrimetilacetoxi-2, 3-dihidro-l, 4-antraquinona (88)
En otro aspecto, la invención se relaciona con una composición terapéutica que comprende un compuesto de fórmula (I), junto con un vehículo inerte. En una realización particular, dicho compuesto de fórmula (I) se selecciona del grupo descrito en la Tabla I y sus mezclas, junto con, opcionalmente, uno o más vehículos inertes. Dicha composición terapéutica es particularmente útil frente a células tumorales humanas y animales, aunque no limitado a ellos. Un campo importante donde encuentran aplicación los compuestos de fórmula (I), en particular, los compuestos de la Tabla I, es en Sanidad humana y animal. Por tanto, en una realización particular, la invención proporciona una composición farmacéutica que comprende un compuesto de fórmula (I), junto con, opcionalmente, uno o más excipientes farmacéuticamente aceptables. En una realización particular, dicho compuesto de fórmula (I) se selecciona entre los compuestos incluidos en la Tabla I y sus mezclas.
Dicha composición farmacéutica puede ser utilizada para prevenir y/o tratar enfermedades tumorales humanas o animales; asi como enfermedades infecciosas provocadas por parásitos patógenos de humanos o animales y enfermedades neurodegenerativas en humanos.
Por tanto, en una realización concreta, dicha composición farmacéutica es una composición antitumoral y puede ser utilizada en el tratamiento de enfermedades tumorales humanas. En otra realización concreta, dicha composición farmacéutica es una composición antiparasitaria y puede ser utilizada en la prevención y/o el tratamiento de infecciones causadas por parásitos, por ejemplo, Tripanosoma y Leishmania. La invención también se relaciona con el empleo de un compuesto de fórmula (I) en la elaboración de un medicamento útil para el tratamiento de enfermedades tumorales humanas o animales, de enfermedades infecciosas provocadas por parásitos y neurodegenerativas. En una realización particular, dicho compuesto de fórmula (I) se selecciona de la Tabla I y sus mezclas .
Finalmente, otro objeto de la incención lo constituye un procedimiento para la elaboración de los compuestos de fórmula general (I) de la invención.
Descripción detallada
La presente invención se basa en que los inventores han observado que compuestos de fórmula general I presentan actividad inhibidora del crecimiento de células humanas tumorales .
A continuación se describen los detalles más sobresalientes de los métodos sintéticos utilizados en la presente invención, que comprende rutas cuyas etapas oscilan entre 2 y 8, estando la mayoría de las veces comprendidas entre 3 y 5. Además los procedimientos sintéticos no requieren temperaturas muy altas ni muy bajas, tampoco condiciones potencialmente peligrosas como reacciones a alta presión, hidrogenación, ..., y en el caso de los agentes epoxidantes se pueden utilizar aquellos más benignos para el medio ambiente.
Como productos de partida para la preparación de bastantes compuestos descritos en esta invención, se sintetizaron la 9-hidroxi- (58) 39, 9-acetoxi- (59) 39'40 y 9- metoxi-1, 4-antraquinona (61) 40 de acuerdo con los métodos descritos en la bibliografía y mejorados en cuanto al uso de disolventes menos contaminantes ó peligrosos (empleo de acetato de etilo en lugar de benceno, ó diclorometano en lugar de cloroformo) .
Alquilquinonas, quinonas oxigenadas en posición 5 y derivados de 5, 9-diacetoxi-l , 4-antraquinona
Esta invención incluye la preparación de una larga serie de alquil- y dialquilquinonas (62-74) por adición del radical formado por descarboxilación oxidativa de ácidos carboxilicos a 1, 4-antraquinonas, siendo ésta una invención genuina de este trabajo que no tiene precedente en la literatura y que resulta de bajo impacto mediambiental. Aunque la metodología basada en el empleo de radicales libres ha recibido una gran atención en los últimos años61'62, la inmensa mayoría de los métodos existentes para la generación de C-radicales se basa en la utilización de derivados de estaño, altamente contaminantes y tóxicos para la salud. Por el contrario, Torssell llevó a cabo adiciones de radicales a benzoquinonas, formando los mismos por descarboxilación oxidativa de ácidos carboxilicos con persulfato amónico y nitrato de plata como catalizador63'64. Este método es ambientalmente benigno, no requiere condiciones de alta dilución ni dispositivos para llevar a cabo la adición lenta del radical formado. Aplicando el método de Torssell64 a 1, 4-antraquinonas, se ha preparado una amplia serie de mono- y dialquilderivados . Los radicales elegidos fueron de naturaleza alquílica (lineal ó ramificada) , alilica, cicloalquilica y bencílica, siendo seleccionados por sus potenciales propiedades terapéuticas. Asi, la introducción del anillo de ciclohexano tiene su base en la estructura de la atovaquona65, una hidroxinaftoquinona usada contra la malaria y babesiosis y que tiene ese anillo en su estructura. Los rendimientos obtenidos fueron moderados, ya que en la mayoría de los casos, junto a los productos de monoadición se aislaron las dialquilquinonas, lo que indica que la reacción de adición del radical al derivado monosustituido es más rápida que al derivado sin sustituir. Por otro lado, también se aislaron pequeñas cantidades de los correspondientes productos de reducción ó "formas leuco" que demostraron una estabilidad inusual, ya que en la serie naftoquinónica se oxidan fácilmente regenerando el sistema quinónico. En cambio, las leuco-1, 4-antraquinonas resistieron la acción de oxidantes típicos como el óxido de plata (I) . En el caso de la 2-metil- (62) y la 2, 3-dimetil-l, 4-antraquinona (70) los rendimientos obtenidos fueron muy bajos, 16 y 5% respectivamente, por lo que se recurrió al empleo de o-quinodimetanos generados in situ a partir de derivados polihalogenados geminales por eliminación con yoduro sódico (Figura 4). Atrapando este intermedio reactivo con benzoquinona, se obtuvo la 2-metil- 1, 4-antraquinona con un 52% de rendimiento. Este método, conocido como reacción de Cava66, se aplicó posteriormente a la formación de derivados en posición 5, esto es, a la preparación de 5-nitro-, 5-metoxi- y 5-acetoxi-l, 4- antraquinona41'42. Por hidrólisis de esta última se obtuvo la 5-hidroxi-l, 4-antraquinona (91).
A partir de la ya conocida 5, 9-diacetoxi-l, 4-antraquinona (94) 42 se llevaron a cabo una serie de transformaciones selectivas: hidrólisis, metilación, acetilación, ... que se detallan en la Figura 5. De este modo se obtuvieron todas las combinaciones posibles de los diferentes sustituyentes en posiciones 5 y 9 (compuestos 94-102) que pueden comportarse selectivamente frente a la adición de nucleófilos. A modo de ejemplo, la hidrólisis selectiva del acetato en posición 9, se logró con ácido trifluoroacético y, tras hidrólisis total, la metilación selectiva en posición 5 del -OH no quelado se llevó a cabo con yoduro de metilo-carbonato potásico. En general, todas las transformaciones transcurrieron con excelente rendimiento. Sólo el compuesto 98 ha sido descrito por Danishefsky como subproducto (10% de rendimiento) en una complicada ruta que emplea benzociclobutenos67.
Halo- y dihaloquinonas Las halobenzo- y halonaftoquinonas son importantes sintones para la preparación de compuestos policiclicos complejos, y ya se mencionaron anteriormente los trabajos de Cameron en este terreno44. También se han utilizado para reacciones posteriores de sustitución del halógeno por distintos nucleófilos oxigenados, nitrogenados68, etc. En el caso de las halo-1, 4-antraquinonas los antecedentes bibliográficos son muy escasos, con pocos detalles experimentales y, sobre todo en el caso de la cloración de la 1, 4-antraquinona, los métodos existentes53 son complicados ya que incluyen interrumpir la reacción cada 20 minutos para controlarla por RMN y el manejo del cloro gaseoso, con las posibilidades de que ocurran derrames ó una reacción incontrolada (Figura 6) . Nosotros empleando cloro a tiempos de reacción cortos hemos obtenido inicialmente el producto de adición, la 2, 3-dicloro-2, 3-dihidro-l, 4-antraquinona, que por posterior tratamiento con base condujo limpiamente a la 2- cloro-1, 4-antraquinona (1). En cambio, al clorar a temperatura ambiente la 9-hidroxi-l, 4-antraquinona se obtuvieron mezclas de regioisómeros. Cuando la cloración se efectuó a reflujo se produjo cloración en el anillo quinónico y en el núcleo central (Figura 7). Por cloración con tiempos de reacción prolongados (hasta una semana) se obtuvo la 2, 3-dicloro-l, 4- antraquinona (4) . Este producto se pudo obtener de una forma más conveniente y este nuevo método es objeto de esta invención empleando cloruro de tionilo y no cloro gas como agente clorante. Asi el tiempo de reacción fue de 10 horas. En el caso de los productos bromados la reactividad es semejante, si bien el manejo del bromo no entraña tanto riesgo como el del cloro.
Haloéteres de quinona
Una vez obtenidas limpiamente las distintas quinonas halogenadas, se estudió su comportamiento frente a alcóxidos y en particular metóxido para ampliar la gama de sustituyentes en posiciones 2 y 3 de la quinona y además alcanzar la síntesis del producto natural 2, 3-dimetoxi-9-hidroxi-l, 4- antraquinona (15) (Figura 8). Por reacción con metóxido sódico sobre derivados dihalogenados fue posible sustituir selectivamente uno de los halógenos, pero cuando se intentó llevar a cabo la sustitución nucleófila exhaustiva sólo se obtuvieron mezclas. En el caso del derivado 9-hidroxilado, precursor del producto natural, la reacción con metóxido sódico sólo condujo a mezclas de regioisómeros, por lo que hubo que recurrir a un método más enérgico como es el empleo de fluoruro potásico-metanol-alúmina para lograr la sustitución total de los dos halógenos. Esta reacción transcurre con buen rendimiento y se reivindica como un método nuevo de la presente invención. Al comparar los datos espectroscópicos de nuestro producto obtenido por síntesis inequívoca con el del producto natural publicado por Harrtzah56 se observaron discrepancias notables en el espectro de ultravioleta y de resonancia magnética nuclear. Dado que el autor nos informó de que no disponía de la muestra original, todo parece indicar que la asignación del producto natural fue realizada de forma errónea.
Síntesis de monoamino-, bromoamino-r cloroamino- y diamino-1 r 4-antraquinonas
Las diferentes quinonas halogenadas se sometieron a reacciones de aminación con diferentes aminas bencílicas, heterocíclicas y cicloalifáticas, obteniéndose los diferentes derivados con excelente rendimiento que así se pudieron someter a evaluación biológica.
Epoxidación de 1 r4-antraquinonas
La epoxidación de 1, 4-antraquinonas se ha estudiado con numerosos agentes epoxidantes: agua oxigenada, complejo-urea- peróxido de hidrógeno, hidroperóxido de tercbutilo, perborato sódico, hipoclorito sódico... e incluso lejía doméstica. El agua oxigenada es un oxidante eficaz y ambientalmente benigno, cumpliendo los requisitos de la llamada "green chemistry", por lo que se eligió para la mayor parte de las reacciones en gran escala. En general, la epoxidación de la propia 1,4- antraquinona y el 9-metoxiderivado transcurren sin problemas, formándose el epóxido con excelente rendimiento. Para el caso de quinonas 2- y 2, 3-disustituidas la reacción necesita tiempos de reacción más largos.
Apertura de epóxidos de 1 ,4-antraquinona
Se ensayó la apertura inicial con nucleófilos oxigenados como hidróxido sódico y metóxido, obteniéndose en todos los casos la 2-hidroxi- (103) y 2-metoxi-l, 4-antraquinona (104) que ya hablan sido descritas por Fieser38 en 1928, sin datos espectroscópicos, naturalmente. Por simple acetilación se obtuvo la 2-acetoxi-l, 4-antraquinona (105) que es un producto nuevo. También se han estudiado con detalle las reacciones de apertura con anhídridos de diferentes ácidos carboxilicos
(Figura 11) . Esta reacción habla sido ensayada por Rigaudy60 sólo con anhídrido acético, asignando al producto de apertura la estructura de diéster de configuración relativa trans, apoyada sólo en el tradicional comportamiento de los epóxidos al carecer de datos espectroscópicos. Por el contrario, en todos los experimentos de apertura realizados en nuestro caso, que incluye también el único realizado por Rigaudy, se han observado los diésteres de configuración relativa cis, lo que se ha comprobado por experimentos bidimensionales de RMN. Se emplearon anhídridos alifáticos de cadena lineal y ramificada, en gran exceso ya que es también disolvente, y un ácido mineral fuerte. En estos diésteres vecinales la estructura quinónica se ha perdido al igual que la planaridad y constituyen derivados muy interesantes a estudiar.
Por lo tanto, un objeto de la presente invención lo constituye un compuesto útil como agente terapéutico, en adelante compuesto de la invención, de fórmula general (I):
Figure imgf000021_0001
(D donde el enlace covalente marcado como α. puede ser simple y R1, R2,
R3 y R4 iguales o diferentes de H,
el enlace covalente α. puede ser simple y R2, R3 ser igual a - 0- dando lugar a un anillo de epóxido,
ó el enlace covalente marcado como α es doble y tanto R2 como R4 están ausentes,
en los que:
R1 es seleccionado de -H, C1-14 alquilo sin sustituir con cadena lineal ó ramificada (con dobles ó triples enlaces), Ci- 14 haloalquilo, C1-14 hidroxialquilo, C1-14 aminoalquilo, C1-14 carboxialquilo (éster) , arilo, heteroarilo, -OH, OCOR8 donde R8 es Ci-14 alquilo lineal o ramificado, arilo ó heteroarilo, OR9 (alcoxi- ó haloalcoxi-, -OCF3) , donde R9 es una cadena alquilica corta, tioéter, 0-aciloxi, 0-triflato, O-tosilato, halógeno (F, Cl, Br, I), -COOH, -CF3, -SO3H, sulfonate, -NO2, N3, arilo sin sustituir ó sustituido, heteroarilo saturado e insaturado, -NH2, NHR10, donde R10 es una cadena alquilica de corta, ó bien cicloalquilica (sistema de aziridina, ciclobutilamina, pirrolidina, piperidina, morfolina) , ó bien R10 es un sistema bencénico o heterociclico (pirazol, imidazol) , ó R10 es un sistema bencilico, arilalquilico ó heterociclo-CH2- ,
R3 es seleccionado de -H, C1-.14 alquilo sin sustituir con cadena lineal ó ramificada (con dobles ó triples enlaces) , Ci- 14 haloalquilo, C1-14 hidroxialquilo, C1-14 aminoalquilo, Ci_i4 carboxialquilo (éster) , arilo, heteroarilo, -OH, OCOR8 donde R8 es Ci-14 alquilo lineal o ramificado, arilo ó heteroarilo, OR9 (alcoxi- ó haloalcoxi-, -OCF3) , donde R9 es una cadena alquílica corta, tioéter, 0-aciloxi, O-triflato, O-tosilato, halógeno (F, Cl, Br, I), -COOH, -CF3, -SO3H, sulfonate, -NO2, N3, arilo sin sustituir ó sustituido, heteroarilo saturado e insaturado, -NH2, NHR10, donde R10 es una cadena alquilica de corta, ó bien cicloalquilica (sistema de aziridina, ciclobutilamina, pirrolidina, piperidina, morfolina) , ó bien R10 es un sistema bencénico o heterociclico (pirazol, imidazol) , ó R10 es un sistema bencílico ó heterociclo-CH2~ ,
R2 si está presente es seleccionado de los mismos grupos que R1 y puede ser igual ó diferente que R1,
R4 si está presente es seleccionado de los mismos grupos que R3 y puede ser igual ó diferente que R3,
R5 y R6 son independientemente H, -OH, -Oalcoxi (con cadena lineal corta) , -Oaciloxi, halógeno (F, Cl, Br, I) ,
R7 es H, sólo cuando uno ó más de los radicales restantes en (I), es decir R1, R2, R3, R4, R5 y R6 son diferentes de H, es decir no se reivindica explícitamente la 1, 4-antraquinona, donde todos los radicales en (I) son iguales a H, y el enlace α es un doble enlace, ya que se trata de un compuesto conocido y estudiado previamente,
Cuando alguno de los radicales Rx-R6 es diferente de H, R7 puede tener la naturaleza descrita en los casos anteriores mencionados para R1.
o, sus isómeros, sales farmacéuticamente aceptables, derivados solvatos, amidas, esteres y éteres. Los compuestos de la presente invención representados por la fórmula (I) anteriormente descrita pueden incluir isómeros, dependiendo de la presencia de enlaces múltiples en la cadena lateral (por ejemplo, Z, E) , incluyendo isómeros ópticos o enantiómeros, dependiendo de la presencia de centros quirales, en particular en los epóxidos formados. Los isómeros, enantiómeros o diastereoisómeros individuales y las mezclas de los mismos caen dentro del alcance de la presente invención. Los enantiómeros o diastereoisómeros individuales, asi como sus mezclas, pueden separarse mediante técnicas convencionales .
Tal como aqui se utiliza, el término "derivado" incluye tanto compuestos farmacéuticamente aceptables, es decir, derivados del compuesto de fórmula (I) que pueden ser utilizados en la elaboración de un medicamento, como derivados farmacéuticamente no aceptables ya que éstos pueden ser útiles en la preparación de derivados farmacéuticamente aceptables. La naturaleza del derivado farmacéuticamente aceptable no es critica siempre y cuando sea farmacéuticamente aceptable. Asimismo, dentro del alcance de esta invención se encuentran los profármacos de los compuestos de fórmula (I). El término "profármaco" tal como aqui se utiliza incluye a cualquier compuesto derivado de un compuesto de fórmula (I) , por ejemplo, esteres, incluyendo esteres de ácidos carboxilicos, esteres de aminoácidos, esteres de fosfato, esteres de sulfonato de sales metálicas, etc., carbamatos, amidas, etc., que, cuando se administra a un individuo es capaz de proporcionar, directa o indirectamente, dicho compuesto de fórmula (I) en dicho individuo. Ventajosamente, dicho derivado es un compuesto que aumenta la biodisponibilidad del compuesto de fórmula (I) cuando se administra a un individuo o que potencia la liberación del compuesto de fórmula (I) en un compartimento biológico. La naturaleza de dicho derivado no es critica siempre y cuando pueda ser administrado a un individuo y proporcione el compuesto de fórmula (I) en un compartimento biológico de un individuo. La preparación de dicho profármaco puede llevarse a cabo mediante métodos convencionales conocidos por los expertos en la materia.
Los compuestos de la invención pueden estar en forma cristalina como compuestos libres o como solvatos y se pretende que ambas formas estén dentro del alcance de la presente invención. En este sentido, el término "solvato", tal como aqui se utiliza, incluye tanto solvatos farmacéuticamente aceptables, es decir, solvatos del compuesto de fórmula (I) que pueden ser utilizados en la elaboración de un medicamento, como solvatos farmacéuticamente no aceptables, los cuales pueden ser útiles en la preparación de solvatos o sales farmacéuticamente aceptables. La naturaleza del solvato farmacéuticamente aceptable no es critica siempre y cuando sea farmacéuticamente aceptable. En una realización particular, el solvato es un hidrato. Los solvatos pueden obtenerse por métodos convencionales de solvatación bien conocidos por los técnicos en la materia.
Para su aplicación en terapia, los compuestos de fórmula (I), sus isómeros, sales, profármacos o solvatos, se encontrarán, preferentemente, en una forma farmacéuticamente aceptable o sustancialmente pura, es decir, que tiene un nivel de pureza farmacéuticamente aceptable excluyendo los aditivos farmacéuticos normales tales como diluyentes y portadores, y no incluyendo material considerado tóxico a niveles de dosificación normales. Los niveles de pureza para el principio activo son preferiblemente superiores al 50%, más preferiblemente superiores al 70%, o más preferiblemente superiores al 90%. En una realización preferida, son superiores al 95% del compuesto de fórmula (I), o de sus sales, solvatos o profármacos. A menos que se indique lo contrario, los compuestos de la invención también incluyen compuestos que difieren sólo en la presencia de uno o más átomos isotópicamente enriquecidos. Por ejemplo, compuestos que tienen dicha estructura, a excepción de la sustitución de un hidrógeno por un deuterio por tritio, o la sustitución de un carbono por un carbono enriquecido en 13C o C o un nitrógeno enriquecido en 1N, están dentro del alcance de esta invención.
Un objeto particular de la presente invención lo constituye un compuesto de fórmula general (II), que constituye una subfamilia de (I), y en el que el enlace covalente D es un doble enlace y R2 y R4 de (I) están ausentes
Figure imgf000026_0001
(N) y donde
R1 se define como en la reivindicación 1, siendo preferentemente halógeno (F, Cl, Br, I) , éter, -OR (alcoxi- ó haloalcoxi-, -OCF3) , donde R es una cadena alquilica corta, tioéter, 0-aciloxi, O-triflato, O-tosilato. R1 puede ser también un radical alquilo C1-C14 lineal ó ramificado (con dobles ó triples enlaces) , NO2, arilo ó heteroarilo,
R3 puede ser H ó diferente de H y preferentemente halógeno (F, Cl, Br, I), éter, -OR (alcoxi- ó haloalcoxi-, -OCF3), donde R es una cadena alquilica corta, tioéter, 0-aciloxi, O-triflato,
O-tosilato. R1 puede ser también un radical alquilo Ci-Ci4 lineal ó ramificado (con dobles ó triples enlaces) , NO2A arilo ó heteroarilo,
R5 y R6 son independientemente H, -OH, -Oalcoxi (con cadena lineal corta) , -Oaciloxi, halógeno (F, Cl, Br, I) , y
R7 es H, sólo cuando uno ó más de los radicales restantes en (II), es decir R1, R3, R5 y R6 son diferentes de H. Cuando alguno de estos radicales es diferente de H, R7 puede tener la naturaleza descrita en los casos anteriores: halógeno (F, Cl, Br, I), éter, -OR (alcoxi- ó haloalcoxi-, -OCF3), donde R es una cadena alquilica corta, tioéter, 0-aciloxi, O-triflato, 0- tosilato. R1 puede ser también un radical alquilo C1-C14 lineal ó ramificado (con dobles ó triples enlaces), NO2, arilo ó heteroarilo.
Además, una realización particular de la invención lo constituye un compuesto de fórmula II, a titulo ilustrativo y sin que limite el alcance de la invención, perteneciente al siguiente grupo: • 2-cloro-l, 4-antraquinona (1)
• 2-cloro-9-hidroxi-l, 4-antraquinona (2)
• 2-cloro-9-metoxi-l, 4-antraquinona (3)
• 2, 3-dicloro-l, 4-antraquinona (4)
• 2, 9-dicloro-10-hidroxi-l, 4-antraquinona (5) • 2, 9-dicloro-10-metoxi-l, 4-antraquinona (6)
• 2, 3-dicloro-9-metoxi-l, 4-antraquinona (7)
• 2-bromo-l, 4-antraquinona (8)
• 2-bromo-9-hidroxi-l, 4-antraquinona (9)
• 2-bromo-9-metoxi-l, 4-antraquinona (10) • 2, 3-dibromo-l, 4-antraquinona (11)
• 2, 3-dibromo~9-hidroxi-l, 4-antraquinona (12)
• 2, 3-dibromo-9-metoxi-l, 4-antraquinona (13) • 2-metoxi-3-bromo-9-hidroxi~l, 4-antraquinona (14)
• 2, 3-dimetoxi-9-hidroxi-l, 4-antraquinona (15)
• 2, 3-dimetoxi-l, 4-antraquinona (16)
• 2-cloro-3-metoxi-l, 4-antraquinona (17) • 9-hidroxi-l, 4-antraquinona (58)
• 9-acetoxi-l, 4-antraquinona (59)
• 1, 4-antraquinona (60)
• 9-metoxi-l, 4-antraquinona (61)
• 2-metil-l, 4-antraquinona (62) • 2-etil-l,4-antraquinona (63)
• 2-alil-l, 4-antraquinona (64)
• 2-isopropil-l, 4-antraquinona (65)
• 2-tercbutil-l, 4-antraquinona (66)
• 2-ciclohexil-l, 4-antraquinona (67) • 2-bencil-l, 4-antraquinona (68)
• 2-p-metoxibencil-l, 4-antraquinona (69)
• 2, 3-dimetil-l, 4-antraquinona (70)
• 2, 3-dietil-l, 4-antraquinona (71)
• 2, 3-dialil-l, 4-antraquinona (72) • 2, 3-dibencil-l, 4-antraquinona (73)
• 2, 3-di-p-metoxibencil-l, 4-antraquinona (74)
• 5-acetoxi-l, 4-antraquinona (90)
• 5-hidroxi-l, 4-antraquinona (91)
• 5-nitro-l, 4-antraquinona (92) • 5-metoxi-l, 4-antraquinona (93)
• 5, 9-diacetoxi-l, 4-antraquinona (94)
• 5-acetoxi-9-hidroxi-l, 4-antraquinona (95)
• 5-acetoxi-9-metoxi-l, 4-antraquinona (96)
• 5, 9-dihidroxi-l, 4-antraquinona (97) • 5-metoxi-9-hidroxi-l, 4-antraquinona (98) • 5-metoxi-9-acetoxi-l, 4-antraquinona (99)
• 5-hidroxi-9-acetoxi-l, 4-antraquinona (100)
• 5-hidroxi-9-metoxi-l, 4-antraquinona (101)
• 5, 9-dimetoxi~l, 4-antraquinona (102) • 2-hidroxi-l, 4-antraquinona (103)
• 2-metoxi-l, 4-antraquinona (104)
• 2-acetoxi-l, 4-antraquinona (105)
Otro objeto particular de la presente invención lo constituye un compuesto de fórmula general (III), que constituye una subfamilia de (I) ,
Figure imgf000029_0001
donde
R1 y R3 son independientes entre si y pueden ser preferentemente H ó halógeno (F, Cl, Br, I) , ó éter, -OR (alcoxi- ó haloalcoxi-, -OCF3), ó -NH2, NHR' , donde R' es una cadena alquilica de corta, ó bien cicloalquilica (sistema de aziridina, ciclobutilamina, pirrolidina, piperidina, morfolina) , ó bien R' es un sistema bencénico o heterociclico (pirazol, imidazol) , ó R es un sistema bencílico ó heterociclo-CH2- ,
R5 y R6 son independientes entre si y pueden ser H, -OH, - Oalcoxi (con cadena lineal corta) , -Oaciloxi, halógeno (F, Cl, Br, I), y R7 es preferentemente H.
Otra realización particular de la invención lo constituye un compuesto de fórmula III, a titulo ilustrativo y sin que limite el alcance de la invención, perteneciente al siguiente grupo:
• 2-picolilamino-l, 4-antraquinona (18)
• 2-bencilamino-l, 4-antraquinona (19)
• 2-ciclopropilamino-l, 4-antraquinona (20) • 2-pirrolidinil-l, 4-antraquinona (21)
• 2-piperidinil-l, 4-antraquinona (22)
• 2- (3' -fluorobencil) -amino-1, 4-antraquinona (23)
• 2- (4' -clorobencil) -amino-1, 4-antraquinona (24)
• 2- (2' , 4' -diclorobencil) -amino-1, 4-antraquinona (25) • 2-aziridinil-l, 4-antraquinona (26)
• 2-morfolinil-l, 4-antraquinona (27)
• 2- (3' -clorobencil) -amino-1, 4-antraquinona (28)
• 2-bromo-3- (2' -picolilamino) -1, 4-antraquinona (29)
• 2-bromo-3-bencilamino-l, 4-antraquinona (30) • 2-broπιo-3-ciclopropilamino-l , 4-antraquinona ( 31 )
• 2-bromo-3-pirrolidinil-l, 4-antraquinona (32)
• 2-bromo-3-piperidinil-l, 4-antraquinona (33)
• 2-bromo-3- (4' -fluorbencil) -amino-1, 4-antraquinona (34)
• 2-bromo-3- (4' -clorobencil) -amino-1, 4-antraquinona (35) • 2, 3-bis (pirazolil) -1, 4-antraquinona (36)
• 2- (2' , 4' -diclorobencil) -amino-3-bromo-l, 4-antraquinona (37)
• 2-imidazolil-3-bromo-l, 4-antraquinona (38)
• 2-aziridinil-3-bromo-l, 4-antraquinona (39)
• 2-bromo-3-morfolinil-l, 4-antraquinona (40) • 2- (2' -clorobencilamino) -3-bromo-l, 4-antraquinona (41) • 2-aziridinil-3-cloro-l, 4-antraquinona (42)
• 2-cloro-3-bencilamino-l, 4-antraquinona (43)
• 2-cloro-3-ciclopropilamino-l, 4-antraquinona (44)
• 2-cloro-3-pirrolidinil-l, 4-antraquinona (45)
• 2-cloro-3-piperidinil-l, 4-antraquinona (46)
• 2-cloro-3-morfolinil-l, 4-antraquinona (47)
• 2-cloro-3- (4' -clorobencil) -amino-1, 4-antraquinona (48)
• 2-cloro-3- (2' -clorobencil) -amino-1, 4-antraquinona (49)
• 2-cloro-3- (4' -fluorbencil) -amino-1, 4-antraquinona (50)
• 2- (2' , 4' -diclorobencil) -am±no-3-cloro-l, 4-antraquinona (51)
• 2-cloro-3- (2' -picolilamino) -1, 4-antraquinona (52)
• 2-etoxi-3-imidazolil-l, 4-antraquinona (53)
• 2, 3-bis (pirrolidinil) -1, 4-antraquinona (54)
• 2, 3-bis (piperidinil) -1, 4-antraquinona (55)
• 2, 3-bis (aziridinil) -1, 4-antraquinona (56)
• 2, 3-bis (morfolinil) -1, 4-antraquinona (57)
Otro objeto particular de la presente invención lo constituye un compuesto de fórmula general (IV) , que constituye una subfamilia de (I), y en el que el enlace covalente de (I) α es un enlace simple y R2 y R4 de (I) están presentes :
Figure imgf000031_0001
(IV) donde R2, R3 pueden ser igual a -O- dando lugar a un anillo de epóxido y en este cas,
R1 se define como en la reivindicación 1, siendo preferentemente halógeno (F, Cl, Br, I) , éter, -OR (alcoxi- ó haloalcoxi-, -OCF3) , donde R es una cadena alquilica corta, tioéter, 0-aciloxi, O-triflato, O-tosilato. R1 puede ser también un radical alquilo Ci-Ci4 lineal ó ramificado (con dobles ó triples enlaces) , NO2, arilo ó heteroarilo,
R3 puede ser H ó diferente de H y preferentemente halógeno (F, Cl, Br, I), éter, -OR (alcoxi- ó haloalcoxi-, -OCF3) , donde R es una cadena alquilica corta, tioéter, 0-aciloxi, O-triflato, O-tosilato. R1 puede ser también un radical alquilo Ci-Ci4 lineal ó ramificado (con dobles ó triples enlaces) , NO2, arilo ó heteroarilo,
R5 y R6 son independientemente H, -OH, -Oalcoxi (con cadena lineal corta) , -Oaciloxi, halógeno (F, Cl, Br, I) , y
R7 es H, sólo cuando uno ó más de los radicales restantes en (II) , es decir R1, R3, R5 y R6 son diferentes de H. Cuando alguno de estos radicales es diferente de H, R7 puede tener la naturaleza descrita en los casos anteriores: halógeno (F, Cl, Br, I), éter, -OR (alcoxi- ó haloalcoxi-, -OCF3), donde R es una cadena alquilica corta, tioéter, 0-aciloxi, O-triflato, 0- tosilato. R1 puede ser también un radical alquilo Ci-Ci4 lineal ó ramificado (con dobles ó triples enlaces) , NO2, arilo ó heteroarilo. Otro objeto más particular de la invención lo constituye un compuesto perteneciente a la fórmula V donde R2, R3 son iguales a -0- dando lugar a un anillo de epóxido:
Figure imgf000033_0001
(V) donde
R y R son independientes entre si y pueden ser preferentemente H ó halógeno (F, Cl, Br, I) , ó éter, -OR
(alcoxi- ó haloalcoxi-, -OCF3), ó -NH2, NHR' , donde R' es una cadena alquilica de corta, ó bien cicloalquilica (sistema de aziridina, ciclobutilamina, pirrolidina, piperidina, morfolina) , ó bien R' es un sistema bencénico o heterociclico
(pirazol, imidazol) , ó R' es un sistema bencílico ó heterociclo-CH2- . R1 y R4 pueden ser también un radical alquilo Ci~Ci4 lineal ó ramificado (con dobles ó triples enlaces) , ó arilo ó heteroarilo,
R5 y R6 son independientes entre si y pueden ser H, -OH,
Oalcoxi (con cadena lineal corta) , -Oaciloxi, halógeno (F, Cl, Br, I), y
R7 es preferentemente H, Otra realización particular de la invención lo constituye un compuesto de fórmula V, a titulo ilustrativo y sin que limite el alcance de la invención, perteneciente al siguiente grupo:
• 2, 3-epoxi-2, 3-dihidro-l, 4-antraquinona (75) • 2, 3-epoxi-2, 3-dihidro-9-metoxi-l, 4-antraquinona (76)
• 2, 3-epoxi-2-etil-3-hidro-l, 4-antraquinona (77) • 2, 3-epoxi-3-hidro-2-isopropil-l, 4-antraquinona (78)
• 2, 3-epoxi-3-hidro-2-tercbutil-l, 4-antraquinona (79)
• 2, 3-epoxi-2, 3-dietil-l, 4-antraquinona (80)
• 2-bencil~2, 3-epoxi-3-hidro-l, 4-antraquinona (81)
• 2, 3-epoxi-2-metil-3-hidro-l, 4-antraquinona (89)
Otro objeto más particular de la invención lo constituye un compuesto perteneciente a la fórmula IV y de fórmula (VI) :
Figure imgf000034_0001
(Vl)
donde
R y R4 son independientes entre si y pueden ser preferentemente H ó halógeno (F, Cl, Br, I), ó éter, -OR (alcoxi- ó haloalcoxi-, -OCF3) , ó -NH2, NHR' , donde R' es una cadena alquilica de corta, ó bien cicloalquilica (sistema de aziridina, ciclobutilamina, pirrolidina, piperidina, morfolina) , ó bien R' es un sistema bencénico o heterociclico
(pirazol, imidazol) , ó R' es un sistema bencílico ó heterociclo-CH2- . R1 y R4 pueden ser también un radical alquilo Ci-Ci4 lineal ó ramificado (con dobles ó triples enlaces) , ó arilo ó heteroarilo, R2 y R3 son independientes entre si y pueden ser radicales acilo, -COR8, donde R8 es alquilo Cx-C6 lineal ó ramificado ó arilo ó heteroarilo,
R5 y R6 son independientes entre si y pueden ser H, -OH, Oalcoxi (con cadena lineal corta) , -Oaciloxi, halógeno (F, Cl, Br, I), y
R7 es preferentemente H. Otra realización particular de la invención lo constituye un compuesto de fórmula VI, a titulo ilustrativo y sin que limite el alcance de la invención, perteneciente al siguiente grupo:
• 2, 3-diacetoxi-2, 3-dihidro-l, 4-antraquinona (82) • 2, 3-diacetoxi-2, 3-dihidro-9-metoxi-l, 4-antraquinona (83)
• 2, 3-dipropionoxi-2, 3-dihidro-l, 4-antraquinona (84)
• 2, 3-dibutiroxi-2, 3-dihidro-l, 4-antraquinona (85)
• 2, 3-divaleroxi-2, 3-dihidro-l, 4-antraquinona (86)
• 2, 3-bisisobutiroxi-2, 3-dihidro-l, 4-antraquinona (87) • 2, 3-bistrimetilacetoxi-2, 3-dihidro-l, 4-antraquinona (88)
Los compuestos de fórmula (I) tienen, en general, actividad terapéutica, y, en particular, actividad antitumoral frente a células humanas tumorales, por lo que son potencialmente útiles como antitumorales . Tal como se utiliza en esta descripción, un "antitumoral" es una sustancia quimica que detiene el crecimiento de una célula tumoral.
Por tanto, dichos compuestos de fórmula (I), en particular, los compuestos descritos en la Tabla I son potencialmente útiles como antitumorales. En una realización particular, dichos compuestos son más útiles como agentes antiparasitarios, frente a Leishmania y Tripanosoma. Asi, es ampliamente conocido que hay compuestos quinónicos activos frente a Leishmania69, tripanosomiasis7, toxoplasmosis70 y malaria8"10 (ya se ha citado el caso de la atovaquona65) . Pero las quinonas no sólo encuentran aplicación como antitumorales, sino también tienen amplio potencial en el tratamiento de enfermedades neurodegenerativas, en particular la enfermedad de Alzheimer. Asi, una característica principal de este proceso es que la proteina tau se agrega formando filamentos helicoidales (PHF) . Ya en 1997 se publicó que la menadiona (2- metil-1, 4-naftoquinona) inducía la desfosforilación de tau71 y en Febrero de 2005 se ha puesto de manifiesto, tras realizar screening de una librería de 200.000 compuestos, que algunas antraquinonas naturales y las antraciclinas inhibían la agregación de tau y disolvían los PHF72. Además, ya se ha comentado anteriormente que la fosfatasa Cdc25 era una diana dual para cáncer y enfermedades neurodegenerativas24. Aún más, los productos de reducción de las antraquinonas, esto es, las antronas, son tradicionalmente activos frente a procesos inflamatorios, como el ditranol contra la psoriasis73. La rheina (Artrodar) es una diacetil-9, 10-antraquinona comercializada contra la artritis reumatoide74. Y finalmente la aplicación de las quinonas se extiende también a los productos de interés agroquimico como herbicidas para controles de plagas75 e inhibidores del apetito en insectos
("antifeedant") 76. Por todo ello resulta evidente la gran importancia que presenta este tipo de compuestos. En consecuencia, en otro aspecto, la invención se relaciona con una composición terapéutica que comprende un compuesto de fórmula (I), junto con un vehículo inerte. En una realización particular, dicho compuesto de fórmula (I) se selecciona del grupo descrito en la Tabla I y sus mezclas, junto con, opcionalmente, uno o más vehículos inertes. Dicha composición terapéutica es particularmente útil frente a células tumorales humanas y animales, aunque no limitado a ellos . Tal como se utiliza en esta descripción, el término "inerte" significa que dicho vehículo no tiene una actividad biocida significativa.
Si se desea, dicha composición terapéutica puede contener, además, otros compuestos antitumorales, naturales, recombinantes o sintéticos, que, eventualmente, potencien la acción de dicho compuesto de fórmula (I) o bien que incrementen su espectro de acción.
Un campo importante donde encuentran aplicación los compuestos de fórmula (I) , en particular, los compuestos de la
Tabla I, es en Sanidad humana y animal. Por tanto, en una realización particular, la invención proporciona una composición farmacéutica que comprende un compuesto de fórmula
(I) , junto con, opcionalmente, uno o más excipientes farmacéuticamente aceptables. En una realización particular, dicho compuesto de fórmula (I) se selecciona entre los compuestos incluidos en la Tabla I y sus mezclas.
En el sentido utilizado en esta descripción, la expresión "excipiente farmacéuticamente aceptable" se refiere a aquellas sustancias, o combinación de sustancias, conocidas en el sector farmacéutico, utilizadas en la elaboración de formas farmacéuticas de administración e incluye adyuvantes, sólidos o líquidos, disolventes, tensioactivos, etc.
Si se desea, dicha composición farmacéutica puede contener, además, uno o más agentes terapéuticos que, eventualmente, potencien la acción terapéutica de dicho compuesto de fórmula (I) o bien que incrementen su espectro de acción.
Dicha composición farmacéutica puede ser utilizada para prevenir y/o tratar enfermedades tumorales humanas o animales; asi como enfermedades infecciosas provocadas por parásitos patógenos de humanos o animales.
Tal como se utiliza en la presente invención el término "enfermedades tumorales" se refiere a patologías creadas por el crecimiento de células tumorales humanas o animales, y de forma más concreta nos referimos, a titulo ilustrativo y sin que limite el alcance de la invención, al cáncer de mama, cáncer de pulmón, cáncer de próstata, cáncer de sistema nervioso central, preferentemente glioblastomas, y sarcoma.
Por tanto, en una realización concreta, dicha composición farmacéutica es una composición antitumoral y puede ser utilizada en el tratamiento de enfermedades tumorales humanas. Si se desea, dicha composición antitumoral puede contener, además, uno o más agentes antitumorales que, eventualmente, potencien la acción de dicho compuesto de fórmula (I) o bien que incrementen su espectro de acción.
En otra realización concreta, dicha composición farmacéutica es una composición antiparasitaria y puede ser utilizada en la prevención y/o el tratamiento de infecciones causadas por parásitos, por ejemplo, Tripanosoma y Leishmania. Si se desea, dicha composición antiparasitaria puede contener, además, uno o más agentes antiparasitarios que, eventualmente, potencien la acción terapéutica de dicho compuesto de fórmula (I) o bien que incrementen su espectro de acción.
El compuesto de fórmula (I) estará presente en la composición farmacéutica en una cantidad terapéuticamente eficaz, es decir, en una cantidad apropiada para ejercer su efecto terapéutico. En una realización particular, la composición farmacéutica proporcionada por esta invención, contiene entre 0,01% y 99,99% en peso de un compuesto de fórmula (I), tal como un compuesto seleccionado de la Tabla I y sus mezclas, y puede presentarse en cualquier forma farmacéutica de administración apropiada en función de la via de administración elegida, por ejemplo, oral, parenteral o tópica. Una revisión de las distintas formas farmacéuticas de administración de fármacos y de sus procedimientos de preparación puede encontrarse, por ejemplo, en el Tratado de Farmacia Galénica, C. Fauli i Trillo, Ia edición, 1993, Luzán 5, S.A. de Ediciones.
Por tanto, la invención también se relaciona con el empleo de un compuesto de fórmula (I) en la elaboración de un medicamento útil para el tratamiento de enfermedades tumorales humanas o animales, de enfermedades infecciosas provocadas por parásitos y neurodegenerativas. En una realización particular, dicho compuesto de fórmula (I) se selecciona de la Tabla I y sus mezclas. Asimismo, en otro aspecto, la invención también proporciona un método para prevenir y/o tratar infecciones causadas por parásitos de humanos o animales y para tratar enfermedades tumorales de humanos o animales, que comprende la etapa de administrar a un animal o a un ser humano, en necesidad de tratamiento, una cantidad terapéuticamente eficaz de una composición farmacéutica proporcionada por esta invención.
Finalmente, otro objeto de la incención lo constituye un procedimiento para la elaboración de los compuestos de fórmula general (I) de la invención basado por las siguientes etapas, que no son necesariamente consecutivas: a) Adición del radical formado por descarboxilación oxidativa de diferentes ácidos carboxilicos a 1, 4-antraquinonas diferentemente sustituidas, para dar una amplia gama de 2- alquil- y 2, 3-dialquil-l, 4-antraquinonas . Las condiciones preferentes comprenden el uso de persulfato amónico y nitrato de plata en una mezcla de agua-dioxano, b) Generación de o-quinodimetanos a partir de derivados halogenados geminales y posterior reacción con benzoquinonas diferentemente sustituidas. Los derivados halogenados son preferentemente tri- y tetrabromuros y el o-quinodimetano se forma por reacción con yoduro sódico, c) Transformaciones químicas selectivas sobre el núcleo de 5,9- diacetoxi-1, 4-antraquinona, consistentes en hidrólisis, alquilaciones (en particular metilaciones) , acilaciones (en particular acetilaciones) para dar lugar a una amplia gama de quinonas 5, 9-disustituidas, d) Halogenación (preferentemente cloración y bromación) selectiva de diferentes 1, 4-antraquinonas suministrando derivados monohalogenados con excelente rendimiento, e) Halogenación (preferentemente cloración y bromación) exhaustiva de diferentes 1, 4-antraquinonas mejorando, sobre todo en el caso de las cloraciones, notablemente los métodos descritos en la bibliografía, ya que no se utiliza cloro gaseoso sino cloruro de tionilo, f) Reacciones de amonolisis y aminación selectiva, consistentes en el tratamiento de monohalo- y dihalo-1,4- antraquinonas con amoniaco y aminas para dar, según las condiciones, monoamino, haloamino (sea bromo- ó cloro-) y diamino-1, 4-antraquinonas, g) Reacciones selectivas de eterificación de haloderivados por reacción con los diferentes alcóxidos en presencia ó ausencia de alúmina, h) Epoxidación de 1, 4-antraquinonas con diferentes agentes epoxidantes: ácido m-cloroperbenzoico, monoperoxiftalato de magnesio, hidroperóxido de tercbutilo, complejo urea-agua oxigenada, siendo preferibles los agentes más benignos ambientalmente como el agua oxigenada, hipoclorito sódico y lejia doméstica, e i) Apertura de los epóxidos de 1, 4-antraquinonas diferentemente sustituidas con una gran variedad de anhidridos de ácidos carboxilicos, en presencia de ácidos minerales fuertes, para dar preferentemente cis-diésteres con cadenas lineales, ramificadas y aromáticas.
DESCRIPCIÓN DE LAS FIGURAS
Figura 1.- Formas ana-quinónicas y 1, 4-antraquinónicas . Figura 2.- Síntesis de 9-hidroxi-, 9-acetoxi- y 9-metoxi-l, 4- antraquinona .
Figura 3.- Síntesis de alquil- y dialquil-1, 4-antraquinonas por adición de radicales libres. Figura 4. - Ruta de los o-quinodimetanos para la generación de 1, 4-antraquinonas .
Figura 5.- Transformaciones selectivas de 5, 9-diacetoxi-l, 4- antraquinonas (94). Figura 6.- Síntesis de mono- y dihalo-1, 4-antraquinonas Figura 7.- Cloración de 9-hidroxi-l, 4-antraquinona
Figura 8,- Haloéteres de quinona . Síntesis del producto natural 2, 3-dimetoxi~9-hidroxi-l, 4-antraquinona
Figura 9.- Síntesis de monoamino-, bromoamino-, cloroamino- y diamino-1, 4-antraquinona Figura 10.- Formación de epóxidos de 1, 4-antraquinona Figura 11.- Apertura de epóxidos de 1, 4-antraquinona Figura 12.- Actividad biológica de los compuestos de la invención en la linea celular CNIO AA a las 72 horas Figura 13.- Actividad biológica de los compuestos de la invención en la linea celular CNIO AA a las 96 horas
Figura 14- Actividad biológica de los compuestos de la invención en la linea celular PC3 a las 72 horas Figura 15.- Actividad biológica de los compuestos de la invención en la linea celular PC3 a las 96 horas Figura 16.- Actividad biológica de los compuestos de la invención en la linea celular MCF7 a las 96 h.
Figura 17.- Actividad biológica de los compuestos de la invención en la linea celular A549 y NCI-H-460 a las 96 h. Figura 18- Actividad biológica de los compuestos de la invención en la linea celular SF268 a las 96 h.
EJEMPLOS DE REALIZACIÓN
Los compuestos de la presente invención representativos de la fórmula general I que se han sintetizado, y posteriormente utilizado en los ensayos se describen en la Tabla I siguiente (el número del compuesto es identificativo del mismo a lo largo del documento de la presente invención que está indicado entre paréntesis tras el nombre del compuesto) .
Tabla 1 . Compuestos de la presente invención
Figure imgf000043_0001
Figure imgf000044_0001
Figure imgf000045_0001
Figure imgf000046_0001
Figure imgf000047_0001
Figure imgf000048_0001
Figure imgf000049_0001
Figure imgf000050_0001
Figure imgf000051_0001
Figure imgf000052_0001
Figure imgf000053_0001
Como ejemplos no limitativos se describen los siguientes: Ejemplo 1.- 2-cloro-l, 4-antraquinona (1)
Se burbujeó cloro gaseoso a una disolución de 1, 4-antraquinona
(1Og, 48mmol) en ácido acético (25OmI) y se agitó durante 30 min. a temperatura ambiente. La mezcla de reacción se vertió sobre hielo y se filtró. El sólido amarillo se lavó con agua destilada (4 x 10OmI) y se secó para dar la 2, 3-dicloro-2, 3- dihidro-1, 4-antraquinona. Este producto se agitó con acetato de sodio en cloroformo durante 12h a temperatura ambiente, se filtró y se secó para dar 1 como un sólido amarillo (12g, 43mmol, 91%); p.f. 222-223°C, pureza 99% (HPLC). λ^ (MeOH) 375, 355, 268.
Vmax (KBr) /can"11711, 1617, 1268, 1180, 761 1H-NMR (CDCl3, 300MHz) δ 4.82 (s, IH, H3), 7.78 (m, 2H, H6, H7), 8.10(m, 2H, H5, H8), 8.70 (s, 2H, H9 ó Hi0), 8.76 (s, 2H, H9 ó H10) . m/z (IE) 243, 207.
Análisis elemental calculado para Ci4H7ClO2: C, 69.30; H, 2.91; Cl, 14.61; hallado: 68.95; H, 3.12; Cl, 13.85.
Ejemplo 2.- 2-cloro-9-hidroxi-l , 4-antraquinona y 3-cloro-9- hidroxi-1, 4-antraquinona (2)
Se burbujeó cloro gaseoso a una disolución de 9-hidroxi-l, A- antraquinona (1Og, 44.6mmol) en ácido acético (25OmI) y se agitó durante 30 min. a temperatura ambiente. La mezcla se vertió sobre hielo y se filtró. El sólido rojo se lavó con agua destilada (4 x 10OmI) y se secó para dar la 2,3-dicloro- 2, 3-dihidro-9~hidroxi-l, 4-antraquinona. Este producto se agitó con acetato de sodio en cloroformo durante 12h a temperatura ambiente, se filtró y se secó para dar una mezcla inseparable de los dos regioisómeros 2-cloro-9-hidroxi-l, 4- antraquinona y 3-cloro-9-hidroxi-l, 4-antraquinona en una proporción molar de 1:2 como sólido rojo (12g, 43 mmol, 86%).
Figure imgf000055_0001
vmax (KBr) /cm"13435, 2927, 1705, 1632, 1382, 1258, 761
1H-NMR (CDCl3, 300MHz) δ 7.25 (s, IH, H2 ó H3) , 7.26 (s, IH, H2 ó H3) , 7.75 (m, 2H, H6, H7), 7.96 (m, 2H, H5, H8) , 8.12 (s, 2H, H10) , 8.22 (s, 2H, H10) , 8.49 (m, 2H, H5, H8) , 13.69 (s, cambia con D2O, OH), 13.58 (s, cambia con D2O, IH, OH), m/z (IE) 258, 229.
Análisis elemental calculado para C14H7ClO3: C, 64.99; H, 2.71;
Cl, 13.71; hallado: C, 66.15; H, 2.44; Cl, 13.85%.
Ejemplo 3.- 2-cloro-9-metoxi-l,4-antraquinona y 3-cloro-9- metoxi-1, 4-antraquinona (3)
Se agitó la mezcla de regioisómeros (2) (Ig, 4.5mmol) con yoduro de metilo (2ml) y óxido de plata (I) (5g, 22mmol) en cloroformo (2OmI) durante 24h a temperatura ambiente. Se filtró el óxido de plata y se concentró el crudo de reacción in vacuo. Se purificó por cromatografía en gel de silice empleando cloroformo como eluyente para obtener una mezcla de los dos regioisómeros (3) en proporción 1:2 como un sólido naranja (l.lg, 90%).
^3x (MeOH) 421, 344.
Va18* (KBr) /cm"1 1666, 1611, 1580, 1419, 1342, 1289, 1256, 1090,
941.
1H-NMR (CDCl3, 300MHz) δ 7.25 (s, IH, H2 ó H3) , 7.26 (s, IH, H2 ó H3) , 7.80 (m, 2H, H5, H8) , 7.96 (m, 2H, H5, H8) , 8.05 (m, 2H,
H6, H7) , 8.46 (m, 2H, H6, H7) , 8.53 (s, IH, Hi0) , 8.61 (s, IH,
Hi0 ) • m/z (IE) 272, 243.
Análisis elemental calculado para Ci5HgClO3: C, 66.06; H, 3.30; Cl, 13.00; hallado: C, 65.79; H, 3.15; Cl, 12.85%. Ejemplo 4.- 2 ,3-dicloro-l , 4-antraquinona (4)
Método A. Se añadió piridina (14ml, 144mmol) a una disolución de 1, 4-antraquinona (5g, 24mmol) y SOCl2 (8.9ml, 120mmol) en cloroformo (20OmI) agitando a reflujo durante 1Oh. Se añadió bicarbonato sódico a la mezcla de reacción hasta pH básico y precipitó el producto como un sólido amarillo que se lavó con agua destilada (3 x 5OmI) y etanol (3 x 5OmI) y se secó para dar la 2, 3-dichloro-l, 4-antraquinona (5.3g, 19.2mmol, 80%), pureza del 99% (HPLC) . Método B. Se burbujeó cloro gaseoso a una disolución de 1,4- antraquinona (5g, 24mmol) en ácido acético (25OmI) durante 5 min. agitando a reflujo. Se continuó la agitación durante otros 20 min. y se repitió el burbujeo de cloro durante otros 5 min. Se repitió este proceso hasta completa desaparición del producto de partida, comprobada por cromatografía en gel de silicede capa fina. El proceso duró entre 5 y 7 dias. La mezcla de reacción se vertió en agua y se filtró el producto, lavándolo con agua destilada (3 x 5OmI) y etanol (3 x 3OmI) y secándolo para obtener 4 como cristales planos amarillos (5.85g, 20mmol, 80%), p.f. 299-301°C; pureza del 99% (HPLC). A1113x (MeOH) 232 (4.74), 287 (4.38), 421 (3.38). Vaax (KBr) /cm"11675, 1617, 1285, 1216, 859, 761.
1H-NMR (CDCl3, 300MHz) δ 7.78 (m, 2H, H6, H7), 8.10 (m, 2H, H5, H8), 8.76 (s, 2H, H9, Hi0) . m/z (IE) 276, 241, 213.
Análisis elemental calculado para Ci4HeCl2O2: C, 66.65; H, 2.17; Cl, 25.59; hallado: C, 59.89; H, 2.60; Cl, 25.81%.
Ejemplo 5.- 3 , 10-dicloro-9-hidroxi-l, 4-antraquinona (5) Se burbujeó cloro gaseoso a una disolución de 9-hidroxi-l, 4- antraquinona (4g, 17.9mmol) en ácido acético (10OmI) durante 3h agitando a reflujo. La mezcla de reacción se vertió sobre agua y se filtró el producto. El sólido obtenido fue cromatografiado para dar 5 (4.1g, 15mmol, 83%), p.f. 241- 243°C; pureza del 99% (HPLC) .
V1n^ (KBr) /cπf1 3043, 1671, 1655, 1624, 1582, 1729, 1157, 931, 755 1H-NMR (CDCl3, 300MHz) δ 7.90 (m, 2H, H6, H7), 8.56 (m, 2H, H5, H8), 8.74 (s, 2H, H9 ó H10), 8.78 (s, 2H, H9 ó H10), 14.82 (s, cambia con D2O, IH) . m/z (IE) 292, 257.
Análisis elemental calculado para Ci4H6Cl2O3: C, 57.34; H, 2.06; Cl, 25.59; hallado: C, 57.21; H, 2.60; Cl, 25.81%.
Ejemplo 6.- 3, 10-dicloro-9-metoxi-l ,4-antraquinona (6)
Se agitó la 3, 10-dicloro-9-hidroxi-l, 4-antraquinona (5) (2g, 6.8minol) con yoduro de metilo (2ml) y óxido de plata (I) (5g, 22mmol) en cloroformo (4OmI) durante 24h a temperatura ambiente. Se filtró el óxido de plata y se concentró el crudo de reacción al vacio. Se purificó por cromatografia en gel de sílice empleando cloroformo como eluyente para dar el producto 6 como un sólido naranja (1.82g, 0.6mmol, 90%), p.f. 147- 149°C; pureza del 99% (HPLC) . vmax (KBr) /can"1 1676, 1648, 1615, 1488, 1395, 1332, 1332, 1244, 1098, 947, 939, 761
1H-NMR (CDCl3, 300MHz) δ 4.09 (s, 3H, OCH3), 7.19 (s, IH, H2), 7.84 (m, 2H, H6, H7), 8.70 (m, IH, H5 ó H8) , 8.71 (m, IH, H5 ó H8) .
Ejemplo 7.- 2 ,3-dicloro-9-metoxi-l , 4-antraquinona (7)
Se añadió piridina (14ml, 144mmol) a una disolución de 9- metoxi-1, 4-antraquinona (5g, 21mmol) y SOCl2 (8.9ml, 120mmol) en cloroformo (10OmI) agitando a reflujo durante 1Oh. La mezcla de reacción se vertió sobre agua y se añadió bicarbonato sódico hasta pH básico. Se extrajo con cloroformo
(3 x 10OmI) y se secó con sulfato sódico. El residuo fue concentrado in vacuo y cromatografiado para dar 7 (130mg, 0.42ItImOl, 2 %), p.f. 231-232°C, pureza del 99% (HPLC). λ^ (MeOH) 440, 292.
Figure imgf000058_0001
IeTl, 1262, 1098, 948, 755. 1H-NMR (CDCl3, 300MHz) δ 4.12 (s, 3H, OCH3) , 7.75 (m, 2H, H6, H7) , 8.05 (m, IH, H5 ó H8) , 8.40 (m, IH, H5 ó H8) , 8.56 (s, IH,
Hio) •
13C RMN (CDCl3, 75 MHz) δ 63.4, 117.0, 125.0, 127.2, 127.8, 130.4, 130.5, 130.9, 131.9, 135.7, 143.3, 146.2, 160.9, 174.0, 176.4. m/z (IE) 306, 277, 241.
Análisis elemental calculado para Ci5H8Cl2O3: C, 58.63; H, 2.60; Cl, 23.09; hallado: C, 58.55; H, 2.30; Cl, 23.22%.
Ejemplo 8.- 2-bromo-l ,4-antraquinona (8)
Se añadió bromo (2.52ml, 49 mmol) a una disolución de 1,4- antraquinona (1Og, 48mmol) en ácido acético (15OmI) y se agitó durante 30 min. a temperatura ambiente. La mezcla se vertió sobre hielo y se filtró. El sólido amarillo se lavó con agua destilada (4 x 5OmI) para dar la 2, 3-dibromo-2, 3-dihidro-l, 4- antraquinona . Este producto se agitó a reflujo en etanol (100 mi) durante 2h para dar 8 como cristales amarillo-dorados (12g, 44mmol, 92%) p.f. 227-228°C; pureza 99% (HPLC). pureza del 99% (HPLC) . K (MeOH) 414, 283, 229.
V1113x(KBr)ZCm"1 1674, 1616, 1269, 888, 758.
1H-NMR (CDCl3, 300MHz) δ 7.56 (s, IH, H3) , 7.78 (m, 2H, H6, H7) , 8.10 (m, 2H, H5, H8) , 8.68 (s, IH, H9 ó H10) , 8.72 (s, IH, H9 ó Hi0 ) • m/z (IE) 286, 207.
Análisis elemental calculado para Ci4H7BrO2: C, 58.54; H, 2.44; Br, 27.83; hallado: C, 58.61; H, 2.70; Br, 28.31%. Ejemplo 9.- 2-bromo-9-hidroxi-l ,4~antraquinona (9)
Se añadió bromo (3.1ml, 62 mmol) a una disolución de 9- hidroxi-1, 4-antraquinona (1Og, 31.6mmol) en ácido acético
(15OmI) y se agitó durante 30 min. a temperatura ambiente. La mezcla se vertió sobre hielo y se filtró. El sólido amarillo se lavó con agua destilada (4 x 5OmI) para dar la 2,3-dibromo-
2, 3-dihidro-9-hidroxi-l, 4-antraquinona como un sólido amarillo. Este producto se agitó a reflujo en etanol (100 mi) durante 2h para dar 9 como cristales amarillo-dorados (12g, 44 mmol, 92%) p.f. 128-129°C, pureza 98% (HPLC). Kax (MeOH) 480, 288.
VmaxíKBrϊ/cm"13467, 1665, 1579, 1257, 758.
1H-NMR δ 7.56 (s, IH, H3), 7.70 (m, 2H, H6, H7), 7.91 (m, IH, H5 ó H8), 8.19 (s, IH, Hi0), 8.45 (m, IH, H5 ó H8), 13.56 (s, cambia con D2O, IH, OH) .
13C RMN (CDCl3, 75 MHz) δ 107.5, 122.7, 125.2, 127.4, 130.8, 131.7, 131.8, 136.0, 140.6, 141.6, 142.4, 163.4, 181.3, 181.9. m/z (IE) 302, 240. Análisis elemental calculado para Ci4H7BrO3: C, 55.48; H, 2.33; Br, 26.36; hallado: C, 54.98; H, 3.09; Br, 26.22%.
Ejemplo 10.- 2-bromo-9-metoxi-l , 4-antraquinona (10)
Se agitó la 2-bromo-9-hidroxi-l, 4-antraquinona (9) (2g, 6.6mmol) con yoduro de metilo (2ml) y óxido de plata (I) (5g, 22mmol) en cloroformo (40ml) durante 24h a temperatura ambiente. Se filtró el óxido de plata y se concentró el crudo de reacción al vacio. Se purificó por cromatografía en gel de sílice empleando cloroformo como eluyente para dar el producto 10 como un sólido naranja (1.96g, 6.2mmol, 94%), p.f. 165- 166°C; pureza 99% (HPLC) . Kax (MeOH) 425, 285. Vmax (KBr) /can"11669, 1611, 1421, 1399, 1339, 1251, 751. 1H-NMR (CDCl3, 300MHz) δ 4.05 (s, 3H, OCH3) , 7.55 (s, IH, H3) , 7.74 (m, 2H, H6, H7) , 8.03 (m, IH, H5 ó H8) , 8.40 (m, IH, H5 ó H8) , 8.42 (s, IH, H10) .
13C RMN (CDCl3, 75 MHz) δ 62.0, 117.1, 124.9, 125.8, 129.9, 130.5, 130.6, 131.7, 135.7, 140.2, 143.4, 143.5, 160.6, 176.0, 182.0. m/z (IE) 316, 302, 289.
Análisis elemental calculado para Ci5HgBrOs: C, 56.78; H, 2.84; Br, 25.20; hallado: C, 56.55; H, 2.50; Br, 25.33%.
Ejemplo 11.- 2 ,3-dibromo-1 ,4-antraquinona (11)
Se añadió bromo (4.44ml, 86 iranol) a una disolución de 1,4- antraquinona (6g, 28.8mmol) en ácido acético (25OmI) y se agitó durante 30 min. a temperatura ambiente y luego a reflujo durante 3h. La mezcla se vertió sobre hielo y se filtró. El sólido obtenido se lavó con agua destilada (3 x 5OmI) y etanol (3 x 5OmI) y se secó para dar 11 como un sólido amarillo- dorado (9g, 25.9mmol, 90%), p.f. 247-248°C; pureza del 98% (HPLC) . 7^x (MeOH) 234 (4.76), 289 (4.43), 302 (4.40), 409 (3.80). Vmax (KBr) /can'11669, 1615, 1275, 1045, 758.
1H-NMR (CDCl3, 300MHz) δ 7.74 (m, 2H, H6, H7), 8.11 (m, 2H, H5, H8), 8.75 (s, 2H, H9, H10) . m/z (IE) 366, 287, 257. Análisis elemental calculado para Ci4H6Br2O2: C, 58.74; H, 2.10; Br, 43.66; hallado: C, 58.71; H, 2.31; Br, 43.80%.
Ejemplo 12.- 2 ,3-dibromo-9-hidroxi-l , 4-antraquinona (12)
Se añadió bromo (4.44ml, 86 mmol) a una disolución de 9- hidroxi-1, 4-antraquinona (1Og, 26.3mmol) en ácido acético (15OmI) y se agitó durante 30 min. a temperatura ambiente y luego a reflujo durante 4h. La mezcla se vertió sobre hielo y se filtró, lavándolo con etanol varias veces. El sólido obtenido se recristalizó de cloroformo para dar 12 como cristales de color rojo brillante (8.6g, 22.6mmol, 87%), p.f. 273-274°C; pureza 98% (HPLC) . λmax (MeOH) 238 (4.63), 285 (4.28), 467 (3.86). V1n^ (KBr) /cπf13458, 1667, 1619, 1545, 1264, 1193, 851, 767.
1H-NMR (CDCl3, 300MHz) δ 7.75 (m, 2H, H6, H7), 7.98 (d, IH, H5 ó H8), 8.23 (s, IH, Hi0), 8.48 (d, IH, H5 ó H8), 13.47 (s, cambia con D2O, IH, OH) .
13C RMN (CDCl3, 75 MHz) δ 107.2, 116.4, 124.9, 125.2, 125.6, 127.6, 130.1, 130.7, 132.1, 135.7, 144.5, 163.9, 175.1, 179.9. m/z (IE) 382, 303, 273.
Análisis elemental calculado para Ci4H6Br2O3: C, 44.02; H, 1.58; Br, 41.83; hallado: C, 43.65; H, 1.80; Br, 41.59%.
Ejemplo 13.- 2 , 3-dibromo-9-metoxi-l, 4-antraquinona (13)
Se agitó la 2, 3-dibromo-9-hidroxi-l, 4-antraquinona (12) (2g, 5.3mmol) con yoduro de metilo (2ml) y óxido de plata (I) (5g, 22mmol) en cloroformo (4OmI) durante 24h a temperatura ambiente. Se filtró el óxido de plata y se concentró el crudo de reacción al vacio. Se purificó por cromatografía en gel de silice empleando cloroformo como eluyente para dar el producto 13 como un sólido rojo (1.88g, 4.77mmol, 90%), p.f. 224-225°C; pureza 99% (HPLC) . K (MeOH) 440, 292. Va13x (KBr) /cπfx 1668, 1651, 1612, 1254, 1091, 942, 755.
1H-NMR (CDCl3, 300MHz) δ 4.04 (s, 3H, OCH3), 7.73 (m, 2H, H6, H7), 8.05 (m, IH, H5 ó H8) , 8.41 (m, IH, H5 ó H8) , 8.55 (s, IH,
Hio) •
13C RMN (CDCl3, 75MHz) δ 63.4, 116.8, 125.0, 127.5, 127.6, 130.3, 130.5, 130.9, 131.8, 135.6, 142.1, 146.0, 161.0, 173.9, 175.9. m/z (IE) 396, 379, 367, 317, 287. Análisis elemental calculado para Ci5HsB^Os: C, 43.98; H, 1.57; Br, 40.36; hallado: C, 43.65; H, 1.80; Br, 40.61%.
Ejemplo 14.- 2-bromo-3-metoxi-9-hidroxi-l,4-antraquinona y 3- bromo-2-metoxi-9-hidroxi-l,4-antraquinona (14)
Se añadió una disolución de sodio (53mg, 2.3mmol) en metanol seco (recién destilado, 2ml) a una disolución de 2, 3-dibromo- 9-hidroxi-l, 4-anthraquinona (13) (400mg, 1.05iranol) en metanol seco (recién destilado, 2OmI) agitando a temperatura ambiente durante 30min. La mezcla de reacción se vertió sobre agua y se neutralizó con ácido clorhídrico IM. Se extrajo con cloroformo (3 x 3OmI) y las fases orgánicas combinadas se secaron, evaporando el disolvente in vacuo. El residuo fue cromatografiado empleando cloroformo como eluyente para dar 14 como un sólido naranja (305mg, 87%), p.f. 169-170°C. λmax (MeOH) 238 (4.65), 282 (4.30), 450 (3.94). vmax (KBr) /cm"13435, 1653, 1558, 1258, 1067, 788, 760. 1H-NMR (CDCl3, 300MHz) δ 4.32 (s, 3H, OCH3), 7.71 (m, 2H, H6, H7), 7.92, (d, IH, H5, H8), 8.12 (s, IH, H10), 8.44 (d, IH, H5, H8), 13.47 (s, cambia con D2O, IH, OH).
13C RMN (CDCl3, 75 MHz) δ 62.1, 107.8, 123.2, 124.9, 125.1,
126.0, 127.6, 129.4, 130.5, 131.8, 135.9, 160.0, 163.5, 177.7,
182.8. m/z (IE) 332, 253, 238, 223, 195. Análisis elemental calculado para Ci5H9BrO4: C, 54.05; H, 2.70; Cl, 23.99; hallado: C, 53.98, H, 2.53%.
Ejemplo 15.- 2 , 3-dimetoxi-9-hidroxi-l, 4-antraquinona (15)
Se añadió óxido de aluminio (2g) y fluoruro de potasio (Ig) a una disolución de 2, 3~dibromo-9-hidroxi-l, 4-anthraquinona (13) (Ig, 2.62mmol) en metanol (recién destilado, 80ml) agitando a reflujo durante 12h. La mezcla de reacción se vertió sobre agua destilada, se neutralizó con ácido clorhídrico IM y se extrajo con cloroformo (4 x 2OmI) . Las fases orgánicas combinadas fueron secadas y el disolvente evapordao Ln vacuo. El residuo fue cromatografiado en gel de silice empleando cloroformo como eluyente para dar 15 como un sólido naranja (βOOmg, 81%), p.f. 164-16β°C.
A^ax (MeOH) 233 (4.68), 285 (4.34), 288 (4.71), 456 (3.90). 1H-NMR (CDCl3, 500MHz) δ 4.31 (s, 3H, OCH3), 4.32 (s, 3H, OCH3), 7.71 (m, 2H, H6, H7), 7.92, (d, IH, H5 ó H8), 8.12 (s, IH, Hi0), 8.42 (d, IH, H5 ó H8), 13.52 (s, cambia con D2O, IH, OH) .
13C RMN (CDCl3, 75 MHz) δ 62.1, 107.8, 123.2, 124.9, 125.1,
126.0, 127.6, 129.4, 130.5, 131.8, 135.8, 160.0, 163.5, 177.8,
182.8. m/z (IE) 284, 269, 255, 213. Análisis elemental calculado para Ci62θ5: C, 67.61; H, 4.23; hallado: C, 67.78; H, 4.02.
Ejemplo 16.- 2-cloro-3-metoxi-l,4-antraquinona (16)
Se añadió una disolución de sodio (33mg, 1.44mmol) en metanol seco (recién destilado, ImI) a una disolución de 2,3-dicloro- 1, 4-antraquinona (4) (400mg, 1.44mmol) en metanol seco (recién destilado, 2OmI) agitando a temperatura ambiente durante 24h. La mezcla de reacción se vertió sobre agua y se neutralizó con ácido clorhídrico IM. Se extrajo con cloroformo (4 x 25ml) y las fases orgánicas combinadas se secaron, evaporando el disolvente Ln vacuo. El residuo fue cromatografiado empleando cloroformo como eluyente para dar 16 como un sólido amarillo (280mg, 57%), p.f. 198-2000C; pureza del 99% (HPLC). Vax (MeOH) 230 (4.92), 285 (4.72), 288 (4.71 ), 410 (3.61). vmax (KBr) /cπf11669, 1616, 1586, 1458, 1266, 875, 756.
1H-NMR (CDCl3, 300MHz) δ 4.35 (s, 3H, OCH3), 7.72 (m, 2H, H6, H7), 8.08 (m, 2H, H5, H8), 8.66 (s, IH, H9 ó Hi0), 8.70 (s, IH, H9 ó Hαo) • 13C RMN (CDCl3, 75 MHz) δ 62.3, 127.6, 127.8, 129.8, 130.1, 130.2, 130.4, 130.6, 135.2, 135.4, 158.5, 178.7, 179.7. m/z (IE) 272, 243, 207.
Análisis elemental calculado para Ci5H9ClO3: C, 66.07; H, 3.33; Cl, 13.00; hallado: Cl, 12.87.
Procedimiento general para la sintesis de 2-amino-
1,4. antraquinonas
Se añadieron 4 eq. de la amina correspondiente a una disolución de 2-bromo-l, 4-antraquinona (0.5g, 1.75mmol, leq. ) en cloroformo (2OmI) agitando a temperatura ambiente durante 2-12h. El crudo de reacción se concentró in vacuo y luego se cromatografió empleando cloroformo o una mezcla de cloroformo- acetato de etilo como eluyente para dar la 2-amino-l, 4- antraquinona con rendimientos del 70-95%.
Ejemplo 17. - 2- (2 ' , 4 ' -diclorobencil) -amino-1 , 4-antraquinona (25)
P.f. 266-267°C, pureza del 99% (HPLC). λmax (MeOH) 410, 308, 295.
VXa3x(KBr)ZCm"1 3435, 3314, 1673(-CH=O), 1603, 1507, 1265, 1219,
756.
1H-NMR (CDCl3, 300MHz) δ 4.54 (d, 2H, CH2Ar) , 5.88 (s, IH, H3) ,
6.40 (s, ancho, IH, NH) , 7.28 (s, 2H, Ar) , 7.50 (s, IH, Ar) , 7.70 (m, 2H, H6, H7) , 8.08 (m, 2H, H5, H8) , 8.64 (s, IH, H9 ó
H10) , 8.68 (s, IH, H9 ó Hi0) . m/z (IE) 381, 264, 246, 254.
Análisis elemental calculado para C2IHi3Cl2NO2: C, 65.99; H,
3.43; Cl, 18.55; N, 3.66; hallado: C, 60.97; H, 3.55; Cl, 18.33; N, 3.42.
Ejemplo 18.- 2-aziridinil-l , 4-antraquinona (26)
P.f. 181-182°C, pureza del 99% (HPLC). 7^3x (MeOH) 407 , 298 . vmax (KBr) /cπf13467, 3323, 1675 (-CH=O) , 1586, 1575, 1493, 753. 1H-NMR (CDCl3, 300MHz) δ 2.25 (s, 4H, CH2NCH2), 6.40 (s, IH, H3), 7.70 (m, 2H, H6, H7), 8.10 (m, 2H, H5, H8), 8.68 (s, IH, H9 ó Hi0), 8.72 (s, IH, H9 ó H10) . m/z (IE) 249, 234, 222.
Análisis elemental calculado para Ci6Hi1NO2: C, 77.11; H, 4.45; N, 5.62; hallado: C, 76.98; H, 5.35; N, 5.62.
Procedimiento general para la sintesis de 2-amino-3-bromo-l, 4- antraguinonas
Se añadieron 4 eq. de la amina correspondiente a una disolución de 2, 3-dibromo-l, 4-antraquinona (11) (0.5g, 1.37mmol, leq. ) en cloroformo (2OmI) agitando a temperatura ambiente durante 2-24h. El crudo de reacción se concentró in vacuo y luego se cromatografió empleando cloroformo como eluyente para dar la 2-amino-3-bromo-l, 4-antraquinona con rendimientos del 60-95%.
Procedimiento general para la sintesis de 2 ,3-diamino-l , 4- antraquinonas
Una disolución de 2, 3-dibromo-l, 4-antraquinona (11) (0.5g, 1.37mmol, leq.) en la amina correspondiente (empleada como disolvente) se agitó a reflujo durante 4h. El crudo de reacción se concentró in vacuo y luego se cromatografió empleando cloroformo como eluyente para dar la 2,3-diamino- 1, 4-antraquinona con rendimientos del 70-85%.
Ejemplo 19.- 2-bromo-3-picolilamino-l, 4-antraquinona (29) Rendimiento 93%, p.f. 195-196°C; pureza del 97% (HPLC).
1H-NMR (CDCl3, 300MHz) δ 5.27 (d, 2H, NCH2), 7.60 (m, 2H, H6, H7), 8.00 (m, 2H, H5, H8), 8.03 (m, IH, Ar), 8.61 (s, IH, H9 ó Hi0) , 8.64 (s, IH, H9 ó Hxo) , 8.67 (s, IH, Ar). m/z (IE) 394, 313.
Ejemplo 20.- 2-bromo-3-bencilamino-l, 4-antraquinona (30)
Rendimiento 66%, p.f. 177-178°C; pureza del 99%. V113x (KBr) /can"13726, 1476, 1583, 1567, 1295, 1188, 760.
1H-NMR (CDCl3, 30OMHz) δ 7.38 (m, 5H, Ar) , 7.60 (m, 2H, H6,
H7) , 8.00 (m, 2H, H5, H8) , 8.62 (s, IH, H9 ó Hi0) , 8.64 (s, IH,
H9 ó Hi0 ) .
13C RMN (CDCl3, 75 MHz) δ 49.9, 127.1, 128.1, 128.3, 128.5, 128.6, 129.2, 129.5, 129.6, 130.1, 130.3, 130.4, 130.4, 130.5,
130.8, 134.5, 136.0, 138.3, 147.9, 176.7, 179.8. m/z (IE) 391, 312.
Análisis elemental calculado para C2iHi4BrNO2 : C, 64.30; H,
3.60; Br, 20.37; N, 3.57; hallado: C, 64.12; H, 3.51; Br, 20.71; N, 3.57.
Ejemplo 21.- 2-bromo-3-piperidinil-l,4-antraquinona (33)
Rendimiento 63%, p.f. 266-267°C; pureza del 91% (HPLC) . vmax(KBr) /can"12935, 1669, 1615, 1552, 1277, 761. 1H-NMR (CDCl3, 300MHz) δ 1.80 (m, 6H, Ar) , 3.58 (m, 4H, Ar) ,
7.65 (m, 2H, H6, H7) , 8.00 (m, 2H, H5, H8) , 8.62 (s, IH, H9 ó
H10) , 8.65 (s, IH, H9 ó Hi0) .
13C RMN (CDCl3, 75 MHz) δ 24.1, 26.8, 53.4, 118.4, 127.5,
128.3, 128.6, 129.0, 129.4, 129.5, 129.9, 134.5, 135.1, 154.7, 178.0, 181.5. m/z (IE) 369, 290.
Análisis elemental calculado para Ci9Hi6BrNO2: C, 61.64; H,
4.36; Br, 21.58; N, 3.78; hallado: C, 60.78; H, 3.97; Br,
21.91; N, 3.93.
Ejemplo 22.- 2-bromo-3- (4 ' -fluorobencil) -amino-1, 4- antraquinona (34)
Rendimiento 62%, p.f. 202-203°C; pureza del 99% (HPLC). Vmax (KBr) /can"13277, 1676, 1582, 1509, 1296, 1188, 756. 1H-NMR (CDCl3, 300MHz) δ 7.07 (m, 2H, Ar) , 7.32 (m, 2H, Ar) , 7.60 (m, 2H, H6, H7) , 8.00 (m, 2H, H5, H8) , 8.61 (s, IH, H9 ó Hi0) , 8.65 (s, IH, H9 ó Hi0) . 13C RMN (CDCl3, 75 MHz) δ 48.5, 76.7, 115.6, 116.1, 126.6, 127.9, 128.9, 129.1, 129.4, 129.5, 130.0, 130.0, 130.1, 133.7, 134.2, 135.6, 161.2, 163.7, 176.4, 179.4. m/z (IE) 409, 330.
Análisis elemental calculado para C2IHi3BrFNO2 : C, 61.48; H, 3.19; Br, 19.48; F, 4.63; N, 3.61; hallado: C, 61.41; H, 3.02; N, 3.63.
Ejemplo 23.- 2-bromo-3- (4 ' -clorobencil) -amino-1 , 4-antraquinona (35) Rendimiento 62%, p.f. 202-2030C; pureza del 95% (HPLC).
V1Oax(KBr)ZCaIi'1 3427, 3293, 1672, 1586, 1569, 1515, 1300, 1254,
757.
1H-NMR (CDCl3, 300MHz) δ 7.29-7.39 (m, 4H, Ar) , 7.60 (m, 2H,
H6, H7) , 8.00 (m, 2H, H5, H8) , 8.61 (s, IH, H9 ó H10) , 8.65 (s, IH, H9 ó Hi0 ) .
13C RMN (CDCl3, 75 MHz) δ 49.0, 128.3, 129.4, 129.6, 129.6,
129.9, 130.4, 130.5, 134.3, 134.6, 136.0, 136.9, 147.8, 176.8,
179.9. m/z (IE) 427, 346. Análisis elemental calculado para C21Hi3BrClNO2: C, 59.11; H,
3.07; Br, 18.73; Cl, 8.31; N, 3.28; hallado: C, 63.73; H,
3.28; N, 3.68.
Ejemplo 24.- 2 , 3-bis (pirazolil) -1,4-antraquinona (36) P.f. 286-288°C; pureza del 97% (HPLC) .
1H-NMR (CDCl3, 300MHz) δ 6.48 (m, 2H, Ar) , 7.57 (d, 2H, Ar) , 7.79 (m, 2H, H6, H7) , 7.92 (d, 2H, Ar) , 8.14 (m, 2H, H5, H8) , 8.78 (s, IH, H9, H10) . m/z (IE) 340 , 233 .
Análisis elemental calculado para C20H12N4O2 : C, 70.58; H, 3.55; N, 16.46; hallado: C, 69.99; H, 7.58; N, 16.25.
Ejemplo 25.- 2- (2 ' , 4 ' -diclorobencil) -amino-3-bromo-l ,4- antraquinona (37)
Rendimiento 85%, p.f. 203-204°C; pureza del 97% (HPLC).
Vmax (KBr) /cπf11673, 1630, 1590, 1489, 1428, 882.
1H-NMR (CDCl3, 300MHz) δ 7.25-7.43 (m, 3H, Ar), 7.60 (m, 2H, H6, H7), 8.00 (m, 2H, H5, H8), 8.61 (s, IH, H9 ó H10), 8.64 (s,
IH, H9 ó Hi0) . m/z (IE) 461, 380, 344.
Análisis elemental calculado para C2IHi2BrCl2NO2: C, 54.70; H,
2.62; Br, 17.33; Cl, 15.38; N, 3.04; hallado: C, 54.25; H, 3.57; N, 4.27.
Ejemplo 27.- 2-aziridinil-3-bromo-l, 4-antraquinona (39)
Rendimiento 70%, p.f. 215-21β°C; pureza del 97% (HPLC).
Figure imgf000068_0001
1674, 1664, 1560, 1274, 761. 1H-NMR (CDCl3, 300MHz) δ 2.64 (s, 4H, NCH2CH2), 7.60 (m, 2H,
H6, H7), 8.00 (m, 2H, H5, H8), 8.54 (s, IH, H9 ó H10), 8.62 (s,
IH, H9 ó H10) .
13C RMN (CDCl3, 75 MHz) δ 30.8, 122.7, 127.3, 127.4, 129.3,
129.4, 129.6, 129.8, 130.0, 134.5, 135.0, 156.0, 177.1, 178.5. m/z (IE) 329, 300, 248, 221.
Análisis elemental calculado para Ci6Hi0BrNO2: C, 58.56; H,
3.07; Br, 24.35; N, 4.27; hallado: C, 58.39; H, 3.03; Br,
24.61; N, 4.45.
Ejemplo 28.- 2-bromo-3-morfolinil-l, 4-antraquinona (40)
Rendimiento 79%, p.f. 172-173°C; pureza del 97% (HPLC). V1113x(KBr)ZCm"13436, 1672, 1616, 1277, 991, 752. 1H-NMR (CDCl3, 300MHz) δ 3.68-3.90 (m, 8H, NCH2CH2), 7.60 (m, 2H, H6, H7), 8.00 (m, 2H, H5, H8), 8.54 (s, IH, H9 ó H10), 8.62 (s, IH, H9 ó Hi0) • m/z (IE) 371, 314, 292, 207. Análisis elemental calculado para CiSHi4BrNOs: C, 58.08; H, 3.79; Br, 21.47; N, 3.76; hallado: C, 50.98; H, 3.66; N, 3.71.
Ejemplo 29.- 2- (2 ' -clorobencil) -amino-3-bromo-l,4-antraquinona (41) Rendimiento 60%, p.f. 212-214°C; pureza del 97% (HPLC).
Vn13x(KBr)ZCm"13436, 1672, 1616, 1277, 991, 752.
1H-NMR (CDCl3, 300MHz) δ 3.68-3.90 (m, 8H, NCH2), 7.60 (m, 2H,
H6, H7), 8.00 (na, 2H, H5, H8), 8.54 (s, IH, H9 ó Hi0) , 8.62 (s,
IH, H9 ó Hi0) • 13C RMN (CDCl3, 75 MHz) δ 52.2, 120.0, 127.3, 128.0, 128.9,
129.3, 129.7, 129.7, 130.0, 130.4, 134.6, 135.1, 153.5, 178.0,
181.2. m/z (IE) 371, 314, 292, 207.
Análisis elemental calculado para C2χHi3ClBrNO2 : C, 59.11; H, 3.07; N, 3.28; hallado: C, 59.40, H, 2.96. N, 3.55.
Procedimiento general para la sintesis de 2-amino-3-cloro-l,4- antraquinonas
Se añadieron 2 eq. de la amina correspondiente a una disolución de 2, 3-dicloro-l, 4-antraquinona (4) (0.5g, l.δmmol, leq. ) en cloroformo (2OmI) agitando a temperatura ambiente durante 2-24h. El crudo de reacción se concentró in vacuo y luego se cromatografió empleando cloroformo como eluyente para dar la 2-amino-3-cloro-l, 4-antraquinona con rendimientos del 60-90%.
Ejemplo 30.- 2-aziridinil-3-cloro-l,4-antraquinona (42)
P.f. 213-214°C; pureza del 98% (HPLC). vmax(KBr) /can"13435, 3000, 1676 (-CH=O) , 1564, 1278, 756. 1H-NMR (CDCl3, 300MHz) δ 2.61 (s, 4H, NCH2CH2) , 7.65 (m, 2H, H6, H7) , 8.02 (m, 2H, H5, H8) , 8.61 (s, IH, H9 ó H10) , 8.63 (s, IH, H9 ó H10) . 13C RMN (CDCl3, 75 MHz) δ 30.1, 127.4, 127.8, 128.9, 129.1, 129.5, 129.5, 129.5, 129.8, 130.1, 130.1, 134.6, 135.1, 153.7, 177.2, 179.0. m/z (IE) 283, 248, 221.
Análisis elemental calculado para C16H10CINO2: C, 67.75; H, 3.55; Cl, 12.50; N, 4.94; hallado: C, 66.98; H, 3.47; Cl, 12.66; N, 4.94.
Ejemplo 31.- 2-cloro-3-bencilamino-l , 4-antraquinona (43)
P.f. 202-203°C; pureza del 94% (HPLC) . Va3x(KBr) /cm"13276, 1674 (-CH=O) , 1586, 1296, 761.
1H-NMR (CDCl3, 300MHz) δ 5.09 (s, 2H, NCH2) , 7.37 (m, 5H, Ar) ,
7.68 (m, 2H, H6, H7) , 8.02 (m, 2H, H5, H8) , 8.62 (s, IH, H9 ó
Hi0) , 8.65 (s, IH, H9 ó H10) .
13C RMN (CDCl3, 75 MHz) δ 48.9, 126.6, 126.7, 127.7, 128.0, 128.3, 128.6, 129.0, 129.1, 129.7, 129.8, 130.0, 130.0, 130.1,
134.1, 135.6, 137.9, 145.2, 176.7, 179.8. m/z (IE) 347, 312.
Análisis elemental calculado para C2IHi4ClNO2: C, 72.52; H,
4.06; Cl, 10.19; N, 4.03; hallado: C, 72.24; H, 4.01; Cl, 19.42; N, 4.17.
Ejemplo 32.- 2-cloro-3-pirrolidinil-l, 4-antraquinona (45)
P.f. 158-159°C; pureza del 96% (HPLC). vmax (KBr) /cm"12974, 1674(-CH=O), 1613, 1531, 1272, 762. 1H-NMR (CDCl3, 300MHz) δ 1.96 (m, 4H, CH2CH2), 4.02 (m, 4H, CH2NCH2), 7.60 (m, 2H, H6, H7), 8.00 (m, 2H, H5, H8), 8.42 (s, IH, H9 ó H10), 8.57 (s, IH, H9 ó H10). 13C RMN (CDCl3, 75 MHz) δ 25.7, 54.1, 113.6, 127.5, 128.3, 128.4, 128.7, 128.7, 129.3, 129.8, 129.8, 134.1, 135.3, 150.7, 176.9, 182.5. m/z (IE) 311, 276, 207. Análisis elemental calculado para Ci7Hi2ClNO2: C, 69.35; H, 4.53; Cl, 11.37; N, 4.49; hallado: C, 69.50; H, 4.51; Cl, 13,75; N, 3.75.
Ejemplo 33.- 2-cloro-3-piperidinil-l , 4-antraquinona (46) P.f. 166-167°C; pureza del 96% (HPLC).
V1^ (KBr) /cm"12974, 1674(-CH-O), 1613, 1531, 1272, 762.
1H-NMR (CDCl3, 300MHz) δ 1.76 (m, 6H, CH2CH2CH2), 3.58 (m, 4H,
CH2NCH2), 7.60 (m, 2H, H6, H7), 8.00 (m, 2H, H5, H8), 8.42 (s,
IH, H9 ó Hi0 ) , 8.57 (s, IH, H9 ó Hi0) . 13C RMN (CDCl3, 75 MHz) δ 24.2, 26.9, 124.4, 127.9, 128.3,
128.4, 129.0, 129.4, 129.5, 129.9, 130.0, 134.5, 135.1, 152.0,
177.9, 181.7 m/z (IE) 325, 290, 260, 207.
Análisis elemental calculado para C19H16CINO2: C, 70.05; H, 4.95; Cl, 10.88; N, 4.30; hallado: C, 80.94; H, 5.15; N, 4.96.
Ejemplo 34.- 2-cloro-3-morfolinil-l , 4-antraquinona (47)
P.f. 197-198°C; pureza del 97% (HPLC).
Vn^ (KBr) /cm"13436, 2855, 1673(-CH=O), 1559, 1281, 993, 752. 1H-NMR (CDCl3, 300MHz) δ 3.67 (t, 4H, NCH2), 3.89 (t, 4H, OCH2),
7.60 (m, 2H, H6, H7), 8.00 (m, 2H, H5, H8), 8.42 (s, IH, H9 ó
H10), 8.57 (s, IH, H9 ó Hi0) .
13C RMN (CDCl3, 75 MHz) δ 125.4, 127.7, 128.1, 128.6, 129.3,
129.6, 129.7, 130.0, 130.0, 134.6, 135.1, 150.8, 177.8, 181.4. m/z (IE) 327, 292, 270, 207.
Análisis elemental calculado para CI8HI4CINOS: C, 65.96; H,
4.31; Cl, 10.82; N, 4.27; hallado: C, 64.91; H, 4.23; N, 4.29. Ejemplo 35.- 2-cloro-3- (4 ' -clorobencil) -amino-1 , 4-antraquinona (48)
P.f. 240-241°C; pureza del 88% (HPLC) .
1H-NMR (CDCl3, 300MHz) δ 5.07 (d, 2H, NCH2) , 6.33 (s, IH, NH) , 7.68 (m, 2H, H6, H7) , 8.02 (m, 2H, H5, H8) , 8.60 (s, IH, H9 ó
Hi0 ) , 8.64 (s, IH, H9 ó Hi0) .
Análisis elemental calculado para C21H13CI2NO2 : C, 65.94; H,
3.43; Cl, 18.55; N, 3.66; hallado: C, 65.87. H, 3.24; Cl,
21.04; N, 4.29.
Ejemplo 36. - 2-cloro-3- (2 ' -clorobencil) -amino-1 , 4-antraquinona
(49)
P.f. 213-214°C; pureza del 91% (HPLC).
Vn^x (KBr) /cπf13302, 1671(-CH=O) , 1587, 1303, 755. 1H-NMR (CDCl3, 300MHz) δ 5.07 (d, 2H, NCH2) , 7.31 (m, 2H, Ar) ,
7.42 (m, 2H, Ar) , 7.68 (m, 2H, H6, H7) , 8.02 (m, 2H, H5, H8) ,
8.60 (s, IH, H9 ó Hi0) , 8.64 (s, IH, H9 ó Hi0) .
Análisis elemental calculado para C2IHi3Cl2NO2 : C, 65.94; H,
3.43; Cl, 18.55; N, 3.66; hallado: C, 65.95; H, 3.19; N, 3.93.
Ejemplo 37.- 2-cloro-3- (4 ' -fluorbencil) -amino-1 , 4-antraquinona
(50)
P.f. 204-206°C; pureza del 95% (HPLC).
1H-NMR (CDCl3, 300MHz) δ 5.07 (d, 2H, NCH2) , 6.33 (s, ancho, IH, NH) , 7.01 (m, 2H, Ar) , 7.34 (m, 2H, Ar) , 7.68 (m, 2H, H6,
H7) , 8.02 (m, 2H, H5, H8) , 8.60 (s, IH, H9 ó Hi0) , 8.64 (s, IH,
H9 ó H10 ) •
13C RMN (CDCl3, 75 MHz) δ 48.3, 115.8, 116.1, 126.6, 128.3,
128.7, 129.2, 129.4, 129.5, 129.9, 130.0, 130.0, 130.1, 133.7, 134.2, 135.7, 145.1, 160.8, 164.1, 176.7, 179.9. m/z (IE) 365, 329.
Análisis elemental calculado para C2IHi3ClFNO2: C, 68.95; H,
3.58; N, 3.83; hallado: C, 70.96; H, 3.49; N, 4.08. Ejemplo 38.- 2-cloro-3- (2 ' -picolilamino) -1,4-antraquinona (52)
P.f. 213-214°C; pureza del 96% (HPLC).
VmaxíKBrJ/cm"13434, 3260, 1671(-CH=O), 1587, 1290, 752 1H-NMR (CDCl3, 300MHz) δ 5.22 (d, 2H, NCH2) , 7.20 (m, 2H, Ar) ,
7.66 (m, 2H, H6, H7) , 7.71 (t, IH, NH) , 8.01 (m, 2H, H5, H8) ,
8.58 (s/ IH, H9 ó Hi0 ) , 8.62 (s, IH, H9 ó Hi0) , 8.64 (m, 2H,
Ar) .
13C RMN (CDCl3, 75 MHz) δ 48.3, 115.8, 116.1, 126.6, 128.3, 128.7, 129.2, 129.4, 129.5, 129.9, 130.0, 130.0, 130.1, 133.7,
134.2, 135.7, 145.1, 160.8, 164.1, 176.7, 179.9. m/z (IE) 347, 330, 312, 294, 254.
Análisis elemental calculado para C2OHi4ClN2O2: C, 68.87; H,
3.76; Cl, 10.16; N, 8.03; hallado: C, 68.57. H, 3.69; Cl, 3.80; N, 9.68.
Ejemplo 39.- 2-etoxi-3-imidazolil-l, 4-antraquinona (53)
P.f. 189-190°C.
V1Oax(KBr) /cm"11668, 1655, 1312, 1240, 761. 1H-NMR (CDCl3, 300MHz) δ 1.32 (m, 3H, CH3) , 4.48 (m, 2H, OCH2) ,
7.32 (m, 2H, Ar) , 7.79 (m, 2H, H6, H7) , 7.86 (s, IH, Ar) , 8.14
(m, 2H, H5, H8) , 8.66 (s, IH, H9 ó Hi0) , 8.69 (s, IH, H9 ó Hi0) .
13C RMN (CDCl3, 75 MHz) δ 15.7, 70.7, 120.8, 127.0, 127.4,
128.5, 128.7, 129.4, 129.4, 129.9, 130.1, 130.3, 134.9, 135.2, 138.9, 153.4, 179.8, 180.9. m/z (IE) 347, 330, 312, 294, 254.
Análisis elemental calculado para C20H14CIN2O2 : C, 68.87; H,
3.76; Cl, 10.16; N, 8.03; hallado: C, 68.57. H, 3.69; Cl,
3.80; N, 9.68.
Ejemplo 40.- 9-acetoxi-l , 4-antraquinona (59)
Se calienta a 70°C con fuerte agitación magnética una suspensión de 2g de 9-hidroxi-l, 4-antraquinona (58) en lOml de anhídrido acético y llml de piridina. La suspensión cambia del color rojo inicial a marrón oscuro, separándose del medio de reacción un sólido naranja. Al cabo de 20 minutos se deja enfriar y se filtra el precipitado, lavándolo después con agua. Se seca y se obtienen 1.95g (82%).
El producto recristaliza de benceno-hexano dando escamas amarillas de p.f. 200-202°C (d. ) ; p.f. bibl 2000C (d. ) . Kax (CHCl3) 251 (4.12), 288 (4.13), 299 (4.22), 323h (3.51), 415 (3.75). V1113x (nujol) /cm"1 3072 (d, C-H aromático), 1772 (f, C=O éster fenólico), 1672 y 1661 (f, C=O quinona) , 1612 (f) , 1587 (d) , 1571 (m,C=C aromático), 1290, 1196, 1163, 1101 y 1075 (f, C- 0) , 858 (f) , 817 (m) , 766 (f) . 1H-RMN (CDCl3, 100 MHz) δ 6.91 y 6.98 (2H, sistema AB JlO.4Hz, H2, H3), 7.59 - 7.86 (m, 2H, H5, H8), 7.96 - 8.29 (m, 2H, H6, H7), 8.56 (s, IH, H10)
13C-RMN (CDCl3, 25 MHz) δ 183.7 (C4), 183.1 (C1), 168.7 (CH3COO), 147.7 (C9), 141.1 (C3), 138.4 (C2), 135.3 (CiOa) , 130.0 (C4a, C5, C6, C7), 128.5 (s, C8J , 126.9 (C10), 123.6 (C8), 117.8 (C9a), 21.1 (CH3CO) m/z (IE) 266 (3, M+), 224 (100, M ~. CH2 ". CO), 196 (6).
Ejemplo 41.- 1 , 4-antraquinona (60)
En un matraz de tres bocas provisto de agitación magnética, refrigerante de reflujo y entrada de Argón se suspenden 4g
(16.7mmol) de quinizarina en 10OmI de metanol. Se añaden poco a poco, y con fuerte agitación, 4.5g (llδmmol) de borohidruro sódico, de manera que la temperatura de la mezcla de reacción no sobrepase los 15-200C. Después de dos horas, la disolución se vierte sobre 10OmI ácido acético glacial y finalmente sobre
500ml de agua. Se filtra el precipitado marrón aparecido y, una vez seco, se purifica por cromatografía en columna seca de gel de silice (CHCl3) obteniéndose asi 2.8g (81%) de la 1,4- antraquinona. El producto se recristaliza de benceno-hexano (agujas amarillas), p.f. 222°C-223°C; p.f. bibl . 220-222°C. λmax (CHCl3) 250 (4.12), 27βh (3.88), 289 (4.14), 300 (4.22), 319h (3.52) , 414 (3.68) . vmax (mijol) /can"1 3060 (d, C-H aromático), 1677 (f, C=O quinona) , 1609 y 1591 (m, C=C aromático), 1307 (f) , 1146 y 1062 (m) , 857 y 771 (f)
1H-RMN (CDCl3, 100 MHz) δ 7.08 (s, 2H, H2, H3), 7.94 - 8.31 (m, 2H, H5, H8), 7.52 - 7.87 (m, 2H, H6, H7), 8.64 (s,2H, H9 y Hi0) 13C-RMN (CDCl3, 75 MHz) δ 184.3 (C1 y C4), 139.8 (C2 y C3), 134.6 (C8a y ClOa), 130.0 (C5 y C8), 129.3 (C6 y C7), 128.6 (C9 y Ci0), 128.2 (C4a y C9J . m/z (IE) 208 (100, M+), 180 (24, M " CO) .
Ejemplo 42.- 9-metoxi-l, 4-antraquinona (61)
Se disuelven 5g de 9-hidroxi-l, 4-antraquinona en 300ml de cloroformo recién destilado sobre K2CO3. Después se añaden 15ml de yoduro de metilo y 5g de óxido de plata (I), y la mezcla, protegida de la luz, se calienta a reflujo suave con agitación magnética. Al cabo de 6h se añaden 1OmI de yoduro de metilo y 3g de óxido de plata (I) y después de otras 15h, Ig de óxido de plata (I) y 5ml de yoduro de metilo. Al cabo de 32 horas de reacción se deja enfriar y se filtra el óxido de plata, lavándolo repetidas veces con cloroformo. Una vez evaporado el disolvente, se obtiene un sólido anaranjado que se tritura con 70ml de metanol, recogiéndose por filtración 4,5g de 9-metoxi-l, 4-antraquinona (61) pura. El residuo de las aguas madres se filtra por una columna corta de gel de sílice (CHCl3), obteniéndose 0.7g adicionales de 61. Rendimiento 98%. Se recristaliza de benceno-hexano (agujas amarillo anaranjadas) o de etanol (agujas naranjas), p.f. 185-18β°C; p.f. bibl. 184°C. λ^ (CHCl3) 246 (4.22), 26Oh (4.01), 289h (4.03), 300 (4.09),
324h (3.51) , 424 (3.73) .
Vmax (nujoD/cπf1 3071 (d, C-H aromático) , 1672 y 1656 (f, C=O quinona) , 1615 (f ) , 1582 (m, C=C aromático) , 1306 (f ) , 1287 (f, a, C-O) , 1160 (m) , 1116, 1079, 1011, 855, 821 y 761(f)
1H-RMN (CDCl3, 100 MHz) δ 6.99 (s, 2H, H2, H3) , 7.88 - 8.15 (m,
IH, H5) . 8.28 - 8.55 (m, IH, H8) , 7.55-7.88 (m, 2H, H6 y H7) ,
8.43 (s, Hi0) , 4.11 (s, CH3O) .
13C-RMN (CDCl3, 75 MHz) δ 184.3 (C4) , 183.4 (Ci) , 159.1 (C9) , 141.6 (C3) , 137.8 (C2) , 135,5 (CiOa) , 131.6 (C4a) , 130.1 (C5) ,
129.9 (C6 ó C7) , 129.5 (C8a) , 125.1 (C8) , 124.6 (C10) , 118.3
(C9J , 62.9 (CH3O) . m/z (IE) 238 (100, M+) , 224 (5) , 221 (13, M ~ OH) , 209 (43, M
CHO) .
Ejemplo 43.- 2-metil-l, 4-antraquinona (62)
A una disolución de α, α, α' , α' -tetrabromo-o-xileno (4.372 g, lOmmol, leq. ) y toluquinona (2.519 g, 20mmol, 2.2eq.) en DMF (7OmI) se añadió yoduro sódico (10 g, 66.7mmol, 6.7eq.) y se agitó a 70°C protegido de la luz y en atmósfera de argón. Se hicieron tres adiciones más de toluquinona (750mg) cada dos horas y se agitó manteniendo la temperatura durante otras 14h. Se vertió sobre hielo y se añadió bisulfito sódico. Se filtró y se lavó con agua para obtener el producto que luego fue cromatografiado en gel de silice, empleando cloroformo como eluyente (1.152 g, 52%).
Recristalización de acetato de etilo dio la antraquinona como agujas de color naranja, p.f. 196-8°C; pureza del 99%, (HPLC). ^ax (CHCl3) 409 (4.00), 298 (4.47), 286 (4.42), 268 (4.50). Vmax (KBr) /can"1 1667 (C=O), 1616 (C=C arom. ) .
1H RMN (CDCl3, 300 MHz) δ 2.22 (d, 3 H, J 1.5Hz, CH3), 6.90 (q, 1 H, J 1.5Hz, H3), 7.61~7.67 (m, 2 H, H6, H7), 7.99~8.03 (m, 2 H, H5, H8), 8.53 (s, 1 H, H9), 8.56 (s, 1 H, H10). 13C RMN (CDCl3, 75 MHz) δ 16.7 (CH3), 128.3 (C9), 128.8, 128.7 (C9. ,C9-), 128.8 (Cío), 129.3, 129.3 (C6, C7), 130.0, 130.1 (C5, C8), 134.6, 134.7 (C10., C 10-) , 137.1 (C3), 149.6 (C2), 184.5 (Ci) , 185.1 (C4) . m/z (IE) 222 (100%, M+), 207 (3, M+ - CH3).
Procedimiento general para la adición de radicales a quinonas
A una disolución de liranol del sustrato en 50ml de una mezcla de acetonitrilo-agua, 2:1, se añaden 4 equivalentes del ácido correspondiente y se agita a reflujo. A continuación se añade el nitrato de plata (0.4 equivalentes) y se continúa la agitación hasta completa disolución. Se burbujea argón a través de la disolución. Sólo entonces se inicia la adición lenta de persulfato amónico (2eq. ) en agua (5ml) , a través de un embudo de adición, que se prolonga durante una hora aproximadamente. Se continúa la agitación a reflujo hasta desaparición completa del sustrato de partida comprobada por cromatografía de capa fina. La mezcla de reacción se enfria a temperatura ambiente y se añade agua. Se extrae con cloroformo (3 x 2OmI) y la fase orgánica se lava con bicarbonato sódico
(2OmI) , agua (3 x 2OmI) y con disolución saturada de cloruro sódico (2OmI) . Se seca sobre sulfato sódico y se evapora el disolvente para dar el crudo de reacción. Los productos de la reacción se separan por cromatografía en gel de silice, empleando cloroformo como eluyente.
Ejemplo 44.- 2-etil-l , 4-antraquinona (63)
Rendimiento: 33%. Recristalización de acetato de etilo-hexano dio la antraquinona como agujas de color naranja, p.f. 137- 139°C; pureza del 99%, (HPLC) .
Kax (CHCl3) 410 (3.42), 365 (3.63), 297 (4.14), 270 (4.66). Vmax (KBr) /cirf11664 (C=O), 1615 (C=C arom. ) . 1H RMN (CDCl3, 300 MHz) δ 1.22 (t, 3 H, J 7.5Hz, CH3) , 2.64 (q, 2 H, J 7.5Hz, CH2) , 6.84 (d, 1 H, J 1.4Hz, H3) , 7.62~7.64 (m, 2 H, H5, H8) , 7.98~7.99 (m, 2 H, H6, H7) , 8.51 (s, 1 H, H9) , 8.54 (s, 1 H, H10) . 13C RMN (CDCl3, 75 MHz) δ 11.8 (CH3) , 22.8 (CH2) , 128.2 (C9) , 128.6 (CCUat) , 128.7 (Ccuat) , 128.8 (Ci0) , 129.2, 129.3 (C6, C7) , 130.0, 130.1 (C5, C8) , 134.6, 134.7 (Ccuat) , 135.3 (C3) , 154.5 (C2) , 184.7 (C4) , 184.8 (Ci) . m/z (IE) 236 (100%, M+) , 208 (24, M+ ~ . Et + H) . Análisis elemental calculado para Ci6Hi2O2: C, 81.34; H, 5.12%; hallado: C, 80.97; H, 5.30%.
Ejemplo 45.- 2-tercbutil-l, 4-antraquinona (66)
Rendimiento: 20%. Recristalización de acetato de etilo dio la antraquinona como agujas de color naranja, p.f. 152-4 °C; pureza del 98%, (HPLC) . X103x (CHCl3) 406 (3.82) , 298 (4.36) , 285 (2.30) , 268 (4.34) .
Vmax (KBr) /can"1 1663 (C=O) , 1620 (C=C arom. ) .
1H RMN (CDCl3, 300 MHz) δ 1.40 (s, 9 H, C(CH3) 3) , 6.92 (s, 1 H, H3) , 7.59~7.63 (m, 2 H, H6, H7) , 7.97~ 8.00 (m, 2 H, H5,
H8) , 8.49 (s, 1 H, H9) , 8.53 (s, 1 H, Hi0) . 13C RMN (CDCl3, 75 MHz) δ 29.10 (3 x Me) , 35.86 (Ci5) , 127.65
(C9) , 128.19 (C9-) , 129.11 (Ci0) , 129.14, 129.19 (C6, C7) ,
129.88 (C9O , 129.95, 130.00 (C5, C8) , 134.46 (Cío») , 134.89 (CioO , 135.30 (C3) , 159.67 (C2) , 184.41 (C4) , 185.44 (Ci) . m/z (ES) 265 [M+ + 1] , 287 [M+ + 23] .
Análisis elemental calculado para Ci8Hi6O2: C, 81.79; H, 6.10%; hallado: C, 81.48; H, 5.98%.
Ejemplo 46.- 2-p-metoxibencil-l , 4-antraquinona (69)
Rendimiento: 16%. Pureza del 84%, (HPLC).
1H RMN (CDCl3, 500 MHz) δ 3.80 (d, 3 H, J 1.6Hz, CH3), 3.89 (s,
2 H, CH2), 6.68 (q, 1 H, J 1.4Hz, H3), 6.89 (dd, 2 H, J 8.5, 1.4Hz, H0-ph) , 7.33 (d, 2 H, J 8.5Hz, Hm_Ph) , 7.62~7.70 (m, 2 H, H6, H7) , 8.00~8.04 (m, 2 H, H5, H8) , 8.57 (s, 1 H, H9) , 8.63 (s, 1 H, H9) . m/z (IE) 328 (100%, M+) , 297 (39, M+ - OCH3) .
Procedimiento general para la epox±dac±ón de quinonas
A una disolución de la 1, 4-antraquinona correspondiente
(linmol) en tetrahidrofurano (3OmI) se añade agua oxigenada al
33% (3ml, 30eq. ) , carbonato potásico (152mg, l.leq.) y se agita a temperatura ambiente hasta completa desaparición del producto de partida comprobada por capa fina. Se añade agua
(3OmI) y se extrae con cloroformo (3 x 2OmI) . Las fases orgánicas combinadas se lavan con agua (3 x 3OmI) y disolución saturada de cloruro sódico (3OmI) , se secan con sulfato de sodio anhidro y se evapora el disolvente ín vacuo para dar el crudo de reacción. La purificación se lleva a cabo por cromatografía en gel de sílice, empleando cloroformo como eluyente.
Ejemplo 47.- 2 ,3-epoxi-2 ,3-dihidro-l, 4-antraquinona (75)
Rendimiento: 80%. Recristalización de acetona dio el epóxido como agujas cortas color rosa pálido, p.f. 164-6°C; pureza del
100%, (HPLC) .
KB^ (MeOH) 222 (4.52) , 273 (4.73) , 370 (3.69) . vmax (KBr) /cm"1 1692 (C=O) , 1620 (C=C arom. ) , 1289 (C-O) .
1H RMN (CDCl3, 300 MHz) δ 4.06 (s, 2 H, H2, H3) , 7.67 (dd,
2 H, J 6.2, 3.1Hz, H6, H7) , 8.00 (dd, 2 H, J 6.2, 3.1Hz, H5,
H8) , 8.50 (s, 2 H, H9, H10) .
13C RMN (CDCl3, 75 MHz) δ 56.0 (C2, C3) , 127.9 (C9., C9") , 129.4 (C9, C10), 129.6 (C6, C7) , 129.9 (C5, C8) , 135.2 (C11, C12) ,
190.7 (C1, C4) • m/z (IE) 224 (100%, M+) , 196 (35, M+ - CO) , 155 (94, M+ -
C3HO2) . Análisis elemental calculado para Ci4H8O3: C, 75.00; H, 3.60%; hallado: C, 74,71; H, 3.91%.
Ejemplo 48.- 2 , 3-epoxi-2,3-dihidro-9-metoxi-l, 4-antraquinona (76)
Rendimiento: 84%. Recristalización de acetona dio el epóxido como pequeños cubos de color amarillo pálido, p.f. 123-124°C; pureza del 100%, (HPLC) .
V1^ (KBr) /cπf1 1687 (C=O) , 1617 (C=C arom. ) , 1267 (C-O) . λttax (MeOH) 225 (4.46) , 274 (4.53) , 372 (3.71) .
1H RMN (CDCl3, 300 MHz) δ 4.05 (s, 2 H, H2, H3) , 4.07 (s, 3 H,
OMe) , 7.64~7.71 (m, 2 H, H6, H7) , 7.9β~7.99 (m, 1 H, H5) , 8.26
(s, 1 H, Hi0) , 8.32~8.36 (1 H, m, H8) .
13C RMN (CDCl3, 75 MHz) δ 56.2 (C3) , 56.4 (C2) , 63.8 (OMe) , 117.9 (Ci3) , 124.3 (C8) , 124.8 (Ci0) , 128.9 (Ci2) , 129.4 (C5) ,
129.8 (C7) , 130.0 (C6) , 131.5 (Ci4) , 135.7 (Cn) , 159.0 (C9) ,
190.7 (C4) , 191.2 (Ci) . m/z (IE) 254 (83%, M+), 225 (50%, M+ - CO - H+), 197 (35, M+ -
2 x CO - H+) , 183 (32, M+ - 2 x CO - Me) , 155 (59, M+ - 3 x CO - Me) , 126 (100) .
Análisis elemental calculado para Ci5Hi0O4: C, 70.9, H, 4.0%; hallado: C, 68.71; H, 3.80%.
Ejemplo 49.- 2,3-epoxi-2-etil-3-hidro-l,4-antraquinona (77) Rendimiento: 85%. Recristalización de etanol dio el epóxido como agujas blancas, p.f. 120 - 122°C; pureza del 97%, (HPLC). λ^ax (MeOH) 375 (3.76), 359 (3.64), 278 (4.79).
V1Uax(KBr)ZCm"1 1694 (C=O) , 1620 (C=C arom.) , 1279 (C-O) .
1H RMN (CDCl3, 300 MHz) δ 1.08 (t, 3 H, J 7.6Hz, CH3) , 2.02 (dq, 1 H, J 14.8, 7.6Hz, CHAHBCH3) , 2.02 (dq, I H, J 14.8,
7.6Hz, CHAHBCH3) , 3.89 (s, 1 H, H3) , 7.59~7.65 (m, 2 H, H6, H7) ,
7.93~8.00 (m, 2 H, H5, H8) , 8.43 (s, 1 H, H9) , 8.48 (s, 1 H,
Hi0) • 13C RMN (CDCl3, 75 MHz) δ 8.5 (CH2CH3), 21.4 (CH2CH3), 60.4 (C3), 65.3 (C2), 128.2 (Ccuat) , 128.8 (C9), 129.4 (C10), 129.5, 129.5 (C6, C7), 129.7, 129.8 (C5, C8), 134.9, 135.2 (C10., C10-), 191.7 191.9 (C1, C4) . m/z (IE) 252 (75%, M+), 237 (12, M+- Me), 223 (100, M+- Et), 209 (30, M+ - Et - O + 2 H+) .
Ejemplo 50.- cis-2 ,3-diacetoxi-2 ,3-dihidro-l ,4-antraquinona (74) A una suspensión de 2, 3-epoxi-2, 3-dihidro-l, 4-antraquinona
(246mg, l.lmmol, leq. ) en anhídrido acético (5ml) se añadió ácido sulfúrico concentrado (0.4ml, 6.4πunol, 5.8eq.) y se agitó a temperatura ambiente durante 1.5h. Se vertió sobre hielo y se filtró el sólido obtenido, lavándolo con agua hasta pH neutro. Se recristalizó de etanol para obtener el producto como finas fibras blancas (323 mg, 90%), p.f. 222-224°C; pureza del 100%, (HPLC) .
K3x (MeOH) 217 (4.69), 233 (4.51), 257 (4.43), 340 (4.23). vmax (KBr) /cm"1 1752 (COO), 1704 (C=O), 1618 (C=C arom. ) , 1238 (C-O) .
1H RMN (CDCl3, 300 MHz) δ 2.30 (s, 6 H, OCOMe), 6.04 (s, 2 H, H2, H3), 7.76 (dd, 2 H, J 6.2, 3.3Hz, H6, H7), 8.11 (dd, 2 H, J 6.2, 3.3Hz, H5, H8), 8.70 (s, 2 H, H9, Hi0) . 13C RMN (CDCl3, 75 MHz) δ 20.5 (Me), 74.5 (C2, C3), 128.7 (Ci3, C14), 129.9 (C9, C10), 130.1 (C5, C8), 130.2 (C6, C7), 135.4 (C11, Ci2), 169.7 (COO), 188.5 (Ci, C4). m/z (IE) 326 (33%, M+), 255 (37, M+- COCOCH3+ H+), 224 (76, M+ - OAc - Ac) , 196 (100, M+ - COCOCH3 - OAc) .
Ejemplo 52.- 2 ,3-epoxi-3-hidro-2-metil-l, 4-antraquinona (89)
Rendimiento: 89%. Recristalización de etanol dio el epóxido como agujas blancas, p.f. 190-192°C; pureza del 99.4%, (HPLC). taax (MeOH) 375 (3.71) , 358 (3.56) , 295h (3.90) , 278 (4.73) , 27Oh (3.25) . vmax (KBr) /can"1 1696 (C=O) , 1618 (C=C) , 1270 (C-O) . 1H RMN (CDCl3, 300 MHz) δ 1.78 (s, 3 H, Me) , 3.91 (s, 1 H, H3) , 7.66~7.69 (m, 2 H, H6, H7) , 8.01~8.03 (m, 2 H, H5, H8) , 8.49 (s, 1 H, H9) , 8.54 (s, 1 H, Hi0) .
13C RMN (CDCl3, 75 MHz) δ 15.1 (CH3) , 62.4 (C3) , 128.5 (Ccuat) , 128.6 (Couat) , 129.2 (C9), 129.7, 129.8 (C6, C7) , 129.8 (Ci0) , 130.0 (C5, C8) , 135.3, 135.5 (Ci0', Ci0-) , 191.9 (C4) , 192.0 (C1) . m/z (IE) 238 (100, M+) , 223 (69, M+ - Me) .
Ejemplo 53.- 5-hidroxi-l,4-antraquinona (91)
Se obtiene como subproducto en la reacción de formación de 5- acetoxi-1, 4-antroquinona (90). La muestra analítica de 91 se prepara filtrando por columna de gel de silice (CHCl3-AcOEt 9:1) el producto de la reacción obtenido anteriormente. Se elimina el eluyente y se tritura el sólido con un poco de éter. Se filtra y se seca a 0,5mmHg. Polvo de color rojo, de p.f. > 3100C λmax (CHCl3) 251 (4.75), 294 (3.83), 305 (3.88), 328h (3.65), 349h (3.34) , 460 (3.78) . vmax (nujol) /can'1 3390 (d, 0-H fenol), 1668 (f, C=O quinona) , 1618 y 1305 (f) , 1288, 1135 y 1055 (m, C-O), 969 (d) , 846 y 755 (m).
1H-RMN (CDCl3, 100 MHz) (acetona-d6) δ 7.10 (s, 2H en C2, C3) , 7.17 (dd, J 7.0, J 1.5Hz, H6) , 7.42 - 7.82 (m, H7, H8) , 8.52 (s, H9) , 9.00 (s, Hi0) , 9.80 (s, a, OH intercambia con D2O) . (DMSO-d6) δ 7.12 (s, H2 H3) , 7.14 (m, H6) , 7.45-7.78 (m, H7, H8) , 8.48 (s, H9) , 8.79 (s, IH, Hi0) . m/z (IE) 224 (100, M+) , 196 (11, M ~.CO) .
Análisis elemental calculado para Ci4H8O3: C, 75.30; H, 3.73; hallado: C, 75.00; H, 3.60. La estructura de la 5-hidroxi-l, 4-antraquinona (91) se comprobó también por vía química, hidrolizando la 5-acetoxi- 1, 4-antraquinona (90) con ácido clorhídrico en dioxano.
Ejemplo 54.- 5-metoxi~l,4-antraquinona (93)
Se disuelven 90mg (0.4mmol) de 5-hidroxi-l, 4-antraquinona (91) en 50ml de acetona seca y se agregan 70mg (0.51mmol) de carbonato potásico y 5ml de yoduro de metilo. La suspensión formada se somete a reflujo suave con agitación magnética. A los 30 minutos la mezcla se enfría, se filtran las sales potásicas y se elimina el disolvente obteniéndose un sólido que se filtra por una columna corta de gel de sílice (CHCI3) . Una vez evaporado el eluyente, se obtienen 80mg (84%) de 93 que recristaliza en benceno-hexano en forma de agujas naranjas, p.f. 268-270°C (d. ) λna* (CHCl3) 251 (4.70), 292 (3.86), 303 (3.92), 324h (3.70), 349h (3.29) , 448 (3.76) .
Vmax (nujolj/cπf1 3069 (d, C-H aromático); 1672 (f, C=O quinona) ; 1618 (f); 1601 y 1573 (m, C=C aromático); 1304 y 1273 (f,C-O); 1148 y 1012 (m, C-O); 850; 792 y 750 (m) .
1H-RMN (CDCl3, 100 MHz) δ 4,06 (s, 3H, CH3O), 6.92 - 7.02 (m, IH, H6), 7.05 (s, 2H, H2, H3), 7.55 - 7.67 (m, 2H, H7, H8), 8.54 (s, IH, H9), 9.07 (s, IH, H10). m/z (IE) 238 (100, M+), 223 (15,ItI-CH3) , 195 (34). Análisis elemental calculado para C15Hi0O3: C, 75.63; H, 4.23, hallado: C, 75.53; H, 3.97.
Ejemplo 55.- 5-acetoxi-9-hidroxi-l , 4-antraquinona (95)
Método A (a partir de 5, 9-diacetoxi-l, 4-antraquinona (94)): Se introducen en un matraz provisto de agitación magnética y enfriando exteriormente con baño de hielo, 4,54g de 5,9- diacetoxi-1, 4-antraquinona (94) y se añaden 70ml de ácido trifluoracético comercial. Una vez que cesa la reacción exotérmica se retira el baño, dejando que el proceso transcurra a temperatura ambiente. La reacción se controla por cromatografía de capa fina (CH3Cl: AcOEt, 8:1). A los 75 minutos de reacción se añaden 5ml de ácido trifluoracético y cuando ya no queda producto de partida, a las 3 horas de reacción, se vierte la mezcla sobre 11 de agua-hielo y se recoge por filtración el precipitado. Se lava repetidas veces con agua y se seca, asi se obtienen 3,9g (99%) del producto
(95) que recristaliza de etanol-heptano en forma de agujas rojo anaranjadas de p.f. 179-1800C.
Método B (a partir de 5, 9-dihidroxi-l, 4-antraquinona (97)): Se disuelven 800mg de 5, 9-dihidroxi-l, 4-antraquinona (97) en 250ml de acetona con 0,5ml de piridina y se añaden, con fuerte agitación magnética y durante una hora, 25ml de anhídrido acético. Al cabo de dos horas se observa en cromatografía por capa fina (CHCl3: AcOEt, 4:1) que se ha consumido todo el producto de partida apareciendo un nuevo producto naranja de mayor Rf que 97 y una pequeña cantidad de 5, 9-diacetoxi-l, 4- antraquinona (94) . La mezcla de reacción se vierte sobre 11 de agua salada-hielo y se filtra el precipitado rojo. Este producto se purifica por cromatografía en columna a baja presión (CHCl3: AcOEt, 10:1). Asi se obtienen 650mg (70%) de 95.
KBX (CHCl3) 247 (4.54), 288 (3.77), 298 (3.79), 323h (3.65), 342h (3.30) , 477 (3.86) .
Vmax (nujolj/cπf1 3072 (d, C-H aromático), 1767 (f, C=O éster fenólico) , 1669 (f, C=O quinona) , 1645 (f, C=O quinona quelada), 1619 (f) , 1592 (f, C=C aromático), 1301 y 1216 (f) , 1206 y 1093 (f, C-O), 1027, 856, 823 y 809 (m) . 1H-RMN (CDCl3, 100 MHz) δ 2.48 (s, 3H, CH3OO), 6.98 (s, 2H, H2, H3), 7.47 (dd, J 7.9, 1.5Hz, IH, H6), 7,65 (dd, J 7.9, 7.8Hz, IH, H7), 8.34 (ddd, J 7.8, 1.5, 0.8Hz, IH, H8), 8.10 (d, J 0.8Hz, IH, H10), 13.72 (s, IH, en OH, se intercambia con D2O). m/z (IE) 282 (36, M+), 240 (200, M ~. CH2CO), 212 (35). Análisis elemental calculado para Ci6Hi0O5: C, 68,09; H, 3.57; hallado: C, 67,91; H, 3.84.
Ejemplo 56.- 5-acetoxi-9-metoxi-l,4-antraquinona (96)
Se disuelven 3.9Og de 5-acetoxi-9-hidroxi-l, 4-antraquinona (95) en 200ml de cloroformo destilado sobre carbonato potásico y se añaden 5g de óxido de plata (I) y 25ml de yoduro de metilo. La suspensión se calienta a 400C con agitación magnética y al cabo de 8 horas se adicionan Ig de óxido de plata (I) y 1OmI de yoduro de metilo. A las 22 horas de reacción, la suspensión se deja enfriar y se filtran las sales de plata, lavándolas con abundante cloroformo. Se evapora el disolvente y se obtiene un sólido amarillo que se recristaliza de etanol, obteniéndose 3.89g de 5-acetoxi-9-metoxi-l, 4- antraquinona (96) en forma de agujas amarillas, p.f. 179- 180°C.
A^113x (CHCl3) 248 (4.26), 289 (4.03), 300 (4.08), 332h (3.46), 425 (3.78) . vmax (nujoD/cm"1 3059 (d, C-H aromático); 1756 (f, C=O éster fenólico) ; 1671 y 1662 (f, C=O quinona) ; 1613 (m) ; 1283 (f) ; 1211 (f,a, C-O); 1091 (m) ; 1026 (f, C-O); 863, 828 y 750 (m) . 1H-RMN (CDCl3, 100 MHz) δ 2.50 (s, 3H, CH3OO), 4.07 (s, 3H, CH3O), 6.96 (s, 2H, H2, H3), 7.46 (dd, J 7.7, 1.3 Hz, IH, H6), 7.67 (dd, J 8.1, 7.7Hz, IH, H7), 8.27 (ddd, J 8.1, 1.3, 0.8Hz, IH, H8), 8.45 (d, J 0.8Hz, IH, Hi0). m/z (IE) 296 (12, M+), 254 (100, M ".CH2CO), 225 (37).
Análisis elemental calculado para Ci7Hi2O5: C, 68.92; H, 4.08; hallado:C, 69.15; H, 4.34.
Ejemplo 57.- 9-hidroxi-5-metoxi-l,4-antraquinona (98)
Se calienta a 40-45°C, con agitación magnética, una disolución de 400mg (1.67mmol) de 5, 9-dihidroxi-l, 4-antraquinona (97) en 10OmI de acetona y se añaden 115mg (0.83mmol) de carbonato potásico y 5ml de yoduro de metilo. El curso de la reacción se controla por cromatografía en capa fina (CHCl3 - AcOEt, 4:1). Al cabo de 19 horas se agregan 50mg (0.3βmmol) de carbonato potásico y 3ml de yoduro de metilo, y a las 25 horas de reacción se añaden 20mg (0.14mmol) de carbonato potásico y ImI de yoduro de metilo. A las 43 horas de reacción ha desaparecido el producto de partida y se observa un producto mayoritario de color rojo y un subproducto de color naranja. La mezcla de reacción se deja enfriar y se vierte sobre un 11 de agua-hielo. El precipitado rojo se filtra y, una vez seco, se separa por cromatografía en capa preparativa (CHCl3) , recogiéndose de la franja de mayor Rf 323mg (76 %) de 9- hidroxi-5-metoxi-l, 4-antraquinona (98). La muestra analítica del producto 98 se prepara pasándolo por una columna corta de gel de sílice (CHCl3) y, una vez evaporado el eluyente, triturando el producto rojo obtenido con un poco de éter, p.f. 243-245°C (d.) ^3x (CHCl3) 250 (4.58), 324 (3.69), 349h (3.30), 502 (3.93). V1113x (nujolj/cπf1 3066 (d, C-H aromático), 1667 (f, C=O quinona) , 1638 (f, C=O quinona quelada) , 1587 (f, C=C aromático), 1576 (m) , 1501 (f,), 1303 (f) , 1266; 1095 y 1054
(f, C-O) , 859, 813 y 752 (f) .
1H-RMN (CDCl3, 100 MHz) δ 4.03 (s, 3H, CH3O), 7.00 (s, 2H, H2, H3), 7.07 (dd, J 7.8, 0.8Hz, IH, H6), 7.59 (dd, J 8.5, 7.8Hz, IH, H7), 8.04 (ddd, J 8.5, 0.8, 0.8Hz, IH, H8), 8.54 (d, J 0.8Hz, IH, Hi0) , 13.73 (s, IH, OH, se intercambia con D2O). m/z (IE) 254 (100, M+), 239 (42, M ~.CH3), 211 (33). Análisis elemental calculado para C15H10O4 : C, 70.87; H, 3.96; H, 4.08; hallado: C, 71.16; H, 3.78.
El subproducto de esta reacción se identificó posteriormente como el éter dimetilico (102) . Ejemplo 58.- 9-acetoxi-5-inetoxi-l ,4-antraquinona (99)
Método A (a partir de 9-acetoxi-5-hidroxi-l, 4-antraquinona (100)) :
Se disuelven 200mg (0.71mmol) de 100 en lOOml de acetona y se añaden lOOmg (0.72mmol) de carbonato potásico y 5ml de yoduro de metilo. La mezcla se calienta a 40°C con agitación magnética y el curso de la reacción se controla por cromatografía en capa fina (CHCI3 - AcOEt, 4:1). A las cinco horas ya no que producto de partida, se enfria la mezcla de reacción, se filtran las sales potásicas y se evapora el disolvente. El residuo se purifica por cromatografía en capa preparativa (CHCl3 - AcOEt, 10:1). Se recoge la banda de color naranja, obteniéndose 198mg (94%) de 9-acetoxi-5-metoxi-l, 4- antraquinona (99) . Se recristaliza de etanol en forma de agujas de color naranja, p.f. 214-216°C.
Método B (a partir de 9-hidroxi-5-metoxi-l, 4-antraquinona (98)) :
Se agita a temperatura ambiente una disolución de 23mg de 98 en 1OmI de acetona, con 5ml de anhídrido acético y 0. ImI de piridina. Al cabo de 24 horas todo el producto 98 se ha consumido. La mezcla de reacción se vierte sobre 250ml de agua-hielo y se extrae con cloroformo. La fase orgánica se lava, se seca (Na2SO,^) y se evapora el disolvente. El producto se purifica por cromatografía en capa preparativa (CHCI3 - AcOEt, 10:1) y se obtienen 26mg (97%) del producto 99.
Xn3x (CHCl3) 250 (4.69), 290 (3.80), 302 (3.86), 32Oh (3.74), 349h (3.42) , 450 (3.79) . vmax (nujol) /can"1 3089 (d, C-H aromático), 1760 (f,a, C=O éster fenólico) , 1670 (f, C=O quinona) , 1614 (f) , 1574 y 1497 (m, C=C aromático), 1295; 1258 y 1212 (f, C-O), 1091 y 1052 (f,a, C-O) , 859, 816 y 807 (f) .
1H-RMN (CDCl3, 100 MHz) δ 2,58 (s, 3H, CH3OO), 4.04 (s, 3H, CH3O), sistema AB (δA=7,00; δB=6,90; J 10.5Hz, 2H, en H2, H3), 7 . 02 (dd, J 6 . 3 , 2 . 3Hz ) , 7 . 49-7 . 78 (m, 2H, H7, H8) , 9 . 01 (d, J 0 . 6Hz , IH, H10) . m/z (IE) 296 (β, M+), 254 (100, M ".CH2CO), 239 (43), 211 (24) . Análisis elemental calculado para Ci7Hi2O5: C, 68.92; H, 4,08; hallado: C. 68.72; H, 3.75.
Ejemplo 59.- 9-acetoxi-5-hidroxi-l, 4-antraquinona (100)
Se disuelven lOOmg de 5, 9-diacetoxi-l, 4-antraquinona (94) en 1OmI de dioxano y se añaden, con agitación magnética y a temperatura ambiente, 5ml de agua y 5ml de ácido clorhídrico concentrado. La mezcla de reacción se enfria exteriormente con baño de agua hasta que se alcanza de nuevo la temperatura ambiente. Al cabo de 2 horas, la mezcla de reacción se vierte sobre agua-hielo y se extrae con cloroformo. La fase orgánica se lava con agua y se después se seca sobre sulfato sódico. El residuo obtenido después de evaporar el disolvente se disuelve en acetona y se separa por cromatografía en capa preparativa (CHCl3 - AcOEt, 10:1). Se recuperan 40 mg de 94 sin reaccionar y 34 mg (40%, descontando el producto de partida recuperado, 64%) de 9-acetoxi-5-hidroxi-l, 4-antraquinona (100), cuyas características físicas y espectroscópicas coinciden con las anteriormente descritas. Se aisla también una pequeña cantidad de subproducto violeta que se caracteriza como la 5,9- dihidroxi-1, 4-antraquinona (97), por comparación con una muestra autentica.
Ejemplo 60.- 5, 9-dimetoxi-l, 4-antraquinona (102)
Método A (a partir de 9- hidroxi-5-metoxi-l, 4-antraquinona (98)):
Se disuelven 150mg (0.59mmol) de 98 en 50ml de cloroformo y se añaden 200mg (0.86mmol) de óxido de plata (I) recientemente preparado y 1OmI de yoduro de metilo. La suspensión se agita magnéticamente a 35-40°C y al cabo de dos dias se observa por cromatografía en capa fina (CHCl3 - AcOEt, 10:1) que ha desaparecido el producto de partida. La suspensión se deja enfriar y se filtran las sales de plata, lavándolas bien con cloroformo. Se evapora el disolvente y el residuo se filtra por una columna corta de gel de sílice (CHCl3 - AcOEt, 10:1) para eliminar el producto de retención. Una vez evaporado el eluyente se obtienen 150mg (95%) de 5, 9-dimetoxi-l, 4- antraquinona (102) que recristaliza de benceno-hexano en forma de agujas de color naranja, p.f. 172-173°C Método B (a partir de 5, 9-dihidroxi-l, 4-antraquinona (97)):
Se disuelven lOOmg (0.42mmol) de 97 en 50ml de acetona y se añaden 50mg (0.36mmol) de carbonato potásico y 5ml de yoduro de metileno. La suspensión se calienta a 40°C con agitación magnética y a las 19 horas se filtran las sales inorgánicas y se elimina el disolvente. El residuo se separa por cromatografía en capa preparativa (CHCl3 - AcOEt, 10:1) y se obtienen 54mg (48%) de 102.
Kax (CHCl3) 250 (4.70), 296 (3.77), 303 (3.82), 32Oh (3.73),
349h (3.39) , 456 (3.82) . Vn^x (nujol) /can"1 3040 (d, C-H aromático), 1669 y 1660 (f,a,
C=O quinona) , 1614 (f), 1573 (d) 1498 (m, C=C aromático),
1295; 1277 y 1267 (f, C-O), 1093 (f,a, C-O), 1056 y 1020 (f) ,
858 (m) , 826 y 806 (f) , 757 (m) .
1H-RMN (CDCl3, 100 MHz) δ 4.03 (s, 3H, CH3O), 4.06 (s, 3H, CH3O), 6.95 (s, 2H, H2, H3), 6.99 (dd, J 7.6, 0,7Hz, IH, H6),
7.59 (dd, J 8.2, 7.6Hz, IH, H7), 7.93 (ddd, J 8.2, 0.7, 0,6Hz,
IH, H8), 8.86 (d, J 0.6Hz, IH, Hi0). m/z (IE) 268 (100, M+), 253 (24, M ~.CH3), 239 (35, M ~ CHO),
237 (23, M ~ CH3O), 225 (15). Análisis elemental calculado para C16H12O4: C, 71.64; H,
4.51;H, 4.08; hallado: C, 71.76; H, 4.79. Ejemplo 61.- Ensayos de actividad biológica de los compuestos de la invención
Los compuestos obtenidos, cuya pureza fue evaluada previamente por HPLC demostrando ser superior al 97%, fueron sometidos a evaluación biológica para determinar su actividad frente a seis lineas celulares de cáncer: cáncer de mama (MCF- 7), cáncer de pulmón de células no pequeñas (NCI-H-460), carcinoma humano de pulmón (A-549) , próstata (PC-3), sistema nervioso central de glioblastoma (SF-268) y sarcoma, concretamente leiomiosarcoma (CNIO AA) . Estas lineas proceden de repositorios comerciales como en el caso de MCF-7, NCI-H- 460, A-549 ó SF-268 (para referencia ver por ejemplo la información adjunta en http: //dtp. nci . nih. gov/branches/btb/ivclsp. html y http: //dtp. nci . nih. gov/mtargets/madownload. html, o las referencias Alley et al (Alley, M. C, Scudiero, D.A., Monks, P.A., Hursey, M. L., Czerwinski, M. J., Fine, D. L., Abbott, B. J., Mayo, J. G., Shoemaker, R. H., and Boyd, M. R. Feasibility of Drug Screening with Panels of Human Tumor CeIl Lines üsing a Microculture Tetrazolium Assay. Cáncer Research 48: 589-601, 1988), Grever et al (Grever, M. R., Schepartz, S.A., and Chabner, B.A.. The National Cáncer Institute: Cáncer Drug Discovery and Development Program. Seminars in Oncology, VoI. 19, No. 6, pp 622-638, 1992) y Boyd et al (Boyd, M. R., and Paull, K. D. Some Practical Considerations and Applications of the National Cáncer Institute In Vitro Anticancer Drug
Discovery Screen. Drug Development Research 34: 91-109, 1995).
La linea CNIO AA se generó en el CNIO a partir de una muestra tumoral fresca y ha sido parcialmente caracterizada en la referencia (C. Blanco, V. Moneo, L. Romero, B. Pequeño, J. F. M. Leal, J. Fominaya, J. Velasco and A. Carnero. Inhibition of PI3K synergise with Gemcitabine in low passaged tumor cell lines correlating with bax traslocation to mitochondria. (Anti Cáncer Drugs 2005) . Como ensayo de actividad biológica se han realizado ensayos citotóxicos que consisten en la medida de la viabilidad celular in vitro cuando las células están sometidas a tratamiento con los compuestos químicos objeto de estudio. Los compuestos que disminuyan la viabilidad celular de lineas tumorales con respecto a controles de las mismas células sin tratar, cultivadas en las mismas condiciones, serán considerados como candidatos de poseer un posible efecto antitumoral . Los ensayos citotóxicos de los compuestos de la invención fueron realizados en placas de 96 pocilios. Células creciendo en frascos de cultivo fueron tripsinizadas a 90% de confluencia, células fueron contadas en hemocitómetro y diluidas con medio de cultivo para ajustar la concentración de células al numero de células requeridas a 0.2 mi (volumen requerido por cada pocilio) . Las células se sembraron en las placas de 96 pocilios a la densidad adecuada para cada tipo celular dependiendo de su tamaño, entre 1000 y 4000 células por pocilio. Laa células se incubaron durante 24 horas en esterilidad a 37° C y 5% CO2 antes de añadir los compuestos.
Los compuestos se pesaron y disolvieron en DMSO a una concentración de 2 mM (200 x de la concentración final en ensayo que será de 10 microM) . Estas concentraciones se eligieron para que el DMSO en cultivo no supere el 0.5% antes de añadir los compuestos, el medio de cultivo es eliminado y añadidos 200 microlitros de medio fresco. 1 microlitro de solución de compuesto fue añadido por pocilio automáticamente con un sistema robotizado Beckman FX 96 tip para alcanzar la concentración final de cada droga que será de 10 microM. Cada concentración es ensayada en triplicado. Un grupo de pocilios es dejado como control no tratado o añadiendo disolvente (DMSO) solo. Otro control es fijado en otras placas antes de añadir los compuestos (Control dia 0) . Tras añadir los compuestos las placas con los ensayos celulares se incubaron por 72 horas en ambiente estéril a 37°C y 5% CO2. Tras la incubación el medio fue eliminado, las células lavadas con PBS dos veces y fijadas con 0.5% glutaraldehido durante 30 minutos. Tras el fijado las células fueron lavadas dos veces con PBS y teñidas con cristal violeta al 0.5% en PBS durante 30 minutos. Entonces el cristal violeta es eliminado y las células lavadas extensivamente. Tras el lavado el cristal violeta es disuelto en 15% ácido acético en agua y la absorbancia medida con un filtro de 595 A. Los valores crudos obtenidos de la medición fueron procesados de la siguiente forma en el programa Excell: Se hizo la media de cada ensayo por triplicado. Las células tratadas con DMSO únicamente se consideraron el 100% del crecimiento celular durante las 72 horas. Para garantizar que las células se hablan comportado correctamente estos valores se compararon a los obtenidos de los controles de células no tratadas (no debe haber variaciones superiores al 10-20%) y a los controles a dia 0 (valores a dia 0 deben ser 2-4 veces menores a los valores controles, dependiendo de la velocidad de duplicación de la linea celular) . Los valores de cada ensayo se refirieron al control de crecimiento 100% y representados gráficamente.
De los compuestos analizados algunos resultaron tener un buen efecto citotóxico en las condiciones del ensayo en todas las lineas celulares de distintos tumores ensayadas, mientras que otros resultaron ser más activos en una u otra linea dependiendo del tipo celular. De los compuestos ensayados, presentaron una buena actividad citotóxica general los compuestos 1 al 17, 20, 21, 26, 27, 30, 31, 34 al 44, 46 al 51, 53, 54, 59, 63 al 69 y 73, todos ellos con una buena respuesta citotóxica a 10 micromolar, en general inferior al 40% de supervivencia celular, indicando que su IC50 esté probablemente en el rango de 1-10 micromolar. Estos compuestos fueron probablemente más activos en células procedentes de tejidos epiteliales de próstata o mama o glioblastoma. Sin embargo, no todos los compuestos fueron iguamente potentes. Los compuestos 2 y 4 fueron menos activos en SF268, mientras que los compuestos 4, 11, 16, 20, 21, 30, 38, 45, 47, 49, 50, 51 y 53 fueron menos activos en PC3 y MCF7. En esta última linea los compuestos 2, 7, 13 y 40 también fueron algo menos activos. Por el contrario los compuestos ' número 19, 55, 59 y 73 fueron más activos en estas lineas que en CNIO AA ó A549. Los compuestos número 60 y 1 presentaron actividad diferencial en A549, siendo una probable base para actividad citotóxica especifica. El compuesto 1 no fue activo, siendo la única linea que no presentó mortalidad bajo este compuesto. Por el contrario, la linea A549 fue muy sensible al compuesto número 60. Estos datos pueden presentar el inicio de una especificidad en la sensibilidad o resistencia de los distintos tumores.
Desde el punto de vista estructural, se observa que entre los compuestos de la primera familia, las quinonas halogenadas son muy activas frente a la gran mayoría de lineas celulares y esto sucede para mono- y dihaloderivados . En lo referente a alquilquinonas se comprobó que la actividad de las quinonas inicialmente preparadas era bastante interesante, aunque no se logró mejorar con sustituyentes alquilo en las posiciones 2 y 3. En lo referente a aminoderivados algunos compuestos son muy activos como los que contienen cadenas de aziridina (lo que sugiere un efecto alquilante) ó 2,4- diclorobencilderivados, un sustituyente clásico en química médica. Esto echa por tierra la conclusión, extraída de la preparación de muy pocos compuestos, de Perchellet y Hua51 en el sentido de que las posiciones 2 y 3 del sistema quinónico eran intocables pues tenian un efecto letal sobre la actividad. Resulta obvio a partir de los compuestos de la invención que dichas posiciones 2 y 3 y la 9 de la quinona son susceptibles de funcionalización y conducen a resultados muy prometedores .
Como conclusiones generales podemos señalar que la presencia de la función fenólica en la posición 9 de la antraquinona hizo desaparecer la actividad de nuestros compuestos en todas las líneas celulares probadas. El éter metílico o la ausencia de sustituyentes en esta posición conviertieron a estas antraquinonas en productos con actividad muy interesante in vitro. La presencia de sustituyentes alquilo en la posición 2 o en posiciones 2 y 3 disminuyó la actividad en la mayor parte de los casos. Es posible que esto se deba a que en las quinonas disustituídas resulta imposible la reacción de adición de nucleófilos presentes en el medio biológico como el glutatión, uno de los modos de actividad anticancerosa de estos productos.
Algunos de los epóxidos formados presentaron actividad excelente, igual que algunos de los productos de apertura de éstos. Los epóxidos de las quinonas sin sustituir en las posiciones 2 y 3 fueron muy activos frente a casi todas las líneas celulares, excepto la de cáncer de pulmón NCI-H-460. La 2-etil-l, 4-antraquinona también mostró una fuerte actividad en algunas de las líneas, pero no así el resto de epóxidos de quinonas alquiladas.
Los productos de apertura cis del epóxido resultaron también muy activos en el caso del diacetato, pero los que contenían cadenas laterales más largas o ramificadas perdieron esta actividad.
Las quinonas monosustituídas en la posición 2 con funciones oxigenadas no mostraron actividad prácticamente en ningún caso, excepto la 2-metoxi-l, 4-antraquinona que resultó moderadamente activa frente a cáncer humano de pulmón (A-549) y frente a sarcoma (AA) . Referencias Bibliográficas
(1) a) ' NaturaUy Occurring Quiñones: IV Recent Advances' , R. H. Thomson 1997; b) ' Naturally Occurring Quiñones III' , R. H. Thomson 1987. c) R. M. Christie ' Colour Chemistry' RSC Paperbacks, 2001.
(2) 'Methoden der Organischen Chemie1 Houben-Weyl, 4 Ed., Eugen Müller (Ed.) 1952, VoIs. VII3a, VII3b, VII3c.
(3) 'The Chemistry of Quinonoid Compounds ' in 'The Chemistry of Functional Groups' , S. Patai, Z. Rappoport (Eds.), 1988, VoI. 2.
(4) ' Anthracycline Antibiotics' , H. S. El Khadem (Ed.) 1982
(5) T. Tran, E. Saheba, A. V. Arcerio, V. Chavez, Q. Li, L. E. Martínez, T. P. Primm Bioorg. Med. Chem. 2004, 12, 4809.
(6) T. M. S. Silva, C. A. Cámara, T. P Barbosa, A. Z. Soares, L. C. Cunha, A. C. Pinto, M. D. Vargas. Bioorg. Med. Chem.
2005, 13, 193.
(7) L. Salmon-Chemin, E. Buisine, V. Yardley, S. Kohler, M. A. Debreu, V. Landry, C. Sergheraert, S. L. Croft, R. L. Krauth- Siegel, E. Davioud-Charvet . J. Med. Chem. 2001, 44, 548. (8) V. F. Andrade-Neto, M. 0. F. Goulart, J. F. Silva Filho, M. J. da Silva, M. C. F. R. Pinto, A. V. Pinto, M. G. Zalis, L. A. Carvalho, A. V. Krettli. Bioorg. Med. Chem. 2004, 14, 1145.
(9) G. J. Kapadia, M. A. Azuine, V. Balasubramanian, R. Sridhar. Pharmacol. Res. 2001, 43, 363.
(10) E. V. M. dos Santos, J. W. M. Carneiro, V. F. Ferreira. Bioorg. Med. Chem. 2004, 12, 87.
(11) M. Matsumoto, S. Misawa, N. Chiba, H. Takaku, H. Hayashi. Biol. Pharm. BuIl. 2001, 24, 236 (12) a) G. Minotti, P. Menna, E. Salvatorelli, G. Cairo, L. Gianni. Pharmacol. Rev. 2004, 56, 185.
(13) P. M. Loadman, C. R. Calabrese J. Chromatogr. B 2001, 764, 193. (14) a) J. N. Weinstein, T. G. Myers, P. M. O'Connor, S. H. Friend, A. J. Fornace Jr, K. W. Kohn, T. Fojo, S. E. Bates, L. V. Rubinstein, N. L. Anderson, J. K. Buolamwini, W. W. van Osdol, A. P. Monks, D. A. Scudiero, E. A. Sausville, D. W. Zaharevitz, B. Bunow, V. N. Viswanadhan, G. S. Johnson, R. E. Wittes, K. D. Paull Science 1997, 275, 343; b) http://nci.nih.gov/; c) A. Monks, D. Scudiero, P. Skehan, R. Shoemaker, K. Paull, D. Vistica, C. Hose, J. Langley, P. Cronise, A. Vaigro-Wolff, M. Gray-Goodrich, H. Campbell, J. Mayo, M. Boyd J. Nat . Cáncer Inst. 1991, 83, 757.
(15) J. Marco-Contelles, M. T. Molina, S. Anjum. Chem. Rev. 2004, 104, 2857.
(16) a) http://www.todocancer.com/esp; b) http : //nci . nih . gov
(17) C. Asche. Mini Rev. Med. Chem. 2005, 5, 449 (18) G. Tudor, P. Gutiérrez, A. Aguilera-Gutiérrez, E. A. Sausville. Biochem. Pharmacol. 2003, 65, 1061
(19) a) P. B. Arimondo, C. Héléne. Curr.Med. Chem. -Anti-Cancer Agents 2001, 1, 219; b) J. A. Holden. Curr.Med. Chem. -Anti- Cancer Agents 2001, 2, 1; c) S. J. Froelich-Ammon, N. Osheroff J. Biol. Chem. 1995, 270, 21429; d) H. -K. Wang, S. L. Morris- Natschke, K. -H. Lee. Med. Res. Rev. 1997, 17, 4, 367
(20) C. Bailly. Curr. Med. Chem. 2000, 7, 39
(21) G. Capranico, M. Binaschi, M. E. Borgnetto, F. Zunino, M. Palumbo. TiPS 1991, 18, 323 (22) a) T. R. Cech. Angew. Chem. Int. Ed. 2000, 39, 34; b) B.
Windle, I. Maine. Curr. Opin. Oncol. Endoc. Met. Invest. Drugs
1999, 1, 170
(23) I. Melchheier, C. von Montfort, D. Stuhlmann, H. Sies,
L.-O. Klotz. Biochem. Biophys . Res. Commun. 2005, 327, 1016 (24) A. P. Ducruet, A. Vogt, P. Wipf, J. S. Lazo. Annu. Rev.
Pharm. Toxicol. 2005, 45, 725-50
(25) P. L. Gutiérrez. Front. Biosci. 2000, 5, dβ29.
(26) A. Begleiter. Front. Biosci. 2000, 5, el53. (27) J. L. Bolton, M. A. Trush, T. M. Penning, G. Dryhurst, T. J. Monks Chem. Res. Toxicol. 2000, 13, 135.
(28) L. H. Hurley, R. T. Wheelhouse, D. Sun, S. M. Kerwin, M. Salazar, O. Y. Fedoroff, F. X. Han, H. Han, E. Izbicka, D. D. von Hoff. Pharmacol. Therap. 2000, 85, 141.
(29) D. Cairns, E. Michalitsi, T. C. Jenkins, S. P. Mackay. Bioorg. Med. Chem. 2002, 10, 803.
(30) T. M. El-Gogary. Spectrochim. Acta Part A, 2003, 59, 1009. (31) H. S. Huang, J. F. Chiou, Y. Fong, C. C. Hou, Y. C. Lu, J. Y. Wang, J. W. Shih, Y. R. Pan, J. J. Lin. J. Med. Chem.
2003, 46, 3300
(32) R. H. Cichewicz, Y. Zhang, N. P. Seeram, M. G. Nair. Life
Sci. 2004, 74, 1791. (33) E. Bertl, H. Becker, T. Eicher, C. Herhaus, G. Kapadia,
H. Bartsch, C. Gerháuser. Biochem. Biophys . Res. Commun. 2004,
325, 287.
(34) H. S. Huang, H. F. Chiou, A. L. Lee, C. L. Guo, C. L.
Yuan. Bioorg. Med. Chem. 2004, 12, 6163. (35) H. Sadeghi-Aliabadi, M. Tabarzadi, A. Zarghi. Fármaco
2004, 59, 645.
(36) Y. T. Su, H. L. Chang, S. K. Shyke, S. L. Hsu. Bioorg. Pharmacol. 2005, in press.
(37) H. S. Huang, C. L. Chou, C. L. Guo, C. L. Yuan, Y. C. Lu, F. Y. Shieh, J. J. Lin. Bioorg. Med. Chem. 2005, 13, 1435.
(38) L. F. Fieser J. Am. Chem. Soc. 1928, 50, 465.
(39) K. Zahn. Ber. 1934, 67, 2063.
(40) H. Muxfeldt, V. Koppe . Chem. Ber. 1958, 91, 838.
(41) F. Fariña, J. Primo, T. Torres. Chem. Lett. 1980, 77 (42) F. Fariña, J. Primo. An. Quim. 1980, 76, 249
(43) F. Fariña, M. T. Molina, M. C. Paredes. Synth. Commun. 1986, 1015
(44) a) D. W. Cameron, C. Conn, M. J. Crossley, G. I. Feutrill, M. W. Fisher, P. G. Griffiths, B. K. Merrett, D. Pavlatos. Tetrahedron Lett. 1986, 21, 2417; b) D. W. Cameron, G. I. Feutrill, P. G. Griffiths, B. K. Merrett. Tetrahedron Lett. 1986, 21, 2421
(45) a) E. Apostolova, T. Markova, T. Filipova, M. T. Molina, S. G. Taneva. J. Photochem. Photobiol . B 2003, 10, 75; b) E.
Apostolova, S. Krumova, N. Tuparev, M. T. Molina, T. Filipova, I. Petkanchin, S. G. Taneva. Colloids Surfaces B 2003, 29, 1; c) E. Apostolova, S. Krumova, T. Markova, T. Filipova, M. T. Molina, I. Petkanchin, S. G. Taneva. J. Photochem. Photobiol . B 2005, 18, 115
(46) D. Permaná, N. H. Lajis, A. G. Othman, A. M. AIi, N. Aimi, M. Kitajima, H. Takayama. J. Nat . Prod. 1999, 62, 1430 y referencias citadas
(47) E. M. Perchellet, M. J. Magill, X. Huang, D. M. Dalke, D. H. Hua, J. -P. Perchellet. Anti-Cancer Drugs 2000, 11, 339.
(48) A. N. Grinev, C. Protopopov, M. Cherkasova. Zh. Org. Khim. 1972, 8, 215.
(49) M. Wu, B. Wang, E. M. Perchellet, B. J. Sperfslage, H.A. Stephany, D. H. Hua, J. -P. Perchellet. Anti-Cancer Drugs 2001,12, 807.
(50) E. M. Perchellet, Y. Wang, R. L. Weber, B. J. Sperfslage, K. Lou, J. Crossland, D. H. Hua, J. -P. Perchellet. Biochem. Pharmacol. 2004,61, 523.
(51) D. H. Hua, K. Lou, J. Havens, E. M. Perchellet, T. Iwamoto. Tetrahedron 2004, 60, 10155 y referencias citadas.
(52) E. Barranco, N. Martin, J. L. Segura, C. Seoane Tetrahedron 1993, 49, 4881.
(53) P. V. Bedworth, J. W. Perry, S. R. Marder. Chem. Commun . 1997, 1353 (54) H. -J. Kallmayer, C. Kruppert, J. Brandenburg. Pharmazie 1995, 50, 506 (55) V. V. Russkikh. Zh. Org. Khim. 1995, 31, 380 (56) A. S. Hamzah, H. Jasmani, R. Ahmad, A. R. Baba, N. H. Lajis, N. Aimi, M. Kitajima, H. Takayama. J. Nat. Prod. 1997, 60, 36
(57) A. Molinari, A. Oliva, N. Aguilera, J. M. Miguel del Corral, M. A. Castro, M. Gordaliza, M. D. Garcia-Grávalos, A.
San Feliciano. Bioorg. Med. Chem. 2000, 8, 1027.
(58) P. Wipf, J. K. Jung, S. Rodríguez, J. S. Lazo. Tetrahedron 2001, 57, 283.
(59) J. Montoya, A. Varela-Ramirez, A. Estrada, L. E. Martínez, K. Garza, R. J. Aguilera. Biochem. Biophys . Res.
Commun. 2004, 325, 1517.
(60) J. Rigaudy, R. Dupont, N. K. Cuong. C. R. Acad. Sci . París Serie C 1969, 269, 416.
(61) W. B. Motherwell, D. Crich. "Free Radical Chain Reactions in Organic Synthesis" . Academia Press, 1992.
(62) S. Z. Zard. "Radical Reactions in Organic Synthesis" . Oxford University Press, 2003.
(63) a) N. Jacobsen, K. Torssell. Liebigs Ann. Chem. 1972, 763, 135; b) N. Jacobsen, K. Torssell. Acta Chem. Scand. B 1973, 27, 3211.
(64) N. Jacobsen. Org. Synth. 1977, 56, 68.
(65) A. L. Baggish, D. R. HiIl. Antimicrob. Agents Chemother. 2002, 46, 1163
(66) M. P. Cava, A. A. Deana, K. Muth. J. Am. Chem. Soc. 1959, 81, 6458.
(67) J. G. Alien, M. F. Hentemann, S. J. Danishefsky. J. Am. Chem. Soc. 2000, 122, 571.
(68) B. L. Stills, C. B. Lauzon, T. Otsuki. Chem. Lett. 2002, 306 (69) M. J. Chan-Bacab, L. M. Peña-Rodríguez. Nat. Prod. Rep. 2001, 18, 674
(70) A. A. Khan, M. Nasr, F. Araujo. Antimicrob. Agents Chemother. 1998, 42, 2284
(71) L. Ko, T. Odawara, S. -H. C. Yen. Brain Res. 1997, 760, 118 (72) M. Pickhardt, Z. Gazova, M. von Bergen, I. Khlistunova, Y. Wang, A. Hascher, E. -M. Mandelkow, J. Biernat, E. Mandelkow. J. Biol. Chem. 2005, 280, 3628
(73) K. Müller, H. Prinz. J. Med. Chem. 1991, 40, 2780 (74) S. Tisserand, R. Baati, M. Nicolás, C. Mioskowski. J.Org. Chem. 2004, 69, 8982
(75) P. J. Jewess, J. Higgins, K. J. Berry, S. R. Moss, A. B. Boogaard, B. P. S. Khambay. Pest Manag. Sci. 2002, 58, 234
(76) T. Tokunaga, N. Takada, M. Ueda. Tetrahedron Lett. 2004, 45, 7115

Claims

REIVINDICACIONES l.~ Un compuesto útil como agente terapéutico caracterizado por la fórmula general (I) :
Figure imgf000101_0001
(i)
donde
el enlace covalente marcado como α. puede ser simple y R1, R2, R3 y R4 iguales o diferentes de H,
el enlace covalente α. puede ser simple y R2, R3 ser igual a - O- dando lugar a un anillo de epóxido,
ó el enlace covalente marcado como α es doble y tanto R2 como R4 están ausentes,
en los que:
R1 es seleccionado de -H, Ci-I4 alquilo sin sustituir con cadena lineal ó ramificada (con dobles ó triples enlaces), Ci_ 14 haloalquilo, C1-14 hidroxialquilo, C1-.14 aminoalquilo, Ci_i4 carboxialquilo (éster) , arilo, heteroarilo, -OH, OCOR8 donde R8 es Ci_i4 alquilo lineal o ramificado, arilo ó heteroarilo, OR9 (alcoxi- ó haloalcoxi-, -OCF3) , donde R9 es una cadena alquilica corta, tioéter, 0-aciloxi, O-triflato, O-tosilato, halógeno (F, Cl, Br, I), -COOH, -CF3, -SO3H, sulfonate, -NO2, N3, arilo sin sustituir ó sustituido, heteroarilo saturado e insaturado, -NH2, NHR10, donde R10 es una cadena alquilica de corta, ó bien cicloalquilica (sistema de aziridina, ciclobutilamina, pirrolidina, piperidina, morfolina) , ó bien R10 es un sistema bencénico o heterociclico (pirazol, imidazol) , ó R10 es un sistema bencílico, arilalquilico ó heterociclo-CH2- ,
R3 es seleccionado de -H, Ci_14 alquilo sin sustituir con cadena lineal ó ramificada (con dobles ó triples enlaces) , Ci- 14 haloalquilo, Cx-I4 hidroxialquilo, C1-14 aminoalquilo, C1-14 carboxialquilo (éster) , arilo, heteroarilo, -OH, OCOR8 donde R8 es Ci-14 alquilo lineal o ramificado, arilo ó heteroarilo, OR9 (alcoxi- ó haloalcoxi-, -OCF3) , donde R9 es una cadena alquilica corta, tioéter, 0-aciloxi, O-triflato, O-tosilato, halógeno (F, Cl, Br, I), -COOH, -CF3, -SO3H, sulfonate, -NO2, N3, arilo sin sustituir ó sustituido, heteroarilo saturado e insaturado, -NH2, NHR10, donde R10 es una cadena alquilica de corta, ó bien cicloalquilica (sistema de aziridina, ciclobutilamina, pirrolidina, piperidina, morfolina) , ó bien R10 es un sistema bencénico o heterociclico (pirazol, imidazol) , ó R10 es un sistema bencílico ó heterociclo-CH2- ,
R2 si está presente es seleccionado de los mismos grupos que R1 y puede ser igual ó diferente que R1,
R4 si está presente es seleccionado de los mismos grupos que R3 y puede ser igual ó diferente que R3,
R5 y R6 son independientemente H, -OH, -Oalcoxi (con cadena lineal corta) , -Oaciloxi, halógeno (F, Cl, Br, I) , R7 es H, sólo cuando uno ó más de los radicales restantes en (I), es decir R1, R2, R3, R4, R5 y R6 son diferentes de H, es decir no se reivindica explícitamente la 1, 4-antraquinona, donde todos los radicales en (I) son iguales a H, y el enlace α es un doble enlace, ya que se trata de un compuesto conocido y estudiado previamente,
Cuando alguno de los radicales R1^-R6 es diferente de H, R7 puede tener la naturaleza descrita en los casos anteriores mencionados para R1,
Yr sus isómeros, sales farmacéuticamente aceptables, derivados, solvatos, amidas, esteres y éteres.
2.- Compuesto según la reivindicación 1 caracterizado por la fórmula general (II) y en el que el enlace covalente α es un doble enlace y R2 y R4 de (I) están ausentes
Figure imgf000103_0001
(H)
que constituye una subfamilia de (I) y donde
R1 se define como en la reivindicación 1, siendo preferentemente halógeno (F, Cl, Br, I) , éter, -OR (alcoxi- ó haloalcoxi-, -OCF3) , donde R es una cadena alquilica corta, tioéter, 0-aciloxi, O-triflato, 0-tosilato. R1 puede ser también un radical alquilo Ci-Ci4 lineal ó ramificado (con dobles ó triples enlaces) , NO2, arilo ó heteroarilo,
R3 puede ser H ó diferente de H y preferentemente halógeno (F, Cl, Br, I) , éter, -OR (alcoxi- ó haloalcoxi-, -OCF3) , donde R es una cadena alquilica corta, tioéter, 0-aciloxi, O-triflato, O-tosilato. R1 puede ser también un radical alquilo Ci-Ci4 lineal ó ramificado (con dobles ó triples enlaces) , NO2, arilo ó heteroarilo,
R5 y R6 son independientemente H, -OH, -Oalcoxi (con cadena lineal corta), -Oaciloxi, halógeno (F, Cl, Br, I),
R7 es H, sólo cuando uno ó más de los radicales restantes en (II), es decir R1, R3, R5 y R6 son diferentes de H. Cuando alguno de estos radicales es diferente de H, R7 puede tener la naturaleza descrita en los casos anteriores: halógeno (F, Cl,
Br, I), éter, -OR (alcoxi- ó haloalcoxi-, -OCF3) , donde R es una cadena alquilica corta, tioéter, 0-aciloxi, O-triflato, 0- tosilato. R1 puede ser también un radical alquilo C1-C14 lineal ó ramificado (con dobles ó triples enlaces), NO2, arilo ó heteroarilo.
3.- Compuesto según la reivindicación 2 caracterizado porque pertenece al siguiente grupo: • 2-cloro-l, 4-antraquinona (1)
• 2-cloro-9-hidroxi-l, 4-antraquinona (2)
• 2-cloro-9-metoxi-l, 4-antraquinona (3)
• 2, 3-dicloro-l, 4-antraquinona (4)
• 2, 9-dicloro-10-hidroxi-l, 4-antraquinona (5) • 2, 9-dicloro-10-metoxi-l, 4-antraquinona (6)
• 2, 3-dicloro-9-metoxi-l, 4-antraquinona (7)
• 2-bromo-l, 4-antraquinona (8) • 2-bromo-9-hidroxi-l, 4-antraquinona (9)
• 2-bromo~9-metoxi-l, 4-antraquinona (10)
• 2, 3-dibromo-l, 4-antraquinona (11)
• 2, 3-dibromo-9-hidroxi-l, 4-antraquinona (12) • 2, 3-dibromo-9-metoxi-l, 4-antraquinona (13)
• 2-inetoxi-3-bromo-9-hidroxi-l/ 4-antraquinona (14)
• 2, 3-dimetoxi-9-hidroxi-l, 4-antraquinona (15)
• 2, 3-dimetoxi-l, 4-antraquinona (16)
• 2-cloro-3-metoxi-l, 4-antraquinona (17) • 9-hidroxi-l, 4-antraquínona (58)
• 9-acetox±-l, 4-antraquinona (59)
• 1, 4-antraquinona (60)
• 9-metoxi-l, 4-antraquinona (61)
• 2-metil-l, 4-antraquinona (62) • 2-etil-l, 4-antraquinona (63)
• 2-alil-l, 4-antraquinona (64)
• 2-isopropil-l, 4-antraquinona (65)
• 2-tercbutil-l, 4-antraquinona (66)
• 2-ciclohexil-l, 4-antraquinona (67) • 2-bencil-l, 4-antraquinona (68)
• 2-p-metoxibencil-l, 4-antraquinona (69)
• 2, 3-dimetil-l, 4-antraquinona (70)
• 2, 3-dietil-l, 4-antraquinona (71)
• 2, 3-dialil-l, 4-antraquinona (72) • 2, 3-dibencil-l, 4-antraquinona (73)
• 2, 3-di-p-metoxibencil-l, 4-antraquinona (74)
• 5-acetoxi-l, 4-antraquinona (90)
• 5-hidroxi-l, 4-antraquinona (91)
• 5-nitro-l, 4-antraquinona (92) • 5-metoxi-l, 4-antraquinona (93) • 5, 9-diacetoxi-l, 4-antraquinona (94)
• 5-acetoxi-9-hidroxi-l, 4-antraquinona (95)
• 5-acetoxi-9-metoxi-l, 4-antraquinona (96)
• 5, 9-dihidroxi-l, 4-antraquinona (97)
• 5-metoxi-9-hidroxi-l, 4-antraquinona (98)
• 5-metoxi-9~acetoxi-l, 4-antraquinona (99)
• 5-hidroxi-9-acetoxi-l, 4-antraquinona (100)
• 5-hidroxi-9-metoxi-l, 4-antraquinona (101)
• 5, 9-dimetoxi-l, 4-antraquinona (102)
• 2-hidroxi-l, 4-antraquinona (103)
• 2-metoxi-l, 4-antraquinona (104)
• 2-acetoxi-l, 4-antraquinona (105)
4.- Compuesto según la reivindicación 1 caracterizado por la fórmula general (III) :
Figure imgf000106_0001
donde
R1 y R3 son independientes entre si y pueden ser preferentemente H ó halógeno (F, Cl, Br, I) , ó éter, -OR
(alcoxi- ó haloalcoxi-, -OCF3), ó -NH2, NHR' , donde R' es una cadena alquilica de corta, ó bien cicloalquilica (sistema de aziridina, ciclobutilamina, pirrolidina, piperidina, morfolina) , ó bien R' es un sistema bencénico o heterociclico (pirazol, imidazol) , ó R' es un sistema bencílico ó heterociclo-CH2~ , R5 y R6 son independientes entre si y pueden ser H, -OH, - Oalcoxi (con cadena lineal corta) , -Oaciloxi, halógeno (F, Cl, Br, I),
R7 es preferentemente H.
5.- Compuesto según la reivindicación 4 caracterizado porque pertenece al siguiente grupo:
• 2-picolilamino-l, 4-antraquinona (18)
• 2-bencilamino-l, 4-antraquinona (19) • 2-ciclopropilamino-l, 4-antraquinona (20)
• 2-pirrolidinil-l, 4-antraquinona (21)
• 2-piperidinil-l, 4-antraquinona (22)
• 2- (3' -fluorobencil) -amino-1, 4-antraquinona (23)
• 2- (4' -clorobencil) -amino-1, 4-antraquinona (24) • 2- (2' , 4' -diclorobencil) -amino-1, 4-antraquinona (25)
• 2-aziridinil-l, 4-antraquinona (26)
• 2-morfolinil-1, 4-antraquinona (27)
• 2- (3' -clorobencil) -amino-1, 4-antraquinona (28)
• 2-bromo-3- (2' -picolilamino) -1, 4-antraquinona (29) • 2-bromo-3-bencilamino-l, 4-antraquinona (30)
• 2-bromo-3-ciclopropilamino-l, 4-antraquinona (31)
• 2-bromo-3-pirrolidinil-l, 4-antraquinona (32)
• 2-bromo-3-piperidinil-l, 4-antraquinona (33)
• 2-bromo-3- (4' -fluorbencil) -amino-1, 4-antraquinona (34) • 2-bromo-3- (4' -clorobencil) -amino-1, 4-antraquinona (35)
• 2, 3-bis (pirazolil) -1, 4-antraquinona (36)
• 2- (2' , 4' -diclorobencil) -amino-3-bromo-l, 4-antraquinona (37)
• 2-imidazolil-3-bromo-l, 4-antraquinona (38)
• 2-aziridinil-3-bromo-l, 4-antraquinona (39) • 2-bromo-3-morfolinil-l, 4-antraquinona (40)
• 2- (2' -clorobencilamino) -3-bromo-l, 4-antraquinona (41) • 2-aziridinil-3-cloro-l, 4-antraquinona (42)
• 2-cloro-3-bencilamino-l, 4-antraquinona (43)
• 2-cloro-3-ciclopropilamino-l, 4-antraquinona (44)
• 2-cloro-3-pirrolidinil-l, 4-antraquinona (45)
• 2-cloro-3-piperidinil-l, 4-antraquinona (46)
• 2-cloro-3-morfolinil-1, 4-antraquinona (47)
• 2-cloro-3~ (4' -clorobencil) -amino-1, 4-antraquinona (48)
• 2-cloro-3- (2' -clorobencil) -amino-1, 4-antraquinona (49)
• 2-cloro-3- (4' -fluorbencil) -amino-1, 4-antraquinona (50)
• 2- (2' , 4' -diclorobencil) -amino-3-cloro-l, 4-antraquinona (51)
• 2-cloro-3- (2' -picolilamino) -1, 4-antraquinona (52)
• 2-etoxi-3-imidazolil-l, 4-antraquinona (53)
• 2, 3-bis (pirrolidinil) -1, 4-antraquinona (54)
• 2, 3-bis (piperidinil) -1, 4-antraquinona (55)
• 2, 3-bis (aziridinil) -1, 4-antraquinona (56)
• 2, 3-bis (morfolinil) -1, 4-antraquinona (57)
6.- Compuesto según la reivindicación 1 caracterizado por la fórmula general (IV) , en el que el enlace covalente de (I) α es un enlace simple y R2 y R4 de (I) están presentes:
Figure imgf000108_0001
(IV) donde
R , R pueden ser igual a -0- dando lugar a un anillo de epóxido y en este caso, R1 se define como en la reivindicación 1, siendo preferentemente halógeno (F, Cl, Br, I) , éter, -OR (alcoxi- ó haloalcoxi-, -OCF3) , donde R es una cadena alquilica corta, tioéter, 0-aciloxi, O-triflato, O-tosilato. R1 puede ser también un radical alquilo Ci-Ci4 lineal ó ramificado (con dobles ó triples enlaces) , NO2, arilo ó heteroarilo,
R3 puede ser H ó diferente de H y preferentemente halógeno (F, Cl, Br, I), éter, -OR (alcoxi- ó haloalcoxi-, -OCF3), donde R es una cadena alquilica corta, tioéter, 0-aciloxi, O-triflato, O-tosilato. R1 puede ser también un radical alquilo CX-CI4 lineal ó ramificado (con dobles ó triples enlaces) , NO2, arilo ó heteroarilo,
R5 y R6 son independientemente H, -OH, -Oalcoxi (con cadena lineal corta) , -Oaciloxi, halógeno (F, Cl, Br, I) ,
R7 es H, sólo cuando uno ó más de los radicales restantes en (II), es decir R1, R3, R5 y R6 son diferentes de H. Cuando alguno de estos radicales es diferente de H, R7 puede tener la naturaleza descrita en los casos anteriores: halógeno (F, Cl,
Br, I) , éter, -OR (alcoxi- ó haloalcoxi-, -OCF3) , donde R es una cadena alquilica corta, tioéter, 0-aciloxi, O-triflato, 0- tosilato. R1 puede ser también un radical alquilo C1-C14 lineal ó ramificado (con dobles ó triples enlaces), NO2, arilo ó heteroarilo.
7. - Compuesto según la reivindicación 6 caracterizado porque R2, R3 son iguales a -0- dando lugar a un anillo de epóxido y de fórmula general (V) :
Figure imgf000110_0001
(V)
donde
R1 y R son independientes entre si pueden ser preferentemente H ó halógeno (F, Cl, Br, I), ó éter, -OR (alcoxi- ó haloalcoxi-, -OCF3), ó -NH2, NHR' , donde R es una cadena alquilica de corta, ó bien cicloalquilica (sistema de aziridina, ciclobutilamina, pirrolidina, piperidina, morfolina) , ó bien R' es un sistema bencénico o heterociclico (pirazol, imidazol) , ó R' es un sistema bencílico ó heterociclo-CH2- . R1 y R4 pueden ser también un radical alquilo Ci-Ci4 lineal ó ramificado (con dobles ó triples enlaces) , ó arilo ó heteroarilo,
R5 y R6 son independientes entre si y pueden ser H, -OH, Oalcoxi (con cadena lineal corta) , -Oaciloxi, halógeno (F, Cl, Br, I),
R7 es preferentemente H,
8.- Compuesto según la reivindicación 7 caracterizado porque pertenece al siguiente grupo:
• 2, 3-epoxi-2, 3-dihidro-l, 4-antraquinona (75)
• 2, 3-epoxi-2, 3-dihidro-9-metoxi-l, 4-antraquinona (76) • 2, 3-epoxi-2-etil-3-hidro-l, 4-antraquinona (77)
• 2, 3-epoxi-3-hidro-2-isopropil-l, 4-antraquinona (78) • 2, 3-epoxi-3-hidro-2-tercbutil-l, 4-antraquinona (79)
• 2, 3-epoxi-2, 3-dietil-l, 4-antraquinona (80)
• 2-bencil-2/ 3-epoxi-3-hidro-l, 4-antraquinona (81)
• 2, 3-epoxi-2-metil-3-hidro-l, 4-antraquinona (89)
9.- Compuesto según la reivindicación 6 caracterizado por la fórmula general (VI) :
Figure imgf000111_0001
(Vl) donde
R1 y R4 son independientes entre si y pueden ser preferentemente H ó halógeno (F, Cl, Br, I), ó éter, -OR
(alcoxi- ó haloalcoxi-, -OCF3), ó -NH2, NHR' , donde R es una cadena alquilica de corta, ó bien cicloalquilica (sistema de aziridina, ciclobutilamina, pirrolidina, piperidina, morfolina) , ó bien R' es un sistema bencénico o heterociclico
(pirazol, imidazol) , ó R' es un sistema bencílico ó heterociclo-CH2- . R1 y R4 pueden ser también un radical alquilo C1-C14 lineal ó ramificado (con dobles ó triples enlaces) , ó arilo ó heteroarilo,
R2 y R3 son independientes entre si y pueden ser radicales acilo, -COR8, donde R8 es alquilo Ci-Cg lineal ó ramificado ó arilo ó heteroarilo, R5 y R6 son independientes entre si y pueden ser H, -OH, Oalcoxi (con cadena lineal corta) , -Oaciloxi, halógeno (F, Cl, Br, I),
R7 es preferentemente H.
10.- Compuesto según la reivindicación 9 caracterizado porque pertenece al siguiente grupo:
• 2, 3-diacetoxi-2, 3-dihidro-l, 4-antraquinona (82)
• 2, 3-diacetoxi-2, 3-dihidro-9-metoxi-l, 4-antraquinona (83) • 2, 3-dipropionoxi-2, 3-dihidro-l, 4-antraquinona (84)
• 2, 3-dibutiroxi-2, 3-dihidro-l, 4-antraquinona (85)
• 2, 3-divaleroxi-2, 3-dihidro-l, 4-antraquinona (86)
• 2, 3-bisisobutiroxi-2, 3-dihidro-l, 4-antraquinona (87)
• 2, 3-bistrimetilacetoxi-2, 3-dihidro-l, 4-antraquinona (88)
11.- Composición terapéutica caracterizada porque comprende un compuesto de fórmula (I) según la reivindicación 1, junto con un vehículo inerte.
12.- Composición según la reivindicación 11 caracterizada porque el compuesto de fórmula (I) se selecciona entre los compuestos del siguiente grupo:
• 2-cloro-l, 4-antraquinona (1)
• 2-cloro-9-hidroxi-l, 4-antraquinona (2)
• 2-cloro-9-metoxi-l, 4-antraquinona (3)
• 2, 3-dicloro-l, 4-antraquinona (4) • 2, 9-dicloro-10-hidroxi-l, 4-antraquinona (5)
• 2, 9-dicloro-10-metoxi-l, 4-antraquinona (6)
• 2, 3-dicloro-9-metoxi-l, 4-antraquinona (7)
• 2-bromo-l, 4-antraquinona (8)
• 2-bromo-9-hidroxi-l, 4-antraquinona (9) • 2-bromo-9-metoxi-l, 4-antraquinona (10)
• 2 , 3-dibromo-l , 4-antraquinona ( 11 ) • 2, 3-dibromo-9-hidroxi-l, 4-antraquinona (12)
• 2, 3-dibromo-9-metoxi-l, 4-antraquinona (13)
• 2-metoxi-3-bromo-9-hidroxi-l, 4-antraquinona (14)
• 2, 3-dimetoxi-9-hidroxi-l, 4-antraquinona (15) • 2, 3-dimetoxi-l, 4-antraquinona (16)
• 2-cloro-3-rαetoxi-l, 4-antraquinona (17)
• 9-hidroxi-l, 4-antraquinona (58)
• 9-acetoxi-l, 4-antraquinona (59)
• 1, 4-antraquinona (60) • 9-metoxi-l, 4-antraquinona (61)
• 2-metil-l, 4-antraquinona (62)
• 2-etil-l, 4-antraquinona (63)
• 2-alil-l, 4-antraquinona (64)
• 2-isopropil-l, 4-antraquinona (65) • 2-tercbutil-l, 4-antraquinona (66)
• 2-ciclohexil-l, 4-antraquinona (67)
• 2-bencil-l, 4-antraquinona (68)
• 2-p-metoxibencil-l, 4-antraquinona (69)
• 2, 3-dimet±l-l, 4-antraquinona (70) • 2,3-dietil-l,4-antraquinona (71)
• 2, 3-dialil-l, 4-antraquinona (72)
• 2, 3-dibencil-l, 4-antraquinona (73)
• 2, 3-di-p-metoxibencil-l, 4-antraquinona (74)
• 5-acetoxi-l, 4-antraquinona (90) • 5-hidroxi-l, 4-antraquinona (91)
• 5-nitro-l, 4-antraquinona (92)
• 5-metoxi-l, 4-antraquinona (93)
• 5, 9-diacetoxi-l, 4-antraquinona (94)
• 5-acetoxi-9-hidroxi-l, 4-antraquinona (95) • 5-acetoxi-9-metoxi-l, 4-antraquinona (96) • 5, 9-dihidroxi-l, 4-antraquinona (97)
• 5-metoxi-9-hidroxi-l, 4-antraquinona (98)
• 5-metoxi-9-acetoxi-l, 4-antraquinona (99)
• 5-hidroxi~9-acetoxi-l, 4-antraquinona (100) • 5-hidroxi-9~metoxi-l, 4-antraquinona (101)
• 5, 9-dimetoxi-l, 4-antraquinona (102)
• 2-hidroxi-l, 4-antraquinona (103)
• 2-metoxi-l, 4-antraquinona (104)
• 2-acetoxi-l, 4-antraquinona (105) • 2-picolilamino-l, 4-antraquinona (18)
• 2-bencilamino-l, 4-antraquinona (19)
• 2-ciclopropilamino-l, 4-antraquinona (20)
• 2-pirrolidinil-l, 4-antraquinona (21)
• 2-piperidinil-l, 4-antraquinona (22) • 2- (3' -fluorobencil) -amino-1, 4-antraquinona (23)
• 2- (4' -clorobencil) -amino-1, 4-antraquinona (24)
• 2- (2' , 4' -diclorobencil) -amino-1, 4-antraquinona (25)
• 2-aziridinil-l, 4-antraquinona (26)
• 2-morfolinil-1, 4-antraquinona (27) • 2- (3' -clorobencil) -amino-1, 4-antraquinona (28)
• 2-bromo-3- (2' -picolilamino) -1, 4-antraquinona (29)
• 2-bromo-3-bencilamino-l, 4-antraquinona (30)
• 2-bromo-3-ciclopropilamino-l, 4-antraquinona (31)
• 2-bromo-3-pirrolidinil-l, 4-antraquinona (32) • 2-bromo-3-piperidinil-l, 4-antraquinona (33)
• 2-bromo-3- (4' -fluorbencil) -amino-1, 4-antraquinona (34)
• 2-bromo-3- (4' -clorobencil) -amino-1, 4-antraquinona (35)
• 2, 3-bis (pirazolil) -1, 4-antraquinona (36)
• 2- (2r , 4' -diclorobencil) -amino-3-bromo-l, 4-antraquinona (37) • 2-imidazolil-3-bromo-l, 4-antraquinona (38) • 2-aziridinil-3-bromo-l, 4-antraquinona (39)
• 2-bromo-3-morfolinil-l, 4-antraqu±nona (40)
• 2- (2' -clorobencilamino) -3-bromo-l, 4-antraquinona (41)
• 2-aziridinil-3-cloro-l, 4-antraquinona (42) • 2-cloro-3-bencilamino-l, 4-antraquinona (43)
• 2-cloro-3-ciclopropilamino-l, 4-antraquinona (44)
• 2-cloro-3-pirrolidinil-l, 4-antraquinona (45)
• 2-cloro-3-piperidinil-l, 4-antraquinona (46)
• 2-cloro-3-morfolinil-l, 4-antraquinona (47) • 2-cloro-3- (4' -clorobencil) -amino-1, 4-antraquinona (48)
• 2-cloro-3- (2r -clorobencil) -amino-1, 4-antraquinona (49)
• 2-cloro-3- (4' -fluorbencil) -amino-1, 4-antraquinona (50)
• 2- (2' , 4' -diclorobencil) -amino-3-cloro-l, 4-antraquinona (51)
• 2-cloro-3- (2' -picolilamino) -1, 4-antraquinona (52) • 2-etoxi-3-imidazolil-l, 4-antraquinona (53)
• 2, 3-bis (pirrolidinil) -1, 4-antraquinona (54)
• 2, 3-bis (piperidinil) -1, 4-antraquinona (55)
• 2, 3-bis (aziridinil) -1, 4-antraquinona (56)
• 2, 3-bis (morfolinil) -1, 4-antraquinona (57) • 2, 3-epoxi-2, 3-dihidro-l, 4-antraquinona (75)
• 2, 3-epoxi-2, 3-dihidro~9-metoxi-l, 4-antraquinona (76)
• 2, 3-epoxi~2-etil-3-hidro~l, 4-antraquinona (77)
• 2, 3-epoxi-3-hidro-2-isopropil-l, 4-antraquinona (78)
• 2, 3-epoxi-3-hidro-2-tercbutil-l, 4-antraquinona (79) • 2,3-epoxi-2,3-dietil-l,4-antraquinona (80)
• 2-bencil-2, 3-epoxi-3-hidro-l, 4-antraquinona (81)
• 2, 3-epoxi-2-metil-3~hidro-l, 4-antraquinona (89)
• 2, 3-diacetoxi-2, 3-dihidro-l, 4-antraquinona (82)
• 2, 3-diacetoxi-2, 3-dihidro~9-metoxi-l, 4-antraquinona (83) • 2, 3-dipropionoxi-2, 3-dihidro-l, 4-antraquinona (84) • 2, 3-dibutiroxi-2, 3-dihidro-l, 4-antraquinona (85)
• 2, 3-divaleroxi-2, 3-dihidro-l, 4-antraquinona (86)
• 2, 3-bisisobutiroxi-2, 3-dihidro-l, 4-antraquinona (87)
• 2, 3-bistrimetilacetoxi-2, 3-dihidro-l, 4-antraquinona (88), y sus mezclas.
13.- Composición terapéutica caracterizada porque comprende un compuesto de fórmula (I) según la reivindicación 1 junto con, opcionalmente, uno o más excipientes farmacéuticamente aceptables .
14.- Composición según la reivindicación 13, en la que dicho compuesto de fórmula (I) se selecciona entre los compuestos del siguiente grupo:
• 2-cloro-l, 4-antraquinona (1)
• 2-cloro-9-hidroxi-l, 4-antraquinona (2) • 2-cloro-9-metoxi-l, 4-antraquinona (3)
• 2, 3-dicloro-l, 4-antraquinona (4)
• 2, 9-dicloro-10-hidroxi-l, 4-antraquinona (5)
• 2, 9-dicloro-10-metoxi-l, 4-antraquinona (6)
• 2, 3-dicloro-9-metoxi-l, 4-antraquinona (7) • 2-bromo-l, 4-antraquinona (8)
• 2-bromo-9-hidroxi-l, 4-antraquinona (9)
• 2-bromo-9-metoxi-l, 4-antraquinona (10)
• 2, 3-dibromo-l, 4-antraquinona (11)
• 2, 3-dibromo-9-hidroxi-l, 4-antraquinona (12) • 2, 3-dibromo-9-metoxi-l, 4-antraquinona (13)
• 2-metoxi-3-bromo-9-hidroxi-l, 4-antraquinona (14)
• 2, 3-dimetoxi-9-hidroxi-l, 4-antraquinona (15)
• 2, 3-dimetoxi-l, 4-antraquinona (16)
• 2-cloro-3-metoxi-l, 4-antraquinona (17) • 9-hidroxi-l, 4-antraquinona (58)
• 9-acetoxi-l, 4-antraquinona (59) • 1, 4-antraquinona (60)
• 9-metoxi-l, 4-antraquinona (61)
• 2-metil-l, 4-antraquinona (62)
• 2-etil-l, 4-antraquinona (63) • 2-alil-l, 4-antraquinona (64)
• 2-isopropil-l, 4-antraquinona (65)
• 2-tercbutil-l, 4-antraquinona (66)
• 2-ciclohexil-l, 4-antraquinona (67)
• 2-bencil-l, 4-antraquinona (68) • 2-p-metoxibencil-l, 4-antraquinona (69)
• 2, 3-dimetil-l, 4-antraquinona (70)
• 2, 3-dietil-l, 4-antraquinona (71)
• 2, 3-dialil-l, 4-antraquinona (72)
• 2, 3-dibencil-l, 4-antraquinona (73) • 2, 3-di-p-metoxibencil-l, 4-antraquinona (74)
• 5-acetoxi-l, 4-antraquinona (90)
• 5-h±droxi-l, 4-antraquinona (91)
• 5-nitro-l, 4-antraquinona (92)
• 5-metoxi-l, 4-antraquinona (93) • 5, 9-diacetoxi-l, 4-antraquinona (94)
• 5-acetoxi-9-hidroxi-l, 4-antraquinona (95)
• 5-acetoxi-9-m.etoxi~l, 4-antraquinona (96)
• 5, 9-dihidroxi-l, 4-antraquinona (97)
• 5-metoxi-9-hidroxi-l, 4-antraquinona (98) • 5~metoxi-9-acetoxi-l, 4-antraquinona (99)
• 5-hidroxi-9~acetoxi-l, 4-antraquinona (100)
• 5-hidroxi-9-metoxi-l, 4-antraquinona (101)
• 5, 9-dimetoxi-l, 4-antraquinona (102)
• 2-picolilamino-l, 4-antraquinona (18) • 2-bencilamino-l, 4-antraquinona (19) • 2-ciclopropilamino-l, 4-antraquinona (20)
• 2-pirrolidinil-l, 4-antraquinona (21)
• 2-piperidinil-l, 4-antraquinona (22)
• 2- (3' -fluorobencil) -amino-1, 4-antraquinona (23) • 2- [A' -clorobencil) -amino-1, 4-antraquinona (24)
• 2- (2' , 4' -diclorobencil) ~amino-l, 4-antraquinona (25)
• 2-aziridinil-l, 4-antraquinona (26)
• 2-morfolinil-l, 4-antraquinona (27)
• 2- (3' -clorobencil) -amino-1, 4-antraquinona (28) • 2-bromo-3- (2' -picolilamino) -1, 4-antraquinona (29)
• 2-bromo-3-bencilamino-l, 4-antraquinona (30)
• 2-bromo-3-ciclopropilamino-l, 4-antraquinona (31)
• 2-bromo-3-pirrolidinil-l, 4-antraquinona (32)
• 2-bromo-3-piperidinil-l, 4-antraquinona (33) • 2-bromo-3- (4' -fluorbencil) -amino-1, 4-antraquinona (34)
• 2-bromo-3- (4' -clorobencil) -amino-1, 4-antraquinona (35)
• 2, 3-bis (pirazolil) -1, 4-antraquinona (36)
• 2- (2' , 4' -diclorobencil) -amino-3-bromo-l, 4-antraquinona (37)
• 2-imidazolil-3-bromo-l, 4-antraquinona (38) • 2-aziridinil-3-broino-l, 4-antraquinona (39)
• 2-bromo-3-morfolinil-l, 4-antraquinona (40)
• 2- (2' -clorobencilamino) -3-bromo-l, 4-antraquinona (41)
• 2-aziridinil-3-cloro-l, 4-antraquinona (42)
• 2-cloro-3-bencilamino-l, 4-antraquinona (43) • 2-cloro-3-ciclopropilamino-l, 4-antraquinona (44)
• 2-cloro-3-pirrolidinil-l, 4-antraquinona (45)
• 2-cloro-3-piperidinil-l, 4-antraquinona (46)
• 2-cloro-3-rαorfolinil-l, 4-antraquinona (47)
• 2-cloro-3- (4' -clorobencil) -amino-1, 4-antraquinona (48) • 2-cloro-3- (2' -clorobencil) -amino-1, 4-antraquinona (49) • 2-cloro-3- (4' -fluorbencil) -amino-1, 4-antraquinona (50)
• 2- (2' , 4' -diclorobencil) -amino-3-cloro-l, 4-antraquinona (51)
• 2-cloro~3- (2' -picolilamino) -1, 4-antraquinona (52)
• 2-etoxi-3-imidazolil-l, 4-antraquinona (53) • 2, 3-bis (pirrolidinil) -1, 4-antraquinona (54)
• 2, 3-bis (piperidinil) -1, 4-antraquinona (55)
• 2, 3-bis (aziridinil) -1, 4-antraquinona (56)
• 2, 3-bis (morfolinil) -1, 4-antraquinona (57)
• 2, 3-epoxi-2, 3-dihidro-l, 4-antraquinona (75) • 2, 3-epoxi-2, 3-dihidro-9-metoxi-l, 4-antraquinona (76)
• 2, 3-epoxi-2-etil-3-hidro-l, 4-antraquinona (77)
• 2, 3-epoxi-3-hidro-2-isopropil-l, 4-antraquinona (78)
• 2, 3-epoxi-3-hidro-2-tercbutil-l, 4-antraquinona (79)
• 2, 3-epoxi-2, 3-dietil-l, 4-antraquinona (80) • 2-bencil-2, 3-epoxi-3-hidro-l, 4-antraquinona (81)
• 2, 3-epoxi-2-metil-3-hidro-l, 4-antraquinona (89)
• 2, 3-diacetoxi-2, 3-dihidro-l, 4-antraquinona (82)
• 2, 3-diacetoxi-2, 3-dihidro-9-metoxi-l, 4-antraquinona (83)
• 2, 3-dipropionoxi-2, 3-dihidro-l, 4-antraquinona (84) • 2, 3-dibutiroxi-2, 3-dihidro-l, 4-antraquinona (85)
• 2, 3-divaleroxi-2, 3-dihidro-l, 4-antraquinona (86)
• 2, 3-bisisobutiroxi-2, 3-dihidro-l, 4-antraquinona (87)
• 2, 3-bistrimetilacetoxi-2, 3-dihidro-l, 4-antraquinona (88), y sus mezclas.
15.-. Composición según cualquiera de las reivindicaciones 13 ó 14 caracterizada porque comprende, además, uno o más agentes terapéuticos .
16.- Empleo de un compuesto de fórmula (I) según la reivindicación 1 en la elaboración de un medicamento para el tratamiento de tumores humanos o animales.
11.- Empleo según la reivindicación 16 caracterizado porque el tumor pertenece al siguiente grupo: cáncer de mama, cáncer de pulmón, cáncer de próstata, cáncer de sistema nervioso central y sarcoma.
18.- Empleo de un compuesto de fórmula (I) según la reivindicación 1 en la elaboración de un medicamento para la prevención y/o el tratamiento de la infección causada por organismos patógenos de humanos o animales.
19.- Empleo de un compuesto de fórmula (I) según la reivindicación 1 en la elaboración de un medicamento para la prevención y/o el tratamiento de enfermedades neurodegenerativas .
20,- Empleo según la reivindicación 16 a la 19 caracterizado porque dicho compuesto de fórmula (I) se selecciona entre los compuestos del siguiente grupo:
• 2-cloro-l, 4-antraquinona (1)
• 2-cloro-9-hidroxi-l, 4-antraquinona (2)
• 2-cloro-9-metoxi-l, 4-antraquinona (3)
• 2, 3-dicloro-l, 4-antraquinona (4) • 2, 9-dicloro-10-hidroxi-l, 4-antraquinona (5)
• 2, 9-dicloro-10-metoxi-l, 4-antraquinona (6)
• 2, 3-dicloro-9-metoxi-l, 4-antraquinona (7)
• 2-bromo-l, 4-antraquinona (8)
• 2-bromo-9-hidroxi-l, 4-antraquinona (9) • 2-bromo-9-metoxi-l, 4-antraquinona (10)
• 2, 3-dibromo-l, 4-antraquinona (11)
• 2, 3-dibromo-9-hidroxi-l, 4-antraquinona (12)
• 2, 3-dibromo-9-metoxi-l, 4-antraquinona (13)
• 2-metoxi-3-bromo-9-hidroxi-l, 4-antraquinona (14) • 2, 3-dimetoxi-9-hidroxi-l, 4-antraquinona (15)
• 2, 3-dimetoxi-l, 4-antraquinona (16) • 2-cloro-3-metoxi-l, 4-antraquinona (17)
• 9-hidroxi-l, 4-antraquinona (58)
• 9-acetoxi-l, 4-antraquinona (59)
• 1, 4-antraquinona (60) • 9-metoxi-l, 4-antraquinona (61)
• 2-metil-l, 4-antraquinona (62)
• 2-etil-l, 4-antraquinona (63)
• 2-alil-l, 4-antraquinona (64)
• 2-isopropil-l, 4-antraquinona (65) • 2-tercbutil-l, 4-antraquinona (66)
• 2-ciclohexil-l, 4-antraquinona (67)
• 2-bencil-l, 4-antraquinona (68)
• 2-p-metoxibencil-l, 4-antraquinona (69)
• 2, 3-dimetil-l, 4-antraquinona (70) • 2,3-dietil-l,4-antraquinona (71)
• 2, 3-dialil-l, 4-antraquinona (72)
• 2, 3-dibencil-l, 4-antraquinona (73)
• 2, 3-di-p-metoxibencil-l, 4-antraquinona (74)
• 5-acetoxi-l, 4-antraquinona (90) • 5-hidroxi-l, 4-antraquinona (91)
• 5-nitro-l, 4-antraquinona (92)
• 5-metoxi-l, 4-antraquinona (93)
• 5, 9-diacetoxi-l, 4-antraquinona (94)
• 5-acetoxi-9-hidroxi-l, 4-antraquinona (95) • 5-acetoxi-9-metoxi-l, 4-antraquinona (96)
• 5, 9-dihidroxi-l, 4-antraquinona (97)
• 5-metoxi-9-hidroxi-l, 4-antraquinona (98)
• 5-metoxi-9-acetoxi-l, 4-antraquinona (99)
• 5-hidroxi-9-acetoxi-l, 4-antraquinona (100) • 5-hidroxi-9-metoxi-l, 4-antraquinona (101) • 5, 9-dimetoxi-l, 4-antraquinona (102)
• 2-hidroxi-l, 4-antraquinona (103)
• 2-metoxi-l, 4-antraquinona (104)
• 2-acetoxi-l, 4-antraquinona (105) • 2-picolilamino-l, 4-antraquinona (18)
• 2-bencilamino-l, 4-antraquinona (19)
• 2-ciclopropilamino-l, 4-antraquinona (20)
• 2-pirrolidinil-l, 4-antraquinona (21)
• 2-piperidinil-l, 4-antraquinona (22) • 2- (3' -fluorobencil) -amino-1, 4-antraquinona (23)
• 2- (4' -clorobencil) -amino-1, 4-antraquinona (24)
• 2- (2' , 4' -diclorobencil) -amino-1, 4-antraquinona (25)
• 2-aziridinil-l, 4-antraquinona (26)
• 2-morfolinil-l, 4-antraquinona (27) • 2- (3' -clorobencil) -amino-1, 4-antraquinona (28)
• 2-bromo-3- (2' -picolilamino) -1, 4-antraquinona (29)
• 2-bromo-3-bencilamino~l, 4-antraquinona (30)
• 2-bromo-3-ciclopropilamino-l, 4-antraquinona (31)
• 2-bromo-3-pirrolidinil-l, 4-antraquinona (32) • 2-bromo-3-piperidinil-l, 4-antraquinona (33)
• 2-bromo-3- (4' -fluorbencil) -amino-1, 4-antraquinona (34)
• 2-bromo-3- (4' -clorobencil) -amino-1, 4-antraquinona (35)
• 2, 3-bis (pirazolil) -1, 4-antraquinona (36)
• 2- (2' , 4' -diclorobencil) -arαino-3-bromo-l, 4-antraquinona (37) • 2-imidazolil-3-bromo-l, 4-antraquinona (38)
• 2-aziridinil-3-bromo-l, 4-antraquinona (39)
• 2-bromo-3-morfolinil-l, 4-antraquinona (40)
• 2- (2' -clorobencilamino) -3-bromo-l, 4-antraquinona (41)
• 2-aziridinil-3~cloro-l, 4-antraquinona (42) • 2-cloro-3-bencilamino-l, 4-antraquinona (43) • 2-cloro-3-ciclopropilamino-l, 4-antraquinona (44)
• 2-cloro-3-pirrolidinil-l, 4-antraquinona (45)
• 2-cloro-3-piperidinil-l/ 4-antraquinona (46)
• 2-cloro-3-morfolinil-l, 4-antraquinona (47) • 2-cloro-3- (4' -clorobencil) -amino-1, 4-antraquinona (48)
• 2-cloro-3- (2' -clorobencil) -amino-1, 4-antraquinona (49)
• 2-cloro-3- (4' -fluorbencil) -amino-1, 4-antraquinona (50)
• 2- (2' , 4' -diclorobencil) -amino-3-cloro-l, 4-antraquinona (51)
• 2-cloro-3- (2' -picolilamino) -1, 4-antraquinona (52) • 2-etoxi-3-imidazolil-l, 4-antraquinona (53)
• 2, 3-bis (pirrolidinil) -1, 4-antraquinona (54)
• 2, 3-bis (piperidinil) -1, 4-antraquinona (55)
• 2, 3-bis (aziridinil) -1, 4-antraquinona (56)
• 2, 3-bis (morfolinil) -1, 4-antraquinona (57) • 2, 3-epoxi-2, 3-dihidro-l, 4-antraquinona (75)
• 2, 3-epoxi-2, 3-dihidro-9-metoxi-l, 4-antraquinona (76)
• 2, 3-epoxi-2-etil-3-hidro-l, 4-antraquinona (77)
• 2, 3-epoxi-3-hidro-2-isopropil-l, 4-antraquinona (78)
• 2, 3-epoxi-3-hidro~2~tercbutil-l, 4-antraquinona (79) • 2,3-epoxi-2,3-dietil-l,4-antraquinona (80)
• 2-bencil-2, 3-epoxi-3-hidro-l, 4-antraquinona (81)
• 2, 3-epoxi-2-metil-3-hidro-l, 4-antraquinona (89)
• 2, 3-diacetoxi-2, 3-dihidro-l, 4-antraquinona (82)
• 2, 3-diacetoxi-2, 3-dihidro-9-metoxi-l, 4-antraquinona (83) • 2, 3~dipropionoxi-2, 3-dihidro-l, 4-antraquinona (84)
• 2, 3-dibutiroxi-2, 3-dihidro-l, 4-antraquinona (85)
• 2, 3-divaleroxi-2, 3-dihidro-l, 4-antraquinona (86)
• 2, 3-bisisobutiroxi-2, 3-dihidro-l, 4-antraquinona (87)
• 2, 3-bistrimetilacetoxi-2, 3-dihidro-l, 4-antraquinona (88), y sus mezclas.
21.- Procedimiento para la elaboración de los compuestos de fórmula general (I) según la reivindicación 1 caracterizado por las siguientes etapas, no necesariamente consecutivas: a) Adición del radical formado por descarboxilación oxidativa de diferentes ácidos carboxilicos a 1, 4-antraquinonas diferentemente sustituidas, para dar una amplia gama de 2- alquil- y 2, 3-dialquil-l, 4-antraquinonas. Las condiciones preferentes comprenden el uso de persulfato amónico y nitrato de plata en una mezcla de agua-dioxano, b) Generación de o-quinodimetanos a partir de derivados halogenados geminales y posterior reacción con benzoquinonas diferentemente sustituidas. Los derivados halogenados son preferentemente tri- y tetrabromuros y el o-quinodimetano se forma por reacción con yoduro sódico, c) Transformaciones químicas selectivas sobre el núcleo de 5,9- diacetoxi-1, 4-antraquinona, consistentes en hidrólisis, alquilaciones (en particular metilaciones) , acilaciones (en particular acetilaciones) para dar lugar a una amplia gama de quinonas 5, 9-disustituidas, d) Halogenación (preferentemente cloración y bromación) selectiva de diferentes 1, 4-antraquinonas suministrando derivados monohalogenados con excelente rendimiento, e) Halogenación (preferentemente cloración y bromación) exhaustiva de diferentes 1, 4-antraquinonas mejorando, sobre todo en el caso de las cloraciones, notablemente los métodos descritos en la bibliografía, ya que no se utiliza cloro gaseoso sino cloruro de tionilo, f) Reacciones de amonolisis y aminación selectiva, consistentes en el tratamiento de monohalo- y dihalo-1,4- antraquinonas con amoniaco y aminas para dar, según las condiciones, monoamino, haloamino (sea bromo- ó cloro-) y diamino-1, 4-antraquinonas, g) Reacciones selectivas de eterificación de haloderivados por reacción con los diferentes alcóxidos en presencia ó ausencia de alúmina, h) Epoxidación de 1, 4-antraquinonas con diferentes agentes epoxidantes: ácido m-cloroperbenzoico, monoperoxiftalato de magnesio, hidroperóxido de tercbutilo, complejo urea-agua oxigenada, siendo preferibles los agentes más benignos ambientalmente como el agua oxigenada, hipoclorito sódico y lejia doméstica, e i) Apertura de los epóxidos de 1, 4-antraquinonas diferentemente sustituidas con una gran variedad de anhidridos de ácidos carboxilicos, en presencia de ácidos minerales fuertes, para dar preferentemente cis-diésteres con cadenas lineales y ramificadas.
PCT/ES2006/000499 2005-09-02 2006-09-01 Compuestos 1,4 antraquinonicos, su procedimiento de obtencion y su aplicacion como antiumorales. WO2007026041A2 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200502145 2005-09-02
ES200502145A ES2268990B1 (es) 2005-09-02 2005-09-02 Compuestos quinonicos antitumorales y sus derivados, procedimiento de obtencion y sus aplicaciones.

Publications (2)

Publication Number Publication Date
WO2007026041A2 true WO2007026041A2 (es) 2007-03-08
WO2007026041A3 WO2007026041A3 (es) 2007-05-03

Family

ID=37809234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2006/000499 WO2007026041A2 (es) 2005-09-02 2006-09-01 Compuestos 1,4 antraquinonicos, su procedimiento de obtencion y su aplicacion como antiumorales.

Country Status (2)

Country Link
ES (1) ES2268990B1 (es)
WO (1) WO2007026041A2 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113292503A (zh) * 2021-05-22 2021-08-24 台州市第一人民医院 一种2-溴-3-胺基萘醌化合物的制备方法
CN113372263A (zh) * 2021-05-21 2021-09-10 温州医科大学 一种2-氯-3-胺基萘醌化合物的制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006107451A2 (en) * 2005-02-23 2006-10-12 Univ Emory Honokiol derivatives for the treatment of proliferative disorders

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006107451A2 (en) * 2005-02-23 2006-10-12 Univ Emory Honokiol derivatives for the treatment of proliferative disorders

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
BARRANCO E. ET AL.: 'Dynthesis, electrochemical properties and effect of substituents on p-extended TCNQ and DCNQI systems' SYNTHETIC METALS vol. 56, no. 1, 1993, pages 1717 - 1720, XP003011123 *
BEDWORTH P.V. ET AL.: 'The synthesisi of a symmetrically substituted alfa-octa(isopentoxy)anthralocyanine' CHEM. COMMUN. 1997, pages 1353 - 1354, XP003011125 *
DEFOIN A. ET AL.: 'Epoxy ketols from monoreduction with hydrides of 2,3-epoxy-1,4-anthraquinone and its meso-diphenyl derivative. Related chlorohydrins' BULLETIN OF THE SOCIETé CHIMIQUE DE FRANCE vol. 3-4, no. 2, 1979, pages 110 - 118 *
HAMZAH A.S. ET AL.: 'New Anthraquinones from the Roots of Hedyotis dichotoma' J. NAT PROD. vol. 60, 1997, pages 36 - 37, XP003011126 *
HUA D.H. ET AL.: 'Synthesis and in vitro antitumor activity of substituted anthracene-1,4-diones' TETRAHEDRON vol. 60, no. 45, 2004, pages 10155 - 10163, XP004587536 *
JIMENEZ P. ET AL.: 'Thermochemistry of 9-hydroxy-1,4-anthraquinone and 9-methoxy-1,4-anthraquinone' JOURNAL OF CHEMICAL THERMODYNAMICS vol. 34, no. 7, 2002, pages 1117 - 1126, XP003011124 *
KALLMAYER H.J. ET AL.: 'Reaction of 1,4-naphtoquinone and 1,4-anthraquinone with N.N-sialkylhydrazines' PHARMAZIE vol. 50, no. 7, 1995, pages 506 - 507 *
MARUMO S. ET AL.: 'The structure of cervicarcin' JOURNAL OF THE AMERICAN CHEMICAL SOCIETY vol. 86, no. 20, 1964, pages 4507 - 4508, XP003011122 *
WANG, YANG ET AL.: 'Rapid collapse of mitochondrial transmembrane potential in HL-60 cells and isolated mitochondria treated with anti-tumor' ANTI-CANCER DRUGS vol. 16, no. 9, October 2005, pages 953 - 967 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113372263A (zh) * 2021-05-21 2021-09-10 温州医科大学 一种2-氯-3-胺基萘醌化合物的制备方法
CN113372263B (zh) * 2021-05-21 2022-04-19 温州医科大学 一种2-氯-3-胺基萘醌化合物的制备方法
CN113292503A (zh) * 2021-05-22 2021-08-24 台州市第一人民医院 一种2-溴-3-胺基萘醌化合物的制备方法
CN113292503B (zh) * 2021-05-22 2022-05-13 台州市第一人民医院 一种2-溴-3-胺基萘醌化合物的制备方法

Also Published As

Publication number Publication date
ES2268990A1 (es) 2007-03-16
ES2268990B1 (es) 2008-04-01
WO2007026041A3 (es) 2007-05-03

Similar Documents

Publication Publication Date Title
da Silva Júnior et al. Synthesis and potent antitumor activity of new arylamino derivatives of nor-β-lapachone and nor-α-lapachone
Valderrama et al. Studies on quinones. Part 44: Novel angucyclinone N-heterocyclic analogues endowed with antitumoral activity
Ríos-Luci et al. β-Lapachone analogs with enhanced antiproliferative activity
Xia et al. Antitumor agents. Part 226: synthesis and cytotoxicity of 2-phenyl-4-quinolone acetic acids and their esters
US20080177093A1 (en) Synthesis of Rocaglamide Natural Products Via Photochemical Generation of Oxidopyrylium Species
Gao et al. Novel enmein-type diterpenoid hybrids coupled with nitrogen mustards: Synthesis of promising candidates for anticancer therapeutics
Khanapure et al. The preparation of anthraquinones and anthracyclinones via the reaction of haloarenes and cyanophthalides under aryne-forming conditions
Yen et al. Design and synthesis of gambogic acid analogs as potent cytotoxic and anti-inflammatory agents
Govindachari et al. Constituents of Mesua ferrea L.—I: Mesuaxanthone A and mesuaxanthone B
Tian et al. Synthesis and antitumor activity of spin labeled derivatives of podophyllotoxin
Wang et al. Antitumor agents. 124. New 4. beta.-substituted aniline derivatives of 6, 7-O, O-demethylene-4'-O-demethylpodophyllotoxin and related compounds as potent inhibitors of human DNA topoisomerase II
US7138428B2 (en) Compounds isolated from gamboge resin having activity in inhibiting the growth of tumor/cancer cells and pharmaceutical compositions comprising the same
Campos et al. Synthesis of carbohydrate-based naphthoquinones and their substituted phenylhydrazono derivatives as anticancer agents
WO2007026041A2 (es) Compuestos 1,4 antraquinonicos, su procedimiento de obtencion y su aplicacion como antiumorales.
Sachdev et al. Viscosol, a C-3′ prenylated flavonoid from Dodonaea viscosa
US7658937B2 (en) Anthraquinones and process for the preparation and method of use thereof
del Corral et al. Synthesis and cytotoxicity of new heterocyclic terpenylnaphthoquinones
del Corral et al. Synthesis and cytotoxicity of new aminoterpenylquinones
Parmar et al. A convenient 1, 3-dipolar cycloaddition–reduction synthetic sequence from 2-allyloxy-5-nitro-salicylaldehyde to aminobenzopyran-annulated heterocycles
K Lim et al. Synthesis of 1, 3, 6-trioxygenated prenylated xanthone derivatives as potential antitumor agents
Zhu et al. Design and synthesis of NAD (P) H: Quinone oxidoreductase (NQO1)-activated prodrugs of 23-hydroxybetulinic acid with enhanced antitumor properties
Wang et al. Synthesis of Ring A‐Modified Baicalein Derivatives
Bongui et al. Synthesis and cytotoxic activity of acronycine analogues in the benzo [c] pyrano [3, 2-h] acridin-7-one and naphtho [1, 2-b][1, 7] and [1, 10]-phenanthrolin-7 (14H)-one series
US5824689A (en) Quinoline compound extracted from scolopendra subspinipes, and derivatives thereof
Kiang Lim et al. Synthesis and SAR study of prenylated xanthone analogues as HeLa and MDA-MB-231 cancer cell inhibitors

Legal Events

Date Code Title Description
NENP Non-entry into the national phase in:

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06807941

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 06807941

Country of ref document: EP

Kind code of ref document: A2