WO2007025797A1 - Sensorsimulator - Google Patents

Sensorsimulator Download PDF

Info

Publication number
WO2007025797A1
WO2007025797A1 PCT/EP2006/064218 EP2006064218W WO2007025797A1 WO 2007025797 A1 WO2007025797 A1 WO 2007025797A1 EP 2006064218 W EP2006064218 W EP 2006064218W WO 2007025797 A1 WO2007025797 A1 WO 2007025797A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
simulator
signals
interface
signal
Prior art date
Application number
PCT/EP2006/064218
Other languages
English (en)
French (fr)
Inventor
Wolfgang Babel
Detlev Wittmer
Original Assignee
Endress+Hauser Conducta Gesellschaft Für Mess- Und Regeltechnik Mbh+Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Endress+Hauser Conducta Gesellschaft Für Mess- Und Regeltechnik Mbh+Co. Kg filed Critical Endress+Hauser Conducta Gesellschaft Für Mess- Und Regeltechnik Mbh+Co. Kg
Priority to US11/991,066 priority Critical patent/US20090216511A1/en
Priority to EP06777766A priority patent/EP1920302A1/de
Publication of WO2007025797A1 publication Critical patent/WO2007025797A1/de

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0256Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults injecting test signals and analyzing monitored process response, e.g. injecting the test signal while interrupting the normal operation of the monitored system; superimposing the test signal onto a control signal during normal operation of the monitored system

Definitions

  • the present invention relates to a test device for process equipment, or for measuring sections in process equipment, in particular a sensor simulator.
  • a measuring path designates the transmission path of a primary sensor signal, which depends on a parameter to be measured, to a unit downstream of the sensor which receives the sensor signal or a processed sensor signal in order to further process it or to process it to react.
  • These measuring sections often include transducers or converter modules which are connected to a sensor module via suitable interfaces and which process the primary signal of the sensor module and forward it in another form.
  • German Patent Application 100 55 090.8 discloses a connector for connecting a sensor module to a transmitter or to a measuring section, wherein the connector comprises an interface with galvanically separated transmission of signals and energy from the transmission line to the sensor.
  • the sensor must accordingly be equipped with a minimum of electronic circuits in order to be able to modulate the carrier signal transmitted via the interface by means of load modulation in order to transmit measured data. Equally, the converter must be able to evaluate the transmitted data.
  • a potentiometric sensor in particular a pH sensor, which has a memory element for storing calibration data, history data and logistic information. These data are made available to a transducer suitable for the sensor via a suitable interface, so that the converter can take these into account in the evaluation of the sensor signal transmitted by the sensor.
  • the interface can in turn be a galvanically isolated interface of the type described above.
  • published patent application DE 103 22 278 A1 discloses a simulator for testing a transmitter with a transmitter interface, wherein the sensor simulator outputs a simulator interface which can be connected to the converter interface and outputs signals to the converter and / or signals from the converter receives; and a control circuit for simulating signals forming the output signal at the simulator interface.
  • the simulator may further comprise a signal input which may be connected to a communication output of the converter to allow feedback of the converter signals.
  • the simulated signals can simulate measured values, status data or calibration data.
  • the simulator may include a memory module having the functionality of a sensor memory module, wherein the control circuit is adapted to generate signals for initialization of read and / or write commands by the converter.
  • the interface of the simulator may include a galvanically isolated interface.
  • the simulator may be integrated into a sensor, and the control circuit may trigger a test routine by simulating sensor conditions, either periodically or event-controlled.
  • DE3431076 discloses an arrangement for simulating a process control having multiple inputs for measurement parameters.
  • the measurement parameters are simulated either by modified sensors, for example, a capacitive level sensor, on the Meßrohrschaft a metal sleeve is pushed far different to simulate a level change, or by a sensor simulator module, which supplies the various inputs for the measurement parameters.
  • a sensor simulator module which supplies the various inputs for the measurement parameters.
  • it is checked whether the process control correctly detects and complains of deviations from nominal conditions and activates actuators in order to adapt the simulated actual values to the nominal values. This is done in the described arrangement by an operator who has to readjust the simulated actual values by hand.
  • this system allows testing the logical structure of a process control, this approach does not seem appropriate for dynamic operations.
  • the functionality of a real process installation can not be checked especially in safety and time critical with this arrangement.
  • EP0433995 discloses a device apparatus for checking a
  • the apparatus includes a test transducer which is remote from the instrument connected to the signal output line of the instrument to transmit test signals via the signal output line to a test signal receiver in the vicinity of the instrument under test, the test signal receiver is also connected to the signal output line.
  • the test signal receiver controls a sensor simulator which is connected to a sensor signal input of an instrument to be tested and simulates sensor signals in response to the test signals and outputs to the sensor signal input.
  • the resulting output signal which should be the correct response to the simulated sensor signal if the instrument functions correctly, is output via the signal output. output of the instrument and fed to the usual receiver in the field instrument system.
  • the receiver may be a display device, a data recorder or a controller.
  • an output of the receiver may be fed to a controller that controls the test buzzer.
  • the device thus makes it possible to check the intended function of a field instrument system, for example a fill level monitoring system, without actually having to vary the fill level.
  • the device described certainly has its authorization, but is highly inflexible, since the installation effort to set up a sensor simulation is relatively large.
  • the object is achieved by the sensor simulator according to independent claim 1.
  • the invention discloses a sensor simulator for testing the behavior of a process plant as a function of the signals of a sensor whose signals are simulated by the sensor simulator, wherein the process plant has at least one measuring path with a sensor interface for connecting the sensor to which the sensor simulator can be connected , in which
  • the simulator has a measuring section interface, which can be connected to the sensor interface of the measuring section, and outputs signals to the measuring section and / or receives signals from the measuring section; and a control circuit for simulating signals which form the output signal at the measurement interface, the signals comprising time profiles of measurement signals.
  • the sensor interface of the measuring section can be, for example, the interface of a bus coupler, the sensor signal on a data bus, for example, a fieldbus such as Foundation Fieldbus, Profibus o.a. transmits, or an interface of a transducer which converts the sensor signal and then outputs a measured value in a suitable format, for example 4 .. 20 mA, or as a field bus signal with one of the aforementioned bus protocols.
  • the transmitter can also have a control output in order to output actuating signals as a function of the determined measured value in addition to or instead of the measured value output.
  • the temporal courses of the measuring signals can, for example, in a program calculated or read from a data memory of the simulator.
  • the simulator comprises different test routines with different time courses, wherein the test routines are selectable by an operator or can be executed sequentially.
  • the sensor simulator may have a second signal output, communicates via the simulation signals just issued in parallel to a control unit, which also detects the reaction of the checked process plant or the tested test section on the simulated sensor signal.
  • the communication of the simulation signals can be done either by parallel transmission of the actual simulation signals, or by transmission of indices and start signals, by which the respective current time courses and their start time are identified.
  • the transmission can be done wirelessly, for example, by infrared, wireless, GSM, ZigBee, Bluetooth, UMTS, WLan or wired or with a light guide.
  • the sensor simulator comprises a synchronized clock, by which the start of the individual time courses can be precisely defined and identified. In this case, a parallel transmission of the timing signals is not required. The functioning of the process plant can then be checked later by comparing the time course of signals on the measuring path and possibly present control signals from other components of the system with the simulated sensor signals at the time in question.
  • the sensor simulator comprises a control output for controlling or starting at least one dependent slave simulator, which can be connected for example at a measuring point in the vicinity of the sensor simulator, which in this case referred to as master simulator can be.
  • the communication between the master simulator and the at least one slave simulator can be wireless, such as infrared, wireless, GSM, ZigBee, Bluetooth, or wired or with a light guide.
  • the sensor simulator comprises a signal input, via which, for example, a response signal of the process plant or a component of the process plant, such as a controller can be returned.
  • a response signal of the process plant or a component of the process plant, such as a controller can be returned.
  • the time profile of the simulated signal can be varied.
  • the advantage of the simulator according to the invention is that can be intervened decentralized in a process plant with a simulation to monitor the response of the process plant to critical temporal developments of the measured data. For example, this may be overheating or overacidification of a reactor that is too fast Emptying a tank, or affect a too rapid pressure drop in a process in which the respective absolute values of the sensor signals are not necessarily problematic, but based on the rate of change of the signals a critical situation may emerge.
  • the use of the simulator according to the invention is preferably carried out in the review of plants or plant parts.
  • the sensor simulator may also include a signal input, which receives a signal from a suitable point of the measuring section, for example, 4 20 mA signal of a transmitter, a HART signal a Profibus signal or a Foundation Fieldbus signal to the accuracy of To check the signals communicated to the measuring path, or to correlate these signals with the signals generated by the sensor simulator.
  • a signal input which receives a signal from a suitable point of the measuring section, for example, 4 20 mA signal of a transmitter, a HART signal a Profibus signal or a Foundation Fieldbus signal to the accuracy of To check the signals communicated to the measuring path, or to correlate these signals with the signals generated by the sensor simulator.
  • the simulated signals can represent not only measured values but also calibration data, for example, to verify the correct conversion by a converter, and on the other hand they can take state data, such as the failure of a component of the sensor. In this case, check whether the converter communicates the correct error message, if this is intended.
  • the measuring section is designed for a sensor with a memory module, so the simulator can trigger various read and write routines to check the communication between the test section and the memory module.
  • This relates in particular to measuring sections which have a converter to which the sensor or the sensor module is connected as intended
  • the interface may on the one hand comprise a galvanically isolated interface, in particular an inductive interface for the transmission of energy to the sensor and for data exchange between sensor and converter.
  • the data exchange from the converter to the sensor or to the simulator takes place, for example, by transformer-side modulation of the energy signal and the data transmission from the sensor to the converter is effected by load modulation of the energy signal on the sensor side or sensor simulator.
  • the sensor simulator according to the invention is integrated in a sensor, wherein the control circuit triggers either at periodic intervals, or event-controlled, a test routine by simulation of sensor states.
  • 1 shows a simulated measured value profile for a pH sensor, as well as the response of a two-point controller with an associated alarm output.
  • the diagram in FIG. 1 shows in its upper part a simulated pH Value curve, which is coupled into a process plant via the sensor interface of a measuring section.
  • the response signal of a two-point controller in the process plant is recorded in the test of the process equipment and is shown in the lower part of the diagram, the two-position controller has an associated alarm output, the signals are also shown.
  • the two-position controller has an upper threshold and a lower threshold as a switching point, the switching takes place when crossing the thresholds in the extreme direction. In other words, the two-position controller switches when the upper threshold or undershooting of the lower threshold is exceeded.
  • the controller has an alarm output, which is activated when an upper alarm limit and falling below a lower alarm limit.
  • the alarm output is activated if the measured value is still in a noncritical state, but if its value changes too quickly over time.

Abstract

Sensorsimulator zum Testen des Verhaltens einer Prozessanlage in Abhängigkeit der Signale eines Sensors, dessen Signale durch den Sensorsimulator simuliert werden, wobei die Prozessanlage mindestens eine Messtrecke mit einer Sensorschnittstelle zum Anschluss des Sensors aufweist, an welche der Sensorsimulator anschließbar ist, wobei der Simulator eine Messstreckenschnittstelle aufweist, die an die Sensorschnittstelle der Messstrecke anschliessbar ist, und Signale an die Messstrecke ausgibt und/oder Signale von der Messstrecke empfängt; und eine Steuerschaltung zur Simulation von Signalen, welche das Ausgangssignal an der Messstreckenschnittstelle bilden, wobei die Signale zeitliche Verläufe von Messsignalen umfassen.

Description

Beschreibung Sensorsimulator
[0001] Die vorliegende Erfindung betrifft eine Testvorrichtung für Prozessanlagen, bzw. für Messstrecken in Prozessanlagen, insbesondere ein Sensorsimulator.
[0002] Eine Messstrecke bezeichnet im Zusammenhang der vorliegenden Erfindung den Übertragungsweg eines primären Sensorsignals, welches von einem zu messenden Parameter abhängt, zu einer dem Sensor nachgeordneten Einheit, welche das Sensorsignal oder ein aufbereitetes Sensorsignal empfängt, um dieses weiter zu verarbeiten oder um um darauf zu reagieren.
[0003] Diese Messstrecken umfassen häufig Messumformer bzw. Umformermodule welche mit einem Sensormodul über geeignete Schnittstellen verbunden sind und welche das Primärsignal des Sensormoduls aufbereiten und in anderer Form weiterleiten.
[0004] Die Deutsche Patentanmeldung 100 55 090.8 offenbart einen Steckverbinder zum Anschluss eines Sensormoduls an einen Messumformer bzw. an eine Messstrecke, wobei der Steckverbinder eine Schnittstelle mit galvanisch getrennter Übertragung von Signalen und Energie von der Übertragungsleitung zum Sensor umfasst. Der Sensor muss entsprechend mit einem Mindestmass an elektronischen Schaltungen ausgestattet sein, um das über die Schnittstelle übertragene Trägersignal mittels Lastmodulation modulieren zu können, um Messdaten zu übertragen. Gleichermassen muss der Umformer in der Lage sein, die übertragenen Daten auswerten zu können.
[0005] In der Offenlegungsschrift DE 102 18 606.5 offenbart die gleiche Anmelderin einen potentiometrischen Sensor, insbesondere einen pH-Sensor, welcher ein Speicherelement zum Speichern von Kalibrationsdaten, Historiendaten und logistischen Informationen aufweist. Diese Daten werden einem zum Sensor passenden Umformer über eine geeignete Schnittstelle zur Verfügung gestellt, damit der Umformer diese bei der Auswertung des vom Sensor übertragenen Sensorsignals berücksichtigen kann. Die Schnittstelle kann wiederum eine galvanisch getrennte Schnittstelle der zuvor beschriebenen Art sein. Mit der beschriebenen erhöhten Funktionalität der Sensormodule und der Umformermodule steigt naturgemäss die Zahl der theoretisch möglichen Fehlerquellen. Die beschriebenen erweiterten Kommunikationsmöglichkeiten zwischen der Schnittstelle eines Umformers und der komplementären Sensorschnittstelle geben jedoch einen Ansatz um die Funktionalitäten des Umformermoduls zu überprüfen.
[0006] Demgemäß offenbart die Offenlegungsschrift DE 103 22 278 Al einen Simulator zum Testen eines Messumformers mit einer Messumformerschnittstelle, wobei der Sensorsimulator eine Simulatorschnittstelle, die an die Umformerschnittstelle an- schliessbar ist, und Signale an den Umformer ausgibt und/oder Signale vom Umformer empfängt; und eine Steuerschaltung zur Simulation von Signalen aufweist, welche das Ausgangssignal an der Simulatorschnittstelle bilden. Der Simulator kann weiterhin einen Signaleingang umfassen, der an einen Kommunikationsausgang des Umformers angeschlossen werden kann, um eine Rückkopplung der Umformersignale zu ermöglichen. Die simulierten Signale können Messwerte, Zustandsdaten, oder Kalibra- tionsdaten simulieren. Der Simulator kann ein Speichermodul aufweisen, welches die Funktionalität eines Sensorspeichermoduls aufweist, wobei die Steuerschaltung geeignet ist, Signale zur Initialisierung von Lese- und/und oder Schreibbefehlen seitens des Umformers zu generieren. Die Schnittstelle des Simulators kann eine galvanisch getrennte Schnittstelle umfassen. Der Simulator kann in einen Sensor integriert sein, und die Steuerschaltung kann entweder in periodischen Abständen, oder ereigneis- gesteuert, eine Testroutine durch Simulation von Sensorzuständen auslösen.
[0007] Die DE3431076 offenbart eine Anordnung zur Simulation einer Prozesssteuerung, die mehrere Eingänge für Messparameter aufweist. Die Messparameter werden entweder von modifizierten Sensoren simuliert, beispielsweise einem kapazitiven Füllstandssensor, auf dessen Messrohrschaft einer Metallhülse unterschiedlich weit geschoben wird, um eine Füllstandsänderung zu simulieren, oder von einem Sensorsimulatormodul, welches die verschiedenen Eingänge für die Messparameter versorgt. Bei der Simulation wird überprüft, ob die Prozesssteuerung Abweichungen von Sollzuständen korrekt feststellt und beanstandet und Stellglieder aktiviert, um die simulierten Ist-Werte den Soll- Werte anzupassen. Dies wird bei der beschriebenen Anordnung durch einen Bediener getan der die simulierten Ist-Werte von Hand nachregeln muss. Wenngleich dieses System den Test der logischen Struktur einer Prozessteuerung ermöglicht, erscheint dieser Lösungsansatz für dynamische Vorgänge ungeeignet. Die Funktionstauglichkeit einer realen Prozessinstallation kann insbesondere in sicherheits- und zeitkritischen mit dieser Anordnung nicht überprüft werden.
[0008] Die EP0433995 offenbart eine Vorrichtung Apparat für die Überprüfung eines
Feldinstrumentsystems. Die Vorrichtung umfasst einen Testsignalgeber, der entfernt von dem Instrument an die Signalausgangsleitung des Instruments angeschlossen wird um über die Signalausgangsleitung Prüfsignale an einen Prüfsignalempfänger in der Nähe des zu prüfenden Instruments zu übertragen, wobei der Prüfsignalempfänger ebenfalls an die Signalausgangsleitung angeschlossen ist. Der Prüfsignalempfänger steuert einen Sensorsimulator, der an einen Sensorsignaleingang eines zu überprüfenden Instruments angeschlossen ist und Sensorsignale in Abhängigkeit von den Prüfsignalen simuliert und an den Sensorsignaleingang ausgibt. Das resultierende Ausgangssignal, welches bei korrekter Funktionsweise des Instruments die richtige Reaktion auf das simulierte Sensorsignal sein sollte, wird über die Signalaus- gangsleitung des Instruments ausgegeben und dem üblichen Empfänger im Feldinstrumentsystem zugeführt. Der Empfänger kann ein Anzeigegerät ein Datenschreiber oder ein Regler sein. Um die Überprüfungsschaltung logisch zu schließen, kann ein Ausgang des Empfängers einem Controller zugeführt werden, der den Testsignalgeber steuert. Die Vorrichtung ermöglicht damit die Überprüfung der bestimmungsgemäßen Funktion eines Feldinstrumentsystems, beispielsweise eines Füllstandsüberwachungssystems ohne tatsächlich den Füllstand variieren zu müssen. Die beschriebene Vorrichtung hat sicherlich ihre Berechtigung, ist aber in hohem Maße unflexibel, da der Installationsaufwand zur Einrichtung einer Sensorsimulation relativ groß ist.
[0009] Eine sicherheitsrelevante Funktionsüberprüfung von installierten Prozessanlagen oder Teilsystemen, ist mit den zuvor beschriebenen Simulatoren und Prüfvorrichtungen nur bedingt umzusetzen. Dies gilt insbesondere für solche Anlagen oder Teilsysteme, die zur Anpassung an verschiedene Prozesse gelegentlich rekonfiguriert werden.
[0010] Es ist daher die Aufgabe der vorliegenden Erfindung, einen Sensorsimulator bereitzustellen, bereitzustellen, der die beschriebenen Nachteile des Stands der Technik überwindet.
[0011] Die Aufgabe wird erfindungsgemäß gelöst durch den Sensorsimulator gemäß des unabhängigen Patentanspruchs 1.
[0012] Der Erfindung offenbart einen Sensorsimulator zum Testen des Verhaltens einer Prozessanlage in Abhängigkeit der Signale eines Sensors, dessen Signale durch den Sensorsimulator simuliert werden, wobei die Prozessanlage mindestens eine Messtrecke mit einer Sensorschnittstelle zum Anschluss des Sensors aufweist, an welche der Sensorsimulator anschließbar ist, wobei
[0013] der Simulator eine Messstreckenschnittstelle aufweist, die an die Sensorschnittstelle der Messstrecke anschliessbar ist, und Signale an die Messstrecke ausgibt und/oder Signale von der Messstrecke empfängt; und eine Steuerschaltung zur Simulation von Signalen, welche das Ausgangssignal an der Messstreckenschnittstelle bilden, wobei die Signale zeitliche Verläufe von Messsignalen umfassen.
[0014] Die Sensorschnittstelle der Messstrecke kann beispielsweise die Schnittstelle eines Buskoppler sein, der das Sensorsignal auf einen Datenbus, beispielsweise einen Feldbus wie Foundation Fieldbus, Profibus o.a. überträgt, oder eine Schnittstelle eines Messsumformers der das Sensorsignal wandelt und dann einen Messwert in einem geeigneten Format ausgibt, beispielsweise 4 ..20 mA, oder als Feldbussignal mit einem der zuvor genannten Busprotokolle. Der Messumformer kann ggf. auch einen Steuerausgang aufweisen, um neben oder anstelle der Messwertausgabe Stellsignale in Abhängigkeit des ermittelten Messwertes auszugeben.
[0015] Die zeitlichen Verläufe der Messignale können beispielsweise in einem Programm errechnet oder aus einem Datenspeicher des Simulators ausgelesen werden. Vorzugsweise umfasst der Simulator verschiedene Testroutinen mit unterschiedlichen zeitlichen Verläufen, wobei die Testroutinen von einem Bediener wählbar oder sequentiell ausführbar sind.
[0016] Der Sensorsimulator kann einen zweiten Signalausgang aufweisen, über die gerade ausgegebenen Simulationssignale parallel an eine Kontrolleinheit kommuniziert, welche zugleich die Reaktion der überprüften Prozessanlage bzw. der überprüften Messstrecke auf das simulierte Sensorsignal erfasst. Die Kommunikation der Simulationssignale kann entweder durch parallele Übertragung der tatsächlichen Simulationssignale erfolgen, oder durch Übertragung von Indices und Startsignalen, durch welche die jeweils laufenden zeitlichen Verläufe und deren Startzeitpunkt identifiziert werden. Die Übertragung kann beispielsweise drahtlos beispielsweise per Infrarot, Funk, GSM, ZigBee, Bluetooth, UMTS, WLan oder drahtgebunden bzw. mit einem Lichtleiter erfolgen.
[0017] In einer anderen Ausgestaltung der Erfindung umfasst der Sensorsimulator einen synchronisierte Uhr, durch welchen der Start der einzelnen zeitlichen Verläufe genau festgelegt und identifiziert werden kann. In diesem Fall ist eine parallele Übertragung der zeitlichen Signale nicht erforderlich. Das Funktionieren der Prozessanlage kann dann später durch Vergleich des zeitlichen Verlaufs von Signalen auf der Messstrecke und gegebenenfalls vorliegender Steuersignale von anderen Komponenten der Anlage mit den simulierten Sensorsignalen zu dem fraglichen Zeitpunkt überprüft werden.
[0018] In einer weiteren Ausgestaltung der Erfindung umfasst der Sensorsimulator einen Steuerausgang zum Steuern bzw. Starten von mindestens einem abhängigen Slave- Simulator, der beispielsweise an einer Messstelle in der Umgebung des Sensorsimulators angeschlossen werden können, der in diesem Falle als Master-Simulator bezeichnet werden kann. Die Kommunikation zwischen dem Master-Simulator und dem mindestens einen Slave-Simulator kann drahtlos, beispielsweise per Infrarot, Funk, GSM, ZigBee, Bluetooth, oder drahtgebunden bzw. mit einem Lichtleiter erfolgen.
[0019] In einer Weiterbildung der Erfindung umfasst der Sensorsimulator einen Signaleingang, über den beispielsweise ein Antwortsignal der Prozessanlage oder einer Komponente der Prozessanlage, beispielsweise eines Reglers zurückgeführt werden kann. In Abhängigkeit von dem Antwortsignal kann beispielsweise der zeitliche Verlauf des simulierten Signals variiert werden.
[0020] Der Vorteil des erfindungsgemäßen Simulators besteht darin, dass dezentral in eine Prozessanlage mit einer Simulation eingegriffen werden kann, um die Antwort der Prozessanlage auf kritische zeitliche Entwicklungen der Messdaten zu überwachen. Beispielsweise kann dies das Überhitzen oder Übersäuern eines Reaktors, das zu schnelle Entleeren eines Tanks, oder einen zu schnellen Druckabfall in einem Prozess betreffen, bei dem die jeweiligen Absolutwerte der Sensorsignale noch nicht zwingend problematisch sind, wobei sich aber anhand der Änderungsrate der Signale eine kritische Situation abzeichnen kann.
[0021] Der Einsatz des erfindungsgemäßen Simulators, erfolgt vorzugsweise bei der Überprüfung von Anlagen oder Anlagenteilen.
[0022] Der Sensorsimulator kann zudem einen Signaleingang umfassen, der von einem geeigneten Punkt der Messstrecke ein Signal zurückgeführt bekommt, beispielsweise 4 20 mA-Signal eines Messumformers ein HART-Signal einen Profibus-Signal oder ein Foundation Fieldbus Signal, um die Richtigkeit der von der Messstrecke kommunizierten Signale zu überprüfen, bzw. um diese Signale mit den vom Sensorsimulator generierten Signalen zu korrelieren.
[0023] Die simulierten Signale können neben Messwerten auch Kalibrationsdaten repräsentieren, um beispielsweise die korrekte Wandlung durch einen Umformer zu überprüfen, und andererseits können sie Zustandsdaten treffen, wie beispielsweise den Ausfall einer Komponente des Sensors. In diesem Fall ist zu überprüfen, ob der Umfor mer die korrekte Fehlermeldung kommuniziert, falls dieses vorgesehen ist.
[0024] Sofern die Messstrecke für einen Sensor mit einem Speichermodul ausgelegt ist, so kann der Simulator verschiedene Lese- und Schreibroutinen auslösen, um die Kommunikation zwischen der Messstrecke und dem Speichermodul zu überprüfen. Dies betrifft insbesondere Messstrecken die einen Umformer aufweisen, an welche der Sensor bzw. das Sensormodul bestimmungsgemäß angeschlossen wird
[0025] Die Schnittstelle kann einerseits eine galvanisch getrennte Schnittstelle, insbesondere eine induktive Schnittstelle zur Übertragung von Energie zum Sensor und zum Datenaustausch zwischen Sensor und Umformer umfassen. Der Datenaustausch vom Umformer zum Sensor bzw. zum Simulator erfolgt beispielsweise durch umfor- merseitige Modulation des Energiesignals und die Datenübertragung vom Sensor zum Umformer erfolgt durch Sensorseitige bzw. sensorsimulatorseitige Lastmodulation des Energiesignals.
[0026] In einer Weiterbildung der Erfindung ist der erfindungsgemäße Sensorsimulator in einen Sensor integriert, wobei die Steuerschaltung entweder in periodischen Abständen, oder ereignisgesteuert eine Testroutine durch Simulation von Sensorzuständen auslöst.
[0027] Die Funktionsweise des erfindungsgemäßen Simulators und dessen Zweck wird nun anhand des Verlaufsdiagramms in Fig. 1 erläutert.
[0028] Es zeigt Fig. 1 : Einen simulierten Messwertverlauf für einen pH-Sensor, sowie die Antwort eines Zweipunktreglers mit einem zugeordneten Alarmausgang.
[0029] Das Diagramm in Fig. 1 zeigt in seinem oberen Teil einen simulierten pH- Wert- Verlauf, der über die Sensorschnittstelle einer Messstrecke in eine Prozessanlage eingekoppelt wird. Das Antwortsignal eines Zweipunktreglers in der Prozessanlage wird beim Test der Prozessanlage aufgezeichnet und ist im unteren Teil des Diagramms dargestellt, wobei der Zweipunktregler einen zugeordneten Alarmausgang aufweist, dessen Signale ebenfalls dargestellt sind.
[0030] Der Zweipunktregler hat eine obere Schwelle und eine untere Schwelle als Schaltpunkt, wobei das Schalten bei Überqueren der Schwellwerte in extremer Richtung erfolgt. D.h., der Zweipunktregler schaltet bei Überschreiten der oberen Schwelle bzw. Unterschreiten der unteren Schwelle.
[0031] Weiterhin hat der Regler einen Alarmausgang, der bei Überschreiten einer oberen Alarmgrenze und Unterschreiten einer unteren Alarmgrenze aktiviert wird. Zusätzlich wird der Alarmausgang aktiviert, wenn sich der Messwert zwar noch in einem unkritischen befindet, aber wenn sich sein Wert zu schnell mit der Zeit ändert. Auch diese Funktion des Reglers, bzw. die Funktion der Messstrecke bis zum Regler kann mit dem erfindungsgemäßen Simulator überprüft werden.

Claims

Ansprüche
[0001] 1. Sensorsimulator zum Testen des Verhaltens einer Prozessanlage in Abhängigkeit der Signale eines Sensors, dessen Signale durch den Sensorsimulator simulierbar sind, wobei die Prozessanlage mindestens eine Messtrecke mit einer Sensorschnittstelle zum Anschluss des Sensors aufweist, an welche der Sensorsimulator anschließbar ist, wobei der Simulator eine Messstreckenschnittstelle aufweist, die an die Sensorschnittstelle der Messstrecke anschliessbar ist, und Signale an die Messstrecke ausgibt und/oder Signale von der Messstrecke empfängt; und eine Steuerschaltung zur Simulation von zeitlichen Verläufen von Messwerten, welche das Ausgangssignal an der Messstreckenschnittstelle bilden.
[0002] 2. Sensorsimulator nach Anspruch 1, wobei die Sensorschnittstelle der
Messstrecke die Schnittstelle eines Buskopplers umfasst, der das Sensorsignal auf einen Datenbus, beispielsweise einen Feldbus wie Foundation Fieldbus, Profibus o.a. überträgt.
[0003] 3. Sensorsimulator nach Anspruch 1, wobei die Sensorschnittstelle die
Schnittstelle eines eines Messsumformers ist, welcher das Sensorsignal wandelt und dann einen Messwert auszugeben.
[0004] 4. Sensorsimulator nach einem der vorhergehenden Ansprüche, wobei die zeitlichen Verläufe der simulierten Messsignale in einem Programm errechnet oder aus einem Datenspeicher des Simulators ausgelesen werden.
[0005] 5. Sensorsimulator nach einem der vorherigen Ansprüche, wobei der Simulator verschiedene Testroutinen mit unterschiedlichen zeitlichen Verläufen der simulierten Messsignale umfasst,
[0006] 6. Sensorsimulator nach Anspruch 5, wobei die Testroutinen von einem Bediener wählbar oder sequentiell ausführbar sind.
[0007] 7. Sensorsimulator nach einem der vorhergehenden Ansprüche, wobei der Sensorsimulator einen zweiten Signalausgang aufweist, über den die ausgegebenen Simulationssignale parallel an eine Kontrolleinheit kommuniziert werden können.
[0008] 8. Sensorsimulator nach Anspruch 7, wobei die Kommunikation der Simulationssignale kann durch parallele Übertragung der tatsächlichen Simulationssignale erfolgt.
[0009] 9. Sensorsimulator nach Anspruch 7, wobei die Kommunikation der Simulationssignale durch Übertragung von Indices und Startsignalen, durch welche die jeweils laufenden zeitlichen Verläufe und deren Startzeitpunkt identifiziert werden.
[0010] 10. Sensorsimulator nach einem der Ansprüche 7 bis 9, wobei der zweite Si- gnalausgang Mittel zur Übertragung per Infrarot, Funk, GSM, ZigBee, Bluetooth umfasst.
[0011] 11. Sensorsimulator nach einem der vorhergehenden Ansprüche, wobei der Sensorsimulator ferner einen Steuerausgang zum Steuern bzw. Starten von mindestens einem abhängigen Slave-Simulator, der beispielsweise an einer Messstelle in der Umgebung des Sensorsimulators angeschlossen werden kann.
[0012] 12. Sensorsimulator nach Anspruch 11, wobei die Kommunikation zwischen dem Master-Simulator und dem mindestens einen Slave-Simulator drahtlos, beispielsweise per Infrarot, Funk, GSM, ZigBee, Bluetooth, UMTS, WLan oder drahtgebunden bzw. mit einem Lichtleiter erfolgt.
[0013] 13. Sensorsimulator nach einem der vorhergehenden Ansprüche wobei der Sensorsimulator weiterhin einen Signaleingang umfasst, über den ein Antwortsignal der Prozessanlage oder einer Komponente der Prozessanlage, beispielsweise eines Reglers zurückgeführt werden kann.
[0014] 14. Sensorsimulator nach Anspruch 13, wobei in Abhängigkeit von dem Antwortsignal der zeitliche Verlauf des simulierten Signals variiert wird.
[0015] 15. Der Sensorsimulator nach Anspruch 13 oder 14, wobei der Signaleingang geeignet ist, ein 4... 20 mA Signal ein HART-Signal, ein Profibus-Signal oder ein Foundation Fieldbus Signal zu empfangen, um die Richtigkeit der von der Messstrecke kommunizierten Signale zu überprüfen.
[0016] 16. Sensorsimulator nach einem der vorhergehenden Ansprüche, wobei die
Messstreckenschnittstelle eine induktive Schnittstelle zum Datenaustausch mit einer komplementären Sensorschnittstelle der Messstrecke umfasst.
[0017] 17. Sensorsimulator nach einem der vorhergehenden Ansprüche, wobei die Energieversorgung des Sensorsimulators über die Sensorschnittstelle der Messstrecke erfolgt.
[0018] 18. Sensorsimulator nach einem der vorhergehenden Ansprüche, wobei der
Simulator einen amperometrischen, insbesondere einen Gassensor, einen poten- tiometrischen Sensor, insbesondere einen pH-Sensor oder einen Redox-Sensor, oder einen Sensor zum Erfassen eines anderen Prozessparameters wie Temperatur, Druck, Füllstand, Durchfluss, Füllstand, Gas, Feuchte, Sauerstoffgehalt, Chlorgehalt, Nitratgehalt, Trübung o.a. simuliert.
PCT/EP2006/064218 2005-08-31 2006-07-13 Sensorsimulator WO2007025797A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/991,066 US20090216511A1 (en) 2005-08-31 2006-07-13 Sensor Simulator
EP06777766A EP1920302A1 (de) 2005-08-31 2006-07-13 Sensorsimulator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005041427.3 2005-08-31
DE102005041427A DE102005041427A1 (de) 2005-08-31 2005-08-31 Sensorsimulator

Publications (1)

Publication Number Publication Date
WO2007025797A1 true WO2007025797A1 (de) 2007-03-08

Family

ID=37027673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/064218 WO2007025797A1 (de) 2005-08-31 2006-07-13 Sensorsimulator

Country Status (4)

Country Link
US (1) US20090216511A1 (de)
EP (1) EP1920302A1 (de)
DE (1) DE102005041427A1 (de)
WO (1) WO2007025797A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010040628A2 (de) * 2008-10-09 2010-04-15 Endress+Hauser Conducta Gesellschaft Für Mess- Und Regeltechnik Mbh+Co. Kg Verfahren zum testen des verhaltens einer prozessanlage

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2904450B1 (fr) * 2006-07-31 2008-09-26 Airbus France Sas Systeme de simulation de capteur.
EP2662737A1 (de) * 2012-05-08 2013-11-13 Prognost Systems GmbH Simulationseinrichtung, Verfahren zum Betrieb einer Simulationseinrichtung sowie Verwendung einer Simulationseinrichtung und eines Verfahrens zum Betrieb einer Simulationseinrichtung
DE102013113368A1 (de) * 2013-12-03 2015-06-03 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Verfahren und Testanordnung zum Testen eines Betriebszustandes einer Prozessanlage
JP2015139576A (ja) * 2014-01-29 2015-08-03 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 超音波診断装置及びプログラム
US9618933B2 (en) 2014-02-10 2017-04-11 General Electric Company System and method for verifying the configuration and installation of a monitoring and protection system
DE102015111594A1 (de) * 2015-07-16 2017-01-19 Endress+Hauser Conducta Gmbh+Co. Kg Verfahren zur Kommunikation zwischen einem Sensor und einem mit dem Sensor verbindbaren Anschlusselement
DE102015120072A1 (de) * 2015-11-19 2017-05-24 Endress + Hauser Wetzer Gmbh + Co. Kg Verfahren zur in-situ Kalibrierung einer analogen Messübertragungsstrecke und entsprechende Vorrichtung
CN114355788B (zh) * 2021-11-30 2023-10-03 湖北三江航天红林探控有限公司 一种用于机电引信的自动化半实物仿真系统
CN113928595B (zh) * 2021-12-17 2022-03-08 中国飞机强度研究所 一种实验室内飞机整机低温试验条件剪裁方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4001554A (en) * 1975-10-29 1977-01-04 The United States Of America As Represented By The Secretary Of The Army Mode control computer interface
WO2000065361A1 (en) * 1999-03-25 2000-11-02 Fluor Corporation Simulator cart
DE10001484C1 (de) * 2000-01-15 2001-09-27 Daimler Chrysler Ag Vorrichtung zur Nachbildung elektrischer Komponenten
US6553328B1 (en) * 2000-02-18 2003-04-22 Hughes Electronics Corp. Non-intrusive memory access for embedded processors
DE10322278A1 (de) * 2003-05-16 2004-12-02 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Sensorsimulator zum Test von Umformern

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2193487A5 (de) * 1972-07-21 1974-02-15 Onera (Off Nat Aerospatiale)
DE3431076A1 (de) * 1984-08-23 1986-03-06 Endress U. Hauser Gmbh U. Co, 7867 Maulburg Anordnung zur simulation einer prozesssteuerung
DE8801324U1 (de) * 1988-02-03 1989-06-08 Flowtec Ag, Reinach, Basel, Ch
US4915072A (en) * 1988-07-14 1990-04-10 Navistar International Transporation Corp. Electronic governor interface module
CA2032384C (en) * 1989-12-18 2000-06-20 Drexelbrook Controls, Inc. Remote instrument testing system
DE4407987A1 (de) * 1993-03-16 1994-09-22 Basf Ag Prozeßsimulationssystem für speicherprogrammierbare Steuerungen
US5535620A (en) * 1993-04-05 1996-07-16 Applied Computer Engineering, Inc. Engine management system
US5638789A (en) * 1995-07-31 1997-06-17 Motorola, Inc. Methods and systems for controlling the amount of fuel injected in a fuel injection system
DE19543826A1 (de) * 1995-11-23 1997-05-28 Siemens Ag Simulatoreinheit zum Simulieren einer Peripherieeinheit einer modular aufgebauten speicherprogrammierbaren Steuerung
US7192284B2 (en) * 2000-08-17 2007-03-20 Gaumard Scientific Company, Inc. Interactive education system for teaching patient care
DE19755516A1 (de) * 1997-12-13 1999-06-17 Conducta Endress & Hauser Messeinrichtung für die Flüssigkeits- und/oder Gasanalyse und/oder für die Messung von Feuchte in Flüssigkeiten und/oder Gasen
US6625548B2 (en) * 1998-09-08 2003-09-23 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. Measuring device for determining physical and chemical properties of gases, liquids and solids
DE10006755A1 (de) * 2000-02-15 2001-08-16 Conducta Endress & Hauser Messeinrichtung zur Ermittlung von physikalischen und/oder chemischen Eigenschaften von Gasen, Flüssigkeiten und/oder Feststoffen
EP1134638A3 (de) * 2000-03-13 2002-08-14 Kabushiki Kaisha Toshiba Simulator und Simulationsverfahren
DE10055090A1 (de) * 2000-11-07 2002-05-08 Conducta Endress & Hauser Steckverbinder zum Anschluss einer Übertragungsleitung an mindestens einen Sensor
US6556939B1 (en) * 2000-11-22 2003-04-29 Smartsignal Corporation Inferential signal generator for instrumented equipment and processes
DE10218606A1 (de) * 2002-04-25 2003-11-06 Conducta Endress & Hauser Potentiometrischer Sensor
DE10344262A1 (de) * 2003-09-23 2005-04-14 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Steckmodul für einen Flüssigkeits- oder Gassensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4001554A (en) * 1975-10-29 1977-01-04 The United States Of America As Represented By The Secretary Of The Army Mode control computer interface
WO2000065361A1 (en) * 1999-03-25 2000-11-02 Fluor Corporation Simulator cart
DE10001484C1 (de) * 2000-01-15 2001-09-27 Daimler Chrysler Ag Vorrichtung zur Nachbildung elektrischer Komponenten
US6553328B1 (en) * 2000-02-18 2003-04-22 Hughes Electronics Corp. Non-intrusive memory access for embedded processors
DE10322278A1 (de) * 2003-05-16 2004-12-02 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Sensorsimulator zum Test von Umformern

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010040628A2 (de) * 2008-10-09 2010-04-15 Endress+Hauser Conducta Gesellschaft Für Mess- Und Regeltechnik Mbh+Co. Kg Verfahren zum testen des verhaltens einer prozessanlage
WO2010040628A3 (de) * 2008-10-09 2010-07-15 Endress+Hauser Conducta Gesellschaft Für Mess- Und Regeltechnik Mbh+Co. Kg Verfahren zum testen des verhaltens einer prozessanlage
CN102177419A (zh) * 2008-10-09 2011-09-07 恩德莱斯和豪瑟尔测量及调节技术分析仪表两合公司 用于测试过程设备的性能的方法

Also Published As

Publication number Publication date
DE102005041427A1 (de) 2007-03-01
US20090216511A1 (en) 2009-08-27
EP1920302A1 (de) 2008-05-14

Similar Documents

Publication Publication Date Title
WO2007025797A1 (de) Sensorsimulator
EP2246984B1 (de) Diagnoseschaltung zur Überwachung einer Analog-Digital-Wandlungsschaltung
EP3279756B1 (de) Diagnoseeinrichtung und verfahren zur überwachung des betriebs einer technischen anlage
DE102010010890B4 (de) Verfahren zum Ersetzen einer bestehenden Leiteinrichtung in einem Automatisierungssystem durch eine neue Leiteinrichtung und dazu ausgebildetes Automatisierungssystem
EP2156150B1 (de) Verfahren zur zustandsüberwachung einer kraftmessvorrichtung, kraftmessvorrichtung und kraftmessmodul
DE102008036968A1 (de) Diagnoseverfahren eines Prozessautomatisierungssystem
EP1504240A1 (de) Variables feldgerät für die prozessautomation
EP2494313B1 (de) Feldgerät zur prozessinstrumentierung
DE102006003750A1 (de) Verfahren zum Nachweis einer Durchführung einer Überprüfung einer Funktionsfähigkeit eines Sicherheitsventils
EP1091199B1 (de) Verfahren und eine Vorrichtung zur Funktionsüberprüfung eines Grenzschalters
WO2009080549A2 (de) Feldgerät und verfahren zur überprüfung der kalibrierung eines feldgeräts
WO2007137988A2 (de) Messumformer
EP1486841B1 (de) Verfahren zur Funktionsanzeige eines Feldgerätes der Prozessautomatisierungstechnik
DE102005051795A1 (de) Anzeigeeinheit für die Prozessautomatisierungstechnik
WO2010040628A2 (de) Verfahren zum testen des verhaltens einer prozessanlage
EP2622417A2 (de) Recover-verfahren für ein gerät mit einem analogen stromausgang zur ausgabe eines messwertes oder eines stellwertes
EP1456685A1 (de) Feldgerät mit einem gps-modul
DE10249846B4 (de) Redundante Anordnung von Feldgeräten mit Stromausgang sowie Feldgerät für eine derartige Anordnung
DE10252892A1 (de) Verfahren zur Diagnose von Feldgeräten der Prozessautomatisierungsechnik
EP2876514A1 (de) Schleifenprüfung der Funktionsfähigkeit technischer Geräte eines industriellen Prozessautomatisierungssystems
DE102008033336A1 (de) Verfahren zur Überprüfung eines Messgerätes
DE10322278B4 (de) Sensorsimulator zum Test von Messumformern
WO2022106326A1 (de) Verfahren und systeme zum validieren von industriellen maschinensystemen
DE102005057000A1 (de) Feldbusgerät zum Einsatz in Feldbussystemen, insbesondere in Prozessleitsystemen
EP3153938B1 (de) Messanordnung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006777766

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2006777766

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11991066

Country of ref document: US