WO2007023895A1 - Pneumatic tire for bicycle - Google Patents

Pneumatic tire for bicycle Download PDF

Info

Publication number
WO2007023895A1
WO2007023895A1 PCT/JP2006/316609 JP2006316609W WO2007023895A1 WO 2007023895 A1 WO2007023895 A1 WO 2007023895A1 JP 2006316609 W JP2006316609 W JP 2006316609W WO 2007023895 A1 WO2007023895 A1 WO 2007023895A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
tread
width
force
elongated
Prior art date
Application number
PCT/JP2006/316609
Other languages
French (fr)
Japanese (ja)
Inventor
Makoto Ishiyama
Hiroyuki Matsumoto
Shinsaku Katayama
Original Assignee
Bridgestone Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corporation filed Critical Bridgestone Corporation
Publication of WO2007023895A1 publication Critical patent/WO2007023895A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0302Tread patterns directional pattern, i.e. with main rolling direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0341Circumferential grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0374Slant grooves, i.e. having an angle of about 5 to 35 degrees to the equatorial plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0386Continuous ribs
    • B60C2011/0388Continuous ribs provided at the equatorial plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C2200/00Tyres specially adapted for particular applications
    • B60C2200/10Tyres specially adapted for particular applications for motorcycles, scooters or the like

Definitions

  • the present invention relates to a pneumatic tire for a motorcycle, and more particularly to a pneumatic tire for a motorcycle that can improve turning performance on a wet road surface.
  • the groove disposed in the tire tread portion serves as an escape route for the water squeezed by the tread and the road surface, and has a role of efficiently draining the water.
  • the groove arranged in the tread divides the tread into blocks of land, which reduces the rigidity of the tread. Therefore, in the tread land, the road surface and the tire surface are grounded. When braking force, driving force, or lateral force is applied, it tends to fall down due to shear deformation. When such a fall occurs, the tread itself moves and the rider immediately feels that the tires are unstable, and because the tread falls, a part of the tread surface floats off the road surface and the grip area decreases. Power is reduced. This is a force that occurs even on wet roads. In the case of commercially available tires, you must run on both wet and dry roads. It becomes a big problem even on the road surface.
  • the tire pattern is determined with a good balance between the groove layout that can drain water efficiently, the groove layout that does not reduce the rigidity of the tread, and the good design.
  • the groove arrangement is strong against both the tire input in the circumferential direction (traction and brake).
  • the shoulder side considering that the car is tilted and turning, the lateral force is mainly applied when turning at a constant speed without opening the accelerator or without applying the brake, and when accelerating from turning at a constant speed. Since the driving force is applied and both the lateral force and the driving force are applied, the shoulder side needs to have a pattern strong against both the lateral force and the driving force.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-211917
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a pneumatic tire for a motorcycle that can improve the turning performance on a wet road surface as compared with a conventional tire.
  • the depth of the groove, the width of the groove, and the volume of the groove have been regarded as important. Furthermore, the land shape and the land height (ie, the depth of the groove agree) are important for the land section separated by grooves. As described above, a tire having a good grip with respect to lateral force and braking / driving force is necessary for the shoulder side of a motorcycle tire.
  • the driving force is applied to the rear wheel tire. Therefore, the rear wheel tire needs to be gripped particularly with respect to the driving force.
  • the front wheels have no driving force, but a large braking force is applied to the tire because the vehicle load is applied to the front wheel tire during braking.
  • the front wheels must have a front-rear grip corresponding to the brake and a lateral grip against the lateral force.
  • the land portion may not be too rigid or too weak.
  • the inventor paid attention to such a phenomenon and conducted extensive research. As a result, by optimizing the shape of the land portion, the contact state between the land portion and the road surface at the time of wet road surface turning is improved. I discovered that the grip was improved.
  • the invention according to claim 1 has been made in view of the above-mentioned facts, and has a plurality of land portions partitioned by a plurality of grooves in a tread, and the length is within the plurality of land portions.
  • a pneumatic tire for motorcycles that includes a slender land part that is more than three times the width of the tire.
  • the center of the tread is the area where 60% of the developed width of the tread is centered on the tire equatorial plane.
  • the elongate land When the outside in the width direction is the tread side, at least a part of the elongate land is arranged on the tread side, the height of the elongate land is h, and the width of the elongate land is t In addition, it is characterized in that t / h satisfies 0.6 to 2.0 in the region of 70% or more of the elongated land length.
  • tZh the reason for limiting the range to 0.6 to 2.0 for tZh, which is the ratio of the width t of the elongated land portion to the height h of the elongated land portion. Will be explained.
  • the inventor prepared several types of block samples and conducted an experiment to see the deformation of the block.
  • the size of the block sample 100 is 8 mm high, 30 mm deep, and 30 mm long.
  • This block sample 100 is made of the average tread rubber used in motorcycle tires.
  • the block sample 100 is formed with land portions 104 partitioned by grooves 102, and several types of block samples 100A to G having different ratios tZh of the height h of the land portion 104 and the groove width t are prepared (Fig. (See 8.)
  • block samples 100A to 100A having eight, six, five, four, three, two, and one land portion 104 were prepared.
  • the shape of the groove 102 is a rectangular parallelepiped, and the depth of the groove 102 is 6 mm. That is, the land portions 104 obtained by digging the grooves 102 in the block are all rectangular parallelepipeds.
  • the glass plate 106 is 10 mm thick and has a sufficient width. On one side, narrow grooves 108 with a width of 0.5 mm and a depth of 0.5 mm are regularly processed in a grid pattern at intervals of 1 mm. Yes.
  • the surface of the glass plate 106 on which the groove 108 was formed was placed horizontally with the road surface being considered, and water was sufficiently sprayed thereon to create a wet road surface state.
  • the block sample 100 has its base part (the upper part in Fig. 7 (A)) fixed to a smooth iron plate (not shown) with an adhesive so that the base part is always kept horizontal, with a force F of 200N. Press vertically against the glass surface.
  • the block sample 100 is pressed with a force of 200 N for 2 seconds, and the force is also a speed of 20 mmZ seconds, and the block sample 100 is moved in a direction perpendicular to the groove 102 of the block sample 100 (arrow B direction). At this time, the force applied in the moved direction was defined as Fx, and the Fx was measured.
  • this Fx increased in movement starting force, peaked at a certain point, and then settled to a constant value. This is because the block sticks to the road surface and begins to slide Represents the change in the coefficient of friction up to That is, the change until the state changes from sticking friction to sliding friction.
  • FIG. 9 (A) shows the results of organizing the data with tZh representing the land shape on the horizontal axis and the friction coefficient on the vertical axis. As a result, it was found that the friction coefficient was maximized when tZh was a certain value.
  • the elongated land portion has a high friction coefficient when tZh is set to 0.6 to 2.0, which is the basis for the numerical limitation of the present invention. Yes.
  • t / h has an optimum value is as follows.
  • t / h is less than 0.6, the block easily falls down due to the lateral shearing force that weakens the rigidity of the block. As a result, the contact area between the block and the glass surface (road surface) is reduced. Decrease. In other words, the ratio of the part that rises to V is large! / (See Fig. 9 (B)).
  • Fig. 9 (C) is within the appropriate range of tZh, which is numerically limited by the present invention, and the floating ratio of the block (based on the tread area of the block) is moderately suppressed.
  • the ratio tZh between the height h and the width t is from 0.6 to 2.0. Since it is arranged on the tread side of at least a part of the satisfactory slender land portion, the contact state between the land portion and the road surface when turning on a wet road surface is improved, and the grip force can be improved.
  • the invention according to claim 2 is the pneumatic tire for a motorcycle according to claim 1, wherein the elongated land portion is disposed at an angle with respect to the tire circumferential direction and spaced apart in the tire circumferential direction. It is characterized by being formed between the grooves having.
  • the grooves defining the elongated land portions have an angle with respect to the tire circumferential direction. It is not a circumferential groove. This is because the elongated land portion is provided on the tread side portion, and the tread side portion contacts the ground when the vehicle is tilted. Considering the case where the vehicle body is tilted (that is, including the behavior of a motorcycle starting to turn while applying a brake, the behavior of continuing to turn at a certain inclination, and the behavior of accelerating from the rotation and standing the vehicle upright) The side is grounded, and the lateral force is applied to the tread side in addition to the lateral force.
  • both lateral force and braking force are applied when the brake is applied.
  • the force applied to the tread side is in an oblique direction, and if the groove is inclined along this direction, the grip can be kept high.
  • the inclination angle may be 90 degrees, but in this case, the groove is in the tire width direction and the tread is very strong against lateral force.
  • the distance between the grooves may be equal.
  • the sound generated when the land hits the road surface is generated at regular intervals when the land is equally spaced. Since the level is bad, usually, a device that shifts the interval (so-called pitch noiration) is made.
  • the invention according to claim 3 is the pneumatic tire for a motorcycle according to claim 2, wherein the elongated land portion continuously extends in the tread deployment width direction over 10% of the entire tread width. It is characterized by that.
  • the elongated land portion Even if the elongated land portion extends continuously in the tire width direction, if the extended length is less than 10% of the total width of the tread, the proportion of the pattern in the pattern is small and depends on the other components of the pattern. The wet turning performance is affected, and the effect of the elongated land according to the present invention is reduced. Note that the elongated land portion may extend over the entire width direction of the pattern.
  • the invention according to claim 4 is the elongated pneumatic tire for motorcycles according to claim 3. Tilt the land so that it is positioned in the tire rotation direction on the shoulder side and on the tire equator side! /, Characterized by that!
  • braking force and lateral force are mainly applied to the front wheels
  • driving force and lateral force are mainly applied to the rear wheels.
  • the lateral force is the same for the front and rear wheels, but the front and rear force is the braking force for the front wheels and the driving force for the rear wheels.
  • the invention according to claim 5 is the pneumatic tire for a motorcycle according to claim 3, wherein the elongated land portion is inclined so that the tire equatorial plane side is positioned in the tire rotation direction more than the shoulder side! /, Characterized by that!
  • the driving force and the lateral force are mainly applied to the rear wheel.
  • the rear wheel it is possible to incline the inclined groove so that the tire equatorial plane side is positioned more in the tire rotation direction than the shoulder side.
  • the direction of the resultant force is the inclination of the inclined groove. It is in the shape along the line, and is preferable in suppressing the deformation of the land.
  • the invention according to claim 6 is the pneumatic tire for a motorcycle according to claim 4 or claim 5, wherein the angular force of the center line in the width direction of the elongated land portion with respect to the tire circumferential direction is from the tire equatorial plane side to the shoulder side. It is characterized in that it is set within a range of 10 to 30 degrees on the tire equator side and within a range of 50 to 90 degrees on the shoulder side.
  • the body When two-wheeled vehicles are to be deeply cornered, the body should be greatly tilted while turning and the area near the tread edge of the tire should be used. At this time, since the lateral force acts on the tire more than the longitudinal force, the elongated land near the tread end extends in the direction along the lateral force, that is, on the shoulder side. Then, it is preferable to set the angle of the width direction center line of the elongated land part within the range of 50 to 90 degrees.
  • the front wheel tire is normally subjected to a braking force S under a relatively small inclination angle of the vehicle body.
  • the angle of the center line in the width direction of the elongated land part may be 50 to 90 degrees, and on the tire equator side, the angle of the center line in the width direction of the elongated land part may be in the range of 10 to 30 degrees. preferable.
  • the angle between the tire equatorial plane side groove and the shoulder side groove is set to an intermediate angle, and the tire equatorial plane side force gradually increases toward the shoulder side. It is preferable to make it.
  • FIG. 1 is a cross-sectional view along the rotational axis of a pneumatic tire for a motorcycle according to a first embodiment.
  • FIG. 2 is a development view of a tread of a pneumatic tire for a motorcycle according to a first embodiment (Example 1 in a test).
  • FIG. 3 is a development view of the tread of Example 2.
  • FIG. 4 is a development view of the tread of Example 3.
  • FIG. 5 is a development view of the tread of Example 4.
  • FIG. 6 is a development view of the tread of Comparative Example 1.
  • (A) is an explanatory diagram showing a test of a block sample, and (B) is a graph showing a test result.
  • FIG. 8] (A) to (G) are side views of the block sample.
  • FIG. 9 (A) is a graph showing the coefficient of friction obtained for the test result force, and (B) to (D) are side views showing the deformation state of the block.
  • FIGS. 1 and 2 One embodiment of a pneumatic tire for a motorcycle according to the present invention will be described with reference to FIGS. 1 and 2.
  • the pneumatic tire 10 for a motorcycle includes a first carcass ply 12 and a second carcass ply 14 in which cords extending in a direction intersecting the tire equatorial plane CL are embedded. It has a carcass 16 constructed.
  • the pneumatic tire 10 for a motorcycle according to the present embodiment is for a rear wheel, and the tire size is 190Z50ZR17.
  • Each end portion of the first carcass ply 12 and the second carcass ply 14 is wound around the bead core 20 embedded in the bead portion 18 with the tire inner force also being directed outward. Yes.
  • the first carcass ply 12 has a plurality of radially extending cords (nylons) arranged in parallel in the covered rubber, and in this embodiment, the cord for the tire equator surface at the tire equator position.
  • the angle is set to 80 degrees.
  • the second carcass ply 14 is also formed by embedding a plurality of cords (nylon) extending in the radial direction in parallel in the coated rubber, and in this embodiment, the cord angle with respect to the tire equatorial plane is also 80 degrees. Is set to Note that the cord of the first carcass ply 12 and the cord of the second carcass ply 14 intersect each other, and are inclined in opposite directions with respect to the tire equatorial plane CL. In the present embodiment, the angle of the cord is set to 80 degrees, but other angles such as 90 degrees may be used.
  • a main crossing layer 26 is disposed outside the carcass 16 in the tire radial direction.
  • the main crossing layer 26 of the present embodiment is composed of a first belt ply 26A and a second belt ply 26B.
  • the first belt ply 26A is a cord in which a plurality of cords (corresponding to a diameter of 0.7 mm in which aromatic polyamide fibers are twisted in this embodiment) are arranged in parallel in a coated rubber and embedded at 50 spacing Z50mm.
  • the angle of the cord with respect to the tire equator at the position of the tire equator is set to 33 degrees.
  • the second belt ply 26B is also formed by arranging a plurality of cords (corresponding to a cord with a diameter of 0.7 mm in which aromatic polyamide fibers are twisted in this embodiment) in parallel in the covering rubber and placing them in parallel at a driving interval of 50 Z50 mm
  • the cord angle with respect to the tire equatorial plane is set to 33 degrees.
  • the cords of the first belt ply 26A and the cords of the second belt ply 26B cross each other, and are inclined in opposite directions with respect to the tire equatorial plane CL.
  • a tread rubber 30 that forms a tread 28 is disposed on the outer side of the main crossing layer 26 in the tire radial direction.
  • the main crossing layer 26 may be composed of a belt ply having three or more forces composed of two belt plies.
  • the main crossing layer 26 is used to reinforce the crown portion of the carcass 16, but a spiral belt layer often used in the structure of a pneumatic tire for a high-performance motorcycle in recent years is used. OK.
  • the snail belt layer is, for example, a long rubber-coated cord in which one cord is covered with an unvulcanized coating rubber, or a belt-like ply in which a plurality of cords are covered with an unvulcanized coating rubber. Can be formed by spirally winding the cord, and the extending direction of the cord is substantially the tire circumferential direction.
  • the cord of the spiral belt layer may be an organic fiber cord or a steel cord.
  • the spiral belt layer is a spiral belt in which cords of 0.7 mm diameter twisted with aromatic polyamide fibers are embedded in the coated rubber so that the driving distance is 50 and Z is 50 mm. It can be formed by winding.
  • Such a spiral belt layer may be arranged outside the main crossing layer 26 in the tire radial direction, or a spiral belt layer using a steel cord may be used instead of the main crossing layer 26. Also good.
  • the tread 28 is formed with two circumferential main grooves 40 each having a groove width of 5 mm extending in the circumferential direction on both sides of the tire equatorial plane CL. Further, the tread 28 is formed with an inclined groove 50 from a position spaced outward in the tire width direction from the circumferential main groove 40 on the outer side in the tire width direction toward the tread end 28E.
  • the groove depths of the circumferential main groove 40 and the inclined groove 50 are all 6 mm in this embodiment.
  • the developed width of the tread 28 of this embodiment is 240 mm.
  • the inclined groove 50 has a groove width of 4 mm, and the tread end 28E force is also formed within a range of 65 mm toward the tire equator side.
  • the angle of the inclined groove 50 with respect to the tire circumferential direction is 50 degrees with respect to the tire equatorial plane CL.
  • the width of the elongated land portion 56 delimited by the groove is set to 10 mm in this embodiment.
  • the width of the elongated land portion 56 and the groove width of the inclined groove 50 are measured at a position of 32.5 mm from the tread end 28E to the tire equatorial plane side.
  • the pattern negative rate is 28.6% on the tread side.
  • the pneumatic tire for a motorcycle has a very round cross-sectional shape of the tread 28, and the pattern end is rounded. Therefore, when engraving the pattern depicted in Fig. 2, Like the paper affixed to the rope, the land and groove widths become narrower as they approach the pattern edge. Also in this embodiment, the actual width of the groove and the width of the land portion are processed so as to become narrower as they approach the end of the pattern. Therefore, in order to measure the average value on the side of the pattern, a groove is carved to the above-mentioned width at 32.5 mm from the end of the trade.
  • tZh is 0.6 in an area of 70% or more of the extended length of the elongated land portion 56. It is necessary to satisfy ⁇ 2.0.
  • the average tZh of the elongated land portion 56 is 1.67. More specifically, Tretz The tZh of the elongated land part 56 measured at a position of 65 mm toward the tire equatorial plane is also 1.84, and the tread edge 28E force is also measured at a position of 32.5 mm toward the tire equatorial plane. Zh is 1.67, and tZh of the slender land 56 measured at the tread edge 28E is 1.50.
  • the tread 28 for a motorcycle is rounded, the diameter at the tire equatorial plane CL is maximum, and the diameter of the tread end 28E is smaller than the diameter of the tire equatorial plane CL. Since Fig. 2 is a developed view, the tread edge is drawn in the circumferential direction so as to be the same as the circumferential length of the tire equatorial plane.
  • This pneumatic tire 10 for a motorcycle is used for the rear wheel of a motorcycle and exhibits its ability.
  • the inclined groove 50 is inclined so that the tire equatorial plane side is closer to the tire rotation direction side (arrow A direction side) than the tread end side.
  • the direction of the resultant force follows the inclination of the inclined groove (that is, the direction of the resultant force approaches the direction along the longitudinal direction of the elongated land portion 56). The deformation of the part 56 is effectively suppressed.
  • the elongated land portion 56 that satisfies the ratio tZh between the height h and the width t of 0.6 to 2.0 is arranged on the tread side, the drainage performance of the portion that contacts the ground during turning And block rigidity can be achieved at high dimensions, and a higher gripping force can be obtained when turning on a wet road than before.
  • the proportion of the elongated land portion 56 in the pattern becomes a force and depends on the other components of the pattern.
  • the wet turning performance is affected, and the grip force when turning on a wet road surface cannot be obtained sufficiently.
  • the inclination angle of the inclined groove 50 is constant, but the inclination angle may be different depending on the part. For example, when a motorcycle is cornering deeply, tilt the vehicle body while turning and use the vicinity of the tread edge of the tire, but since the lateral force acts on the tire more than the longitudinal force, Elongated land near the tread edge 56 Is extending in the direction along the direction of lateral force input, that is, the angle of the center line in the width direction of the elongated land portion 56 with respect to the tire circumferential direction is preferably set within a range of 50 to 90 degrees. Yes.
  • the angle of the widthwise center line of the elongated land portion 56 with respect to the tire circumferential direction is preferably within a range of 10 to 30 degrees.
  • the present invention can also be applied to a pneumatic tire for a motorcycle for a front wheel.
  • the pneumatic tire for a motorcycle used for the front wheel for example, a pattern in which the rotation direction of the tire having the tread pattern shown in each of FIGS. 1 to 4 is reversed from that shown in the figure can be used. That is, when used for the front wheel, the inclined groove 50 is inclined so that the shoulder side is positioned in the tire rotation direction more than the tire equatorial plane side.
  • test tire was mounted on the rear wheel of a sport type motorcycle of lOOOOcc, and the vehicle was run quite intense (close to the limit) on a test course on a rainy day. The rainfall was stable all day and was always in a uniform wet state.
  • the test course was run 4 laps, and the average lap time for 4 laps was calculated. Since the center part of these tires had the same pattern, the difference was the cornering performance. It was.
  • FIG. 3 is a tire according to the above-described embodiment having the pattern of FIG.
  • the average value of tZh is 1.17. More specifically, the tread end 28E force was also measured at a position where the tZh of the elongated land portion 56 measured at 65 mm toward the tire equatorial plane was 1.29, and the tZh 28E from the tread end 28E toward the tire equatorial plane 32.5 mm. The tZh of the elongated land portion 56 is 1.17, and the tZh of the elongated land portion 56 measured at the tread edge 28E is 1.05.
  • the average value of tZh is 0.83. More specifically, the tread end 28E force was also measured at a position of 65 mm toward the equatorial plane of the tire, and the tZh of the elongated land portion 56 was 0.91, and the tread end 28E was measured at a position of 32.5 mm toward the tire equatorial plane. The tZh of the elongated land portion 56 is 0.83, and the tZh of the elongated land portion 56 measured at the position of the tread edge 28E is 0.75.
  • the center part is the same as in Example 1.
  • Long inclined grooves 50A extending from the tread end 28A to the vicinity of the center and short inclined grooves 50B extending similarly from the tread end 28A are alternately formed.
  • the angle of each inclined groove is 15 degrees with respect to the tire circumferential direction on the center side, and 70 degrees with respect to the tire circumferential direction on the tread end side.
  • the negative rate is the same as in Example 1.
  • each inclined groove has a groove width of 4 mm and an angle with respect to the tire circumferential direction of 40 degrees, which is the same as in Example 1.
  • the elongated land portion 56 is also located 32.5 mm from the tread edge 28E to the tire equator side. The width is 10 mm, which is the same as in Example 1.
  • the average value of tZh is 1.67. More specifically, the tZh of the elongated land portion 56 measured at a position of 65 mm toward the tire equator side at the tread edge 28E force is 1.84, and the tZh is measured at a position of 32.5 mm from the tread edge 28E toward the tire equator side. The tZh of the elongated land portion 56 is 1.67, and the tZh of the elongated land portion 56 measured at the position of the tread edge 28E is 1.50.
  • the force is the same pattern as in Example 1.
  • the width of the slender land portion 56 on the shoulder side is 16 mm, and the width of the inclined groove 50 is 6.4 mm.
  • the average value of tZh is 2.67. More specifically, the tread end 28E force was measured at a position of 65 mm toward the tire equatorial plane at a tZh of 2.94 and the tZh at the tread end 28E from the tire equatorial plane side was measured at a position of 32.5 mm.
  • the tZh of the elongated land portion 56 is 2.67, and the tZh of the elongated land portion 56 measured at the position of the tread edge 28E is 2.40! /.
  • the width of the elongated land on the shoulder side is 3mm and the width of the inclined groove is 1.2mm, which is the same pattern as in Example 1.
  • the average value of tZh is 0.5. More specifically, the tread end 28E force was also measured at a position of 65 mm toward the equatorial plane of the tire, and the tZh of the elongated land portion 56 was 0.45, and the elongate measured at a position of 32.5 mm from the tread end 28E to the tire equatorial plane. The tZh of land part 56 is 0.50, and the tZh force of elongated land part 56 measured at the position of tread edge 28E is .55.
  • Example 3 was the most appropriate tZh. This can be explained by the falling or rising of the block, as shown in the previous experiment.
  • Example 1 From the comparison between Example 1 and Example 4, it can be seen that gradually increasing the groove angle leads to an improvement in wet performance. This is because of the characteristic of the posture change when turning the motorcycle, and when it is greatly tilted, the traction in the front-rear direction acts in the acceleration state in which the vehicle body that has a good direction close to the lateral groove that generates lateral force is raised to some extent. Therefore, the equator groove is suitable. It shows that you are doing.
  • Example 1 From the comparison between Example 1 and Comparative Example 3, the pattern directionality is known. In the case of the rear wheel, the traction is an important performance, and the traction in the direction as in Example 1 is easier to force. On the other hand, Comparative Example 3 seems to have lost some gripping force because the direction of the force does not match the direction of the elongated land during the force trough.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

A pneumatic tire for a bicycle in which turning performance on a wet pavement is enhanced as compared with that of a conventional tire. Assuming the region of 60% of the development width of a tread (28) is a tread central portion and the outside of the tread central portion in the direction of tire width is a tread side portion, a plurality of inclination grooves (50) are formed in the tread side portion and an elongated land portion (56) is sectioned on the tread side portion such that the length in the extending direction is three times or more the width and the ratio t/h between the height h and the width t becomes 0.6-2.0. Consequently, both drainage performance and block rigidity can be satisfied at a high level at a ground contacting portion during turning, and a higher grip force than before can be attained during turning on a wet pavement.

Description

明 細 書  Specification
二輪車用空気入りタイヤ  Pneumatic tires for motorcycles
技術分野  Technical field
[0001] 本発明は、二輪車用空気入りタイヤにかかり、特に、ウエット路面での旋回性能を 向上させることのできる二輪車用空気入りタイヤに関するものである。  [0001] The present invention relates to a pneumatic tire for a motorcycle, and more particularly to a pneumatic tire for a motorcycle that can improve turning performance on a wet road surface.
背景技術  Background art
[0002] タイヤは、濡れた路面を走行するときに、トレッド表面のゴム力 水膜によって邪魔さ れることなぐ路面と良好な接地状態を得るために、トレッド部に溝を配置している(例 えば、特許文献 1参照。)。  [0002] When a tire travels on a wet road surface, a groove is arranged in the tread portion in order to obtain a road surface that is not obstructed by the rubber force water film on the tread surface and a good ground contact state (example) For example, see Patent Document 1.)
即ち、タイヤトレッド部に配置した溝は、トレッドと路面によって搾り出された水の逃 げ道となり、これらの水を効率的に排水する役目を持つ。  That is, the groove disposed in the tire tread portion serves as an escape route for the water squeezed by the tread and the road surface, and has a role of efficiently draining the water.
[0003] この一方で、トレッドに配置された溝は、トレッドを陸の固まりに分割するため、トレツ ド剛性を低下させることになり、これがためトレッド陸部は、路面とタイヤ表面が接地し て制動力、駆動力や横力が加わったときに剪断変形を受けて倒れこみ易くなる。 このような倒れ込みが起こると、トレッド自体が動きやすぐライダーが、タイヤが不安 定と感じると共に、トレッドの倒れ込みにより、トレッド表面の一部が路面から浮き上が つて接触面積が低下するためにグリップ力が低下する。これは、濡れた路面でも起こ る力、市販のタイヤの場合は濡れた路面と乾いた路面の両方を走らなければならず、 乾!、た路面でも大きな問題となる。 [0003] On the other hand, the groove arranged in the tread divides the tread into blocks of land, which reduces the rigidity of the tread. Therefore, in the tread land, the road surface and the tire surface are grounded. When braking force, driving force, or lateral force is applied, it tends to fall down due to shear deformation. When such a fall occurs, the tread itself moves and the rider immediately feels that the tires are unstable, and because the tread falls, a part of the tread surface floats off the road surface and the grip area decreases. Power is reduced. This is a force that occurs even on wet roads. In the case of commercially available tires, you must run on both wet and dry roads. It becomes a big problem even on the road surface.
路面力 のこのようなブロックの浮き上がりは、偏摩耗も誘発するので、大きな問題 である。  Such block lift of road force is a major problem because it induces uneven wear.
[0004] 二輪車のトレッドパターンについては、溝の配置の仕方が技術的な難しさであり、ま た、ウエット性能を左右する大きな要因である。  [0004] Regarding the tread pattern of a two-wheeled vehicle, the way in which the grooves are arranged is technically difficult, and is a major factor that affects wet performance.
それゆえ、水を効率的に排水できる溝配置と、トレッドの剛性を低下させないような 溝配置、そしてデザイン的な良さなどをうまくバランスさせながらタイヤのパターンは 決定されている。  Therefore, the tire pattern is determined with a good balance between the groove layout that can drain water efficiently, the groove layout that does not reduce the rigidity of the tread, and the good design.
[0005] また、自動二輪車用のタイヤは、乗用車用やトラック用のタイヤと異なり、車体を傾 けて旋回するバイクの特性から、車体を傾けない直進走行時と、車体を傾けるコーナ リング時とでは、路面に接地するトレッドの部位が異なる。 [0005] In addition, unlike tires for passenger cars and trucks, motorcycle tires tilt the vehicle body. Due to the characteristics of a motorcycle that turns, the tread part that touches the road surface differs between straight running without tilting the vehicle and cornering when tilting the vehicle.
そのため、自動二輪車用のタイヤでは、センター側とショルダー側でパターンの傾 向に特徴を持たせる場合がある。  Therefore, in motorcycle tires, there are cases in which the pattern inclination is characterized on the center side and on the shoulder side.
[0006] 即ち、センター側はタイヤの前後方向(=赤道方向 =周方向)の入力に対してトレツ ドが強くなるような溝配置にし、ショルダー側はタイヤの幅方向の入力(横力)とタイヤ の周方向の入力(トラクシヨン、ブレーキ)の両方に対して強い溝配置とするわけであ る。  [0006] That is, the groove is arranged on the center side so that the torque is stronger than the input in the front-rear direction (= equator direction = circumferential direction) of the tire, and the input on the width direction of the tire (lateral force) on the shoulder side The groove arrangement is strong against both the tire input in the circumferential direction (traction and brake).
ショルダー側に関しては、車体を傾けて旋回することを考えると、アクセルを開けず に、またはブレーキをかけずに一定速度で旋回するときには横力が主体的に掛かり、 一定速度の旋回から加速するときには駆動力が掛かり、横力と駆動力の両方が掛か るわけであるから、ショルダー側は横力と駆動力の両方に強いパターンである必要が あるわけである。  As for the shoulder side, considering that the car is tilted and turning, the lateral force is mainly applied when turning at a constant speed without opening the accelerator or without applying the brake, and when accelerating from turning at a constant speed. Since the driving force is applied and both the lateral force and the driving force are applied, the shoulder side needs to have a pattern strong against both the lateral force and the driving force.
[0007] 特に自動二輪車のレースの場合は、旋回時の操縦安定性能がとりわけ重要となる 雨天のコーナリング時において、ウエット旋回性能が低いタイヤではスピードが出せ ずにラップタイムを縮めることが出来ない。また、市販車においても、一般道路のゥェ ット旋回性能が低いタイヤはスリップの虞がある。  [0007] Especially in the case of a motorcycle race, steering stability performance is particularly important during turning. When cornering in rainy weather, tires with low wet turning performance cannot speed up and the lap time cannot be shortened. In addition, even in commercial vehicles, tires with poor wet turning performance on ordinary roads may slip.
特許文献 1:特開 2003— 211917号公報  Patent Document 1: Japanese Patent Laid-Open No. 2003-211917
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] 本発明は、上記問題を解決すべく成されたもので、従来タイヤよりもウエット路面で の旋回性能を向上することのできる二輪車用空気入りタイヤの提供を目的とするもの である。 [0008] The present invention has been made to solve the above problems, and an object of the present invention is to provide a pneumatic tire for a motorcycle that can improve the turning performance on a wet road surface as compared with a conventional tire.
課題を解決するための手段  Means for solving the problem
[0009] ウエット性能に関しては、従来より、溝の深さや溝の幅、また溝の容積が重要視され てきた。さらに、溝で区切られた陸部についても、陸部の形や陸部の高さ(即ち、溝の 深さと同意。)が重要とされる。 自動二輪車のタイヤのショルダー側については、前述したように、横力と、制'駆動 力に対して、グリップの良いタイヤが必要である。 [0009] Regarding the wet performance, conventionally, the depth of the groove, the width of the groove, and the volume of the groove have been regarded as important. Furthermore, the land shape and the land height (ie, the depth of the groove agree) are important for the land section separated by grooves. As described above, a tire having a good grip with respect to lateral force and braking / driving force is necessary for the shoulder side of a motorcycle tire.
[0010] 車体の特性を考えると、駆動力が掛カるのは後輪タイヤのため、後輪タイヤは特に 駆動力に対してグリップすることが必要である。  [0010] Considering the characteristics of the vehicle body, the driving force is applied to the rear wheel tire. Therefore, the rear wheel tire needs to be gripped particularly with respect to the driving force.
一方、前輪は、駆動力は掛カもないが、ブレーキング時に車体荷重が前輪タイヤに 掛カるため、大きなブレーキ力がタイヤに掛かる。前輪はブレーキに対応する前後方 向のグリップと、横力に対する横方向のグリップが必要である。  The front wheels, on the other hand, have no driving force, but a large braking force is applied to the tire because the vehicle load is applied to the front wheel tire during braking. The front wheels must have a front-rear grip corresponding to the brake and a lateral grip against the lateral force.
[0011] 車両旋回時のウエット性能に着目すると、トレッド部のショルダー側(トレッド端側)が 路面と接地する。トレッドのショルダー側の溝形状について考えると、トレッド部の溝は 細力べ切ると排水性能が高まる力 トレッド剛性が低下してしまい、トレッドが柔らかく 振舞って剛性感が無!、と共に、倒れこんだ陸部の一部が路面から浮き上がり接地面 積が減ってグリップ力が低下する。陸部を細力べ溝で刻みすぎるとこのような問題点 がある。  [0011] When attention is paid to the wet performance when the vehicle turns, the shoulder side (tread end side) of the tread portion contacts the road surface. Thinking about the groove shape on the shoulder side of the tread, the tread groove is a force that increases drainage performance when it is thinned. The rigidity of the tread decreases, the tread behaves softly and there is no rigidity! Part of the land rises from the road surface and the ground contact area is reduced, resulting in a decrease in grip. This is a problem if the land is chopped too much with a slender groove.
[0012] 一方で、陸部にあまり溝を配置しないと、水が流れにくくなり、ハイドロプレーニング 現象が起こる。陸部に溝が少ないとは、陸部の幅が広いことを意味し、陸部が、トラク シヨンや横力で少し傾 、ただけで陸部の一部が路面力も浮き上がるため、グリップ力 が低下する。  [0012] On the other hand, if there are not too many grooves on the land, water will not flow easily and hydroplaning will occur. The fact that there are few grooves in the land means that the width of the land is wide, and the land is slightly tilted by traction and lateral force. descend.
このように、陸部については、剛性が強すぎても弱すぎても良くない。  As described above, the land portion may not be too rigid or too weak.
[0013] 発明者は、このような現象に着目し、鋭意研究を行った結果、陸部の形状を最適化 することで、ウエット路面旋回時の陸部と路面との接触状態が良好になり、グリップ力 が向上することを発見した。  [0013] The inventor paid attention to such a phenomenon and conducted extensive research. As a result, by optimizing the shape of the land portion, the contact state between the land portion and the road surface at the time of wet road surface turning is improved. I discovered that the grip was improved.
[0014] 請求項 1に係る発明は、上記事実に鑑みてなされたものであって、トレッドに複数の 溝で区画された複数の陸部を有し、複数の陸部の内に、長さが幅の 3倍以上とされた 細長陸部を含む二輪車用空気入りタイヤであって、タイヤ赤道面を中心として、トレツ ドの展開幅の 60%の領域をトレッド中央部、トレッド中央部のタイヤ幅方向外側をトレ ッド側部としたときに、前記細長陸部の少なくとも一部がトレッド側部に配置され、細 長陸部の高さを h、細長陸部の幅を tとしたときに、細長陸部の延在長さの 70%以上 の領域において t/hが 0. 6〜2. 0を満足することを特徴としている。 [0015] 先ず、本発明にお 、て、細長陸部の幅 tと細長陸部の高さ hとの比である tZhにつ いて、その範囲を 0. 6〜2. 0に制限した根拠を説明する。 [0014] The invention according to claim 1 has been made in view of the above-mentioned facts, and has a plurality of land portions partitioned by a plurality of grooves in a tread, and the length is within the plurality of land portions. Is a pneumatic tire for motorcycles that includes a slender land part that is more than three times the width of the tire.The center of the tread is the area where 60% of the developed width of the tread is centered on the tire equatorial plane. When the outside in the width direction is the tread side, at least a part of the elongate land is arranged on the tread side, the height of the elongate land is h, and the width of the elongate land is t In addition, it is characterized in that t / h satisfies 0.6 to 2.0 in the region of 70% or more of the elongated land length. [0015] First, in the present invention, the reason for limiting the range to 0.6 to 2.0 for tZh, which is the ratio of the width t of the elongated land portion to the height h of the elongated land portion. Will be explained.
発明者は、ブロックサンプルを数種類準備し、ブロックの変形を見る実験を行った。 図 7 (A)〖こ示すように、ブロックサンプル 100の大きさは、高さ 8mm、奥行きの辺 30 mm、長さ 30mmである。このブロックサンプル 100は自動二輪車用タイヤに用いら れる平均的なトレッドゴムで出来ている。このブロックサンプル 100には溝 102で区画 された陸部 104が形成されており、陸部 104の高さ h、溝幅 tの比率 tZhが異なる数 種類のブロックサンプル 100A〜Gを準備した(図 8参照。)。  The inventor prepared several types of block samples and conducted an experiment to see the deformation of the block. As shown in Fig. 7 (A), the size of the block sample 100 is 8 mm high, 30 mm deep, and 30 mm long. This block sample 100 is made of the average tread rubber used in motorcycle tires. The block sample 100 is formed with land portions 104 partitioned by grooves 102, and several types of block samples 100A to G having different ratios tZh of the height h of the land portion 104 and the groove width t are prepared (Fig. (See 8.)
[0016] 具体的には、陸部 104の数が 8個、 6個、 5個、 4個、 3個、 2個、 1個のブロックサン プル 100A〜Gを準備した。溝 102の形状は全て直方体であり、溝 102の深さは 6m mである。即ち、ブロックに溝 102を掘り込むことで得られた陸部 104は全て直方体 である。  [0016] Specifically, block samples 100A to 100A having eight, six, five, four, three, two, and one land portion 104 were prepared. The shape of the groove 102 is a rectangular parallelepiped, and the depth of the groove 102 is 6 mm. That is, the land portions 104 obtained by digging the grooves 102 in the block are all rectangular parallelepipeds.
また、ブロック面積と溝面積との比率 (ネガティブ率)は、どのサンプルも同じになる ように加工した。  In addition, the ratio of the block area to the groove area (negative rate) was processed so that all samples were the same.
[0017] 図 7 (A)〖こ示すように、これらのブロックサンプル 100A〜Gを用いて、ウエット路面 を模擬したガラス板 106の上で剪断力を作用させる実験を行った。  [0017] As shown in FIG. 7A, using these block samples 100A to 100G, an experiment was performed in which a shearing force was applied on a glass plate 106 simulating a wet road surface.
ガラス板 106は、厚さ 10mmで十分な広さを持っており、片側の面には、幅 0. 5m m、深さ 0. 5mmの細溝 108が格子状に間隔 lmmで規則正しく加工されている。  The glass plate 106 is 10 mm thick and has a sufficient width. On one side, narrow grooves 108 with a width of 0.5 mm and a depth of 0.5 mm are regularly processed in a grid pattern at intervals of 1 mm. Yes.
[0018] このガラス板 106の溝 108の形成されている面を路面に見立てて水平に配置し、そ の上に水を十分に散布してウエット路面の状態を作った。ブロックサンプル 100は、 その土台部分 (図 7 (A)において、上面部分)を平滑な鉄板 (図示せず)に接着剤で 固定し、土台部分が常に水平を保つようにし、 200Nの力 Fで鉛直下向きにガラス面 に押し付ける。  [0018] The surface of the glass plate 106 on which the groove 108 was formed was placed horizontally with the road surface being considered, and water was sufficiently sprayed thereon to create a wet road surface state. The block sample 100 has its base part (the upper part in Fig. 7 (A)) fixed to a smooth iron plate (not shown) with an adhesive so that the base part is always kept horizontal, with a force F of 200N. Press vertically against the glass surface.
[0019] 200Nの力で 2秒間押し付け、そこ力も速度 20mmZ秒の速度で、ブロックサンプ ル 100の溝 102と直角となる方向(矢印 B方向)にブロックサンプル 100を移動させる 。このとき、移動させた方向に掛カる力を Fxとして、その Fxを測定した。  [0019] The block sample 100 is pressed with a force of 200 N for 2 seconds, and the force is also a speed of 20 mmZ seconds, and the block sample 100 is moved in a direction perpendicular to the groove 102 of the block sample 100 (arrow B direction). At this time, the force applied in the moved direction was defined as Fx, and the Fx was measured.
この Fxは、図 7 (B)に示すように、移動開始力 大きくなり、あるところでピークを持 ち、その後は一定値に落ち着いた。これは、ブロックが路面と粘着していて滑り出す までの摩擦係数の変化を表している。即ち、粘着摩擦から滑り摩擦に状態が変わる までの変化である。 As shown in Fig. 7 (B), this Fx increased in movement starting force, peaked at a certain point, and then settled to a constant value. This is because the block sticks to the road surface and begins to slide Represents the change in the coefficient of friction up to That is, the change until the state changes from sticking friction to sliding friction.
[0020] このときの最大の Fxの値を、鉛直方向の荷重 200Nで除したものを摩擦係数 ) とした。このような実験を 1つのサンプルに対して 10回行い、その平均値をそのサン プルの摩擦係数とした。陸部の形状を表す tZhを横軸にとり、摩擦係数を縦軸にし てデータを整理した結果を図 9 (A)に示した。その結果、 tZhがある値の時に摩擦係 数が最大になることが分力つた。  [0020] A value obtained by dividing the maximum Fx value by a vertical load of 200 N was defined as a friction coefficient. Such an experiment was performed 10 times on one sample, and the average value was taken as the coefficient of friction of the sample. Fig. 9 (A) shows the results of organizing the data with tZh representing the land shape on the horizontal axis and the friction coefficient on the vertical axis. As a result, it was found that the friction coefficient was maximized when tZh was a certain value.
このような研究結果から、細長陸部は、 tZhを 0. 6〜2. 0とした時に摩擦係数が高 い値を示すことが明ら力となり、これが本発明の数値限定の根拠となっている。  From these research results, it is clear that the elongated land portion has a high friction coefficient when tZh is set to 0.6 to 2.0, which is the basis for the numerical limitation of the present invention. Yes.
[0021] なお、 t/hが最適値を持つ理由は次の通りである。 t/hが 0. 6よりも小さいときは、 ブロックの剛性が弱ぐ横方向の剪断力の作用に対してブロックが簡単に倒れ込み、 その結果、ブロックとガラス面 (路面)との接触面積が減少する。即ち、浮き上がって V、る部分の割合が大き!/、ことになる(図 9 (B)参照)。 [0021] The reason why t / h has an optimum value is as follows. When t / h is less than 0.6, the block easily falls down due to the lateral shearing force that weakens the rigidity of the block. As a result, the contact area between the block and the glass surface (road surface) is reduced. Decrease. In other words, the ratio of the part that rises to V is large! / (See Fig. 9 (B)).
一方、逆に tZhが 2. 0よりも大きい場合は、図 9 (D)のような現象が起こる。 即ち、ブロックの剛性が非常に高ぐ横方向の変形量は少ないが、ブロックが少しで も傾くと、接地面の大部分が路面から浮き上がってしまう。つまり、幅 tが広いために、 ブロックの少しの傾き変形が大きく影響し、接地面を減少させるわけである。  On the other hand, when tZh is larger than 2.0, the phenomenon shown in Fig. 9 (D) occurs. That is, the rigidity of the block is very high and the amount of lateral deformation is small, but if the block is tilted even a little, most of the ground contact surface will be lifted off the road surface. In other words, since the width t is wide, a slight inclination deformation of the block has a great influence and reduces the ground plane.
図 9 (C)が本発明で数値限定した tZhの適正な範囲内であり、ブロックの浮き上が り割合 (ブロックの踏面面積を基準として)が適度に抑制されている。  Fig. 9 (C) is within the appropriate range of tZh, which is numerically limited by the present invention, and the floating ratio of the block (based on the tread area of the block) is moderately suppressed.
[0022] 請求項 1に記載の二輪車用空気入りタイヤでは、長さが幅の 3倍以上とされると共 に、高さ hと幅 tとの比 tZhが 0. 6〜2. 0を満足する細長陸部の少なくとも一部力 ト レッド側部に配置されて 、るので、ウエット路面旋回時の陸部と路面との接触状態が 良好となり、グリップ力を向上させることができる。  [0022] In the pneumatic tire for a motorcycle according to claim 1, when the length is set to be not less than three times the width, the ratio tZh between the height h and the width t is from 0.6 to 2.0. Since it is arranged on the tread side of at least a part of the satisfactory slender land portion, the contact state between the land portion and the road surface when turning on a wet road surface is improved, and the grip force can be improved.
[0023] 請求項 2に係る発明は、請求項 1に記載の二輪車用空気入りタイヤにおいて、前記 細長陸部は、タイヤ周方向に間隔をおいて配置された、タイヤ周方向に対して角度 を有する溝の間に形成されて 、ることを特徴として 、る。  [0023] The invention according to claim 2 is the pneumatic tire for a motorcycle according to claim 1, wherein the elongated land portion is disposed at an angle with respect to the tire circumferential direction and spaced apart in the tire circumferential direction. It is characterized by being formed between the grooves having.
[0024] 次に、請求項 2に記載の二輪車用空気入りタイヤの作用を説明する。  Next, the operation of the pneumatic tire for a motorcycle according to claim 2 will be described.
細長陸部を区画する溝は、タイヤ周方向に対して角度を有するものであり、いわゆ る周方向溝ではない。これは、細長陸部がトレッド側部に設けられ、トレッド側部は車 体を傾斜させたときに接地する特徴のためである。車体が傾斜した場合 (即ち、二輪 車がブレーキを掛けながら旋回を始める挙動、一定の傾斜で旋回を続ける挙動、旋 回から加速して車体を直立させていく挙動を含む)を考えると、トレッド側部が接地し ており、トレッド側部には横力が主体的に加わる力 横力の他に前後方向の力も加わ る場合がある。 The grooves defining the elongated land portions have an angle with respect to the tire circumferential direction. It is not a circumferential groove. This is because the elongated land portion is provided on the tread side portion, and the tread side portion contacts the ground when the vehicle is tilted. Considering the case where the vehicle body is tilted (that is, including the behavior of a motorcycle starting to turn while applying a brake, the behavior of continuing to turn at a certain inclination, and the behavior of accelerating from the rotation and standing the vehicle upright) The side is grounded, and the lateral force is applied to the tread side in addition to the lateral force.
前輪は旋回に加えて制動を主に担当するため、ブレーキを掛けた場合は横力と制 動力の両方が加わる。このとき、トレッド側部に加わる力は斜め方向となり、この方向 に沿う形で溝が傾斜されているとグリップを高く保てる。  Because the front wheels are mainly responsible for braking in addition to turning, both lateral force and braking force are applied when the brake is applied. At this time, the force applied to the tread side is in an oblique direction, and if the groove is inclined along this direction, the grip can be kept high.
[0025] 一方、後輪は車体を傾けた状態力 アクセルを開けて加速する場合に、横力と駆 動力とが同時に加わる。トレッドに加わる力は斜め方向となるため、トレッド側部に配 置する細長陸部は傾斜角度を設定した方が好ましい。そのため、請求項 2では周方 向に対して角度を持たせることを規定した。  [0025] On the other hand, lateral force and driving force are simultaneously applied to the rear wheels when the vehicle is tilted to accelerate the state force accelerator. Since the force applied to the tread is oblique, it is preferable to set an inclination angle for the elongated land portion disposed on the tread side portion. Therefore, Claim 2 stipulates that an angle is given to the circumferential direction.
なお、傾斜角度は 90度でも構わないが、この場合は溝がタイヤ幅方向となり、横力 に対して非常に強いトレッドとなる。なお、溝と溝との間隔については等間隔としても 良いが、陸部が路面を打撃することによって生じる音が、等間隔の場合は一定の間 隔で生じることになり、特定の周波数の騒音レベルが悪ィ匕するため、通常は間隔をず らすような工夫 ( 、わゆるピッチノリエーシヨン)がなされる。  The inclination angle may be 90 degrees, but in this case, the groove is in the tire width direction and the tread is very strong against lateral force. The distance between the grooves may be equal. However, the sound generated when the land hits the road surface is generated at regular intervals when the land is equally spaced. Since the level is bad, usually, a device that shifts the interval (so-called pitch noiration) is made.
[0026] 請求項 3に係る発明は、請求項 2に記載の二輪車用空気入りタイヤにおいて、細長 陸部が、トレッド全幅の 10%以上に渡ってトレッド展開幅方向に連続して延在してい ることを特徴としている。 [0026] The invention according to claim 3 is the pneumatic tire for a motorcycle according to claim 2, wherein the elongated land portion continuously extends in the tread deployment width direction over 10% of the entire tread width. It is characterized by that.
次に、請求項 3に記載の二輪車用空気入りタイヤの作用を説明する。  Next, the operation of the pneumatic tire for a motorcycle according to claim 3 will be described.
細長陸部がタイヤ幅方向に連続して延在して 、ても、その延在長さがトレッド全幅 の 10%未満では、パターンの中に占める割合はわずかであり、パターンの他の成分 によってウエット旋回性能が影響を受けてしまい、本発明の規定による細長陸部の効 果が薄れてしまう。なお、細長陸部は、パターンの幅方向全域に渡って延びていても 良い。  Even if the elongated land portion extends continuously in the tire width direction, if the extended length is less than 10% of the total width of the tread, the proportion of the pattern in the pattern is small and depends on the other components of the pattern. The wet turning performance is affected, and the effect of the elongated land according to the present invention is reduced. Note that the elongated land portion may extend over the entire width direction of the pattern.
[0027] 請求項 4に係る発明は、請求項 3に記載の二輪車用空気入りタイヤにおいて、細長 陸部が、ショルダー側でタイヤ赤道面側よりもタイヤ回転方向に位置するように傾斜 して!/、ることを特徴として!/、る。 [0027] The invention according to claim 4 is the elongated pneumatic tire for motorcycles according to claim 3. Tilt the land so that it is positioned in the tire rotation direction on the shoulder side and on the tire equator side! /, Characterized by that!
[0028] 次に、請求項 4に記載の二輪車用空気入りタイヤの作用を説明する。  Next, the operation of the pneumatic tire for a motorcycle according to claim 4 will be described.
二輪車においては、前輪には制動力と横力が主体的に掛かり、後輪には駆動力と 横力が主体的に掛かる。横力が掛カることは前後輪とも同じであるが、前後方向の力 は前輪が制動力であり、後輪が駆動力である。  In a two-wheeled vehicle, braking force and lateral force are mainly applied to the front wheels, and driving force and lateral force are mainly applied to the rear wheels. The lateral force is the same for the front and rear wheels, but the front and rear force is the braking force for the front wheels and the driving force for the rear wheels.
つまり、前輪では、傾斜溝をショルダー側がタイヤ赤道面側よりもタイヤ回転方向に 位置するように傾斜させることが、横力と制動が同時に掛カつたときに、その合力の 向きが傾斜溝の傾きに沿う形になり、陸部の変形を抑える上で好まし 、。  In other words, on the front wheels, it is possible to incline the inclined groove so that the shoulder side is located in the tire rotation direction relative to the tire equatorial plane side.When lateral force and braking are applied simultaneously, the direction of the resultant force is the inclination of the inclined groove. It is preferable to suppress the deformation of the land part.
[0029] 請求項 5に係る発明は、請求項 3に記載の二輪車用空気入りタイヤにおいて、細長 陸部は、タイヤ赤道面側がショルダー側よりもタイヤ回転方向に位置するように傾斜 して!/、ることを特徴として!/、る。  [0029] The invention according to claim 5 is the pneumatic tire for a motorcycle according to claim 3, wherein the elongated land portion is inclined so that the tire equatorial plane side is positioned in the tire rotation direction more than the shoulder side! /, Characterized by that!
[0030] 次に、請求項 5に記載の二輪車用空気入りタイヤの作用を説明する。  [0030] Next, the operation of the pneumatic tire for a motorcycle according to claim 5 will be described.
請求項 4の作用で説明したように、後輪には駆動力と横力が主体的に掛かる。後輪 では、傾斜溝をタイヤ赤道面側がショルダー側よりもタイヤ回転方向に位置するよう に傾斜させることが、横力と駆動力が同時に掛カつたときに、その合力の向きが傾斜 溝の傾きに沿う形になり、陸部の変形を抑える上で好ま 、。  As explained in the operation of claim 4, the driving force and the lateral force are mainly applied to the rear wheel. In the rear wheel, it is possible to incline the inclined groove so that the tire equatorial plane side is positioned more in the tire rotation direction than the shoulder side. When lateral force and driving force are applied simultaneously, the direction of the resultant force is the inclination of the inclined groove. It is in the shape along the line, and is preferable in suppressing the deformation of the land.
[0031] 請求項 6に係る発明は、請求項 4または請求項 5に記載の二輪車用空気入りタイヤ において、細長陸部の幅方向中心線のタイヤ周方向に対する角度力 タイヤ赤道面 側からショルダー側へ向けて大きく設定され、タイヤ赤道面側で 10〜30度の範囲内 、ショルダー側で 50〜90度の範囲内に設定されていることを特徴としている。  [0031] The invention according to claim 6 is the pneumatic tire for a motorcycle according to claim 4 or claim 5, wherein the angular force of the center line in the width direction of the elongated land portion with respect to the tire circumferential direction is from the tire equatorial plane side to the shoulder side. It is characterized in that it is set within a range of 10 to 30 degrees on the tire equator side and within a range of 50 to 90 degrees on the shoulder side.
[0032] 次に、請求項 6に記載の二輪車用空気入りタイヤの作用を説明する。  Next, the operation of the pneumatic tire for a motorcycle according to claim 6 will be described.
二輪車は、深いコーナリングを行う場合は、旋回中に車体を大きく傾けて、タイヤの トレッド端部付近を用いる。このときは、前後方向の力よりも横方向の力の方が大きく タイヤに作用するので、トレッド端付近の細長陸部は、横方向の力に沿った方向に延 びていること、即ち、ショルダー側では、細長陸部の幅方向中心線の角度を 50〜90 度の範囲内に設定することが好ま U、。  When two-wheeled vehicles are to be deeply cornered, the body should be greatly tilted while turning and the area near the tread edge of the tire should be used. At this time, since the lateral force acts on the tire more than the longitudinal force, the elongated land near the tread end extends in the direction along the lateral force, that is, on the shoulder side. Then, it is preferable to set the angle of the width direction center line of the elongated land part within the range of 50 to 90 degrees.
このことは、前輪タイヤおよび後輪タイヤの別なく同様である。 [0033] この一方で、車体が大きく傾いた状態から加速して行くコーナーからの脱出時を考 えると、横力に加え、後輪の場合は駆動力がこれに加わる。そして加速をするに従い 、倒れていた車体は徐々に直立に近づく。即ち、タイヤが接地している場所は、トレツ ド端側から加速に伴ってタイヤ赤道面側に移ることになる。ここで、加速に伴って横力 の割合が減り、加速力の割合が増えるわけだから、その合力も横方向力 タイヤ周方 向に近づくことになる。 This is the same regardless of whether the front wheel tire or the rear wheel tire is used. [0033] On the other hand, when considering the escape from a corner that accelerates from a state in which the vehicle body is greatly inclined, in addition to lateral force, driving force is applied to this in the case of a rear wheel. As the vehicle accelerates, the fallen body gradually approaches its upright position. In other words, the place where the tire is in contact with the ground moves from the end side of the tire to the tire equatorial plane side with acceleration. Here, the rate of lateral force decreases with acceleration, and the rate of acceleration force increases, so the resultant force also approaches the lateral force of the tire.
また、前輪タイヤには通常、車体の傾き角度が比較的小さい状態での下で制動力 力 S作用されることとなる。  In addition, the front wheel tire is normally subjected to a braking force S under a relatively small inclination angle of the vehicle body.
したがって、ショルダー側では細長陸部の幅方向中心線の角度を 50〜90度とし、 タイヤ赤道面側では細長陸部の幅方向中心線の角度を 10〜30度の範囲内とするこ とが好ましい。  Therefore, on the shoulder side, the angle of the center line in the width direction of the elongated land part may be 50 to 90 degrees, and on the tire equator side, the angle of the center line in the width direction of the elongated land part may be in the range of 10 to 30 degrees. preferable.
なお、細長陸部の幅方向中心線の角度は、タイヤ赤道面の右側と左側とでは対称 に設定する方が、右旋回と左旋回とでタイヤの性能が変わらな 、ため好ま 、。  It is preferable to set the angle of the center line in the width direction of the elongated land portion symmetrically on the right and left sides of the tire equator because the tire performance does not change between right turn and left turn.
[0034] また、タイヤ赤道面側とショルダー側との中間部分では、タイヤ赤道面側の溝とショ ルダー側の溝との中間の角度とし、タイヤ赤道面側力もショルダー側へ向けて角度を 漸増させることが好ましい。 [0034] Further, in the middle part between the tire equatorial plane side and the shoulder side, the angle between the tire equatorial plane side groove and the shoulder side groove is set to an intermediate angle, and the tire equatorial plane side force gradually increases toward the shoulder side. It is preferable to make it.
発明の効果  The invention's effect
[0035] 以上説明したように本発明の二輪車用空気入りタイヤによれば、従来よりもウエット 路面での旋回性能を向上することができる、という優れた効果を有する。  As described above, according to the pneumatic tire for a motorcycle of the present invention, there is an excellent effect that the turning performance on the wet road surface can be improved as compared with the related art.
図面の簡単な説明  Brief Description of Drawings
[0036] [図 1]第 1の実施形態に係る二輪車用空気入りタイヤの回転軸に沿った断面図である  FIG. 1 is a cross-sectional view along the rotational axis of a pneumatic tire for a motorcycle according to a first embodiment.
[図 2]第 1の実施形態 (試験では実施例 1)に係る二輪車用空気入りタイヤのトレッドの 展開図である。 FIG. 2 is a development view of a tread of a pneumatic tire for a motorcycle according to a first embodiment (Example 1 in a test).
[図 3]実施例 2のトレッドの展開図である。  FIG. 3 is a development view of the tread of Example 2.
[図 4]実施例 3のトレッドの展開図である。  FIG. 4 is a development view of the tread of Example 3.
[図 5]実施例 4のトレッドの展開図である。  FIG. 5 is a development view of the tread of Example 4.
[図 6]比較例 1のトレッドの展開図である。 [図 7] (A)はブロックサンプルの試験を示す説明図であり、 (B)は試験結果を示すグ ラフである。 FIG. 6 is a development view of the tread of Comparative Example 1. [FIG. 7] (A) is an explanatory diagram showing a test of a block sample, and (B) is a graph showing a test result.
[図 8] (A)〜(G)はブロックサンプルの側面図である。  [FIG. 8] (A) to (G) are side views of the block sample.
[図 9] (A)は試験結果力も得られた摩擦係数を示すグラフであり、 (B)〜 (D)はブロッ クの変形状態を示す側面図である。  [FIG. 9] (A) is a graph showing the coefficient of friction obtained for the test result force, and (B) to (D) are side views showing the deformation state of the block.
符号の説明  Explanation of symbols
[0037] 10 二輪車用空気入りタイヤ [0037] 10 Pneumatic tires for motorcycles
28 トレッド  28 tread
50 傾斜溝  50 inclined grooves
56 陸部  56 Land
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0038] 本発明の二輪車用空気入りタイヤの一実施形態を図 1及び図 2にしたがって説明 する。 One embodiment of a pneumatic tire for a motorcycle according to the present invention will be described with reference to FIGS. 1 and 2.
(カーカス)  (Carcass)
図 1に示すように、本実施形態の二輪車用空気入りタイヤ 10は、タイヤ赤道面 CL に対して交差する方向に延びるコードが埋設された第 1のカーカスプライ 12及び第 2 のカーカスプライ 14から構成されたカーカス 16を備えている。  As shown in FIG. 1, the pneumatic tire 10 for a motorcycle according to the present embodiment includes a first carcass ply 12 and a second carcass ply 14 in which cords extending in a direction intersecting the tire equatorial plane CL are embedded. It has a carcass 16 constructed.
なお、本実施形態の二輪車用空気入りタイヤ 10は後輪用であり、タイヤサイズは 1 90Z50ZR17である。  Note that the pneumatic tire 10 for a motorcycle according to the present embodiment is for a rear wheel, and the tire size is 190Z50ZR17.
[0039] 第 1のカーカスプライ 12及び第 2のカーカスプライ 14は、各々両端部分が、ビード 部 18に埋設されているビードコア 20の周りに、タイヤ内側力も外側へ向力つて巻き上 げられている。  [0039] Each end portion of the first carcass ply 12 and the second carcass ply 14 is wound around the bead core 20 embedded in the bead portion 18 with the tire inner force also being directed outward. Yes.
第 1のカーカスプライ 12は、被覆ゴム中に複数本のラジアル方向に延びるコード( ナイロン)を平行に並べて埋設したものであり、本実施形態では、タイヤ赤道面位置 での、タイヤ赤道面に対するコードの角度が 80度に設定されている。第 2のカーカス プライ 14も、被覆ゴム中に複数本のラジアル方向に延びるコード (ナイロン)を平行に 並べて埋設したものであり、本実施形態では、タイヤ赤道面に対するコードの角度が 同様に 80度に設定されて 、る。 なお、第 1のカーカスプライ 12のコードと第 2のカーカスプライ 14のコードとは互い に交差しており、タイヤ赤道面 CLに対して互いに反対方向に傾斜している。また、本 実施形態では、コードの角度が 80度に設定されているが、 90度等の他の角度であ つても良いことはもちろんである。 The first carcass ply 12 has a plurality of radially extending cords (nylons) arranged in parallel in the covered rubber, and in this embodiment, the cord for the tire equator surface at the tire equator position. The angle is set to 80 degrees. The second carcass ply 14 is also formed by embedding a plurality of cords (nylon) extending in the radial direction in parallel in the coated rubber, and in this embodiment, the cord angle with respect to the tire equatorial plane is also 80 degrees. Is set to Note that the cord of the first carcass ply 12 and the cord of the second carcass ply 14 intersect each other, and are inclined in opposite directions with respect to the tire equatorial plane CL. In the present embodiment, the angle of the cord is set to 80 degrees, but other angles such as 90 degrees may be used.
[0040] (主交錯層) [0040] (Main crossing layer)
このカーカス 16のタイヤ半径方向外側に主交錯層 26が配置されている。 本実施形態の主交錯層 26は、第 1のベルトプライ 26A及び第 2のベルトプライ 26B から構成されている。  A main crossing layer 26 is disposed outside the carcass 16 in the tire radial direction. The main crossing layer 26 of the present embodiment is composed of a first belt ply 26A and a second belt ply 26B.
第 1のベルトプライ 26Aは、被覆ゴム中に複数本のコード (本実施形態では、芳香 族ポリアミド繊維を撚つた直径 0. 7mmのコード。)を平行に並べて打ち込み間隔 50 本 Z50mmで埋設したものであり、タイヤ赤道面位置での、タイヤ赤道面に対するコ ードの角度が 33度に設定されている。第 2のベルトプライ 26Bも、被覆ゴム中に複数 本のコード (本実施形態では、芳香族ポリアミド繊維を撚つた直径 0. 7mmのコード。 )を平行に並べて打ち込み間隔 50本 Z50mmで埋設したものであり、タイヤ赤道面 に対するコードの角度が 33度に設定されている。  The first belt ply 26A is a cord in which a plurality of cords (corresponding to a diameter of 0.7 mm in which aromatic polyamide fibers are twisted in this embodiment) are arranged in parallel in a coated rubber and embedded at 50 spacing Z50mm. The angle of the cord with respect to the tire equator at the position of the tire equator is set to 33 degrees. The second belt ply 26B is also formed by arranging a plurality of cords (corresponding to a cord with a diameter of 0.7 mm in which aromatic polyamide fibers are twisted in this embodiment) in parallel in the covering rubber and placing them in parallel at a driving interval of 50 Z50 mm The cord angle with respect to the tire equatorial plane is set to 33 degrees.
第 1のベルトプライ 26Aのコードと第 2のベルトプライ 26Bのコードとは互いに交差し ており、タイヤ赤道面 CLに対して互いに反対方向に傾斜して 、る。  The cords of the first belt ply 26A and the cords of the second belt ply 26B cross each other, and are inclined in opposite directions with respect to the tire equatorial plane CL.
[0041] 主交錯層 26のタイヤ径方向外側には、トレッド 28を形成するトレッドゴム 30が配置 されている。 [0041] A tread rubber 30 that forms a tread 28 is disposed on the outer side of the main crossing layer 26 in the tire radial direction.
なお、本実施形態では、主交錯層 26を 2枚のベルトプライで構成した力 3枚以上 のベルトプライで構成しても良い。また、本実施形態では、カーカス 16のクラウン部を 補強するために主交錯層 26を用いて 、るが、近年の高性能用の二輪車用空気入り タイヤの構造に良く見られるスパイラルベルト層を用いても良 、。  In the present embodiment, the main crossing layer 26 may be composed of a belt ply having three or more forces composed of two belt plies. In this embodiment, the main crossing layer 26 is used to reinforce the crown portion of the carcass 16, but a spiral belt layer often used in the structure of a pneumatic tire for a high-performance motorcycle in recent years is used. OK.
[0042] スノイラルベルト層は、例えば、 1本のコードを未加硫のコーティングゴムで被覆し た長尺状のゴム被覆コード、または複数本のコードを未加硫のコーティングゴムで被 覆した帯状プライを螺旋状に巻き回すことにより形成することができ、コードの延在方 向が実質的にタイヤ周方向とされている。スパイラルベルト層のコードは有機繊維コ ードであっても良ぐスチールコードであっても良い。 [0043] より具体的には、スパイラルベルト層は、芳香族ポリアミド繊維を撚つた直径 0. 7m mのコードを被覆ゴム中に埋設したものを、打ち込み間隔 50本 Z50mmとなるように スパイラル状に巻き付けることで形成することができる。 [0042] The snail belt layer is, for example, a long rubber-coated cord in which one cord is covered with an unvulcanized coating rubber, or a belt-like ply in which a plurality of cords are covered with an unvulcanized coating rubber. Can be formed by spirally winding the cord, and the extending direction of the cord is substantially the tire circumferential direction. The cord of the spiral belt layer may be an organic fiber cord or a steel cord. [0043] More specifically, the spiral belt layer is a spiral belt in which cords of 0.7 mm diameter twisted with aromatic polyamide fibers are embedded in the coated rubber so that the driving distance is 50 and Z is 50 mm. It can be formed by winding.
[0044] このようなスパイラルベルト層を、主交錯層 26のタイヤ径方向外側に配置するような 構成としても良ぐあるいはスチールコードを用いたスパイラルベルト層を主交錯層 2 6の代わりに用いても良い。  [0044] Such a spiral belt layer may be arranged outside the main crossing layer 26 in the tire radial direction, or a spiral belt layer using a steel cord may be used instead of the main crossing layer 26. Also good.
[0045] (トレッドパターン)  [0045] (tread pattern)
図 2に示すように、トレッド 28には、タイヤ赤道面 CLの両側に、それぞれ周方向に 延びる、溝幅が 5mmの周方向主溝 40が 2ずつ本形成されている。さらに、トレッド 28 には、タイヤ幅方向外側の周方向主溝 40からタイヤ幅方向外側に離間した位置から トレッド端 28Eに向けて傾斜溝 50が形成されている。  As shown in FIG. 2, the tread 28 is formed with two circumferential main grooves 40 each having a groove width of 5 mm extending in the circumferential direction on both sides of the tire equatorial plane CL. Further, the tread 28 is formed with an inclined groove 50 from a position spaced outward in the tire width direction from the circumferential main groove 40 on the outer side in the tire width direction toward the tread end 28E.
[0046] 周方向主溝 40及び傾斜溝 50の溝深さは、本実施形態では全て 6mmである。  [0046] The groove depths of the circumferential main groove 40 and the inclined groove 50 are all 6 mm in this embodiment.
本実施形態のトレッド 28の展開幅は 240mmである。傾斜溝 50は、溝幅が 4mmで あり、トレッド端 28E力もタイヤ赤道面側へ 65mmの範囲内に形成されている。傾斜 溝 50のタイヤ周方向に対する角度は、タイヤ赤道面 CLに対して 50度である。  The developed width of the tread 28 of this embodiment is 240 mm. The inclined groove 50 has a groove width of 4 mm, and the tread end 28E force is also formed within a range of 65 mm toward the tire equator side. The angle of the inclined groove 50 with respect to the tire circumferential direction is 50 degrees with respect to the tire equatorial plane CL.
トレッド側部において、溝で区切られる細長陸部 56の幅は、本実施形態では 10m mに設定されている。細長陸部 56の幅、及び傾斜溝 50の溝幅は、トレッド端 28Eか らタイヤ赤道面側へ 32. 5mmの位置で測定したものである。  In the tread side portion, the width of the elongated land portion 56 delimited by the groove is set to 10 mm in this embodiment. The width of the elongated land portion 56 and the groove width of the inclined groove 50 are measured at a position of 32.5 mm from the tread end 28E to the tire equatorial plane side.
また、パターンのネガティブ率は、トレッド側部において 28. 6%である。  The pattern negative rate is 28.6% on the tread side.
[0047] なお、二輪車用空気入りタイヤは、トレッド 28の断面形状が非常に丸ぐパターン端 部が丸みを帯びているために、図 2に描いたパターンを彫り付ける際には、ちょうど地 球儀に貼られた紙のように、パターン端部に近 、ほど陸部幅および溝幅が狭くなる。 本実施形態でも、実際の溝の幅、陸部の幅とも、パターンの端部に近くなるほど狭く なるように加工される。そのため、パターン側部の平均的な値を測定するために、トレ ッド端から 32. 5mmのところで、上述の幅となるように溝を彫り付けている。  [0047] Note that the pneumatic tire for a motorcycle has a very round cross-sectional shape of the tread 28, and the pattern end is rounded. Therefore, when engraving the pattern depicted in Fig. 2, Like the paper affixed to the rope, the land and groove widths become narrower as they approach the pattern edge. Also in this embodiment, the actual width of the groove and the width of the land portion are processed so as to become narrower as they approach the end of the pattern. Therefore, in order to measure the average value on the side of the pattern, a groove is carved to the above-mentioned width at 32.5 mm from the end of the trade.
[0048] ここで、細長陸部 56の高さを h、細長陸部 56の幅を tとしたときに、細長陸部 56の 延在長さの 70%以上の領域において tZhが 0. 6〜2. 0を満足する必要がある。本 実施形態では、細長陸部 56の平均的な tZhが 1. 67である。より具体的には、トレツ ド端 28E力もタイヤ赤道面側へ 65mmの位置で測定した細長陸部 56の tZhが 1. 8 4、トレッド端 28E力もタイヤ赤道面側へ 32. 5mmの位置で測定した細長陸部 56の t Zhが 1. 67、トレッド端 28Eの位置で測定した細長陸部 56の tZhが 1. 50となって いる。 [0048] Here, assuming that the height of the elongated land portion 56 is h and the width of the elongated land portion 56 is t, tZh is 0.6 in an area of 70% or more of the extended length of the elongated land portion 56. It is necessary to satisfy ~ 2.0. In this embodiment, the average tZh of the elongated land portion 56 is 1.67. More specifically, Tretz The tZh of the elongated land part 56 measured at a position of 65 mm toward the tire equatorial plane is also 1.84, and the tread edge 28E force is also measured at a position of 32.5 mm toward the tire equatorial plane. Zh is 1.67, and tZh of the slender land 56 measured at the tread edge 28E is 1.50.
[0049] なお、二輪車用のトレッド 28は丸みを帯びているため、タイヤ赤道面 CLでの径が 最大で、トレッド端 28Eの径はタイヤ赤道面 CLの径よりも小さい。図 2は、展開図であ るため、トレッド端部分を、タイヤ赤道面部分の周方向長さと同じになるように、周方 向に引き伸ばして描 、ている。  [0049] Since the tread 28 for a motorcycle is rounded, the diameter at the tire equatorial plane CL is maximum, and the diameter of the tread end 28E is smaller than the diameter of the tire equatorial plane CL. Since Fig. 2 is a developed view, the tread edge is drawn in the circumferential direction so as to be the same as the circumferential length of the tire equatorial plane.
[0050] (作用)  [0050] (Action)
本実施形態の二輪車用空気入りタイヤ 10の作用を説明する。  The operation of the pneumatic tire 10 for a motorcycle according to this embodiment will be described.
この二輪車用空気入りタイヤ 10は、二輪車の後輪に用いることにより、能力が発揮 されるものである。本実施形態の二輪車用空気入りタイヤ 10では、傾斜溝 50を、タイ ャ赤道面側がトレッド端側よりもタイヤ回転方向側 (矢印 A方向側)となるように傾斜さ せているので、横力と駆動力が同時に掛カつたときに、その合力の向きが傾斜溝の 傾きに沿う形になり(即ち、合力の向きが細長陸部 56の長手方向に沿った方向に近 づく)、細長陸部 56の変形が効果的に抑えられる。  This pneumatic tire 10 for a motorcycle is used for the rear wheel of a motorcycle and exhibits its ability. In the pneumatic tire 10 for a motorcycle according to the present embodiment, the inclined groove 50 is inclined so that the tire equatorial plane side is closer to the tire rotation direction side (arrow A direction side) than the tread end side. When the driving force is applied simultaneously, the direction of the resultant force follows the inclination of the inclined groove (that is, the direction of the resultant force approaches the direction along the longitudinal direction of the elongated land portion 56). The deformation of the part 56 is effectively suppressed.
[0051] また、高さ hと幅 tとの比率 tZhが 0. 6〜2. 0を満足する細長陸部 56が、トレッド側 部に配置されているので、旋回時に接地する部分の排水性とブロック剛性とを高次 元で両立でき、従来よりもウエット路面旋回時に高いグリップ力が得られる。 [0051] In addition, since the elongated land portion 56 that satisfies the ratio tZh between the height h and the width t of 0.6 to 2.0 is arranged on the tread side, the drainage performance of the portion that contacts the ground during turning And block rigidity can be achieved at high dimensions, and a higher gripping force can be obtained when turning on a wet road than before.
なお、細長陸部 56の延在長さが、トレッド展開幅方向でトレッド全幅の 10%未満で は、パターンの中に占める細長陸部 56の割合はわず力となり、パターンの他の成分 によってウエット旋回性能が影響を受けてしまい、ウエット路面旋回時のグリップ力が 十分に得られなくなる。  If the extended length of the elongated land portion 56 is less than 10% of the total tread width in the tread deployment width direction, the proportion of the elongated land portion 56 in the pattern becomes a force and depends on the other components of the pattern. The wet turning performance is affected, and the grip force when turning on a wet road surface cannot be obtained sufficiently.
[0052] [その他の実施形態] [0052] [Other Embodiments]
なお、上記実施例では、傾斜溝 50の傾斜角度が一定であつたが、傾斜角度は部 位によって異なっていても良い。例えば、二輪車が深いコーナリングを行う場合は、 旋回中に車体を大きく傾けて、タイヤのトレッド端部付近を用いるが、前後方向の力 よりも横方向の力の方が大きくタイヤに作用するので、トレッド端付近の細長陸部 56 が横方向の力の入力方向に沿った方向に延びていること、即ち、細長陸部 56の幅 方向中心線のタイヤ周方向に対する角度を 50〜90度の範囲内に設定することが好 ましい。 In the above embodiment, the inclination angle of the inclined groove 50 is constant, but the inclination angle may be different depending on the part. For example, when a motorcycle is cornering deeply, tilt the vehicle body while turning and use the vicinity of the tread edge of the tire, but since the lateral force acts on the tire more than the longitudinal force, Elongated land near the tread edge 56 Is extending in the direction along the direction of lateral force input, that is, the angle of the center line in the width direction of the elongated land portion 56 with respect to the tire circumferential direction is preferably set within a range of 50 to 90 degrees. Yes.
[0053] 一方、車体が大きく傾いた状態力 加速して行くコーナーからの脱出時を考えると、 タイヤが接地する場所は、トレッド端側から加速に伴ってタイヤ赤道面側に移ることに なり、加速に伴って横力の割合が減り、加速力の割合が増えるので、その合力も横方 向からタイヤ周方向に近づくことになる。したがって、タイヤ赤道面側では細長陸部 5 6の幅方向中心線のタイヤ周方向に対する角度を 10〜30度の範囲内とすることが好 ましい。  [0053] On the other hand, considering the state force when the vehicle body is greatly inclined, the place where the tire touches the ground moves from the tread edge side to the tire equator side with acceleration, With acceleration, the ratio of lateral force decreases and the ratio of acceleration force increases, so the resultant force also approaches the tire circumferential direction from the lateral direction. Therefore, on the tire equatorial plane side, the angle of the widthwise center line of the elongated land portion 56 with respect to the tire circumferential direction is preferably within a range of 10 to 30 degrees.
[0054] また、上記実施形態では、後輪について説明したが、本発明は前輪用の二輪車用 空気入りタイヤにも適用できる。  [0054] Although the rear wheel has been described in the above embodiment, the present invention can also be applied to a pneumatic tire for a motorcycle for a front wheel.
前輪に用いる二輪車用空気入りタイヤには、例えば、図 1〜4のそれぞれに示すト レッドパターンを有するタイヤの回転方向を図に示すところとは逆にしたパターンを用 いることができる。すなわち、前輪に用いる場合、傾斜溝 50をショルダー側がタイヤ 赤道面側よりもタイヤ回転方向に位置するように傾斜させる。  As the pneumatic tire for a motorcycle used for the front wheel, for example, a pattern in which the rotation direction of the tire having the tread pattern shown in each of FIGS. 1 to 4 is reversed from that shown in the figure can be used. That is, when used for the front wheel, the inclined groove 50 is inclined so that the shoulder side is positioned in the tire rotation direction more than the tire equatorial plane side.
これにより、横力と制動力が同時に掛カつたときに、その合力の向きが傾斜溝 50の 傾きに沿う形になり、細長陸部 56の変形を効果的に抑えることが出来る。  As a result, when lateral force and braking force are applied simultaneously, the direction of the resultant force follows the inclination of the inclined groove 50, and deformation of the elongated land portion 56 can be effectively suppressed.
[0055] (リアタイヤ試験)  [0055] (Rear tire test)
本発明の性能改善効果を確かめるために、実車を用いたウエット路面での操縦性 能比較試験をした結果を以下に説明する。リア用の供試タイヤを用意し、リアのみの タイヤを交換して実車試験を行った。フロントのタイヤは常に従来のもので固定した。  In order to confirm the performance improvement effect of the present invention, the result of a comparison test on the maneuverability on a wet road surface using an actual vehicle will be described below. Rear test tires were prepared, and only the rear tires were replaced for actual vehicle tests. The front tire was always fixed with a conventional one.
[0056] 試験は、供試タイヤを lOOOccのスポーツタイプの二輪車の後輪に装着して、小雨 の日にテストコースでかなり激しい(限界に近い)実車走行を行った。雨量は終日安 定しており、常に均一なウエット状態であった。 1つのタイヤについて、テストコースを 4周走行し、 4周の平均ラップタイムを求めた、なお、これらのタイヤのセンター部分は 同じパターンであったため、違いが出たのはコーナーでの旋回性能であった。また、 テストライダーのフィーリングによるウエット時の操縦安定性能を 10点法で同時に総 合評価した。また、テストライダーの評価コメントも付記して結果を示す。 [0057] 先ず、供試タイヤに付いて説明する。 [0056] In the test, the test tire was mounted on the rear wheel of a sport type motorcycle of lOOOOcc, and the vehicle was run quite intense (close to the limit) on a test course on a rainy day. The rainfall was stable all day and was always in a uniform wet state. For one tire, the test course was run 4 laps, and the average lap time for 4 laps was calculated. Since the center part of these tires had the same pattern, the difference was the cornering performance. It was. We also comprehensively evaluated the steering stability performance in the wet state due to the feeling of the test rider at the same time using the 10-point method. In addition, the test rider's evaluation comments are added and the results are shown. First, the test tire will be described.
(実施例 1のタイヤ)  (Tire of Example 1)
図 2のパターンを有する、前述した実施形態のタイヤである。  3 is a tire according to the above-described embodiment having the pattern of FIG.
[0058] (実施例 2のタイヤ) [0058] (Tire of Example 2)
図 3のパターンを有する。ショルダー側の細長陸部 56の幅と傾斜溝 50の幅以外は 全て実施例 1と同じ構成。ネガティブ率も同じに合わせている。細長陸部 56の幅 tは 7. Omm、傾斜溝 50の幅は 2. 8mmである。  It has the pattern of Fig. 3. Except for the width of the elongated land portion 56 on the shoulder side and the width of the inclined groove 50, all are the same as in Example 1. The negative rate is also matched. The width t of the elongated land portion 56 is 7. Omm, and the width of the inclined groove 50 is 2.8 mm.
なお、 tZhの平均値は 1. 17である。より具体的には、トレッド端 28E力もタイヤ赤 道面側へ 65mmの位置で測定した細長陸部 56の tZhが 1. 29、トレッド端 28Eから タイヤ赤道面側へ 32. 5mmの位置で測定した細長陸部 56の tZhが 1. 17、トレッド 端 28Eの位置で測定した細長陸部 56の tZhが 1. 05となっている。  The average value of tZh is 1.17. More specifically, the tread end 28E force was also measured at a position where the tZh of the elongated land portion 56 measured at 65 mm toward the tire equatorial plane was 1.29, and the tZh 28E from the tread end 28E toward the tire equatorial plane 32.5 mm. The tZh of the elongated land portion 56 is 1.17, and the tZh of the elongated land portion 56 measured at the tread edge 28E is 1.05.
[0059] (実施例 3のタイヤ) [0059] (Tire of Example 3)
図 4のパターンを有する。ショルダー側の細長陸部 56の幅と傾斜溝 50の幅以外は 全て実施例 1と同じ構成。ネガティブ率も同じに合わせている。細長陸部 56の幅 tは 5. Omm、傾斜溝 50の幅は 2. Ommである。  It has the pattern of Fig. 4. Except for the width of the elongated land portion 56 on the shoulder side and the width of the inclined groove 50, all are the same as in Example 1. The negative rate is also matched. The width t of the elongated land portion 56 is 5. Omm, and the width of the inclined groove 50 is 2. Omm.
なお、 tZhの平均値は 0. 83である。より具体的には、トレッド端 28E力もタイヤ赤 道面側へ 65mmの位置で測定した細長陸部 56の tZhが 0. 91、トレッド端 28Eから タイヤ赤道面側へ 32. 5mmの位置で測定した細長陸部 56の tZhが 0. 83、トレッド 端 28Eの位置で測定した細長陸部 56の tZhが 0. 75となって!/、る。  The average value of tZh is 0.83. More specifically, the tread end 28E force was also measured at a position of 65 mm toward the equatorial plane of the tire, and the tZh of the elongated land portion 56 was 0.91, and the tread end 28E was measured at a position of 32.5 mm toward the tire equatorial plane. The tZh of the elongated land portion 56 is 0.83, and the tZh of the elongated land portion 56 measured at the position of the tread edge 28E is 0.75.
[0060] (実施例 4のタイヤ) [0060] (Tire of Example 4)
図 5のパターンを有する。センター部は実施例 1と同じ。トレッド端 28Aからセンター 近くまで延びる長 ヽ傾斜溝 50Aと、同じくトレッド端 28Aカゝら延びる短 ヽ傾斜溝 50B とが交互に形成されている。各傾斜溝の角度は、センター側でタイヤ周方向に対して 15度とし、トレッド端側でタイヤ周方向に対して 70度としている。ネガティブ率は実施 例 1と同じに合わせている。  It has the pattern of FIG. The center part is the same as in Example 1. Long inclined grooves 50A extending from the tread end 28A to the vicinity of the center and short inclined grooves 50B extending similarly from the tread end 28A are alternately formed. The angle of each inclined groove is 15 degrees with respect to the tire circumferential direction on the center side, and 70 degrees with respect to the tire circumferential direction on the tread end side. The negative rate is the same as in Example 1.
また、トレッド端力もタイヤ赤道面側へ 32. 5mmの位置において、各傾斜溝は、溝 幅が 4mmで、タイヤ周方向に対する角度が 40度であり、実施例 1と同じである。また 、細長陸部 56についても、トレッド端 28Eからタイヤ赤道面側へ 32. 5mmの位置の 幅が 10mmであり、実施例 1と同じである。 In addition, at the position where the tread end force is 32.5 mm toward the tire equatorial plane, each inclined groove has a groove width of 4 mm and an angle with respect to the tire circumferential direction of 40 degrees, which is the same as in Example 1. In addition, the elongated land portion 56 is also located 32.5 mm from the tread edge 28E to the tire equator side. The width is 10 mm, which is the same as in Example 1.
なお、 tZhの平均値は 1. 67である。より具体的には、トレッド端 28E力 タイヤ赤 道面側へ 65mmの位置で測定した細長陸部 56の tZhが 1. 84、トレッド端 28Eから タイヤ赤道面側へ 32. 5mmの位置で測定した細長陸部 56の tZhが 1. 67、トレッド 端 28Eの位置で測定した細長陸部 56の tZhが 1. 50となっている。  The average value of tZh is 1.67. More specifically, the tZh of the elongated land portion 56 measured at a position of 65 mm toward the tire equator side at the tread edge 28E force is 1.84, and the tZh is measured at a position of 32.5 mm from the tread edge 28E toward the tire equator side. The tZh of the elongated land portion 56 is 1.67, and the tZh of the elongated land portion 56 measured at the position of the tread edge 28E is 1.50.
[0061] (比較例 1のタイヤ) [0061] (Tire of Comparative Example 1)
図 6のパターンを有する。実施例 1と同様のパターンである力 ショルダー側の細長 陸部 56の幅は 16mm、傾斜溝 50の幅は 6. 4mmである。  It has the pattern shown in FIG. The force is the same pattern as in Example 1. The width of the slender land portion 56 on the shoulder side is 16 mm, and the width of the inclined groove 50 is 6.4 mm.
tZhの平均値は 2. 67である。より具体的には、トレッド端 28E力もタイヤ赤道面側 へ 65mmの位置で測定した細長陸部 56の tZhが 2. 94、トレッド端 28Eからタイヤ赤 道面側へ 32. 5mmの位置で測定した細長陸部 56の tZhが 2. 67、トレッド端 28E の位置で測定した細長陸部 56の tZhが 2. 40となって!/、る。  The average value of tZh is 2.67. More specifically, the tread end 28E force was measured at a position of 65 mm toward the tire equatorial plane at a tZh of 2.94 and the tZh at the tread end 28E from the tire equatorial plane side was measured at a position of 32.5 mm. The tZh of the elongated land portion 56 is 2.67, and the tZh of the elongated land portion 56 measured at the position of the tread edge 28E is 2.40! /.
[0062] (比較例 2のタイヤ) [0062] (Tire of Comparative Example 2)
実施例 1と同様のパターンである力 ショルダー側の細長陸部の幅は 3mm、傾斜 溝の幅は 1. 2mmである。  The width of the elongated land on the shoulder side is 3mm and the width of the inclined groove is 1.2mm, which is the same pattern as in Example 1.
tZhの平均値は 0. 5である。より具体的には、トレッド端 28E力もタイヤ赤道面側へ 65mmの位置で測定した細長陸部 56の tZhが 0. 45、トレッド端 28Eからタイヤ赤道 面側へ 32. 5mmの位置で測定した細長陸部 56の tZhが 0. 50、トレッド端 28Eの 位置で測定した細長陸部 56の tZh力 . 55となっている。  The average value of tZh is 0.5. More specifically, the tread end 28E force was also measured at a position of 65 mm toward the equatorial plane of the tire, and the tZh of the elongated land portion 56 was 0.45, and the elongate measured at a position of 32.5 mm from the tread end 28E to the tire equatorial plane. The tZh of land part 56 is 0.50, and the tZh force of elongated land part 56 measured at the position of tread edge 28E is .55.
[0063] (比較例 3のタイヤ) [0063] (Tire of Comparative Example 3)
実施例 1のパターンを逆にしたパターン。  A pattern obtained by reversing the pattern of Example 1.
[0064] 以下に、試験結果を示す。 [0064] The test results are shown below.
(実施例 1)  (Example 1)
t/h: l. 67  t / h: l. 67
ラップタイム: 52秒 4  Lap time: 52 seconds 4
ウエット走行評点: 7点  Wet driving score: 7 points
ライダーのコメント:大きく倒すコーナーで非常に安定して 、る。大きく倒した状態か らアクセルを開けて加速するときに、しっかりとしたグリップ感を感じられた。 [0065] (実施例 2) Rider's comment: It is very stable at the corner where it is greatly defeated. I felt a firm grip when opening the accelerator and accelerating from a state where it was greatly defeated. [Example 2]
t/h: l. 17  t / h: l. 17
ラップタイム: 51秒 9  Lap time: 51 seconds 9
ウエット走行評点: 8点  Wet driving score: 8 points
ライダーのコメント:基本的には実施例 4のパターンと同じ感じがするが、大きく倒し た状態力もアクセルを開けて加速するときのグリップが実施例 1よりも良いように感じ た。  Rider's comment: Basically, it feels the same as the pattern in Example 4, but the grip force when accelerating by opening the accelerator is better than Example 1 even when the state force is greatly lowered.
[0066] (実施例 3)  [0066] (Example 3)
t/h: 0. 83  t / h: 0.83
ラップタイム: 51秒 4  Lap time: 51 seconds 4
ウエット走行評点: 9点  Wet driving score: 9 points
ライダーのコメント:基本的には実施例 1と同じ感じがするが、実施例 1よりも全体的 にグリップが高い。特に、大きく倒した状態力もアクセルを開けて加速するときのグリツ プが非常に良い。  Rider's comment: Basically, it feels the same as in Example 1, but the overall grip is higher than in Example 1. In particular, even when the state force is greatly defeated, the grip when opening the accelerator and accelerating is very good.
[0067] (実施例 4) [0067] (Example 4)
t/h: l. 67  t / h: l. 67
ラップタイム: 51秒 8  Lap time: 51 seconds 8
ウエット走行評点: 9点  Wet driving score: 9 points
ライダーのコメント:非常にグリップが高い。また、大きく倒した状態力 アクセルを開 けて加速するときの動作が滑らかに感じる。つまり、常にグリップが安定して発生して いる安心感がある。  Rider's comment: The grip is very high. In addition, the motion when accelerating by opening the state force accelerator greatly depressed feels smooth. In other words, there is a sense of security that the grip is always generated stably.
[0068] (比較例 1) [0068] (Comparative Example 1)
t/h: 2. 67  t / h: 2. 67
ラップタイム: 54秒 7  Lap time: 54 seconds 7
ウエット走行評点: 4点  Wet driving score: 4 points
ライダーのコメント:グリップが少な 、。大きく倒した状態力もアクセルを開けて加速 するときにタイヤが空転しやす 、。車両が不安定になりやす 、。  Rider comment: There are few grips. Even when the state force is greatly defeated, the tires are likely to slip when the accelerator is opened and accelerated. The vehicle is likely to become unstable.
[0069] (比較例 2) t/h: 0. 5 [0069] (Comparative Example 2) t / h: 0.5
ラップタイム: 55秒 5  Lap time: 55 seconds 5
ウエット走行評点: 2点  Wet driving score: 2 points
ライダーのコメント:タイヤがぐによぐによして 、て恐くて車体を倒せな 、。コーナーで 確実にタイムをロスする。倒そうとしてもグリップがないため、倒すことができない。  Rider's comment: Because of the tiredness, you can't defeat the car body. Make sure you lose time in the corners. Even if you try to knock it down, you can't beat it because there is no grip.
[0070] (比較例 3) [0070] (Comparative Example 3)
t/h: l. 67  t / h: l. 67
ラップタイム: 53秒 6  Lap time: 53 seconds 6
ウエット走行評点: 6点  Wet driving score: 6 points
ライダーのコメント:大きく倒した状態力 アクセルを開けて加速するときに、すべる 様な挙動がある。ブレーキング時は少し安定するような気がする力 加速時のタイヤ のスライドが大きい。  Rider's comment: A greatly defeated state force When opening the accelerator and accelerating, it behaves like a slip. Force that feels a little stable during braking The tire slides greatly during acceleration.
[0071] 効果の検証。  [0071] Verification of effect.
実施例 1〜4の本発明に係るタイヤは、全て比較例よりも明らかにウエット操縦安定 性能が高力つた。従来の平均的なパターンは、比較例 1のように、 tZhが 2. 5よりも 大き!/、ものが殆どであるため、本発明に係るタイヤが旨く機能したことが確認できた。  The tires according to the present inventions of Examples 1 to 4 clearly had higher wet handling stability than the comparative examples. Most of the conventional average patterns, as in Comparative Example 1, have a tZh greater than 2.5! /, So it was confirmed that the tire according to the present invention functioned well.
[0072] 実施例 1〜3と比較例 1, 2の比較から、 tZhに適切な値があることが分かる。今回 の実車テストでは、実施例 3が最も適切な tZhとなっていた。これは、先の実験に示 したように、ブロックの倒れ込みや浮き上がりで説明できる。  [0072] From a comparison between Examples 1 to 3 and Comparative Examples 1 and 2, it can be seen that there is an appropriate value for tZh. In the actual vehicle test, Example 3 was the most appropriate tZh. This can be explained by the falling or rising of the block, as shown in the previous experiment.
即ち、 tZhが大きすぎるものは、ブロックが少し傾くだけで、浮き上がる面積が増え てしまい、トラクシヨンが掛カり難くなつたものと考えられる。これに対し、比較例 2のよ うに、非常に細力べ刻んだものは、ブロックそのものが簡単に倒れこんでしまい、プロ ックの角のみで路面を捉えようとするために、接触面積が非常に小さ力つたものと思 われる。  In other words, if tZh is too large, the block will be tilted only a little, and the floating area will increase, making it difficult for traction to occur. On the other hand, as shown in Comparative Example 2, in the case of very finely engraved blocks, the block itself collapses easily, and the contact area is reduced because it tries to catch the road surface only with the corners of the blocks. It seems to have been very small.
[0073] 実施例 1と実施例 4の比較から、溝の角度を徐々に傾けていくことが、ウエット性能 の向上につながつていることが分かる。これは、バイクの旋回時の姿勢変化の特徴か ら、大きく倒した場合には、横力を稼ぐような横溝に近い方向が良ぐ車体をある程度 起こした加速状態では、前後方向のトラクシヨンが作用するため、赤道方向の溝が適 していることを示している。 [0073] From the comparison between Example 1 and Example 4, it can be seen that gradually increasing the groove angle leads to an improvement in wet performance. This is because of the characteristic of the posture change when turning the motorcycle, and when it is greatly tilted, the traction in the front-rear direction acts in the acceleration state in which the vehicle body that has a good direction close to the lateral groove that generates lateral force is raised to some extent. Therefore, the equator groove is suitable. It shows that you are doing.
[0074] 実施例 1と比較例 3の比較から、パターンの方向性が分かる。後輪の場合は、トラク シヨンが重要な性能であり、実施例 1のような向きの方がトラクシヨンが力かりやすい。 これに対し、比較例 3は、ブレーキ性能がやや向上したようだ力 トラクシヨン時に力 の方向と細長陸部の方向が一致せずに、グリップ力を少し失ったようだ。  From the comparison between Example 1 and Comparative Example 3, the pattern directionality is known. In the case of the rear wheel, the traction is an important performance, and the traction in the direction as in Example 1 is easier to force. On the other hand, Comparative Example 3 seems to have lost some gripping force because the direction of the force does not match the direction of the elongated land during the force trough.
[0075] 本発明を有する実施例のタイヤは、何れも比較例のタイヤと比較し、大幅なウエット 操縦安定性の向上が確認された。  [0075] The tires of the examples having the present invention were confirmed to have significantly improved wet handling stability as compared with the tires of the comparative examples.

Claims

請求の範囲 The scope of the claims
[1] トレッドに複数の溝で区画された複数の陸部を有し、複数の陸部の内に、長さが幅の 3倍以上とされた細長陸部を含む二輪車用空気入りタイヤであって、  [1] A pneumatic tire for a motorcycle having a plurality of land portions divided by a plurality of grooves in a tread, and including a slender land portion whose length is three times or more of the width within the plurality of land portions. There,
タイヤ赤道面を中心として、トレッドの展開幅の 60%の領域をトレッド中央部、トレツ ド中央部のタイヤ幅方向外側をトレッド側部としたときに、前記細長陸部の少なくとも 一部がトレッド側部に配置され、  Centering on the tire equatorial plane, when 60% of the tread width is the center of the tread and the outer side in the tire width direction of the center of the tread is the tread side, at least a part of the elongated land is on the tread side. Placed in the
細長陸部の高さを h、細長陸部の幅を tとしたときに、細長陸部の延在長さの 70% 以上の領域において tZhが 0. 6〜2. 0を満足することを特徴とする二輪車用空気 入りタイヤ。  When the height of the elongated land part is h and the width of the elongated land part is t, tZh should satisfy 0.6 to 2.0 in the region of 70% or more of the extended length of the elongated land part. A characteristic pneumatic tire for motorcycles.
[2] 細長陸部は、タイヤ周方向に間隔をおいて配置された、タイヤ周方向に対して角度 を有する溝の間に形成されていることを特徴とする請求項 1に記載の二輪車用空気 入りタイヤ。  [2] The two-wheeled vehicle according to claim 1, wherein the elongated land portions are formed between grooves arranged at intervals in the tire circumferential direction and having an angle with respect to the tire circumferential direction. Pneumatic tire.
[3] 細長陸部は、トレッド全幅の 10%以上に渡ってトレッド展開幅方向に連続して延在 していることを特徴とする請求項 2に記載の二輪車用空気入りタイヤ。  [3] The pneumatic tire for a motorcycle according to claim 2, wherein the elongate land portion extends continuously in the tread deployment width direction over 10% of the entire width of the tread.
[4] 細長陸部は、ショルダー側がタイヤ赤道面側よりもタイヤ回転方向に位置するよう に傾斜していることを特徴とする請求項 3に記載の二輪車用空気入りタイヤ。  4. The pneumatic tire for a motorcycle according to claim 3, wherein the elongated land portion is inclined so that the shoulder side is positioned in the tire rotation direction with respect to the tire equatorial plane side.
[5] 前記細長陸部は、タイヤ赤道面側がショルダー側よりもタイヤ回転方向に位置す るように傾斜していることを特徴とする請求項 3に記載の二輪車用空気入りタイヤ。  5. The pneumatic tire for a motorcycle according to claim 3, wherein the elongated land portion is inclined such that a tire equatorial plane side is positioned in a tire rotating direction with respect to a shoulder side.
[6] 細長陸部の幅方向中心線のタイヤ周方向に対する角度は、タイヤ赤道面側から ショルダー側へ向けて大きく設定され、タイヤ赤道面側で 10〜30度の範囲内、ショ ルダー側で 50〜90度の範囲内に設定されていることを特徴とする請求項 4または請 求項 5に記載の二輪車用空気入りタイヤ。  [6] The angle of the center line in the width direction of the elongated land with respect to the tire circumferential direction is set large from the tire equator side to the shoulder side, within a range of 10 to 30 degrees on the tire equator side, and on the shoulder side The pneumatic tire for a motorcycle according to claim 4 or claim 5, wherein the pneumatic tire is set within a range of 50 to 90 degrees.
PCT/JP2006/316609 2005-08-25 2006-08-24 Pneumatic tire for bicycle WO2007023895A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-245005 2005-08-25
JP2005245005A JP4814582B2 (en) 2005-08-25 2005-08-25 Pneumatic tires for motorcycles

Publications (1)

Publication Number Publication Date
WO2007023895A1 true WO2007023895A1 (en) 2007-03-01

Family

ID=37771638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/316609 WO2007023895A1 (en) 2005-08-25 2006-08-24 Pneumatic tire for bicycle

Country Status (2)

Country Link
JP (1) JP4814582B2 (en)
WO (1) WO2007023895A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2508362A1 (en) * 2011-04-05 2012-10-10 Sumitomo Rubber Industries, Ltd. Motorcycle tire
CN105015277A (en) * 2014-04-28 2015-11-04 住友橡胶工业株式会社 Motorbike tire

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6235891B2 (en) * 2013-12-16 2017-11-22 住友ゴム工業株式会社 Motorcycle tires
JP6438344B2 (en) * 2015-05-01 2018-12-12 住友ゴム工業株式会社 Pneumatic tires for motorcycles

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6136002A (en) * 1984-07-27 1986-02-20 Bridgestone Corp Motorcycle belted tire excellent in grounding characteristic
JPS63116907A (en) * 1986-11-05 1988-05-21 Bridgestone Corp Pneumatic tire mounting method on two-wheeled vehicle
JPH07290906A (en) * 1994-04-22 1995-11-07 Bridgestone Corp Pneumatic tire for two wheeler
JPH10181313A (en) * 1996-12-26 1998-07-07 Bridgestone Corp Pneumatic tire for two-wheeled vehicle
JPH11198609A (en) * 1998-01-19 1999-07-27 Bridgestone Corp Pneumatic tire
JP2003211917A (en) * 2002-01-18 2003-07-30 Bridgestone Corp Pneumatic tire for two wheeler

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6136002A (en) * 1984-07-27 1986-02-20 Bridgestone Corp Motorcycle belted tire excellent in grounding characteristic
JPS63116907A (en) * 1986-11-05 1988-05-21 Bridgestone Corp Pneumatic tire mounting method on two-wheeled vehicle
JPH07290906A (en) * 1994-04-22 1995-11-07 Bridgestone Corp Pneumatic tire for two wheeler
JPH10181313A (en) * 1996-12-26 1998-07-07 Bridgestone Corp Pneumatic tire for two-wheeled vehicle
JPH11198609A (en) * 1998-01-19 1999-07-27 Bridgestone Corp Pneumatic tire
JP2003211917A (en) * 2002-01-18 2003-07-30 Bridgestone Corp Pneumatic tire for two wheeler

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2508362A1 (en) * 2011-04-05 2012-10-10 Sumitomo Rubber Industries, Ltd. Motorcycle tire
CN105015277A (en) * 2014-04-28 2015-11-04 住友橡胶工业株式会社 Motorbike tire

Also Published As

Publication number Publication date
JP2007055510A (en) 2007-03-08
JP4814582B2 (en) 2011-11-16

Similar Documents

Publication Publication Date Title
JP4800709B2 (en) Pneumatic tires for motorcycles
JP4814603B2 (en) Pneumatic tires for front wheels of motorcycles and pneumatic tires for rear wheels of motorcycles
JP4837969B2 (en) Pneumatic tires for motorcycles
AU642113B2 (en) Pneumatic tire having a unique footprint
JP4649215B2 (en) Pneumatic tires for motorcycles
JP4841215B2 (en) Pneumatic tires for motorcycles
US5337815A (en) Pneumatic tire having improved wet traction
JPH05319029A (en) Pneumatic radial tire for heavy load
JPH0999714A (en) Pneumatic tire
WO2007023902A1 (en) Pneumatic tire for bicycle
JP2002002229A (en) Pneumatic tire having improved wet traction performance and used on paved surface
JPH07108604B2 (en) Pneumatic tires for motorcycles
JP2001187517A (en) Pneumatic tire
JP3035172B2 (en) Radial tire
JP3100122B2 (en) Pneumatic tire
JPH0714683B2 (en) Motorcycle tires
WO2007023895A1 (en) Pneumatic tire for bicycle
JP4580312B2 (en) Pneumatic tires for motorcycles
JP3206837B2 (en) Pneumatic tire
JP3377262B2 (en) Pneumatic tires for motorcycles
JPS6123446Y2 (en)
JP2008195101A (en) Pneumatic tire
JP3308086B2 (en) Pneumatic radial tire for electric vehicles
JP2003054214A (en) Pneumatic radial tire
JP2019108035A (en) Off-road tire for motorcycle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06796722

Country of ref document: EP

Kind code of ref document: A1