WO2007022899A1 - Vorrichtung zur abwasserreinigung - Google Patents

Vorrichtung zur abwasserreinigung Download PDF

Info

Publication number
WO2007022899A1
WO2007022899A1 PCT/EP2006/008031 EP2006008031W WO2007022899A1 WO 2007022899 A1 WO2007022899 A1 WO 2007022899A1 EP 2006008031 W EP2006008031 W EP 2006008031W WO 2007022899 A1 WO2007022899 A1 WO 2007022899A1
Authority
WO
WIPO (PCT)
Prior art keywords
level
basin
labyrinth
ventilated
flow
Prior art date
Application number
PCT/EP2006/008031
Other languages
English (en)
French (fr)
Inventor
Ladislav Penzes
Juraj Csefalvay
Original Assignee
Ladislav Penzes
Juraj Csefalvay
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=37192486&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2007022899(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Ladislav Penzes, Juraj Csefalvay filed Critical Ladislav Penzes
Priority to PL06776841T priority Critical patent/PL1919833T3/pl
Priority to HUE06776841 priority patent/HUE009445T2/hu
Priority to AU2006284174A priority patent/AU2006284174B2/en
Priority to AT06776841T priority patent/ATE472514T1/de
Priority to DE502006007333T priority patent/DE502006007333D1/de
Priority to EP06776841A priority patent/EP1919833B1/de
Publication of WO2007022899A1 publication Critical patent/WO2007022899A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1242Small compact installations for use in homes, apartment blocks, hotels or the like
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the invention relates to a device for continuous, biological wastewater treatment from smaller sources of water pollution with a modified activation process, in which in a pool a living space with space-isolated, anaerobic, anoxic and oxic zones is combined and a secondary clarifier is combined with a retention space, with an existing circuit between the Zones of the living space and between the living space and the secondary room.
  • Wastewater treatment from smaller sources of water pollution is a complicated problem, because of the problems of considerable variability of wastewater flows and the variability of wastewater flows Water pollution faced by these smaller sources. In relatively small sections of the collecting channel, it does not balance the amount of sewage and sewage quality. Therefore, one must adapt the individual technical stages of the process of wastewater treatment (equalization tank, mechanical and biological cleaning and eventual subsequent cleaning) so that they are not overwhelmed and thus the necessary residence time and the surface load in the secondary clarification room are not exceeded. If no conditions have been established for balancing the quality and quantity of the wastewater flow, these stages must be significantly oversized. Wastewater treatment plants are dimensioned for the average flow rate of Q24. The hourly unevenness of the flow expresses another dimensioned flow, the maximum hourly flow Qmax.
  • Wastewater treatment plant For balancing the amount of wastewater is the
  • Sewage flow has been reached a higher level.
  • SBR systems feed-batch reactors
  • US 598 94 28 describes a discontinuous wastewater treatment system operated in a cyclic mode: charge, settling and discharge, with a variable capacity of the reaction space, establishing a low and high water level in the reactor and wherein the feed is continuous or may be discontinuous, but the effluent must always be discontinuous.
  • This cleaning method requires a device for removing some of the settled water during the settling mode, a so-called decanting. During this mode, the inflow into the reactor switched off.
  • the document US 450 58 13 a filter device is described in a discharge line, which is used in the secondary clarifier.
  • This filter device has a certain filter capacity; if the sewage inflow is greater than the filter capacity, the (water) level in the entire reactor increases, whereby a larger part of the filter submerges and thus increase the area and thus the filter capacity.
  • the filter is rinsed again with pressurized water supplied by a submersible pump placed behind the reactor in a basin of clear water.
  • a disadvantage is that for the water used for flushing the filter device, another basin must be set up where the purified waste water collects and a pump is attached with a reusable control valve. However, this increases the investment and operating costs of wastewater treatment.
  • the smaller wastewater treatment plants In the design and implementation of the smaller wastewater treatment plants, it is necessary that the smaller wastewater treatment plants be easily transportable finished products or be assembled in situ and adapt to the conditions of the application or the landscape with a minimum of construction work with the outer shapes, so that they are adaptable and parallel with the Increase in the amount of wastewater produced can be extended. Smaller wastewater treatment plants with an integrated retention space do not allow the fulfillment of all these requirements in the current state of the art at the same time.
  • the object of the invention is to provide a device for wastewater treatment from smaller sources of water pollution, which can be made in a compact unit with the possibility of formability and changeability by the use of a simple concrete support frame and lightweight construction wall elements made of plastic.
  • This device should perform the task of balancing the variable flow in a functional unit and achieve the highest possible efficiency of biological purification with elimination of nitrogen and phosphorus with low demands on the pump and mixing technology.
  • This object and the deficiencies of the known devices solves or substantially eliminates the device for continuous biological wastewater treatment with a modified activated sludge process in a basin a vital space with unventilated, anaerobic and anoxic zones with a ventilated, oxic zone and a secondary clarifier a retention space combined with an internal return between the zones of the living space and a recirculation of the return sludge between the living space and secondary clarification according to the invention.
  • the essence of the invention is that the basin, which consists of a bottom and an outer shell, is divided into an unvented, vertically traversed labyrinth, a ventilated Belocatingraum, a NachJacquesraum and a retention space that the unventilated, vertically traversed labyrinth of the ventilated Living space is separated by a partition that extends from the floor to above the level of the maximum level (B) passing through the plane of the Flood relief system is given, and having a passage opening either at the level of the basin or at the level of the outlet pipe from the basin.
  • B maximum level
  • the secondary clarifying room is confined inside the ventilated living space by a jacket extending from the floor to above the level of the maximum level (B) provided by the level of the spillway and has a passage opening at the bottom level of the basin.
  • the retention space is located in the basin between the level of the minimum level (A), which is given by the effluent out of the basin outflow line, and the level of the maximum water level (B), which is given by the level of the spillway, on the whole area along the vertical labyrinth, the ventilated living space and the secondary sedimentation chamber.
  • the vertically traversed labyrinth is divided in the direction of flow by dividing walls that protrude from the floor to above the level of the maximum level (B), which is given by the level of the spillway and the further passage openings alternately at the bottom level of the basin and at the level of the minimum Level (A), which is given by the leading out of the basin outflow line, wherein in the final sedimentation on the leading out of the basin outflow line, a flow regulator is mounted.
  • the dimensioned on the effluent line from the facility comes to a water level elevation throughout the basin, ranging from the minimum water level (A), which corresponds to the level of the effluent line, to the maximum water level (B), which corresponds to the level of the spillway, with the inner Partitions in the unventilated, vertical labyrinth, the partition between the ventilated amenity space and the non - aerated vertical labyrinth and the mantle of the secondary clarifier do not allow the contents of the individual rooms and zones to be mixed unrestrictedly, since these partitions and the jacket extend above the level of the water level through the Flood relief system is given rich, and so all wastewater treatment process can be done undisturbed in the retention room.
  • the continuous biological wastewater treatment apparatus can operate with a modified activation process according to the invention, the apparatus consisting of a basin with a quadrangular layout, with a bottom and an outer shell and wherein inner partitions are located in the non-aerated, vertically-traversed labyrinth, projecting from the bottom of the basin to above the level of the maximum level (B) provided by the plane of the spillway, which are provided with ports are located alternately at the bottom plane of the basin and at the level of the minimum level (A) 1, which is given by the plane of the outflow in the flow direction, and which are arranged in one or more rows, the rows being separated by a baffle.
  • the apparatus consisting of a basin with a quadrangular layout, with a bottom and an outer shell and wherein inner partitions are located in the non-aerated, vertically-traversed labyrinth, projecting from the bottom of the basin to above the level of the maximum level (B) provided by the plane of the spillway, which are provided with ports are located alternate
  • the device for continuous wastewater treatment with a modified activated sludge process according to the invention may conveniently be carried out in a basin having a circular floor plan with a bottom and an outer shell.
  • the basin of the device according to the invention may also have a polygonal shape, for example a square or hexagon, the basin being defined by a concentrically arranged partition wall with a circular or polygonal floor plan in an unventilated vital space and a ventilated vertical labyrinth with a passage opening on the Level of the minimum level (A), which is given by the level of the outflow pipe from the basin, or is divided at the floor level of the basin.
  • A Level of the minimum level
  • the device according to the invention is advantageously produced in monolithic or prefabricated concrete basins made of water-buildable concrete, the basin having a circular, square or polygonal plan, the bottom, the outer shell, the partition between the non-vented, vertically traversed labyrinth and the ventilated Belocatingraum and the Baffle between the rows of partitions are made of wasserbauditionem concrete and the jacket of Nachêtraums made of plastic construction wall elements, such as polyethylene (PE), polypropylene (PP) or hard polyvinyl chloride (hPVC), is made.
  • PE polyethylene
  • PP polypropylene
  • hPVC hard polyvinyl chloride
  • the device according to the invention is advantageously used in basins with a circular, square or polygonal floor plan, wherein the floor, the outer shell, the partition wall between the non-aerated, vertically traversed labyrinth and the ventilated Belocatingraum and the baffle between the rows of partitions of construction wall elements Plastic, such as polyethylene (PE), polypropylene (PP) or hard polyvinyl chloride (hPVC) are produced.
  • PE polyethylene
  • PP polypropylene
  • hPVC hard polyvinyl chloride
  • the flushing mechanism is based on the system that through the opening in a hollow body of the flow regulator under a discharge shield compressed air or pressurized water, the clarified water, which is located in the flow controller in the space between the flow regulator jacket and the overflow line inside the flow controller, through the protective filter , Only then, when the pumped up sewage water has reached the height of the influence opening of the overflow line, the pressurized water or compressed air begins to flow out through the throttle bore. A short-term recoil of the pressurized water or a mixture of compressed air and pressurized water produced in this way is sufficient for a complete cleaning of the protective filter, and manual cleaning is therefore no longer necessary.
  • a device for wastewater treatment from smaller water pollution sources designed to be manufactured in a compact unit with the possibility of formability and changeability through the use of a simple concrete support frame and lightweight construction wall elements made of plastic.
  • the device should perform the task of balancing the variable flow in a functional unit and achieve the highest possible efficiency of biological purification with elimination of nitrogen and phosphorus and low demands on the pump and mixing technology.
  • FIGS. 1a, 1b a device for wastewater treatment according to the
  • FIGS. 2a, 2b, 2c show a device for sewage treatment with a quadrangular layout
  • FIG. 3a, 3b, 3c a device for sewage treatment with a circular, square or polygonal plan
  • Fig. 4 shows a flow regulator.
  • a device for continuous wastewater treatment by means of a modified activation process according to the invention according to the figures 1a and 1b of a basin 1 with a bottom 2 and an outer shell 3.
  • the basin 1 is through a partition wall 4 in an unvented, vertically traversed labyrinth 7 and a ventilated living space 8 split.
  • the secondary clarifier 9 is separated in the interior of the ventilated living space 8 by a jacket 5 of the secondary clarifier.
  • the jacket 5 of the secondary clarifier 9 has the shape of a complete one turned and truncated cone or a beam (Fig. 1a) or the shape of a partially turned and truncated cone or beam (Fig.
  • the partition wall 4 and the jacket 5 of the secondary treatment chamber 9 extend from the floor 2 to above the level of the maximum level B 1 which is given by the level of the flood discharge installation 29 of the floor 1.
  • the partition wall 4 is located at the level of the minimum level A, which is given by the level of the outflow pipe 11, or on the ground level 2 of the basin 1, a passage opening 10.
  • the jacket 5 of the secondary clarifier 9 is located on the ground level 2 of the basin 1, a passage opening 6.
  • the non-aerated, vertically traversed labyrinth 7 is formed from a series of inner partitions 12 which extend from the bottom 2 to above the level of the maximum level B, which is given by the level of the spillway 29 of the soil 1.
  • the individual successive partitions 12 have passage openings 13 alternately on the bottom plane 2 of the basin 1 and the plane of the minimum level A, which is given by the plane of the outflow line 11 from the basin 1.
  • a flow regulator 14 is arranged below the clear water level, as shown in FIG. 4.
  • the flow regulator 14 is a hollow body, which consists of a lateral surface 15, an inflow opening 16 and an outflow shield 17, the inflow opening 16 being protected by a protective filter 18.
  • the fixed permeability of the wastewater attack is the same as the fixed maximum flow in the discharge line from the device for wastewater treatment.
  • the outflow opening 22 is connected to the throttle bore 19.
  • the sewage water which is used for rinsing the protective filter.
  • a flood relief system 29 is used, which is used for wastewater disposal for a larger flow than the specified maximum flow rate Q max . From the flood relief system 29, the sewage water flows into the outflow, in the secondary flow guide or in another basin, which, however, are not shown in the drawings.
  • the retention space 24 is in the basin 1 between the level of the minimum level A, which is given by the plane of the outflow line 11 from the basin 1, and the level of the maximum level B 1, which is given by the level of the spillway 29 of the soil 1 delimited in the entire surface of the basin 1, therefore, so over the unvented, vertically traversed labyrinth 7, the ventilated Bevolraum 8 and the secondary treatment chamber 9, wherein the partition wall 4 together with the inner partitions 12 and the jacket 5 of the secondary treatment chamber 9 in the retention space 24th limit anaerobic, anoxic and oxic conditions as well as separation conditions for the activated sludge.
  • the ventilation of the contents in the ventilated living space 8 is well known in the prior art.
  • the source of compressed air which is not shown in the drawings, is also the source of compressed air for the mammoth pumps 26, 27, 28, the return of the activated sludge from the secondary clarifier 9 in the non-vented, vertically traversed labyrinth 7 and the recirculation Run the ventilated amenity space 8 in the non-vented, vertically traversed labyrinth 7 and the inner recirculation within the non-vented, vertically traversed labyrinth 7.
  • the inflow of the raw sewage flows through the inflow line 25 into the unvented, vertical labyrinth 7.
  • the activated sludge mixture which is formed by mixing the raw sewage with the recirculated activated sludge, flows through a series of inner partitions 12 and their changing passage opening 13 on the floor level. 2 of the basin 1 and in the plane of minimum level A, which is given by the plane of the outflow pipe 11 through.
  • the alternating arrangement of the passage openings 13 at different heights in the partitions 12 in the flow direction establishes the conditions for an ideal and economical mixing of the contents in the non-aerated, vertical labyrinth 7, without the use of a mechanical mixer, in which anaerobic and anoxic conditions for produced the activated sludge.
  • the activated sludge mixture flows out of the non-ventilated, vertical-flowed labyrinth 7 through a passage opening 10 in the partition wall 4 into the ventilated living space 8.
  • oxigen conditions for the activated sludge are maintained by means of aeration.
  • the activated sludge mixture flows into the secondary clarifier 9 through a passage opening 6 in the jacket 5 of the secondary clarifier 9 from.
  • the function of the flow regulator 14 is that through the calibrated throttle bore 19, the sewage water can flow only in such a flow rate is less than or equal to the established maximum flow on the outflow line from the device to which the surface and the capacity of the final sedimentation chamber 9 are fixed , In the case of a higher flow, it comes in the entire tank 1 to a Water level elevation, from the water level plane A to the water level B by the throttling effect of the flow controller 14.
  • the inner partitions 12, the partition 4 and the jacket 5 of the secondary clarifier 9 do not allow that there is an unlimited mutual mixing of the contents of the individual rooms, and therefore all wastewater treatment processes can take place undisturbed in the retention space 24.
  • the throttle bore 19 and the passage openings 20 are protected from siltation by a protective filter 18, which is rinsed cyclically with the treated wastewater.
  • the flushing mechanism is based on the system that compressed air or pressurized water is driven through the opening 23 in the hollow body of the flow regulator 14 under the discharge shield 17.
  • the compressed air or the pressurized water pumps the sewage water, which is located in the flow regulator 14, through the protective filter 18, and only when the pumped up sewage reaches the plane of the influence opening 21 of the passage openings 20, it starts to flow out through the throttle bore 19.
  • a short-term recoil of the pressurized water or a mixture of compressed air and pressurized water produced in such a manner is sufficient for a complete cleaning of the protective filter 18, and manual cleaning is therefore no longer necessary.
  • the material of the outer shell 3, the pelvic floor 2, the partition wall 4 and the inner partitions 12 of the basin 1 and the jacket 5 of the secondary treatment chamber 9 made of plastic construction wall elements, such as polyethylene (PE), polypropylene (PP) or hard polyvinyl chloride (HPVCs).
  • plastic construction wall elements such as polyethylene (PE), polypropylene (PP) or hard polyvinyl chloride ( HPVCs).
  • the basin 1 can also have the standard external dimensions of a container.
  • the pools 1 can be divided into larger units be summarized once or successively, depending on the increase in the amount of wastewater produced.
  • the material of the supporting walls, the outer shell 3, the pelvic floor 2 and the partition wall 4 can be made of wasserbauditionem concrete, the inner partitions 12 together with the jacket 5 of the Nachêtraums 9 plastic construction wall elements, such as polyethylene (PE), polypropylene ( (PP) or hard polyvinyl chloride (hPVC).
  • PE polyethylene
  • PP polypropylene
  • hPVC hard polyvinyl chloride
  • a device for continuous wastewater treatment by means of modified activation method according to the invention according to the figures 2a, 2b and 2c of a basin 1 with a square plan, a bottom 2 and an outer shell 3.
  • the basin 1 is separated by a partition 4 into an unventilated, vertical flowed through labyrinth 7 and a ventilated Bevolraum 8 with a passage opening 10 in the plane of the minimum level A, which is given by the plane of the outflow line 11 from the basin 1, or divided in the ground plane 2 of the basin 1.
  • the unaerated vertically-traversed labyrinth 7 is formed by a series of internal partitions 12 which extend from the bottom 2 of the basin 1 to above the plane of maximum level B, which is provided by the plane of the spillway 29, and which have ports 12, which are located alternately in the bottom plane 2 of the basin 1 and in the plane of the minimum level A, which is given by the plane of the outflow line 11 in the flow direction, and in a row (Fig. 2a) or more rows (Fig. 2b) are.
  • the inner partitions 12 are arranged in a plurality of rows, they are divided from each other by a guide wall 30, wherein the flow direction on the left and right sides of the guide wall 30 is opposite, so that the principle can be followed Waste water progressively through all the inner partitions 12 runs and finally flows through the passage opening 13 into the ventilated Beppingraum 8.
  • a guide wall 30 wherein the flow direction on the left and right sides of the guide wall 30 is opposite, so that the principle can be followed Waste water progressively through all the inner partitions 12 runs and finally flows through the passage opening 13 into the ventilated Begingraum 8.
  • the basin 1 may also have the shape of a polygon, for example, a square or hexagon.
  • the basin 1 with a circular or regular polygonal floor plan is formed by a concentrically arranged partition wall 4 into an unaerated, vertically traversed labyrinth 7 and a ventilated living space 8 with a passage opening 10 in the plane of the minimum level A, through the plane of the outflow line 11 is given to the basin 1, or divided in the ground plane 2 of the basin 1.
  • the unaerated vertical through-flow labyrinth 7 is formed of radially arranged inner partitions 12 which extend from the bottom 2 to above the plane of the maximum level B, which is given by the level of the spillway 29, and those with passage openings 13, which alternate in the ground plane 2 of the basin 1 and in the plane of the minimum level A, which is given by the plane of the outflow pipe 11 in the flow direction, are located.
  • a device according to the invention can be used in wastewater treatment from different, but especially from smaller sources, both in municipal and in industrial sources with a biodegradable Burden. Due to its flexibility, this device is particularly suitable for decentralized wastewater treatment solutions for smaller communities, schools, restaurants, hotels, pensions, greenfield sites, and the like. ⁇ . Suitable.
  • the device is adaptable and can be gradually connected to larger units depending on the production increase of the effluents.
  • the advantage of this device is low construction costs, as it allows the technical solution to deliver already finished, "packaged” or “container” sewage treatment plants, which require little assembly and construction work on the site, the quality of the sewage water also increased Requirements met from the point of view of wastewater quality. It is therefore possible to use these treatment plants also for the discharge of sewage waters into surface waters in sensitive areas where surface waters are likely to be subject to the effects of excessive fertilization, or for discharge into groundwater or reuse of sewage waters.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Water Treatment By Sorption (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Physical Water Treatments (AREA)

Abstract

Es handelt sich um eine Vorrichtung zur Abwasserreinigung mittels eines modifizierten Belebungsverfahrens mit kontinuierlichem Zufluss und Ausfluss. Diese Vorrichtung weist in einem Becken einen Belebtraum mit unbelüfteten, anaeroben und anoxischen Zonen mit einer belüfteten oxischen Zone vereinigt, einen Nachklärraum, einen Retentionsraum mit einer inneren Rückführung zwischen den Zonen des Belebtraums und eine Rezirkulation des Rücklaufschlamms zwischen dem Belebtraum und Nachklärraum auf. Das Becken (1) ist mit einem Boden (2) und einem Außenmantel (3) in ein unbelüftetes, vertikal durchflossenes Labyrinth (7), einen belüfteten Belebtraum (8), einen Nachklärraum (9) und einen Retentionsraum (24) aufgeteilt. Das Labyrinth (7) ist vom belüfteten Belebtraum (8) durch eine Trennwand (4) getrennt, die vom Boden (2) bis über die Ebene des maximalen Pegels (B) reicht, die durch die Ebene der Hochwasserentlastungsanlage (29) gegeben ist. Ferner ist sie mit einer Durchlassöffnung (10) in der Bodenebene (2) des Beckens (1) oder in der Ebene des minimalen Pegels (A), die durch die Ebene der Ausflussleitung (11) aus dem Becken (1) gegeben ist, versehen ist.

Description

Vorrichtung zur Abwasserreinigung
Die Erfindung betrifft eine Vorrichtung zur kontinuierlichen, biologischen Abwasserreinigung aus kleineren Wasserverschmutzungsquellen mit modifiziertem Belebungsverfahren, in welcher in einem Becken ein Belebtraum mit raumisolierten, anaeroben, anoxischen und oxischen Zonen vereinigt wird und ein Nachklärraum mit einem Retentionsraum vereinigt wird, mit einem bestehenden Kreislauf zwischen den Zonen des Belebtraums und zwischen dem Belebtraum und dem Nachklärraum.
Für die Reinigung von Schmutzwasser aus Quellen, die nicht an das öffentliche Kanalisationssystem angeschlossen werden können, dienen kleinere Abwasserkläranlagen. Die Abwasserreinigung aus kleineren Wasserverschmutzungsquellen ist ein kompliziertes Problem, denn man ist mit der Problematik der beträchtlichen Variabilität der Abwasserdurchflüsse und der Variabilität der Wasserverschmutzung aus diesen kleineren Quellen konfrontiert. In relativ kleinen Abschnitten des Sammelkanals kommt es nicht zum Ausgleich der Abwassermenge und Abwassergüte. Daher muss man die einzelnen technischen Stufen des Prozesses der Abwasserreinigung (Ausgleichbecken, mechanische und biologische Reinigung und eventuelle Nachreinigung) so anpassen, dass sie nicht überfordert werden und damit die notwendige Verweildauer und die Flächenbelastung im Nachklärraum nicht überschritten werden. Wenn keine Bedingungen für den Ausgleich von Qualität und Quantität des Abwasserdurchflusses geschaffen worden sind, so müssen diese Stufen bedeutend überdimensioniert werden. Abwasserreini- gungsanlagen sind auf den Durchschnittsdurchfluss von Q24 dimensioniert. Die stündliche Ungleichmäßigkeit des Durchflusses drückt ein weiterer dimensionierter Durchfluss aus, der stündliche Höchstdurchfluss Qmax.
In der Schrift DE4307288 wird eine Vorrichtung zur biologischen Abwasserreinigung beschrieben, die kein speziell abgesondertes Ausgleichbecken enthält. Der
Durchflussausgleich erfolgt in einem Klärbecken, Belebtschlammbecken und
Nachklärbecken, gegebenenfalls auch in einem Schlammfänger, also in der ganzen
Abwasserreinigungsanlage. Für den Ausgleich der Abwassermenge wird das
Schmutzwasser kontinuierlich aus dem Nachklärbecken abgepumpt. Wenn eine gewisse festgesetzte Untergrenze des Wasserspiegels im Nachklärbecken erreicht worden ist, wird das Abpumpen vorläufig eingestellt, bis auf Grund des
Abwasserdurchflusses ein höherer Pegel erreicht worden ist.
Auch in der Schrift US 3 886 065 befindet sich in der beschriebenen Vorrichtung zur Abwasserreinigung kein speziell abgesondertes Ausgleichbecken; der Ausgleich erfolgt in einem Klärbecken, Belebtschlammbecken und Nachklärbecken. Das Abwasser aus dem Nachklärbecken wird durch eine unter dem Wasserspiegel liegende Ausflussleitung kontinuierlich abgepumpt. In der Schrift DE 199 16 381 A1 wird eine kleinere Abwasserkläranlage für eine biologisch-chemische Reinigung beschrieben, in der der Ausgleich von Qualität und Quantität auch im Klärraum und Belebtraum erfolgt, wobei es aber nicht notwendig ist, die aufgefangene Abwassermenge in ein anderes Becken abzuleiten. Für das Abfangen höherer Zuflüsse wird das eigene Volumen dieser Becken verwendet. Abwasser aus der biologischen Reinigung wird mit einer Pumpe oder einem Pumpenpaar zu weiteren Reinigungsvorgängen abgepumpt und das bereits mit einem gleich bleibendem Durchfluss. Die Pumpenförderleistung ist so gewählt, dass sie höher als der tägliche Durchflussdurchschnitt, aber zugleich ausreichend niedrig ist, damit die Intervalle der Abschaltung der Pumpen so kurz wie möglich sind.
In all diesen angeführten Lösungsmöglichkeiten wird der Ausgleich von Quantität und Qualität des verschmutzten Abwassers direkt im Belebtraum oder im Belebtraum und in den anderen Funktionsbecken oder in den Räumen der Kläranlage ohne ein speziell abgesondertes Ausgleichbecken erreicht. Der Ausgleich der Menge wird jedoch durch das Pumpen erzielt, womit aber erhöhte Kosten und eine erhöhte Störanfälligkeit verbunden sind.
Eine alternative Möglichkeit bei der Reinigung von Abwässern mit hoher Variabilität des Durchflusses und der Qualität ist die Verwendung von so genannten „sequencing batch"- oder „fed-batch"-Reaktoren (SBR Systeme). In der Schrift US 598 94 28 wird ein diskontinuierliches Abwasserreinigungssystem beschrieben, das in einem zyklischen Modus betrieben ist: Füllung, Absetzen und Ablass, mit einem variablen Fassungsvermögen des Reaktionsraums, wobei ein niedriger und hoher Wasserpegel im Reaktor festgesetzt wird und wobei der Zufluss kontinuierlich oder diskontinuierlich sein kann, aber der Ausfluss immer diskontinuierlich sein muss. Dieses Reinigungsverfahren erfordert eine Vorrichtung zur Beseitigung eines gewissen Anteils des abgesetzten Wassers während des Absetzen-Modus, ein so genanntes Dekantieren. Während dieses Modus wird der Zufluss in den Reaktor abgestellt. Im Unterschied zu kontinuierlichen Systemen mit mehreren Reaktoren ist es sehr kompliziert, die Bedingungen für die diametral entgegengesetzten Prozesse innerhalb des gleichen Beckens aufrecht zu erhalten, wie beispielsweise die Nitrifikation und Denitrifikation. Die Durchlaufzeit eines Prozesses (beispielsweise der Nitrifikation) ist wegen der unterschiedlichen Durchflüsse und der Verunreinigung des Zuflusses nur sehr schwer festzustellen Deshalb müssen diese Reaktoren für die schlechtesten Szenarien ausgelegt werden, wodurch die SBR-Reaktoren überdimensioniert sind oder der Einsatz von komplizierten automatischen Systemen nötig ist, die aus Sensoren und Bewertern bestehen, die wiederum die Investitions- und Betriebskosten der Abwasserreinigung erhöhen.
In der Schrift US 450 58 13 ist eine Filtervorrichtung in einer Ausflussleitung beschrieben, die im Nachklärraum eingesetzt ist. Diese Filtervorrichtung verfügt über eine gewisse Filterkapazität; wenn der Abwasserzufluss größer als die Filterkapazität ist, erhöht sich der (Wasser-) Pegel im ganzen Reaktor, wodurch ein größerer Teil des Filters untertaucht und somit die Fläche und damit auch die Filterkapazität sich vergrößern. Der Filter wird wieder mit Druckwasser gespült, das von einer Tauchpumpe geliefert wird, die hinter dem Reaktor in einem Becken mit Klarwasser eingesetzt ist. Ein Nachteil ist jedoch, dass für das Wasser, das für das Spülen der Filtervorrichtung benutzt wird, ein weiteres Becken errichtet werden muss, in dem sich das gereinigte Abwasser sammelt und eine Pumpe mit einem Mehrweg- Steuerventil angebracht wird. Dadurch erhöhen sich aber die Investitions- und Betriebskosten der Abwasserreinigung.
Bei dem Entwurf und bei der Realisierung der kleineren Abwasserreinigungsanlagen ist es notwendig, dass die kleineren Kläranlagen leicht transportable Fertigerzeugnisse oder an Ort und Stelle montierbar sind und sich mit einem Minimum an Bauarbeiten mit den Außenformen den Gegebenheiten der Anwendung oder der Landschaft anpassen, so dass sie anpassungsfähig sind und parallel mit dem Anstieg der produzierten Abwassermenge erweitert werden können. Kleinere Abwasserreinigungsanlagen mit einem integrierten Retentionsraum ermöglichen die Erfüllung all dieser Anforderungen nach dem gegenwärtigen Stand der Technik nicht gleichzeitig.
Die Aufgabe der Erfindung ist es, eine Vorrichtung für die Abwasserreinigung aus kleineren Wasserverschmutzungsquellen zu schaffen, die in einer kompakten Einheit mit der Möglichkeit der Form- und Änderbarkeit durch den Einsatz eines einfachen Betontraggerüsts und leichter Konstruktionswandelemente aus Kunststoff gefertigt werden kann. Dabei soll diese Vorrichtung in einer Funktionseinheit die Aufgabe des Ausgleichs des veränderlichen Durchflusses erfüllen und einen höchstmöglichen Wirkungsgrad der biologischen Reinigung unter Beseitigung von Stickstoff und Phosphor bei niedrigen Ansprüchen an die Pumpen- und Mischtechnik erreichen.
Diese Aufgabe und die Mängel der bekannten Einrichtungen löst bzw. beseitigt im wesentlichen Maße die Vorrichtung zur kontinuierlichen, biologischen Abwasserreinigung mit einem modifizierten Belebungsverfahren, die in einem Becken einen Belebtraum mit unbelüfteten, anaeroben und anoxischen Zonen mit einer belüfteten, oxischen Zone und einen Nachklärraum mit einem Retentionsraum vereinigt, mit einer internen Rückführung zwischen den Zonen des Belebtraums und einer Rezirkulation des Rücklaufschlamms zwischen dem Belebtraum und Nachklärraum gemäß der Erfindung.
Das Wesen der Erfindung besteht darin, dass das Becken, das aus einem Boden und einem Außenmantel besteht, derart in ein unbelüftetes, vertikal durchflossenes Labyrinth, einen belüfteten Belebtraum, einen Nachklärraum und einen Retentionsraum aufgeteilt ist, dass das unbelüftete, vertikal durchflossene Labyrinth vom belüfteten Belebtraum durch eine Trennwand abgetrennt ist, die von dem Boden bis über die Ebene des maximalen Pegels (B) reicht, der durch die Ebene der Hochwasserentlastungsanlage gegeben ist, und die eine Durchlassöffnung entweder auf der Ebene des Beckens oder auf der Ebene der Auslassleitung aus dem Becken aufweist. Der Nachklärraum ist im Inneren des belüfteten Belebtraums durch einen Mantel begrenzt, der vom Boden bis über die Ebene des maximalen Pegels (B) reicht, der durch die Ebene der Hochwasserentlastungsanlage gegeben ist, und weist eine Durchlassöffnung auf der Bodenebene des Beckens auf. Der Retentionsraum befindet sich im Becken zwischen der Ebene des minimalen Pegels (A), die durch die aus dem Becken führende Ausflussleitung gegeben ist, und der Ebene des maximalen Wasserpegels (B), die durch die Ebene der Hochwasserentlastungsanlage gegeben ist, auf der ganzen Fläche des Beckens entlang über dem vertikal durchflossenen Labyrinth, dem belüfteten Belebtraum und dem Nachklärraum. Das vertikal durchflossene Labyrinth ist in Strömungsrichtung durch Trennwände geteilt, die vom Boden bis über die Ebene des maximalen Pegels (B) ragen, die durch die Ebene der Hochwasserentlastungsanlage gegeben ist und die ferner Durchlassöffnungen abwechselnd auf der Bodenebene des Beckens und auf der Ebene des minimalen Pegels (A) aufweisen, die durch die aus dem Becken führende Ausflussleitung gegeben ist, wobei im Nachklärraum auf der aus dem Becken führenden Ausflussleitung ein Durchflussregler angebracht ist.
Für einen wirkungsvollen Ausgleich eines schwankenden Durchflusses der Rohabwässer in die Einrichtung für Abwasserreinigung mit kontinuierlichem Zufluss und Ausfluss ist es wesentlich, dass es durch den Drosseleffekt des Durchflussreglers, der in der Ausflussleitung aus der Einrichtung gemäß der Erfindung angebracht ist, im Falle eines höheren Durchflusses als der dimensionierte auf der Ausflussleitung aus der Einrichtung zu einer Wasserspiegelhebung im ganzen Becken kommt, die von der minimalen Wasserspiegelebene (A), die der Ebene der Ausflussleitung entspricht, bis zur maximalen Wasserspiegelebene (B), die der Ebene der Hochwasserentlastungsanlage entspricht, wobei die inneren Trennwände in dem unbelüfteten, vertikal durchflossenen Labyrinth, die Trennwand zwischen dem belüfteten Belebtraum und dem unbelüfteten, vertikal durchflossenen Labyrinth und der Mantel des Nachklärraums nicht zulassen, dass es zu einer uneingeschränkten, gegenseitigen Vermischung der Inhalte der einzelnen Räume und Zonen kommt, da diese Trennwände und der Mantel bis über die Wasserspiegelebene, die durch die Hochwasserentlastungsanlage gegeben ist, reichen und so alle Abwasserreinigungsverfahren ungestört im Retentionsraum erfolgen können.
Wegen der Anpassung an den sukzessiven Anstieg der Abwasserproduktion ist es vorteilhaft, wenn die Vorrichtung für die kontinuierliche, biologische Abwasserreinigung mit einem modifizierten Belebungsverfahren gemäß der Erfindung arbeiten kann, wobei die Vorrichtung aus einem Becken mit einem viereckigem Grundriss, mit einem Boden und einem Außenmantel bestehen kann und wobei in dem unbelüfteten, vertikal durchflossenen Labyrinth innere Trennwände platziert sind, die von dem Boden des Beckens bis über die Ebene des maximalen Pegels (B), der durch die Ebene der Hochwasserentlastungsanlage gegeben ist, ragen und die mit Durchlassöffnungen versehen sind, die sich abwechselnd auf der Bodenebene des Beckens und auf der Ebene des minimalen Pegels (A)1 die durch die Ebene der Ausflussleitung in Strömungsrichtung gegeben ist, befinden und die in einer oder mehreren Reihen angeordnet sind, wobei die Reihen durch eine Leitwand voneinander getrennt sind. Gemäß der Erfindung ist es möglich, mehrere Becken parallel in größere Einheiten zusammenzufassen und somit eine fortschreitende Kapazitätssteigerung der Abwasserreinigungsanlagen je nach Produktionssteigerung des rohen Abwassers zu gewährleisten.
Die Vorrichtung zur kontinuierlichen Abwasserreinigung mit einem modifizierten Belebungsverfahren gemäß der Erfindung kann zweckmäßig in einem Becken mit einem kreisförmigen Grundriss mit einem Boden und einem Außenmantel ausgeführt werden. Das Becken der Vorrichtung gemäß der Erfindung kann auch eine vieleckige Form aufweisen, beispielsweise ein Quadrat oder Sechseck, wobei das Becken durch eine konzentrisch angeordnete Trennwand mit einem kreisförmigen oder vieleckigen Grundriss in einen unbelüfteten Belebtraum und ein belüftetes, vertikal durchflossenes Labyrinth mit einer Durchlassöffnung auf der Ebene des minimalen Pegels (A), die durch die Ebene der Ausflussleitung aus dem Becken gegeben ist, oder auf der Bodenebene des Beckens aufgeteilt ist. In dem unbelüfteten, vertikal durchflossenen Labyrinth befinden sich radial angeordnete innere Trennwände, die vom Boden bis über die Ebene des maximalen Pegels (B), der durch die Ebene der Hochwasserentlastungsanlage des Bodens gegeben ist, ragen und die Durchlassöffnungen aufweisen, die sich abwechselnd auf der Bodenebene des Beckens und auf der Ebene des minimalen Pegels (A), die durch die Ebene der Ausflussleitung in Strömungsrichtung gegeben ist, befinden.
Die Vorrichtung gemäß der Erfindung wird vorteilhaft bei monolithischen oder vorgefertigten Betonbecken aus wasserbaufähigem Beton gefertigt, wobei das Becken einen kreisförmigen, quadratischen oder vieleckigen Grundriss aufweist, der Boden, der Außenmantel, die Trennwand zwischen dem unbelüfteten, vertikal durchflossenen Labyrinth und dem belüfteten Belebtraum und die Leitwand zwischen den Reihen von Trennwänden aus wasserbaufähigem Beton hergestellt sind und der Mantel des Nachklärraums aus Konstruktionswandelementen aus Kunststoff, wie beispielsweise aus Polyethylen (PE), Polypropylen (PP) oder Hartpolyvinylchlorid (hPVC), hergestellt ist. Gemäß der Erfindung ist es möglich, mehrere Becken parallel in größere Einheiten zusammenzufassen und somit eine fortschreitende Kapazitätssteigerung der Abwasserreinigungsanlagen je nach Produktionssteigerung des Rohabwassers zu gewährleisten. Die Vorrichtung gemäß der Erfindung wird vorteilhaft bei Becken mit einem kreisförmigen, quadratischen oder vieleckigen Grundriss eingesetzt, wobei der Boden, der Außenmantel, die Trennwand zwischen dem unbelüfteten, vertikal durchflossenen Labyrinth und dem belüfteten Belebtraum und die Leitwand zwischen den Reihen von Trennwänden aus Konstruktionswandelementen aus Kunststoff, wie beispielsweise aus Polyethylen (PE), Polypropylen (PP) oder Hartpolyvinylchlorid (hPVC) hergestellt werden. Gemäß der Erfindung ist es möglich, mehrere Becken parallel in größere Einheiten zusammenzufassen und somit eine fortschreitende Kapazitätssteigerung der Abwasserreinigungsanlagen je nach Produktionssteigerung des Rohabwassers zu gewährleisten.
Für den Einfachbetrieb des Durchflussreglers ist es nicht von Bedeutung, diesen zu warten, da die Drosselbohrung und die Durchlassöffnungen durch einen Schutzfilter, der zyklisch mit dem gereinigten Abwasser abgespült wird, vor Verschlammung geschützt sind. Der Spülmechanismus beruht auf dem System, dass durch die Öffnung in einem Hohlkörper des Durchflussreglers unter einer Ausflussabschirmung Druckluft bzw. Druckwasser das Klärwasser, das sich im Strömungsregler im Raum zwischen dem Mantel des Durchflussreglers und der Überströmleitung im Inneren des Durchflussreglers befindet, durch den Schutzfilter hochpumpt. Erst dann, wenn das hochgepumpte Klärwasser die Höhe der Einflussöffnung der Überströmleitung erreicht hat, beginnt das Druckwasser bzw. die Druckluft durch die Drosselbohrung auszuströmen. Ein auf diese Weise hergestellter kurzzeitiger Rückstoß des Druckwassers oder eines Gemisches aus Druckluft und Druckwasser ist für eine vollkommene Reinigung des Schutzfilters ausreichend, und eine manuelle Reinigung ist daher nicht mehr nötig.
Bei der technischen Lösung der Mängel bei kleineren Abwasserreinigungsanlagen nach dem bisherigem Stand der Technik wurde gemäß der Erfindung eine Vorrichtung zur Abwasserreinigung aus kleineren Wasserverschmutzungsquellen entworfen, die in einer kompakten Einheit mit der Möglichkeit der Form- und Änderbarkeit durch den Einsatz eines einfachen Betontraggerüsts und leichter Konstruktionswandelemente aus Kunststoff gefertigt werden kann. Dabei soll die Vorrichtung in einer Funktionseinheit die Aufgabe des Ausgleichs des veränderlichen Durchflusses erfüllen und einen höchstmöglichen Wirkungsgrad der biologischen Reinigung unter Beseitigung von Stickstoff und Phosphor und unter niedrigen Ansprüchen an die Pumpen- und Mischtechnik erreichen.
Die Erfindung wird nun anhand von Ausführungsbeispielen näher erläutert. Es zeigen:
Figuren 1a, 1b eine Vorrichtung für die Abwasserreinigung gemäß der
Erfindung,
Figuren 2a, 2b, 2c eine Vorrichtung für die Abwasserreinigung mit einem viereckigen Grundriss,
Figuren 3a, 3b, 3c eine Vorrichtung für die Abwasserreinigung mit einem kreisförmigen, quadratischen oder vieleckigen Grundriss und Fig. 4 einen Durchflussregler.
Beispiel 1
Eine Vorrichtung zur kontinuierlichen Abwasserreinigung mittels eines modifizierten Belebungsverfahrens gemäß der Erfindung besteht nach den Figuren 1a und 1b aus einem Becken 1 mit einem Boden 2 und einem Außenmantel 3. Das Becken 1 ist durch eine Trennwand 4 in ein unbelüftetes, vertikal durchflossenes Labyrinth 7 und einen belüfteten Belebtraum 8 aufgeteilt. Der Nachklärraum 9 ist im Inneren des belüfteten Belebtraums 8 durch einen Mantel 5 des Nachklärraums ausgegliedert. In Übereinstimmung mit den traditionellen Aufbauprinzipien der Nachklärräume für den Belebtschlamm hat der Mantel 5 des Nachklärraums 9 die Form eines komplett gewendeten und abgestumpften Kegels oder eines Balkens (Fig. 1a) oder die Form eines teilweise gewendeten und abgestumpften Kegels oder Balkens (Fig. 1b), wobei der Mantel 5 des Nachklärraums 9 mit dem Boden 2 des Beckens 1 ein Mindestgefälle von 60° schließt. Die Trennwand 4 und der Mantel 5 des Nachklärraums 9 reichen von dem Boden 2 bis über die Ebene des maximalen Pegels B1 der durch die Ebene der Hochwasserentlastungsanlage 29 des Bodens 1 gegeben ist. In der Trennwand 4 befindet sich auf der Ebene des minimalen Pegels A, die durch die Ebene der Ausflussleitung 11 gegeben ist, oder auf der Bodenebene 2 des Beckens 1 eine Durchlassöffnung 10. Im Mantel 5 des Nachklärraums 9 befindet sich auf der Bodenebene 2 des Beckens 1 eine Durchlassöffnung 6. Das unbelüftete, vertikal durchflossene Labyrinth 7 ist aus einer Reihe von inneren Trennwänden 12 gebildet, die von dem Boden 2 bis über die Ebene des maximalen Pegels B reichen, der durch die Ebene der Hochwasserentlastungsanlage 29 des Bodens 1 gegeben ist. Die einzelnen aufeinander folgenden Trennwände 12 haben Durchlassöffnungen 13 abwechselnd auf der Bodenebene 2 des Beckens 1 und der Ebene des minimalen Pegels A, die durch die Ebene der Ausflussleitung 11 aus dem Becken 1 gegeben ist. Im Nachklärraum 9 ist unter dem Klarwasserspiegel ein Durchflussregler 14 angeordnet, wie in Fig. 4 dargestellt ist. Der Durchflussregler 14 ist ein Hohlkörper, der aus einer Mantelfläche 15, einer Einflussöffnung 16 und einer Ausflussabschirmung 17 besteht, wobei die Einflussöffnung 16 mit einem Schutzfilter 18 geschützt ist. In der Stauscheibe 17 befindet sich eine Drosselbohrung 19, deren festgelegte Durchlässigkeit des Abwasseranfalls dem festgelegten Höchstdurchfluss in der Ausflussleitung aus der Einrichtung für die Abwasserreinigung gleich ist. Im Inneren des Durchflussreglers 14 befindet sich eine Überströmleitung 20, deren Einflussöffnung 21 dicht hinter der Einflussöffnung 16 des Durchflussreglers 14 liegt. Die Ausflussöffnung 22 ist mit der Drosselbohrung 19 verbunden. Im Raum zwischen der Überströmleitung 20 und der Mantelfläche 15 des Durchflussreglers 14 befindet sich das Klärwasser, das für das Abspülen des Schutzfilters benutzt wird. Unter der Ausflussabschirmung 17 in der Mantelfläche 15 des Durchflussreglers 14 ist eine Öffnung 23 für den Einlass des fluiden Druckmediums, beispielsweise Druckluft oder Druckwasser. Im Nachklärraum 9 ist eine Hochwasserentlastungsanlage 29 eingesetzt, die zur Abwasserbeseitigung für einen größeren Durchfluss als den festgelegten Höchstdurchfluss Qmax dient. Aus der Hochwasserentlastungsanlage 29 fließt das Klärwasser in den Ausfluss, in die Nebenstromführung oder in ein anderes Becken ab, welche jedoch nicht in den Zeichnungen dargestellt sind. Der Retentionsraum 24 ist im Becken 1 zwischen der Ebene des minimalen Pegels A, die durch die Ebene der Ausflussleitung 11 aus dem Becken 1 gegeben ist, und der Ebene des maximalen Pegels B1 der durch die Ebene der Hochwasserentlastungsanlage 29 des Bodens 1 gegeben ist, in der ganzen Fläche des Beckens 1 abgegrenzt, demnach also über dem unbelüfteten, vertikal durchflossenen Labyrinth 7, dem belüfteten Belebtraum 8 und dem Nachklärraum 9, wobei die Trennwand 4 zusammen mit den inneren Trennwänden 12 und dem Mantel 5 des Nachklärraums 9 in dem Retentionsraum 24 anaerobe, anoxische und oxische Bedingungen sowie auch Abtrennbedingungen für den Belebtschlamm begrenzen. Die Belüftung des Inhalts in dem belüfteten Belebtraum 8 ist nach dem bisherigen Stand der Technik ausreichend bekannt. Die Quelle der Druckluft, die in den Zeichnungen nicht dargestellt ist, ist auch die Quelle der Druckluft für die Mammutpumpen 26, 27, 28, die den Rücklauf des Belebtschlamms aus dem Nachklärraum 9 in das unbelüftete, vertikal durchflossene Labyrinth 7 sowie auch die Rezirkulation aus dem belüfteten Belebtraum 8 in das unbelüftete, vertikal durchflossene Labyrinth 7 und die innere Rezirkulation innerhalb des unbelüfteten, vertikal durchflossenen Labyrinth 7 ausführen.
Der Zufluss des Rohabwassers mündet durch die Zuflussleitung 25 in das unbelüftete, vertikal durchflossene Labyrinth 7. Das Belebtschlammgemisch, das durch das Mischen des Rohabwassers mit dem rezirkulierten Belebtschlamm entsteht, fließt durch eine Reihe von inneren Trennwänden 12 und deren wechselnde Durchlassöffnung 13 auf der Bodenebene 2 des Beckens 1 und in der Ebene des minimalen Pegels A, die durch die Ebene der Ausflussleitung 11 gegeben ist, hindurch. Die abwechselnde Anordnung der Durchlassöffnungen 13 in unterschiedlichen Höhen in den Trennwänden 12 in Strömungsrichtung stellt die Bedingungen für eine ideale und sparsame Vermischung des Inhalts in dem unbelüfteten, vertikal durchflossenen Labyrinth 7 her, ohne die Verwendung eines mechanischen Mischwerks, in dem anaerobe und anoxische Bedingungen für den Belebtschlamm hergestellt werden. Aus dem unbelüfteten, vertikal durchflossenen Labyrinth 7 fließt das Belebtschlammgemisch durch eine Durchlassöffnung 10 in der Trennwand 4 in den belüfteten Belebtraum 8 ab. Im belüfteten Belebtraum 8 werden mittels der Belüftung oxische Bedingungen für den Belebtschlamm aufrechterhalten. Aus dem belüfteten Belebtraum 8 fließt das Belebtschlammgemisch in den Nachklärraum 9 durch eine Durchlassöffnung 6 im Mantel 5 des Nachklärraums 9 ab. Im Nachklärraum 9 kommt es durch die Wirkung der Schwerkraft zur Ablagerung des Belebtschlamms, wobei der Belebtschlamm aus dem Nachklärraum 9 in Form vom Rücklaufschlamm mit einer Mammutpumpe 27 in das unbelüftete, vertikal durchflossene Labyrinth 7 abgesaugt wird und das Klärwasser durch den Durchflussregler 14 und die Auslassleitung 11 aus dem Becken 1 der Wasserreinigungsanlage abfließt. Das Klärwasser fließt in den Strömungsregler 14 durch ein Schutzfilter 18 an der Einflussöffnung 16 des Durchflussreglers 14 hinein. Im Inneren des Durchflussreglers 14 befindet sich nach dem Schutzfilter 18 eine Einflussöffnung 21 der Überströmleitung 20, welche an ihrem anderen Ende in eine Drosselbohrung 19 der Ausflussabschirmung 17 mündet. Hinter der Ausflussabschirmung 17 fließt das geklärte Abwasser frei durch die Auslassleitung 11 aus dem Becken 1 ab. Die Funktion des Durchflussreglers 14 besteht darin, dass durch die kalibrierte Drosselbohrung 19 das Klärwasser nur in solcher Durchflussmenge abfließen kann, die kleiner oder gleich dem festgelegten Höchstdurchfluss auf der Ausflussleitung aus der Einrichtung ist, auf den die Fläche und das Fassungsvermögen des Nachklärraums 9 festgelegt sind. Im Falle eines höheren Durchflusses kommt es im ganzen Becken 1 zu einer Wasserspiegelhebung, aus der Wasserspiegelebene A bis zur Wasserspiegelebene B durch den Drosseleffekt des Durchflussreglers 14. Die inneren Trennwände 12, die Trennwand 4 und der Mantel 5 des Nachklärraums 9 lassen nicht zu, dass es zu einer uneingeschränkten gegenseitigen Vermischung der Inhalte der einzelnen Räume kommt, und deshalb können alle Abwasserreinigungsverfahren ungestört im Retentionsraum 24 erfolgen.
Die Drosselbohrung 19 und die Durchlassöffnungen 20 sind durch einen Schutzfilter 18, der zyklisch mit dem gereinigten Abwasser abgespült wird, vor Verschlammung geschützt. Der Spülmechanismus beruht auf dem System, dass durch die Öffnung 23 in dem Hohlkörper des Durchflussreglers 14 unter der Ausflussabschirmung 17 Druckluft bzw. Druckwasser eingetrieben wird. Die Druckluft oder das Druckwasser pumpt das Klärwasser, das sich im Durchflussregler 14 befindet, durch das Schutzfilter 18 hoch, und erst wenn das hochgepumpte Klärwasser die Ebene der Einflussöffnung 21 der Durchlassöffnungen 20 erreicht, beginnt es durch die Drosselbohrung 19 auszuströmen. Ein auf solche Weise hergestellter kurzzeitiger Rückstoß des Druckwassers oder eines Gemisches aus Druckluft und Druckwasser ist für eine vollkommene Reinigung des Schutzfilters 18 ausreichend, und eine manuelle Reinigung ist daher nicht mehr nötig.
Praktischerweise wird das Material des Außenmantels 3, des Beckenbodens 2, der Trennwand 4 und der inneren Trennwände 12 des Beckens 1 und des Mantels 5 des Nachklärraums 9 aus Konstruktionswandelementen aus Kunststoff hergestellt, beispielsweise aus Polyäthylen (PE), Polypropylen (PP) oder Hartpolyvinylchlorid (hPVC).
Zur Transporterleichterung kann das Becken 1 auch die Standardaußenmaße eines Containers haben. Am Standort können die Becken 1 in größere Einheiten auf einmal oder sukzessiv zusammengefasst werden, je nach Anstieg der produzierten Abwassermenge.
Das Material der Tragwände, des Außenmantels 3, des Beckenbodens 2 und der Trennwand 4 können aus wasserbaufähigem Beton hergestellt werden, die inneren Trennwände 12 zusammen mit dem Mantel 5 des Nachklärraums 9 aus Konstruktionswandelementen aus Kunststoff, wie beispielsweise aus Polyäthylen (PE), Polypropylen ((PP) oder Hartpolyvinylchlorid (hPVC).
Beispiel 2
Eine Vorrichtung für eine kontinuierliche Abwasserreinigung mittels modifiziertem Belebungsverfahren gemäß der Erfindung besteht nach den Figuren 2a, 2b und 2c aus einem Becken 1 mit einem viereckigem Grundriss, einem Boden 2 und einem Außenmantel 3. Das Becken 1 ist durch eine Trennwand 4 in ein unbelüftetes, vertikal durchflossenes Labyrinth 7 und einen belüfteten Belebtraum 8 mit einer Durchlassöffnung 10 in der Ebene des minimalen Pegels A, die durch die Ebene der Ausflussleitung 11 aus dem Becken 1 gegeben ist, oder in der Bodenebene 2 des Beckens 1 geteilt. Das unbelüftete, vertikal durchflossene Labyrinth 7 ist aus einer Reihe von inneren Trennwänden 12 gebildet, die vom Boden 2 des Beckens 1 bis über die Ebene des maximalen Pegels B reichen, die durch die Ebene der Hochwasserentlastungsanlage 29 gegeben ist, und die Durchlassöffnungen 12 aufweisen, die sich abwechselnd in der Bodenebene 2 des Beckens 1 und in der Ebene des minimalen Pegels A, die durch die Ebene der Ausflussleitung 11 in Strömungsrichtung gegeben ist, befinden und in einer Reihe (Fig. 2a) oder mehreren Reihen (Fig. 2b) angeordnet sind. Im Fall, dass die inneren Trennwände 12 in mehreren Reihen angeordnet sind, sind sie voneinander durch eine Leitwand 30 geteilt, wobei die Strömungsrichtung auf der linken und der rechten Seite der Leitwand 30 entgegengesetzt ist, damit dem Prinzip gefolgt werden kann, dass das Abwasser schrittweise durch alle inneren Trennwände 12 läuft und schließlich durch die Durchlassöffnung 13 in den belüfteten Belebtraum 8 abfließt. Gemäß der Erfindung ist es möglich, mehrere Becken 1 parallel in größeren Einheiten zusammenzufassen (Fig. 2c) und somit eine fortschreitende Kapazitätssteigerung der Abwasserreinigungsanlagen je nach Produktionssteigerung des Rohabwassers zu gewährleisten.
Beispiel 3
Eine Vorrichtung für eine kontinuierliche Abwasserreinigung mittels eines modifizierten Belebungsverfahren gemäß der Erfindung besteht nach den Figuren 3a, 3b und 3c aus einem Becken 1 mit einem kreisförmigen Grundriss mit einem Boden 2 und einem Außenmantel 3. Das Becken 1 kann auch die Form eines Vielecks haben, beispielsweise eines Quadrats oder Sechsecks. Das Becken 1 mit einem kreisförmigen oder regelmäßig vieleckigen Grundriss ist durch eine konzentrisch angeordnete Trennwand 4 in ein unbelüftetes, vertikal durchflossenes Labyrinth 7 und einen belüfteten Belebtraum 8 mit einer Durchlassöffnung 10 in der Ebene des minimalen Pegels A, die durch die Ebene der Ausflussleitung 11 aus dem Becken 1 gegeben ist, oder in der Bodenebene 2 des Beckens 1 geteilt. Das unbelüftete, vertikal durchflossene Labyrinth 7 ist aus radial angeordneten inneren Trennwänden 12 gebildet, die vom Boden 2 bis über die Ebene des maximalen Pegels B reichen, die durch die Ebene der Hochwasserentlastungsanlage 29 gegeben ist, und die mit Durchlassöffnungen 13, die sich abwechselnd in der Bodenebene 2 des Beckens 1 und in der Ebene des minimalen Pegels A, die durch die Ebene der Ausflussleitung 11 in Strömungsrichtung gegeben ist, befinden.
Eine Vorrichtung gemäß der Erfindung kann bei der Abwasserreinigung aus unterschiedlichen, vor allem aber aus kleineren Quellen verwendet werden, sowohl bei kommunalen wie auch bei industriellen Quellen mit einer biologisch abbaubaren Belastung. Aufgrund ihrer Flexibilität ist diese Vorrichtung besonders für dezentrale Lösungen der Abwasserreinigung für kleinere Gemeinden, Schulen, Restaurants, Hotels, Pensionen, auf grüner Wiese gebaute Industrieanlagen u. ä. geeignet. Die Vorrichtung ist anpassungsfähig und kann schrittweise zu größeren Einheiten je nach dem Produktionsanstieg der Abwässer verbunden werden. Der Vorteil dieser Vorrichtung sind niedrige Baukosten, da es die technische Lösung ermöglicht, schon fertige, „eingepackte" oder „Container"-Abwasserkläranlagen zu liefern, die nur geringe Montage- und Bauarbeiten auf dem Anlagenort erfordern, wobei die Qualität des Klärwassers auch die erhöhten Anforderungen aus der Sicht der Abwasserqualität erfüllt. Deshalb ist es möglich, diese Kläranlagen auch für den Auslass der Klärwässer in die Oberflächengewässer in empfindlichen Gebieten, in denen die Oberflächengewässer dem Einfluss einer übermäßigen Düngung zu unterliegen drohen, oder für den Auslass in das Grundwasser oder auch bei der Wiederverwendung der Klärwässer zu verwenden.

Claims

A n s p r ü c h e
1. Vorrichtung zur Abwasserreinigung mittels eines modifizierten Belebungsverfahrens mit kontinuierlichem Zufluss und Ausfluss, wobei diese Vorrichtung in einem Becken einen Belebtraum mit aufgeteilten anaeroben und anoxischen Zonen mit vertikalem Durchfluss, die mit einer belüfteten oxischen Zone vereinigt sind, einen Nachklärraum und einen Retentionsraum mit einer inneren Rückführung zwischen den Zonen des Belebtraums und mit einer Rezirkulation des Rücklaufschlamms zwischen dem Belebtraum und dem Nachklärraum aufweist, dadurch gekennzeichnet, dass das Becken (1) mit einem Boden (2) und einem Außenmantel (3) in ein unbelüftetes, vertikal durchflossenes Labyrinth (7), einen belüfteten Belebtraum (8), einen Nachklärraum (9) und einen Retentionsraum (24) aufgeteilt ist, dass das Labyrinth (7) vom belüfteten Belebtraum (8) durch eine Trennwand (4) getrennt ist, die vom Boden (2) bis über die Ebene des maximalen Pegels (B) reicht, die durch die Ebene der Hochwasserentlastungsanlage (29) gegeben ist, und die mit einer Durchlassöffnung (10) in der Bodenebene (2) des Beckens (1) oder in der Ebene des minimalen Pegels (A), die durch die Ebene der Ausflussleitung (11) aus dem Becken (1) gegeben ist, versehen ist, und dass der Nachklärraum (9) im Inneren des belüfteten Belebtraums (8) durch einen
Mantel (5), der vom Boden (2) bis über die Ebene des maximalen Pegels (B) reicht, die durch die Ebene der Hochwasserentlastungsanlage (29) gegeben ist, begrenzt ist, dass eine Durchlassöffnung (6) auf der Bodenebene (2) des Beckens (1) vorgesehen ist, dass der Retentionsraum (24) im Becken (1) zwischen der Ebene des minimalen Pegels (A), die durch die aus dem Becken
(1) führende Ausflussleitung (11) gegeben ist, und der Ebene des maximalen Pegels (B), die durch die Ebene der Hochwasserentlastungsanlage (29) gegeben ist, über die ganze Fläche des Beckens (1) entlang über dem unbelüfteten, vertikal durchflossenen Labyrinth (7), dem belüfteten Belebtraum (8) und dem Nachklärraum (9) begrenzt ist.
2. Vorrichtung nach Anspruch 1 , dadurch gekennzeichnet, dass das unbelüftete, vertikal durchflossene Labyrinth (7) durch eine Reihe von Trennwänden (12) in Strömungsrichtung gebildet ist, die vom Boden (2) bis über die Ebene des maximalen Pegels (B) reichen, die durch die Ebene der Hochwasserentlastungsanlage (29) gegeben ist, und die ferner Durchlassöffnungen (13) abwechselnd auf der Bodenebene (2) des Beckens (1) und der Ebene des minimalen Pegels (A) aufweisen, die durch die aus dem Becken (1) führende Ausflussleitung (11) gegeben ist.
3. Vorrichtung nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, dass im Nachklärraum (9) auf der aus dem Becken (1) führenden Ausflussleitung (11) ein Durchflussregler (14) mit einer kalibrierten Drosselöffnung (19) aufgebaut ist, durch die das Klärwasser nur mit solchem Durchfluss fließen kann, der gleich oder kleiner als der festgelegte Höchstdurchfluss in der Ausflussleitung aus der Einrichtung ist.
4. Vorrichtung nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, dass das Becken (1) einen Außenmantel (3) in der Form eines kreisförmigen oder vieleckigen Grundrisses mit mindestens vier Winkeln aufweist und dass die Trennwand (4) zwischen dem unbelüfteten, vertikal durchflossenen Labyrinth (7) und dem belüfteten Belebtraum (8) konzentrisch angeordnet und mit einem kreisförmigen oder vieleckigen Grundriss mit mindestens vier Winkeln versehen ist, wobei das Labyrinth (7) durch eine Reihe von mindestens sechs radial angeordneten inneren Trennwänden (12) in Strömungsrichtung gebildet wird.
5. Vorrichtung nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, dass das Becken (1) einen Außenmantel (3) im rechteckigen Grundriss aufweist und das Labyrinth (7) aus mindestens zwei Parallelreihen innerer Trennwände (12), die durch eine Leitwand (30) voneinander getrennt sind, und mit einer Reihe von Trennwänden (12) in Strömungsrichtung gebildet ist, die vom Boden (2) bis über die Ebene des maximalen Pegels (B) reichen, die durch die Ebene der Hochwasserentlastungsanlage (29) gegeben ist, und die ferner Durchlassöffnungen (12) abwechselnd auf der Bodenebene (2) des Beckens (1) und der Ebene des minimalen Pegels (A), die durch die aus dem Becken (1) führenden Ausflussleitung (11) gegeben ist, und dass eine Leitwand (30), die vom Boden (2) bis über die Ebene des maximalen Pegels (B) ragt, die durch die
Ebene der Hochwasserentlastungsanlage (29) gegeben ist, vorgesehen ist.
6. Vorrichtung nach den Ansprüchen 1 bis 5, dadurch gekennzeichnet, dass das Material des Bodens (2), des Außenmantels (3) und der Trennwand
(4) zwischen dem Labyrinth (7) und dem belüfteten Belebtraum (8) und der Leitwand (30) ein wasserbaufähiger Beton und/oder ein Konstruktionswandelement aus Kunststoff ist und dass das Material, das in den inneren Trennwänden (12) und im Mantel (5) verwendet wird, ein Konstruktionswandelement aus Kunststoff ist.
7. Vorrichtung nach den Ansprüchen 1 bis 6, dadurch gekennzeichnet, dass der Filter (18) für grobe Schmutzteile auf dem Eintrittsstutzen (16) im Durchflussregler (14) wieder mit dem Klärwasser gespült wird, das im Innern des Durchflussreglers (14) zwischen dem Mantel (15) und der Überströmleitung (20) durch das periodische Einblasen des fluiden Druckmediums in das Innere des Durchflussregler (14) gesammelt wurde.
8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass das fluide Druckmedium Druckluft oder Druckwasser ist.
PCT/EP2006/008031 2005-08-22 2006-08-15 Vorrichtung zur abwasserreinigung WO2007022899A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PL06776841T PL1919833T3 (pl) 2005-08-22 2006-08-15 Urządzenie do oczyszczania ścieków
HUE06776841 HUE009445T2 (en) 2005-08-22 2006-08-15 Waste water purifying device
AU2006284174A AU2006284174B2 (en) 2005-08-22 2006-08-15 Waste water purifying device
AT06776841T ATE472514T1 (de) 2005-08-22 2006-08-15 Vorrichtung zur abwasserreinigung
DE502006007333T DE502006007333D1 (de) 2005-08-22 2006-08-15 Vorrichtung zur abwasserreinigung
EP06776841A EP1919833B1 (de) 2005-08-22 2006-08-15 Vorrichtung zur abwasserreinigung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SK5067-2005 2005-08-22
SK50672005 2005-08-22

Publications (1)

Publication Number Publication Date
WO2007022899A1 true WO2007022899A1 (de) 2007-03-01

Family

ID=37192486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/008031 WO2007022899A1 (de) 2005-08-22 2006-08-15 Vorrichtung zur abwasserreinigung

Country Status (8)

Country Link
EP (1) EP1919833B1 (de)
AT (1) ATE472514T1 (de)
AU (1) AU2006284174B2 (de)
DE (1) DE502006007333D1 (de)
HU (1) HUE009445T2 (de)
PL (1) PL1919833T3 (de)
UA (1) UA86173C2 (de)
WO (1) WO2007022899A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101734791B (zh) * 2008-11-26 2011-07-27 孙光志 一种污水生物处理的方法
CN103979753A (zh) * 2014-04-14 2014-08-13 居国文 一种气提式污泥提升装置
EP2766313A2 (de) 2011-09-08 2014-08-20 Schuster, Péter Kleinkläranlage zur biologischen abwasserbehandlung mit verbessertem wirkungsgrad
CN113106937A (zh) * 2021-04-09 2021-07-13 华北水利水电大学 一种河流用净水集沙系统
CN113818947A (zh) * 2021-10-26 2021-12-21 广船国际有限公司 一种脱硫系统循环水舱及船舶
CN115246676A (zh) * 2022-07-01 2022-10-28 北京新城禹潞环保科技有限责任公司 一种重力式小型污水处理设备

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103877775B (zh) 2012-12-20 2017-03-01 奥加尼卡有限责任公司 用于液体处理尤其是用于盘式废水过滤器设备的过滤器板
CN109422422A (zh) * 2017-08-24 2019-03-05 张建军 一种污水处理设备和污水处理方法
CN109665622A (zh) * 2019-02-25 2019-04-23 华新方 一种环境保护用污水处理装置
CN114524584A (zh) * 2022-02-10 2022-05-24 湖北兴为春科技有限公司 Fbr-f一体化污水处理设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3886065A (en) 1972-03-10 1975-05-27 Kappe Associates Inc Waste water treatment plant with balanced load
US4505813A (en) 1982-06-14 1985-03-19 Norwalk Wastewater Equipment Company Wastewater treatment plant
DE4307288A1 (de) 1993-03-09 1994-09-15 Oekoservice Ges Fuer Umweltana Verfahren zur biologischen Abwasserreinigung mit integrierter Pufferung
US5989428A (en) 1996-06-21 1999-11-23 Goronszy; Mervyn Charles Controlling wastewater treatment by monitoring oxygen utilization rates
DE19916381A1 (de) 1999-03-31 2000-10-26 Tobias Breithaupt Geregelte kleine Kläranlage zur biologisch-chemischen Abwasserreinigung für Haushaltsabwässer
US6210578B1 (en) * 1999-10-29 2001-04-03 Universidad Nacional Autonoma De Mexico Residual water treatment microplant for small flows
WO2002012133A1 (de) * 2000-08-03 2002-02-14 Bioclar, A.S. Belebtschlammverfahren und vorrichtung zur behandlung von abwasser mit stickstoff- und phosphor-entfernung

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3886065A (en) 1972-03-10 1975-05-27 Kappe Associates Inc Waste water treatment plant with balanced load
US4505813A (en) 1982-06-14 1985-03-19 Norwalk Wastewater Equipment Company Wastewater treatment plant
DE4307288A1 (de) 1993-03-09 1994-09-15 Oekoservice Ges Fuer Umweltana Verfahren zur biologischen Abwasserreinigung mit integrierter Pufferung
US5989428A (en) 1996-06-21 1999-11-23 Goronszy; Mervyn Charles Controlling wastewater treatment by monitoring oxygen utilization rates
DE19916381A1 (de) 1999-03-31 2000-10-26 Tobias Breithaupt Geregelte kleine Kläranlage zur biologisch-chemischen Abwasserreinigung für Haushaltsabwässer
US6210578B1 (en) * 1999-10-29 2001-04-03 Universidad Nacional Autonoma De Mexico Residual water treatment microplant for small flows
WO2002012133A1 (de) * 2000-08-03 2002-02-14 Bioclar, A.S. Belebtschlammverfahren und vorrichtung zur behandlung von abwasser mit stickstoff- und phosphor-entfernung

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101734791B (zh) * 2008-11-26 2011-07-27 孙光志 一种污水生物处理的方法
EP2766313A2 (de) 2011-09-08 2014-08-20 Schuster, Péter Kleinkläranlage zur biologischen abwasserbehandlung mit verbessertem wirkungsgrad
EP2766313A4 (de) * 2011-09-08 2015-05-06 Péter Schuster Kleinkläranlage zur biologischen abwasserbehandlung mit verbessertem wirkungsgrad
CN103979753A (zh) * 2014-04-14 2014-08-13 居国文 一种气提式污泥提升装置
CN113106937A (zh) * 2021-04-09 2021-07-13 华北水利水电大学 一种河流用净水集沙系统
CN113818947A (zh) * 2021-10-26 2021-12-21 广船国际有限公司 一种脱硫系统循环水舱及船舶
CN115246676A (zh) * 2022-07-01 2022-10-28 北京新城禹潞环保科技有限责任公司 一种重力式小型污水处理设备

Also Published As

Publication number Publication date
DE502006007333D1 (de) 2010-08-12
EP1919833B1 (de) 2010-06-30
UA86173C2 (ru) 2009-03-25
EP1919833A1 (de) 2008-05-14
ATE472514T1 (de) 2010-07-15
PL1919833T3 (pl) 2010-11-30
HUE009445T2 (en) 2007-03-01
AU2006284174A1 (en) 2007-03-01
AU2006284174B2 (en) 2010-06-03

Similar Documents

Publication Publication Date Title
EP1919833B1 (de) Vorrichtung zur abwasserreinigung
AT396682B (de) Kläranlage
EP0595359B1 (de) Verfahren und Vorrichtung zum Reinigen von Abwasser
DE102006019741A1 (de) Wasserrezirkulationsanlage zum Betreiben von Fischzucht und -mast
EP2456723A1 (de) Abwasserbehandlungsanlage sowie verfahren zur behandlung von abwasser und ein abwasserbehandlungssystem
DE10010109A1 (de) Kompakt-Bodenfilter-Reaktor
EP0688304B1 (de) Verfahren zur biologischen abwasserreinigung mit integrierter pufferung
DE102009039316A1 (de) Abwasserreinigungsanlage und Verfahren zur Abwasserreinigung
DE19838692A1 (de) Pflanzenbeetkläranlage und Klärverfahren dafür
EP2100856B1 (de) Verfahren zur mikrobiologischen Behandlung von Wasser aus Gewässern
EP0749942A2 (de) Anlage zur biologischen Aufbereitung von Abwasser
EP1132348B1 (de) Abwasserkläranlage und -verfahren
DE19951194A1 (de) Mehrzweckschacht, Kleinkläranlage und Abwasserbehandlungsverfahren
DE4122804C2 (de) Kläranlage
DE19842884C9 (de) Verfahren zur biologischen und biologisch-chemischen aufbereitung von abwasser mit integriertem schlammabscheider
EP2272333A2 (de) Vorrichtung zur Reinigung von künstlichen Gewässern
AT414124B (de) Kläranlage
DE19529567C2 (de) Externes Modul zur Aufrüstung einer klärtechnischen Abwasser-Behandlungsanlage sowie mit dem Modul ausgerüstete Abwasser-Behandlungsanlage
DE4239184C1 (de) Anlage zur biologischen Eliminierung von Phosphat aus Abwasser
DE102004054225B4 (de) Anlage und Verfahren zur vollbiologischen Wasseraufbereitung
WO2019101948A1 (de) Abwasserreinigungssystem und verfahren zur abwasserreinigung
AT107U1 (de) Kleinklaeranlage
DE102005032123A1 (de) Verfahren und Anlage zur biologischen Abwasserreinigung in einem Umlaufzonenreaktor
DE1658058A1 (de) Vorrichtung zur mechanisch-biologischen Reinigung von Abwasser
DE102016011935A1 (de) Stromlos arbeitende Abwasserbehandlungsanlage mit einem Vorklärbereich und einem Bioreaktor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006284174

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2006776841

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006284174

Country of ref document: AU

Date of ref document: 20060815

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2006284174

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2006776841

Country of ref document: EP