WO2007020974A1 - Iontophoresis device - Google Patents

Iontophoresis device Download PDF

Info

Publication number
WO2007020974A1
WO2007020974A1 PCT/JP2006/316167 JP2006316167W WO2007020974A1 WO 2007020974 A1 WO2007020974 A1 WO 2007020974A1 JP 2006316167 W JP2006316167 W JP 2006316167W WO 2007020974 A1 WO2007020974 A1 WO 2007020974A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution holding
working
electrolyte solution
temperature
holding unit
Prior art date
Application number
PCT/JP2006/316167
Other languages
French (fr)
Japanese (ja)
Inventor
Hidero Akiyama
Mizuo Nakayama
Takehiko Matsumura
Akihiko Matsumura
Original Assignee
Tti Ellebeau, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tti Ellebeau, Inc. filed Critical Tti Ellebeau, Inc.
Priority to JP2007531024A priority Critical patent/JPWO2007020974A1/en
Publication of WO2007020974A1 publication Critical patent/WO2007020974A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0408Use-related aspects
    • A61N1/0428Specially adapted for iontophoresis, e.g. AC, DC or including drug reservoirs
    • A61N1/0448Drug reservoir

Definitions

  • the present invention relates to an iontophoresis device for administering drug ions to a living body.
  • Iontophoresis is one of the methods for allowing a drug to penetrate into a living body through skin or mucous membranes.
  • This iontophoresis comprises an active electrode structure having a chemical solution holding part for holding a chemical solution and a non-working side electrode structure as a counter electrode, with the chemical solution in contact with the skin or mucous membrane.
  • a voltage of the same conductivity type as that of the drug ion in the drug solution holding portion to the working electrode structure, the drug ion is electrically driven and transferred into the living body via the skin and mucous membrane.
  • the chemical solution holding unit for holding the ionic drug and the electrolyte solution holding unit for holding the electrolyte solution are configured as a gel cartridge.
  • the electrode and the electrolyte holding part come into contact with the working electrode and the non-working electrode and are energized, gas is generated from the contact surface between the electrode and the gel, and the pH of the chemical solution or the electrolyte is reduced.
  • the chemical solution holding part or the electrolyte solution holding part is a liquid rather than a gel, the chemical solution in the chemical solution holding part and the electrode liquid in the electrolyte solution holding part may cause contamination before use! / There was a problem.
  • the present invention has been made in view of the above problems, and the chemical solution holding part and the electrolyte solution holding part are made of gel to suppress contamination and to prevent gas from coming into contact with the electrode. It is an object of the present invention to provide an iontophoresis device capable of suppressing the occurrence of chemical substances and the change in pH of chemicals and electrolytes.
  • a working electrode structure and a non-working electrode structure used for administering an ionic drug by iontophoresis, and a working electrode and a working electrode of these working electrode structures A direct-current power supply connected to the non-working side electrode structure of the non-working side electrode with different polarities, wherein the working side electrode structure is disposed adjacent to the working side electrode and the non-working side electrode structure has a non-working side electrolyte solution holding part provided adjacent to the non-working side electrode.
  • the ion solution characterized in that it comprises at least one of the electrolyte solution holding unit, the chemical solution holding unit, and the non-working side electrolyte solution holding unit, and a gel force that changes into a liquid by either heating or vibration. Tophoresis device.
  • At least one of the electrolyte solution holding portion and the chemical solution holding portion and the non-working side electrolyte solution holding portion is swollen with water at a first temperature, and Shrinks at a second temperature higher than the first temperature to release water Iontophoresis device characterized by being configured to include a time-responsive gel.
  • the second temperature is set to be equal to or lower than a body temperature of the living body, and the temperature-responsive gel is contracted by the temperature of the skin or mucous membrane at the application site ( 2)
  • the iontophoresis device according to any one of Noto (4).
  • the working electrode and one of the electrolytic solution holding unit and the chemical solution holding unit are accommodated in a container-shaped cell.
  • the temperature-responsive gel is set so that the first temperature is 30 ° C and the second temperature is 32 ° C (2) to (7)
  • the iontophoresis device according to any one of the above.
  • the working side electrode structure is disposed on the front side of the working side electrode, the working side electrode connected to the same kind of polarity as the charged ion of the ionic drug in the DC power source,
  • the electrolyte solution holding unit that holds the electrolyte solution, a second ion exchange membrane that is arranged in front of the electrolyte solution holding unit and that selects ions opposite to the charged ions of the ionic drug, and the second ion exchange membrane
  • a chemical solution holding unit that is disposed in front of the ionic drug, and a first ion exchange membrane that is disposed in front of the chemical solution holding unit and selects ions of the same type as the charged ions of the ionic drug,
  • the iontophoresis device according to any one of (1) to (8), characterized by comprising:
  • the non-acting side electrolyte solution holding unit includes a second electrolyte solution holding unit and a third electrolyte solution holding unit, and the non-working side electrode structure is the ion source in the DC power source.
  • the non-working side electrode connected to the opposite polarity to the charged ions of the sexing agent, the second electrolyte holding unit disposed on the front surface of the non-working side electrode and holding the second electrolyte, and the first (2)
  • a third ion exchange membrane that is arranged in front of the electrolyte holding unit and selects ions of the same type as the charged ions of the ionic drug, and is arranged in front of the third ion exchange membrane to hold the third electrolyte.
  • the ionic drug is disposed on the front surface of the third electrolyte solution holding portion and the third electrolyte solution holding portion.
  • a fourth ion exchange membrane that selects ions opposite to the charged ions of the agent, and at least one of the second electrolyte solution holding unit and the third electrolyte solution holding unit is configured to The iontophoresis device according to any one of (1) to (9), wherein the iontophoresis device is one of a gel that changes into a liquid and a temperature-responsive gel.
  • FIG. 1 is a plan view showing an iontophoresis device according to a first example of an embodiment of the present invention.
  • FIG. 2 is an enlarged sectional view taken along line II-II in FIG.
  • FIG. 4 is a sectional view showing an iontophoresis device according to a second example of an embodiment of the present invention.
  • FIG. 5 is a sectional view showing an iontophoresis device according to a fourth example of an embodiment of the invention.
  • the iontophoresis device 10 includes a working electrode structure 12 used for administering an ionic drug and a non-acting function.
  • a side electrode structure 14 and a DC power supply 16 connected to the electrode structures 12 and 14 with different polarities are provided.
  • the working side electrode structure 12 is formed on one side of the base sheet 18 (the lower side in FIG. 2) from the base sheet 18 side, from the working side electrode 22, the electrolyte solution holding unit 24, and the second ion
  • the exchange membrane 26, the chemical solution holding unit 28, and the first ion exchange membrane 30 are stacked in this order.
  • the working side electrode 22 may be configured to have a conductive coating force applied to the one surface of the base sheet 18, for example, a non-metallic conductive filler such as carbon paste.
  • the working side electrode 22 can be formed of a copper plate or a metal thin film, but the metal eluted from the working side electrode 22 may be transferred to a living body when a drug is administered.
  • the electrolyte solution holding unit 24 is made of a gel disposed in contact with the working electrode 22.
  • This gel is constituted by gelling an electrolyte.
  • This electrolyte includes water Easier to be oxidized or reduced than the decomposition reaction (acidification at the positive electrode and reduction at the negative electrode). It is particularly preferable to use organic acids such as acid, malic acid, succinic acid, fumaric acid and Z or a salt thereof, which can suppress generation of oxygen gas and hydrogen gas, By blending multiple types of electrolytes that become buffer electrolytes when dissolved in a solvent, fluctuations in pH during energization can be suppressed.
  • the second ion exchange membrane 26 is made of an ion exchange resin into which an ion exchange group having a counter ion of a conductivity type opposite to drug ions in the drug solution holding unit 28, which will be described later, is introduced, and the drug solution holding unit
  • An anion exchange resin is added when a drug that dissociates into a positive drug ion is used in 28, while conversely, when a drug that releases a drug ion as a negative drug ion is used. Is mixed with a cation exchange resin.
  • the drug solution holding unit 28 is a gelled drug (including a drug precursor) in which the medicinal component dissociates into positive or negative ions (drug ions) by being dissolved in a solvent such as water.
  • examples of drugs that dissociate medicinal components into positive ions include lidocaine hydrochloride, which is an anesthetic, and morphine hydrochloride, which is an anesthetic.
  • examples of drugs that dissociate medicinal components into negative ions Ascorbic acid, which is a vitamin agent, can be exemplified.
  • the first ion exchange membrane 30 is made of an ion exchange resin into which an ion exchange group having the same conductivity type as that of the drug ion of the drug solution holding unit 28 is introduced as a counter ion, and the medicinal component of the drug solution holding unit 28
  • an anion exchange resin or cation exchange resin is added.
  • a three-dimensional network structure such as a polystyrene resin having a perfluorocarbon skeleton, such as a hydrocarbon resin having a perfluorocarbon skeleton such as an acrylic resin.
  • An ion exchange resin in which a cation exchange group (an exchange group in which the counter ion is a cation) such as a sulfonic acid group, a carboxylic acid group, or a phosphonic acid group is introduced into a polymer having a structure may be used without limitation. I'll do it.
  • anion exchange resin a polymer having a three-dimensional network structure similar to the cation exchange resin, a primary to tertiary amino group, a quaternary ammonia group, Pyridyl group, imidazo
  • An ion exchange resin into which an anion exchange group (an exchange group in which the counter ion is an anion) such as an alkyl group, a quaternary pyridinium group, or a quaternary imidazolium group can be used without limitation.
  • the gel that constitutes the electrolyte solution holding unit 24 or the chemical solution holding unit 28 also has a gel that changes to a liquid by heating, for example, a gelatin gel force.
  • the melting temperature of gelatin is 24-30 ° C. By adding glucose, etc., the melting temperature can be changed to about 50 ° C.
  • the non-working side electrode structure 14 is provided on one surface side of the non-working side base sheet 19 similar to the base sheet 18, as partially shown in FIG.
  • the non-working side electrode 32, the second electrolyte holding part 34, the third ion exchange membrane 36, the third electrolyte holding part 38, and the fourth ion exchange membrane 40 are laminated in this order. Yes.
  • the non-working side electrode 32 has the same configuration as the working side electrode 22 in the cell-type working side electrode structure 12, and the second electrolyte holding unit is a non-working side electrolyte holding unit.
  • 34 and the third electrolyte solution holding part 38 are formed of the same gelger as the electrolyte solution holding part 24.
  • the third ion exchange membrane 36 is made of the same ion exchange resin as that forming the first ion exchange membrane 30 and functions as an ion exchange membrane similar to the first ion exchange membrane 30. To do.
  • the fourth ion exchange membrane 40 constitutes the second ion exchange membrane 26 and is formed of the same ion exchange resin as the ion exchange resin.
  • the fourth ion exchange membrane 40 is
  • 2Ion exchange membrane Functions as an ion exchange membrane similar to 26.
  • a working electrode terminal 42 is provided on the other surface of the base sheet 18.
  • the working electrode terminal 42 is a base sheet with respect to the working electrode 22 of the working electrode structure 12.
  • a non-working side electrode terminal 44 is provided on the other surface of the base sheet 19, and the non-working side electrode terminal 44 is a non-working side electrode structure 14. 32 is conducted through a through hole formed in the base sheet 19.
  • the DC power supply 1 is provided between the working side electrode terminal 42 and the non-working side electrode terminal 44.
  • the DC power source 16 is a cell type battery, and the base sheet 18
  • the first active electrode layer 46, the separator layer 47, and the second active electrode layer 48 are sequentially laminated on one surface by a coating method such as printing.
  • the first active electrode layer 46 and the working electrode terminal 42 of the DC power source 16 are directly connected, and the second active electrode layer 4
  • non-working side electrode terminal 44 is connected to each other by a coating film (non-working conductive layer) 45 of a conductive paint formed through an insulating paste layer 49.
  • Reference numeral 13 in FIG. 1 denotes a binding belt that connects the working electrode structure 12 and the non-working electrode structure 14.
  • the coating film 45 is also applied to the coupling belt 13 and continues to the non-working side electrode terminal 44.
  • a thin battery constituting the DC power supply 16 is disclosed in, for example, Japanese Patent Laid-Open No. 11 067236.
  • the working electrode structure 12 and the non-working electrode structure 14 are heated by coming into contact with the skin or mucous membrane of a living body. It is easily heated up to near.
  • the gel constituting the chemical solution holding unit 28, the electrolytic solution holding unit 24, the second electrolytic solution holding unit 34, and the third electrolytic solution holding unit 38 is changed into a chemical solution and an electrolytic solution.
  • the liquid is interposed on the contact surface between the gel and the working electrode and the contact surface between the gel and the non-working electrode 32, so that gas generation and pH change can be suppressed.
  • the electrolytic solution since the chemical solution and the electrolytic solution are in the gel state in the storage state, the electrolytic solution does not become a liquid and contaminates the chemical component of the chemical solution holding unit 28.
  • the iontophoresis device 50 includes a liquid crystal device 52 for making the chemical solution holding unit 28, the electrolyte solution holding unit 24, the second electrolyte solution holding unit 34, and the third electrolyte solution holding unit 38 into a liquid state.
  • the working electrode structure 12 and the non-working electrode structure 14 are accommodated in container-shaped cells 54 and 56, respectively, with the ion exchange membrane at the tip exposed. Yes. Since other configurations are the same as those of the iontophoresis device 10 described above, the same portions are denoted by the same reference numerals as those in the iontophoresis device 10 and description thereof is omitted. It shall be omitted.
  • a heating device is used when the gel is changed to a liquid by heating, and a vibration means such as an ultrasonic generator is used when the gel is changed to a liquid by vibration.
  • the liquefaction device 52 is composed of an iron oxidation heat generating material 52A and a seal 52B that seals the material so that it does not come into contact with air.
  • the iron oxide heating material 52A is disposed outside the cells 54, 56, and is further covered by the outer force of the seal 52B.
  • the liquid skin device 52 also warms the skin and mucous membrane of the living body, and the penetration of the chemical solution is further accelerated to increase the absorption rate. You can.
  • the liquefaction device 52 is a force that uses the iron oxidation heating material 52A.
  • the present invention is not limited to this, for example, a surface that generates heat when energized.
  • a heating element may be wound around the cells 54 and 56, and a part of the power from the DC power source 16 may be supplied to the gel 54 to heat the gel. Further, a heating device may be arranged on the upper side in FIG. 4 of the base sheets 18 and 19 so as to heat through the electrode terminals 42 and 52.
  • the gel changes to a liquid by heating.
  • a thixotropic modifier 'viscosity modifier' is added.
  • This is a highly viscous gel when there is no vibration, but it can be reduced by applying vibration (adding shearing force) when applied.
  • An ultrasonic transmitter or a pager (small vibrator) is used as the vibration means. Since the reaction is reversible, it must be vibrated during the application period. In the case of ultrasound, the penetration of ions is promoted by applying A secondary effect can also be expected.
  • the thixotropic modifier include bentonite, aluminum hydroxide, light caustic anhydride, cross-linked polyacrylic acid, and cross-linked sodium polyacrylate.
  • the electrolytic solution holder in the working electrode structure 12 of the iontophoresis device 10 is brought into contact with the working electrode 22 as shown by reference numeral 62 in FIG.
  • the temperature responsive gelger is arranged as described above.
  • the other configuration is the same as the configuration of the iontophoresis device 10 according to the first example of the embodiment, and therefore the description thereof will be omitted by using FIG.
  • This temperature-responsive gel 62 is swollen by an electrolyte and water.
  • This electrolyte is the same as that used for the electrolyte solution holding unit 24.
  • the temperature-responsive gel 62 constituting the electrolytic solution holding part swells and contains water and an electrolytic solution at a first temperature (for example, 30 ° C) or lower, but a second temperature (for example, It is composed of a gel that shrinks by 1Z10 or more and releases water and electrolyte, for example, N-isopropylatyramide (IPAAm) gel.
  • IPAAm N-isopropylatyramide
  • PIPAAm Poly-N-isopropylacrylamide
  • the first temperature and the second temperature are forces determined by the blending ratio of the components constituting the temperature-responsive gel.
  • the temperatures are set to 30 ° C and 32 ° C.
  • the second electrolyte solution holding part in the non-working side electrode 32 is constituted by a temperature-responsive gelger similar to the electrolyte solution holding part, as indicated by reference numeral 64 in FIG. Since the other configuration is the same as that of the iontophoresis device 10 according to the first example of the embodiment, the description thereof will be omitted by using FIG.
  • the third electrolyte holding part is also It may be composed of a temperature-responsive gel.
  • the working electrode structure 12 and the non-working electrode structure 14 are heated by contact with the skin or mucous membrane of the living body, for example, more than the human body temperature. About 4 ° C low and easily heated up to 32 ° C.
  • the storage temperature of ordinary chemicals is not more than the upper limit of room temperature of 30 ° C specified by the Japanese Pharmacopoeia.
  • the electrolyte is absorbed by the temperature-responsive gel. Therefore, the stability of the chemical solution during storage that does not contaminate the chemical component of the chemical solution holding unit 28 can be improved.
  • the first temperature and the second temperature are set to 30 ° C and 32 ° C, respectively, the first temperature is set higher than the maximum temperature in the storage state.
  • the second temperature should be set slightly lower than the body temperature of the living body. Therefore, for humans, it varies slightly depending on race and age, and for animals, it becomes hot.
  • a mixed polymer gel showing a swelling transition near 37 ° C using a triblock copolymer of polyethylene oxide-polypropylene oxide-polyethylene oxide and polybulal alcohol.
  • this gel forms a gel based on intramolecular or intermolecular interactions based on hydrogen bonds, transition occurs due to temperature sensitivity of hydrogen bonds depending on temperature.
  • drug release due to swelling transition of the polymer between 35 ° C force and 40 ° C is shown.
  • Still another temperature-responsive gel is a copolymer of methyl acrylate and stearyl acrylate.
  • this copolymer When this copolymer is cross-linked, it becomes soft when the force exceeds 50 ° C, which is hard at 25 ° C or less. This is due to a reversible transition due to the interaction between the alkyl chains of stearyl acrylate.
  • long-chain alkyl groups strengthen the crystal aggregation structure, and at 50 ° C and above, the side chain This is because the packaging becomes amorphous and the material is soft and flexible.
  • shape memory polymer gels are shown. Is done.
  • the temperature-responsive gels 62 and 64 are heated by the body temperature of the living body, but the present invention is not limited to this.
  • the liquid crystal device 52 used in the iontophoresis device 50 according to the second example of the embodiment shown may be a heating device.
  • both the first temperature and the second temperature are the first example of the embodiment. It can be set higher than in the case of.
  • the warming device warms the skin and mucous membrane of the living body, so that the penetration of the chemical solution is further accelerated and the absorption rate can be increased.
  • the heating device is a force using ferrous oxide heating material 52A.
  • the present invention is not limited to this, for example, the ion of the fourth example of the embodiment shown in FIG.
  • the heating device 72 is composed of a heater such as a surface heating element that generates heat when energized, and is wound around the cells 54 and 56, where the power from the DC power source 16 is supplied. A portion may be supplied to warm the temperature-responsive gels 62, 64.
  • the heating device 72 is arranged on the upper side in FIG. 4 of the base sheets 18 and 19 so as to heat the force provided on the outer periphery of the cells 54 and 56, for example, via the electrode terminals 42 and 52. May
  • the working electrode structure 12 has an electrolyte solution holding unit in addition to the chemical solution holding unit, and further includes a two-layer ion exchange membrane, and also has a non-working side.
  • the electrode structure 14 includes a two-layer electrolyte solution holding portion and an ion exchange membrane, but the present invention is not limited to this, and the chemical solution holding portion is in direct contact with the working electrode. May be.
  • the electrolyte solution holding part constituting the working electrode structure may be formed of a temperature-responsive gel.
  • the electrolyte solution holding part and Z or The chemical holding part may be composed of a temperature-responsive gel.
  • the chemical solution holding unit and the electrolyte solution holding unit are made of gel or a temperature-responsive gel, contamination of the chemical solution and the electrolyte solution is prevented in the storage state.
  • the shelf life is improved. It is possible to improve the usability by changing from a liquid to a liquid, or by releasing water with a temperature-responsive gel force to suppress the generation of gas from the contact surface with the electrode and the change in pH.

Abstract

Disclosed is an iontophoresis device (10) wherein an electrolyte solution holding part (24) and a chemical holding part (28) of a working-side electrode structure (12), and second and third electrolyte solution holding parts (34, 38) of a non-working-side electrode structure (14) respectively contain a gel which changes into a liquid when heated or vibrated. By having such a constitution, a chemical in the chemical holding part is prevented from being contaminated with the electrolyte solution during storage, and generation of a gas and changes of the pH are suppressed by the liquid when current is passed through the device.

Description

イオントフォレーシス装置  Iontophoresis device
技術分野  Technical field
[0001] 本発明は、薬剤イオンを生体に投与するためのイオントフォレーシス装置に関する  The present invention relates to an iontophoresis device for administering drug ions to a living body.
背景技術 Background art
[0002] 皮膚や粘膜から、薬剤を生体に浸透させるための方法の一つとしてイオントフォレ 一シスがある。このイオントフォレーシスは、薬液を保持する薬液保持部を有する作 用側電極構造体と、この対極としての非作用側電極構造体とを備え、薬液を皮膚や 粘膜に当接させた状態で作用側電極構造体に、薬液保持部中の薬剤イオンと同一 導電型の電圧を作用させることによって薬剤イオンを電気的に駆動して皮膚や粘膜 を経由して生体内に移行させるものである。  [0002] Iontophoresis is one of the methods for allowing a drug to penetrate into a living body through skin or mucous membranes. This iontophoresis comprises an active electrode structure having a chemical solution holding part for holding a chemical solution and a non-working side electrode structure as a counter electrode, with the chemical solution in contact with the skin or mucous membrane. By applying a voltage of the same conductivity type as that of the drug ion in the drug solution holding portion to the working electrode structure, the drug ion is electrically driven and transferred into the living body via the skin and mucous membrane.
[0003] 例えば、国際公開 WO03Z037425A1には、作用側電極構造体及び非作用側 電極構造体それぞれの構成要素を全て膜状態で構成すると共に、作用側電極構造 体にイオン性薬剤の帯電イオンと同種及び異種のイオンを選択するイオン選択性の 異なる異種のイオン交換膜を配設し、且つ、非作用側電極構造体に少なくともイオン 性薬剤の帯電イオンと反対のイオンを選択するイオン交換膜を配設して、イオン性薬 剤を長期間安定して高い輸送効率で投与することができるイオントフォレーシス装置 が開示されている。 [0003] For example, in International Publication WO03Z037425A1, all components of the working electrode structure and the non-working electrode structure are configured in a film state, and the working electrode structure has the same kind as the charged ions of the ionic drug. And dissimilar ion exchange membranes with different ion selectivity, and an ion exchange membrane that selects at least the ion opposite to the charged ion of the ionic drug on the non-working side electrode structure. An iontophoresis device that can administer an ionic drug stably for a long period of time with high transport efficiency is disclosed.
[0004] 上記に対して、例えば前記イオン性薬剤を保持する薬液保持部や、電解液を保持 する電解液保持部を、ゲルカゝら構成することが考えられるが、使用時にゲル状態の 薬液保持部や電解液保持部が作用側電極や非作用側電極と接触して ヽて、通電さ れると、電極とゲルの接触面カゝらガスが発生し、又、薬液や電解液の pHの変化が生 じることがあるという問題点があった。また、薬液保持部や電解液保持部がゲルでなく 液体の場合、使用前に薬液保持部の薬液と電解液保持部の電極液がコンタミネー シヨン(contamination:混合)を起すことがあると!/、う問題点があった。  [0004] In contrast to the above, for example, it is conceivable that the chemical solution holding unit for holding the ionic drug and the electrolyte solution holding unit for holding the electrolyte solution are configured as a gel cartridge. When the electrode and the electrolyte holding part come into contact with the working electrode and the non-working electrode and are energized, gas is generated from the contact surface between the electrode and the gel, and the pH of the chemical solution or the electrolyte is reduced. There was a problem that changes could occur. Also, if the chemical solution holding part or the electrolyte solution holding part is a liquid rather than a gel, the chemical solution in the chemical solution holding part and the electrode liquid in the electrolyte solution holding part may cause contamination before use! / There was a problem.
発明の開示 [0005] この発明は上記問題点に鑑みてなされたものであって、薬液保持部や電解液保持 部をゲルで構成して、コンタミネーシヨンを抑制するとともに、電極との接触面からの ガスの発生や薬液や電解液の pHの変化を抑制することができるようにしたイオントフ ォレーシス装置を提供することを課題とする。 Disclosure of the invention [0005] The present invention has been made in view of the above problems, and the chemical solution holding part and the electrolyte solution holding part are made of gel to suppress contamination and to prevent gas from coming into contact with the electrode. It is an object of the present invention to provide an iontophoresis device capable of suppressing the occurrence of chemical substances and the change in pH of chemicals and electrolytes.
[0006] (1)イオントフォレーシスによりイオン性薬剤を投与するために使用される作用側電 極構造体及び非作用側電極構造体と、これらの作用側電極構造体の作用側電極及 び非作用側電極構造体の非作用側電極に異なる極性で接続される直流電源と、を 有するイオントフォレーシス装置であって、前記作用側電極構造体は、前記作用側 電極に隣接して配置された電解液保持部及び薬液保持部の一方を有してなり、前記 非作用側電極構造体は、前記非作用側電極に隣接して設けられた非作用側電解液 保持部を有してなり、前記電解液保持部、薬液保持部及び非作用側電解液保持部 のうち少なくとも一つ力 加温及び加振のいずれかにより液体に変化するゲル力 構 成されたことを特徴とするイオントフォレーシス装置。  [0006] (1) A working electrode structure and a non-working electrode structure used for administering an ionic drug by iontophoresis, and a working electrode and a working electrode of these working electrode structures A direct-current power supply connected to the non-working side electrode structure of the non-working side electrode with different polarities, wherein the working side electrode structure is disposed adjacent to the working side electrode And the non-working side electrode structure has a non-working side electrolyte solution holding part provided adjacent to the non-working side electrode. The ion solution characterized in that it comprises at least one of the electrolyte solution holding unit, the chemical solution holding unit, and the non-working side electrolyte solution holding unit, and a gel force that changes into a liquid by either heating or vibration. Tophoresis device.
[0007] (2)イオントフォレーシスによりイオン性薬剤を投与するために使用される作用側電 極構造体及び非作用側電極構造体と、これらの作用側電極構造体の作用側電極及 び非作用側電極構造体の非作用側電極に異なる極性で接続される直流電源と、を 有するイオントフォレーシス装置であって、前記作用側電極構造体は、前記作用側 電極に隣接して配置された電解液保持部及び薬液保持部の一方を有してなり、前記 非作用側電極構造体は、前記非作用側電極に隣接して設けられた非作用側電解液 保持部を有してなり、前記電解液保持部と薬液保持部のうちの前記一方、及び、前 記非作用側電解液保持部のうち、少なくとも一方を、第 1の温度で、水により膨潤され ていて、且つ、前記第 1の温度より高い第 2の温度で収縮して水を放出する温度応答 性ゲルを含んで構成したことを特徴とするイオントフォレーシス装置。  [0007] (2) Working electrode structure and non-working electrode structure used for administering an ionic drug by iontophoresis, working electrode of these working electrode structures, and A direct-current power supply connected to the non-working side electrode structure of the non-working side electrode with different polarities, wherein the working side electrode structure is disposed adjacent to the working side electrode And the non-working side electrode structure has a non-working side electrolyte solution holding part provided adjacent to the non-working side electrode. And at least one of the electrolyte solution holding portion and the chemical solution holding portion and the non-working side electrolyte solution holding portion is swollen with water at a first temperature, and Shrinks at a second temperature higher than the first temperature to release water Iontophoresis device characterized by being configured to include a time-responsive gel.
[0008] (3)前記薬液保持部に温度応答性ゲルを設けた場合、前記温度応答性ゲルに前 記イオン性薬剤を含浸させておくことを特徴とする(2)に記載のイオントフォレーシス 装置。  [0008] (3) The iontophoresis according to (2), wherein when the temperature-responsive gel is provided in the chemical solution holding part, the temperature-responsive gel is impregnated with the ionic drug. Sys device.
[0009] (4)前記電解液保持部又は非作用側電解液保持部に温度応答性ゲルを設けた場 合、前記温度応答性ゲルに電解液を含浸させておくことを特徴とする(2)に記載のィ オントフォレーシス装置。 [0009] (4) When a temperature-responsive gel is provided in the electrolyte solution holding part or the non-working-side electrolyte solution holding part, the temperature-responsive gel is impregnated with an electrolyte solution (2 ) Ontophoresis device.
[0010] (5)前記第 2の温度が生体の体温以下に設定されていて、貼り付け部位の皮膚又 は粘膜の温度より前記温度応答性ゲルが収縮するようにしたことを特徴とする(2)乃 至(4)の 、ずれかに記載のイオントフォレーシス装置。  [0010] (5) The second temperature is set to be equal to or lower than a body temperature of the living body, and the temperature-responsive gel is contracted by the temperature of the skin or mucous membrane at the application site ( 2) The iontophoresis device according to any one of Noto (4).
[0011] (6)前記温度応答性ゲルを前記第 2の温度以上に加温する加温装置を設けたこと を特徴とする(2)乃至(5)の 、ずれかに記載のイオントフォレーシス装置。 (6) The iontophoresis according to any one of (2) to (5), wherein a heating device is provided for heating the temperature-responsive gel to the second temperature or higher. Cis equipment.
[0012] (7)前記作用側電極構造体に温度応答性ゲルを設けた場合、前記作用側電極と、 前記電解液保持部及び薬液保持部の一方とは、容器形状のセル内に収容され、前 記加温装置は、前記セルの外周に沿って配置されたことを特徴とする(6)に記載のィ オントフォレーシス装置。 (7) When a temperature-responsive gel is provided on the working electrode structure, the working electrode and one of the electrolytic solution holding unit and the chemical solution holding unit are accommodated in a container-shaped cell. The iontophoresis device according to (6), wherein the heating device is disposed along the outer periphery of the cell.
[0013] (8)前記温度応答性ゲルを、前記第 1の温度が 30°C、第 2の温度が 32°Cとなるよう に、設定したことを特徴とする(2)乃至(7)の 、ずれかに記載のイオントフォレーシス 装置。 [0013] (8) The temperature-responsive gel is set so that the first temperature is 30 ° C and the second temperature is 32 ° C (2) to (7) The iontophoresis device according to any one of the above.
[0014] (9)前記作用側電極構造体は、前記直流電源における、前記イオン性薬剤の帯電 イオンと同種の極性に接続された前記作用側電極と、この作用側電極の前面に配置 され、電解液を保持する前記電解液保持部と、この電解液保持部の前面に配置され 、前記イオン性薬剤の帯電イオンと反対のイオンを選択する第 2イオン交換膜と、この 第 2イオン交換膜の前面に配置され、前記イオン性薬剤を保持する薬液保持部と、こ の薬液保持部の前面に配置され、前記イオン性薬剤の帯電イオンと同種のイオンを 選択する第 1イオン交換膜と、を有してなることを特徴とする(1)乃至 (8)の ヽずれか に記載のイオントフォレーシス装置。  (9) The working side electrode structure is disposed on the front side of the working side electrode, the working side electrode connected to the same kind of polarity as the charged ion of the ionic drug in the DC power source, The electrolyte solution holding unit that holds the electrolyte solution, a second ion exchange membrane that is arranged in front of the electrolyte solution holding unit and that selects ions opposite to the charged ions of the ionic drug, and the second ion exchange membrane A chemical solution holding unit that is disposed in front of the ionic drug, and a first ion exchange membrane that is disposed in front of the chemical solution holding unit and selects ions of the same type as the charged ions of the ionic drug, The iontophoresis device according to any one of (1) to (8), characterized by comprising:
[0015] (10)前記非作用側電解液保持部は、第 2電解液保持部と、第 3電解液保持部とか らなり、前記非作用側電極構造体は、前記直流電源における、前記イオン性薬剤の 帯電イオンと反対の極性に接続された前記非作用側電極と、この非作用側電極の前 面に配置され、第 2電解液を保持する前記第 2電解液保持部と、この第 2電解液保持 部の前面に配置され、前記イオン性薬剤の帯電イオンと同種のイオンを選択する第 3 イオン交換膜と、この第 3イオン交換膜の前面に配置され、第 3電解液を保持する前 記第 3電解液保持部と、この第 3電解液保持部の前面に配置され、前記イオン性薬 剤の帯電イオンと反対のイオンを選択する第 4イオン交換膜と、を有してなり、前記第 2電解液保持部及び第 3電解液保持部の少なくとも一方が、前記加温及び加振のい ずれかにより液体に変化するゲル及び温度応答性ゲルの一方であることを特徴とす る(1)乃至(9)の 、ずれかに記載のイオントフォレーシス装置。 [0015] (10) The non-acting side electrolyte solution holding unit includes a second electrolyte solution holding unit and a third electrolyte solution holding unit, and the non-working side electrode structure is the ion source in the DC power source. The non-working side electrode connected to the opposite polarity to the charged ions of the sexing agent, the second electrolyte holding unit disposed on the front surface of the non-working side electrode and holding the second electrolyte, and the first (2) A third ion exchange membrane that is arranged in front of the electrolyte holding unit and selects ions of the same type as the charged ions of the ionic drug, and is arranged in front of the third ion exchange membrane to hold the third electrolyte. The ionic drug is disposed on the front surface of the third electrolyte solution holding portion and the third electrolyte solution holding portion. A fourth ion exchange membrane that selects ions opposite to the charged ions of the agent, and at least one of the second electrolyte solution holding unit and the third electrolyte solution holding unit is configured to The iontophoresis device according to any one of (1) to (9), wherein the iontophoresis device is one of a gel that changes into a liquid and a temperature-responsive gel.
図面の簡単な説明  Brief Description of Drawings
[0016] [図 1]本発明の実施の形態の第 1例に係るイオントフォレーシス装置を示す平面図 [図 2]図 1の II II線に沿う拡大断面図  FIG. 1 is a plan view showing an iontophoresis device according to a first example of an embodiment of the present invention. FIG. 2 is an enlarged sectional view taken along line II-II in FIG.
[図 3]図 1の III III線に沿う拡大断面図  [Figure 3] Enlarged sectional view along line III-III in Figure 1
[図 4]本発明の実施の形態の第 2例に係るイオントフォレーシス装置を示す断面図 [図 5]本発明の実施の形態の第 4例に係るイオントフォレーシス装置を示す断面図 発明を実施するための最良の形態  FIG. 4 is a sectional view showing an iontophoresis device according to a second example of an embodiment of the present invention. FIG. 5 is a sectional view showing an iontophoresis device according to a fourth example of an embodiment of the invention. BEST MODE FOR CARRYING OUT THE INVENTION
[0017] 以下本発明を実施するための最良の形態について図面を参照して詳細に説明す る。 Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to the drawings.
[0018] 図 1〜図 3に示されるように、実施形態の第 1例に係るイオントフォレーシス装置 10 は、イオン性薬剤を投与するために使用される作用側電極構造体 12及び非作用側 電極構造体 14と、これらの電極構造体 12、 14に異なる極性で接続される直流電源 1 6と、を有して構成されている。  [0018] As shown in FIGS. 1 to 3, the iontophoresis device 10 according to the first example of the embodiment includes a working electrode structure 12 used for administering an ionic drug and a non-acting function. A side electrode structure 14 and a DC power supply 16 connected to the electrode structures 12 and 14 with different polarities are provided.
[0019] 前記作用側電極構造体 12は、ベースシート 18の一方の面(図 2において下側面) に、ベースシート 18側から、作用側電極 22と、電解液保持部 24と、第 2イオン交換膜 26と、薬液保持部 28と、第 1イオン交換膜 30と、をこの順で積層して構成されている  The working side electrode structure 12 is formed on one side of the base sheet 18 (the lower side in FIG. 2) from the base sheet 18 side, from the working side electrode 22, the electrolyte solution holding unit 24, and the second ion The exchange membrane 26, the chemical solution holding unit 28, and the first ion exchange membrane 30 are stacked in this order.
[0020] 前記作用側電極 22は、前記ベースシート 18の前記一方の面に塗布された、例え ばカーボンペースト等の非金属導電フィラーが配合された導電塗料力 構成するとよ い。この作用側電極 22を銅板や金属薄膜によって構成することもできるが、ここから 溶出した金属が薬剤投与に際して生体に移行することも考えられるので、非金属性 が好ましい。 [0020] The working side electrode 22 may be configured to have a conductive coating force applied to the one surface of the base sheet 18, for example, a non-metallic conductive filler such as carbon paste. The working side electrode 22 can be formed of a copper plate or a metal thin film, but the metal eluted from the working side electrode 22 may be transferred to a living body when a drug is administered.
[0021] 前記電解液保持部 24は、前記作用側電極 22に接触して配置されたゲルから構成 される。このゲルは電解質をゲルイ匕して構成されている。この電解質としては、水の電 解反応 (プラス極での酸ィ匕及びマイナス極での還元)よりも酸化又は還元され易 ヽ電 解質、例えば、ァスコルビン酸 (ビタミン C)ゃァスコルビン酸ナトリウム等の医薬剤、乳 酸、シユウ酸、リンゴ酸、コハク酸、フマル酸等の有機酸及び Z又はその塩を使用す ることが特に好ましぐこれにより、酸素ガスや水素ガスの発生を抑制することが可能 であり、又、溶媒に溶解した際に緩衝電解液となる組合せの複数種の電解質を配合 することにより、通電中における pHの変動を抑制することもできる。 The electrolyte solution holding unit 24 is made of a gel disposed in contact with the working electrode 22. This gel is constituted by gelling an electrolyte. This electrolyte includes water Easier to be oxidized or reduced than the decomposition reaction (acidification at the positive electrode and reduction at the negative electrode). It is particularly preferable to use organic acids such as acid, malic acid, succinic acid, fumaric acid and Z or a salt thereof, which can suppress generation of oxygen gas and hydrogen gas, By blending multiple types of electrolytes that become buffer electrolytes when dissolved in a solvent, fluctuations in pH during energization can be suppressed.
[0022] 前記第 2イオン交換膜 26は、後述の、薬液保持部 28中の薬物イオンと反対導電型 のイオンを対イオンとするイオン交換基が導入されたイオン交換樹脂からなり、薬液 保持部 28における薬効成分がプラスの薬物イオンに解離する薬剤が使用される場 合には陰イオン交換樹脂が配合され、逆に、薬効成分がマイナスの薬物イオンに解 離する薬剤が使用される場合には陽イオン交換樹脂が配合される。 [0022] The second ion exchange membrane 26 is made of an ion exchange resin into which an ion exchange group having a counter ion of a conductivity type opposite to drug ions in the drug solution holding unit 28, which will be described later, is introduced, and the drug solution holding unit An anion exchange resin is added when a drug that dissociates into a positive drug ion is used in 28, while conversely, when a drug that releases a drug ion as a negative drug ion is used. Is mixed with a cation exchange resin.
[0023] 前記薬液保持部 28は、水等の溶媒に溶解する等により薬効成分がプラス又はマイ ナスのイオン (薬物イオン)に解離する薬剤 (薬剤の前駆体を含む)をゲル化したもの であり、薬効成分がプラスのイオンに解離する薬剤としては、麻酔薬である塩酸リドカ イン、麻酔薬である塩酸モルヒネ等を例示することができ、薬効成分がマイナスのィ オンに解離する薬剤としては、ビタミン剤であるァスコルビン酸等を例示することがで きる。 [0023] The drug solution holding unit 28 is a gelled drug (including a drug precursor) in which the medicinal component dissociates into positive or negative ions (drug ions) by being dissolved in a solvent such as water. Examples of drugs that dissociate medicinal components into positive ions include lidocaine hydrochloride, which is an anesthetic, and morphine hydrochloride, which is an anesthetic. Examples of drugs that dissociate medicinal components into negative ions Ascorbic acid, which is a vitamin agent, can be exemplified.
[0024] 前記第 1イオン交換膜 30は、薬液保持部 28の薬物イオンと同一導電型のイオンを 対イオンとするイオン交換基が導入されたイオン交換樹脂からなり、薬液保持部 28の 薬効成分が、プラス又はマイナスの薬物イオンに解離する薬剤が使用される場合に は、陰イオン交換榭脂又は陽イオン交換樹脂が配合される。  The first ion exchange membrane 30 is made of an ion exchange resin into which an ion exchange group having the same conductivity type as that of the drug ion of the drug solution holding unit 28 is introduced as a counter ion, and the medicinal component of the drug solution holding unit 28 However, when an agent that dissociates into positive or negative drug ions is used, an anion exchange resin or cation exchange resin is added.
[0025] 上記陽イオン交換榭脂としては、ポリスチレン榭脂ゃアクリル酸系榭脂等の炭化水 素系榭脂ゃパーフルォロカーボン骨格を有するフッ素系榭脂等の 3次元的な網目構 造を持つ高分子に、スルホン酸基、カルボン酸基、ホスホン酸基等の陽イオン交換基 (対イオンが陽イオンである交換基)が導入されたイオン交換樹脂が制限無く使用す ることがでさる。  [0025] As the cation exchange resin, a three-dimensional network structure such as a polystyrene resin having a perfluorocarbon skeleton, such as a hydrocarbon resin having a perfluorocarbon skeleton such as an acrylic resin. An ion exchange resin in which a cation exchange group (an exchange group in which the counter ion is a cation) such as a sulfonic acid group, a carboxylic acid group, or a phosphonic acid group is introduced into a polymer having a structure may be used without limitation. I'll do it.
[0026] 又、上記陰イオン交換榭脂としては、前記陽イオン交換樹脂と同様の 3次元的な網 目構造を持つ高分子に、 1〜3級ァミノ基、 4級アンモ-ゥム基、ピリジル基、イミダゾ ール基、 4級ピリジ-ゥム基、 4級イミダゾリゥム基等の陰イオン交換基 (対イオンが陰 イオンである交換基)が導入されたイオン交換樹脂が制限無く使用できる。 [0026] In addition, as the anion exchange resin, a polymer having a three-dimensional network structure similar to the cation exchange resin, a primary to tertiary amino group, a quaternary ammonia group, Pyridyl group, imidazo An ion exchange resin into which an anion exchange group (an exchange group in which the counter ion is an anion) such as an alkyl group, a quaternary pyridinium group, or a quaternary imidazolium group can be used without limitation.
[0027] 前記電解液保持部 24又は薬液保持部 28を構成するゲルは、加温によって液体に 変化するゲル、例えば、ゼラチンゲル力も構成されている。なお、ゼラチンの溶ける温 度は 24— 30°Cである力 グルコース等を添加することにより溶ける温度を 50°C程度 まで変化させることができる。  [0027] The gel that constitutes the electrolyte solution holding unit 24 or the chemical solution holding unit 28 also has a gel that changes to a liquid by heating, for example, a gelatin gel force. The melting temperature of gelatin is 24-30 ° C. By adding glucose, etc., the melting temperature can be changed to about 50 ° C.
[0028] 前記非作用側電極構造体 14は、図 3に一部が拡大して示されるように、前記べ一 スシート 18と同様の非作用側ベースシート 19の一方の面側に設けられた非作用側 電極 32と、第 2電解液保持部 34と、第3イオン交換膜 36と、第 3電解液保持部 38と、 第 4イオン交換膜 40とをこの順で積層して構成されている。 [0028] The non-working side electrode structure 14 is provided on one surface side of the non-working side base sheet 19 similar to the base sheet 18, as partially shown in FIG. The non-working side electrode 32, the second electrolyte holding part 34, the third ion exchange membrane 36, the third electrolyte holding part 38, and the fourth ion exchange membrane 40 are laminated in this order. Yes.
[0029] 前記非作用側電極 32は、前記セル型作用側電極構造体 12における作用側電極 22と同様の構成であり、又、非作用側電解液保持部である前記第 2電解液保持部 3 4及び第 3電解液保持部 38は前記電解液保持部 24と同様のゲルカゝら構成されてい る。  [0029] The non-working side electrode 32 has the same configuration as the working side electrode 22 in the cell-type working side electrode structure 12, and the second electrolyte holding unit is a non-working side electrolyte holding unit. 34 and the third electrolyte solution holding part 38 are formed of the same gelger as the electrolyte solution holding part 24.
[0030] 更に、前記第 3イオン交換膜 36は、前記第 1イオン交換膜 30を形成していると同様 のイオン交換樹脂からなり、第 1イオン交換膜 30と同様の、イオン交換膜として機能 する。  Further, the third ion exchange membrane 36 is made of the same ion exchange resin as that forming the first ion exchange membrane 30 and functions as an ion exchange membrane similar to the first ion exchange membrane 30. To do.
[0031] 前記第 4イオン交換膜 40は、上記の第 2イオン交換膜 26を構成して 、るイオン交 換榭脂と同様のイオン交換樹脂から形成されている。この第 4イオン交換膜 40は、第 The fourth ion exchange membrane 40 constitutes the second ion exchange membrane 26 and is formed of the same ion exchange resin as the ion exchange resin. The fourth ion exchange membrane 40 is
2イオン交換膜 26と同様のイオン交換膜として機能する。 2Ion exchange membrane Functions as an ion exchange membrane similar to 26.
[0032] 前記ベースシート 18の他方の面には、作用側電極端子 42が設けられ、この作用側 電極端子 42は、前記作用側電極構造体 12の作用側電極 22に対して、ベースシート[0032] A working electrode terminal 42 is provided on the other surface of the base sheet 18. The working electrode terminal 42 is a base sheet with respect to the working electrode 22 of the working electrode structure 12.
18に設けたスルーホールを介して導通されている。 Conducted through a through hole provided in 18.
[0033] 同様に、前記ベースシート 19の他方の面には、非作用側電極端子 44が設けられ ていて、この非作用側電極端子 44は、非作用側電極構造体 14の非作用側電極 32 に対して、ベースシート 19に形成されたスルーホールを介して導通されて 、る。 Similarly, a non-working side electrode terminal 44 is provided on the other surface of the base sheet 19, and the non-working side electrode terminal 44 is a non-working side electrode structure 14. 32 is conducted through a through hole formed in the base sheet 19.
[0034] 前記作用側電極端子 42と非作用側電極端子 44の間の位置には、前記直流電源 1[0034] The DC power supply 1 is provided between the working side electrode terminal 42 and the non-working side electrode terminal 44.
6が配置されている。この直流電源 16は、セル型電池であって、前記ベースシート 18 の一方の面に印刷等の塗布法により順次積層してされる第 1活電極層 46と、セパレ ータ層 47と、第 2活電極層 48とから構成されている。前記直流電源 16の、前記第 1 活電極層 46と前記作用側電極端子 42とは、直接接続され、又、前記第 2活電極層 46 is arranged. The DC power source 16 is a cell type battery, and the base sheet 18 The first active electrode layer 46, the separator layer 47, and the second active electrode layer 48 are sequentially laminated on one surface by a coating method such as printing. The first active electrode layer 46 and the working electrode terminal 42 of the DC power source 16 are directly connected, and the second active electrode layer 4
8と前記非作用側電極端子 44とは、絶縁ペースト層 49を介して形成された導電塗料 の塗膜 (非作用電導層) 45によりそれぞれ接続されている。 8 and the non-working side electrode terminal 44 are connected to each other by a coating film (non-working conductive layer) 45 of a conductive paint formed through an insulating paste layer 49.
[0035] 図 1の符号 13は作用側電極構造体 12と非作用側電極構造体 14とを連結する結 合ベルトを示す。前記塗膜 45は、前記結合ベルト 13上にも塗布されていて、非作用 側電極端子 44にまで続 、て 、る。 Reference numeral 13 in FIG. 1 denotes a binding belt that connects the working electrode structure 12 and the non-working electrode structure 14. The coating film 45 is also applied to the coupling belt 13 and continues to the non-working side electrode terminal 44.
[0036] 前記直流電源 16を構成する薄型の電池は、例えば、特開平 11 067236号公報A thin battery constituting the DC power supply 16 is disclosed in, for example, Japanese Patent Laid-Open No. 11 067236.
、米国特許公開公報 2004Z0185667A1号公報、米国特許 6855441号公報等に 開示されるものを使用することができ、実施例形態の構造に限定されるものでない。 Those disclosed in US Patent Publication No. 2004Z0185667A1, US Pat. No. 6,855,441 and the like can be used, and are not limited to the structure of the embodiment.
[0037] このイオントフォレーシス装置 10において、使用時に、作用側電極構造体 12及び 非作用側電極構造体 14が、生体の皮膚あるいは粘膜と接触することによって加温さ れ、例えば人間の体温近くまでは容易に加温される。 [0037] In this iontophoresis device 10, during use, the working electrode structure 12 and the non-working electrode structure 14 are heated by coming into contact with the skin or mucous membrane of a living body. It is easily heated up to near.
[0038] この加温によって、薬液保持部 28、前記電解液保持部 24、第 2電解液保持部 34 及び第 3電解液保持部 38を構成するゲルが薬液及び電解液に変化する。これ〖こよりBy this heating, the gel constituting the chemical solution holding unit 28, the electrolytic solution holding unit 24, the second electrolytic solution holding unit 34, and the third electrolytic solution holding unit 38 is changed into a chemical solution and an electrolytic solution. This one
、ゲルと作用側電極との接面及びゲルと非作用側電極 32との接面に液体が介在さ れ、ガスの発生及び pH変化を抑制することができる。 In addition, the liquid is interposed on the contact surface between the gel and the working electrode and the contact surface between the gel and the non-working electrode 32, so that gas generation and pH change can be suppressed.
[0039] 更に、この実施の形態の例では、保存状態では薬液及び電解液がゲル状態である ので、電解液が液体となって、薬液保持部 28の薬液成分を汚染することがない。 Furthermore, in the example of this embodiment, since the chemical solution and the electrolytic solution are in the gel state in the storage state, the electrolytic solution does not become a liquid and contaminates the chemical component of the chemical solution holding unit 28.
[0040] 次に、図 4に示される本発明の実施の形態の第 2例に係るイオントフォレーシス装置Next, an iontophoresis device according to the second example of the embodiment of the present invention shown in FIG.
50について説明する。 50 will be described.
[0041] このイオントフォレーシス装置 50は、前記薬液保持部 28、電解液保持部 24、第 2 電解液保持部 34及び第 3電解液保持部 38を液状にするための液状ィ匕装置 52を設 けたものであり、又、前記作用側電極構造体 12及び非作用側電極構造体 14が、容 器形状のセル 54、 56にそれぞれ、先端のイオン交換膜を露出した状態で収納され ている。他の構成は、前記イオントフォレーシス装置 10と同一であるので、同一部分 にはイオントフォレーシス装置 10におけると同一の符号を付することにより説明を省 略するものとする。 [0041] The iontophoresis device 50 includes a liquid crystal device 52 for making the chemical solution holding unit 28, the electrolyte solution holding unit 24, the second electrolyte solution holding unit 34, and the third electrolyte solution holding unit 38 into a liquid state. In addition, the working electrode structure 12 and the non-working electrode structure 14 are accommodated in container-shaped cells 54 and 56, respectively, with the ion exchange membrane at the tip exposed. Yes. Since other configurations are the same as those of the iontophoresis device 10 described above, the same portions are denoted by the same reference numerals as those in the iontophoresis device 10 and description thereof is omitted. It shall be omitted.
[0042] 前記液状化装置 52は、ゲルが加温によって液体に変化する場合は加温装置が、 加振によって液体に変化する場合は、超音波発生装置等の加振手段が、各々用い られる。加温装置の場合、液状化装置 52は、鉄酸化発熱材 52A及びこれを空気と 接触しな ヽように密封するシール 52Bとから構成される。前記鉄酸化発熱材 52Aは、 前記セル 54、 56の外側に配置され、更にその外側力 前記シール 52Bによって被 われている。  [0042] In the liquefaction device 52, a heating device is used when the gel is changed to a liquid by heating, and a vibration means such as an ultrasonic generator is used when the gel is changed to a liquid by vibration. . In the case of a warming device, the liquefaction device 52 is composed of an iron oxidation heat generating material 52A and a seal 52B that seals the material so that it does not come into contact with air. The iron oxide heating material 52A is disposed outside the cells 54, 56, and is further covered by the outer force of the seal 52B.
[0043] 従って、イオントフォレーシス装置 50の使用時には、前記シール 52Bを除去すると 、鉄酸化発熱材 52Aが空気中の酸素と接触して酸化し、その酸化熱によって、前記 電解液保持部 24及び第 2電解液保持部 34がそれぞれ液状化温度にまで加温され る。これにより、前記と同様に、ゲルは、薬液及び電解液と、作用側電極 22及び非作 用側電極 32との接面に液体が介在されることになつて、ガスの発生及び pH変化を 抑帘 Uすることができる。  [0043] Therefore, when the iontophoresis device 50 is used, if the seal 52B is removed, the iron oxidation heat generating material 52A comes into contact with oxygen in the air and oxidizes. The second electrolyte solution holding part 34 is heated to the liquefaction temperature. As a result, as described above, the gel causes the generation of gas and the pH change because the liquid is interposed on the contact surface between the chemical solution and the electrolyte solution, and the working side electrode 22 and the non-working side electrode 32. You can be depressed.
[0044] 更に、この実施の形態の第 2例では、液状ィ匕装置 52によって、生体の皮膚や粘膜 も加温することになり、薬液の浸透がより加速されて、吸収率を増大させることができ る。  [0044] Further, in the second example of this embodiment, the liquid skin device 52 also warms the skin and mucous membrane of the living body, and the penetration of the chemical solution is further accelerated to increase the absorption rate. You can.
[0045] なお、前記イオントフォレーシス装置 50において、液状化装置 52は鉄酸化発熱材 52Aを用いたものである力 本発明はこれに限定されるものでなぐ例えば、通電に より発熱する面発熱体を、前記セル 54、 56の周囲に巻き付けておき、ここに、直流電 源 16からの電力の一部を供給して、ゲルを加温するようにしてもよい。又、電極端子 42、 52を介して加温するようにベースシート 18、 19の図 4において上側に加温装置 を配置してもよい。  [0045] In the iontophoresis device 50, the liquefaction device 52 is a force that uses the iron oxidation heating material 52A. The present invention is not limited to this, for example, a surface that generates heat when energized. A heating element may be wound around the cells 54 and 56, and a part of the power from the DC power source 16 may be supplied to the gel 54 to heat the gel. Further, a heating device may be arranged on the upper side in FIG. 4 of the base sheets 18 and 19 so as to heat through the electrode terminals 42 and 52.
[0046] 更に、上記各実施の形態の例では、ゲルは加温によって液体に変化するものであ るが、加振による場合のゲルとしては、チクソ性調整剤'粘度調整剤を加えたものが ある。これは、無加振時には、粘性の高いゲルであるが、適用時は加振して(剪断力 を加えて)粘性を下げることができる。加振手段としては超音波トランスミッタ、又はぺ ジャー(小型バイブレータ)を用いる。反応は可逆なので、適用期間中はずつと加振 していなければならない。超音波の場合は、当てることでイオンの浸透が促進される という副次効果も期待できる。チクソ性調整剤としては、例えば、ベントナイト、水酸ィ匕 アルミニウム、軽質無水ケィ酸、架橋型ポリアクリル酸、架橋型ポリアクリル酸ナトリウ ムがある。 [0046] Furthermore, in the example of each of the above embodiments, the gel changes to a liquid by heating. However, as a gel in the case of vibration, a thixotropic modifier 'viscosity modifier' is added. There is. This is a highly viscous gel when there is no vibration, but it can be reduced by applying vibration (adding shearing force) when applied. An ultrasonic transmitter or a pager (small vibrator) is used as the vibration means. Since the reaction is reversible, it must be vibrated during the application period. In the case of ultrasound, the penetration of ions is promoted by applying A secondary effect can also be expected. Examples of the thixotropic modifier include bentonite, aluminum hydroxide, light caustic anhydride, cross-linked polyacrylic acid, and cross-linked sodium polyacrylate.
[0047] 次に、本発明の実施の形態の第 3例に係るイオントフォレーシス装置について説明 する。  Next, an iontophoresis device according to a third example of the embodiment of the present invention will be described.
[0048] このイオントフォレーシス装置は、イオントフォレーシス装置 10の作用側電極構造体 12における電解液保持部を、図 2において、符号 62で示されるように、作用側電極 2 2に接触して配置された温度応答性ゲルカゝら構成したものである。  [0048] In this iontophoresis device, the electrolytic solution holder in the working electrode structure 12 of the iontophoresis device 10 is brought into contact with the working electrode 22 as shown by reference numeral 62 in FIG. The temperature responsive gelger is arranged as described above.
[0049] 他の構成については、実施の形態の第 1例に係るイオントフォレーシス装置 10の構 成と同一であるので、図 2を用いることによって説明を省略するものとする。  [0049] The other configuration is the same as the configuration of the iontophoresis device 10 according to the first example of the embodiment, and therefore the description thereof will be omitted by using FIG.
[0050] この温度応答性ゲル 62は電解質及び水により膨潤されている。この電解質として は、前記電解液保持部 24に用いたものと同様である。  [0050] This temperature-responsive gel 62 is swollen by an electrolyte and water. This electrolyte is the same as that used for the electrolyte solution holding unit 24.
[0051] 電解液保持部を構成する温度応答性ゲル 62は、第 1の温度 (例えば 30°C)以下で は水及び電解液を含んで膨潤して ヽるが、第 2の温度 (例えば 32°C)以上で体積とし て 1Z10以上収縮し水及び電解液を放出するゲル、例えば、 N—イソプロピルアタリ ルアミド(IPAAm)ゲルから構成されて 、る。  [0051] The temperature-responsive gel 62 constituting the electrolytic solution holding part swells and contains water and an electrolytic solution at a first temperature (for example, 30 ° C) or lower, but a second temperature (for example, It is composed of a gel that shrinks by 1Z10 or more and releases water and electrolyte, for example, N-isopropylatyramide (IPAAm) gel.
[0052] また、「ポリ- N-イソプロピルアクリルアミド (PIPAAm)は、温度によりその性質を変 ィ匕させる特殊なポリマーで、水中で 32°Cを境に「溶解」と「凝集」との間で形態が変化 する特徴を持っている。より、詳しくは、 PIPAAmは、ポリマー直鎖に側鎖としてアミド とイソプロピル基がついている力 32°C以下ではアミド結合部分力 より多くの水を抱 え込もうとするので水和し、 32°C以上ではイソプロピル基による結合の方が強くなり、 脱水和する。  [0052] “Poly-N-isopropylacrylamide (PIPAAm) is a special polymer that changes its properties depending on the temperature. It is between“ dissolved ”and“ aggregated ”at 32 ° C in water. It has a characteristic that its form changes. More specifically, PIPAAm hydrates at 32 ° C or less because the amide and isopropyl groups are attached to the polymer straight chain as side chains. Above C, the bond with isopropyl group becomes stronger and dehydrates.
[0053] なお、第 1の温度及び第 2の温度は温度反応性ゲルを構成する成分の配合比で決 定される力 この実施例では、 30°Cと 32°Cに設定されている。  [0053] The first temperature and the second temperature are forces determined by the blending ratio of the components constituting the temperature-responsive gel. In this example, the temperatures are set to 30 ° C and 32 ° C.
[0054] 非作用側電極 32における第 2電解液保持部は、図 3において符号 64で示されるよ うに、電解液保持部と同様の温度反応性ゲルカゝら構成されている。他の構成につい ては、実施の形態の第 1例に係るイオントフォレーシス装置 10の構成と同一であるの で、図 3を用いることによって説明を省略するものとする。なお、第 3電解液保持部も 温度反応性ゲルにより構成してもよ ヽ。 [0054] The second electrolyte solution holding part in the non-working side electrode 32 is constituted by a temperature-responsive gelger similar to the electrolyte solution holding part, as indicated by reference numeral 64 in FIG. Since the other configuration is the same as that of the iontophoresis device 10 according to the first example of the embodiment, the description thereof will be omitted by using FIG. The third electrolyte holding part is also It may be composed of a temperature-responsive gel.
[0055] このイオントフォレーシス装置において、使用時に、作用側電極構造体 12及び非 作用側電極構造体 14が、生体の皮膚あるいは粘膜と接触することによって加温され 、例えば人間の体温よりも約 4°C低 、32°Cまでは容易に加温される。  In this iontophoresis device, in use, the working electrode structure 12 and the non-working electrode structure 14 are heated by contact with the skin or mucous membrane of the living body, for example, more than the human body temperature. About 4 ° C low and easily heated up to 32 ° C.
[0056] この加温によって、電解液保持部及び第 2電解液保持部全部又は一部を構成する 温度応答性ゲル 62、 64から水及び電解液が放出される。これにより、温度応答性ゲ ル 62と作用側電極との接面及び温度応答性ゲル 64と非作用側電極 32との接面に 液体が介在され、ガスの発生及び pH変化を抑制することができる。  By this heating, water and the electrolytic solution are released from the temperature-responsive gels 62 and 64 that constitute all or part of the electrolytic solution holding unit and the second electrolytic solution holding unit. As a result, liquid is interposed on the contact surface between the temperature-responsive gel 62 and the working electrode and the contact surface between the temperature-responsive gel 64 and the non-working electrode 32, thereby suppressing gas generation and pH change. it can.
[0057] 更に、通常の薬品類の保存温度は、日本薬局方が規定する室温の上限値 30°C以 下であり、この実施の形態の例では、電解液が温度応答性ゲルに吸収された状態で あるので、この電解液が液体となって、薬液保持部 28の薬液成分を汚染することが なぐ薬液の保存時安定性を向上させることができる。  [0057] Furthermore, the storage temperature of ordinary chemicals is not more than the upper limit of room temperature of 30 ° C specified by the Japanese Pharmacopoeia. In the example of this embodiment, the electrolyte is absorbed by the temperature-responsive gel. Therefore, the stability of the chemical solution during storage that does not contaminate the chemical component of the chemical solution holding unit 28 can be improved.
[0058] 又、前記第 1の温度及び第 2の温度は 30°C、 32°Cにそれぞれ設定されているが、 第 1の温度は、保存状態での最高温度より高く設定する。第 2の温度は、生体の体温 よりもやや低く設定するとよい。従って、人間の場合は、人種、年齢によって若干異な り、動物用は高温となる。  [0058] Although the first temperature and the second temperature are set to 30 ° C and 32 ° C, respectively, the first temperature is set higher than the maximum temperature in the storage state. The second temperature should be set slightly lower than the body temperature of the living body. Therefore, for humans, it varies slightly depending on race and age, and for animals, it becomes hot.
[0059] その他の温度応答性ゲルとして、ポリエチレンォキシド-ポリプロピレンォキシド-ポリ エチレンォキシドのトリブロックコポリマーとポリビュルアルコールを用いて、 37°C付近 にお ヽて膨潤転移を示す混合ポリマーゲルが挙げられる。このゲルは水素結合を基 にした、分子内もしくは分子間相互作用によるゲルを形成していることから、温度によ る水素結合の温度感受性によって転移が起こる。このゲルを用いて、 35°C力も 40°C の間でのポリマーの膨潤転移による薬剤放出が示される。  [0059] As another temperature-responsive gel, a mixed polymer gel showing a swelling transition near 37 ° C using a triblock copolymer of polyethylene oxide-polypropylene oxide-polyethylene oxide and polybulal alcohol. Is mentioned. Since this gel forms a gel based on intramolecular or intermolecular interactions based on hydrogen bonds, transition occurs due to temperature sensitivity of hydrogen bonds depending on temperature. Using this gel, drug release due to swelling transition of the polymer between 35 ° C force and 40 ° C is shown.
[0060] 更に他の温度応答性ゲルとして、アクリル酸メチルとアクリル酸ステアリルの共重合 体が挙げられる。この共重合体を架橋すると、 25°C以下では硬質である力 50°C以 上となると軟質となる。これは、アクリル酸ステアリルのアルキル鎖間における相互作 用による可逆的な転移により、 50°C以下においては、長鎖アルキル基は結晶凝集構 造を強固となり、 50°C以上では、側鎖のパッケージングが非晶質となりマテリアルは 軟質でフレキシブルとなるためである。この原理を利用し、形状記憶高分子ゲルが示 される。 [0060] Still another temperature-responsive gel is a copolymer of methyl acrylate and stearyl acrylate. When this copolymer is cross-linked, it becomes soft when the force exceeds 50 ° C, which is hard at 25 ° C or less. This is due to a reversible transition due to the interaction between the alkyl chains of stearyl acrylate. At 50 ° C or below, long-chain alkyl groups strengthen the crystal aggregation structure, and at 50 ° C and above, the side chain This is because the packaging becomes amorphous and the material is soft and flexible. Using this principle, shape memory polymer gels are shown. Is done.
[0061] 上記実施の形態の第 3例は、温度応答性ゲル 62、 64を、生体の体温によって加温 するものであるが、本発明はこれに限定されるものでなぐ例えば、図 4に示される実 施の形態の第 2例に係るイオントフォレーシス装置 50で用いた液状ィ匕装置 52を加温 装置としてもよい。  [0061] In the third example of the above embodiment, the temperature-responsive gels 62 and 64 are heated by the body temperature of the living body, but the present invention is not limited to this. For example, FIG. The liquid crystal device 52 used in the iontophoresis device 50 according to the second example of the embodiment shown may be a heating device.
[0062] この場合、加温装置によって、生体からの熱による加温の場合よりも高温にすること ができるので、第 1の温度及び第 2の温度を、ともに、前記実施形態の第 1例の場合 よりも高く設定できる。又、加温装置によって、生体の皮膚や粘膜も加温することにな り、薬液の浸透がより加速されて、吸収率を増大させることができる。  [0062] In this case, since the heating device can make the temperature higher than in the case of heating by heat from the living body, both the first temperature and the second temperature are the first example of the embodiment. It can be set higher than in the case of. In addition, the warming device warms the skin and mucous membrane of the living body, so that the penetration of the chemical solution is further accelerated and the absorption rate can be increased.
[0063] なお、前記加温装置は鉄酸ィ匕発熱材 52Aを用いたものである力 本発明はこれに 限定されるものでなぐ例えば、図 5に示される実施形態の第 4例のイオントフォレー シス装置 70におけるように、通電により発熱する面発熱体等のヒータから加温装置 7 2を構成し、セル 54、 56の周囲に巻き付けておき、ここに、直流電源 16からの電力の 一部を供給して、温度応答性ゲル 62、 64を加温するようにしてもよい。又、上記加温 装置 72はセル 54、 56の外周に設けられている力 例えば電極端子 42、 52を介して 加温するようにベースシート 18、 19の図 4において上側に加温装置を配置してもよい  [0063] It should be noted that the heating device is a force using ferrous oxide heating material 52A. The present invention is not limited to this, for example, the ion of the fourth example of the embodiment shown in FIG. As in the tophoresis device 70, the heating device 72 is composed of a heater such as a surface heating element that generates heat when energized, and is wound around the cells 54 and 56, where the power from the DC power source 16 is supplied. A portion may be supplied to warm the temperature-responsive gels 62, 64. Further, the heating device 72 is arranged on the upper side in FIG. 4 of the base sheets 18 and 19 so as to heat the force provided on the outer periphery of the cells 54 and 56, for example, via the electrode terminals 42 and 52. May
[0064] 更に、上記各実施の形態の例では、作用側電極構造体 12は薬液保持部の他に電 解液保持部を有し、更に 2層のイオン交換膜を備え、又非作用側電極構造体 14は、 2層の電解液保持部とイオン交換膜を備えているが、本発明はこれに限定されるもの でなぐ作用側電極に対して直接薬液保持部が接触する構成であってもよい。 [0064] Further, in the example of each of the above embodiments, the working electrode structure 12 has an electrolyte solution holding unit in addition to the chemical solution holding unit, and further includes a two-layer ion exchange membrane, and also has a non-working side. The electrode structure 14 includes a two-layer electrolyte solution holding portion and an ion exchange membrane, but the present invention is not limited to this, and the chemical solution holding portion is in direct contact with the working electrode. May be.
[0065] 又、実施の形態の第 3例及び第 4例において、作用側電極構造体を構成する電解 液保持部が温度応答性ゲルにより構成されて ヽるが、電解液保持部及び Z又は薬 液保持部を温度応答性ゲルにより構成してもよ ヽ。  [0065] In the third and fourth examples of the embodiment, the electrolyte solution holding part constituting the working electrode structure may be formed of a temperature-responsive gel. However, the electrolyte solution holding part and Z or The chemical holding part may be composed of a temperature-responsive gel.
産業上の利用可能性  Industrial applicability
[0066] この発明のイオントフォレーシス装置は、薬液保持部や電解液保持部をゲルあるい は温度応答性ゲルから構成する場合、保存状態では、薬液と電解液のコンタミネー シヨンが防止されて、保存性が向上され、使用時には、加温及び加振等によってゲル から液体に変化させ、あるいは、温度応答性ゲル力も水を放出させて、電極との接触 面からのガスの発生及び pHの変化を抑制して、使用性を向上することができる。 [0066] In the iontophoresis device of the present invention, when the chemical solution holding unit and the electrolyte solution holding unit are made of gel or a temperature-responsive gel, contamination of the chemical solution and the electrolyte solution is prevented in the storage state. The shelf life is improved. It is possible to improve the usability by changing from a liquid to a liquid, or by releasing water with a temperature-responsive gel force to suppress the generation of gas from the contact surface with the electrode and the change in pH.

Claims

請求の範囲 The scope of the claims
[1] イオントフォレーシスによりイオン性薬剤を投与するために使用される作用側電極 構造体及び非作用側電極構造体と、これらの作用側電極構造体の作用側電極及び 非作用側電極構造体の非作用側電極に異なる極性で接続される直流電源と、を有 するイオントフォレーシス装置であって、  [1] Working electrode structure and non-working electrode structure used for administering an ionic drug by iontophoresis, and working electrode and non-working electrode structure of these working electrode structures An iontophoresis device having a DC power source connected to the non-working side electrode of the body with different polarities,
前記作用側電極構造体は、前記作用側電極に隣接して配置された電解液保持部 及び薬液保持部の一方を有してなり、  The working electrode structure has one of an electrolyte solution holding part and a chemical solution holding part arranged adjacent to the working electrode,
前記非作用側電極構造体は、前記非作用側電極に隣接して設けられた非作用側 電解液保持部を有してなり、  The non-working side electrode structure has a non-working side electrolyte solution holding portion provided adjacent to the non-working side electrode,
前記電解液保持部、薬液保持部及び非作用側電解液保持部のうち少なくとも一つ 力 加温及び加振の 、ずれか〖こより液体に変化するゲル力 構成されたことを特徴と するイオントフォレーシス装置。  The iontophoresis is characterized in that at least one of the electrolyte solution holding unit, the chemical solution holding unit, and the non-working-side electrolyte solution holding unit is configured to have a gel force that changes from liquid to liquid by force heating and vibration. Lesis device.
[2] イオントフォレーシスによりイオン性薬剤を投与するために使用される作用側電極 構造体及び非作用側電極構造体と、これらの作用側電極構造体の作用側電極及び 非作用側電極構造体の非作用側電極に異なる極性で接続される直流電源と、を有 するイオントフォレーシス装置であって、  [2] Working electrode structure and non-working electrode structure used for administering an ionic drug by iontophoresis, and working electrode and non-working electrode structure of these working electrode structures An iontophoresis device having a DC power source connected to the non-working side electrode of the body with different polarities,
前記作用側電極構造体は、前記作用側電極に隣接して配置された電解液保持部 及び薬液保持部の一方を有してなり、  The working electrode structure has one of an electrolyte solution holding part and a chemical solution holding part arranged adjacent to the working electrode,
前記非作用側電極構造体は、前記非作用側電極に隣接して設けられた非作用側 電解液保持部を有してなり、  The non-working side electrode structure has a non-working side electrolyte solution holding portion provided adjacent to the non-working side electrode,
前記電解液保持部と薬液保持部のうちの前記一方、及び、前記非作用側電解液 保持部のうち、少なくとも一方を、第 1の温度で、水により膨潤されていて、且つ、前 記第 1の温度より高い第 2の温度で収縮して水を放出する温度応答性ゲルを含んで 構成したことを特徴とするイオントフォレーシス装置。  At least one of the electrolyte solution holding unit and the chemical solution holding unit and at least one of the non-acting side electrolyte solution holding unit is swollen with water at a first temperature, and An iontophoresis device comprising a temperature-responsive gel that shrinks at a second temperature higher than 1 to release water.
[3] 請求項 2において、 [3] In claim 2,
前記薬液保持部に温度応答性ゲルを設けた場合、前記温度応答性ゲルに前記ィ オン性薬剤を含浸させておくことを特徴とするイオントフォレーシス装置。  When a temperature-responsive gel is provided in the chemical solution holding unit, the iontophoresis device is characterized in that the temperature-responsive gel is impregnated with the ionic drug.
[4] 請求項 2において、 前記電解液保持部又は非作用側電解液保持部に温度応答性ゲルを設けた場合、 前記温度応答性ゲルに電解液を含浸させておくことを特徴とするイオントフォレーシ ス装置。 [4] In claim 2, When a temperature-responsive gel is provided in the electrolyte solution holding part or the non-working-side electrolyte solution holding part, the iontophoresis device is characterized in that the temperature-responsive gel is impregnated with an electrolyte solution.
[5] 請求項 2乃至 4のいずれかにおいて、  [5] In any one of claims 2 to 4,
前記第 2の温度が生体の体温以下に設定されていて、貼り付け部位の皮膚又は粘 膜の温度より前記温度応答性ゲルが収縮するようにしたことを特徴とするイオントフォ レーシス装置。  An iontophoresis device characterized in that the second temperature is set to be equal to or lower than a body temperature of a living body, and the temperature-responsive gel contracts from a temperature of a skin or a mucous membrane at an application site.
[6] 請求項 2乃至 5のいずれかにおいて、 [6] In any one of claims 2 to 5,
前記温度応答性ゲルを前記第 2の温度以上に加温する加温装置を設けたことを特 徴とするイオントフォレーシス装置。  An iontophoresis device comprising a heating device for heating the temperature-responsive gel to the second temperature or higher.
[7] 請求項 6において、 [7] In claim 6,
前記作用側電極構造体に温度応答性ゲルを設けた場合、前記作用側電極と、前 記電解液保持部及び薬液保持部の一方とは、容器形状のセル内に収容され、 前記加温装置は、前記セルの外周に沿って配置されたことを特徴とするイオントフ ォレーシス装置。  When a temperature-responsive gel is provided on the working electrode structure, the working electrode and one of the electrolytic solution holding unit and the chemical solution holding unit are accommodated in a container-shaped cell, and the heating device Is an iontophoresis device, which is arranged along the outer periphery of the cell.
[8] 請求項 2乃至 7のいずれかにおいて、 [8] In any one of claims 2 to 7,
前記温度応答性ゲルを、前記第 1の温度が 30°C、第 2の温度が 32°Cとなるように、 設定したことを特徴とするイオントフォレーシス装置。  An iontophoresis device, wherein the temperature-responsive gel is set so that the first temperature is 30 ° C and the second temperature is 32 ° C.
[9] 請求項 1乃至 8のいずれかにおいて [9] In any one of claims 1 to 8
前記作用側電極構造体は、前記直流電源における、前記イオン性薬剤の帯電ィォ ンと同種の極性に接続された前記作用側電極と、  The working-side electrode structure includes the working-side electrode connected to the same polarity as the ionic drug charging ion in the DC power source;
この作用側電極の前面に配置され、電解液を保持する前記電解液保持部と、 この電解液保持部の前面に配置され、前記イオン性薬剤の帯電イオンと反対のィ オンを選択する第 2イオン交換膜と、  The electrolyte solution holding part that is arranged on the front surface of the working side electrode and holds the electrolyte solution, and a second ion that is arranged on the front surface of the electrolyte solution holding part and that is opposite to the charged ions of the ionic drug is selected. An ion exchange membrane;
この第 2イオン交換膜の前面に配置され、前記イオン性薬剤を保持する薬液保持 部と、  A chemical solution holding part arranged on the front surface of the second ion exchange membrane and holding the ionic drug;
この薬液保持部の前面に配置され、前記イオン性薬剤の帯電イオンと同種のィォ ンを選択する第 1イオン交換膜と、 を有してなることを特徴とするイオントフォレーシス装置。A first ion exchange membrane that is disposed in front of the chemical solution holding unit and selects ions of the same type as the charged ions of the ionic drug; An iontophoresis device comprising:
Figure imgf000016_0001
ヽて、
Figure imgf000016_0001
In a hurry
前記非作用側電解液保持部は、第 2電解液保持部と、第 3電解液保持部とからなり 前記非作用側電極構造体は、  The non-working-side electrolyte holding part is composed of a second electrolyte-holding part and a third electrolyte-holding part.
前記直流電源における、前記イオン性薬剤の帯電イオンと反対の極性に接続され た前記非作用側電極と、  The non-working side electrode connected to the polarity opposite to the charged ion of the ionic drug in the DC power source;
この非作用側電極の前面に配置され、第 2電解液を保持する前記第 2電解液保持 部と、  The second electrolyte solution holding unit disposed on the front surface of the non-working side electrode and holding the second electrolyte solution;
この第 2電解液保持部の前面に配置され、前記イオン性薬剤の帯電イオンと同種 のイオンを選択する第 3イオン交換膜と、  A third ion exchange membrane that is disposed in front of the second electrolyte solution holding unit and selects ions of the same type as the charged ions of the ionic agent;
この第 3イオン交換膜の前面に配置され、第 3電解液を保持する前記第 3電解液保 持部と、  The third electrolyte solution holding unit disposed on the front surface of the third ion exchange membrane and holding the third electrolyte solution;
この第 3電解液保持部の前面に配置され、前記イオン性薬剤の帯電イオンと反対 のイオンを選択する第 4イオン交換膜と、  A fourth ion exchange membrane disposed on the front surface of the third electrolyte solution holding unit and selecting ions opposite to the charged ions of the ionic drug;
を有してなり、  Having
前記第 2電解液保持部及び第 3電解液保持部の少なくとも一方が、前記加温及び 加振のいずれかにより液体に変化するゲル及び温度応答性ゲルの一方であることを 特徴とするイオントフォレーシス装置。  At least one of the second electrolyte solution holding unit and the third electrolyte solution holding unit is one of a gel and a temperature-responsive gel that change into a liquid by either the heating or the vibration. Lesis device.
PCT/JP2006/316167 2005-08-17 2006-08-17 Iontophoresis device WO2007020974A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007531024A JPWO2007020974A1 (en) 2005-08-17 2006-08-17 Iontophoresis device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005236544 2005-08-17
JP2005-236544 2005-08-17
JP2005-240460 2005-08-22
JP2005240460 2005-08-22

Publications (1)

Publication Number Publication Date
WO2007020974A1 true WO2007020974A1 (en) 2007-02-22

Family

ID=37757631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/316167 WO2007020974A1 (en) 2005-08-17 2006-08-17 Iontophoresis device

Country Status (2)

Country Link
JP (1) JPWO2007020974A1 (en)
WO (1) WO2007020974A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08503875A (en) * 1993-04-07 1996-04-30 アイオメッド,インコーポレーテッド Improved electrode for iontophoresis
JPH11503956A (en) * 1996-02-09 1999-04-06 アイオメド,インコーポレイテッド Hydration assembly for hydration of bioelectrode elements
JP2001055332A (en) * 1999-06-07 2001-02-27 Saitama Daiichi Seiyaku Kk Iontophresis preparation containing aromatic amidine derivatives
JP2002525172A (en) * 1998-09-29 2002-08-13 ザース・インコーポレーテッド Method and apparatus for improved application of pharmaceutically active compounds
WO2003037425A1 (en) * 2001-10-31 2003-05-08 R & R Ventures Incorporation Iontophoresis device
JP2003299743A (en) * 2002-04-08 2003-10-21 Hisamitsu Pharmaceut Co Inc Insulin administration device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08503875A (en) * 1993-04-07 1996-04-30 アイオメッド,インコーポレーテッド Improved electrode for iontophoresis
JPH11503956A (en) * 1996-02-09 1999-04-06 アイオメド,インコーポレイテッド Hydration assembly for hydration of bioelectrode elements
JP2002525172A (en) * 1998-09-29 2002-08-13 ザース・インコーポレーテッド Method and apparatus for improved application of pharmaceutically active compounds
JP2001055332A (en) * 1999-06-07 2001-02-27 Saitama Daiichi Seiyaku Kk Iontophresis preparation containing aromatic amidine derivatives
WO2003037425A1 (en) * 2001-10-31 2003-05-08 R & R Ventures Incorporation Iontophoresis device
JP2003299743A (en) * 2002-04-08 2003-10-21 Hisamitsu Pharmaceut Co Inc Insulin administration device

Also Published As

Publication number Publication date
JPWO2007020974A1 (en) 2009-02-26

Similar Documents

Publication Publication Date Title
US20070088332A1 (en) Iontophoresis device
Mosa et al. Ultrathin graphene–protein supercapacitors for miniaturized bioelectronics
CN108601935B (en) Device for mounting on a mask, mask and kit comprising such a device
Xu et al. The applications and prospect of fuel cells in medical field: A review
TW463405B (en) Solid gel membrane
TW543230B (en) Hybrid electrochemical cell system
US7428435B2 (en) Medical instrument for transdermally administering ionic medicine
US20100100031A1 (en) Iontophoresis device
WO1997034657A1 (en) Electrode device for iontophoresis
JP2004188188A (en) Device for iontophoresis
JP2005269773A (en) Polymer actuator
JP3805744B2 (en) Air-hydrogen battery
CN108199081A (en) Solid electrolyte applied to lithium battery and preparation method thereof
KR20200108765A (en) Device using reversed electrodialysis and redox activity, and method for delivering drug using the same
EP1566197A1 (en) Iontophoresis apparatus
AU2005310701A1 (en) Iontophoresis device
EP1911489A1 (en) Iontophoresis device
TWI499439B (en) Electrode device for use in iontophoresis
WO2007020974A1 (en) Iontophoresis device
JPWO2007111368A1 (en) Iontophoresis device
KR20190005061A (en) Device mounted on mask pack comprising whitening agents, mask pack and kit comprising the same
JP2008041420A (en) Secondary battery
JP2007135893A (en) Iontophoresis apparatus and working-side electrode unit
JP2007020892A (en) Iontophoresis apparatus
AU2006211357A1 (en) Iontophoresis apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007531024

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06782780

Country of ref document: EP

Kind code of ref document: A1