WO2007020800A1 - Desulfurizing agent for hydrocarbon oil and method of desulfurization - Google Patents

Desulfurizing agent for hydrocarbon oil and method of desulfurization Download PDF

Info

Publication number
WO2007020800A1
WO2007020800A1 PCT/JP2006/315280 JP2006315280W WO2007020800A1 WO 2007020800 A1 WO2007020800 A1 WO 2007020800A1 JP 2006315280 W JP2006315280 W JP 2006315280W WO 2007020800 A1 WO2007020800 A1 WO 2007020800A1
Authority
WO
WIPO (PCT)
Prior art keywords
desulfurization
copper
silver
sulfur
desulfurizing agent
Prior art date
Application number
PCT/JP2006/315280
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuhiro Toida
Satoshi Teshigawara
Nobuto Kobayashi
Original Assignee
Japan Energy Corporation
Sued-Chemie Catalysts Japan, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corporation, Sued-Chemie Catalysts Japan, Inc. filed Critical Japan Energy Corporation
Priority to JP2007530943A priority Critical patent/JP5032992B2/en
Publication of WO2007020800A1 publication Critical patent/WO2007020800A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/22Fuel cells in which the fuel is based on materials comprising carbon or oxygen or hydrogen and other elements; Fuel cells in which the fuel is based on materials comprising only elements other than carbon, oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G25/00Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents
    • C10G25/003Specific sorbent material, not covered by C10G25/02 or C10G25/03
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • C01B2203/067Integration with other chemical processes with fuel cells the reforming process taking place in the fuel cell
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1247Higher hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1258Pre-treatment of the feed
    • C01B2203/1264Catalytic pre-treatment of the feed
    • C01B2203/127Catalytic desulfurisation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1048Middle distillates
    • C10G2300/1051Kerosene having a boiling range of about 180 - 230 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0675Removal of sulfur
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a hydrocarbon oil desulfurization agent and a desulfurization method, in particular, a desulfurization agent and a desulfurization method for kerosene which is a raw fuel for generating hydrogen used in a fuel cell, and a refinery, a petrochemical factory, and a chemical factory.
  • the present invention relates to a desulfurization agent and desulfurization method for hydrocarbon oils used in Japan.
  • Patent Document 1 Patent Document 2, Patent Document 3, Patent Document 4
  • Patent Document 6 Patent Document 7
  • the types of sulfur compounds contained in kerosene are benzothiophenes and dibenzothiops.
  • the ratio of benzothiophenes to the total sulfur compounds, where the ratio of benzothiophenes is large, is particularly 70% or more in many cases. Therefore, desulfurization agents that can efficiently remove benzothiophenes and thiophenes at temperatures from room temperature to around 150 ° C that do not require reduction treatment, hydrogen, or pressurization. There was a need for a desulfurization method.
  • Patent Document 1 Japanese Patent Publication No. 6-65602
  • Patent Document 2 Japanese Patent Publication No. 7-115842
  • Patent Document 3 Japanese Patent No. 3410147
  • Patent Document 4 Japanese Patent No. 3261192
  • Patent Document 5 Japanese Patent No. 3324746
  • Patent Document 6 Japanese Unexamined Patent Publication No. 2003-49172
  • Patent Document 7 Japanese Unexamined Patent Publication No. 2005-2317
  • the present invention relates to a desulfurization agent and desulfurization method for hydrocarbon oils, particularly kerosene, which is a raw fuel of fuel cells, and a desulfurization agent and desulfurization method for hydrocarbon oils used in refineries, petrochemical plants, and chemical factories. Therefore, it is an object of the present invention to provide a desulfurization agent and a desulfurization method capable of efficiently removing benzothiophenes and thiophenes at a temperature from room temperature to about 150 ° C without requiring reduction treatment or hydrogen. To do. When applied to a fuel cell, startup and maintenance are relatively easy, and the fuel cell system can be simplified.
  • a hydrocarbon oil desulfurization agent comprising a copper component and a silver component.
  • a method for desulfurizing a hydrocarbon oil characterized by using the desulfurizing agent according to any one of (1) to (4) in a refinery, a petrochemical factory, or a chemical factory.
  • a hydrocarbon oil preferably a hydrocarbon oil containing benzothiophenes as a main component of a sulfur compound, more preferably kerosene
  • a specific desulfurizing agent preferably a hydrocarbon oil containing benzothiophenes as a main component of a sulfur compound, more preferably kerosene
  • desulfurization can be efficiently performed at a temperature from room temperature to about 150 ° C without performing reduction treatment or hydrogenation. Therefore, when applied to the desulfurization of kerosene, which is the raw fuel of the fuel cell, startup and maintenance are relatively easy, and the fuel cell system can be simplified. It can also be suitably applied to desulfurization of hydrocarbon oils used in refineries, petrochemical plants, and chemical plants.
  • FIG. 1 is a conceptual diagram showing an example of a fuel cell system.
  • FIG. 2 is a graph showing the results of the desulfurization experiment of Example 2.
  • FIG. 3 is a graph showing the results of a desulfurization experiment of Example 4.
  • FIG. 4 is a graph showing the results of the desulfurization experiment of Example 5.
  • FIG. 5 is a graph showing the results of the desulfurization experiment of Example 5.
  • FIG. 6 is a graph showing the results of the desulfurization experiment of Example 6.
  • a hydrocarbon oil containing benzothiophenes as a main component of the sulfur compound preferably kerosene
  • Desulfurization performance similar to that of benzothiophenes can be obtained for thiophenes. It may also contain other types of sulfur compounds such as mercabtans (thiols), sulfides, disulfides, and disulfur carbon, but the main components are benzothiophenes and Z.
  • the effect of the present invention can be remarkably obtained for hydrocarbon oils containing thiophenes.
  • the ratio of benzothiophenes or thiophenes to the total sulfur compound is not less than 70%, preferably not less than 80%, particularly preferably not less than 90% as a sulfur content.
  • the hydrocarbon oil that can be suitably applied is specifically a hydrocarbon oil having 5 to 20 carbon atoms such as naphtha, gasoline, kerosene, light oil, benzene, toluene, xylene, naphthalene, and the like.
  • the sulfur content of the hydrocarbon oil to which the desulfurization method of the present invention is applied is not technically limited. However, if the sulfur content is too high, a large amount of desulfurization agent is required, and other desulfurization methods such as hydrodesulfurization are more efficient. Therefore, the desulfurization method of the present invention is preferably applied.
  • the sulfur content in the hydrocarbon oil is 20 ppm by mass or less, more preferably 10 ppm by mass or less.
  • the kerosene to be desulfurized in the present invention is mainly composed of hydrocarbons having about 12 to 16 carbon atoms, has a density (15 ° C.) of 0.790 to 0.850 gZcm 3 , and a boiling point range of 150 to 320. . It ’s about oil. Although it contains a lot of raffin-based hydrocarbons, it contains about 0-30% by volume of aromatic hydrocarbons and about 0-5% by volume of polycyclic aromatic hydrocarbons. In general, it is No. 1 kerosene defined in Japanese Industrial Standard JIS K2203 as a fuel for lamps and heating.
  • flash point 40 ° C or higher, 95% distillation temperature 270 ° C or lower, sulfur content 0.008 mass% or lower, smoke point 23 mm or higher (21 mm or higher for cold weather), copper plate corrosion (50 ° C, 3 hours) 1 or less, color (s Bolts) + 25 or more provisions.
  • the sulfur content includes several ppm power of 80 ppm or less, and the nitrogen content includes several ppm to 10 ppm.
  • the main sulfur compounds contained in kerosene are benzothiophenes and dibenzothiophenes, but may contain thiophenes, mercaptans (thiols), sulfides, disulfides, disulfur carbon, etc. is there.
  • gas chromatograph Gas Chromatograph: GC
  • FPD Flame Photometric Detector
  • AED GC atomic emission detector
  • SCD GC —Sulfur Chemiluminescence Detector
  • ICP—MS GC Inductively Coupled Plasma Mass Spectrometer
  • Benzthiophenes are heterocyclic compounds containing one or more sulfur atoms as heteroatoms, and the heterocyclic ring is a penta- or hexa-atom ring and has aromaticity (a double bond is attached to the heterocyclic ring). 2 or more) and a sulfur compound in which the heterocycle is condensed with one benzene ring and its derivatives.
  • Benzothiophene also called thionnaphthene or thiocoumarone, is a sulfur compound with a molecular weight of 134 that can be represented by the molecular formula C H S.
  • Thiophones include methylbenzothiophene, dimethylbenzothiophene, trimethylbenzothiophene, tetramethylbenzothiophene, pentamethylbenzothiophene, hexamethylbenzothiophene, methylethylbenzothiophene, dimethylether.
  • Tylbenzothiophene trimethylethylbenzothiophene, tetramethylethylbenzothiophene, pentamethylethylbenzothiophene, methyljetylbenzothiophene, dimethyl jetylbenzothiophene, trimethyljetylbenzothione Ohmone, tetramethylethylbenzothiophene, methylpropylbenzothiophene, dimethylpropylbenzothiophene, trimethylpropylbenzothiophene, tetramethylpropylbenzothiophene, pentamethylpropylbenzothiophene, Alkylbenzothiophenes such as acetylethylpropyl benzothiophene, dimethylethylpropyl benzothiophene, trimethylethylpropyl benzothiophene, tetramethylethylpropyl benzothiophene, thia
  • Dibenzothiophenes are heterocycles containing one or more sulfur atoms as heteroatoms, and the heterocycle is a penta- or hexa-atom ring and has aromaticity (heterocycle).
  • sulfur compounds and derivatives thereof in which the heterocycle is condensed with two benzene rings are also known as diphenylsulfide, biphenylsulfide, sulfur disulfide, is a sulfur with a molecular weight of 184, represented by the molecular formula C H S
  • 4-Methyldibenzothiophene and 4,6-dimethyldibenzothiophene are well known as difficult desulfurization compounds in hydrorefining.
  • Other representative dibenzothiophenes include trimethyldibenzothiophene, tetramethyldibenzothiophene, pentamethyldibenzothiophene, hexamethyldibenzothiophene, heptamethyldibenzothiophene, otamethyldibenzothiophene, methyl Ethyl dibenzothiophene, dimethyl ethyl dibenzothiophene, trimethylethyl dibenzothiophene, tetramethylethyl dibenzothiophene, pentamethylethyl dibenzothiophene, hexamethylethyl dibenzothiophene, heptamethylethyl dibenzothiophene Ohmone, methyl
  • Thiophenes are heterocycles containing at least one sulfur atom as a heteroatom, and the heterocycle is a penta- or hexa-atom ring and has aromaticity (two heterocycles).
  • Thiophene, also called thiofuran is a sulfur compound with a molecular weight of 84.1 that can be represented by the molecular formula CHS.
  • Other representative of sulfur compound with a molecular weight of 84.1 that can be represented by the molecular formula CHS.
  • Methylthiophene (thiotolene, molecular formula C H S, molecular weight 98 ⁇ 2)
  • Thiophenes and benzothiophenes have similar chemical properties. In both cases, in the presence of a solid acid desulfurization agent in which a heterocycle containing a sulfur atom as a hetero atom is highly reactive, the cleavage of the heterocycle, the reaction between the heterocycle and the aromatic ring, or the decomposition easily occurs. Dibenzothiophenes are less reactive than thiophenes and benzothiophenes because benzene rings are bonded on both sides of the thiophene ring.
  • Dibenzothiophenes having many alkyl groups such as trimethyldibenzothiophene, tetramethyldibenzothiophene, and pentamethyldibenzothiophene are particularly difficult to remove with a solid acid desulfurization agent.
  • Mercaptans are sulfur compounds RSH (R is a hydrocarbon group such as an alkyl group or a aryl group) having a mercapto group (-SH), and are also called thiols or thioalcohols.
  • Mercapto groups are highly reactive, especially with metals.
  • Typical mercaptans include methyl mercaptan, ethyl mercaptan, propyl mercaptan (including isomers), butyl mercaptan (including isomers such as tertiary butyl mercaptan), pentyl mercaptan, hexyl mercaptan, heptyl mercaptan.
  • Ar—SH Ar—SH (Ar is an aryl group).
  • Sulfides also called thioethers, are generic names for sulfur alkyl and sulfur reels, and are represented by the general formula R—S—R ′ (where R and R ′ are hydrocarbon groups such as alkyl groups and aryl groups). ) Is a sulfur compound. Replace two hydrogen atoms of hydrogen sulfide with an alkyl group. Compound of the form. Sulfides are classified into chain sulfides and cyclic sulfides. The chain sulfides are sulfur compounds having no heterocyclic ring containing a sulfur atom as a heteroatom among the sulfides.
  • Typical chain sulfides include dimethylsulfide, methylethylsulfide, methylpropylsulfide, jetylsulfide, methylbutenosulfenolide, ethylpropylsulfide, methylpentylsulfide, ethinolev. Tinolesulfide, dipropylsulfide, methylhexylsulfide, ethylpentylsulfide, propylbutylsulfide, methylheptylsulfide, ethylhexylsulfide, propylpentylsulfide, dibutylsulfide and the like.
  • Cyclic sulfides have a heterocyclic ring containing at least one sulfur atom as a heteroatom among sulfides, and have no aromaticity (a penta- or hexa-atom ring and two double bonds). It is a sulfur compound without a heterocyclic ring.
  • Typical cyclic sulfides include tetrahydrothiophene (sulfur tetramethylene, molecular formula CHS, molecular weight 88.1), methyltetrathiophene, etc.
  • Disulfides are disulfuric substances. It is a generic name for alkyl disulfide and aryl disulfide, and is a sulfur compound represented by the general formula R—S—S—R ′ (R and R ′ are hydrocarbon groups such as alkyl groups). The sum of the number of carbon atoms of the hydrocarbon group constituting R and R ′ is preferably 2-8.
  • dimethyldisulfide methylethyldisulfide, methylpropyldisulfide, jetyldis Rufide, methyl butyl disulfide, ethyl propyl disulfide, methyl pentyl disulfide, ethyl butyl disulfide, dipropyl disulfide, methyl hexyl disulfide, ethyl pentyl disulfide, propyl butyl disulfide, methyl heptyl
  • chain disulfides such as disulfide, ethylhexyl disulfide, propylpentyl disulfide, and dibutyl disulfide.
  • kerosene When kerosene is used as the raw fuel of a fuel cell, sulfur contained in kerosene must be strictly removed because it is a catalyst poison of the reforming catalyst during the hydrogen production process.
  • the sulfur content after desulfurization needs to be 50 mass ppb or less, preferably 20 mass ppb or less, more preferably 5 mass ppb or less.
  • the desulfurization agent and the desulfurization method of the present invention are based on benzothiophenes contained in kerosene. A particularly remarkable effect is obtained.
  • By combining other desulfurization methods before and after applying the desulfurization method of the present invention it is possible to desulfurize sulfur contained in kerosene to a very low value. Specifically, if the dibenzothiophenes are previously removed by distillation separation or adsorption separation using activated carbon or the like, the effects of the present invention can be obtained remarkably.
  • the desulfurizing agent of the present invention contains copper and silver, or further manganese. Both copper and silver belong to the IB group in the elementary periodic table, and their physical and chemical properties are relatively similar, but the present inventors have shown that the removal performance of benzothiophenes by adding silver Has been found to improve significantly.
  • the ratio of copper to silver is 99: 1 to 80:20, preferably 98: 2 to 90:10, particularly preferably 97: 3 to 95: 5 as the weight of the metal. If the silver ratio is less than 99: 1, the effect of adding silver is small. If it is more than 80:20, the effect of adding more is not obtained, so it is not economical.
  • the ratio of copper to manganese is 100: 0 to 40:60, preferably 85:15 to 50:50, particularly preferably 80:20 to 60:40 as the weight of the metal. It may contain transition metals other than copper, silver and manganese, and Z or transition metal oxides, but the effect of addition is small. I prefer to be there. Examples of the transition metal include silver, mercury, copper, cadmium, lead, molybdenum, zinc, cobalt, nickel, platinum, platinum, radium, and iron.
  • the copper contained in the desulfurizing agent of the present invention is copper oxide (CuO) or cuprous oxide (Cu 2 O).
  • Copper oxide has a sufficiently high activity near room temperature. Also, when it is subjected to reduction treatment, heat is generated when it comes into contact with air.
  • Silver may be metallic silver, silver oxide such as AgO and AgO, or silver salt such as silver carbonate, silver nitrate, and silver acetate.
  • Manganese includes manganese oxides such as MnO, MnO, MnO, MnO, and MnO.
  • MnO easily reacts with sulfur to produce MnS and the like.
  • Manganese is copper and silver.
  • the desulfurizing agent of the present invention preferably contains silica and Z or activated carbon as a metal carrier. Silica and activated carbon do not have acid sites, and therefore, undesirable side reactions such as polymerization reactions do not occur.
  • activated carbon has an adsorptive force due to ⁇ electrons in the partially present graphite structure and the benzene ring, and is particularly preferable when removing benzothiophenes and dibenzothiophenes.
  • the amount of silica contained in the desulfurizing agent is 5 to 40% by mass, preferably 7 to 30% by mass, particularly preferably 8 to 20% by mass, based on the total weight of the metal and soot or metal compound and silica. is there. If the amount of silica is less than 5% by mass, the dispersibility of the metal and soot or the metal compound is lowered and sufficient desulfurization performance cannot be obtained. More than 40% by mass and the content of metal and soot or metal compound is less than 60% by mass, the desulfurization performance per unit weight of the desulfurizing agent is lowered, and the life is shortened.
  • the amount of the activated carbon contained in the desulfurizing agent is 50 to 99% by mass, preferably 60 to 98% by mass, particularly preferably 70 to 97% by mass, based on the weight of the desulfurizing agent.
  • the balance is mainly metal and metal or a metal compound, and when used with a silica support, the silica support is also included in the balance.
  • the activated carbon support contributes to the improvement of adsorption removal performance of dibenzothiophenes, not only by the role of supporting metals and soot or metal compounds in a highly dispersed state.
  • the amount of the activated carbon is less than 50% by mass, not only the dispersibility of the metal and soot or the metal compound is lowered, but also the adsorption removal performance of dibenzothiophenes is reduced, and sufficient desulfurization performance cannot be obtained. If it exceeds 99% by mass, the content of metal and soot or metal compound is reduced and the desulfurization performance is lowered.
  • the method for preparing the desulfurizing agent of the present invention is not particularly limited.
  • a physical mixing method, an impregnation method and a coprecipitation method using a raw material and a carrier containing a copper compound and a silver compound are used.
  • a method of physically mixing each component in which a copper component, a silver component or a manganese component is supported on a carrier is also preferable.
  • the manganese component itself can be used as a carrier for the manganese component.
  • after preparing a copper support in which a copper component is highly dispersed on a support such as silica it is also preferable to further support a silver component and a manganese component on the copper support.
  • the copper support is prepared by the graphite structure of the activated carbon, the adsorption force due to the ⁇ electrons of the benzene ring of the sulfur compound, and the sulfur atom on the supported metal.
  • the graphite structure and its vicinity range in which the adsorbing power of both the graphite structure and the metal affects one sulfur compound molecule
  • Particularly preferred is an impregnation method in which a metal is preferably supported on (3).
  • the copper support is preferably prepared by coprecipitation with a copper component rather than adding the structure-stabilized product as a powder to the precipitation mother liquor.
  • a copper component For example, alkali hydroxide, alkali carbonate or alkali bicarbonate is used as a precipitating agent, and alkali silicate is added and dissolved therein, followed by neutralization reaction with a metal salt, so that a copper component and a silicon component are added.
  • the resulting precipitate consists of a mixture of these component compounds, or a mixture in which a part of these component compounds forms a complex, and the copper component is highly dispersed and has a high surface area. preferable.
  • a copper hydroxide produced by a neutralization reaction between an aqueous copper salt solution and an aqueous solution of an alkali hydroxide, an alkali carbonate or an alkali bicarbonate containing an alkali silicate A mixture in which basic copper carbonate is mixed with a silicon compound, or a mixture in which the copper hydroxide or a part of the basic copper carbonate forms a complex with a silicon compound, and the CuZSi atom of the mixture
  • the ratio is preferably 1-10.
  • the copper salts used in the present invention may be any salts as long as they are water-soluble salts such as nitrates, sulfates, chlorides, and organic acid salts.
  • an aqueous solution of the copper salt (referred to as solution A) is used as the precipitation mother liquor.
  • a mixed aqueous solution in which alkali silicate is added to an aqueous solution of alkali hydroxide, alkali carbonate or alkali bicarbonate, which is preferred by potassium silicate, and dissolved therein is used as a precipitant.
  • the content of Cu and Si is preferably in the range of 1 to 10 in terms of Cu / Si atomic ratio.
  • the atomic ratio of CuZSi is less than 1, it is confirmed by X-ray diffraction structure analysis that most copper compounds form a complex with silicon compounds. Since the content is reduced, the adsorption capacity is not preferable.
  • the CuZSi atomic ratio is greater than 10, a high surface area desulfurization agent composed of a refined copper compound cannot be obtained, and it is preferred as a desulfurization agent.
  • the precipitate obtained by the neutralization reaction is aged, washed with water and dried. It may be fired before the silver component or manganese component is supported, or may be fired after the silver component or manganese component is supported. It is preferable to fire after the silver component or manganese component is supported in order to shorten the process. .
  • washing with water is performed to remove alkaline compounds mixed in the precipitate, and to prevent the physical properties of the resulting treatment agent from being altered in the subsequent process, and remain in the finally obtained treatment agent. It is preferable to wash with water until the amount of alkali to be reduced is 0.1% or less. Subsequent drying does not cause thermal alteration of the treating agent compound, and is preferably performed at a temperature range of 80 to 200 ° C. that is reasonable for shortening the production time.
  • the obtained dried copper-silica product is composed of fine crystals having a BET surface area of 80 m 2 Zg or more determined by nitrogen adsorption and a crystallite diameter of the copper compound by X-ray diffraction of 50 nm or less.
  • the surface area is less than 80 m 2 / g, no desulfurizing agent exhibiting high performance is obtained, and even when the crystallite diameter of the copper compound is larger than 50 nm, desulfurization exhibiting high performance due to insufficient dispersibility of copper. No agent can be obtained.
  • a silver-containing solution is used.
  • an aqueous silver nitrate solution an aqueous silver chloride solution, or the like can be used.
  • the impregnation method includes an equilibrium adsorption method in which a carrier is immersed in a silver-containing solution and adsorbs silver until equilibrium, an evaporation to dryness method in which the carrier is immersed in a silver-containing solution to evaporate the solvent, and a silver-containing solution while drying the carrier. It is possible to use a commonly used method such as a spray method of spraying and impregnating.
  • a manganese-containing solution is used.
  • manganese As the containing solution, it is possible to use salty manganese (II), manganese borate, manganese sulfate (II), potassium permanganate, etc.
  • the manganese content can be increased, and the adsorption of sulfur compounds by chlorine is also inhibited. Therefore, the use of an aqueous manganese sulfate solution is preferred.
  • the impregnation method includes an equilibrium adsorption method in which a carrier is immersed in a manganese-containing solution to adsorb manganese to equilibrium, an evaporation to dryness method in which the carrier is immersed in a manganese-containing solution to evaporate the solvent, and manganese is dried while the carrier is dried.
  • Commonly used methods such as a spray method in which the contained solution is sprayed and impregnated can be used.
  • the silver-containing solution and the manganese-containing solution are not particularly limited, such as a method in which the silver-containing solution and the manganese-containing solution are mixed in advance and then supported and dried, and a method in which the silver-containing solution and the manganese-containing solution are separately supported and dried. Is preferred.
  • Firing is preferably performed at 300 to 400 ° C, particularly 330 to 380 ° C for 1 to 12 hours.
  • Part of hydroxy copper, basic copper carbonate, silver nitrate, manganese sulfate, etc. decomposes, and black oxide such as black, silver oxide, and acid manganese are produced in the drying stage in a steam atmosphere. If it is less than 300 ° C, hydroxyl group, carbonate radical, nitrate radical, sulfate radical, etc. will remain and the desulfurization performance will deteriorate. At temperatures higher than 400 ° C, the desulfurization performance decreases due to a decrease in specific surface area. It is particularly preferred to bake at 330 to 380 ° C until no hydroxyl groups, carbonate radicals, nitrate radicals, sulfate radicals, etc. remain.
  • the carbon dioxide content is higher than 5% by mass, the desulfurization performance will be lowered due to the inhibition of adsorption of sulfur compounds by carbonic acid radicals.
  • the desulfurizing agent of the present invention can be obtained by directly using a powder of silica and Z or activated carbon containing a copper component and a silver component.
  • a compact containing 50% by mass or more, particularly 80% by mass or more of the above powder is preferably used.
  • other components include binders and other desulfurizing agent components.
  • the shape in order to increase the concentration gradient of sulfur compounds, in the case of flow-through type, the shape is small, especially spherical, as long as the differential pressure before and after the container filled with desulfurizing agent does not increase. Is preferred. In the case of a spherical shape, the diameter is preferably 0.5 to 5 mm, particularly 1 to 3 mm.
  • the diameter is preferably 0.1 to 4 mm, particularly 0.12 to 2 mm, and the length is preferably 0.5 to 5 times, particularly 1 to 2 times the diameter.
  • the fracture strength of the molded product is 0.5 kgZ pellets or more, especially 1. OkgZ pellets or more, since the adsorbent will not crack.
  • the breaking strength is measured by a compressive strength measuring instrument such as a Kiya-type tablet breaking strength measuring instrument (Toyama Sangyo Co., Ltd.).
  • binder used for molding examples include clays such as alumina and smectite, and inorganic binders such as water glass. These binders are not particularly limited as long as they are used to such an extent that they can be molded, but usually 0.05 to 30% by mass with respect to the raw material is used. It is difficult to desulfurize copper and silver by mixing inorganic fine particles such as silica, alumina, other zeolites, and organic materials such as activated charcoal. ⁇ Improve the desulfurization performance of sulfur compounds, and the abundance of mesopores and macropores The diffusion rate of the sulfur compound may be improved by increasing the amount of sulfur.
  • the specific surface area of the desulfurizing agent of the present invention greatly affects the desulfurization performance, and is preferably 80 m 2 / g or more, more preferably 100 m 2 / g or more, and particularly preferably 150 m 2 / g or more.
  • the pore volume of pores having a pore diameter of 10 A or less is preferably at least 0.10 ml Zg, particularly preferably at least 0.20 ml Zg, in order to increase the adsorption capacity of the sulfur compound.
  • the pore volume of pores having a pore diameter larger than 10 A and 0.1 ⁇ m or smaller is 0.05 mlZg or more, in particular, 0. It is preferable to set it as lOmlZg or more.
  • the pore volume of pores having a pore diameter greater than 0 .: L m is preferably 0.3 mlZg or less, particularly preferably 0.25 mlZg or less, in order to increase the mechanical strength of the molded product.
  • L m is preferably 0.3 mlZg or less, particularly preferably 0.25 mlZg or less, in order to increase the mechanical strength of the molded product.
  • the specific surface area and the total pore volume are measured by a nitrogen adsorption method, and the macropore volume is measured by a mercury intrusion method.
  • the nitrogen adsorption method is simple and commonly used and is described in various literature. For example, Kazuhiro Hagio: Shimazu Review, 48 (1), 35-49 (1991), ASTM (American Society for Testing and Materials) 3 ⁇ 4tandard Test Method D43o5-95.
  • the method of contacting the desulfurizing agent and hydrocarbon oil of the present invention may be a batch type (batch type) or a flow type, but a flow type in which a molded product is filled in a container and the hydrocarbon oil is circulated is more preferable. Like Yes.
  • the pressure is normal pressure to 50 kgZcm 2 G, preferably normal pressure to 10 kgZcm 2 G, and particularly preferably 0.1 to 3 kgZcm 2 G.
  • the flow rate is 0 at LHSV. Especially 0.05-20hr- 1 force.
  • the temperature for the desulfurization treatment is preferably 10 to 150 ° C, particularly 30 to 100 ° C.
  • the desulfurizing agent removes a small amount of adsorbed moisture in advance as a pretreatment. If moisture is adsorbed, not only the adsorption of sulfur compounds will be inhibited, but also the moisture that has been desorbed immediately after the introduction of hydrocarbon oil will be mixed into the hydrocarbon oil. It is preferable to dry at about 130 to 350 ° C, preferably about 150 to 200 ° C.
  • the present desulfurizing agent and another desulfurizing agent may be used in combination. Since this desulfurization agent is particularly excellent in removal performance of benzothiophenes, other desulfurization agents excellent in removal performance of other types of sulfur compounds such as dibenzothiophenes, mercaptans, or sulfides. When combined with, it is more effective.
  • the present desulfurizing agent and other desulfurizing agents may be connected in series as separate packed layers, or the present desulfurizing agent and other desulfurizing agents may be physically mixed to form a single packed bed. Further, the present desulfurizing agent and another desulfurizing agent may be physically mixed and then molded, and the present desulfurizing agent and other desulfurizing agent may be contained in one grain.
  • the present desulfurizing agent is preferably heated, it is preferable to use exhaust heat from a fuel cell and a reformer that generates a hydrogen-containing gas.
  • exhaust heat In the case of a polymer electrolyte fuel cell, exhaust heat of about 80 ° C. can be obtained. Therefore, it is preferable to use the exhaust heat for heating the desulfurization agent.
  • not only the polymer electrolyte fuel cell but also a fuel cell having a hot water storage tank it is preferable to use hot water for heating the present desulfurization agent.
  • An example of a conceptual diagram of a fuel cell system is shown in Fig. 1. Fill the desulfurizer with this desulfurizing agent. Since this desulfurization agent is relatively low at around 80 ° C and its desulfurization performance is high even at a temperature, the fuel cell can utilize exhaust heat even if it is a polymer electrolyte fuel cell.
  • this desulfurizing agent When using this desulfurizing agent in refineries, petrochemical plants, chemical factories, etc., it is preferable to install two or more desulfurization tanks.
  • the hydrocarbon oil to be desulfurized is circulated in one desulfurization tank, and it is separated when the desulfurization performance of the desulfurizing agent is reduced and sufficient desulfurization performance cannot be obtained.
  • a method of switching to a desulfurization tank is preferable.
  • two or more desulfurization tanks are connected in series, and when the desulfurization performance of the desulfurization tank on the most upstream side is completely lost or significantly deteriorated, the use of the desulfurization tank is stopped and the newest desulfurization tank is most downstream.
  • a method of connecting a desulfurization tank filled with a desulfurizing agent is particularly preferable.
  • Kerosene manufactured by Japan Energy, has a boiling range of 158.5 to 270.0 ° C, a 5% distillation point.
  • Copper sulfate 1. Weigh 7 kg in a 20 L beaker, add 10 L of pure water, stir, dissolve, and precipitate mother liquor.
  • Liquid A Liquid A was prepared. Separately, 1.5kg of No. 3 sodium silicate 1.5kg and 0.7kg of sodium carbonate were weighed into a 20L beaker, charged with 10L of pure water, dissolved and dissolved in a precipitant solution (Liquid B). Was prepared. Solution A was gradually added dropwise to solution B, which was vigorously stirred, to form a precipitate. The resulting precipitate was aged, sufficiently washed with water, then filtered, dried in air at 110 ° C, and then calcined at 350 ° C to obtain a copper-based desulfurization agent.
  • a silver nitrate solution was impregnated and supported on silica so that the amount of Ag supported was 10% by mass and dried at 110 ° C for 12 hours. Calcination was performed at 00 ° C for 3 hours to obtain a silver-based desulfurization agent.
  • a desulfurization agent containing copper and silver was prepared by a physical mixing method of a copper desulfurization agent and a silver desulfurization agent.
  • Desulfurizing agent containing 55% by mass of copper and 1% by mass of silver (Example), Desulfurizing agent containing 58% by mass of copper and not containing silver (Comparative Example 1), y Amount of Ag supported by 5% by mass of silver nitrate solution on alumina
  • the copper-containing desulfurization agent (AgZ o -A1 O, Comparative Example 2) was obtained by impregnating and supporting so as to be, dried at 110 ° C for 12 hours, and calcined at 400 ° C for 3 hours. ) And a silver nitrate solution on a manganese oxide support with an Ag loading of 5% by mass.
  • the copper-free desulfurization agent (AgZMnO, Comparative Example 3) loaded with silver obtained by impregnation and drying at 110 ° C for 12 hours and then calcined at 400 ° C for 3 hours to kerosene Soaking
  • Table 1 shows the kerosene sulfur content after desulfurization. It can be seen that the desulfurization agent containing copper and silver has high desulfurization performance. The residual amount of benzothiophenes was less than 0.05 mass ppm when both copper and silver were contained, which was 0.6 mass ppm or more when only one of copper and silver was not contained.
  • Fig. 2 shows the relationship between the mass ratio of silver Z copper and the sulfur content of kerosene after desulfurization. Without silver 3.
  • a desulfurizing agent containing copper and silver (Example 3-1 to Example 3-4) prepared in the same manner as in Example 2, and manganese prepared by using a part of copper sulfate as manganese sulfate.
  • 15 mass 0/0 containing desulfurizing agent (example 3 5), were evaluated by a model oil was prepared by using a reagent.
  • Prepare model oil by diluting benzothiophene to 10% by mass with decane solvent or toluene solvent, then leave each model oil 4.
  • the adsorbed amount was measured by analyzing the benzothiophene content before and after with a gas chromatograph- Flamelonization Detector (FID).
  • Table 2 shows the composition of the desulfurization agent and the measurement results of the adsorption amount. The amount of adsorption is different between decane solvent and toluene solvent, and the inhibition of adsorption by aromatics is noticeable. In this experimental condition using model oil with a high concentration of benzothiophene, it can be seen that the adsorption amount is larger as the Ag content is higher. Moreover, the manganese addition effect is also understood.
  • Example 3-• 2 5. 6 50-7. 0 0. 6
  • Example 3-5 1. 6 40 15 25 0.0 Example 4
  • a desulfurizing agent was prepared using activated carbon (specific surface area 1,992 m 2 / g, pore volume 0.760 mlZg) as a carrier.
  • solution B 0.8 l kg and 12 L of pure water were added and dissolved by stirring to prepare solution B. While stirring at room temperature, solution A was gradually added dropwise to solution B to form a precipitate. The resulting precipitate is aged, washed thoroughly with water, and filtered with suction. I had. Then dry in air at 110 ° C, then fire at 350 ° C and CuO / SiO system
  • the desulfurizing agents having different metal contents were prepared by changing the amount (Examples 4 to 4-6).
  • Table 3 shows the Ag, Cu, C and Si contents and specific surface area of each desulfurizing agent.
  • the content is the value measured using ICP-AES (inductively coupled plasma emission spectrometer) after melting the sample with an alkaline flux and dissolving the melt with dilute nitric acid solution (moisture is not corrected). )showed that.
  • Example 1 The same immersion desulfurization experiment in kerosene as in Example 1 was carried out on Examples 4 1 to 4 6 and the activated carbon (comparative example) used for the carrier.
  • a desulfurization agent of 0.5 g (liquid Z solid ratio: 30) was immersed in 15 g of kerosene and allowed to stand at 10 ° C. for 9 days, and then the type of sulfur and sulfur compounds were analyzed.
  • Examples 4-1 to 4-3 and activated carbon (comparative example), an experiment was also conducted in which 4 g of desulfurizing agent (liquid Z solid ratio: 4) was immersed in 16 g of kerosene.
  • Figure 3 shows the relationship between the metal (silver and copper) content and the sulfur content of kerosene after desulfurization.
  • the metal content is higher up to a metal content of 20% by mass, and the desulfurization rate is higher. It can also be seen that when the metal content is 20% by mass or more and the liquid Z solid ratio is 4, desulfurization can be performed to 0.5 mass ppm or less.
  • Example 5 Silver nitrate 0.55 g and copper nitrate 11. lg were dissolved in 21 g of pure water. After fully mixing 36 g of the same activated carbon as in Example 4 with this solution, it was calcined at 400 ° C for 2 hours in a nitrogen atmosphere, and then copper-silver-based Activated carbon was obtained (Example 5). In Example 5, the copper content was 7.07% by mass, the silver content was 0.81% by mass, and the specific surface area was 1,905 m 2 Zg.
  • Example 5 For Example 5, Example 4-1, and activated carbon (comparative example), the amount of sulfur per unit weight of the desulfurizing agent was changed by changing the liquid Z solid ratio to 8 to 240, and the desulfurizing agent was added to kerosene. Immersion-type adsorptive desulfurization experiments were carried out, which were immersed and left at 10 ° C for 6 days.
  • the liquid Z solid ratio was set at 8, 30, and 240.
  • Example 4-1 and the comparative example the liquid Z solid ratio was set at 30, 60, and 240. went.
  • Figure 4 shows the relationship between the sulfur content of kerosene after desulfurization and the sulfur adsorption amount (adsorption isotherm).
  • Example 5 and Example 4 - 1 since dibenzo Chio Fen acids also Benzochiofen acids can also be adsorbed and removed, when the liquid Z solid ratio is small (less sulfur per weight desulfurizing agent units) As a result, the amount of sulfur remaining in kerosene after desulfurization decreases, and the amount of sulfur adsorbed per unit weight of desulfurizing agent decreases, resulting in the results on the left side of the figure.
  • Example 5 and Example 41 have significantly improved sulfur adsorption compared to activated carbon not supporting metal.
  • Figure 5 shows the relationship (adsorption isotherm) between the content of dibenzothiophenes in kerosene after desulfurization and the amount of dibenzothiophenes adsorbed in the desulfurizing agent.
  • the adsorption isotherm when focusing on dibenzothiophenes is a straight line that almost passes through the origin, and is similar to the adsorption isotherm when the adsorbate is a single component and has a low concentration. From this result, it can be seen that the amount of dibenzothiophenes adsorbed is larger than that of activated carbon not supporting metal. It can also be seen that the adsorption amount of dibenzothiophenes is larger in Example 5, which is an impregnation method, than in Example 41, which is a mixing method of activated carbon and a physical mixing method.
  • Example 6 [0063] In a 2 L beaker, 67 g of copper sulfate, 32 g of manganese sulfate, and 71 OmL of pure water were added and dissolved by stirring to prepare solution A. Separately, in a 2L beaker, 53g of sodium carbonate and SiO 3
  • Solution B was prepared by adding 18.2 g of sodium silicate No. 3 containing 0% and 710 mL of pure water with stirring and dissolution. While stirring at room temperature, solution A was gradually added dropwise to solution B to form a precipitate. The resulting precipitate was aged, washed thoroughly with water and filtered with suction. Thereafter, it was dried in air at 110 ° C. A solution of 0.6 g of silver nitrate dissolved in 26 g of pure water was thoroughly mixed with 47 g of the obtained dried product and calcined at 350 ° C to obtain a copper-silver-manganese desulfurization agent (Example 6-2) .
  • desulfurization agents having different metal contents were prepared by changing the amounts of copper sulfate and manganese sulfate (Examples 6-1 and 6-3).
  • Table 4 shows the Ag, Cu and Mn contents of each desulfurizing agent, the mass ratio of Cu and Mn, and the specific surface area.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Fuel Cell (AREA)

Abstract

A desulfurizing agent and desulfurization method for hydrocarbon oils, especially kerosine for use as a raw fuel for fuel cells, and a desulfurizing agent and desulfurization method for hydrocarbons for use in oil refineries. The desulfurizing agents and desulfurization methods necessitate neither a reduction treatment nor hydrogen and can effectively remove benzothiophene compounds or thiophene compounds at a temperature of from room temperature to about 150°C. When the agent and method are applied to a fuel cell, starting and maintenance are relatively easy and the fuel cell system can be simplified. The desulfurizing agent for hydrocarbon oils is characterized by comprising a copper ingredient and a silver ingredient. The fuel cell system is characterized by employing this desulfurizing agent.

Description

明 細 書  Specification
炭化水素油脱硫剤および脱硫方法  Hydrocarbon oil desulfurization agent and desulfurization method
技術分野  Technical field
[0001] 本発明は、炭化水素油脱硫剤および脱硫方法、特に燃料電池で使用する水素を 発生させるための原燃料である灯油の脱硫剤および脱硫方法、および製油所、石油 化学工場、化学工場で使用する炭化水素油の脱硫剤および脱硫方法に関するもの である。  [0001] The present invention relates to a hydrocarbon oil desulfurization agent and a desulfurization method, in particular, a desulfurization agent and a desulfurization method for kerosene which is a raw fuel for generating hydrogen used in a fuel cell, and a refinery, a petrochemical factory, and a chemical factory. The present invention relates to a desulfurization agent and desulfurization method for hydrocarbon oils used in Japan.
背景技術  Background art
[0002] 家庭用などの定置式燃料電池で使用する灯油の脱硫は、主にニッケル系脱硫剤 を 200°C前後で使用する化学吸着脱硫法が検討されて!、るが、加熱のためのエネ ルギーを消費すること、起動に時間を要すること、灯油の気化を防止するために加圧 条件で行う必要がありシステムが複雑になるなどの問題点があった。銅を添加した- ッケル系脱硫剤は、 150°C程度のより低温でもある程度の活性を有するが、上記問 題を解決するまでには至っていな力つた。また、ニッケル系脱硫剤はあらかじめ還元 処理を施す必要があり、酸素と接触することにより急激な発熱反応が起きて活性が低 下することから、保管や停止方法にも課題がある。さらに、ニッケルィ匕合物は毒性を 有することから、一般家庭に普及した場合には管理方法を厳格にする必要もあるとい う課題も有する。(特許文献 1、特許文献 2、特許文献 3、特許文献 4)  [0002] For desulfurization of kerosene used in stationary fuel cells for home use, etc., a chemisorption desulfurization method using a nickel-based desulfurization agent at around 200 ° C has been studied! There were problems such as consuming energy, taking time to start up, and complicating the system because it was necessary to perform under pressurized conditions to prevent vaporization of kerosene. The nickel-based desulfurization agent added with copper has a certain level of activity even at a lower temperature of about 150 ° C., but has not yet been able to solve the above problems. In addition, nickel-based desulfurization agents must be subjected to a reduction treatment in advance, and a sudden exothermic reaction occurs when they come into contact with oxygen, resulting in a decrease in activity. Therefore, there are also problems in storage and stopping methods. Furthermore, since nickel compounds are toxic, there is also a problem that strict management methods are required when they are spread to ordinary households. (Patent Document 1, Patent Document 2, Patent Document 3, Patent Document 4)
[0003] また、製油所で使用されている酸化銅系脱硫剤は、 120°C前後の比較的低温で、 メルカブタン類などの硫黄ィ匕合物を含むナフサ留分の脱硫には利用されているが、 主にベンゾチォフェン類を含む灯油ゃチォフェン類を含む芳香族などの脱硫に十分 な性能を有する酸化銅系脱硫剤は存在しなかった。(特許文献 5)  [0003] In addition, copper oxide desulfurization agents used in refineries are used for desulfurization of naphtha fractions containing sulfur compounds such as mercaptans at a relatively low temperature of around 120 ° C. However, there was no copper oxide-based desulfurization agent that had sufficient performance for desulfurization of kerosene containing mainly benzothiophenes and aromatics containing thiophenes. (Patent Document 5)
[0004] 一方、ゼォライトや活性炭等を常温付近で使用する物理吸着脱硫法も検討されて いるが、灯油のように硫黄化合物と競争吸着となる芳香族化合物を含み、特にべンゾ チォフェン類の除去については性能の高い物理吸着剤が存在せず、非常に多くの 体積を必要として実用的ではな力 た。(特許文献 6、特許文献 7)  [0004] On the other hand, a physical adsorption desulfurization method using zeolite, activated carbon, etc. near room temperature is also being studied, but it contains aromatic compounds that compete with sulfur compounds, such as kerosene, and especially benzothiophenes. For removal, there was no physical adsorbent with high performance, and a very large volume was required, which was impractical. (Patent Document 6, Patent Document 7)
[0005] 灯油に含まれる硫黄ィ匕合物のタイプは、ベンゾチォフェン類およびジベンゾチオフ ェン類が大部分であり、特にベンゾチォフェン類の割合が大きぐ全硫黄化合物に対 するベンゾチォフェン類の割合は、硫黄分として 70%以上である場合が多い。従つ て、還元処理や水素を必要とせず、また、加圧を必要としない室温から 150°C程度ま での温度で、ベンゾチォフェン類ゃチォフェン類を効率的に除去することができる脱 硫剤および脱硫方法が求められて 、た。 [0005] The types of sulfur compounds contained in kerosene are benzothiophenes and dibenzothiops. The ratio of benzothiophenes to the total sulfur compounds, where the ratio of benzothiophenes is large, is particularly 70% or more in many cases. Therefore, desulfurization agents that can efficiently remove benzothiophenes and thiophenes at temperatures from room temperature to around 150 ° C that do not require reduction treatment, hydrogen, or pressurization. There was a need for a desulfurization method.
特許文献 1:特公平 6— 65602号公報  Patent Document 1: Japanese Patent Publication No. 6-65602
特許文献 2:特公平 7 - 115842号公報  Patent Document 2: Japanese Patent Publication No. 7-115842
特許文献 3:特許第 3410147号公報  Patent Document 3: Japanese Patent No. 3410147
特許文献 4:特許第 3261192号公報  Patent Document 4: Japanese Patent No. 3261192
特許文献 5:特許第 3324746号公報  Patent Document 5: Japanese Patent No. 3324746
特許文献 6:特開 2003— 49172号公報  Patent Document 6: Japanese Unexamined Patent Publication No. 2003-49172
特許文献 7:特開 2005— 2317号公報  Patent Document 7: Japanese Unexamined Patent Publication No. 2005-2317
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] 本発明は、炭化水素油、特に燃料電池の原燃料である灯油の脱硫剤および脱硫 方法、および製油所、石油化学工場、化学工場で使用する炭化水素油の脱硫剤お よび脱硫方法について、還元処理や水素を必要とせず、また、室温から 150°C程度 までの温度で、ベンゾチォフェン類ゃチォフェン類を効率的に除去することができる 脱硫剤および脱硫方法を提供することを課題とする。燃料電池に適用すれば、起動 やメンテナンスが比較的容易であり、また燃料電池のシステムを簡略ィ匕することが可 能となる。 [0006] The present invention relates to a desulfurization agent and desulfurization method for hydrocarbon oils, particularly kerosene, which is a raw fuel of fuel cells, and a desulfurization agent and desulfurization method for hydrocarbon oils used in refineries, petrochemical plants, and chemical factories. Therefore, it is an object of the present invention to provide a desulfurization agent and a desulfurization method capable of efficiently removing benzothiophenes and thiophenes at a temperature from room temperature to about 150 ° C without requiring reduction treatment or hydrogen. To do. When applied to a fuel cell, startup and maintenance are relatively easy, and the fuel cell system can be simplified.
課題を解決するための手段  Means for solving the problem
[0007] 本発明者は、上記課題を解決するために鋭意研究を進めた結果、銅および銀を含 有する脱硫剤、あるいは銅、銀およびマンガンを含有する脱硫剤は、還元処理や水 素を必要とせずに、 150°C以下でも灯油に含まれるベンゾチォフェン類などの硫黄 化合物を比較的温和な条件で効率的に除去できることを見出し、本発明に想到した [0007] As a result of intensive studies to solve the above problems, the present inventor has found that a desulfurization agent containing copper and silver, or a desulfurization agent containing copper, silver and manganese is subjected to reduction treatment or hydrogen. The present inventors have found that sulfur compounds such as benzothiophenes contained in kerosene can be efficiently removed under relatively mild conditions even at 150 ° C. or lower without needing the present invention.
[0008] すなわち、本発明は、以下のとおりである。 (1)銅成分および銀成分を含有することを特徴とする炭化水素油脱硫剤。 [0008] That is, the present invention is as follows. (1) A hydrocarbon oil desulfurization agent comprising a copper component and a silver component.
(2)銅成分と銀成分の比率が金属の質量比で 99 : 1〜80: 20であることを特徴とする 前記(1)に記載の脱硫剤。  (2) The desulfurizing agent according to (1), wherein the ratio of the copper component and the silver component is 99: 1 to 80:20 in terms of the mass ratio of the metal.
(3)更にマンガン成分を含有することを特徴とする前記(1)または(2)に記載の脱硫 剤。  (3) The desulfurization agent according to (1) or (2), further comprising a manganese component.
(4)銅成分とマンガン成分の比率が金属の質量比として 85 : 15〜50: 50であること を特徴とする前記(3)に記載の脱硫剤。  (4) The desulfurization agent according to (3) above, wherein the ratio of the copper component to the manganese component is 85:15 to 50:50 as the mass ratio of the metal.
[0009] (5)前記(1)〜 (4)の ヽずれかに記載の脱硫剤を用いることを特徴とする炭化水素 油の脱硫方法。  [0009] (5) A hydrocarbon oil desulfurization method using the desulfurization agent according to any one of (1) to (4).
(6)製油所、石油化学工場、化学工場において、前記(1)〜(4)のいずれかに記載 の脱硫剤を用いることを特徴とする炭化水素油の脱硫方法。  (6) A method for desulfurizing a hydrocarbon oil, characterized by using the desulfurizing agent according to any one of (1) to (4) in a refinery, a petrochemical factory, or a chemical factory.
(7) 150°C以下の温度で脱硫することを特徴とする前記(5)または(6)に記載の脱硫 方法。  (7) The desulfurization method according to (5) or (6), wherein the desulfurization is performed at a temperature of 150 ° C. or lower.
(8)炭化水素油が灯油であることを特徴とする前記(5)または(6)に記載の脱硫方法  (8) The desulfurization method according to (5) or (6) above, wherein the hydrocarbon oil is kerosene
(9)前記(1)〜 (4)の 、ずれか〖こ記載の脱硫剤を使用することを特徴とする燃料電 池システム。 (9) A fuel cell system using the desulfurization agent described in any one of (1) to (4) above.
発明の効果  The invention's effect
[0010] 本発明の脱硫剤および脱硫方法によれば、炭化水素油、好ましくは硫黄ィ匕合物の 主成分としてベンゾチォフェン類を含む炭化水素油、さらに好ましくは灯油を、特定 の脱硫剤と接触させることにより、還元処理や水素添加を行わずに、室温から 150°C 程度までの温度で、効率よく脱硫することができる。そのため、燃料電池の原燃料で ある灯油の脱硫に適用した場合には、起動やメンテナンスが比較的容易であり、また 燃料電池のシステムを簡略ィ匕することが可能である。また、製油所、石油化学工場、 化学工場で使用する炭化水素油の脱硫にも好適に適用できる。  [0010] According to the desulfurizing agent and the desulfurizing method of the present invention, a hydrocarbon oil, preferably a hydrocarbon oil containing benzothiophenes as a main component of a sulfur compound, more preferably kerosene, is contacted with a specific desulfurizing agent. By doing so, desulfurization can be efficiently performed at a temperature from room temperature to about 150 ° C without performing reduction treatment or hydrogenation. Therefore, when applied to the desulfurization of kerosene, which is the raw fuel of the fuel cell, startup and maintenance are relatively easy, and the fuel cell system can be simplified. It can also be suitably applied to desulfurization of hydrocarbon oils used in refineries, petrochemical plants, and chemical plants.
図面の簡単な説明  Brief Description of Drawings
[0011] [図 1]燃料電池システムの一例を示す概念図。  FIG. 1 is a conceptual diagram showing an example of a fuel cell system.
[図 2]実施例 2の脱硫実験の結果を示すグラフ。 [図 3]実施例 4の脱硫実験の結果を示すグラフ。 FIG. 2 is a graph showing the results of the desulfurization experiment of Example 2. FIG. 3 is a graph showing the results of a desulfurization experiment of Example 4.
[図 4]実施例 5の脱硫実験の結果を示すグラフ。  FIG. 4 is a graph showing the results of the desulfurization experiment of Example 5.
[図 5]実施例 5の脱硫実験の結果を示すグラフ。  FIG. 5 is a graph showing the results of the desulfurization experiment of Example 5.
[図 6]実施例 6の脱硫実験の結果を示すグラフ。  FIG. 6 is a graph showing the results of the desulfurization experiment of Example 6.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0012] 本発明の脱硫剤および脱硫方法において、脱硫対象の炭化水素油としては、硫黄 化合物の主成分としてベンゾチォフェン類を含有した炭化水素油、好ましくは灯油を 好適に使用することができる。チォフェン類に対してもベンゾチォフェン類と同様の脱 硫性能が得られる。また、メルカブタン類 (チオール類)、スルフイド類、ジスルフイド類 、二硫ィ匕炭素など、他の種類の硫黄ィ匕合物を含有していても構わないが、特に主成 分としてベンゾチォフェン類および Zまたはチォフェン類を含有した炭化水素油に対 して本発明の効果を顕著に得られる。全硫黄ィ匕合物に対するベンゾチォフェン類ま たはチォフェン類の割合は、硫黄分として 70%以上、好ましくは 80%以上、特に好 ましくは 90%以上である。  [0012] In the desulfurizing agent and desulfurization method of the present invention, as the hydrocarbon oil to be desulfurized, a hydrocarbon oil containing benzothiophenes as a main component of the sulfur compound, preferably kerosene, can be suitably used. Desulfurization performance similar to that of benzothiophenes can be obtained for thiophenes. It may also contain other types of sulfur compounds such as mercabtans (thiols), sulfides, disulfides, and disulfur carbon, but the main components are benzothiophenes and Z. Alternatively, the effect of the present invention can be remarkably obtained for hydrocarbon oils containing thiophenes. The ratio of benzothiophenes or thiophenes to the total sulfur compound is not less than 70%, preferably not less than 80%, particularly preferably not less than 90% as a sulfur content.
好適に適用できる炭化水素油は、具体的には、ナフサ、ガソリン、灯油、軽油、ベン ゼン、トルエン、キシレン、ナフタレンなどの炭素数 5〜20の炭化水素油である。  The hydrocarbon oil that can be suitably applied is specifically a hydrocarbon oil having 5 to 20 carbon atoms such as naphtha, gasoline, kerosene, light oil, benzene, toluene, xylene, naphthalene, and the like.
[0013] 本発明の脱硫法が適用される炭化水素油の硫黄分については、技術的には制限 はない。しかし、硫黄分が高すぎると大量の脱硫剤を必要とすることになり、水素化脱 硫法など他の脱硫法の方が効率的であることから、本発明の脱硫法が好ましく適用さ れる炭化水素油中の硫黄分は、 20質量 ppm以下、より好ましくは 10質量 ppm以下 である。  [0013] The sulfur content of the hydrocarbon oil to which the desulfurization method of the present invention is applied is not technically limited. However, if the sulfur content is too high, a large amount of desulfurization agent is required, and other desulfurization methods such as hydrodesulfurization are more efficient. Therefore, the desulfurization method of the present invention is preferably applied. The sulfur content in the hydrocarbon oil is 20 ppm by mass or less, more preferably 10 ppm by mass or less.
[0014] 本発明で脱硫する灯油は、炭素数 12〜16程度の炭化水素を主体とし、密度(15 °C) 0. 790〜0. 850gZcm3、沸点範囲150〜320。。程度の油でぁる。ノ《ラフィン系 炭化水素を多く含むが、芳香族系炭化水素を 0〜30容量%程度含み、多環芳香族 系炭化水素も 0〜5容量%程度含む。一般的には、灯火用及び暖房用'ちゅう (厨) 房用燃料として日本工業規格 JIS K2203に規定される 1号灯油である。品質として、 引火点 40°C以上、 95%留出温度 270°C以下、硫黄分 0. 008質量%以下、煙点 23 mm以上 (寒候用のものは 21mm以上)、銅板腐食(50°C、 3時間) 1以下、色 (セー ボルト) + 25以上の規定がある。通常、硫黄分は数 ppm力も 80ppm以下、窒素分は 数 ppmから十 ppm程度含む。 The kerosene to be desulfurized in the present invention is mainly composed of hydrocarbons having about 12 to 16 carbon atoms, has a density (15 ° C.) of 0.790 to 0.850 gZcm 3 , and a boiling point range of 150 to 320. . It ’s about oil. Although it contains a lot of raffin-based hydrocarbons, it contains about 0-30% by volume of aromatic hydrocarbons and about 0-5% by volume of polycyclic aromatic hydrocarbons. In general, it is No. 1 kerosene defined in Japanese Industrial Standard JIS K2203 as a fuel for lamps and heating. As for quality, flash point 40 ° C or higher, 95% distillation temperature 270 ° C or lower, sulfur content 0.008 mass% or lower, smoke point 23 mm or higher (21 mm or higher for cold weather), copper plate corrosion (50 ° C, 3 hours) 1 or less, color (s Bolts) + 25 or more provisions. Usually, the sulfur content includes several ppm power of 80 ppm or less, and the nitrogen content includes several ppm to 10 ppm.
[0015] 灯油に含まれる主な硫黄化合物は、ベンゾチォフェン類およびジベンゾチォフェン 類であるが、チォフェン類、メルカプタン類(チオール類)、スルフイド類、ジスルフイド 類、二硫ィ匕炭素などを含む場合もある。灯油中の硫黄化合物の定性および定量分 祈には、ガスクロマトグラフ(Gas Chromatograph : GC) 炎光光度検出器(Flame Photometric Detector: FPD)、 GC 原子発光検出器(Atomic Emission Det ector :AED)、 GC—硫黄化学発光検出器(Sulfur Chemiluminescence Detect or : SCD)、 GC 誘導結合プラズマ質量分析装置(Inductively Coupled Plasma Mass Spectrometer: ICP— MS)などを用いることができる力 massppbレベルの 分析には GC - ICP - MSの使用が最も好まし 、。  [0015] The main sulfur compounds contained in kerosene are benzothiophenes and dibenzothiophenes, but may contain thiophenes, mercaptans (thiols), sulfides, disulfides, disulfur carbon, etc. is there. For qualitative and quantitative analysis of sulfur compounds in kerosene, gas chromatograph (Gas Chromatograph: GC) Flame Photometric Detector (FPD), GC atomic emission detector (AED), GC —Sulfur Chemiluminescence Detector (SCD), GC Inductively Coupled Plasma Mass Spectrometer (ICP—MS) can be used. GC-ICP- The use of MS is most preferred.
[0016] ベンゾチォフェン類は、 1個以上の硫黄原子を異原子として含む複素環式化合物 のうち、複素環が五原子環又は六原子環で且つ芳香族性をもち (複素環に二重結合 を 2個以上有し)、さらに複素環が 1個のベンゼン環と縮合している硫黄ィ匕合物及び その誘導体である。ベンゾチォフェンは、チォナフテン、チォクマロンとも呼ばれ、分 子式 C H Sで表わせる、分子量 134の硫黄ィ匕合物である。その他の代表的なベンゾ [0016] Benzthiophenes are heterocyclic compounds containing one or more sulfur atoms as heteroatoms, and the heterocyclic ring is a penta- or hexa-atom ring and has aromaticity (a double bond is attached to the heterocyclic ring). 2 or more) and a sulfur compound in which the heterocycle is condensed with one benzene ring and its derivatives. Benzothiophene, also called thionnaphthene or thiocoumarone, is a sulfur compound with a molecular weight of 134 that can be represented by the molecular formula C H S. Other typical benzo
8 6 8 6
チオフ ン類として、メチルベンゾチオフ ン、ジメチルベンゾチオフ ン、トリメチル ベンゾチォフェン、テトラメチルベンゾチォフェン、ペンタメチルベンゾチォフェン、へ キサメチルベンゾチオフ ン、メチルェチルベンゾチオフ ン、ジメチルェチルベンゾ チォフェン、トリメチルェチルベンゾチオフ ン、テトラメチルェチルベンゾチォフェン 、ペンタメチルェチルベンゾチオフ ン、メチルジェチルベンゾチオフ ン、ジメチル ジェチルベンゾチオフ ン、トリメチルジェチルベンゾチオフ ン、テトラメチルジェチ ルベンゾチオフヱン、メチルプロピルべンゾチオフヱン、ジメチルプロピルベンゾチォ フェン、トリメチルプロピルべンゾチオフ ン、テトラメチルプロピルベンゾチォフェン、 ペンタメチルプロピルべンゾチオフヱン、メチルェチルプロピルべンゾチオフヱン、ジ メチルェチルプロピルべンゾチオフ ン、トリメチルェチルプロピルベンゾチォフェン、 テトラメチルェチルプロピルべンゾチオフ ンなどのアルキルべンゾチオフ ン、チア クロメン(ベンゾチア一 Ύ ピラン、分子式 C H S、分子量 148)、ジチアナフタリン( 分子式 C H S、分子量 166)及びこれらの誘導体が挙げられる。 Thiophones include methylbenzothiophene, dimethylbenzothiophene, trimethylbenzothiophene, tetramethylbenzothiophene, pentamethylbenzothiophene, hexamethylbenzothiophene, methylethylbenzothiophene, dimethylether. Tylbenzothiophene, trimethylethylbenzothiophene, tetramethylethylbenzothiophene, pentamethylethylbenzothiophene, methyljetylbenzothiophene, dimethyl jetylbenzothiophene, trimethyljetylbenzothione Ohmone, tetramethylethylbenzothiophene, methylpropylbenzothiophene, dimethylpropylbenzothiophene, trimethylpropylbenzothiophene, tetramethylpropylbenzothiophene, pentamethylpropylbenzothiophene, Alkylbenzothiophenes such as acetylethylpropyl benzothiophene, dimethylethylpropyl benzothiophene, trimethylethylpropyl benzothiophene, tetramethylethylpropyl benzothiophene, thiachromene (benzothia monopyran , molecular formula CHS, Molecular weight 148), dithiaphthalene ( Molecular formula CHS, molecular weight 166) and their derivatives.
8 6 2  8 6 2
[0017] ジベンゾチォフェン類は、 1個以上の硫黄原子を異原子として含む複素環式ィ匕合 物のうち、複素環が五原子環又は六原子環で且つ芳香族性をもち (複素環に二重結 合を 2個以上有し)、さらに複素環が 2個のベンゼン環と縮合している硫黄ィ匕合物及 びその誘導体である。ジベンゾチォフェンはジフエ-レンスルフイド、ビフエ-レンスル フイド、硫ィ匕ジフヱ-レンとも呼ばれ、分子式 C H Sで表わせる、分子量 184の硫黄  [0017] Dibenzothiophenes are heterocycles containing one or more sulfur atoms as heteroatoms, and the heterocycle is a penta- or hexa-atom ring and has aromaticity (heterocycle In addition, sulfur compounds and derivatives thereof in which the heterocycle is condensed with two benzene rings. Dibenzothiophene, also known as diphenylsulfide, biphenylsulfide, sulfur disulfide, is a sulfur with a molecular weight of 184, represented by the molecular formula C H S
12 8  12 8
化合物である。  A compound.
[0018] 4ーメチルジベンゾチォフェンや 4, 6—ジメチルジベンゾチォフェンは、水素化精 製における難脱硫ィ匕合物として良く知られている。その他の代表的なジベンゾチオフ ェン類として、トリメチルジベンゾチォフェン、テトラメチルジベンゾチォフェン、ペンタ メチルジベンゾチオフ ン、へキサメチルジベンゾチオフ ン、ヘプタメチルジベンゾ チォフェン、オタタメチルジベンゾチォフェン、メチルェチルジベンゾチォフェン、ジメ チルェチルジベンゾチオフ ン、トリメチルェチルジベンゾチオフ ン、テトラメチルェ チルジベンゾチオフ ン、ペンタメチルェチルジベンゾチオフ ン、へキサメチルェチ ルジベンゾチオフ ン、ヘプタメチルェチルジベンゾチオフ ン、メチルジェチルジベ ンゾチオフ ン、ジメチルジェチルジベンゾチオフ ン、トリメチルジェチルジベンゾ チォフェン、テトラメチルジェチルジベンゾチォフェン、ペンタメチルジェチルジベン ゾチオフ ン、へキサメチルジェチルジベンゾチオフ ン、ヘプタメチルジェチルジベ ンゾチオフ ン、メチルプロピルジベンゾチオフ ン、ジメチルプロピルジベンゾチォ フェン、トリメチルプロピルジベンゾチオフ ン、テトラメチルプロピルジベンゾチォフ ン、ペンタメチルプロピルジベンゾチォフェン、へキサメチルプロピルジベンゾチオフ ン、ヘプタメチルプロピルジベンゾチオフ ン、メチルェチルプロピルジベンゾチォ フェン、ジメチルェチルプロピルジベンゾチオフ ン、トリメチルェチルプロピルジベン ゾチォフェン、テトラメチルェチルプロピルジベンゾチォフェン、ペンタメチルェチル プロピルジベンゾチオフ ン、へキサメチルェチルプロピルジベンゾチオフ ンなどの アルキルジベンゾチォフェン、チアントレン(ジフエ-レンジスルフイド、分子式 C H  [0018] 4-Methyldibenzothiophene and 4,6-dimethyldibenzothiophene are well known as difficult desulfurization compounds in hydrorefining. Other representative dibenzothiophenes include trimethyldibenzothiophene, tetramethyldibenzothiophene, pentamethyldibenzothiophene, hexamethyldibenzothiophene, heptamethyldibenzothiophene, otamethyldibenzothiophene, methyl Ethyl dibenzothiophene, dimethyl ethyl dibenzothiophene, trimethylethyl dibenzothiophene, tetramethylethyl dibenzothiophene, pentamethylethyl dibenzothiophene, hexamethylethyl dibenzothiophene, heptamethylethyl dibenzothiophene Ohmone, methyljetyldibenzothiophene, dimethyljetyldibenzothiophene, trimethyljetyldibenzothiophene, tetramethyljetyldibenzothiophene, pentamethyljetyldibenzothiophene Hexamethyljetyldibenzothiophene, heptamethyljetyldibenzothiophene, methylpropyldibenzothiophene, dimethylpropyldibenzothiophene, trimethylpropyldibenzothiophene, tetramethylpropyldibenzothiophene, pentamethylpropyldibenzo Thiophene, hexamethylpropyldibenzothiophene, heptamethylpropyldibenzothiophene, methylethylpropyldibenzothiophene, dimethylethylpropyldibenzothiophene, trimethylethylpropyldibenzothiophene, tetramethylethylpropyl Alkyl dibenzothiophenes such as dibenzothiophene, pentamethylethyl propyl dibenzothiophene, and hexamethylethylpropyl dibenzothiophene, and thianthrene Ido, molecular formula C H
12 8 12 8
S、分子量 216)、チォキサンテン(ジベンゾチォピラン、ジフエ-ルメタンスルフイド、S, molecular weight 216), thixanthene (dibenzothiopyran, diphenylmethanesulfide,
2 2
分子式 C H S、分子量 198)及びこれらの誘導体が挙げられる。 [0019] チォフェン類は、 1個以上の硫黄原子を異原子として含む複素環式ィ匕合物のうち、 複素環が五原子環又は六原子環で且つ芳香族性をもち (複素環に二重結合を 2個 以上有し)、さらに複素環がベンゼン環と縮合していない硫黄ィ匕合物及びその誘導 体である。複素環同士が縮合したィ匕合物も含む。チォフェンは、チォフランとも呼ば れ、分子式 C H Sで表わせる、分子量 84. 1の硫黄化合物である。その他の代表的 Molecular formula CHS, molecular weight 198) and their derivatives. [0019] Thiophenes are heterocycles containing at least one sulfur atom as a heteroatom, and the heterocycle is a penta- or hexa-atom ring and has aromaticity (two heterocycles). A sulfur compound in which the heterocyclic ring is not condensed with a benzene ring and derivatives thereof. Also included are compounds in which heterocycles are fused together. Thiophene, also called thiofuran, is a sulfur compound with a molecular weight of 84.1 that can be represented by the molecular formula CHS. Other representative
4 4  4 4
なチォフェン類として、メチルチオフェン(チオトレン、分子式 C H S、分子量 98· 2)  Methylthiophene (thiotolene, molecular formula C H S, molecular weight 98 · 2)
5 6  5 6
、チアピラン(ペンチオフヱン、分子式 C H S、分子量 98. 2)、チオフテン(分子式 C  , Thiapyran (pentthiophene, molecular formula C H S, molecular weight 98.2), thiophene (molecular formula C
5 6 6 5 6 6
H S、分子量 140)、テトラフヱ二ルチオフェン(チォネサル、分子式 C H S、分子H 2 S, molecular weight 140), tetraphenylthiophene (Tionesal, molecular formula C H S, molecule
4 2 20 20 量 388)、ジチェ二ノレメタン(分子式 C H S、分子量 180)及びこれらの誘導体が挙 4 2 20 20 388), dichenenomethane (molecular formula C H S, molecular weight 180) and their derivatives.
9 8 2  9 8 2
げられる。  I can get lost.
[0020] チォフェン類とベンゾチォフェン類は化学的性質が近い。どちらも硫黄原子を異原 子として含む複素環の反応性が高ぐ固体酸系脱硫剤存在下で、複素環の解裂や 複素環と芳香環との反応、或いは、分解が容易に起こる。ジベンゾチォフェン類はチ ォフェン環の両側にベンゼン環が結合していることから、チォフェン類やベンゾチォ フェン類に比べて反応性が低い。トリメチルジベンゾチォフェン、テトラメチルジベンゾ チォフェン、ペンタメチルジベンゾチォフェンなどのアルキル基を多く有するジベンゾ チォフェン類は、固体酸系脱硫剤による除去が特に困難である。  [0020] Thiophenes and benzothiophenes have similar chemical properties. In both cases, in the presence of a solid acid desulfurization agent in which a heterocycle containing a sulfur atom as a hetero atom is highly reactive, the cleavage of the heterocycle, the reaction between the heterocycle and the aromatic ring, or the decomposition easily occurs. Dibenzothiophenes are less reactive than thiophenes and benzothiophenes because benzene rings are bonded on both sides of the thiophene ring. Dibenzothiophenes having many alkyl groups such as trimethyldibenzothiophene, tetramethyldibenzothiophene, and pentamethyldibenzothiophene are particularly difficult to remove with a solid acid desulfurization agent.
[0021] また、メルカプタン類は、メルカプト基(― SH)を有する硫黄ィ匕合物 RSH (Rはアル キル基ゃァリール基などの炭化水素基)であり、チオールまたはチォアルコールとも 呼ばれる。メルカプト基は反応性が高ぐ特に金属と容易に反応する。代表的なメル カプタン類として、メチルメルカプタン、ェチルメルカプタン、プロピルメルカプタン(異 性体を含む)、ブチルメルカプタン(ターシャリーブチルメルカプタンなどの異性体を 含む)、ペンチルメルカプタン、へキシルメルカプタン、へプチルメルカプタン、ォクチ ルメルカプタン、ノ-ルメルカプタン、デシルメルカプタンゃチオフェノール類 Ar— S H (Arはァリール基)などが挙げられる。  [0021] Mercaptans are sulfur compounds RSH (R is a hydrocarbon group such as an alkyl group or a aryl group) having a mercapto group (-SH), and are also called thiols or thioalcohols. Mercapto groups are highly reactive, especially with metals. Typical mercaptans include methyl mercaptan, ethyl mercaptan, propyl mercaptan (including isomers), butyl mercaptan (including isomers such as tertiary butyl mercaptan), pentyl mercaptan, hexyl mercaptan, heptyl mercaptan. Octyl mercaptan, normercaptan, decyl mercaptan and thiophenols Ar—SH (Ar is an aryl group).
[0022] スルフイド類は、チォエーテルとも呼ばれ、硫ィ匕アルキル及び硫ィ匕ァリールの総称 であり、一般式 R— S— R' (R及び R'はアルキル基ゃァリール基などの炭化水素基) で表わされる硫黄ィ匕合物である。硫ィ匕水素の水素 2原子をアルキル基などで置換し た形の化合物である。スルフイド類は、鎖状スルフイド類と環状スルフイド類に分けら れる。鎖状スルフイド類は、スルフイド類のうち、硫黄原子を異原子として含む複素環 をもたない硫黄ィ匕合物である。代表的な鎖状スルフイド類として、ジメチルスルフイド、 メチルェチルスルフイド、メチルプロピルスルフイド、ジェチルスルフイド、メチルブチ ノレスノレフイド、ェチルプロピルスルフイド、メチルペンチルスルフイド、ェチノレブチノレス ルフイド、ジプロピルスルフイド、メチルへキシルスルフイド、ェチルペンチルスルフイド 、プロピルブチルスルフイド、メチルへプチルスルフイド、ェチルへキシルスルフイド、 プロピルペンチルスルフイド、ジブチルスルフイドなどが挙げられる。環状スルフイド類 は、スルフイド類のうち、 1個以上の硫黄原子を異原子として含む複素環をもち、芳香 族性をもたな 、 (五原子環又は六原子環で且つ二重結合を 2個以上もつ複素環をも たない)硫黄ィ匕合物である。代表的な環状スルフイド類として、テトラヒドロチォフェン ( 硫ィ匕テトラメチレン、分子式 C H S、分子量 88. 1)、メチルテトラチォフェンなどが挙 [0022] Sulfides, also called thioethers, are generic names for sulfur alkyl and sulfur reels, and are represented by the general formula R—S—R ′ (where R and R ′ are hydrocarbon groups such as alkyl groups and aryl groups). ) Is a sulfur compound. Replace two hydrogen atoms of hydrogen sulfide with an alkyl group. Compound of the form. Sulfides are classified into chain sulfides and cyclic sulfides. The chain sulfides are sulfur compounds having no heterocyclic ring containing a sulfur atom as a heteroatom among the sulfides. Typical chain sulfides include dimethylsulfide, methylethylsulfide, methylpropylsulfide, jetylsulfide, methylbutenosulfenolide, ethylpropylsulfide, methylpentylsulfide, ethinolev. Tinolesulfide, dipropylsulfide, methylhexylsulfide, ethylpentylsulfide, propylbutylsulfide, methylheptylsulfide, ethylhexylsulfide, propylpentylsulfide, dibutylsulfide and the like. Cyclic sulfides have a heterocyclic ring containing at least one sulfur atom as a heteroatom among sulfides, and have no aromaticity (a penta- or hexa-atom ring and two double bonds). It is a sulfur compound without a heterocyclic ring. Typical cyclic sulfides include tetrahydrothiophene (sulfur tetramethylene, molecular formula CHS, molecular weight 88.1), methyltetrathiophene, etc.
4 8  4 8
げられる。  I can get lost.
[0023] ジスルフイド類は、二硫ィ匕物のことである。二硫化アルキル及び二硫化ァリールの 総称であり、一般式 R— S— S— R' (R及び R'はアルキル基などの炭化水素基)で表 わされる硫黄ィ匕合物である。 R及び R'を構成する炭化水素基の炭素数の和は 2〜8 個が好ましぐ具体的には、ジメチルジスルフイド、メチルェチルジスルフイド、メチル プロピルジスルフイド、ジェチルジスルフイド、メチルブチルジスルフイド、ェチルプロ ピルジスルフイド、メチルペンチルジスルフイド、ェチルブチルジスルフイド、ジプロピ ルジスルフイド、メチルへキシルジスルフイド、ェチルペンチルジスルフイド、プロピル ブチルジスルフイド、メチルヘプチルジスルフイド、ェチルへキシルジスルフイド、プロ ピルペンチルジスルフイド、ジブチルジスルフイドなどの鎖状ジスルフイドなどが例示 できる。  [0023] Disulfides are disulfuric substances. It is a generic name for alkyl disulfide and aryl disulfide, and is a sulfur compound represented by the general formula R—S—S—R ′ (R and R ′ are hydrocarbon groups such as alkyl groups). The sum of the number of carbon atoms of the hydrocarbon group constituting R and R ′ is preferably 2-8. Specifically, dimethyldisulfide, methylethyldisulfide, methylpropyldisulfide, jetyldis Rufide, methyl butyl disulfide, ethyl propyl disulfide, methyl pentyl disulfide, ethyl butyl disulfide, dipropyl disulfide, methyl hexyl disulfide, ethyl pentyl disulfide, propyl butyl disulfide, methyl heptyl Examples thereof include chain disulfides such as disulfide, ethylhexyl disulfide, propylpentyl disulfide, and dibutyl disulfide.
[0024] 燃料電池の原燃料として灯油を用いる場合、灯油に含まれる硫黄は、水素製造過 程で改質触媒の触媒毒であるから厳しく除去する必要がある。脱硫後の硫黄分とし て、 50質量 ppb以下、好ましくは 20質量 ppb以下、さらに好ましくは 5質量 ppb以下 にする必要がある。  [0024] When kerosene is used as the raw fuel of a fuel cell, sulfur contained in kerosene must be strictly removed because it is a catalyst poison of the reforming catalyst during the hydrogen production process. The sulfur content after desulfurization needs to be 50 mass ppb or less, preferably 20 mass ppb or less, more preferably 5 mass ppb or less.
[0025] 本発明の脱硫剤および脱硫方法は、灯油に含まれるベンゾチォフェン類に対して 特に顕著な効果が得られる。本発明の脱硫方法を適用する前および Zまたは後に、 別の脱硫方法を組み合わせることにより、灯油に含まれる硫黄分を極めて低い値ま で脱硫することが可能である。具体的には、蒸留分離や活性炭などによる吸着分離 などにより、予めジベンゾチォフェン類を除去しておくと、本発明の効果が顕著に得ら れる。 [0025] The desulfurization agent and the desulfurization method of the present invention are based on benzothiophenes contained in kerosene. A particularly remarkable effect is obtained. By combining other desulfurization methods before and after applying the desulfurization method of the present invention, it is possible to desulfurize sulfur contained in kerosene to a very low value. Specifically, if the dibenzothiophenes are previously removed by distillation separation or adsorption separation using activated carbon or the like, the effects of the present invention can be obtained remarkably.
[0026] 本発明の脱硫剤は、銅および銀、或いはさらにマンガンを含有する。銅も銀も、元 素周期律表では IB族に属し、物理的およびィ匕学的性質は比較的似ているが、本発 明者らは、銀を添加することでベンゾチォフェン類の除去性能が格段に向上すること を見出した。銅と銀の比率は金属の重量として 99 : 1〜80: 20、好ましくは 98 : 2〜9 0 : 10、特に好ましくは 97 : 3〜95: 5である。銀の比率が 99 : 1よりも小さいと銀の添 加効果が少なぐ 80 : 20よりも大きいと多く添加した効果が得られないので経済的で ない。銅とマンガンの比率は金属の重量として 100 : 0〜40: 60、好ましくは 85 : 15〜 50 : 50、特に好ましくは80 : 20〜60 :40でぁる。銅、銀およびマンガン以外の遷移 金属および Zまたは遷移金属酸ィ匕物を含有しても良いが、添加効果は少なぐ取扱 V、や毒性などの問題もあることから銅、銀およびマンガンのみであることが好ま 、。 遷移金属の種類としては、銀、水銀、銅、カドミウム、鉛、モリブデン、亜鉛、コバルト、 ニッケル、白金、ノ《ラジウム、鉄を挙げることができる。  [0026] The desulfurizing agent of the present invention contains copper and silver, or further manganese. Both copper and silver belong to the IB group in the elementary periodic table, and their physical and chemical properties are relatively similar, but the present inventors have shown that the removal performance of benzothiophenes by adding silver Has been found to improve significantly. The ratio of copper to silver is 99: 1 to 80:20, preferably 98: 2 to 90:10, particularly preferably 97: 3 to 95: 5 as the weight of the metal. If the silver ratio is less than 99: 1, the effect of adding silver is small. If it is more than 80:20, the effect of adding more is not obtained, so it is not economical. The ratio of copper to manganese is 100: 0 to 40:60, preferably 85:15 to 50:50, particularly preferably 80:20 to 60:40 as the weight of the metal. It may contain transition metals other than copper, silver and manganese, and Z or transition metal oxides, but the effect of addition is small. I prefer to be there. Examples of the transition metal include silver, mercury, copper, cadmium, lead, molybdenum, zinc, cobalt, nickel, platinum, platinum, radium, and iron.
[0027] 本発明の脱硫剤に含有される銅は酸化銅 (CuO)もしくは亜酸化銅 (Cu O)である  [0027] The copper contained in the desulfurizing agent of the present invention is copper oxide (CuO) or cuprous oxide (Cu 2 O).
2 ことが好ましい。酸化銅は常温付近での活性も十分に高ぐまた、還元処理を施すと 空気に触れた場合に発熱するなど取扱いに注意を要する。銀は、金属銀、 AgOおよ び Ag O等の酸化銀、炭酸銀、硝酸銀、酢酸銀等の銀塩でも良いが、金属銀が最も 2 is preferred. Copper oxide has a sufficiently high activity near room temperature. Also, when it is subjected to reduction treatment, heat is generated when it comes into contact with air. Silver may be metallic silver, silver oxide such as AgO and AgO, or silver salt such as silver carbonate, silver nitrate, and silver acetate.
2 2
好ましい。後述するように、脱硫剤の調製において、焼成を行う場合は、焼成後には 、脱硫剤表面の銀の一部は酸ィ匕銀となっている力 特に還元処理を施す必要は無 い。マンガンは、 MnO、 MnO、 Mn O、 Mn O、 Mn O等の酸化マンガンが挙げ  preferable. As will be described later, in the preparation of the desulfurizing agent, when baking is performed, after the baking, a part of the silver on the surface of the desulfurizing agent is acid silver, and it is not necessary to perform a reduction treatment. Manganese includes manganese oxides such as MnO, MnO, MnO, MnO, and MnO.
2 2 3 2 4 2 7  2 2 3 2 4 2 7
られ、特に MnOは硫黄と反応しやすく MnS等を生成する。またマンガンは、銅や銀  In particular, MnO easily reacts with sulfur to produce MnS and the like. Manganese is copper and silver.
2  2
と複合酸化物を形成して該酸化物中の酸素原子が移動し易くなり、その結果、硫黄 化合物の吸着能が著しく向上するものと考えられる。そのため、酸化物の形態は単独 酸化物、複合酸化物のいずれも包含し得るが、複合酸ィ匕物であることが好ましい。 [0028] 本発明の脱硫剤は、金属の担体としてシリカおよび Zまたは活性炭を含有すること が好ましい。シリカや活性炭は酸点を有さないので、重合反応などの好ましくない副 反応が発生しない。特に活性炭は、部分的に存在するグラフアイト構造とベンゼン環 とにおいて π電子に起因する吸着力を有するので、特にベンゾチォフェン類ゃジべ ンゾチォフェン類を除去する場合に好ましい。脱硫剤に含有されるシリカの量は、金 属および Ζまたは金属化合物とシリカの合計重量に対して、 5〜40質量%、好ましく は 7〜30質量%、特に好ましくは 8〜20質量%である。シリカの量が 5質量%よりも少 ないと金属および Ζまたは金属化合物の分散性が低くなり十分な脱硫性能が得られ な 、。 40質量%よりも多 、と金属および Ζまたは金属化合物の含有量が 60質量% よりも少なくなるので、脱硫剤単位重量当たりの脱硫性能が低くなり、寿命が短くなつ てしまう。脱硫剤に含有される活性炭の量は、脱硫剤の重量に対して 50〜99質量% 、好ましくは 60〜98質量%、特に好ましくは 70〜97質量%である。残部は、主に金 属および Ζまたは金属化合物であり、シリカ担体とともに用いた場合はシリカ担体も 残部に含まれる。活性炭担体には、単に金属および Ζまたは金属化合物を高分散 に担持する役割だけではなぐジベンゾチォフェン類の吸着除去性能の向上に寄与 する。活性炭の量が 50質量%よりも少ないと金属および Ζまたは金属化合物の分散 性が低くなるだけではなぐジベンゾチォフェン類の吸着除去性能の向上も少なぐ 十分な脱硫性能が得られな 、。 99質量%よりも多 、と金属および Ζまたは金属化合 物の含有量が少なくなり脱硫性能が低くなる。 It is considered that a complex oxide is formed and oxygen atoms in the oxide easily move, and as a result, the adsorption ability of the sulfur compound is remarkably improved. Therefore, the form of the oxide can include both a single oxide and a complex oxide, but is preferably a complex oxide. [0028] The desulfurizing agent of the present invention preferably contains silica and Z or activated carbon as a metal carrier. Silica and activated carbon do not have acid sites, and therefore, undesirable side reactions such as polymerization reactions do not occur. In particular, activated carbon has an adsorptive force due to π electrons in the partially present graphite structure and the benzene ring, and is particularly preferable when removing benzothiophenes and dibenzothiophenes. The amount of silica contained in the desulfurizing agent is 5 to 40% by mass, preferably 7 to 30% by mass, particularly preferably 8 to 20% by mass, based on the total weight of the metal and soot or metal compound and silica. is there. If the amount of silica is less than 5% by mass, the dispersibility of the metal and soot or the metal compound is lowered and sufficient desulfurization performance cannot be obtained. More than 40% by mass and the content of metal and soot or metal compound is less than 60% by mass, the desulfurization performance per unit weight of the desulfurizing agent is lowered, and the life is shortened. The amount of the activated carbon contained in the desulfurizing agent is 50 to 99% by mass, preferably 60 to 98% by mass, particularly preferably 70 to 97% by mass, based on the weight of the desulfurizing agent. The balance is mainly metal and metal or a metal compound, and when used with a silica support, the silica support is also included in the balance. The activated carbon support contributes to the improvement of adsorption removal performance of dibenzothiophenes, not only by the role of supporting metals and soot or metal compounds in a highly dispersed state. If the amount of the activated carbon is less than 50% by mass, not only the dispersibility of the metal and soot or the metal compound is lowered, but also the adsorption removal performance of dibenzothiophenes is reduced, and sufficient desulfurization performance cannot be obtained. If it exceeds 99% by mass, the content of metal and soot or metal compound is reduced and the desulfurization performance is lowered.
[0029] 本発明の脱硫剤の調製方法は、特に限定されるものではないが、例えば、銅化合 物および銀化合物を含む原料および担体等を用いた物理混合法、含浸法ならびに 共沈法を挙げることができる。銅成分、銀成分あるいはマンガン成分をそれぞれ担体 上に担持させた各成分を物理的に混合する方法も好ましい。この際に、マンガン成 分についてはマンガン酸ィ匕物自体を担体として用いることもできる。特に、銅成分を シリカなどの担体上に高分散化した銅 担体を調製した後に、この銅 担体上に更 に銀成分およびマンガン成分を担持することも好ましい。  [0029] The method for preparing the desulfurizing agent of the present invention is not particularly limited. For example, a physical mixing method, an impregnation method and a coprecipitation method using a raw material and a carrier containing a copper compound and a silver compound are used. Can be mentioned. A method of physically mixing each component in which a copper component, a silver component or a manganese component is supported on a carrier is also preferable. At this time, the manganese component itself can be used as a carrier for the manganese component. In particular, after preparing a copper support in which a copper component is highly dispersed on a support such as silica, it is also preferable to further support a silver component and a manganese component on the copper support.
[0030] 銅 担体の調製方法は、担体が活性炭の場合には、活性炭のグラフアイト構造と 硫黄化合物のベンゼン環の π電子に起因する吸着力と、担持金属への硫黄原子の 配位吸着に起因する吸着力との相乗効果を得るために、グラフアイト構造およびその 近傍 (グラフアイト構造と金属との両方の吸着力が、一つの硫黄ィ匕合物分子に影響を 及ぼす範囲)に金属が担持されることが好ましぐ含浸法が特に好ましい。 [0030] When the support is activated carbon, the copper support is prepared by the graphite structure of the activated carbon, the adsorption force due to the π electrons of the benzene ring of the sulfur compound, and the sulfur atom on the supported metal. In order to obtain a synergistic effect with the adsorptive force due to coordinate adsorption, the graphite structure and its vicinity (range in which the adsorbing power of both the graphite structure and the metal affects one sulfur compound molecule Particularly preferred is an impregnation method in which a metal is preferably supported on (3).
担体がシリカである場合は、銅 担体の調製方法は、構造安定化物を粉末として 沈澱母液に添加するのではなぐ銅成分と共沈させることが好ましい。例えば、水酸 化アルカリ、アルカリ炭酸塩若しくはアルカリ重炭酸塩を沈殿剤として用い、その中に アルカリ珪酸塩を添加溶解し、次いで金属塩との中和反応を行い、銅成分と珪素成 分を共沈させると、得られる沈澱物はこれら成分化合物の混合物、若しくはこれら成 分ィ匕合物の一部が複合体を形成した混合物からなり、銅成分が高分散化し、高表面 積を有するので好ましい。  When the support is silica, the copper support is preferably prepared by coprecipitation with a copper component rather than adding the structure-stabilized product as a powder to the precipitation mother liquor. For example, alkali hydroxide, alkali carbonate or alkali bicarbonate is used as a precipitating agent, and alkali silicate is added and dissolved therein, followed by neutralization reaction with a metal salt, so that a copper component and a silicon component are added. When co-precipitated, the resulting precipitate consists of a mixture of these component compounds, or a mixture in which a part of these component compounds forms a complex, and the copper component is highly dispersed and has a high surface area. preferable.
[0031] 本発明にお ヽては、銅塩類水溶液と、アルカリ珪酸塩類を含有する水酸ィ匕アルカリ 、アルカリ炭酸塩若しくはアルカリ重炭酸塩類水溶液との中和反応により製造される 水酸化銅又は塩基性炭酸銅が珪素化合物と混合している混合物、若しくは前記水 酸化銅又は前記塩基性炭酸銅の一部が珪素化合物と複合体を形成している混合物 であって、前記混合物の CuZSiの原子比が 1〜10であることが好ましい。  [0031] In the present invention, a copper hydroxide produced by a neutralization reaction between an aqueous copper salt solution and an aqueous solution of an alkali hydroxide, an alkali carbonate or an alkali bicarbonate containing an alkali silicate, A mixture in which basic copper carbonate is mixed with a silicon compound, or a mixture in which the copper hydroxide or a part of the basic copper carbonate forms a complex with a silicon compound, and the CuZSi atom of the mixture The ratio is preferably 1-10.
[0032] 本発明で使用する銅塩類は、硝酸塩、硫酸塩、塩化物、有機酸塩類等、水溶性塩 類であればどのような塩類でも使用することができる。なお、本発明では該銅塩類の 水溶液 (A液とする)を沈澱母液として使用する。沈澱剤として使用される化合物は、 水酸化アルカリ、アルカリ炭酸塩或いはアルカリ重炭酸塩類で、アルカリとしてはナト リウム或いはカリウムが使用され、アルカリ珪酸塩としては Na O-nSiO ·ηΗ 0 (η=  [0032] The copper salts used in the present invention may be any salts as long as they are water-soluble salts such as nitrates, sulfates, chlorides, and organic acid salts. In the present invention, an aqueous solution of the copper salt (referred to as solution A) is used as the precipitation mother liquor. Compounds used as precipitating agents are alkali hydroxides, alkali carbonates or alkali bicarbonates, sodium or potassium is used as alkali, and Na 2 O 3 SiO · ηΗ 0 (η =
2 2 2 2 2 2
2〜4)の化学式で表わされる珪酸ナトリウム、 Κ O 'nSiO ·ηΗ 0 (η= 3〜4)で表わ 2-4) Sodium silicate represented by chemical formula, Κ O 'nSiO · ηΗ 0 (η = 3-4)
2 2 2  2 2 2
される珪酸カリウムが好ましぐ水酸化アルカリ、アルカリ炭酸塩若しくはアルカリ重炭 酸塩の水溶液にアルカリ珪酸塩を添加、溶解した混合水溶液が沈澱剤(Β液とする) として使用される。  A mixed aqueous solution in which alkali silicate is added to an aqueous solution of alkali hydroxide, alkali carbonate or alkali bicarbonate, which is preferred by potassium silicate, and dissolved therein is used as a precipitant.
[0033] Cuと Siの含有量は、 Cu/Siの原子比で表示すると 1〜10の範囲であることが好ま しい。 CuZSiの原子比が 1より小さい場合、大部分の銅化合物は珪素化合物と複合 体を形成して ヽることが X線回折による構造解析カゝら確認され、反応性が高 、遊離の 銅化合物含有量が少なくなつてしまうことから、吸着容量力 、さくなり好ましくない。一 方、 CuZSiの原子比が 10より大きい場合、微細化した銅化合物からなる高表面積 の脱硫剤は得られず、脱硫剤として好ま 、物性ではな!/、。 [0033] The content of Cu and Si is preferably in the range of 1 to 10 in terms of Cu / Si atomic ratio. When the atomic ratio of CuZSi is less than 1, it is confirmed by X-ray diffraction structure analysis that most copper compounds form a complex with silicon compounds. Since the content is reduced, the adsorption capacity is not preferable. one On the other hand, if the CuZSi atomic ratio is greater than 10, a high surface area desulfurization agent composed of a refined copper compound cannot be obtained, and it is preferred as a desulfurization agent.
[0034] 沈澱操作には A液に B液を添加する正中和、 B液に A液を添加する逆中和或いは 準備された沈澱槽に水を張りその中に A, B両液を同時に添加する一定 pH下での 中和等がある。いずれの操作によっても良好な沈澱を生成させることができる力 こ の操作の終点における pH値を中性〜弱アルカリ性とすることが重要で、この範囲か ら pH値が外れると好ま 、物性の銅化合物力 なる処理剤は得られな!/、。 [0034] For the precipitation operation, forward neutralization by adding solution B to solution A, reverse neutralization by adding solution A to solution B, or water is added to the prepared precipitation tank, and both solutions A and B are added simultaneously. Neutralization under a certain pH. Ability to generate good precipitates by any operation It is important to make the pH value at the end of this operation neutral to weakly alkaline, and if the pH value falls outside this range, it is preferable. You can't get a treatment with a compound power!
中和反応によって得られた沈澱物は熟成後、水洗、乾燥される。銀成分やマンガン 成分の担持前に焼成しても、銀成分やマンガン成分の担持後に焼成しても構わない 力 工程を短縮するために、銀成分やマンガン成分の担持後に焼成することが好ま しい。ここで、水洗は沈殿物中に混在するアルカリィ匕合物を除去し、得られる処理剤 の物性が後工程で変質することを抑制するために行われ、最終的に得られる処理剤 中に残存するアルカリ量が 0. 1%以下になるまで水洗することが好ましい。次いで行 われる乾燥は処理剤化合物の熱的な変質が起こらず、製造時間短縮に合理的な温 度範囲、 80〜200°Cで行うこと力 S好ましい。  The precipitate obtained by the neutralization reaction is aged, washed with water and dried. It may be fired before the silver component or manganese component is supported, or may be fired after the silver component or manganese component is supported. It is preferable to fire after the silver component or manganese component is supported in order to shorten the process. . Here, washing with water is performed to remove alkaline compounds mixed in the precipitate, and to prevent the physical properties of the resulting treatment agent from being altered in the subsequent process, and remain in the finally obtained treatment agent. It is preferable to wash with water until the amount of alkali to be reduced is 0.1% or less. Subsequent drying does not cause thermal alteration of the treating agent compound, and is preferably performed at a temperature range of 80 to 200 ° C. that is reasonable for shortening the production time.
[0035] 得られた銅—シリカ乾燥品は、窒素吸着によって求められる BET表面積が 80m2Z g以上、 X線回折による銅化合物の結晶子径が 50nm以下の微細な結晶からなって いる。表面積が 80m2/gより少ない場合、高性能を示す脱硫剤は得られず、銅化合 物の結晶子径が 50nmより大きい場合も銅の分散性が不充分なために高性能を示 す脱硫剤は得られない。 [0035] The obtained dried copper-silica product is composed of fine crystals having a BET surface area of 80 m 2 Zg or more determined by nitrogen adsorption and a crystallite diameter of the copper compound by X-ray diffraction of 50 nm or less. When the surface area is less than 80 m 2 / g, no desulfurizing agent exhibiting high performance is obtained, and even when the crystallite diameter of the copper compound is larger than 50 nm, desulfurization exhibiting high performance due to insufficient dispersibility of copper. No agent can be obtained.
[0036] 銀成分を担体上に担持させるために、銀含有溶液を用いる。銀含有溶液としては、 硝酸銀水溶液、塩ィ匕銀水溶液などを用いることができるが、銀含有量を高くでき、塩 素による硫黄ィ匕合物の吸着阻害もないので、硝酸銀水溶液の利用が好ましい。含浸 する方法は、銀含有溶液に担体を浸せきして平衡まで銀を吸着させる平衡吸着法、 担体を銀含有溶液に浸せきして溶媒を蒸発させる蒸発乾固法、担体を乾燥しながら 銀含有溶液を噴霧して含浸させるスプレー法など、一般に用いられる方法を用いるこ とがでさる。  [0036] In order to support the silver component on the carrier, a silver-containing solution is used. As the silver-containing solution, an aqueous silver nitrate solution, an aqueous silver chloride solution, or the like can be used. However, since the silver content can be increased and there is no inhibition of adsorption of sulfur compounds by the chlorine, use of an aqueous silver nitrate solution is preferable. . The impregnation method includes an equilibrium adsorption method in which a carrier is immersed in a silver-containing solution and adsorbs silver until equilibrium, an evaporation to dryness method in which the carrier is immersed in a silver-containing solution to evaporate the solvent, and a silver-containing solution while drying the carrier. It is possible to use a commonly used method such as a spray method of spraying and impregnating.
[0037] マンガン成分を担体上に担持させるために、マンガン含有溶液を用いる。マンガン 含有溶液としては、塩ィ匕マンガン (II)、ホウ酸マンガン、硫酸マンガン (II)、過マンガ ン酸カリウムなどを用いることができる力 マンガン含有量を高くでき、塩素による硫黄 化合物の吸着阻害もないので、硫酸マンガン水溶液の利用が好ましい。含浸する方 法は、マンガン含有溶液に担体を浸せきして平衡までマンガンを吸着させる平衡吸 着法、担体をマンガン含有溶液に浸せきして溶媒を蒸発させる蒸発乾固法、担体を 乾燥しながらマンガン含有溶液を噴霧して含浸させるスプレー法など、一般に用いら れる方法を用いることができる。 [0037] In order to support the manganese component on the support, a manganese-containing solution is used. manganese As the containing solution, it is possible to use salty manganese (II), manganese borate, manganese sulfate (II), potassium permanganate, etc. The manganese content can be increased, and the adsorption of sulfur compounds by chlorine is also inhibited. Therefore, the use of an aqueous manganese sulfate solution is preferred. The impregnation method includes an equilibrium adsorption method in which a carrier is immersed in a manganese-containing solution to adsorb manganese to equilibrium, an evaporation to dryness method in which the carrier is immersed in a manganese-containing solution to evaporate the solvent, and manganese is dried while the carrier is dried. Commonly used methods such as a spray method in which the contained solution is sprayed and impregnated can be used.
銀含有溶液とマンガン含有溶液は、予め混合してから担持および乾燥する方法、 別々に担持および乾燥する方法など特に限定されるものではないが、均一に担持す るために、別々に担持および乾燥する方法が好ましい。  The silver-containing solution and the manganese-containing solution are not particularly limited, such as a method in which the silver-containing solution and the manganese-containing solution are mixed in advance and then supported and dried, and a method in which the silver-containing solution and the manganese-containing solution are separately supported and dried. Is preferred.
[0038] 焼成は、 300〜400°C、特に 330〜380°Cで 1〜12時間行うことが好ましい。水酸 ィ匕銅、塩基性炭酸銅、硝酸銀、硫酸マンガンなどの一部が分解し、水蒸気雰囲気下 の乾燥段階で黒色などの酸化銅、酸ィ匕銀および酸ィ匕マンガンが生成する。 300°C未 満では、水酸基、炭酸根、硝酸根、硫酸根などが残存してしまうので脱硫性能が低 下してしまう。 400°Cより高い温度では、比表面積が低下することにより脱硫性能が低 下してしまう。 330〜380°Cで、水酸基、炭酸根、硝酸根、硫酸根などが残存しなくな るまで焼成することが特に好まし 、。  [0038] Firing is preferably performed at 300 to 400 ° C, particularly 330 to 380 ° C for 1 to 12 hours. Part of hydroxy copper, basic copper carbonate, silver nitrate, manganese sulfate, etc. decomposes, and black oxide such as black, silver oxide, and acid manganese are produced in the drying stage in a steam atmosphere. If it is less than 300 ° C, hydroxyl group, carbonate radical, nitrate radical, sulfate radical, etc. will remain and the desulfurization performance will deteriorate. At temperatures higher than 400 ° C, the desulfurization performance decreases due to a decrease in specific surface area. It is particularly preferred to bake at 330 to 380 ° C until no hydroxyl groups, carbonate radicals, nitrate radicals, sulfate radicals, etc. remain.
[0039] 銅塩類水溶液との中和反応においてアルカリ炭酸塩、若しくはアルカリ重炭酸塩類 水溶液を使用する場合、炭酸根としての炭酸ガス (CO )含有量は全重量に対して 5  [0039] When an alkali carbonate or alkali bicarbonate aqueous solution is used in the neutralization reaction with an aqueous copper salt solution, the content of carbon dioxide (CO 2) as a carbonate radical is 5% of the total weight.
2  2
質量%以下、特には 1質量%以下であることが好ましい。炭酸ガス含有量が 5質量% より多い場合、炭酸根による硫黄ィ匕合物の吸着阻害により、脱硫性能が低くなつてし まつ。  It is preferable that it is 1 mass% or less, especially 1 mass% or less. If the carbon dioxide content is higher than 5% by mass, the desulfurization performance will be lowered due to the inhibition of adsorption of sulfur compounds by carbonic acid radicals.
[0040] 本発明の脱硫剤は、銅成分および銀成分を含有するシリカおよび Zまたは活性炭 の粉体をそのまま用いることもできるが、これらの銅成分および銀成分を含有するシリ 力および Zまたは活性炭の粉体を 50質量%以上、特に 80質量%以上含む成形体 が好ましく用いられる。その他の成分としては、バインダーや他の脱硫剤成分が挙げ られる。形状としては、硫黄ィ匕合物の濃度勾配を大きくするため、流通式の場合には 脱硫剤を充填した容器前後の差圧が大きくならない範囲で小さい形状、特には球状 が好ましい。球状の場合の大きさは、直径が 0. 5〜5mm、特には、 l〜3mmが好ま しい。円柱状の場合には、直径が 0. l〜4mm、特には、 0. 12〜2mmで、長さは直 径の 0. 5〜5倍、特には、 1〜2倍が好ましい。成形品の破壊強度が 0. 5kgZペレツ ト以上、特には 1. OkgZペレット以上であることが吸着剤の割れを生じないので好ま しい。通常、破壊強度は、木屋式錠剤破壊強度測定器 (富山産業株式会社)等の圧 縮強度測定器により測定される。 [0040] The desulfurizing agent of the present invention can be obtained by directly using a powder of silica and Z or activated carbon containing a copper component and a silver component. A compact containing 50% by mass or more, particularly 80% by mass or more of the above powder is preferably used. Examples of other components include binders and other desulfurizing agent components. As the shape, in order to increase the concentration gradient of sulfur compounds, in the case of flow-through type, the shape is small, especially spherical, as long as the differential pressure before and after the container filled with desulfurizing agent does not increase. Is preferred. In the case of a spherical shape, the diameter is preferably 0.5 to 5 mm, particularly 1 to 3 mm. In the case of a cylindrical shape, the diameter is preferably 0.1 to 4 mm, particularly 0.12 to 2 mm, and the length is preferably 0.5 to 5 times, particularly 1 to 2 times the diameter. It is preferable that the fracture strength of the molded product is 0.5 kgZ pellets or more, especially 1. OkgZ pellets or more, since the adsorbent will not crack. Usually, the breaking strength is measured by a compressive strength measuring instrument such as a Kiya-type tablet breaking strength measuring instrument (Toyama Sangyo Co., Ltd.).
[0041] 成形に使用するバインダーとしては、例えば、アルミナ、スメクタイトなどの粘土、水 ガラス等の無機質系粘結剤などが例示される。これらの粘結剤は、成形できる程度に 使用すればよぐ特に限定されるものではないが、原料に対して通常 0. 05〜30質 量%程度が使用される。シリカ、アルミナ、他のゼォライトなどの無機微粒子や活性 炭などの有機物を混合して、銅および銀が脱硫しにく ヽ硫黄化合物の脱硫性能を向 上したり、メソ孔及びマクロ孔の存在量を増やしたりして硫黄ィ匕合物の拡散速度を向 上しても良い。 [0041] Examples of the binder used for molding include clays such as alumina and smectite, and inorganic binders such as water glass. These binders are not particularly limited as long as they are used to such an extent that they can be molded, but usually 0.05 to 30% by mass with respect to the raw material is used. It is difficult to desulfurize copper and silver by mixing inorganic fine particles such as silica, alumina, other zeolites, and organic materials such as activated charcoal. 脱 Improve the desulfurization performance of sulfur compounds, and the abundance of mesopores and macropores The diffusion rate of the sulfur compound may be improved by increasing the amount of sulfur.
[0042] 本発明の脱硫剤の比表面積は、脱硫性能に大きく影響するので、 80m2/g以上が 好ましぐさらには 100m2/g以上、特には 150m2/g以上が好ましい。細孔直径 10 A以下の細孔の細孔容積は、硫黄ィ匕合物の吸着容量を大きくするために、 0. 10ml Zg以上、特には、 0. 20mlZg以上とすることが好ましい。また、細孔直径が 10 Aよ り大きく 0. 1 μ m以下の細孔の細孔容積は、硫黄化合物の細孔内拡散速度を大きく するために、 0. 05mlZg以上、特には、 0. lOmlZg以上とすることが好ましい。細 孔直径が 0.: L mより大きい細孔の細孔容積は、成形体の機械的強度を高くするた めに、 0. 3mlZg以下、特には、 0. 25mlZg以下とすることが好ましい。なお、通常 、比表面積、全細孔容積は、窒素吸着法により、マクロ孔容積は水銀圧入法により測 定される。窒素吸着法は簡便で、一般に用いられており、様々な文献に解説されて いる。例えば、鷲尾一裕:島津評論, 48 (1) , 35— 49 (1991)、 ASTM (American Society for Testing and Materials) ¾tandardTestMethod D43o5— 95などである。 [0042] The specific surface area of the desulfurizing agent of the present invention greatly affects the desulfurization performance, and is preferably 80 m 2 / g or more, more preferably 100 m 2 / g or more, and particularly preferably 150 m 2 / g or more. The pore volume of pores having a pore diameter of 10 A or less is preferably at least 0.10 ml Zg, particularly preferably at least 0.20 ml Zg, in order to increase the adsorption capacity of the sulfur compound. In addition, the pore volume of pores having a pore diameter larger than 10 A and 0.1 μm or smaller is 0.05 mlZg or more, in particular, 0. It is preferable to set it as lOmlZg or more. The pore volume of pores having a pore diameter greater than 0 .: L m is preferably 0.3 mlZg or less, particularly preferably 0.25 mlZg or less, in order to increase the mechanical strength of the molded product. Usually, the specific surface area and the total pore volume are measured by a nitrogen adsorption method, and the macropore volume is measured by a mercury intrusion method. The nitrogen adsorption method is simple and commonly used and is described in various literature. For example, Kazuhiro Hagio: Shimazu Review, 48 (1), 35-49 (1991), ASTM (American Society for Testing and Materials) ¾tandard Test Method D43o5-95.
[0043] 本発明の脱硫剤と炭化水素油とを接触させる方法は、回分式 (バッチ式)でも流通 式でも良いが、容器に成形品を充填して炭化水素油を流通する流通式がより好まし い。 [0043] The method of contacting the desulfurizing agent and hydrocarbon oil of the present invention may be a batch type (batch type) or a flow type, but a flow type in which a molded product is filled in a container and the hydrocarbon oil is circulated is more preferable. Like Yes.
[0044] 流通式の場合、接触させる条件としては、圧力は、常圧〜 50kgZcm2G、好ましく は常圧〜 10kgZcm2G、特には 0. l〜3kgZcm2Gが好ましい。流量は、 LHSVで 0.
Figure imgf000016_0001
特には 0. 05〜20hr— 1力 子ましい。脱硫処理を行う温度は、 10〜 150°C、特には 30〜100°Cが好ましい。
[0044] In the case of the flow type, as the contact condition, the pressure is normal pressure to 50 kgZcm 2 G, preferably normal pressure to 10 kgZcm 2 G, and particularly preferably 0.1 to 3 kgZcm 2 G. The flow rate is 0 at LHSV.
Figure imgf000016_0001
Especially 0.05-20hr- 1 force. The temperature for the desulfurization treatment is preferably 10 to 150 ° C, particularly 30 to 100 ° C.
[0045] 脱硫剤は、前処理として、吸着している微量の水分などを予め除去することが好ま しい。水分などが吸着していると、硫黄ィ匕合物の吸着を阻害するばかりか、炭化水素 油導入開始直後に吸着剤力も脱離した水分が炭化水素油に混入する。 130〜350 °C、好ましくは 150〜200°C程度で乾燥することが好ましい。  [0045] It is preferable that the desulfurizing agent removes a small amount of adsorbed moisture in advance as a pretreatment. If moisture is adsorbed, not only the adsorption of sulfur compounds will be inhibited, but also the moisture that has been desorbed immediately after the introduction of hydrocarbon oil will be mixed into the hydrocarbon oil. It is preferable to dry at about 130 to 350 ° C, preferably about 150 to 200 ° C.
[0046] 燃料電池システムにおいて本脱硫剤を使用する場合には、本脱硫剤と他の脱硫剤 とを組み合わせて使用しても良い。本脱硫剤は、ベンゾチォフェン類の除去性能に 特に優れているので、ジベンゾチォフェン類、メルカプタン類、或いは、スルフイド類 など、他の種類の硫黄ィ匕合物の除去性能に優れた他の脱硫剤と組み合わせると一 層有効である。本脱硫剤と他の脱硫剤を別々の充填層として直列に接続してもよい し、本脱硫剤と他の脱硫剤を物理的に混合して単一の充填層としてもよい。また、本 脱硫剤と他の脱硫剤とを物理混合した後に成形し、一粒に本脱硫剤と他の脱硫剤を 含有させてもよい。  [0046] When the present desulfurizing agent is used in a fuel cell system, the present desulfurizing agent and another desulfurizing agent may be used in combination. Since this desulfurization agent is particularly excellent in removal performance of benzothiophenes, other desulfurization agents excellent in removal performance of other types of sulfur compounds such as dibenzothiophenes, mercaptans, or sulfides. When combined with, it is more effective. The present desulfurizing agent and other desulfurizing agents may be connected in series as separate packed layers, or the present desulfurizing agent and other desulfurizing agents may be physically mixed to form a single packed bed. Further, the present desulfurizing agent and another desulfurizing agent may be physically mixed and then molded, and the present desulfurizing agent and other desulfurizing agent may be contained in one grain.
[0047] 本脱硫剤は、加温した方が好ま ヽことから、燃料電池および水素含有ガスを発生 する改質器などの排熱を利用することが好ま ヽ。固体高分子形燃料電池の場合に は 80°C前後の排熱が得られるので、当該排熱を本脱硫剤の加熱に利用することが 好ましい。また、固体高分子形燃料電池に限らず、貯湯槽を有する燃料電池ならば 、お湯を本脱硫剤の加熱に利用することが好ましい。燃料電池システムの概念図の 一例を図 1に示す。脱硫器に本脱硫剤を充填する。本脱硫剤は 80°C前後の比較的 低 、温度でも脱硫性能が高 ヽことから、燃料電池は固体高分子型燃料電池であって も排熱を利用することができる。  [0047] Since the present desulfurizing agent is preferably heated, it is preferable to use exhaust heat from a fuel cell and a reformer that generates a hydrogen-containing gas. In the case of a polymer electrolyte fuel cell, exhaust heat of about 80 ° C. can be obtained. Therefore, it is preferable to use the exhaust heat for heating the desulfurization agent. Further, not only the polymer electrolyte fuel cell but also a fuel cell having a hot water storage tank, it is preferable to use hot water for heating the present desulfurization agent. An example of a conceptual diagram of a fuel cell system is shown in Fig. 1. Fill the desulfurizer with this desulfurizing agent. Since this desulfurization agent is relatively low at around 80 ° C and its desulfurization performance is high even at a temperature, the fuel cell can utilize exhaust heat even if it is a polymer electrolyte fuel cell.
[0048] 製油所、石油化学工場、化学工場等において本脱硫剤を使用する場合には、脱 硫槽を 2槽以上設置することが好ま 、。まず 1槽の脱硫槽に脱硫する炭化水素油を 流通し、脱硫剤の脱硫性能が低下して十分な脱硫性能が得られなくなった段階で別 の脱硫槽に切り替える方法が好ましい。さらに、脱硫槽を 2槽以上直列に接続し、最 も上流側の脱硫槽の脱硫性能がまったく無くなるか、或いは、著しく低下した段階で 、当該脱硫槽の使用を中止し、最も下流に新品の脱硫剤を充填した脱硫槽を接続す る方法が特に好ましい。 [0048] When using this desulfurizing agent in refineries, petrochemical plants, chemical factories, etc., it is preferable to install two or more desulfurization tanks. First, the hydrocarbon oil to be desulfurized is circulated in one desulfurization tank, and it is separated when the desulfurization performance of the desulfurizing agent is reduced and sufficient desulfurization performance cannot be obtained. A method of switching to a desulfurization tank is preferable. Furthermore, two or more desulfurization tanks are connected in series, and when the desulfurization performance of the desulfurization tank on the most upstream side is completely lost or significantly deteriorated, the use of the desulfurization tank is stopped and the newest desulfurization tank is most downstream. A method of connecting a desulfurization tank filled with a desulfurizing agent is particularly preferable.
[0049] 以下本発明を実施例によりさらに具体的に説明するが,本発明はそれに限定され るものではない。 [0049] The present invention will be described more specifically with reference to the following examples, but the present invention is not limited thereto.
実施例 1  Example 1
[0050] 灯油は、ジャパンエナジー社製、沸点範囲 158. 5〜270. 0°C、 5%留出点 170.  [0050] Kerosene, manufactured by Japan Energy, has a boiling range of 158.5 to 270.0 ° C, a 5% distillation point.
5。C、 10%留出点 175. 0。C、 20%留出点 181. 5。C、 30%留出点 188. 0。C、 40% 留出点 194. 5。C、 50%留出点 202. 5。C、 60%留出点 211. 0。C、 70%留出点 22 1. 0。C、 80%留出点 232. 0。C、 90%留出点 245. 5。C、 95%留出点 256. 5。C、 9 7%留出点 263. 5°C、密度(15°C) 0. 7982g/mU芳香族分 17. 5容量%、飽和 分 82. 5容量%、硫黄分 13. 6質量 ppm{軽質硫黄ィ匕合物(ベンゾチオフ ンよりも 軽質の硫黄化合物)に由来する硫黄分 16質量 ppb、ベンゾチォフェン類 (ベンゾチ ォフェンおよびベンゾチォフェンよりも重質でありジベンゾチォフェンよりも軽質の硫 黄化合物)に由来する硫黄分 9. 6質量 ppm、ジベンゾチォフェン類 (ジベンゾチオフ ェンおよびジベンゾチォフェンよりも重質の硫黄ィ匕合物)に由来する硫黄分 4. 0質量 ppm}、窒素分 1質量 ppm以下のものを使用した。尚、硫黄分は燃焼酸化 紫外蛍 光法硫黄分析装置を用いて、硫黄ィ匕合物のタイプはガスクロマトグラフ 誘導結合 プラズマ貧量分析装置 (Gas Chromatograph― Inductively Coupled Plasma Mass Spectrometer: GC - ICP— MS)を用!、て分析した。  Five. C, 10% distilling point 175.0. C, Distillation point 20% 181.5. C, 30% distilling point 188.0. C, 40% Distillation point 194.5. C, Distillation point 50% 202.5. C, Distillation point 60% 211.0. C, 70% distilling point 22 1.0. C, 80% distilling point 2332. C, 90% distilling point 245.5. C, 95% distillate point 255.5. C, 97% Distillation point 263.5 5 ° C, Density (15 ° C) 0. 7982g / mU Aromatic content 17.5% by volume, Saturation 82.5% by volume, Sulfur content 13.6 mass ppm { Sulfur content 16 mass ppb derived from light sulfur compounds (lighter sulfur compounds than benzothiophene), benzothiophenes (sulfur compounds that are heavier than benzothiophene and benzothiophene and lighter than dibenzothiophene) Sulfur content derived from 9.6 mass ppm, sulfur content derived from dibenzothiophenes (a heavier sulfur compound than dibenzothiophene and dibenzothiophene) 4.0 mass ppm}, nitrogen content 1 mass ppm The following were used. The sulfur content is measured using a combustion oxidation ultraviolet fluorescence sulfur analyzer, and the sulfur compound is a gas chromatograph, inductively coupled plasma mass spectrometer (GC-ICP—MS). ) Was used!
[0051] 硫酸銅 1. 7kgを 20Lビーカーに秤取し、純水 10Lをカ卩え、撹拌、溶解し沈澱母液  [0051] Copper sulfate 1. Weigh 7 kg in a 20 L beaker, add 10 L of pure water, stir, dissolve, and precipitate mother liquor.
(A液)を調製した。これとは別に 3号珪酸ナトリウムの 15%水溶液 1. 5kgと、炭酸ナ トリウム 0. 7kgとを 20Lビーカーに秤取し、純水 10Lをカ卩え、溶解して沈澱剤水溶液 (B液)を調製した。激しく撹拌されている B液中に A液を徐々に滴下し、沈澱を生成 させた。得られた沈澱物を熟成後、充分水洗し、次いで濾過した後、空気中にて 110 °Cで乾燥し、次いで 350°Cで焼成し、銅系脱硫剤を得た。また、シリカに硝酸銀溶液 を 10質量%の Ag担持量になるように含浸担持し、 110°Cで 12時間乾燥させた後、 4 00°Cで 3時間焼成し、銀系脱硫剤を得た。銅系脱硫剤と銀系脱硫剤とを物理混合法 により、銅と銀を含む脱硫剤を調製した。銅 55質量%および銀 1質量%を含む脱硫 剤(実施例)、銅 58質量%含み銀を含まない脱硫剤 (比較例 1)、 y アルミナに硝 酸銀溶液を 5質量%の Ag担持量となるように含浸担持し、 110°Cで 12時間乾燥させ た後、 400°Cで 3時間焼成して得た銀を担持した銅を含まない脱硫剤 (AgZ o -A1 O、比較例 2)および、酸化マンガン担体に硝酸銀溶液を 5質量%の Ag担持量にな(Liquid A) was prepared. Separately, 1.5kg of No. 3 sodium silicate 1.5kg and 0.7kg of sodium carbonate were weighed into a 20L beaker, charged with 10L of pure water, dissolved and dissolved in a precipitant solution (Liquid B). Was prepared. Solution A was gradually added dropwise to solution B, which was vigorously stirred, to form a precipitate. The resulting precipitate was aged, sufficiently washed with water, then filtered, dried in air at 110 ° C, and then calcined at 350 ° C to obtain a copper-based desulfurization agent. In addition, a silver nitrate solution was impregnated and supported on silica so that the amount of Ag supported was 10% by mass and dried at 110 ° C for 12 hours. Calcination was performed at 00 ° C for 3 hours to obtain a silver-based desulfurization agent. A desulfurization agent containing copper and silver was prepared by a physical mixing method of a copper desulfurization agent and a silver desulfurization agent. Desulfurizing agent containing 55% by mass of copper and 1% by mass of silver (Example), Desulfurizing agent containing 58% by mass of copper and not containing silver (Comparative Example 1), y Amount of Ag supported by 5% by mass of silver nitrate solution on alumina The copper-containing desulfurization agent (AgZ o -A1 O, Comparative Example 2) was obtained by impregnating and supporting so as to be, dried at 110 ° C for 12 hours, and calcined at 400 ° C for 3 hours. ) And a silver nitrate solution on a manganese oxide support with an Ag loading of 5% by mass.
2 3 twenty three
るように含浸担持し、 110°Cで 12時間乾燥させた後、 400°Cで 3時間焼成して得た 銀を担持した銅を含まない脱硫剤 (AgZMnO、比較例 3)について、灯油への浸せ  The copper-free desulfurization agent (AgZMnO, Comparative Example 3) loaded with silver obtained by impregnation and drying at 110 ° C for 12 hours and then calcined at 400 ° C for 3 hours to kerosene Soaking
2  2
き式吸着脱硫実験を実施した。灯油 20gに脱硫剤 5gを浸せきし、 10°Cにて 4日静置 後、硫黄分および硫黄化合物のタイプを分析した。  An experimental adsorption desulfurization experiment was conducted. Soaked 5 g of desulfurizing agent in 20 g of kerosene, and allowed to stand at 10 ° C for 4 days, and then analyzed the types of sulfur and sulfur compounds.
[0052] 脱硫後の灯油硫黄分を表 1に示す。銅および銀を含む脱硫剤の脱硫性能が高 、こ とがわかる。また、ベンゾチォフェン類の残存量は、銅あるいは銀の一方のみし力含 有しないと 0. 6質量 ppm以上であった力 銅および銀の両方を含有すると 0. 05質 量 ppm以 でめった。 [0052] Table 1 shows the kerosene sulfur content after desulfurization. It can be seen that the desulfurization agent containing copper and silver has high desulfurization performance. The residual amount of benzothiophenes was less than 0.05 mass ppm when both copper and silver were contained, which was 0.6 mass ppm or more when only one of copper and silver was not contained.
[0053] [表 1] [0053] [Table 1]
Figure imgf000018_0001
Figure imgf000018_0001
実施例 2  Example 2
[0054] 実施例 1と同様にして調製した銅と銀の比率の異なる 6種類の脱硫剤および銀を含 まない脱硫剤(比較例)について、実施例 1と同一の灯油への浸せき式吸着脱硫実 験を実施した。灯油 20gに脱硫剤 5gを浸せきし、 10°Cにて 4日静置後、硫黄分およ び硫黄ィ匕合物のタイプを分析した。  [0054] Six types of desulfurizing agents prepared in the same manner as in Example 1 and different desulfurizing agents not containing silver (comparative examples) with different ratios of copper and silver were immersed in the same kerosene as in Example 1. A desulfurization experiment was conducted. After 5g of desulfurization agent was immersed in 20g of kerosene and allowed to stand at 10 ° C for 4 days, the type of sulfur and sulfur compounds were analyzed.
[0055] 銀 Z銅質量比と脱硫後灯油の硫黄分との関係を図 2に示す。銀を含有しないと 3.  [0055] Fig. 2 shows the relationship between the mass ratio of silver Z copper and the sulfur content of kerosene after desulfurization. Without silver 3.
2質量 ppmまでしか脱硫できないが、 AgZ (Ag + Cu)質量比が 0. 03以上であれば 1質量 ppmまで脱硫できることがわかる。また、ベンゾチォフェン類の残存量は、銀を 含有しないと 1. 77質量 ppmであった力 銀を含有するとすベて 0. 05質量 ppm以下 であった。 AgZ (Ag + Cu)質量比が 0. 01以上で効果があり、 0. 03以上では更に 効果があることがわかる。 It can be desulfurized only up to 2 mass ppm, but it can be desulfurized up to 1 mass ppm if the AgZ (Ag + Cu) mass ratio is 0.03 or more. In addition, the remaining amount of benzothiophenes was 1.77 mass ppm when silver was not included. Met. It can be seen that the effect is effective when the mass ratio of AgZ (Ag + Cu) is 0.01 or more, and further effective when the mass ratio is 0.03 or more.
実施例 3  Example 3
[0056] 実施例 2と同様にして調製した銅と銀を含む脱硫剤(実施例 3— 1〜実施例 3—4) 、および硫酸銅の一部を硫酸マンガンとすることにより調製したマンガンを 15質量0 /0 含む脱硫剤(実施例 3— 5)について、試薬を用いて調製したモデル油により評価し た。ベンゾチォフェンをデカン溶媒またはトルエン溶媒で 10質量%に稀釈したモデ ル油を調製し、各モデル油 4. Ogに各脱硫剤 1. Ogを常温(10°C)で 4日静置後、浸 せき前後のベンゾチォフェン含有量をガスクロマトグラフ—水素炎イオンィ匕検出器 (G asChromatograph— Flamelonization Detector (FID) )で分析することにより 吸着量を測定した。脱硫剤の組成と吸着量測定結果を表 2に示す。デカン溶媒とトル ェン溶剤とで吸着量が異なり、芳香族分による吸着阻害が顕著に認められる。ベンゾ チォフェンが高濃度であるモデル油を用いた本実験条件では、 Ag含有量が多 、ほ ど吸着量が大きいことがわかる。また、マンガン添加効果もわかる。 [0056] A desulfurizing agent containing copper and silver (Example 3-1 to Example 3-4) prepared in the same manner as in Example 2, and manganese prepared by using a part of copper sulfate as manganese sulfate. 15 mass 0/0 containing desulfurizing agent (example 3 5), were evaluated by a model oil was prepared by using a reagent. Prepare model oil by diluting benzothiophene to 10% by mass with decane solvent or toluene solvent, then leave each model oil 4. Og with each desulfurization agent 1. Leave Og at room temperature (10 ° C) for 4 days, then immerse. The adsorbed amount was measured by analyzing the benzothiophene content before and after with a gas chromatograph- Flamelonization Detector (FID). Table 2 shows the composition of the desulfurization agent and the measurement results of the adsorption amount. The amount of adsorption is different between decane solvent and toluene solvent, and the inhibition of adsorption by aromatics is noticeable. In this experimental condition using model oil with a high concentration of benzothiophene, it can be seen that the adsorption amount is larger as the Ag content is higher. Moreover, the manganese addition effect is also understood.
[0057] [表 2] 組成 [質量%] [0057] [Table 2] Composition [mass%]
サンプル名 吸着量 [g- -S/kg]  Sample name Adsorption amount [g- -S / kg]
Ag Cu Mn デカン溶媒 トルエン溶媒 実施例 3 - 1 1. 1 50 - 2. 4 0. 0  Ag Cu Mn Decane solvent Toluene solvent Example 3-1 1. 1 50-2.4 4 0. 0
実施例 3 - •2 5. 6 50 - 7. 0 0. 6  Example 3-• 2 5. 6 50-7. 0 0. 6
実施例 3 - ■3 3. 5 52 - 3. 2 0. 0  Example 3-■ 3 3.5 5 52-3. 2 0. 0
実施例 3 - ■4 10 48 - 40 20  Example 3-∎ 4 10 48-40 20
実施例 3 - ■5 1. 6 40 15 25 0. 0 実施例 4  Example 3-5 1. 6 40 15 25 0.0 Example 4
担体に活性炭 (比表面積 1, 992m2/g、細孔容積 0. 760mlZg)を使用して、脱 硫剤を調製した。 A desulfurizing agent was prepared using activated carbon (specific surface area 1,992 m 2 / g, pore volume 0.760 mlZg) as a carrier.
30Lタンクに硫酸銅 2. 4kgと純水 12Lを入れ撹拌溶解させ A液を調製した。これと は別に 50Lタンクに炭酸ナトリウム 1. 3kgと SiOとして 30%を含む珪酸ナトリウム 3号  In a 30 L tank, 2.4 kg of copper sulfate and 12 L of pure water were added and dissolved by stirring to prepare solution A. Separately, sodium silicate No. 3 containing 1.3 kg of sodium carbonate and 30% of SiO in a 50 L tank
2  2
0. 8 lkgと純水 12Lを入れ撹拌溶解させ B液を調製した。室温撹拌下 B液中に A液 を徐々に滴下し沈殿を生成させた。得られた沈殿物を熟成後、十分水洗し、吸引濾 過した。その後空気中にて 110°Cで乾燥し、次いで 350°Cで焼成し CuO/SiO系 0.8 l kg and 12 L of pure water were added and dissolved by stirring to prepare solution B. While stirring at room temperature, solution A was gradually added dropwise to solution B to form a precipitate. The resulting precipitate is aged, washed thoroughly with water, and filtered with suction. I had. Then dry in air at 110 ° C, then fire at 350 ° C and CuO / SiO system
2 の粉末を得た。この CuOZSiO系粉末 6. 3gと硝酸銀 lgを純水に溶解させた溶液、  2 powders were obtained. A solution in which 6.3 g of this CuOZSiO-based powder and lg of silver nitrate are dissolved in pure water,
2  2
および活性炭 63gを十分に混合した後、 110°Cで乾燥させ、銅銀活性炭系の脱硫剤 を得た (実施例 4 1)。同様に、 CuO/SiO系粉末、硝酸銀および活性炭の仕込  Then, after thoroughly mixing 63 g of activated carbon and drying at 110 ° C., a copper-silver activated carbon desulfurization agent was obtained (Example 41). Similarly, preparation of CuO / SiO powder, silver nitrate and activated carbon
2  2
み量を変えて、金属含有率の異なる脱硫剤を調製した (実施例 4 2〜4 6)。各脱 硫剤の Ag、 Cu、 Cおよび Si含有量、並びに比表面積を表 3に示す。なお、含有量は 、サンプルをアルカリ融剤で融解し、稀硝酸溶液で融解物を溶力した後、 ICP— AE S (誘導結合プラズマ発光分析装置)を用いて測定した値 (水分は未補正)を示した。  The desulfurizing agents having different metal contents were prepared by changing the amount (Examples 4 to 4-6). Table 3 shows the Ag, Cu, C and Si contents and specific surface area of each desulfurizing agent. The content is the value measured using ICP-AES (inductively coupled plasma emission spectrometer) after melting the sample with an alkaline flux and dissolving the melt with dilute nitric acid solution (moisture is not corrected). )showed that.
[0059] 実施例 4 1〜4 6および担体に使用した活性炭(比較例)について、実施例 1と 同一の灯油への浸せき式吸着脱硫実験を実施した。 [0059] The same immersion desulfurization experiment in kerosene as in Example 1 was carried out on Examples 4 1 to 4 6 and the activated carbon (comparative example) used for the carrier.
灯油 15gに脱硫剤 0. 5g (液 Z固比: 30)を浸せきし、 10°Cにて 9日静置後、硫黄 分および硫黄化合物のタイプを分析した。また、実施例 4—1〜4— 3および活性炭( 比較例)については、灯油 16gに脱硫剤 4g (液 Z固比: 4)を浸せきした実験も実施し た。  A desulfurization agent of 0.5 g (liquid Z solid ratio: 30) was immersed in 15 g of kerosene and allowed to stand at 10 ° C. for 9 days, and then the type of sulfur and sulfur compounds were analyzed. For Examples 4-1 to 4-3 and activated carbon (comparative example), an experiment was also conducted in which 4 g of desulfurizing agent (liquid Z solid ratio: 4) was immersed in 16 g of kerosene.
金属 (銀および銅)の含有率と脱硫後灯油の硫黄分との関係を図 3に示す。活性炭 担体の場合には、金属含有率 20質量%までは金属含有率が高 、ほど脱硫率が高く なることがわかる。また、金属含有率 20質量%以上で液 Z固比が 4の場合には 0. 5 質量 ppm以下まで脱硫できることがわかる。  Figure 3 shows the relationship between the metal (silver and copper) content and the sulfur content of kerosene after desulfurization. In the case of the activated carbon carrier, it can be seen that the metal content is higher up to a metal content of 20% by mass, and the desulfurization rate is higher. It can also be seen that when the metal content is 20% by mass or more and the liquid Z solid ratio is 4, desulfurization can be performed to 0.5 mass ppm or less.
[0060] [表 3] [0060] [Table 3]
Figure imgf000020_0001
Figure imgf000020_0001
実施例 5  Example 5
硝酸銀 0. 55gと硝酸銅 11. lgを 21gの純水に溶解させた。この溶液に実施例 4と 同一の活性炭 36gを十分混合した後、窒素雰囲気下 400°Cで 2時間焼成し銅銀系 活性炭を得た(実施例 5)。実施例 5の銅含有量は 7. 07質量%、銀含有量は 0. 81 質量%であり、比表面積は 1, 905m2Zgであった。 Silver nitrate 0.55 g and copper nitrate 11. lg were dissolved in 21 g of pure water. After fully mixing 36 g of the same activated carbon as in Example 4 with this solution, it was calcined at 400 ° C for 2 hours in a nitrogen atmosphere, and then copper-silver-based Activated carbon was obtained (Example 5). In Example 5, the copper content was 7.07% by mass, the silver content was 0.81% by mass, and the specific surface area was 1,905 m 2 Zg.
実施例 5、実施例 4—1および活性炭(比較例)について、液 Z固比を 8〜240とす ることにより脱硫剤単位重量当たりの硫黄分の量を変化させて、灯油に脱硫剤を浸 せきし、 10°Cで 6日間静置する浸せき式吸着脱硫実験を実施した。実施例 5につい ては、液 Z固比を 8、 30、および 240の条件で行い、実施例 4—1並びに比較例につ いては、液 Z固比を 30、 60、および 240の条件で行った。脱硫後灯油の硫黄分と硫 黄吸着量との関係 (吸着等温線)を図 4に示す。液 Z固比が大きい場合 (脱硫剤単位 重量当たりの硫黄分が多い)には、脱硫後灯油の硫黄分の減少量としては少ないが 、脱硫剤単位重量当たりの硫黄吸着量は大きくなるので、図右側部分の結果となる。 実施例5及び実施例4— 1の場合には、ジベンゾチォフェン類もベンゾチォフェン類 も吸着除去可能であるため、液 Z固比が小さい場合 (脱硫剤単位重量当たりの硫黄 分が少ない)には、脱硫後灯油に残存する硫黄分が少なくなり、脱硫剤単位重量当 たりの硫黄吸着量は小さくなるので、図左側部分の結果となる。横軸の脱硫後灯油 の硫黄分が約 9質量 ppmより少ないときには、ジベンゾチォフェン類の残存量が少な くその分吸着量も低くなるので、吸着等温線に変極点が存在する。比較例である活 性炭の場合には主にジベンゾチォフェン類しか除去しないため、液 Z固比を小さくし ても横軸の脱硫後灯油の硫黄分の低下は僅かである。この結果から、金属を担持し ていない活性炭に比べて、実施例 5及び実施例 4 1は硫黄吸着量が著しく向上し ていることがわ力る。 For Example 5, Example 4-1, and activated carbon (comparative example), the amount of sulfur per unit weight of the desulfurizing agent was changed by changing the liquid Z solid ratio to 8 to 240, and the desulfurizing agent was added to kerosene. Immersion-type adsorptive desulfurization experiments were carried out, which were immersed and left at 10 ° C for 6 days. For Example 5, the liquid Z solid ratio was set at 8, 30, and 240. For Example 4-1 and the comparative example, the liquid Z solid ratio was set at 30, 60, and 240. went. Figure 4 shows the relationship between the sulfur content of kerosene after desulfurization and the sulfur adsorption amount (adsorption isotherm). When the liquid Z solid ratio is large (the sulfur content per unit weight of the desulfurizing agent is large), the decrease in the sulfur content of kerosene after desulfurization is small, but the sulfur adsorption amount per unit weight of the desulfurizing agent is large. The result is shown in the right part of the figure. Example 5 and Example 4 - 1, then since dibenzo Chio Fen acids also Benzochiofen acids can also be adsorbed and removed, when the liquid Z solid ratio is small (less sulfur per weight desulfurizing agent units) As a result, the amount of sulfur remaining in kerosene after desulfurization decreases, and the amount of sulfur adsorbed per unit weight of desulfurizing agent decreases, resulting in the results on the left side of the figure. When the sulfur content of kerosene after desulfurization on the horizontal axis is less than about 9 ppm by mass, the amount of dibenzothiophenes remaining is small and the amount of adsorption decreases accordingly, so there is an inflection point in the adsorption isotherm. In the case of activated charcoal, which is a comparative example, only dibenzothiophenes are mainly removed, so even if the liquid Z solid ratio is reduced, the decrease in the sulfur content of kerosene after desulfurization on the horizontal axis is slight. From this result, it can be seen that Example 5 and Example 41 have significantly improved sulfur adsorption compared to activated carbon not supporting metal.
また、脱硫後灯油のジベンゾチォフェン類含有量と脱硫剤のジベンゾチォフェン類 吸着量との関係(吸着等温線)を図 5に示す。ジベンゾチォフェン類に着目した場合 の吸着等温線は、ほぼ原点を通る直線であり、吸着質が単一成分で低濃度である場 合の吸着等温線に類似している。この結果から、金属を担持していない活性炭に比 ベてジベンゾチォフェン類の吸着量が大きいことがわかる。また、活性炭の混合方法 力 物理混合法である実施例 4 1よりも含浸法である実施例 5の方がジベンゾチォ フェン類の吸着量が大き 、こともわかる。  Figure 5 shows the relationship (adsorption isotherm) between the content of dibenzothiophenes in kerosene after desulfurization and the amount of dibenzothiophenes adsorbed in the desulfurizing agent. The adsorption isotherm when focusing on dibenzothiophenes is a straight line that almost passes through the origin, and is similar to the adsorption isotherm when the adsorbate is a single component and has a low concentration. From this result, it can be seen that the amount of dibenzothiophenes adsorbed is larger than that of activated carbon not supporting metal. It can also be seen that the adsorption amount of dibenzothiophenes is larger in Example 5, which is an impregnation method, than in Example 41, which is a mixing method of activated carbon and a physical mixing method.
実施例 6 [0063] 2Lビーカーに硫酸銅 67gと硫酸マンガン 32g、および純水 71 OmLを入れ撹拌溶 解させ A液を調製した。これとは別に 2Lビーカーに炭酸ナトリウム 53gと SiOとして 3 Example 6 [0063] In a 2 L beaker, 67 g of copper sulfate, 32 g of manganese sulfate, and 71 OmL of pure water were added and dissolved by stirring to prepare solution A. Separately, in a 2L beaker, 53g of sodium carbonate and SiO 3
2 2
0%を含む珪酸ナトリウム 3号 18.2gと純水 710mLを入れ撹拌溶解させ B液を調製 した。室温撹拌下 B液中に A液を徐々に滴下し沈殿を生成させた。得られた沈殿物 を熟成後、十分水洗し、吸引濾過した。その後空気中にて 110°Cで乾燥した。得られ た乾燥物 47gに硝酸銀 0.6gを 26gの純水に溶解させた溶液を十分混合し、 350°C で焼成することで銅銀マンガン系の脱硫剤を得た (実施例 6— 2)。同様に、硫酸銅と 硫酸マンガンの仕込み量を変えて、金属含有率の異なる脱硫剤を調製した (実施例 6— 1、 6— 3)。各脱硫剤の Ag、 Cuおよび Mn含有量、 Cuと Mnの質量比、並びに 比表面積を表 4に示す。 Solution B was prepared by adding 18.2 g of sodium silicate No. 3 containing 0% and 710 mL of pure water with stirring and dissolution. While stirring at room temperature, solution A was gradually added dropwise to solution B to form a precipitate. The resulting precipitate was aged, washed thoroughly with water and filtered with suction. Thereafter, it was dried in air at 110 ° C. A solution of 0.6 g of silver nitrate dissolved in 26 g of pure water was thoroughly mixed with 47 g of the obtained dried product and calcined at 350 ° C to obtain a copper-silver-manganese desulfurization agent (Example 6-2) . Similarly, desulfurization agents having different metal contents were prepared by changing the amounts of copper sulfate and manganese sulfate (Examples 6-1 and 6-3). Table 4 shows the Ag, Cu and Mn contents of each desulfurizing agent, the mass ratio of Cu and Mn, and the specific surface area.
実施例 6— 1〜6— 3について、実施例 1と同一の灯油への浸せき式吸着脱硫実験 を実施した。  For Examples 6-1 to 6-3, the same immersion adsorption desulfurization experiment in kerosene as in Example 1 was performed.
[0064] 実施例 6— 1〜6— 3について、液 Z固比を 8、 30及び 240として、実施例 5と同様 の浸せき式吸着脱硫実験を実施した。脱硫後灯油の硫黄分と硫黄吸着量との関係( 吸着等温線)を図 6に示す。担体がシリカの場合には、硫黄分のタイプ分析の結果か ら、吸着除去しているのは大部分がベンゾチォフェン類であった。ジベンゾチォフエ ン類の吸着除去性能は低いので、さらに液 Z固比を小さくして約 2質量 ppm以下ま で硫黄分が低下するような条件では、単位重量当たりの吸着量は著しく低下する。こ の結果から、銅成分とマンガン成分の比率を金属の質量比として 85: 15〜50: 50と することにより、脱硫性能が向上することがわかる。  [0064] For Examples 6-1 to 6-3, the immersion adsorptive desulfurization experiment similar to Example 5 was carried out at liquid Z solid ratios of 8, 30, and 240. Figure 6 shows the relationship between the sulfur content of kerosene after desulfurization and the amount of sulfur adsorption (adsorption isotherm). When the support was silica, most of the benzothiophenes were adsorbed and removed from the result of sulfur type analysis. Since the adsorption removal performance of dibenzothiophenes is low, the adsorption amount per unit weight is significantly reduced under conditions where the liquid Z solid ratio is further reduced to lower the sulfur content to about 2 mass ppm or less. From this result, it is understood that the desulfurization performance is improved by setting the ratio of the copper component and the manganese component to 85:15 to 50:50 as the mass ratio of the metal.
[0065] [表 4] 含有量 (®* ) Cu : Mn 比表面積 [0065] [Table 4] Content (® *) Cu: Mn Specific surface area
Ag Cu Mn (質量比〉 (mVg) 実施例 6— 1 0. 94 51. 3 7. 51 87 : 13 84 実施例 6— 2 0. 94 38. 2 19. 0 67 : 33 153 実施例 6— 3 0. 94 26. 5 30. 0 47 : 53 113 Ag Cu Mn (mass ratio) (mVg) Example 6— 1 0. 94 51. 3 7. 51 87: 13 84 Example 6— 2 0. 94 38. 2 19. 0 67: 33 153 Example 6— 3 0. 94 26. 5 30. 0 47: 53 113

Claims

請求の範囲 The scope of the claims
[1] 銅成分および銀成分を含有することを特徴とする炭化水素油脱硫剤。  [1] A hydrocarbon oil desulfurization agent comprising a copper component and a silver component.
[2] 銅成分と銀成分の比率が金属の質量比で 99: 1〜80: 20であることを特徴とする請 求の範囲第 1項に記載の脱硫剤。  [2] The desulfurization agent according to item 1 of the claim, wherein the ratio of the copper component to the silver component is 99: 1 to 80:20 in terms of the mass ratio of the metal.
[3] 更にマンガン成分を含有することを特徴とする請求の範囲第 1項および第 2項に記 載の脱硫剤。 [3] The desulfurization agent according to any one of claims 1 and 2, further comprising a manganese component.
[4] 銅成分とマンガン成分の比率が金属の質量比として 85 : 15〜50: 50であることを 特徴とする請求の範囲第 3項に記載の脱硫剤。  [4] The desulfurizing agent according to claim 3, wherein the ratio of the copper component to the manganese component is 85:15 to 50:50 as a mass ratio of the metal.
[5] 請求の範囲第 1項〜第 4項のいずれかに記載の脱硫剤を用いることを特徴とする 炭化水素油の脱硫方法。 [5] A method for desulfurizing a hydrocarbon oil, comprising using the desulfurizing agent according to any one of claims 1 to 4.
[6] 製油所、石油化学工場、化学工場において、請求の範囲第 1項〜第 4項のいずれ かに記載の脱硫剤を用いることを特徴とする炭化水素油の脱硫方法。 [6] A method for desulfurizing a hydrocarbon oil, characterized by using the desulfurizing agent according to any one of claims 1 to 4 in a refinery, a petrochemical factory, or a chemical factory.
[7] 150°C以下の温度で脱硫することを特徴とする請求の範囲第 5項または第 6項に記 載の脱硫方法。 [7] The desulfurization method according to claim 5 or 6, wherein desulfurization is performed at a temperature of 150 ° C or lower.
[8] 炭化水素油が灯油であることを特徴とする請求の範囲第 5項または第 6項に記載の 脱硫方法。  [8] The desulfurization method according to claim 5 or 6, wherein the hydrocarbon oil is kerosene.
[9] 請求の範囲第 1項〜第 4項のいずれかに記載の脱硫剤を使用することを特徴とす る燃料電池システム。  [9] A fuel cell system using the desulfurizing agent according to any one of claims 1 to 4.
PCT/JP2006/315280 2005-08-12 2006-08-02 Desulfurizing agent for hydrocarbon oil and method of desulfurization WO2007020800A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007530943A JP5032992B2 (en) 2005-08-12 2006-08-02 Hydrocarbon oil desulfurization agent and desulfurization method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-234662 2005-08-12
JP2005234662 2005-08-12

Publications (1)

Publication Number Publication Date
WO2007020800A1 true WO2007020800A1 (en) 2007-02-22

Family

ID=37757465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/315280 WO2007020800A1 (en) 2005-08-12 2006-08-02 Desulfurizing agent for hydrocarbon oil and method of desulfurization

Country Status (2)

Country Link
JP (1) JP5032992B2 (en)
WO (1) WO2007020800A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007146052A (en) * 2005-11-29 2007-06-14 Nippon Oil Corp Method for desulfurizing hydrocarbon-based fuel
JP2008239916A (en) * 2007-03-29 2008-10-09 Cosmo Oil Co Ltd Fuel oil for fuel cell
WO2009031613A1 (en) 2007-09-07 2009-03-12 Japan Energy Corporation Solid acid, process for producing the solid acid, method for desulfurizing hydrocarbon oil using solid acid as desulfurizing agent
EP2233204A2 (en) * 2009-03-23 2010-09-29 General Electric Company Surface Modified Sorbent
JP2012169045A (en) * 2011-02-10 2012-09-06 Aisin Seiki Co Ltd Fuel cell system
JP5170591B2 (en) * 2008-03-10 2013-03-27 独立行政法人産業技術総合研究所 Adsorption desulfurization agent for liquid phase
JP2014029805A (en) * 2012-07-31 2014-02-13 Noritz Corp Fuel cell cogeneration system and hot water storage tank unit
JP2014041826A (en) * 2013-09-09 2014-03-06 Osaka Gas Co Ltd Fuel cell power generation system and desulfurization device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004168648A (en) * 2002-11-05 2004-06-17 Idemitsu Kosan Co Ltd Metal ion-exchange zeolite, its manufacturing method, and adsorbent containing the metal ion-exchange zeolite for removing sulfur compound

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3825169A1 (en) * 1988-07-23 1990-02-01 Huels Chemische Werke Ag METHOD FOR FINE DESULFURATION OF HYDROCARBONS
KR100278246B1 (en) * 1992-11-28 2001-03-02 료끼 신이찌로 Desulfurization of hydrocarbons

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004168648A (en) * 2002-11-05 2004-06-17 Idemitsu Kosan Co Ltd Metal ion-exchange zeolite, its manufacturing method, and adsorbent containing the metal ion-exchange zeolite for removing sulfur compound

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
INO T. ET AL.: "Toyu Riyo Nenryo Denchi ni Okeru Toyu no Datsuryu", THE JAPAN PETROLEUM INSTITUTE DAI 35 KAI NENKAI (DAI 38 KAI KENKYU HAPPYOKAI) KOEN YOSHI, 1992, pages 58 - 59, XP002904729 *
YANG R.T. ET AL.: "Desulfurization of Transportation Fuels with Zeolites Under Ambient Conditions", SCIENCE, vol. 301, no. 5629, 4 July 2003 (2003-07-04), pages 79 - 81, XP002904728 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007146052A (en) * 2005-11-29 2007-06-14 Nippon Oil Corp Method for desulfurizing hydrocarbon-based fuel
JP2008239916A (en) * 2007-03-29 2008-10-09 Cosmo Oil Co Ltd Fuel oil for fuel cell
WO2009031613A1 (en) 2007-09-07 2009-03-12 Japan Energy Corporation Solid acid, process for producing the solid acid, method for desulfurizing hydrocarbon oil using solid acid as desulfurizing agent
JP5170591B2 (en) * 2008-03-10 2013-03-27 独立行政法人産業技術総合研究所 Adsorption desulfurization agent for liquid phase
EP2233204A2 (en) * 2009-03-23 2010-09-29 General Electric Company Surface Modified Sorbent
JP2012169045A (en) * 2011-02-10 2012-09-06 Aisin Seiki Co Ltd Fuel cell system
US9083015B2 (en) 2011-02-10 2015-07-14 Aisin Seiki Kabushiki Kaisha Fuel cell system
JP2014029805A (en) * 2012-07-31 2014-02-13 Noritz Corp Fuel cell cogeneration system and hot water storage tank unit
JP2014041826A (en) * 2013-09-09 2014-03-06 Osaka Gas Co Ltd Fuel cell power generation system and desulfurization device

Also Published As

Publication number Publication date
JP5032992B2 (en) 2012-09-26
JPWO2007020800A1 (en) 2009-02-19

Similar Documents

Publication Publication Date Title
JP5032992B2 (en) Hydrocarbon oil desulfurization agent and desulfurization method
Saleh et al. Ultra-deep adsorptive desulfurization of fuels on cobalt and molybdenum nanoparticles loaded on activated carbon derived from waste rubber
JP5033881B2 (en) Method for adsorption of sulfur compounds from hydrocarbon streams
JP5048495B2 (en) Hydrocarbon oil desulfurization method
US7625429B2 (en) Zeolite adsorbent for desulfurization and method of preparing the same
JP4096128B2 (en) Method for producing desulfurizing agent and method for desulfurizing hydrocarbon
CN101766985B (en) Desulfurizing sorbent and preparation method and application thereof
US20080197051A1 (en) Desulfurizing Agent for Removing Organic Sulfur Compounds, Preparation Method thereof and Method for Removing Organic Sulfur Compounds Using the Same
CN102031141B (en) Method for preparing gasoline desulfurization adsorbent
US20110220552A1 (en) Method for removing corrosive sulfur compounds from a transformer oil
JP3742284B2 (en) Adsorbent for sulfur compounds in fuel gas and method for removing the same
CN101970103A (en) Regeneration of solid adsorbent
JP5328655B2 (en) Solid acid, method for producing the same, and method for desulfurizing hydrocarbon oil using solid acid as desulfurizing agent
BRPI0902204A2 (en) desulfurization adsorbent, adsorbent preparation process and pyrolysis gasoline or diesel oil desufurization method
JP5337036B2 (en) Hydrocarbon oil desulfurization method
RU2448771C1 (en) Adsorbent desulphuriser for liquid phases
CN101816918B (en) Alkali metal-containing desulfurization adsorbent and preparation method and application thereof
Özkan et al. Adsorptive desulfurization of crude oil with clinoptilolite zeolite
JP2001279257A (en) Desulfurizing agent, method for desulfurization and method for producing hydrogen for fuel battery
CN1151879C (en) Nanometer level transition metal oxide catalyst for transforming mercaptan and its prepn.
JP5476180B2 (en) Method for reducing peroxide value of hydrocarbon oil, method for desulfurizing hydrocarbon oil, and fuel cell system
WO2008030540A2 (en) Oxidatively regenerable adsorbents for sulfur removal
JP2001278602A (en) Desulfurization agent, method of desulfurization and method of manufacturing hydrogen for fuel cell
EP1904608A2 (en) Method for reducing the amount of high molecular weight organic sulfur picked up by hydrocarbon streams transported through a pipeline
Santos et al. NaY zeolites impregnated with nickel for adsorption of sulfur compounds from fuel model mixture

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007530943

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06782149

Country of ref document: EP

Kind code of ref document: A1