WO2007020305A1 - Método y aparato de control de potencia por lazo externo para sistemas de comunicación inalámbrica - Google Patents

Método y aparato de control de potencia por lazo externo para sistemas de comunicación inalámbrica Download PDF

Info

Publication number
WO2007020305A1
WO2007020305A1 PCT/ES2006/000403 ES2006000403W WO2007020305A1 WO 2007020305 A1 WO2007020305 A1 WO 2007020305A1 ES 2006000403 W ES2006000403 W ES 2006000403W WO 2007020305 A1 WO2007020305 A1 WO 2007020305A1
Authority
WO
WIPO (PCT)
Prior art keywords
power control
external loop
wireless communication
block error
communication systems
Prior art date
Application number
PCT/ES2006/000403
Other languages
English (en)
French (fr)
Inventor
Alfonso Campo Camacho
Miguel Blanco Carmona
Luis Mendo Tomas
Jose María HERNANDO RABANOS
Alvaro Lopez Medrano
Original Assignee
T.O.P Optimized Technologies, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=36101271&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2007020305(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by T.O.P Optimized Technologies, S.L. filed Critical T.O.P Optimized Technologies, S.L.
Priority to CN200680038565.2A priority Critical patent/CN101313487B/zh
Priority to JP2008526515A priority patent/JP4917096B2/ja
Priority to EP06807853.4A priority patent/EP1926225B1/en
Priority to ES06807853.4T priority patent/ES2542023T3/es
Publication of WO2007020305A1 publication Critical patent/WO2007020305A1/es
Priority to HK08112892.6A priority patent/HK1119853A1/xx

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/12Outer and inner loops
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/241TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account channel quality metrics, e.g. SIR, SNR, CIR, Eb/lo
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/143Downlink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss

Definitions

  • the present invention has its application within the telecommunications sector and, especially, in the industry dedicated to the manufacture of both base and mobile stations in cellular infrastructures for wireless communication systems.
  • the invention described herein, within the communications refers to a method and apparatus for the external loop power control system in a cellular mobile cellular network.
  • An object of the invention is to allow power control by means of the external loop procedure which, complemented with the method of the invention and which here is called "Outage-Based OLPC", adapts to the changing propagation conditions of the communication channel .
  • ETSI European Telecommunications Standards Institute
  • the ultimate goal of the power control system in WCDMA is to achieve the quality of service required in a particular link, down from the base station to the mobile or terminal equipment, or, rising from the mobile to the base station, with a minimum transmitted power level (this aspect is precisely what the invention focuses on).
  • the main objectives of the power control system in WCDMA networks are:
  • a power control system for WCMDA is jointly implemented by three differentiated procedures:
  • the base / mobile station estimates the loss of power in the up / down link and, depending on it, adjusts its transmission power.
  • the corresponding receiver terminal (the base station or the mobile unit) compares the value of the desired signal-interference received ratio (SIR rec ) with the desired signal-objective interference ratio
  • the same receiving terminal sends power control bits indicating that the transmission power must be increased (if SIRrec ⁇ SIRtarget) or decreased (if SIRrec> SIR targ et) by a certain value (usually 1dB).
  • the transmitting unit (base or mobile station) increases or decreases its power by the amount set above.
  • the wrong block rate (BLER) is ultimately determined by this objective value.
  • the objective SIRt ar g e t
  • the objective needs to be adjusted to the value that is appropriate for that environment.
  • OLPC external loop power control
  • BLERt a rg e t target block error rate
  • BLER-Based OLPC measures this metric and changes the Desired signal-target interference ratio (SIR tar get) in Consequently, depending on whether the target block error rate (BLERt a rg et ) is above or below the desired threshold (see Sampath A, Kumar PS & Holtzman JM (1997), “On setting reverse link target SIR ⁇ na CDMA system ", Proceedings of the IEEE Vehicular Technology Conference, Phoenix, Arizona, p 929-933.).
  • BLER block error rate
  • the most serious problem is that which occurs when there is a favorable change in the propagation conditions before which the "BLER-based OLPC" method reacts very slowly, causing the desired signal-to-interference ratio (SIR ta rg e t) set by said external loop power control method is greater than that necessary for a long period of time, with the consequent increase in interference and, therefore, the loss of system capacity.
  • SIR ta rg e t desired signal-to-interference ratio
  • Jo ⁇ as Blom, Fredrik Gunnarson and Fedrik Gustafsson in their patent application US 6449462 establish a method to control the desired signal-to-target interference ratio (SIR tar g et ) based also on the measurement of the block error rate (BLER), but together with the estimation of certain parameters representative of the different conditions of the radio channel and the statistical distribution of the interfering signals.
  • the method is based on the determination of a quality function defined as the probability of an erroneous frame conditioned by the mentioned parameters. Although this strategy implies capacity gains of the order of 30%, the process for obtaining said quality function imposes a delay that deteriorates the performance of this type of model.
  • the cutoff probability constitutes another quality parameter usually applied in cellular infrastructures, which is previously established, during the planning phase of the communications network, depending on the kind of service covered by the communication link, the characteristics of the cells and, within each cell, the characteristics of the service area. From this probability of cut (Poutag e ), in the aforementioned patent application it is proposed to determine the fading margin (M ( s ⁇ ) (dB)) corresponding to the desired signal-interference ratio and, therefore, the Desired signal-objective interference ratio (SIRt arget ) for a criterion of quality of service given by the cutoff probability (P o u ta ge) and statistical moments characteristic of the radio channel under consideration.
  • the present invention comes to solve, among others, the problem set forth above, in each and every one of the different aspects set forth in the background.
  • the proposed external loop power control method and apparatus for mobile communications systems that are proposed, especially designed for third generation (3G) technologies based on some (s) of the Standardized Multiple Division Code Access (CDMA) protocols , guarantee on the one hand a criterion of quality of service
  • QoS in terms of a pre-established block error rate (BLER) and, on the other, they are able to adapt quickly to the changing conditions of the radio channel following a new quality criterion, in addition to the previous one (BLER criteria), which is based on the probability of cut.
  • BLER block error rate
  • One aspect of the invention is therefore an external loop power control method for wireless communication systems that, from a received data signal, from a mobile or base station, comprises the following phases:
  • V determine the state of the data blocks, from the verification of the Cyclic Redundancy Code (CRC), v) establish a desired signal-to-interference ratio (SIRtarget) for the external loop, from said state of the data blocks, the target block error rate (BLERt a rg et ) and the estimated fading margins associated with the cut probabilities considered.
  • CRC Cyclic Redundancy Code
  • SIRtarget desired signal-to-interference ratio
  • the desired signal-to-interference ratio (SIR t arg e t) established by the proposed power control method, here called “Outage-Based OLPC”, is calculated as the sum of two components, which we call SIR 0U tage-tgt and SIRBLER— tgt, through a dynamic adjustment function that maps between the quality criterion based on the target block error rate (BLERt arg et) and another quality criterion, this based on the probabilities of cut.
  • QoS quality of service
  • SIR target desired signal-objective interference
  • SIR tgt SIR 0Ulage _ lgt + SIR BLER _ lgt , preferably consists of a neural network.
  • a neural network is understood as a tool to implement a generic parameterizable function, to which weights and offsets (“offsets”) that represent the parameters of the function, which can be adjusted, are applied. What is known as training a neuron network !, to obtain a certain desired behavior.
  • the neurons of a neural network are organized in layers, defining a layer of neurons like that set of neurons that share the same inputs.
  • the outputs of a layer of neurons constitute the inputs of the next layer.
  • a network with two layers, a first sigmoidal layer and a second linear layer can be trained to approximate most functions arbitrarily well.
  • this is the structure implemented for the neural network of the method that establishes the desired signal-objective interference (SIRtarget) relationship of the external loop for power control:
  • the proposed neural network has a first layer with a number of neurons that depends on the number of cutoff probabilities considered and a second layer that has a single neuron when there is only one output: the value of the desired signal-objective interference ratio
  • the input parameters are the fading margins calculated for the different cutting probabilities.
  • the compensation of the neuron of the output layer is matched with the component (SIR B L ER -targ et ) of the desired signal-objective interference (SIR tar g e t) final relationship.
  • the other component (SIR 0U tage-target) is generated using the neural network described and adapts to changing propagation conditions, so it must have a fast-changing behavior.
  • the adaptation provided by the first component (SIR ou tag e- tgt) of the desired signal-to-interference ratio (SIRt to rget) established for external loop power control is not always ideal and not all variations of the channel are taken into account. Therefore, the external loop is not capable in itself of guaranteeing the pre-established criterion of target block error rate (BLERtarg et ) - This is why, to cover non-ideal behaviors the second component (SIR ⁇ LER-) is included target) in the desired signal-objective interference (SIR ta rg e t) final relationship, which is responsible for ensuring that the quality defined by the target block error rate (BLERtarget) is effectively maintained in the service.
  • SIR targ et target block error rate
  • this last component (SIR ⁇ LER-target) would remain constant, since its variation means that the other component (SIR O u t ag e -targ e t) of the desired signal-to-interference ratio (SIRt a rget) does not have the adequate value and the cause is that it has not taken into account correctly the variations of the channel.
  • the component SIR ⁇ LER -targ e t
  • BLERtarget target block error rate
  • the neural network of the method is subjected to training whenever variations in the component (SIReLER-target) arise -
  • the aforementioned neural network comes defined by the parameters that weigh the different margins and certain compensation values. For its calculation, simulations of multiple propagation environments are carried out where the valid values of the desired signal-objective interference ratio (SIRt ar g e t) are obtained for each considering environment.
  • the parameters of the neural network are obtained according to simulation data, once the method is being executed within a system operating in a real environment, dynamically adjusting so that the quality criteria given by the error rate of target block (BLERt ar get) of the service and also minimizes the power consumption in each communication.
  • BLERt ar get error rate of target block
  • the temporal evolution of the desired signal-interference received ratio (SIR rec ) that is measured, as well as the average block error rate (BLER) obtained in the communication are taken as input data. With these data, the parameters of the neural network will be adjusted to the environment of each of the cells of the mobile network.
  • the method object of the invention allows the use of power control mechanisms for the external loop based on a quality criterion different from the known criterion of the target block error rate (BLER tar get), proposing a criteria based in Ia Probability of Cut (Poutage). without reducing the quality of service (QoS) based on said target block error rate (BLER tar g et ) but improving the performance of the external loop, for the reasons set forth in the aforementioned patent application ES 200202947.
  • QoS quality of service
  • the programmable electronic device may be a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASCI) and a programmable card (FPGA) or any combination of the above.
  • the general purpose processor may preferably be a microprocessor or other possible alternatives: a conventional processor, a microcontroller or any state machine, in general.
  • the programmable electronic device can consist of a combination of multiple microprocessors, a microprocessor and one or more DSP devices, or any other configuration in which the execution of the different phases is distributed, in series or in parallel, included in the method that has been described.
  • the external loop power control apparatus for wireless communication systems may comprise a radio frequency receiver capable of receiving the data signal from a mobile or base station.
  • a radio frequency transmitter capable of sending the power control information to the corresponding base or mobile station can also be incorporated in said apparatus.
  • such external loop power control apparatus may be incorporated in a wireless communications network controller, or in the user's or mobile terminal equipment of the wireless communications systems.
  • the invention is applicable to any wireless communication system that supports one or more CDMA protocol standards, such as the WCDMA, IS-95, CDMA2000 standards, the HDR specification, etc.
  • Figure 1 shows a part of a mobile communications system, as is known in the state of the art, which includes the elements of a cellular infrastructure, the user's mobile terminal, base station and remote controller of the network, related to the object of the invention.
  • Figure 2. Shows a block diagram, according to the state of the art, of the part of a base station or a mobile that is related to the invention.
  • Figure 3. Shows a schematic representation of a neuron, the basic element from which and its interconnections a neuronal network is defined, according to a definition known in the state of the art.
  • Figure 4. Shows graphs of some possible functions that are commonly used as a transfer function in a neural network.
  • Figure 5. Shows a schematic representation of the two-layer neural network, with which the external loop power control method can be implemented according to the object of the invention and according to a preferred embodiment.
  • Figure 6. Shows a generic training model for a neural network, as defined in the state of the neural network technique.
  • Figure 7. Shows a block diagram with the input and output parameters of the external loop power control method for mobile communication systems object of the invention, which has been given the name "Outage.Based OLPC" .
  • Figure 8 shows a block diagram of the external loop power control method for mobile communication systems object of the invention, illustrating the decomposition of the desired signal-objective interference ratio (SIRt a rget) in the two components
  • FIG. 1 a part (100) of a WCDMA mobile communications system is represented. Apart from the invention, the elements shown in the figure are well known and are not described in detail: An element of interest is the user's terminal equipment or mobile station (104) that is represented by the cone of the vehicle;
  • the WCDMA mobile communications system also comprises several base stations (102, 103), or B-Nodes in the UMTS network, which contain processors, memories, embedded interface cards and software programs.
  • This part of the system includes a radio network controller (101) or RNC, "Radio Network Controller", which, among other functions, provides call processing.
  • the two base stations (102, 103) and the mobile station (104) are representative of endpoints of the wireless interface.
  • Each base station are representative of endpoints of the wireless interface.
  • (102, 103) is associated with a radio network controller (101) through land lines (105, 106).
  • the mobile station (104) is in communication with the base station (102), by means of the data signal (107) of the downlink and the data signal (108) of the uplink .
  • Figure 2 shows the part (200) of both stations, base station (102) and mobile (104), which includes the principles on which this invention is based.
  • the known aspects of the elements that appear in the mentioned figure are not treated, since a transmitter (202) and a radio frequency receiver (203) are described in detail in the state of the art.
  • Both the base station (102) and the mobile station (104) contain a controller (201), a transmitter (202) and a receiver (203).
  • the received signal corresponds to the uplink (108) and in the case of the mobile (104) the signal that it receives is that of the downlink (107), both arrive at the controller (201) through the receiver (203).
  • the power control apparatus object of the invention is incorporated in the controller (201) and sends through the transmitter (202) a command that indicates to the receiving station at that time that it increases or decreases its power, depending on the result of the method of power control by external loop described below, which aims to establish the desired signal-objective interference ratio (SIRt a rg et ) that acts as a threshold in the closed loop for power control.
  • SIRt a rg et desired signal-objective interference ratio
  • OLPC external loop power control
  • the present invention proposes that the desired signal-objective interference ratio (SIRtarget) that is provided for the external loop is given as a sum of two components: a first component (SIR 0Uta g e -t g t) and a second component (SIR ⁇ LER- tgt), such that:
  • the first component (SIR 0U tage-tgt) is a function of the fading margins (Mi, M 2 , ..., MN), previously calculated using the Newton-Raphson or other applicable method and associated with a probability of cut (p o i, p O 2, • -, PON) considered. Therefore, this component (SIR ou tage-tgt) has a fast-changing behavior that
  • the second component covers the non-ideal behavior of the channel, ensuring that the target block error rate (BLERtarget) is effectively maintained for the service.
  • This component SIR ⁇ LER-tgt
  • This component would remain constant in an ideal environment, but in practice, it will present small variations, not being imperative to respond instantaneously to changes in the channel. Therefore, it is necessary to maintain in this component (SIR B LER-t g t) the procedure of characteristic jump of the well-known method "BLER-based OLPC) (see again Sampath A, Kumar PS & Holtzman JM (1997)," On setting reverse link target SIR in a CDMA system ", Proc. IEEE Vehicular Technology Conference, Phoenix, Arizona , p 929-933.), which precisely has the characteristics of a slow response but is capable of ensuring exactly the specified target block error rate (BI_ER tar g e t).
  • One of the simplest embodiments that can be proposed is a linear combination of the fading margins (Mi, M 2 , ..., M N ), so that the first component (SIRoutag ⁇ -tgt) is a sum of said fading margins (Mi, M 2 , ..., MN) weighted or multiplied by adequate constants Fading margins (Ki, K 2 , ..., KN), leaving the desired signal-objective interference ratio (SIRt ar get):
  • SIR 181 SIR BLER _ lgt + / c, -M 1 + / c 2 -M 2 + ... + IC N -M N (1)
  • Figure 3 shows a neuron (300), the basic element from which and from its interconnections a neuronal network is defined.
  • a generic neuron (300) has N inputs (P 1 , p 2 PN), which once weighted by weights (wi, W 2 , ..., WN), are introduced to an adder (301).
  • a compensation is applied to the adder (b) that is added to the weighted inputs of the neuron (300), so that the value at the output (n) of the adder (301) is:
  • This value (n) is the input argument of a transfer function (302) that allows, for example, to introduce nonlinear behaviors and whose result is the final output (a) of the neuron (300).
  • a transfer function (302) some functions that are commonly used as a transfer function (302) are represented graphically: the first graph (401) corresponds to a linear transfer function and the graph (402) to a sigmoidal function of hyperbolic tangent type.
  • This neural network (500) has ⁇ entries corresponding to the estimated fading margins (Mi, M 2 , ..., MN), which, as stated above, are associated with the cutoff probabilities (p or i, p O2 , • -, P O N) and to fading parameters in the channel (706) that characterize the received data signal (107, 108).
  • Said fade parameters in the channel (706) can be statistical moments such as those considered in the aforementioned patent application ES 200202947: the standard deviation corresponding to the lognormal fade ( ⁇ T ⁇ / ), the Rice factor (K) of The desired signal and the standard deviation ( ⁇ f) corresponding to the distribution describing the variations of the interfering signals.
  • the neural network (500) comprises at least one input layer and a single output layer, although in a possible embodiment such as that illustrated in Figure 5, it is also simplified to a single input layer.
  • Each of the neurons has a first stage composed of an adder (501, 502, 503) with N inputs corresponding to the N inputs of the neural network
  • Each value (nj) is carried to a transfer function (504, 505)
  • the model can be extended to an arbitrary number of layers of neurons although for simplicity only two layers are shown.
  • the compensation applied in the adder (507) of this output neuron corresponds to the corrective term based on the target block error rate (BLER tar g et ), that is, Ia Second component (SIR ⁇ LER-tgt) of the desired signal-final interference ratio (SIRtarget), which is therefore:
  • a characteristic of the first component (SIR 0U tage-tgt) of said desired signal-objective interference ratio (SIRtarget) is that, unlike the fading margins (Mi, IVb, ..., MN ) which are used for calculation, can be negative.
  • Figure 6 describes the training model of a generic neural network (601). To be able to adjust its internal parameters, weights and compensations of the various neurons that make up
  • the neural network (500, 601) is necessary to have a set of input data (602) and the objectives (603) that the network has to reach for said inputs.
  • SIRtarget desired signal-objective interference
  • weights (w ⁇ ) and compensation are adjusted (b ⁇ ) of all the layers to minimize the error at the exit with different propagation conditions.
  • the necessary data for the training of the neural network (500), can be obtained either by simulation or by measurements in a controlled environment with different propagation conditions.
  • the optimum value of the desired signal-objective interference ratio (SIRt arget ) to which the output of the neural network (500) has to be adjusted is obtained considering as a quality objective a certain target block error rate (BLERtargeO- This is The basis that the neural network (500) allows establishing a mapping between the quality criteria based respectively on said target block error rate (BLERtargeO and the probabilities of cutting
  • the external loop power control method of the invention operating in a real system can adjust the parameters of its external loop to adapt them to the environments where the users to whom communication is served.
  • the variations that are measured in the second component (SIRBLER-tgt) of the desired signal-objective interference ratio (SIRt ar ge t ) give information about the errors that the neural network (500) is committing, because if it were perfect ,
  • the mentioned component (SIR ⁇ LER- t g t ) should remain constant in any condition.
  • an estimate (701) of the signal-to-interference ratio received (SIR re c) is made by means of the corresponding hardware architecture (see Sáez Ruiz, Juan Carlos: "A Hardware Architecture for the Estimation of the Signal to Interference Ratio in Systems
  • fade parameters are included in the channel (706) that are considered appropriate to characterize the signal (107, 108) received.
  • the fading parameters in the channel (706) considered are: the standard deviation corresponding to the lognormal fading (O ⁇ /) and the Rice factor (K) of the desired signal, as well as the standard deviation ( ⁇ ) corresponding to the distribution that describes the variations of the interfering signals.
  • the fading margins (M 1 , M 2 MN) associated with the previous fading parameters in the channel (706) are also a function of the corresponding cut probabilities (p o i, p O2 , • -, P O N) that are considered and, therefore, these probabilities of cut (p o - ⁇ , p O2 , •••, P O N) constitute another of the inputs (702) necessary for the method "Outage-Based Outer Loop Power Control ( OLPC) "object of the invention.
  • OLPC Outage-Based Outer Loop Power Control
  • the decoded data of each frame involved in the communication pass to a CRC reviewer (703), which determines or indicates whether the frame has been correctly decoded or, on the contrary, contains errors, when checking the bits of Code of Cyclic Redundancy (CRC) added at the end of the data frame.
  • CRC Cyclic Redundancy
  • the CRC reviewer (703) provides a state of the data blocks (707) consisting of a frame indicative of whether the data frame is properly decoded or, because it is not, has been deleted .
  • OPC Outage-Based Outer Loop Power Control
  • FIG 8 specifies in more detail the steps that take place in block (705) of Figure 7, that is, a preferred embodiment of the "Outage-Based Outer Loop Power Control (OLPC)" method is illustrated. of the invention.
  • OLPC Outage-Based Outer Loop Power Control
  • the aforementioned fading margins constitute one of the inputs (710) of the neural network (500) and are used, together with the block error rate objective (BLERt ar get), introduced by the input (709), to obtain the first component (SIR out ag e -tg t ) of the desired signal relationship- objective interference (SIRt a rget) -
  • the introduction (704) again of the target block error rate (BLER tar g e t) and the state of the data blocks (707) generated by the reviewer CRC (703) the second component is obtained (SIR B LER-tg0- Finally, both components are added together and the desired desired signal-objective interference ratio is obtained
  • the invention is applicable for standards other than WCDMA, as well as for the power control of any signal received both by the base stations and by the terminal equipment of the users or mobile stations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Método y aparato de control de potencia por lazo externo (OLPC) para sistemas de comunicación móviles que permiten ajustar rápidamente la relación señal deseada-interferencia objetivo (SIRtarget) satisfaciendo una tasa de error de bloque objetivo (BLERtarget). Concretamente, el método de control de potencia por lazo externo propuesto aquí es llamado 'Outage-Based OLPC' y establece que la relación señal deseada-interferencia objetivo (SIRtarget) viene dada como suma de dos componentes: la primera componente (SIRoutage-tgt) es calculada mediante una función de ajuste dinámico, por ejemplo, una red neuronal, que hace corresponder un criterio de calidad basado en probabilidades de corte con uno basado en la tasa de error de bloque objetivo (BLERtarget), tomando como entrada los márgenes de desvanecimiento asociados a las diferentes probabilidades de corte consideradas; la otra componente (SIRBLER-tgt) es la encargada de corregir las posibles desviaciones de la tasa de error de bloque objetivo (BLERtarget) debidas al comportamiento no ideal de la anterior componente (SIRoutage-tgt).

Description

MÉTODO Y APARATO DE CONTROL DE POTENCIA POR LAZO EXTERNO PARA SISTEMAS DE COMUNICACIÓN INALÁMBRICA
D E S C R I P C I Ó N
OBJETO DE LA INVENCIÓN
La presente invención tiene su aplicación dentro del sector de las telecomunicaciones y, en especial, en Ia industria dedicada a Ia fabricación tanto de estaciones base como de móviles en infraestructuras celulares para sistemas de comunicación inalámbrica.
Más particularmente, Ia invención que aquí se describe, dentro de las comunicaciones se refiere a un método y aparato para el sistema de control de potencia por lazo externo en una red celular de telefonía móvil.
Un objeto de Ia invención es permitir un control de potencia mediante el procedimiento de lazo externo que, complementado con el método de Ia invención y que aquí se denomina "Outage-Based OLPC", se adapta a las condiciones de propagación cambiantes del canal de comunicación.
Es asimismo objeto de Ia invención proporcionar un aparato adaptado para ser incorporado en el controlador de una estación base o de un móvil, que realiza el ajuste dinámico del nivel de potencia según Ia relación señal deseada-interferencia objetivo establecida por el método
"Outage-Based OLPC" que se propone. ANTECEDENTES DE LA INVENCIÓN
En Enero de 1998, el Instituto Europeo de Estándares de Telecomunicaciones (ETSI) seleccionó Ia tecnología básica para el Sistema Universal de Telecomunicaciones Móviles (UMTS) (véase ETSI, "The ETSl
UMTS Terrestial Radio Access (UTRA) ITU-R RTT Candidate Submission", Junio 1998). El principal interfaz de radio propuesto fue el protocolo de Acceso Múltiple por División de Código en Banda Ancha (WCDMA Wideband Code División Múltiple Access), cuyas características ofrecen Ia oportunidad de satisfacer completamente los requisitos de Ia telefonía móvil de tercera generación (3G). Debido a Ia alta tasa de transmisión de datos y a los cada vez más exigentes requisitos de calidad de servicio (QoS) en 3G, se impone el desarrollo de nuevas estrategias de planificación. Entre ellas, probablemente Ia de mayor objeto de estudio es Ia del sistema de control de potencia, en particular Ia del procedimiento empleado para implementar el lazo externo de dicho sistema.
A continuación, se describe el mencionado sistema de control de potencia de un modo general, pues Ia funcionalidad del lazo externo, que es para el que esta invención propone un método, es consecuencia de otros componentes del sistema.
El sistema de control de potencia en redes celulares, basadas en WCMDA, es necesario dado que se trata de una tecnología limitada por interferencia, debido a que todos los usuarios comparten el mismo espectro de frecuencia y sus códigos no son completamente ortogonales (véase Holma & Toskala: "WCDMA por UMTS, Radio Access for Third Generation
Mobile Communications", John Wiley & Sons.).
El fin último del sistema de control de potencia en WCDMA es alcanzar Ia calidad de servicio requerida en un enlace particular, descendente de Ia estación base al móvil o equipo terminal, o bien, ascendente del móvil a Ia estación base, con un nivel de potencia transmitida mínimo (este aspecto es precisamente en el que se centra Ia invención).
Los principales objetivos del sistema de control de potencia en redes WCDMA son:
• Anulación del efecto cerca - lejos: en el caso de que todas las estaciones móviles transmitieran Ia misma potencia sin tener en cuenta Ia distancia o el desvanecimiento a Ia estación base, los móviles más cercanos a Ia misma supondrían una interferencia significativa para los terminales más lejanos.
• Protección contra desvanecimientos profundos.
• Minimización de Ia interferencia en Ia red con Ia consecuente mejora en capacidad.
• Mayor duración de la batería de las estaciones móviles.
Un sistema de control de potencia para WCMDA está en conjunto implementado mediante tres procedimientos diferenciados:
• Por lazo abierto: durante el proceso de acceso aleatorio al principio de una conexión, Ia estación base/móvil estima Ia pérdida de potencia en el enlace ascendente/descendente y en función de ella ajusta su potencia de transmisión.
• Por lazo cerrado o interno: también llamado control de potencia rápido (1500 Hz) que se compone de los siguientes tres pasos:
1 ) El terminal receptor correspondiente (Ia estación base o Ia unidad móvil) compara el valor de Ia relación señal deseada-interferencia recibida (SIRrec) con Ia relación señal deseada-interferencia objetivo
(SIRtarget) que depende de Ia calidad de servicio requerida para ese enlace en concreto y Ia cual es fijado por el procedimiento de lazo externo que se explica más adelante.
2) El mismo terminal receptor envía bits de control de potencia indicando que Ia potencia de transmisión debe ser incrementada (si SIRrec < SIRtarget) o disminuida (si SIRrec > SIRtarget) en un cierto valor (normalmente 1dB).
3) La unidad transmisora (estación base o móvil) aumenta o bien disminuye su potencia en Ia cantidad fijada anteriormente.
• Por lazo externo (OLPC, Outer Loop Power Control): es mucho más lento que el lazo cerrado (10-100Hz) y establece Ia relación señal deseada-interferencia objetivo (SIRtarget) que hace que se mantenga un objetivo de calidad predeterminado. Un criterio o una medida de Ia calidad de un enlace es Ia tasa de trama errónea (FER) o equivalentemente Ia tasa de bloque erróneo (BLER), Ia cual es función de Ia relación señal deseada- interferencia (SIRrec)- Puesto que el lazo interno ayuda a mantener Ia relación señal deseada-interferencia (SIRrec) cerca de Ia objetivo (SIRtarget),
Ia tasa de bloque erróneo (BLER) es, en última instancia, determinada por este valor objetivo. De este modo, para alcanzar una calidad de servicio en un entorno de desvanecimiento determinado, el objetivo (SIRtarget) necesita ser ajustado al valor que es apropiado para ese entorno.
Desgraciadamente, no existe un objetivo (SIRtarget) que pueda alcanzar Ia tasa de bloque erróneo (BLER) requerida para todos los entornos de desvanecimiento en el canal de comunicación inalámbrica. Por esta razón, el ajuste dinámico de esta relación señal deseada-interferencia objetivo (SIRtarget) es hoy en día motivo de estudio y se han descrito mecanismos para ajustar dicha relación en forma conveniente.
El diseño para el control de potencia por lazo externo (OLPC) comúnmente aceptado es el basado en Ia tasa de error de bloque objetivo (BLERtarget) y llamado "BLER-Based OLPC", el cual mide ésta métrica y cambia Ia relación señal deseada-interferencia objetivo (SIRtarget) en consecuencia, dependiendo de si Ia tasa de error de bloque objetivo (BLERtarget) está por encima o por debajo del umbral deseado (véase Sampath A, Kumar P S & Holtzman J M (1997), "On setting reverse link target SIR ¡n a CDMA system", Proceedings of the IEEE Vehicular Technology Conference, Phoenix, Arizona, p 929-933.). El inconveniente es que, teniendo en cuenta que Ia técnica de medición de Ia tasa de error de bloque (BLER) es bastante lenta, especialmente para servicios de alta calidad, las prestaciones de estos sistemas quedan muy deterioradas en entornos dinámicos con características de desvanecimiento cambiantes en muy cortos plazos de tiempo (véase Holma H., "WCDMA for UMTS", John
Wiley & Sons, LTD, 2002). La mencionada lentitud para los servicios que requieren una tasa de error de bloque (BLER) baja (ejemplo: 0.1 %) es debida a que el método "BLER-based OLPC" se basa en contabilizar los errores mediante el Código de Redundancia Cíclica (CRC), Io cual implica un número demasiado elevado de bloques de datos para llegar a una estimación precisa de Ia tasa de error de bloque (BLER).
El problema más grave es el que tiene lugar cuando existe un cambio favorable en las condiciones de propagación ante el cual el método "BLER-based OLPC" reacciona de forma muy lenta, haciendo que Ia relación señal deseada-interferencia objetivo (SIRtarget) fijada por dicho método de control de potencia por lazo externo sea mayor de Ia necesaria durante un largo período de tiempo, con el consecuente aumento de interferencia y, por tanto, Ia pérdida de capacidad del sistema.
Se ha generado mucha investigación con Ia intención de resolver Ia lenta convergencia del método de control de potencia, como se ha explicado ocurre en el "BLER-Based OLPC". Una de las opciones más usadas como posible solución consiste en realizar modificaciones del tamaño de los saltos de ajuste para Ia relación señal deseada-interferencia objetivo (SIRtarget) que impone el comentado método "BLER-based OLPC" (véase de nuevo Sampath A, Kumar P S & Holtzman J M (1997), "On setting reverse link target SIR ¡n a CDMA system", Proc. IEEE Vehicular Technology Conference, Phoenix, Arizona, p 929-933.). Sin embargo, esa opción no supera el inherente problema de este tipo de método de control de potencia puesto que también conlleva un número muy alto de bloques de datos para Ia estimación precisa de Ia tasa de error de bloque (BLER). Basados en este principio del criterio de calidad que obedece a tasa de error de bloque objetivo (BLERtarget), pueden citarse algunos métodos que han sido objeto de las siguientes solicitudes de patentes en Estados Unidos: US 2004/0137860, US 2004/0157636 y US 2003/0031135.
Otra de las alternativas más habituales para solventar el problema de Ia lenta convergencia del método "BLER-Based OLPC" es Ia consideración de otras métricas (las llamadas "soft metrics"), entre ellas: Tasa de Error de Bit (BER), Tasa de Error de Símbolo re-codificado (SER), métrica de potencia re-codificada, número de iteraciones de decodificación, Métrica modificada de Yamamoto y Ia Distancia Euclídea (ED) (véase Rege
Kiran, "On Link Quality Estimation for 3G Wireless Communication Networks", In Proceedings of the IEEE VTS FaII VTC2000. 52nd Vehicular Technology Conference). Estas métricas tienen Ia ventaja respecto a Ia tasa de error de bloque (BLER) de que pueden ser estimadas con mucha más rapidez.
Ya que el fin del OLPC es el de cumplir un objetivo de tasa de error de bloque (BLERtarget) constante y para un cambio moderado de Ia longitud de bloque por las condiciones de propagación del canal, se establece una relación prácticamente fija entre Ia tasa de error de bloque (BLER) y las mencionadas métricas "soft metrics", con Ia que es posible encontrar Ia tasa de error de bloque objetivo (BLERtarget) a partir de una estimación de cualquiera de dichas métricas. A modo de ejemplo, cabe mencionar algunos diseños de métodos basados en estas métricas que han sido objeto de las siguientes patentes: US 6434124 y US 6763244. No obstante, el inconveniente del control de potencia por lazo externo basado en tales métricas surge cuando un cambio en las condiciones de propagación del canal afecta considerablemente a Ia longitud de bloque. En esta situación, Ia correlación entre Ia tasa de error de bloque (BLER) y las métricas consideradas como "soft metrics" ya no es fija y entonces no se llega a alcanzar una tasa de error de bloque (BLERtarSet) constante (véase Avidor, Dan, "Estimating the Block Error Rate at the Output of the Frame Selector in the UMTS System", en Proceedings of the Wireless
Networks and Emerging Technologies (WNET '02), Wireless and Optical Communications (WOC 2002), Julio 2002, Banff, Alberta, Canadá.).
Por otro lado, Joñas Blom, Fredrik Gunnarson y Fedrik Gustafsson en su solicitud de patente US 6449462, establecen un método para controlar Ia relación señal deseada-interferencia objetivo (SIRtarget) basado también en Ia medición de Ia tasa de error de bloque (BLER), pero junto con Ia estimación de unos determinados parámetros representativos de las diferentes condiciones del canal radioeléctrico y de Ia distribución estadística de las señales interferentes. El método se basa en Ia determinación de una función de calidad definida como Ia probabilidad de trama errónea condicionada por los mencionados parámetros. Aunque esta estrategia implica ganancias de capacidad del orden del 30%, el proceso para Ia obtención de dicha función de calidad impone un retardo que deteriora las prestaciones de este tipo de modelos. Aparte, en el artículo de los mismos autores en el que se describe Ia invención con mayor detalle técnico: "Estimation and Outer Loop Power Control in Cellular Radio Systems" presentado a ACM Wireless Networks, se indica que el sistema puede degradarse debido a desvanecimientos en el canal radioeléctrico.
El solicitante de Ia presente, Alvaro López Medrano en solicitud de patente Española ES 200202947 (véanse también los artículos de Alvaro
López-Medrano: "Optimal SIR target determination for Outer-Loop Control in the W-CDMA System", Proceedings of the IEEE Vehicular Technology Conference (VTC) FaII 2003, 6-9 Oct. 2003, Orlando (USA) y "Optimal SIR target determination for Outer-Loop Control in the W-CDMA System: Inverse SIR Cumulative Distribution Function computation throughout the Newton- Raphson Method", Proceedings of the 12th IST Summit on Mobile and Wireless Communications (Volume II), pp. 732-736, 15-18 Jun. 2003, Aveiro,
Portugal) propone un lazo externo del sistema de control de potencia en sistemas 3G basado en un criterio de calidad distinto al de Ia tasa de error de bloque objetivo (BLERtarget)- Este criterio de calidad en que se basa el método descrito en ES 200202947 es Ia probabilidad de corte (Poutage), con Io que se evita Ia inherente baja velocidad de convergencia del método
"BLER-based OPLC" ya comentada.
Como se explica en ES 200202947, Ia probabilidad de corte (Poutage) constituye otro parámetro de calidad habitualmente aplicado en infraestructuras celulares, que se establece previamente, durante Ia fase de planificación de Ia red de comunicaciones, en función de Ia clase de servicio cubierto por el enlace de comunicación, las características de las celdas y, dentro de cada celda, de las características de Ia zona de servicio. A partir de esta probabilidad de corte (Poutage), en Ia mencionada solicitud de patente se propone determinar el margen de desvanecimiento (M() (dB)) correspondiente a Ia relación señal deseada-interferencia y, por tanto, se establece Ia relación señal deseada-interferencia objetivo (SIRtarget) para un criterio de calidad de servicio dado por Ia probabilidad de corte (Poutage) y unos momentos estadísticos característicos del canal radioeléctrico bajo consideración.
Lo expuesto en el párrafo anterior se traduce en un problema matemático propuesto en primer lugar por S. Kandukuri and S. Boyd (en IEEE Transactions on Wireless Communications, vol. 1 , no. 1 , pp. 46-55, Enero 2002.) y conocido como Optimal power control in interference-limited fading wireless channels with outage-probability specifications", que ha sido resuelto por Alvaro López Medrano en su citada solicitud de patente previa, aplicando el método iterativo de Newton-Raphson (véase H. R. Schwarz, J. Waldvogel "Numerical Análisis", John Wiley&Sons) al control de potencia por lazo externo.
En definitiva, el método de control de potencia por lazo externo propuesto por López Medrano en Ia anterior solicitud de patente ES
200202947 está basado en el criterio de calidad de Ia probabilidad de corte (Poutage), pero un compromiso final de un lazo externo deber ser el mantener constante una tasa de error de bloque objetivo (BLERtarget) que corresponde a un servicio determinado (véanse los documentos de especificaciones del Estándar de Tercera Generación 3GPP: TS 25.101 , 'UE radio transmission and reception (FDD), sección 8.8.1' y el TS 25.104, 'Base Station (BS) radio transmission and reception (FDD), sección 8'). Por consiguiente, no es posible mantener una probabilidad de corte (Poutage) constante para todas las condiciones de propagación, al no. permanecer constante Ia propia tasa de error de bloque (BLER). Esto es debido a que no existe una relación fija entre Ia probabilidad de corte (Poutage) y Ia tasa de error de bloque (BLER), sino que depende precisamente de Ia condición de propagación en el enlace radio que esté teniendo lugar en ese momento.
Como el margen de desvanecimiento, que ofrece como resultado el método de control de potencia por lazo externo descrito en ES
200202947, es función entre otras variables de tal probabilidad de corte
(Poutage), su adaptación dinámica implica cambios en dicho margen. Y en conclusión, Ia relación señal deseada-interferencia objetivo (SIRtarget) debería poder ajustarse contemplando los cambios del margen de desvanecimiento, para adaptarse el nivel de potencia por el lazo externo a cualesquiera que sean las condiciones de propagación, siendo mínima Ia potencia a transmitir.
DESCRIPCIÓN DE LA INVENCIÓN La presente invención viene a resolver, entre otras, Ia problemática anteriormente expuesta, en todos y cada uno de los diferentes aspectos expuestos en los antecedentes.
El método y aparato de control de potencia por lazo externo para sistemas de comunicaciones móviles que se proponen, especialmente concebidos para tecnologías de tercera generación (3G) basadas en alguno(s) de los protocolos estandarizados del Acceso Múltiple por División de Código (CDMA), garantizan por un lado un criterio de calidad de servicio
(QoS) en términos de una tasa de error de bloque (BLER) preestablecida y, por otro, son capaces de adaptarse rápidamente a las condiciones cambiantes del canal radioeléctrico siguiendo un nuevo criterio de calidad, además del anterior (criterio de Ia BLER), el cual está basado en Ia probabilidad de corte.
Un aspecto de Ia invención es pues uri método de control de potencia por lazo externo para sistemas de comunicación inalámbrica que, a partir de una señal de datos recibida, procedente de una estación base o móvil, comprende las fases siguientes:
¡) establecer una tasa de error de bloque objetivo (BLERtarget) i¡) realizar una estimación de Ia relación señal deseada- interferencia (SIRrec) y de unos parámetros que caracterizan el desvanecimiento en el canal (706) sufrido por Ia señal recibida, üi) estimar unos márgenes de desvanecimiento, mediante el método de Newton-Raphson, a partir de los parámetros de desvanecimiento en el canal y de unas probabilidades de corte,
¡v) determinar el estado de los bloques de datos, a partir de Ia comprobación del Código de Redundancia Cíclica (CRC), v) establecer una relación señal deseada-interferencia objetivo (SIRtarget) para el lazo externo, a partir de dicho estado de los bloques de datos, Ia tasa de error de bloque objetivo (BLERtarget) y los estimados márgenes de desvanecimiento asociados a las probabilidades de corte consideradas.
La relación señal deseada-interferencia objetivo (SIRtarget) que establece el método de control de potencia propuesto, aquí denominado "Outage-Based OLPC", se calcula como suma de dos componentes, las cuales llamamos SIR0Utage-tgt y SIRBLER— tgt, a través de una función de ajuste dinámico que realiza un mapeo entre el criterio de calidad basado en Ia tasa de error de bloque objetivo (BLERtarget) y otro criterio de calidad, éste basado en las probabilidades de corte.
De esta manera, se satisface Ia calidad de servicio (QoS) requerida, con el nivel mínimo de potencia necesario, adaptando rápida y dinámicamente Ia potencia a las condiciones de propagación de la señal de datos, por Io cual, dado que se trata de una tecnología limitada por interferencia, hace que se optimice también Ia capacidad del sistema.
La función de ajuste dinámico con Ia que se establece Ia relación señal deseada-interferencia objetivo (SIRtarget) como suma de las dos componentes mencionadas: SIRtgt = SIR0Ulage_lgt + SIRBLER_lgt , consiste preferentemente en una red neuronal.
En el ámbito de esta descripción, se entiende por red neuronal una herramienta para implementar una función genérica parametrizable, a Ia que se aplican unos pesos y unas compensaciones ("offsets") que representan los parámetros de Ia función, los cuales se pueden ajustar, Io que se conoce como entrenamiento de una red neurona!, para obtener un cierto comportamiento deseado.
Como es bien sabido, las neuronas de una red neuronal se organizan en capas, definiéndose una capa de neuronas como aquel conjunto de neuronas que comparten unas mismas entradas. Las salidas de una capa de neuronas constituyen las entradas de Ia siguiente capa.
Dentro de las redes neuronales, las multicapa son más versátiles que una red con una sola capa (véase Martin T. Hagan, Howard B. Demuth, Mark H. Beale, "Neural Network Design", PWS Pub. Co., 1st edition, 1995).
Por ejemplo, una red con dos capas, una primera capa sigmoidal y una segunda capa lineal, se puede entrenar para aproximar Ia mayoría de las funciones arbitrariamente bien. Para el caso que nos ocupa, ésta es Ia estructura implementada para Ia red neuronal del método que establece Ia relación señal deseada-interferencia objetivo (SIRtarget) del lazo externo para el control de potencia:
La red neuronal que se propone cuenta con una primera capa con un número de neuronas que depende del número de probabilidades de corte consideradas y una segunda capa que tiene una sola neurona al haber una única salida: el valor de Ia relación señal deseada-interferencia objetivo
(SIRtarget)- Los parámetros de entrada son los márgenes de desvanecimiento calculados para las diferentes probabilidades de corte. Para incorporar el término corrector que corresponde al criterio de calidad basado en Ia tasa de error de bloque objetivo (BLERtarget), Ia compensación de Ia neurona de Ia capa de salida se hace corresponder con Ia componente (SIRBLER-target) de Ia relación señal deseada-interferencia objetivo (SIRtarget) final.
La otra componente (SIR0Utage-target) es generada mediante la red neuronal descrita y se adapta a las condiciones de propagación cambiantes, por Io que ha de tener un comportamiento de variación rápida.
Para poder permitir esta variación rápida, tal componente
(SIRoutage-target) debe estar ligada a parámetros de Ia señal física sobre Ia que se producen los desvanecimientos, como es por ejemplo Ia probabilidad de corte. No obstante, el objetivo final de calidad es el basado en Ia tasa de error de bloque objetivo (BLERtarget), por Io que es necesaria esta función parametrizable que efectúa el mapeo de los parámetros de señal física, las probabilidades de corte, a parámetros de calidad correspondientes a Ia tasa de error de bloque (BLER). Por ello, Ia red neuronal toma como entrada los márgenes de desvanecimiento asociados a diferentes probabilidades de corte. Dichos márgenes pueden ser estimados, según se describe en Ia solicitud de patente ES 200202947, invirtiendo Ia función de distribución de Ia relación señal deseada-interferencia recibida (SIRrec) mediante el conocido método de Newton-Raphson.
Sin embargo, Ia adaptación que proporciona Ia primera componente (SIRoutage-tgt) de Ia relación señal deseada-interferencia objetivo (SIRtarget) establecida para el control de potencia por lazo externo no siempre es ideal y no todas las variaciones del canal son tenidas en cuenta. Por Io tanto, el lazo externo no es capaz por sí solo de garantizar el criterio preestablecido de tasa de error de bloque objetivo (BLERtarget)- Es por esto por Io que, para cubrir comportamientos no ideales se incluye Ia segundo componente (SIRβLER-target) en Ia relación señal deseada-interferencia objetivo (SIRtarget) final, que está encargada de asegurar que efectivamente se mantiene Ia calidad definida por Ia tasa de error de bloque objetivo (BLERtarget) en el servicio.
Idealmente, esta última componente (SIRβLER-target) se mantendría constante, pues su variación significa que Ia otra componente (SIROutage-target) de Ia relación señal deseada-interferencia objetivo (SIRtarget) no posee el valor adecuado y Ia causa es que no ha tenido en cuenta correctamente las variaciones del canal. En Ia práctica, por ello, Ia componente (SIRβLER-target) presentará pequeñas variaciones en orden a garantizar Ia tasa de error de bloque objetivo (BLERtarget), pero no será imperativo que responda de forma instantánea a cambios en el canal.
Tanto en el entorno ideal o real simulado en un laboratorio, como en el entorno donde el método se ejecuta dentro del ámbito de un sistema de comunicaciones inalámbricas existente en Ia práctica, Ia red neuronal del método se somete a entrenamiento cada vez que surgen variaciones en Ia componente (SIReLER-target)- La citada red neuronal viene definida por los parámetros que ponderan los distintos márgenes y unos determinados valores de compensación. Para su calculo, se realizan simulaciones de múltiples entornos de propagación donde se obtienen los valores válidos de Ia relación señal deseada-interferencia objetivo (SIRtarget) para cada entorno considerando. Esos valores se obtienen considerando como objetivo de calidad Ia tasa de error de bloque objetivo (BLERtarget) y con ellos se procede a optimizar los parámetros de Ia red neuronal que minimizan el error de Ia relación señal deseada-interferencia objetivo (SIRtarget) para todas las condiciones de propagación. De esta manera, se consigue relacionar los dos criterios de calidad considerados: el que se basa en Ia tasa de error de bloque objetivo (BLERtarget) y el de Ia probabilidad de corte (Poutage)-
Los parámetros de Ia red neuronal se obtienen según datos de simulación, una vez que el método está siendo ejecutado dentro de un sistema funcionando en un entorno real, ajustándose de forma dinámica para que se cumpla el criterio de calidad dado por Ia tasa de error de bloque objetivo (BLERtarget) del servicio y además se minimice el consumo de potencia en cada comunicación. Atendiendo a ambos compromisos, se toman como datos de entrada Ia evolución temporal de Ia relación señal deseada-interferencia recibida (SIRrec) que es medida, así como Ia tasa de error de bloque (BLER) media obtenida en Ia comunicación. Con estos datos, se irán ajustando los parámetros de Ia red neuronal al entorno de cada una de las celdas de Ia red móvil.
Como resultado, el método objeto de Ia invención permite Ia utilización de mecanismos de control de potencia para el lazo externo basados en un criterio de calidad diferente al conocido criterio de Ia tasa de error de bloque objetivo (BLERtarget), proponiendo un criterio basado en Ia Probabilidad de Corte (Poutage). sin merma de Ia calidad de servicio (QoS) basada en dicha tasa de error de bloque objetivo (BLERtarget) pero mejorando las prestaciones del lazo externo, por los motivos que se exponen en Ia solicitud de patente ES 200202947 ya mencionada.
Otro aspecto de Ia invención se refiere a un aparato de control de potencia por lazo externo para sistemas de comunicación inalámbrica, el cual comprende al menos un dispositivo electrónico programable que opera según el método anteriormente descrito. El dispositivo electrónico programable puede tratarse de un procesador de propósito general, un procesador de señal digital (DSP), un circuito integrado específico de aplicación (ASCI) y una tarjeta programable (FPGA) o cualquier combinación de los anteriores. El procesador de propósito general puede ser preferiblemente un microprocesador u otras alternativas posibles: un procesador convencional, un microcontrolador o cualquier máquina de estados, en general. Incluso, el dispositivo electrónico programable puede constar de una combinación de múltiples microprocesadores, un microprocesador y uno o más dispositivos DSP, o cualquier otra configuración en Ia que se distribuya Ia ejecución de las distintas fases, en serie o en paralelo, comprendidas en el método que se ha descrito.
Opcionalmente, el aparato de control de potencia por lazo externo para sistemas de comunicación inalámbrica, que se propone puede comprender un receptor de radiofrecuencia capacitado para recibir Ia señal de datos procedente de una estación base o móvil. Adicionalmente, también se puede incorporar en dicho aparato un transmisor de radiofrecuencia capacitado para enviar Ia información del control de potencia a Ia estación base o móvil que corresponde. Así, tal aparato de control de potencia por lazo externo puede estar incorporado en un controlador de redes de comunicaciones inalámbricas, o bien, en el equipo terminal del usuario o móvil del sistemas de comunicaciones inalámbricas. La invención es aplicable a cualquier sistema de comunicaciones inalámbricas que soporta una o más estándares del protocolo CDMA, tales como pueden ser los estándares WCDMA, IS-95, CDMA2000, Ia especificación HDR, etc.
DESCRIPCIÓN DE LOS DIBUJOS
Para complementar Ia descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características del invento, de acuerdo con un ejemplo preferente de realización práctica del mismo, se acompaña como parte integrante de dicha descripción, un juego de dibujos en donde con carácter ilustrativo y no limitativo, se ha representado Io siguiente:
La figura 1.- Muestra una parte de un sistema de comunicaciones móviles, según se conoce en el estado de Ia técnica, que incluye los elementos de una infraestructura celular, terminal móvil del usuario, estación base y controlador remoto de Ia red, relacionados con el objeto de Ia invención.
La figura 2.- Muestra un diagrama de bloques, conforme al estado de Ia técnica, de Ia parte de una estación base o de un móvil que tiene relación con Ia invención.
La figura 3.- Muestra una representación esquemática de una neurona, el elemento básico a partir del cual y de sus interconexiones se define una red neuronal, de acuerdo una definición conocida en el estado de Ia técnica.
La figura 4.- Muestra unas gráficas de algunas posibles funciones que se emplean habitualmente como función de transferencia en una red neuronal. La figura 5.- Muestra una representación esquemática de Ia red neuronal de dos capas, con Ia que se puede implementar el método de control de potencia por lazo externo de acuerdo al objeto de Ia invención y según una realización preferente.
La figura 6.- Muestra un modelo genérico de entrenamiento para una red neuronal, según se define en el estado de Ia técnica de redes neurales.
La figura 7.- Muestra un diagrama de bloques con los parámetros de entrada y salida del método de control de potencia por lazo externo para sistemas de comunicaciones móviles objeto de Ia invención, al que se ha dado el nombre de "Outage.Based OLPC".
La figura 8.- Muestra un diagrama de bloques del método de control de potencia por lazo externo para sistemas de comunicaciones móviles objeto de Ia invención, ilustrando Ia descomposición de Ia relación señal deseada-interferencia objetivo (SIRtarget) en las dos componentes
(SIRoutage-tgt, SIRβLER-tgt) que se suman, junto con los apropiados parámetros de entrada.
REALIZACIÓN PREFERENTE DE LA INVENCIÓN
En Ia Figura 1 , está representada una parte (100) de un sistema de comunicaciones móviles WCDMA. Aparte de Ia invención, los elementos mostrados en Ia figura son bien conocidos y no son descritos en detalle: Un elemento de interés es el equipo terminal del usuario o estación móvil (104) que está representada mediante el ¡cono del vehículo; también el sistema de comunicaciones móviles WCDMA comprende varias estaciones base (102, 103), o Nodos-B en Ia red UMTS, que contienen procesadores, memorias, tarjetas de interfaces y programas de software embebidos. Esta parte del sistema incluye un controlador de Ia red radio (101) o RNC, "Radio Network Controller", el cual, entre otras funciones, proporciona el procesado de llamadas. Las dos estaciones base (102, 103) y Ia estación móvil (104) son representativas de puntos finales del interfaz sin cable. Cada estación base
(102, 103) está asociada con un controlador de Ia red radio (101) a través de unas líneas terrestres (105, 106). En Io que sigue, se asume que Ia estación móvil (104) está en comunicación con Ia estación base (102), por medio de Ia señal de datos (107) del enlace descendente y de Ia señal de datos (108) del enlace ascendente.
La Figura 2 presenta Ia parte (200) de ambas estaciones, estación base (102) y móvil (104), Ia cual incluye los principios en los que se basa esta invención. Los aspectos conocidos de los elementos que aparecen en Ia mencionada figura no son tratados, ya que un transmisor (202) y un receptor (203) de radiofrecuencia se describen detalladamente en el estado de Ia técnica. Tanto Ia estación base (102) como Ia móvil (104) contienen un controlador (201), un transmisor (202) y un receptor (203). Así, en el caso de Ia estación base (102), Ia señal recibida corresponde al enlace ascendente (108) y en el caso de Ia móvil (104) Ia señal que recibe es Ia del enlace descendente (107), ambas llegan al controlador (201 ) a través del receptor (203). El aparato de control de potencia objeto de Ia invención se incorpora en el controlador (201 ) y envía a través del transmisor (202) un comando que indica a Ia estación receptora en ese momento que aumente o disminuya su potencia, dependiendo del resultado del método de control de potencia por lazo externo que se describe a continuación, el cual tiene como fin establecer Ia relación señal deseada-interferencia objetivo (SIRtarget) que actúa como umbral en el lazo cerrado para el control de potencia.
El método de Ia invención, el cual aquí se llama "Outage-Based
OLPC" por cuanto constituye un control de potencia por lazo externo (OLPC) que garantiza un criterio de calidad en términos de una tasa de error de bloque objetivo (BLERtarget) y además es capaz de adaptar Ia potencia rápidamente a las condiciones del canal radioeléctrico, considerando otro criterio de calidad basado en Ia probabilidad de corte, se desarrolla según unos pasos que tienen lugar en el controlador (201) y que se detallan a continuación.
La presente invención propone que Ia relación señal deseada- interferencia objetivo (SIRtarget) que se proporcione para el lazo externo viene dada como suma de dos componentes: una primera componente (SIR0Utage- tgt) y una segunda componente (SIRβLER-tgt), tal que:
SIRtgt = SIRoutage-tgt + SIRBLER-tgl
La primera componente (SIR0Utage-tgt) es una función de unos los márgenes de desvanecimiento (Mi, M2,..., MN), calculados previamente mediante el método de Newton-Raphson u otro aplicable y asociados a unas probabilidades de corte (poi, pO2, •--, PON) consideradas. Por tanto, esta componente (SIRoutage-tgt) tiene un comportamiento de variación rápida que
Ie permite adaptarse a condiciones de propagación cambiantes, aunque dicho comportamiento no siempre es ideal, es decir, que no todas Ia variaciones del canal son tenidas en cuenta por Ia mencionada (SIRoutage-tgt) y por sí sola no garantiza el criterio preestablecido de tasa de error de bloque objetivo (BLERtarget), si no fuera porque se complementa con Ia otra componente (SIRBLER-tgt).
La segunda componente (SIReLER-tgt) cubre los comportamientos no ideales del canal, asegurando que efectivamente se mantiene Ia tasa de error de bloque objetivo (BLERtarget) para el servicio. Esta componente (SIRβLER-tgt) se mantendría constante en un entorno ideal, pero en Ia práctica, presentará pequeñas variaciones, no siendo imperativo que responda de forma instantánea a cambios en el canal. Por esto, es necesario mantener en esta componente (SIRBLER-tgt) el procedimiento de salto característico del conocido método "BLER-based OLPC) (véase de nuevo Sampath A, Kumar P S & Holtzman J M (1997), "On setting reverse link target SIR in a CDMA system", Proc. IEEE Vehicular Technology Conference, Phoenix, Arizona, p 929-933.), el cual precisamente tiene las características de una respuesta lenta pero que es capaz de asegurar exactamente Ia tasa de error de bloque objetivo (BI_ERtarget) especificada.
Volviendo ahora a Ia primera componente (SIR0Utage-tgt), Ia cual viene determinada, como ya se ha comentado, por una función de los márgenes de desvanecimiento (Mi, M2 MN) asociados a las distintas probabilidades de corte (poi, pO2, • -, PON) consideradas, el hecho de que no se considere una sola probabilidad de corte y por tanto un solo margen de desvanecimiento asociado es porque no es posible mantener Ia probabilidad de corte constante para todas las condiciones de propagación, tampoco sería constante Ia tasa de error de bloque (BLER).y, en consecuencia, no se mantendría es el objetivo del lazo externo. La anterior discrepancia entre probabilidad de corte y tasa de error de bloque (BLER) es debido a que no existe una relación constante entre ambos criterios, sino que depende precisamente de Ia condición radio que esté teniendo lugar en el instante.
Seguidamente, se proponen diversas formas de encontrar Ia función que a partir de los márgenes de desvanecimiento (M1, M2,..., MN) da como resultado Ia primera componente (SIRoutage-tgt), de modo que el método "Outage-Based OLPC" satisface el criterio de calidad impuesto por Ia tasa de error de bloque objetivo (BLERtarget), cumpliendo un mínimo consumo de potencia en Ia transmisión.
Una de las alternativas de realización más sencillas que se pueden proponer es una combinación lineal de los márgenes de desvanecimiento (M-i, M2,..., MN), con Io que Ia primera componente (SIRoutagβ-tgt) es un sumatorio de dichos márgenes de desvanecimiento (M-i, M2,..., MN) ponderados o multiplicados por unas adecuadas constantes márgenes de desvanecimiento (K-i, K2,..., KN), quedando Ia relación señal deseada-interferencia objetivo (SIRtarget):
SIR181 = SIRBLER_lgt + /c, -M1 + /c2 -M2 + ... + ICN -MN (1 )
Como caso particular, está el método que se describe en Ia solicitud de patente ES 200202947 citada como antecedente; en efecto, si en Ia ecuación anterior se anulan todas las constantes menos una y se toma un único margen de desvanecimiento:
/c, = 1
Jc1 = OVz ≠ 1
nos queda:
SIRtarset = SIR011^ + Ic1 -M,
Para generalizar el problema a más casos que contemplen todas las condiciones de propagación, involucrando funciones no lineales, utilizaremos redes neuronales como herramienta para Ia posibilidad de definir tales funciones no necesariamente lineales y que se adaptan a las condiciones de propagación en entornos reales de comunicación.
El modelo de red neuronal que se va a emplear para ¡lustrar el principio de Ia invención es el siguiente: La Figura 3 muestra una neurona (300), el elemento básico a partir del cual y de sus interconexiones se define una red neuronal. Una neurona (300) genérica presenta N entradas (P1, p2 PN), que una vez ponderadas por unos pesos (w-i, W2, ..., WN), se introducen a un sumador (301). Además, ai sumador se Ie aplica una compensación (b) que se suma a las entradas ponderadas de Ia neurona (300), de tal forma que el valor a Ia salida (n) del sumador (301 ) es:
Figure imgf000024_0001
Este valor (n) es el argumento de entrada de una función de transferencia (302) que permite, por ejemplo, introducir los comportamientos no lineales y cuyo resultado es Ia salida final (a) de Ia neurona (300). En Ia Figura 4, se representan gráficamente algunas funciones que se emplean habitualmente como función de transferencia (302): Ia primera gráfica (401 ) corresponde a una función de transferencia lineal y Ia gráfica (402) a una función sigmoidal de tipo tangente hiperbólica.
Una implementación preferente de Ia función que hace el mapeo entre un criterio de calidad basado en las probabilidades de corte (po-i, pO2,
-•-. PON) y si criterio de calidad basado en Ia tasa de error de bloque objetivo
""(BLERtarget), Ia cual caracteriza el método de Ia invención es Ia red neuronal
(500) mostrada en Ia Figura 5, con una posible estructura de dos capas.
Esta red neuronal (500) presenta Ν entradas corresponden con los márgenes de desvanecimiento (Mi, M2,..., MN) estimados, los cuales como se ha dicho están asociados a las probabilidades de corte (poi, pO2, •-, PON) y a unos parámetros de desvanecimiento en ei canal (706) que caracterizan Ia señal de datos (107, 108) recibida. Dichos parámetros de desvanecimiento en el canal (706) pueden ser momentos estadísticos tales como los que se consideran en Ia mencionada solicitud de patente ES 200202947: Ia desviación típica correspondiente al desvanecimiento lognormal (<TΛ/), el factor de Rice (K) de Ia señal deseada y Ia desviación típica (σf) correspondiente a ia distribución que describe las variaciones de las señales interferentes.
La red neuronal (500) comprende al menos una capa de entrada y una única capa de salida, aunque en una posible realización como Ia ilustrada en Ia Figura 5, se simplifica también a una sola capa de entrada. La capa de entrada de Ia red neuronal (500) o primera capa de neuronas, que denotaremos a través del superíndice 1 en los parámetros que lleve asociados, está compuesta por S neuronas. Cada una de las neuronas tiene una primera etapa compuesta por un sumador (501 , 502, 503) con N entradas correspondientes a las N entradas de Ia red neuronal
(500) ponderadas por los pesos (w¡j,) donde / denota el índice de cada entrada y y el índice de cada neurona. Además, cada sumador (501 , 502,
503) tiene una compensación (bj) que se suma a las entradas ponderadas de Ia neurona, de tal forma que el valor (n¡) a Ia salida de su sumador (501 , 502, 503) es:
Figure imgf000025_0001
Cada valor (nj) se lleva a una función de transferencia (504, 505,
506) que produce las respectivas salidas (aj) y que permite, por ejemplo, introducir unos comportamientos no lineales. Dichas salidas (aj) de Ia primera capa de neuronas serán las entradas de Ia siguiente capa de neuronas.
El modelo puede extenderse a un número arbitrario de capas de neuronas aunque por simplicidad sólo se muestran dos capas.
El comportamiento y los bloques que conforman Ia segunda capa de neuronas en Ia Figura 5 son conceptualmente los mismos que en Ia primera capa, aunque con algunas particularidades derivadas de que esta sea Ia capa de salida de Ia red neurona! (500). Este hecho influye básicamente en tres aspectos. En primer lugar, esta última capa está compuesta por una sola neurona que proporciona Ia única salida de Ia red neuronal (500), que es precisamente Ia relación señal deseada-interferencia objetivo (SIRtarget) para el lazo externo. Para que Ia capa de salida pueda generar los valores requeridos, el rango de salida de Ia función de transferencia (508) debe ser elegido en consonancia. En el ejemplo propuesto se ha elegido una función lineal con rango de salida infinito. Por último, como ya se ha comentado anteriormente, Ia compensación aplicada en el sumador (507) de esta neurona de salida se corresponde con el término corrector basado en Ia tasa de error de bloque objetivo (BLERtarget), esto es, Ia segunda componente (SIRβLER-tgt) de Ia relación señal deseada- interferencia objetivo (SIRtarget) final, que es por tanto:
Σ w¿ + SIRBLER_lgt = SIR0lltage_tgt + SIRBLER_lgt = SIRti
/=1
Hay que tener en cuenta que una característica de Ia primera componente (SIR0Utage-tgt) de dicha relación señal deseada-interferencia objetivo (SIRtarget) es que, al contrario que los márgenes de desvanecimiento (Mi, IVb,..., MN) que son utilizados para su cálculo, puede ser negativa.
En Ia figura 6 se describe el modelo de entrenamiento de una red neuronal genérica (601). Para poder realizar el ajuste de sus parámetros internos, pesos y compensaciones de las diversas neuronas que componen
Ia red neuronal (500, 601 ) es necesario disponer de un conjunto de datos de entrada (602) y de los objetivos (603) que Ia red ha de alcanzar para dichas entradas. Existen algoritmos bien conocidos que permiten entrenar a Ia red minimizando el error (605) entre los valores de salida (604) y los objetivos (603) que ofrece un comparador (606).
En Ia red neuronal (500) propuesta, será necesario disponer, en entornos de propagación conocidos, de los márgenes (Mi, M2,..., MN) para las probabilidades de corte (poi, pO2, ••-, PON) seleccionadas, que se habrán de introducir como datos de entrada y de Ia relación señal deseada- interferencia objetivo (SIRtarget) óptima para cada entorno, a Ia que se habrá de ajustar Ia salida de Ia red neuronal (500). Mediante algoritmos de retropropagación de errores, se ajustan los pesos (w¡) y los compensaciones (b¡) de todas las capas para minimizar el error a Ia salida con diferentes condiciones de propagación.
Es fácil comprobar que Ia solución de combinación lineal planteada inicialmente queda englobada en esta otra como un caso particular. De hecho, incluso el procedimiento de ajuste de coeficientes ES muy similar, intentando reducir, en el caso de Ia combinación lineal, el error a Ia salida, por ejemplo, por un procedimiento de mínimos cuadrados.
Los datos necesarios para el entrenamiento de Ia red neuronal (500), se pueden obtener bien mediante simulación o bien de medidas en un entorno controlado con distintas condiciones de propagación. El valor óptimo de Ia relación señal deseada-interferencia objetivo (SIRtarget) al que se ha de ajustar Ia salida de Ia red neuronal (500) se obtiene considerando como objetivo de calidad una determinada tasa de error de bloque objetivo (BLERtargeO- Ésta es Ia base de que Ia red neuronal (500) permita establecer un mapeo entre los criterios de calidad basados respectivamente en dicha tasa de error de bloque objetivo (BLERtargeO y en las probabilidades de corte
(Poi, P02 PON)- Además, interesa abarcar Ia mayor variedad posible de condiciones de propagación para Ia toma de los datos, con el fin de que se minimice el error global cometido en el mayor número de posibles entornos.
Otra posibilidad que se plantea es que el método de control de potencia por lazo externo de Ia invención operando en un sistema real puede ajustar los parámetros de su bucle externo para adaptarlos a los entornos donde se encuentran los usuarios a los que se sirve comunicación. Para ello, las variaciones que se miden en Ia segunda componente (SIRBLER- tgt) de Ia relación señal deseada-interferencia objetivo (SIRtarget) dan información de los errores que está cometiendo Ia red neuronal (500), pues si fuera perfecta, Ia mencionada componente (SIRβLER-tgt) debería permanecer constante en cualquier condición. De hecho, se puede reentrenar Ia red neuronal (500) basándose en las variaciones de esta componente (SIRβLER-tgt)-
Los datos de entrada que utiliza este método "Outage-Based Outer Loop Power Control (OLPC)", que se propone en esta invención, se definen a continuación utilizando como referencia los bloques del diagrama
(700) de Ia Figura 7:
Primeramente, se realiza una estimación (701) de Ia relación señal-interferencia recibida (SIRrec) por medio de Ia arquitectura hardware correspondiente (véase Sáez Ruiz, Juan Carlos: "Una Arquitectura Hardware para Ia Estimación de Ia Relación Señal a Interferencia en Sistemas
WCDMA", Department of Electroscience, Digital ASIC University of Luna). Dentro de esta estimación (701 ), se incluyen unos parámetros de desvanecimiento en el canal (706) que se consideren oportunos para caracterizar Ia señal (107, 108) recibida. Por ejemplo, en -Ia solicitud de patente ES 200202947 anteriormente mencionada, los parámetros de desvanecimiento en el canal (706) considerados son: Ia desviación típica correspondiente al desvanecimiento lognormal (OÁ/) y el factor de Rice (K) de Ia señal deseada, así como Ia desviación típica (σ¡) correspondiente a Ia distribución que describe las variaciones de las señales ¡nterferentes.
Los márgenes de desvanecimiento (M1, M2 MN) asociados a los anteriores parámetros de desvanecimiento en el canal (706) son también función de las correspondientes probabilidades de corte (poi, pO2, •--, PON) que se consideren y, por tanto, estas probabilidades de corte (po-ι, pO2, •••, PON) constituyen otra de las entradas (702) necesarias para el método "Outage-Based Outer Loop Power Control (OLPC)" objeto de Ia invención.
Siguiendo con los bloques de Ia Figura 7, los datos decodificados de cada trama involucrada en Ia comunicación pasan a un revisor del CRC (703), el cual determina o indica si Ia trama ha sido decodificada correctamente o, por el contrario, contiene errores, al comprobar los bits del Código de Redundancia Cíclica (CRC) añadidos al final de Ia trama de datos. Para cada trama recibida y decodificada, el revisor del CRC (703) proporciona un estado de los bloques de datos (707) que consiste en una trama indicativa de si Ia trama de datos está adecuadamente decodificada o, porque no Io está, ha sido borrada. Nótese que éste es el principio conocido de funcionamiento del antecedente método "BLER-based Outer Loop Power Control (OLPC)", en el cual se varía Ia relación señal deseada-interferencia objetivo (SIRtarget) para el lazo externo en correspondencia con el resultado que proporciona dicho revisor del CRC (703).
El método objeto de esta invención, bautizado aquí como
"Outage-Based Outer Loop Power Control (OLPC)" tiene lugar en el bloque (705) y que procesa todas las entradas (702, 706, 707) comentadas anteriormente, incluyendo Ia introducción (704) de Ia tasa de error de bloque objetivo (BLERtarget), de Ia manera que sigue en los siguientes párrafos.
En Ia Figura 8 se especifican con más detalle las pasos que tienen lugar en el bloque (705) de Ia Figura 7, es decir, se ¡lustra una realización preferente del funcionamiento del método "Outage-Based Outer Loop Power Control (OLPC)" de Ia invención.
El cómputo (708) o Ia estimación de los márgenes de desvanecimiento (M1, M2,..., MN) correspondientes a las probabilidades de corte (poi, pO2 PON) que se consideran como sus parámetros de entrada
(702), así como corresponden a los parámetros de desvanecimiento en el canal (706) dados por el estimador (701) de Ia relación señal-interferencia recibida (S!Rrec), puede basándose en el método propuesto en !a ya mencionada solicitud de patente ES 200202947. Los mencionados márgenes de desvanecimiento (M-i, M2,..., MN) constituyen una de las entradas (710) de Ia red neuronal (500) y son utilizados, junto con Ia tasa de error de bloque objetivo (BLERtarget), introducida por Ia entrada (709), para obtener Ia primera componente (SIRoutage-tgt) de Ia relación señal deseada- interferencia objetivo (SIRtarget)- Por otra parte, con Ia introducción (704) de nuevo de Ia tasa de error de bloque objetivo (BLERtarget) y del estado de los bloques de datos (707) generado por el revisor de CRC (703), se obtiene Ia segunda componente (SIRBLER-tg0- Finalmente, ambas componentes se suman y se obtiene Ia deseada relación señal deseada-interferencia objetivo
(SIRtarget) para el control de potencia por lazo externo.
El anterior diseño se ha empleado para describir los principios de Ia invención, no obstante otras alternativas, aunque no detalladas aquí pero que incorporen el mismo espíritu y fin, son posibles. Por ejemplo, aunque Ia invención ha sido aquí ilustrada mediante bloques funcionales discretos ejecutables en el controlador (201) de una red de comunicaciones inalámbricas, las funciones de cualquiera de estos bloques pueden ser llevadas a cabo usando uno o varios procesadores programados convenientemente.
En Ia misma línea, Ia invención es aplicable para otros estándares aparte de WCDMA, así como para el control de potencia de cualquier señal recibida tanto por las estaciones base como por los equipos terminales de los usuarios o estaciones móviles.

Claims

R E I V I N D I C A C I O N E S
1.- Método de control de potencia por lazo externo para sistemas de comunicación inalámbrica, que a partir de una señal de datos (107, 108) recibida, procedente de una estación base (102, 103) o de una estación móvil (104), comprende las fases siguientes: establecer una tasa de error de bloque objetivo (BLERtarget), realizar una estimación (701) de Ia relación señal deseada- interferencia (SIRrec) y de unos parámetros de desvanecimiento en el canal (706) que caracterizan Ia señal (107, 108) recibida, estimar unos márgenes de desvanecimiento (Mi, M2,..., MN) asociados a unas probabilidades de corte (po1, pO2, -.-, PON) y a los parámetros de desvanecimiento en el canal (706), indicar el estado de los bloques de datos (707) a partir de Ia comprobación de un Código de Redundancia Cíclica (CRC), caracterizado porque establece una relación señal deseada-interferencia objetivo (SIRtarget) para el lazo externo, a partir de dicho estado de los bloques de datos (707), los márgenes de desvanecimiento (M1, M2,..., MN) y el error de bloque objetivo (BLERtarget) del lazo externo, por medio de una función de ajuste dinámico que realiza un mapeo entre un criterio de calidad basado en las probabilidades de corte (poi, pO2, ••-, PON) y el criterio de calidad basado en Ia tasa de error de bloque objetivo (BLERtarget). de modo que se adapta Ia potencia a las condiciones de propagación de Ia señal de datos (107, 108).
2.- Método de control de potencia por lazo externo para sistemas de comunicación inalámbrica, según reivindicación 1 , caracterizado porque Ia función de ajuste se realiza mediante una red neuronal (500) que comprende al menos una capa de entrada en Ia que se introducen los márgenes de desvanecimiento (M 1, M2,..., MN) y una capa de salida que, habiéndola entrenado previamente para los márgenes de desvanecimiento (Mi, M2,-., MN) de entrada junto con el estado de los bloques de datos (707) y el error de bloque objetivo (BLERtarget) del lazo externo, establece Ia relación señal deseada-interferencia objetivo (SIRtarge0 para dicho lazo externo.
3.- Método de control de potencia por lazo extemo para sistemas de comunicación inalámbrica, según reivindicación 2, caracterizado porque Ia capa de entrada de Ia red neuronal (500) genera una componente (SIRoutage-tgt) de Ia relación señal deseada-interferencia objetivo (SIRtarget) que se adapta a las condiciones de propagación de Ia señal de datos (107, 108).
4.- Método de control de potencia por lazo externo para sistemas de comunicación inalámbrica, según reivindicación 3, caracterizado porque Ia capa de salida de Ia red neuronal (500) suma a Ia componente (SIR0Utage- tgt) otra componente (SIRβLER-tgt) obtenida a partir del estado de los bloques de datos (407) y el error de bloque objetivo (BLERtarget) del lazo externo, por medio del método de control de potencia por lazo externo que aplica el criterio de calidad basado Ia tasa de error de bloque objetivo (BLERtarget).
5.- Método de control de potencia por lazo externo para sistemas de comunicación inalámbrica, según reivindicación 4, caracterizado porque Ia red neuronal (500) se entrena cada vez que existen variaciones en Ia componente (SIRβLER-tgt)-
6.- Aparato de control de potencia por lazo externo para sistemas de comunicación inalámbrica, caracterizado porque comprende al menos un dispositivo electrónico programable que opera según el método descrito en cualquiera de las reivindicaciones 1 a 5.
7.- Aparato de control de potencia por lazo externo para sistemas de comunicación inalámbrica, según reivindicación 6, caracterizado porque el dispositivo electrónico programable se selecciona entre un procesador de propósito general, un procesador de señal digital (DSP), un circuito integrado específico de aplicación (ASCI) y una tarjeta programable (FPGA) o cualquier combinación de los anteriores.
8.- Aparato de control de potencia por lazo externo para sistemas de comunicación inalámbrica, según reivindicaciones 6 ó 7, caracterizado porque comprende un receptor (203) de radiofrecuencia capacitado para recibir una señal de datos (107, 108) procedente de una estación base (102, 103) o de una estación móvil (104) del sistema de comunicación inalámbrica.
9.- Aparato de control de potencia por lazo extemo para sistemas de comunicación inalámbrica, según cualquiera de las reivindicaciones 6 a 8, caracterizado porque comprende un transmisor (202) de radiofrecuencia capacitado para enviar Ia información del control de potencia a una estación base (102, 103) o a una estación móvil (104) del sistema de comunicación inalámbrica.
10.- Aparato de control de potencia por lazo extemo en un sistema de comunicación inalámbrica, según cualquiera de las reivindicaciones 7 a 9, incorporado en un controlador de redes de comunicaciones inalámbricas.
11.- Aparato de control de potencia por lazo externo en un sistema de comunicación inalámbrica, según cualquiera de las reivindicaciones 7 a 9, incorporado en una estación móvil para sistemas de comunicaciones inalámbricas.
PCT/ES2006/000403 2005-08-17 2006-07-13 Método y aparato de control de potencia por lazo externo para sistemas de comunicación inalámbrica WO2007020305A1 (es)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN200680038565.2A CN101313487B (zh) 2005-08-17 2006-07-13 用于无线通信系统中外环功率控制的方法和装置
JP2008526515A JP4917096B2 (ja) 2005-08-17 2006-07-13 無線通信システムのための、アウターループ電力制御方法及び装置
EP06807853.4A EP1926225B1 (en) 2005-08-17 2006-07-13 Outer-loop power control method and device for wireless communication systems
ES06807853.4T ES2542023T3 (es) 2005-08-17 2006-07-13 Procedimiento y dispositivo de control de potencia por lazo externo para sistemas de comunicación inalámbrica
HK08112892.6A HK1119853A1 (en) 2005-08-17 2008-11-25 Outer-loop power control method and device for wireless communication systems

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200502056 2005-08-17
ES200502056A ES2249192B1 (es) 2005-08-17 2005-08-17 Metodo y aparato de control de potencia por lazo externo para sistemas de comunicacion inalambrica.

Publications (1)

Publication Number Publication Date
WO2007020305A1 true WO2007020305A1 (es) 2007-02-22

Family

ID=36101271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2006/000403 WO2007020305A1 (es) 2005-08-17 2006-07-13 Método y aparato de control de potencia por lazo externo para sistemas de comunicación inalámbrica

Country Status (7)

Country Link
US (1) US7496376B2 (es)
EP (1) EP1926225B1 (es)
JP (1) JP4917096B2 (es)
CN (1) CN101313487B (es)
ES (2) ES2249192B1 (es)
HK (1) HK1119853A1 (es)
WO (1) WO2007020305A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101873681B (zh) * 2009-04-22 2012-10-03 电信科学技术研究院 调整prach信号期望接收功率的方法及装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1592151A4 (en) * 2003-01-31 2011-09-14 Nec Corp TARGET VALUE CONTROL METHOD FOR POWER CONTROL TRANSMISSION, BASE STATION CONTROL DEVICE AND ASSOCIATED MOBILE STATION
ES2255887B1 (es) 2006-03-16 2007-03-16 T.O.P. Optimized Technologies, S.L. Metodo y aparato de control de potencia por lazo externo para sistemas de comunicacion inalambrica.
US8265681B2 (en) * 2007-09-12 2012-09-11 Telefonaktiebolaget Lm Ericsson (Publ) Outer loop transmit power control in wireless communication systems
US8600433B2 (en) * 2008-07-01 2013-12-03 Cambridge Silicon Radio Ltd. Receiver comprising selectable signal processing sub-systems
US9420548B2 (en) * 2008-07-31 2016-08-16 Qualcomm Incorporated Dynamic IoT setpoints and interference control
EP2239984B1 (en) 2009-04-07 2012-09-05 ST-Ericsson SA Process for improving the determination of the sir target in a outer loop power control mechanism of a umts ue
CN103404207B (zh) * 2010-12-02 2017-11-17 华为技术有限公司 确定外环功控目标信干比的方法
CN103002556B (zh) * 2011-09-13 2015-07-22 中磊电子(苏州)有限公司 功率控制方法及无线网络控制器
CN108235420B (zh) * 2016-12-12 2021-06-25 上海朗帛通信技术有限公司 一种用于功率调整的ue、基站中的方法和装置
US20220022084A1 (en) * 2018-06-08 2022-01-20 Distech Controls Inc. Computing device and method using a neural network to infer a predicted state of a communication channel
US20190379470A1 (en) * 2018-06-08 2019-12-12 Distech Controls Inc. Computing device and method using a neural network to infer a predicted state of a communication channel
US10917856B2 (en) 2018-09-07 2021-02-09 Parallel Wireless, Inc. Statistical projection for controlling BLER
CN109657390A (zh) * 2018-12-28 2019-04-19 中国电子科技集团公司第二十九研究所 一种射频集成制造中工艺ip统计建模方法
US20220222548A1 (en) * 2021-01-12 2022-07-14 Multiverse Computing S.L. Methods and apparatuses for optimal decision with quantum device
EP4195791A1 (en) 2021-12-10 2023-06-14 Nokia Solutions and Networks Oy Selection of power control parameters

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6434124B1 (en) 1998-03-31 2002-08-13 Lucent Technologies Inc. Adaptive symbol error count based technique for CDMA reverse link outer loop power control
US6449462B1 (en) 1998-02-27 2002-09-10 Telefonaktiebolaget L M Ericsson (Publ) Method and system for quality-based power control in cellular communications systems
US20030031135A1 (en) 2000-12-18 2003-02-13 Katsutoshi Itoh Method and system for controlling transmission power
EP1311076A1 (en) * 2001-11-12 2003-05-14 Lucent Technologies Inc. Control of the transmission power of a CMDA based system
US20030204615A1 (en) * 2002-04-30 2003-10-30 Yongbin Wei Outer-loop scheduling design for communication systems with channel quality feedback mechanisms
US6763244B2 (en) 2001-03-15 2004-07-13 Qualcomm Incorporated Method and apparatus for adjusting power control setpoint in a wireless communication system
US20040137860A1 (en) 2002-12-06 2004-07-15 Hyukjun Oh Fast converging power control for wireless communication systems
US20040157636A1 (en) 2002-09-12 2004-08-12 Interdigital Technology Corporation Method and system for adjusting downlink outer loop power to control target SIR
ES2214121A1 (es) 2002-12-20 2004-09-01 T.O.P. Optimized Technologies, S.L. Metodo y aparato para el lazo externo del sistema de control de potencia de un sistema de comunicaciones moviles.

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06268632A (ja) * 1993-03-11 1994-09-22 Kokusai Denshin Denwa Co Ltd <Kdd> ニューラルネットワーク符号分割多元接続方式
US6463296B1 (en) * 1999-02-16 2002-10-08 Telefonaktiebolaget L M Ericsson (Publ) Power control in a CDMA mobile communications system
JP3440076B2 (ja) * 2000-11-29 2003-08-25 松下電器産業株式会社 無線インフラ装置
JP3791345B2 (ja) * 2001-03-30 2006-06-28 株式会社デンソー 無線通信機の送信電力指示方法
JP2003143071A (ja) * 2001-11-06 2003-05-16 Matsushita Electric Ind Co Ltd 送信電力制御装置および方法
AU2002311537A1 (en) * 2002-06-25 2004-01-06 Nokia Corporation Method and system to optimise soft handover gain in networks such as cdma networks
US7647063B2 (en) * 2003-10-17 2010-01-12 Telefonaktiebolaget L M Ericsson (Publ) Method and system for outer loop power control
US7197327B2 (en) * 2004-03-10 2007-03-27 Interdigital Technology Corporation Adjustment of target signal-to-interference in outer loop power control for wireless communication systems

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6449462B1 (en) 1998-02-27 2002-09-10 Telefonaktiebolaget L M Ericsson (Publ) Method and system for quality-based power control in cellular communications systems
US6434124B1 (en) 1998-03-31 2002-08-13 Lucent Technologies Inc. Adaptive symbol error count based technique for CDMA reverse link outer loop power control
US20030031135A1 (en) 2000-12-18 2003-02-13 Katsutoshi Itoh Method and system for controlling transmission power
US6763244B2 (en) 2001-03-15 2004-07-13 Qualcomm Incorporated Method and apparatus for adjusting power control setpoint in a wireless communication system
US20050003848A1 (en) * 2001-03-15 2005-01-06 Tao Chen Method and apparatus for adjusting power control setpoint in a wireless communication system
EP1311076A1 (en) * 2001-11-12 2003-05-14 Lucent Technologies Inc. Control of the transmission power of a CMDA based system
US20030204615A1 (en) * 2002-04-30 2003-10-30 Yongbin Wei Outer-loop scheduling design for communication systems with channel quality feedback mechanisms
US20040157636A1 (en) 2002-09-12 2004-08-12 Interdigital Technology Corporation Method and system for adjusting downlink outer loop power to control target SIR
US20040137860A1 (en) 2002-12-06 2004-07-15 Hyukjun Oh Fast converging power control for wireless communication systems
ES2214121A1 (es) 2002-12-20 2004-09-01 T.O.P. Optimized Technologies, S.L. Metodo y aparato para el lazo externo del sistema de control de potencia de un sistema de comunicaciones moviles.

Non-Patent Citations (13)

* Cited by examiner, † Cited by third party
Title
ALVARO LOPEZ-MEDRANO: "Optimal SIR target determination for Outer-Loop Control in the W-CDMA System", PROCEEDINGS OF THE IEEE VEHICULAR TECHNOLOGY CONFERENCE (VTC) FALL, 6 October 2003 (2003-10-06)
AVIDOR; DAN: "Estimating the Block Error Rate at the Output of the Frame Selector in the UMTS System", PROCEEDINGS OF THE WIRELESS NETWORKS AND EMERGING TECHNOLOGIES (WNET '02), WIRELESS AND OPTICAL COMMUNICATIONS (WOC 2002, July 2002 (2002-07-01)
EUROPEAN TELECOMMUNICATIONS STANDARDS INSTITUTE (ETSI, January 1998 (1998-01-01)
H.R. SCHWARZ; J. WALDVOGEL: "Numerical Analysis", JOHN WILEY&SONS
HOLMA H.: "WCDMA for UMTS", 2002, JOHN WILEY & SONS
HOLMA; TOSKALA: "WCDMA for UMTS, Radio Access for Third Generation Mobile Communications", JOHN WILEY & SONS
ORLANDO: "Optimal SIR target determination for Outer-Loop Control in the W-CDMA System: Inverse SIR Cumulative Distribution Function computation throughout the Newton-Raphson Method", PROCEEDINGS OF THE 12TH IST SUMMIT ON MOBILE AND WIRELESS COMMUNICATIONS, vol. LL, 15 June 2003 (2003-06-15), pages 732 - 736
S. KANDUKURI; S. BOYD, IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, vol. 1, no. 1, January 2002 (2002-01-01), pages 46 - 55
SAEZ RUIZ; JUAN CARLOS: "Una Arquitectura Hardware para la Estimacion de la Relación Señal a Interferencia en Sistemas WCDMA", DEPARTMENT OF ELECTROSCIENCE, DIGITAL ASIC UNIVERSITY OF LUNA
SAMPATH A; KUMAR P S; HOLTZMAN J M: "On setting reverse link target SIR in a CDMA system", PROC. IEEE VEHICULAR TECHNOLOGY CONFERENCE, 1997, pages 929 - 933
SAMPATH A; KUMAR P S; HOLTZMAN J M: "On setting reverse link target SIR in a CDMA system", PROC. IEEE VEHICULAR TECHNOLOGY CONFERENCE, PHOENIX, 1997, pages 929 - 933
SAMPATH A; KUMAR P S; HOLTZMAN J M: "On setting reverse link target SIR in a CDMA system", PROCEEDINGS OF THE IEEE VEHICULAR TECHNOLOGY CONFERENCE, 1997, pages 929 - 933
See also references of EP1926225A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101873681B (zh) * 2009-04-22 2012-10-03 电信科学技术研究院 调整prach信号期望接收功率的方法及装置

Also Published As

Publication number Publication date
HK1119853A1 (en) 2009-03-13
EP1926225A4 (en) 2013-04-10
JP4917096B2 (ja) 2012-04-18
US7496376B2 (en) 2009-02-24
US20070042718A1 (en) 2007-02-22
ES2249192A1 (es) 2006-03-16
ES2249192B1 (es) 2006-11-16
EP1926225B1 (en) 2015-04-15
EP1926225A1 (en) 2008-05-28
ES2542023T3 (es) 2015-07-29
JP2009505541A (ja) 2009-02-05
CN101313487B (zh) 2012-08-29
CN101313487A (zh) 2008-11-26

Similar Documents

Publication Publication Date Title
ES2249192B1 (es) Metodo y aparato de control de potencia por lazo externo para sistemas de comunicacion inalambrica.
JP4531826B2 (ja) 通信端末装置、受信環境報告方法
EP2220779B1 (en) Method and arrangement for separate channel power control
US8422962B2 (en) Method and arrangement in a communication system
BRPI0610345B1 (pt) Método para gerar retro-alimentação de controle de potência de transmissão para um canal de controle de potência, circuito de controle de potência para uso em um dispositivo ou sistema de comunicação sem fio, dispositivo de comunicação sem fio, e, meio legível por computador
US20040203463A1 (en) Discontinuous transmission (DTX) detection in wireless communication systems
US8265681B2 (en) Outer loop transmit power control in wireless communication systems
BRPI0512201B1 (pt) Detecção de apagamento robusta e controle de potência em malha fechada com base em taxa de apagamento
US8074158B2 (en) Erasure detection for a transport channel with an unknown format
JP2009535907A (ja) 個々の測定を含むアップリンク負荷制御
US20020187802A1 (en) Method of adjusting the target value of an inner power control loop in a mobile radiocommunications system
WO2013142171A1 (en) Adaptive partial packet decoding
ES2214121B1 (es) Metodo y aparato para el lazo externo del sistema de control de potencia de un sistema de comunicaciones moviles.
TWI479817B (zh) 無線通訊系統中之功率控制技術(二)
US20040209636A1 (en) Smooth method for adjusting downlink transmitted power
ES2638851T3 (es) Cancelación de interferencia
US8958321B2 (en) Power management of user equipment located on a femtocell base station
US7181235B2 (en) Hybrid method for adjusting downlink transmitted power
KR20060028815A (ko) 코딩된 복합 운송 채널에 어떠한 주기적 리던던시 체크결과도 사용 가능하지 않을 때의 외부 루프 파워 제어 방법
US20060148508A1 (en) Apparatus and method for controlling outer loop power
Mendo et al. Improved algorithm for computation of transmission powers in DS-CDMA cellular networks with closed-loop power control

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680038565.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2008526515

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 316/MUMNP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2006807853

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2006807853

Country of ref document: EP