WO2007020035A1 - Vorrichtung zur selektiven nox-reduktion in nox-haltigen abgasen - Google Patents

Vorrichtung zur selektiven nox-reduktion in nox-haltigen abgasen Download PDF

Info

Publication number
WO2007020035A1
WO2007020035A1 PCT/EP2006/008014 EP2006008014W WO2007020035A1 WO 2007020035 A1 WO2007020035 A1 WO 2007020035A1 EP 2006008014 W EP2006008014 W EP 2006008014W WO 2007020035 A1 WO2007020035 A1 WO 2007020035A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier layer
hydrogen
exhaust gases
selective
reduction
Prior art date
Application number
PCT/EP2006/008014
Other languages
English (en)
French (fr)
Inventor
Florian Schott
Sven Kureti
Original Assignee
Universität (Th) Karlsruhe
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universität (Th) Karlsruhe filed Critical Universität (Th) Karlsruhe
Priority to EP06776827A priority Critical patent/EP1912726A1/de
Publication of WO2007020035A1 publication Critical patent/WO2007020035A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9418Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • B01J23/6527Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0225Coating of metal substrates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/002Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring or estimating temperature or pressure in, or downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/202Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20715Zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20776Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/902Multilayered catalyst
    • B01D2255/9025Three layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/30Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a fuel reformer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/34Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an electrolyser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2370/00Selection of materials for exhaust purification
    • F01N2370/02Selection of materials for exhaust purification used in catalytic reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/026Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting NOx
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/06Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a temperature sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/04Adding substances to exhaust gases the substance being hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the invention relates to a device for selective NO x - reduction in NO x -containing exhaust gases, a method for selective NO x reduction in NO x -containing exhaust gases, a catalyst for use in a selective NO x reduction in NO x -containing exhaust gases by supplying hydrogen to the exhaust gases and a method for producing a catalyst for selective NO x - reduction in NO x -containing exhaust gases.
  • EP 1 475 149 A1 discloses a catalyst for the reduction of NO x to N 2 with hydrogen under O 2 -rich conditions.
  • This known catalyst is based on platinum, which is distributed in an amount between 0.1 and 2 percent by weight on a carrier material consisting of magnesium or cerium oxide or a precursor thereof.
  • a carrier material consisting of magnesium or cerium oxide or a precursor thereof.
  • the catalyst used in this case adsorbs the nitrogen oxides located in the exhaust gas, whereupon the catalyst is supplied with a gas having a specific content of a reducing substance at predetermined time intervals and for certain periods of time.
  • Such storage catalysts in which basic components such as lithium oxide, potassium oxide, sodium oxide, barium oxide or similar oxides are used, however, require a relatively complicated control and usually have a high regeneration requirement.
  • NO x storage catalysts In these NO x storage catalysts, the mainly emitted NO is oxidized on a platinum-containing catalyst to NO 2 , which is subsequently adsorbed to special storage media, for example BaCO 3 . When the storage capacity of this catalyst is exhausted, a motor-induced regeneration of the catalyst is initiated, in which the nitrogen oxides introduced are converted into nitrogen.
  • special storage media for example BaCO 3 .
  • Another disadvantage of the known NO x storage catalysts is the danger of poisoning of the NO x sorbents by the sulfur oxides SO 2 and SO 3 contained in the exhaust gas. To avoid this problem, usually costly engine management strategies are required.
  • EP 0 960 649 B1 discloses an exhaust gas purification catalyst in which the materials used comprise cerium oxide and / or zirconium dioxide mixed oxides which serve to remove saturated hydrocarbons from the exhaust gas.
  • the materials used comprise cerium oxide and / or zirconium dioxide mixed oxides which serve to remove saturated hydrocarbons from the exhaust gas.
  • As a reducing agent for the nitrogen oxides contained in the exhaust gas is Ammo used niak.
  • the active component V 2 O 5 frequently used in such SCR catalysts is of toxicological concern and may also melt or vaporize at very high exhaust gas temperatures.
  • EP 0 763 380 A1 describes shell catalysts which consist of a core and at least one outer shell or of a support, at least one inner and at least one outer shell, the outer shells containing oxides of specific elements. Furthermore, a method for the catalytic removal of nitrogen oxides, carbon monoxide and hydrocarbons from the exhaust gases of internal combustion engines is described.
  • the exhaust gas has a temperature of 50 to 800 0 C and a pressure of 0.01 to 200 bar and it is again ammonia used as a reducing agent.
  • a disadvantage of the known solutions for NO x removal from O 2 - rich exhaust gases is in most cases also in that the nitrogen oxides are effectively implemented only above 200 0 C.
  • the exhaust gas temperature in the relevant EU certification cycle is about 60% of the time below 150 ° C. and about 200 ° C. for about 75% of the time.
  • DE 44 36 890 A1 describes a method for the simultaneous reduction of the hydrocarbons, carbon monoxide and nitrogen oxides contained in the exhaust gas of an internal combustion engine.
  • the catalyst used in this case has an aluminum silicate as a high surface area support material.
  • the device according to the invention allows optimal use of the catalyst for selective NO x reduction of exhaust gases, wherein the hydrogen can be introduced in a simple manner by means of the hydrogen supply into the exhaust pipe.
  • the use of zirconia for the support layer, platinum for the active component, and tungsten oxide for the promoter / activator results in a catalyst having both higher DeNO x activity and much higher N 2 selectivity than known catalyst compositions. to which contributes in a particularly advantageous manner, the supply of hydrogen to the exhaust gases.
  • Tungsten oxide as a promoter, which advantageously increases the activity of platinum and contributes to a considerable improvement in the selectivity in the reduction of NO x to N 2 , is particularly advantageous, since this is a toxicologically harmless substance, which is thus both in the production as well as in a possible later disposal no problems.
  • platinum and tungsten oxide are present as a mixture on the surface of the carrier body.
  • the hydrogen supply device has a feed opening leading to the exhaust pipe, which is provided with a closure whose opening state can be changed by a control device.
  • the carrier layer of zirconium oxide has a surface area of at least 50 m 2 / g, in particular of at least 100 m 2 / g.
  • a large surface of the carrier layer leads to a significantly improved effectiveness of the catalyst of the device according to the invention in the same size.
  • a very high efficiency or effectiveness of the catalyst of the inventive device is achieved when the backing layer of zirconia in a tetragonal crystal structure ⁇ present.
  • Fig. 1 is a very schematic representation of a first embodiment of the structure of the catalyst of the device according to the invention
  • Fig. 2 is a very schematic representation of a second embodiment of the structure of the catalyst of erfindungsge ⁇ MAESSEN device; and Fig. 3 is a schematic representation of the inventive device for selective NO x reduction.
  • the catalyst 1 shows, in a very schematic and greatly enlarged illustration, a first embodiment of a catalytic converter 1, which serves for the selective reduction of NO x in the exhaust gases of an internal combustion engine 2 shown in FIG. 3, preferably operating according to the diesel principle.
  • the catalyst 1 has a base body 3 which generates the same rigidity and which may be formed, for example, as a honeycomb body and may consist of a ceramic material.
  • the main body 3 may also be designed as a soot filter to filter any soot particles from the exhaust gases.
  • a carrier layer 4 which consists of zirconium oxide (ZrO 2 ).
  • the carrier layer 4 is preferably highly porous and has a surface area of at least 50 m 2 / g, preferably of at least 100 m 2 / g, of the carrier layer 4 and the zirconium oxide is present in a tetragonal crystal structure.
  • a coating 5 which has an active component 5a, which in the present case consists of platinum (Pt), and a promoter 5b, which consists of tungsten oxide.
  • the active component 5a and the promoter 5b thus have exclusively platinum and tungsten oxide in the two illustrated embodiments, and the coating 5 of the carrier layer 4 is constructed such that on the outwardly directed surface 1a of the catalyst 1 both Platinum and tungsten are present.
  • the platinum atoms should be as finely dispersed as possible within the tungsten oxide and on the same in terms of the best possible effectiveness of the catalyst 1.
  • a particularly good ratio between platinum and tungsten oxide has proved a ratio of 1:10.
  • other conditions may be suitable for the purpose described in more detail below.
  • the active component 5a and the promoter 5b, ie platinum and tungsten oxide are jointly applied to the carrier layer 4 for the production thereof.
  • the tungsten oxide and the platinum are present as tungsten salt or platinum salt in an aqueous solution, which is applied to the carrier layer 4 and then dried.
  • a chemical or electrochemical deposition is also suitable for the preparation of the catalyst 1.
  • the tungsten oxide and then the platinum are applied to the carrier layer 4.
  • the tungsten oxide is present as tungsten salt in an aqueous solution which is applied to the carrier layer 4.
  • the platinum salt ie the platinum salt solution, also present in an aqueous solution, is then applied to the carrier layer 4 coated with the tungsten oxide and then dried again. Again, calcination and reduction in a reductant-containing gas stream may follow. In this procedure, therefore, two drying steps are required, whereas in the production of the catalyst lysators 1 shown in FIG. 1 only a drying step is required.
  • Fig. 3 shows a device 6 for selective NO x reduction in the exhaust gases of the internal combustion engine 2, with which it is possible to perform a method for selective NO x reduction in the exhaust gases of the internal combustion engine 2, wherein the exhaust gases hydrogen is supplied as a reducing agent ,
  • the supply of hydrogen to the exhaust gases results in an immediate conversion of NO x with H 2 to N 2 and H 2 O on the catalyst 1.
  • the catalyst 1 is arranged in an exhaust pipe 7 extending from the internal combustion engine 2.
  • the device 6 further comprises a hydrogen supply device 8, which has a container 9 which is provided with a feed opening 10. To the feed opening 10, a supply line 11 is connected, which leads to the exhaust pipe 7.
  • the supply opening 10 is provided with a closure 12, the opening state of which can be changed by the action of a control device 13.
  • the control device 13 is in turn connected to a NO x sensor 14 arranged in the exhaust gas line 7 and to a sensor 15 which is arranged in an intake line 16 which leads to the internal combustion engine 2.
  • the sensor 15 is formed in this case as per se known mass air flow sensor and able to measure the flowing to the internal combustion engine 2 air mass flow.
  • the sensor 15 could also be arranged in the exhaust pipe 7 and it would also be possible to provide a temperature sensor in the exhaust pipe 7. Furthermore, it would also be possible to dispense with one of the two sensors 14 or 15.
  • the control device 13 is thereby able to conduct the hydrogen present in the container 9 as a function of the NO x concentration within the exhaust gas line 7 or as a function of an air mass flow through the internal combustion engine 2 into the exhaust gas line 7. In this way, for example, in an acceleration process in which a higher NO x emissions is to be expected, a larger amount of hydrogen to be introduced into the exhaust pipe 7. It is also possible to deposit the required data in a map in the control device 13 in order to supply an increased amount of hydrogen at certain times. Of course, it is also possible to continuously guide the hydrogen in the exhaust pipe 7. Another possibility is to direct a certain basic amount of hydrogen into the exhaust pipe 7 and to increase the amount of hydrogen introduced at a detected by one of the sensors 14 or 15 need.
  • the hydrogen supply device 8 can be connected to a device, not shown, for reforming hydrocarbon or derivatives to hydrogen from the fuel provided for the internal combustion engine 2, ie a reformer or the like.
  • the required hydrogen could also be produced by means of an electrolysis of a suitable substance, for example water.
  • H 2 generator the container 9 can either be omitted or replaced by a smaller intermediate storage. If the main body 3 is not simultaneously designed as a soot filter, as described briefly above, so in the flow direction of the exhaust gas in the exhaust pipe 7, a particle filter, not shown, the catalyst 1 upstream or downstream. The main body 3 thus serves only for holding the carrier layer 4.
  • Tmax temperature at which the maximum NO conversion is measured
  • Ref. 1 "Kinetics and mechanism of the reduction of nitric oxides by H 2 under lean-burn conditions on a Pt-Mo-Co / ⁇ -Al 2 O 3 catalyst" by Brigitta Frank, Gerhard Emig, Albert Renken (Labora- tory of Chemical Reaction and Electrochemical Engineering
  • Ref. 2 "An investigation of the NO / H 2 / O 2 reaction on noble metal catalysts at low temperature under lean-burn conditions" by R. Burch, MD Coleman (Catalysis Research Center, Chemistry Department, University of Reading, Whiteknights, Berks, RG ⁇ 6AD, UK) (Applied Catalysis B: Environmental 23 (1999) 115-121) - 48/2. Ref.
  • Ref. 4 "An investigation of the NO / H 2 / O 2 (lean deNO x) Reaction on a highly active and selective Pt / La 0th 5 Ce 0th 5 / MnO 3 Catalyst" by CN.
  • Costa, VN Stathopoulos, VC Belessi and AM Efstathiou (Department of Chemistry, University of Cyprus, PO box 20537, CY 1678 Nicosia, Cyprus; and Department of Chemistry, University of Vietnamesenina, Vietnamese) (Journal of Catalysis 197, 350-364 (2001)) - 54/4.
  • Ref. 5 "Investigation of the NO / H 2 / O 2 (Lean De-NO x ) Reaction on a Highly Active and Selective PtZLa 0-7 Sr 0-2 Ce 0-2 FeO 3 Catalyst at Low Temperatures" of CN. Costa, PG Savva, C Andronikou, PS Lambrou, K. Polychronopoulou, V.
  • Ref. 6 "An investigation of the NO / H 2 / O 2 (lean deNO x) Reaction on a highly active and selective Pt / La 0th 5 Ce 0th 5 / MnO 3 Catalyst" by CN. Costa, VN Stathopoulos, V. C Belessi and AM Efstathiou (Department of Chemistry, University of Cyprus, PO box 20537, CY 1678 Nicosia, Cyprus; and Department of Chemistry, University of Vietnamesenina, Vietnamese) (Journal of Catalyzed 197, 350-364 (2001)) - 54/6.
  • the catalyst 1 was subjected to hydrothermal aging at 780 ° C. for 15 hours. Subsequently, the tests were carried out again under the same conditions and the same results were obtained, which leads to the conclusion that the hydrothermal aging has not led to any damage or impairment of the operation of the catalyst 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Toxicology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

Eine Vorrichtung zur selektiven NO<SUB>x</SUB>-Reduktion in NO<SUB>x</SUB>-haltigen Abgasen weist einen in einer Abgasleitung angeordneten Katalysator (1), welcher einen Grundkörper (3), eine auf dem Grundkörper (3) aufgebrachte, aus Zirkoniumoxid bestehende Trägerschicht (4), eine auf der Trägerschicht (4) aufgebrachte, aus Platin bestehende aktive Komponente (5a) und einen auf der Trägerschicht (4) aufgebrachten, aus Wolframoxid bestehenden Promoter (5b) aufweist, und eine Wasserstoffzuführeinrichtung zur Einbringung von Wasserstoff in die Abgasleitung auf.

Description

Vorrichtung zur selektiven NOrReduktion in NOrhaltiqen Abgasen
Die Erfindung betrifft eine Vorrichtung zur selektiven NOx- Reduktion in NOx-haltigen Abgasen, ein Verfahren zur selektiven NOx-Reduktion in NOx-haltigen Abgasen, einen Katalysator zur Verwendung bei einer selektiven NOx-Reduktion in NOx-haltigen Abgasen unter Zuführung von Wasserstoff zu den Abgasen und ein Verfahren zur Herstellung eines Katalysators zur selektiven NOx- Reduktion in NOx-haltigen Abgasen.
Die in der nahen Zukunft in Kraft tretenden Emissionsvorschriften führen insbesondere auch zu einer Verschärfung von Abgasgrenzwerten von mit Dieselmotoren ausgestatteten Kraftfahrzeugen. Aus heutiger Sicht hat dies zur Folge, dass zur Entfernung von Stickstoffoxiden eine Nachbehandlung des Abgases zwingend erforderlich ist. Diese Problematik gilt auch für andere NOx- haltige Abgase, beispielsweise in Industrieanlagen.
Aus der EP 1 475 149 Al ist ein Katalysator für die Reduktion von NOx zu N2 mit Wasserstoff unter 02-reichen Bedingungen bekannt. Dieser bekannte Katalysator basiert auf Platin, welches in einer Menge zwischen 0,1 und 2 Gewichtsprozent auf einem aus Magnesium- oder Ceroxid oder einem Vorläufer davon bestehenden Trägermaterial verteilt ist. Zwar werden mit diesem Katalysator bereits recht gute Ergebnisse bei der NOx-Reduktion erzielt, bei zukünftigen Schadstoffgrenzwerten könnte jedoch auch dieser Katalysator an seine Grenzen stoßen. Ein prinzipielles Problem bei der Zuführung von Wasserstoff zu platinhaltigen Katalysatoren besteht außerdem darin, dass NO hauptsächlich in das unerwünschte Treibhausgas N2O, das auch als Lachgas bekannt ist, umgesetzt wird. Em Verfahren zur Entfernung von Stickoxid aus einem Abgasstrom ist in der EP 0 666 099 Bl beschrieben. Der dabei eingesetzte Katalysator adsorbiert die sich m dem Abgas befindlichen Stickoxide, woraufhin dem Katalysator ein Gas mit einem bestimmten Gehalt einer reduzierenden Substanz in vorgegebenen Zeitabstanden und für gewisse Zeitdauern zugeführt wird. Derartige Speicherkatalysatoren, bei denen basische Komponenten, wie Lithium- oxid, Kaliumoxid, Natriumoxid, Bariumoxid oder ähnliche Oxide eingesetzt werden, erfordern jedoch eine verhältnismäßig komplizierte Ansteuerung und haben meist einen hohen Regenerationsbedarf.
Bei diesen NOx-Speicherkatalysatoren wird das hauptsächlich emittierte NO an einem Platin aufweisenden Katalysator zu NO2 oxi- diert, welches nachfolgend an speziellen Speichermedien, beispielsweise BaCO3, adsorbiert wird. Wenn die Speicherkapazität dieses Katalysators erschöpft ist, wird eine motorinduzierte Regeneration des Katalysators eingeleitet, bei welcher die eingeleiteten Stickstoffoxide m Stickstoff überfuhrt werden. Em weiterer Nachteil der bekannten NOx-Speicherkatalysatoren besteht m der Gefahr der Vergiftung der NOx-Sorbenzien durch die im Abgas enthaltenen Schwefeloxide SO2 und SO3. Um diese Problematik zu umgehen, sind meist aufwandige Motormanagementstrategien erforderlich.
Aus der EP 0 960 649 Bl ist ein Abgasreinigungskatalysator bekannt, bei welchem die verwendeten Materialien Ceroxid und/oder Zirkoniumdioxid Mischoxide aufweisen, die dazu dienen, gesattigte Kohlenwasserstoffe aus dem Abgas zu entfernen. Als Reduktionsmittel für die in dem Abgas enthaltenen Stickoxide wird Ammo- niak eingesetzt. Die bei solchen SCR-Katalysatoren häufig eingesetzte aktive Komponente V2O5 ist jedoch toxikologisch bedenklich und kann außerdem bei sehr hohen Abgastemperaturen schmelzen bzw. verdampfen.
Die EP 0 763 380 Al beschreibt Schalenkatalysatoren, welche aus einem Kern und mindestens einer äußeren Schale oder aus einem Träger, mindestens einer inneren und mindestens einer äußeren Schale bestehen, wobei die äußeren Schalen Oxide bestimmter Elemente enthalten. Des weiteren wird ein Verfahren zur katalyti- schen Entfernung von Stickstoffoxiden, Kohlenmonoxid und Kohlenwasserstoffen aus den Abgasen von Verbrennungskraftmaschinen beschrieben. Hierbei weist das Abgas eine Temperatur von 50 bis 8000C und einen Druck von 0,01 bis 200 bar auf und es wird wiederum Ammoniak als Reduktionsmittel eingesetzt.
Ein Nachteil der bekannten Lösungen zur NOx-Entfernung aus O2- reichen Abgasen besteht in den meisten Fällen außerdem darin, dass die Stickstoffoxide erst oberhalb von 2000C wirkungsvoll umgesetzt werden. Dadurch, dass aufgrund der kontinuierlichen Optimierung des Wirkungsgrads der Verbrennungskraftmaschinen die Temperatur der Abgase ständig reduziert wird, ergibt sich bei den bekannten Lösungen ein großes Problem hinsichtlich ihrer Wirksamkeit. Beispielsweise liegt bei modernen, nach dem Dieselprinzip arbeitenden Verbrennungskraftmaschinen für PKW die Abgastemperatur im relevanten Zertifizierungszyklus der EU zu rund 60 % der Zeit unterhalb von 1500C und zu ca. 75 % der Zeit unterhalb von 2000C.
Die DE 102 16 748 Al beschreibt modifizierte Katalysatoren für die selektive Hydrierung von aromatischen Kohlenwasserstoffen - A -
mit sperrigen oder verzweigten Substituenten . Eine NOx-Reduktion in NOx-haltigen Abgasen ist mit diesen Katalysatoren jedoch nicht durchführbar.
In der DE 44 36 890 Al ist ein Verfahren zur gleichzeitigen Verminderung der im Abgas einer Verbrennungskraftmaschine enthaltenen Kohlenwasserstoffe, Kohlenmonoxid und Stickoxide beschrieben. Der dabei eingesetzte Katalysator weist ein Aluminiumsilikat als hochoberflächiges Trägermaterial auf.
Es ist Aufgabe der vorliegenden Erfindung, eine Vorrichtung und ein Verfahren zur selektiven NOx-Reduktion in NOx-haltigen Abgasen, insbesondere in den Abgasen einer Verbrennungskraftmaschine, zu schaffen, mit denen Stickstoffoxide bereits bei niedrigen Temperaturen wirkungsvoll reduziert werden können, wobei toxikologisch unbedenkliche Stoffe eingesetzt werden sollen.
Erfindungsgemäß wird diese Aufgabe hinsichtlich der Vorrichtung durch die in Anspruch 1 genannten Merkmale gelöst.
Die erfindungsgemäße Vorrichtung ermöglicht einen optimalen Einsatz des Katalysators zur selektiven NOx-Reduktion von Abgasen, wobei der Wasserstoff in einfacher Weise mittels der Wasserstoffzuführeinrichtung in die Abgasleitung eingebracht werden kann. Durch die Verwendung von Zirkoniumoxid für die Trägerschicht, Platin für die aktive Komponente und Wolframoxid für den Promoter bzw. Aktivator ergibt sich ein Katalysator, der sowohl eine höhere DeNOx-Aktivität als auch eine sehr viel höhere N2-Selektivität als bekannte Katalysatorzusammensetzungen aufweist, wozu in besonders vorteilhafter Weise auch die Zuführung von Wasserstoff zu den Abgasen beiträgt. Die Verwendung von Wolframoxid als Promoter, der in vorteilhafter Weise die Aktivität des Platins erhöht und zu einer erheblichen Verbesserung der Selektivität bei der Reduktion von NOx zu N2 beiträgt, ist besonders vorteilhaft, da es sich hierbei um einen toxikologisch unbedenklichen Stoff handelt, der somit sowohl in der Herstellung als auch bei einer eventuell späteren Entsorgung keinerlei Probleme bereitet. Dabei liegen Platin und Wolframoxid als Gemisch auf der Oberfläche des Trägerkörpers vor.
Durch die Verwendung von Wasserstoff als Reduktionsmittel wird NOx an dem Katalysator bereits bei Temperaturen von 40 bis 300°C wirkungsvoll umgesetzt, so dass die erfindungsgemäße Vorrichtung auch für Verbrennungskraftmaschinen geeignet ist, deren Abgastemperaturen verhältnismäßig niedrig sind. Durch die unmittelbare Umsetzung von NOx mit H2 zu N2 und H2O werden die bei NOx- Speicherkatalysatoren auftretenden, oben angegebenen Nachteile vermieden. Die Verwendung von Wasserstoff als Reduktionsmittel ist dabei toxikologisch vollkommen unbedenklich, da als Reaktionsprodukt, wie oben dargelegt, H2O, also Wasser, entsteht.
Die Menge des zugeführten Wasserstoffs kann zu verschiedenen Zwecken nahezu beliebig verändert werden, wenn in einer vorteilhaften Weiterbildung der Erfindung die Wasserstoffzuführeinrich- tung eine zu der Abgasleitung führende Zuführöffnung aufweist, welche mit einem Verschluss versehen ist, dessen Öffnungszustand über eine Steuereinrichtung veränderbar ist.
In einer besonders vorteilhaften Ausführungsform der Erfindung kann vorgesehen sein, dass die Trägerschicht aus Zirkoniumoxid eine Oberfläche von mindestens 50 m2/g, insbesondere von mindestens 100 m2/g, aufweist. Eine derart große Oberfläche der Träger- schicht führt zu einer erheblich verbesserten Wirksamkeit des Katalysators der erfindungsgemäßen Vorrichtung bei derselben Baugröße.
Eine sehr hohe Effektivität bzw. Wirksamkeit des Katalysators der erfindungsgemäßen Vorrichtung wird erreicht, wenn die Trägerschicht aus Zirkoniumoxid in einer tetragonalen Kristall¬ struktur vorliegt.
Aus Anspruch 12 ergibt sich ein Verfahren zur selektiven NOx- Reduktion in NOx-haltigen Abgasen. Mit Hilfe dieses Verfahrens werden die oben erläuterten Vorteile der erfindungsgemäßen Vorrichtung besonders gut genutzt, wodurch sich eine sehr hohe Umsetzung von NOx ergibt. Das Verfahren ist darüber hinaus mit einfachen Mitteln durchführbar und führt zu einer sehr hohen N2- Selektivität .
Weitere vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung ergeben sich aus den restlichen Unteransprüchen. Nachfolgend sind Ausführungsbeispiele der Erfindung anhand der Zeichnung prinzipmäßig dargestellt.
Es zeigt:
Fig. 1 eine sehr schematische Darstellung einer ersten Ausführungsform des Aufbaus des Katalysators der erfindungsgemäßen Vorrichtung;
Fig. 2 eine sehr schematische Darstellung einer zweiten Ausführungsform des Aufbaus des Katalysators der erfindungsge¬ mäßen Vorrichtung; und Fig. 3 eine schematische Darstellung der erfindungsgemäßen Vorrichtung zur selektiven NOx-Reduktion .
Fig. 1 zeigt in einer sehr schematischen und erheblich vergrößerten Darstellung eine erste Ausführungsform eines Katalysators 1, welcher zur selektiven NOx-Reduktion in den Abgasen einer in Fig. 3 dargestellten, vorzugsweise nach dem Diesel-Prinzip arbeitenden Verbrennungskraftmaschine 2 dient. Der Katalysator 1 weist einen die Steifigkeit desselben erzeugenden Grundkörper 3 auf, der beispielsweise als Wabenkörper ausgebildet sein und aus einem keramischen Material bestehen kann. In diesem Fall kann der Grundkörper 3 auch als Rußfilter ausgeführt sein, um eventuelle Rußpartikel aus den Abgasen zu filtern. Alternativ ist es auch möglich, den Grundkörper 3 aus einem Metallsubstrat zu bilden, wobei die Wabenform den Vorteil eines geringen Druckverlustes mit sich bringt.
Auf dem Grundkörper 3 ist eine Trägerschicht 4 aufgebracht, welche aus Zirkoniumoxid (ZrO2) besteht. Die Trägerschicht 4 ist vorzugsweise äußerst porös und weist eine Oberfläche von mindestens 50 m2/g, vorzugsweise von wenigstens 100 m2/g, der Trägerschicht 4 auf und das Zirkoniumoxid liegt in einer tetragonalen Kristallstruktur vor. Auf der Trägerschicht 4 befindet sich eine Beschichtung 5, die eine aktive Komponente 5a, die im vorliegenden Fall aus Platin (Pt) besteht, und einen Promoter 5b, der aus Wolframoxid besteht, aufweist. Die aktive Komponente 5a und der Promoter 5b weisen bei den beiden dargestellten Ausführungsformen also ausschließlich Platin und Wolframoxid auf und die Beschichtung 5 der Trägerschicht 4 ist so aufgebaut, dass an der nach außen gerichteten Oberfläche Ia des Katalysators 1 sowohl Platin als auch Wolfram vorliegen. Hierbei sollten im Sinne einer möglichst guten Wirksamkeit des Katalysators 1 die Platinatome möglichst fein innerhalb des Wolframoxids und auf demselben dispergiert sein. Als besonders gutes Verhältnis zwischen Platin und Wolframoxid hat sich ein Verhältnis von 1:10 erwiesen. Selbstverständlich können auch andere Verhältnisse für den nachfolgend näher beschriebenen Zweck geeignet sein. Bei der in Fig. 1 dargestellten Ausführungsform des Katalysators 1 werden zur Herstellung desselben die aktive Komponente 5a und der Promoter 5b, also Platin und Wolframoxid, gemeinsam auf die Trägerschicht 4 aufgebracht. Das Wolframoxid und das Platin liegen dabei als Wolframsalz bzw. Platinsalz in einer wässrigen Lösung vor, welche auf die Trägerschicht 4 aufgebracht und anschließend getrocknet wird. Zur Herstellung des Katalysators 1 eignen sich außerdem auch eine chemische oder elektrochemische Abscheidung.
Im Gegensatz zu der Ausführungsform gemäß Fig. 1 wird bei der Ausführungsform von Fig. 2 zunächst das Wolframoxid und anschließend das Platin auf die Trägerschicht 4 aufgebracht. Das Wolframoxid liegt dabei als Wolframsalz in einer wässrigen Lösung vor, welche auf die Trägerschicht 4 aufgebracht wird. Nach dem Trocknen der Trägerschicht 4, gegebenenfalls gefolgt von einem Kalzinieren und Reduzieren in einem reduktionsmittelhaltigen Gasstrom, wird dann das ebenfalls in einer wässrigen Lösung vorliegende Platinsalz, also die Platinsalzlösung, auf die mit dem Wolframoxid beschichtete Trägerschicht 4 aufgebracht und anschließend nochmals getrocknet. Auch hier kann ein Kalzinieren und ein Reduzieren in einem reduktionsmittelhaltigen Gasstrom folgen. Bei dieser Vorgehensweise sind also zwei Trocknungsschritte erforderlich, wohingegen bei der Herstellung des Kata- lysators 1 gemäß Fig. 1 lediglich ein Trocknungsschritt erforderlich ist.
Fig. 3 zeigt eine Vorrichtung 6 zur selektiven NOx-Reduktion in den Abgasen der Verbrennungskraftmaschine 2, mit der es möglich ist, ein Verfahren zur selektiven NOx-Reduktion in den Abgasen der Verbrennungskraftmaschine 2 durchzuführen, wobei den Abgasen Wasserstoff als Reduktionsmittel zugeführt wird. Durch die Zufuhr von Wasserstoff zu den Abgasen ergibt sich an dem Katalysator 1 eine unmittelbare Umsetzung von NOx mit H2 zu N2 und H2O. Dabei ist der Katalysator 1 in einer von der Verbrennungskraftmaschine 2 ausgehenden Abgasleitung 7 angeordnet. Die Vorrichtung 6 weist des weiteren eine Wasserstoffzuführeinrichtung 8 auf, welche einen Behälter 9 aufweist, der mit einer Zuführöffnung 10 versehen ist. An die Zuführöffnung 10 ist eine Zuführleitung 11 angeschlossen, welche zu der Abgasleitung 7 führt. Die Zuführöffnung 10 ist mit einem Verschluss 12 versehen, dessen Öffnungszustand durch die Einwirkung einer Steuereinrichtung 13 verändert werden kann. Die Steuereinrichtung 13 ist wiederum mit einem in der Abgasleitung 7 angeordneten NOx-Sensor 14 sowie mit einem Sensor 15 verbunden, der in einer Ansaugleitung 16 angeordnet ist, welche zu der Verbrennungskraftmaschine 2 führt. Der Sensor 15 ist in diesem Fall als an sich bekannter Luftmassensensor ausgebildet und in der Lage, den zu der Verbrennungskraftmaschine 2 strömenden Luftmassenstrom zu messen. Alternativ könnte der Sensor 15 auch in der Abgasleitung 7 angeordnet sein und es wäre des weiteren möglich, einen Temperatursensor in der Abgasleitung 7 vorzusehen. Des weiteren könnte auch auf einen der beiden Sensoren 14 oder 15 verzichtet werden. Durch die beiden Sensoren 14 und 15 ist es möglich, einen bestimmten Zustand in der Abgasleitung 7 oder in der Ansaugleitung 16 festzustellen und an die Steuereinrichtung 13 weiterzuleiten. Die Steuereinrichtung 13 ist dadurch in der Lage, den sich in dem Behälter 9 befindlichen Wasserstoff in Abhängigkeit der NOx- Konzentration innerhalb der Abgasleitung 7 oder in Abhängigkeit eines Luftmassenstroms durch die Verbrennungskraftmaschine 2 in die Abgasleitung 7 zu leiten. Auf diese Weise kann zum Beispiel bei einem Beschleunigungsvorgang, bei dem ein höherer NOx-Ausstoß zu erwarten ist, eine größere Menge an Wasserstoff in die Abgasleitung 7 eingeleitet werden. Es ist auch möglich, die erforderlichen Daten in einem Kennfeld in der Steuereinrichtung 13 zu hinterlegen, um zu bestimmten Zeiten eine erhöhte Menge an Wasserstoff zuzuführen. Selbstverständlich ist es auch möglich, den Wasserstoff kontinuierlich in die Abgasleitung 7 zu leiten. Eine weitere Möglichkeit besteht darin, eine bestimmte Grundmenge an Wasserstoff in die Abgasleitung 7 zu leiten und bei einem durch einen der Sensoren 14 oder 15 festgestellten Bedarf die eingeleitete Wasserstoffmenge zu erhöhen.
Um ein zusätzliches Tanken von Wasserstoff überflüssig zu machen, kann die Wasserstoffzuführeinrichtung 8 mit einer nicht dargestellten Einrichtung zur Reformierung von Kohlenwasserstoff oder Derivaten zu Wasserstoff aus dem für die Verbrennungskraftmaschine 2 vorgesehenem Kraftstoff, also einem Reformer oder dergleichen, verbunden sein. Der benötigte Wasserstoff könnte auch mittels einer Elektrolyse einer geeigneten Substanz, z.B. Wasser, hergestellt werden. Diese beiden Möglichkeiten werden hierin unter dem Begriff „H2-Generator" zusammengefasst . Der Behälter 9 kann in einem solchen Fall entweder weggelassen oder durch einen kleineren Zwischenspeicher ersetzt werden. Wenn der Grundkörper 3 nicht gleichzeitig als Rußfilter ausgebildet ist, wie dies oben kurz beschrieben wird, so kann in Strömungsrichtung des Abgases in der Abgasleitung 7 ein nicht dargestellter Partikelfilter dem Katalysator 1 vor- oder nachgeschaltet werden. Der Grundkörper 3 dient somit lediglich zum Halten der Trägerschicht 4.
In der nachfolgenden Tabelle sind Versuchsergebnisse dargestellt, die mit dem Katalysator 1 erreicht wurden:
Figure imgf000013_0001
Tmax = Temperatur, bei der die maximale NO-Konversion gemessen wird
SN2 = Mittelwert der Selektivität zu N2
Die Versuchsergebnisse der Referenzen 1 - 7 wurden nicht in eigenen Versuchen ermittelt, sondern sind der EP 1 475 149 Al entnommen, wobei dort andere Reaktionsbedingungen vorlagen, sodass die einzelnen Werte nur bedingt miteinander vergleichbar sind. Insbesondere ist darauf hinzuweisen, dass bei dem vorliegenden Versuch durch das Vorhandensein von H2O, CO2 und CO eine realistischere Abgaszusammensetzung vorliegt und daher mit schlechteren Werten zu rechnen ist.
Ref. 1 = "Kinetics and mechanism of the reduction of nitric ox- ides by H2 under lean-burn conditions on a Pt-Mo-Co/α-Al203 cata- lyst" von Brigitta Frank, Gerhard Emig, Albert Renken (Labora- tory of Chemical Reaction and Electrochemical Engineering
(LGRC), Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland) (Applied Catalysis B: Environmental 19
(1998) 45-57) - 47/1
Ref. 2 = "An investigation of the NO/H2/O2 reaction on noble- metal catalysts at low temperature under lean-burn conditions" von R. Burch, M. D. Coleman (Catalysis Research Centre, Chemistry Department, University of Reading, Whiteknights, Berks, RGβ 6AD, UK) (Applied Catalysis B: Environmental 23 (1999) 115-121) - 48/2. Ref. 3 = "Two conversion maxima at 373 and 573 K in the reduc- tion of nitrogen monoxide with hydrogen over Pd/TiC>2 catalyst" von Atsushi Ueda, Takayuki Nakao, Masashi Azuma, Tetsuhiko Koba- yashi (Osaka National Research Institute, AIST, Midorigaoka 1-8- 31, Ikeda, Osaka 563-85777, Japan und Department of Applied Chemistry, Osaka Institute of Technology, Omiya 5, Asahi-ku, Osaka 535-1855, Japan) (Catalysis Today 45 (1998) 135-138) - 49/3.
Ref. 4 = "An investigation of the NO/H2/O2 (Lean-deNOx) Reaction on a Highly Active and Selective Pt/La0.5Ce0.5/ MnO3 Catalyst" von CN. Costa, V. N. Stathopoulos, V. C. Belessi und A. M. Efstathiou (Department of Chemistry, üniversity of Cyprus, P.O. Box 20537, CY 1678 Nicosia, Zypern; und Department of Chemistry, Üniversity of Ioannina, Ioannina 45 110, Griechenland) (Journal of Catalysis 197, 350-364 (2001)) - 54/4.
Ref. 5 = "An Investigation of the NO/H2/O2 (Lean De-NOx) Reaction on a Highly Active and Selective PtZLa0-7Sr0-2Ce0-2FeO3 Catalyst at Low Temperatures" von CN. Costa, P. G. Savva, C Andronikou, P.S. Lambrou, K. Polychronopoulou, V. C Belessi, V. N. Stathopoulos, P. J. Pomonis und A. M. Efstathiou (Department of Chemistry, Üniversity of Cyprus, P.O. Box 20537, CY 1678 Nicosia, Zypern; und Department of Chemistry, Üniversity of Ioannina, Ioannina 45 110, Griechenland) (Journal of Catalysis 209, 456-471 (2002) - 59/5.
Ref. 6 = "An investigation of the NO/H2/O2 (Lean-deNOx) Reaction on a Highly Active and Selective Pt/La0.5Ce0.5/ MnO3 Catalyst" von CN. Costa, V. N. Stathopoulos, V. C Belessi und A. M. Efstathiou (Department of Chemistry, Üniversity of Cyprus, P.O. Box 20537, CY 1678 Nicosia, Zypern; und Department of Chemistry, University of Ioannina, Ioannina 45 110, Griechenland) (Journal of Cataly- sis 197, 350-364 (2001)) - 54/6.
Ref. 7 = EP 1 475 149 Al.
Nach dem Durchführen dieser Versuche wurde der Katalysator 1 für 15 Stunden einer hydrothermalen Alterung bei 7800C unterzogen. Anschließend wurden die Versuche nochmals mit denselben Bedingungen durchgeführt und es ergaben sich dieselben Ergebnisse, was den Schluss zulässt, dass die hydrothermale Alterung zu keiner Beschädigung bzw. Beeinträchtigung der Funktionsweise des Katalysators 1 geführt hat.

Claims

Patentansprüche
1. Vorrichtung (6) zur selektiven NOx-Reduktion in NOx-haltigen Abgasen, mit einem in einer Abgasleitung (7) angeordneten Katalysator (1) , welcher einen Grundkörper (3) , eine auf dem Grundkörper (3) aufgebrachte, aus Zirkoniumoxid bestehende Trägerschicht (4), eine auf der Trägerschicht (4) aufgebrachte, aus Platin bestehende aktive Komponente (5a) und einen auf der Trägerschicht (4) aufgebrachten, aus Wolfram- oxid bestehenden Promoter (5b) aufweist, und mit einer Wasserstoffzuführeinrichtung (8) zur Einbringung von Wasserstoff in die Abgasleitung (7) .
2. Vorrichtung nach Anspruch 1, d a du r c h g e ke n n z e i c h n e t , dass die Wasserstoffzuführeinrichtung (8) eine zu der Abgasleitung (7) führende Zuführöffnung (10) aufweist, welche mit einem Verschluss (12) versehen ist, dessen Öffnungszustand über eine Steuereinrichtung (13) veränderbar ist.
3. Vorrichtung nach Anspruch 2, d a du r c h g e k e n n z e i c h n e t , dass die Steuereinrichtung (13) mit einem NOx-Sensor (14) oder einem Temperatursensor verbunden ist.
4. Vorrichtung nach Anspruch 2 oder 3 zur selektiven NOx- Reduktion in NOx-haltigen Abgasen einer Verbrennungskraftmaschine, d a du r c h g e k e n n z e i c h n e t , dass die Steuereinrichtung (13) mit einem Sensor (15) zur Messung des zu der Verbrennungskraftmaschine (2) führenden Luftmassenstroms verbunden ist.
5. Vorrichtung nach einem der Ansprüche 1 bis 4 zur selektiven NOx-Reduktion in NOx-haltigen Abgasen einer Verbrennungskraftmaschine, d a d u r c h g e k e n n z e i c h n e t , dass die Wasserstoffzuführeinrichtung (8) mit einem H2-Generator verbunden ist.
6. Vorrichtung nach einem der Ansprüche 1 bis 5, d a d u r c h g e k e n n z e i c h n e t , dass an der Oberfläche (Ia) des Katalysators (1) sowohl Platin als auch Wolframoxid vorliegen.
7. Vorrichtung nach einem der Ansprüche 1 bis 6, d a d u r c h g e k e n n z e i c h n e t , dass die Trägerschicht (4) aus Zirkoniumoxid eine Oberfläche von mindestens 50 m2/g, insbesondere von mindestens 100 m2/g, aufweist .
8. Vorrichtung nach einem der Ansprüche 1 bis 7, d a d u r c h g e k e n n z e i c h n e t , dass die Trägerschicht (4) aus Zirkoniumoxid in einer tetragona- len Kristallstruktur vorliegt.
9. Vorrichtung nach einem der Ansprüche 1 bis 8, d a d u r c h g e k e n n z e i c h n e t , dass der Grundkörper (3) ein Wabenkörper aus einem keramischen Material ist.
10. Vorrichtung nach Anspruch 9, d a d u r c h g e k e n n z e i c h n e t , dass der keramische Wabenkörper (3) gleichzeitig als Rußfilter dient .
11. Vorrichtung nach einem der Ansprüche 1 bis 8, d a d u r c h g e k e n n z e i c h n e t , dass der Grundkörper (3) aus einem Metallsubstrat gebildet ist.
12. Verfahren zur selektiven NOx-Reduktion in NOx-haltigen Abgasen mittels einer Vorrichtung nach einem der Ansprüche 1 bis 11, wobei in die Abgasleitung (7), welche von den Abgasen durchströmt wird, Wasserstoff eingeleitet wird.
13. Verfahren nach Anspruch 12, d a d u r c h g e k e n n z e i c h n e t , dass der Wasserstoff kontinuierlich in die Abgasleitung (7) eingeleitet wird.
14. Verfahren nach Anspruch 12 zur selektiven NOx-Reduktion in NOx-haltigen Abgasen einer Verbrennungskraftmaschine, d a d u r c h g e k e n n z e i c hn e t , dass der Wasserstoff in Abhängigkeit eines zu der Verbrennungskraftmaschine (2) strömenden Luftmassenstroms in die Abgasleitung (7) eingeleitet wird.
15. Verfahren nach Anspruch 12, d a d u r c h g e k e n n z e i c h n e t , dass der Wasserstoff in Abhängigkeit einer NOx-Konzentration oder einer Temperatur innerhalb der Abgasleitung (7) in die Ab- gasleitung (7) eingeleitet wird.
16. Verfahren nach Anspruch 12, d a du r c h g e k e n n z e i c h n e t , dass der Wasserstoff in Abhängigkeit bestimmter Parameter eines
Kennfeldes in die Abgasleitung (7) eingeleitet wird.
17. Katalysator zur Verwendung bei einer selektiven NOx-Reduktion in NOx-haltigen Abgasen unter Zuführung von Wasserstoff zu den Abgasen, mit einem Grundkörper, einer auf dem Grundkörper aufgebrachten Trägerschicht, einer auf der Trägerschicht aufgebrachten aktiven Komponente und einem auf der Trägerschicht aufgebrachten Promoter, d a du r c h g e k e n n z e i c hn e t , dass die Trägerschicht (4) aus tetragonalem Zirkoniumoxid besteht, dass die aktive Komponente (5a) aus Platin besteht und dass der Promoter (5b) aus Wolframoxid besteht.
18. Verfahren zur Herstellung eines Katalysators zur selektiven NOx-Reduktion in NOx-haltigen Abgasen, d a du r c h g e k e n n z e i c h n e t , dass auf einem Grundkörper (3) eine Trägerschicht (4) aus tetragonalem Zirkoniumoxid aufgebracht wird, und dass auf die Trägerschicht (4) eine aktive Komponente (5a) aus Platin und ein Promoter (5b) aus Wolframoxid aufgebracht wird.
19. Verfahren nach Anspruch 18, da du r c h g e k e n n z e i c hn e t , dass die aktive Komponente (5a) und der Promoter (5b) gemeinsam auf die Tragerschicht (4) aufgebracht werden.
20. Verfahren nach Anspruch 18, d a d u r c h g e k e n n z e i c h n e t , dass die aktive Komponente (5a) und der Promoter (5b) nacheinander auf die Tragerschicht (4) aufgebracht werden, wobei zu¬ nächst der Promoter (5b) und anschließend die aktive Komponente (5a) aufgebracht wird.
21. Verfahren nach Anspruch 18, 19 oder 20, d a d u r c h g e k e n n z e i c h n e t , dass die aktive Komponente (5a) und der Promoter (5b) als Salze in einer Losung auf die Tragerschicht (4) aufgebracht werden.
PCT/EP2006/008014 2005-08-12 2006-08-14 Vorrichtung zur selektiven nox-reduktion in nox-haltigen abgasen WO2007020035A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP06776827A EP1912726A1 (de) 2005-08-12 2006-08-14 Vorrichtung zur selektiven nox-reduktion in nox-haltigen abgasen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005038547.8 2005-08-12
DE102005038547A DE102005038547A1 (de) 2005-08-12 2005-08-12 Katalysator zur Verwendung bei einer selektiven NOx-Reduktion in NOx-haltigen Abgasen

Publications (1)

Publication Number Publication Date
WO2007020035A1 true WO2007020035A1 (de) 2007-02-22

Family

ID=37101856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/008014 WO2007020035A1 (de) 2005-08-12 2006-08-14 Vorrichtung zur selektiven nox-reduktion in nox-haltigen abgasen

Country Status (3)

Country Link
EP (1) EP1912726A1 (de)
DE (1) DE102005038547A1 (de)
WO (1) WO2007020035A1 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009139819A3 (en) * 2008-05-16 2010-01-14 Siemens Energy, Inc. Catalytic process for control of nox emissions using hydrogen
WO2010138215A1 (en) * 2009-05-27 2010-12-02 Siemens Energy, Inc. Selective catalytic reduction system and process using a pre-sulfated zirconia binder
DE102010040808A1 (de) 2010-09-15 2012-03-15 Karlsruher Institut für Technologie Katalysator zur Verwendung bei einer selektiven NOx-Reduktion
DE102016107466A1 (de) 2016-04-22 2017-10-26 Keyou GmbH Katalysator, Vorrichtung und Verfahren zur selektiven NOx-Reduktion mittels Wasserstoff in NOx-haltigen Abgasen
US10066587B2 (en) 2016-02-09 2018-09-04 Ford Global Technologies, Llc Methods and systems for a variable volume engine intake system
DE102017124541A1 (de) 2017-10-20 2019-04-25 Argomotive Gmbh Vorrichtung zur Nachbehandlung von Abgasen eines Verbrennungsmotors
DE102018127219A1 (de) 2018-10-31 2020-04-30 Keyou GmbH Katalysator zur Verwendung bei einer selektiven NOx-Reduktion in NOx-haltigen Abgasen, Verfahren zur Herstellung eines Katalysators, Vorrichtung zur selektiven NOx-Reduktion und Verfahren zur selektiven NOx-Reduktion

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7922988B2 (en) 2007-08-09 2011-04-12 Michel Deeba Multilayered catalyst compositions
US7622096B2 (en) 2007-08-09 2009-11-24 Basf Catalysts Llc Multilayered catalyst compositions
DE102015120344A1 (de) 2015-11-24 2017-05-24 Hans Seidl Vorrichtung zur Reduktion von Stickoxiden

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0537968A1 (de) * 1991-10-16 1993-04-21 Toyota Jidosha Kabushiki Kaisha Einrichtung zur Minderung von Stickstoffoxiden in Rauchgasen aus Brennkraftmaschinen
EP0719580A1 (de) * 1994-12-28 1996-07-03 Kabushiki Kaisha Riken Vorrichtung und Verfahren zur Reinigung von Abgas
DE19600558A1 (de) * 1996-01-09 1997-07-10 Daimler Benz Ag Verfahren zur Verringerung von Stickoxiden in Abgasen von Dieselmotoren
US5950421A (en) * 1997-12-18 1999-09-14 Ford Global Technologies, Inc. Tungsten-modified platinum NOx traps for automotive emission reduction
EP1063010A1 (de) * 1998-03-09 2000-12-27 Osaka Gas Company Limited Katalysator zur entfernung von kohlenwasserstoffen aus abgasen und verfahren zur reinigung von abgasen
EP1094206A2 (de) * 1999-10-21 2001-04-25 Nissan Motor Co., Ltd. Abgasreinigungssystem
EP1211394A2 (de) * 2000-11-30 2002-06-05 Nissan Motor Co., Ltd. Abgasreinigungsanlage und -verfahren
WO2003009918A1 (fr) * 2001-07-25 2003-02-06 Institut Francais Du Petrole Materiau pour l elimination des oxydes d azote avec structure en feuillets
US20050232826A1 (en) * 2004-04-20 2005-10-20 Labarge William J Treatment devices, exhaust emission control systems, and methods of using the same
EP1685891A1 (de) * 2003-11-11 2006-08-02 Valtion Teknillinen Tutkimuskeskus Verfahren zur katalytischen reduktion von stickoxid und katalysator dafür

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4436890A1 (de) * 1994-10-15 1996-04-18 Degussa Verfahren zur gleichzeitigen Verminderung der im Abgas einer Verbrennungskraftmaschine enthaltenen Kohlenwasserstoffe, Kohlenmonoxid und Stickoxide
DE10216748A1 (de) * 2002-04-16 2003-10-30 Bayer Ag Modifizierte Katalysatoren für die Hydrierung von aromatischen Kohlenwasserstoffen

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0537968A1 (de) * 1991-10-16 1993-04-21 Toyota Jidosha Kabushiki Kaisha Einrichtung zur Minderung von Stickstoffoxiden in Rauchgasen aus Brennkraftmaschinen
EP0719580A1 (de) * 1994-12-28 1996-07-03 Kabushiki Kaisha Riken Vorrichtung und Verfahren zur Reinigung von Abgas
DE19600558A1 (de) * 1996-01-09 1997-07-10 Daimler Benz Ag Verfahren zur Verringerung von Stickoxiden in Abgasen von Dieselmotoren
US5950421A (en) * 1997-12-18 1999-09-14 Ford Global Technologies, Inc. Tungsten-modified platinum NOx traps for automotive emission reduction
EP1063010A1 (de) * 1998-03-09 2000-12-27 Osaka Gas Company Limited Katalysator zur entfernung von kohlenwasserstoffen aus abgasen und verfahren zur reinigung von abgasen
EP1094206A2 (de) * 1999-10-21 2001-04-25 Nissan Motor Co., Ltd. Abgasreinigungssystem
EP1211394A2 (de) * 2000-11-30 2002-06-05 Nissan Motor Co., Ltd. Abgasreinigungsanlage und -verfahren
WO2003009918A1 (fr) * 2001-07-25 2003-02-06 Institut Francais Du Petrole Materiau pour l elimination des oxydes d azote avec structure en feuillets
EP1685891A1 (de) * 2003-11-11 2006-08-02 Valtion Teknillinen Tutkimuskeskus Verfahren zur katalytischen reduktion von stickoxid und katalysator dafür
US20050232826A1 (en) * 2004-04-20 2005-10-20 Labarge William J Treatment devices, exhaust emission control systems, and methods of using the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009139819A3 (en) * 2008-05-16 2010-01-14 Siemens Energy, Inc. Catalytic process for control of nox emissions using hydrogen
US7718153B2 (en) 2008-05-16 2010-05-18 Siemens Energy, Inc. Catalytic process for control of NOx emissions using hydrogen
KR101314796B1 (ko) 2008-05-16 2013-10-10 지멘스 에너지, 인코포레이티드 수소를 이용한 NOx방출을 조절하는 촉매 방법
WO2010138215A1 (en) * 2009-05-27 2010-12-02 Siemens Energy, Inc. Selective catalytic reduction system and process using a pre-sulfated zirconia binder
DE102010040808A1 (de) 2010-09-15 2012-03-15 Karlsruher Institut für Technologie Katalysator zur Verwendung bei einer selektiven NOx-Reduktion
WO2012034939A1 (de) 2010-09-15 2012-03-22 Karlsruher Institut für Technologie Katalysator zur verwendung bei einer selektiven nox-reduktion
US10066587B2 (en) 2016-02-09 2018-09-04 Ford Global Technologies, Llc Methods and systems for a variable volume engine intake system
DE102016107466A1 (de) 2016-04-22 2017-10-26 Keyou GmbH Katalysator, Vorrichtung und Verfahren zur selektiven NOx-Reduktion mittels Wasserstoff in NOx-haltigen Abgasen
DE102017124541A1 (de) 2017-10-20 2019-04-25 Argomotive Gmbh Vorrichtung zur Nachbehandlung von Abgasen eines Verbrennungsmotors
DE102018127219A1 (de) 2018-10-31 2020-04-30 Keyou GmbH Katalysator zur Verwendung bei einer selektiven NOx-Reduktion in NOx-haltigen Abgasen, Verfahren zur Herstellung eines Katalysators, Vorrichtung zur selektiven NOx-Reduktion und Verfahren zur selektiven NOx-Reduktion
WO2020089264A1 (de) 2018-10-31 2020-05-07 Keyou GmbH Katalysator zur verwendung bei einer selektiven nox-reduktion in nox-haltigen abgasen, verfahren zur herstellung eines katalysators, vorrichtung zur selektiven nox-reduktion und verfahren zur selektiven nox-reduktion

Also Published As

Publication number Publication date
DE102005038547A1 (de) 2007-02-15
EP1912726A1 (de) 2008-04-23

Similar Documents

Publication Publication Date Title
WO2007020035A1 (de) Vorrichtung zur selektiven nox-reduktion in nox-haltigen abgasen
EP2042225B2 (de) Entfernung von Partikeln aus dem Abgas von mit überwiegend stöchiometrischem Luft/Kraftstoff-Gemisch betriebenen Verbrennungsmotoren
EP3103979B1 (de) Katalysator zur entfernung von stickoxiden aus dem abgas von dieselmotoren
EP2042226B1 (de) Entfernung von partikeln aus dem abgas von mit überwiegend stöchiometrischen luft/kraftstoff-gemisch betriebenen verbrennungsmotoren
DE102010014468B4 (de) Verfahren zur Verminderung von Lachgas bei der Abgasnachbehandlung von Magermotoren
DE102012222801B4 (de) Abgassystem und Verwendung einer Washcoatbeschichtung
DE19861449B4 (de) Katalysator für die Reinigung von sauerstoffreichem Abgas, seine Verwendung und Verfahren zu seiner Herstellung
DE102014105736A1 (de) Motor mit Fremdzündung und Abgassystem, das ein katalysiertes in Zonen beschichtetes Filtersubstrat umfasst
DE102012222807A1 (de) Abgassystem für einen mager verbrennenden Verbrennungsmotor, das einen SCR-Katalysator umfasst
WO2009140989A1 (de) Vorrichtung zur reinigung von dieselabgasen
DE102012025751A1 (de) Abgassystem für einen mager verbrennenden Verbrennungsmotor, das eine PGM- Komponente und einen SCR- Katalysator umfasst
EP1961933A1 (de) Katalytisch aktiviertes Dieselpartikelfilter mit Ammoniak-Sperrwirkung
DE102012222804A1 (de) Substratmonolith, der einen SCR-Katalysator umfasst
DE112011103996T5 (de) Metall-enthaltender Zeolithkatalysator
DE102017116461A1 (de) Katalysator-bindemittel für filtersubstrate
EP1886005A1 (de) Verfahren und vorrichtung zur bereitstellung von ammoniak in einem abgasstrom einer verbrennungskraftmaschine
WO2012065933A1 (de) Katalysator zur entfernung von stickoxiden aus dem abgas von dieselmotoren
DE102011012799A1 (de) Katalysator zur Entfernung von Stickoxiden aus dem Abgas von Dieselmotoren
DE60030198T2 (de) Verfahren zur Herstellung eines Dreiwegkatalysators
DE102008009672A1 (de) SCR-Katalysator mit Kohlenwasserstoffspeicherfunktion und Katalysatoranordnung
EP1810751A1 (de) Verfahren zur Herstellung eines eisenhaltigen SCR-Katalysators
EP2623183A1 (de) Katalytisch aktives Partikelfilter und dessen Verwendung
WO2020169600A1 (de) Katalysator zur reduktion von stickoxiden
WO2012034939A1 (de) Katalysator zur verwendung bei einer selektiven nox-reduktion
DE102016107466A1 (de) Katalysator, Vorrichtung und Verfahren zur selektiven NOx-Reduktion mittels Wasserstoff in NOx-haltigen Abgasen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006776827

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2006776827

Country of ref document: EP