WO2007018268A1 - Material for insulating film, method of film formation therefrom and insulating film - Google Patents

Material for insulating film, method of film formation therefrom and insulating film Download PDF

Info

Publication number
WO2007018268A1
WO2007018268A1 PCT/JP2006/315858 JP2006315858W WO2007018268A1 WO 2007018268 A1 WO2007018268 A1 WO 2007018268A1 JP 2006315858 W JP2006315858 W JP 2006315858W WO 2007018268 A1 WO2007018268 A1 WO 2007018268A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating film
plasma cvd
film
film material
formula
Prior art date
Application number
PCT/JP2006/315858
Other languages
French (fr)
Japanese (ja)
Inventor
Takahisa Ohno
Nobuo Tajima
Tomoyuki Hamada
Nobuyoshi Kobayashi
Minoru Inoue
Satoshi Hasaka
Kaoru Sakota
Manabu Shinriki
Kazuhiro Miyazawa
Original Assignee
National Institute For Materials Science
Taiyo Nippon Sanso Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005231874A external-priority patent/JP2007048955A/en
Application filed by National Institute For Materials Science, Taiyo Nippon Sanso Corporation filed Critical National Institute For Materials Science
Publication of WO2007018268A1 publication Critical patent/WO2007018268A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02211Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/5329Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • Insulating film material film forming method using the insulating film material, and insulating film
  • the present invention relates to an insulating film material, a film forming method using the same, and an insulating film.
  • SiO 2 is used as a material for forming an interlayer insulating film so as to use low resistivity copper from aluminum which has been conventionally used as a material for forming a wiring layer, and to reduce wiring interlayer capacitance.
  • Relative permittivity 4.1
  • a technique called a damascene method is generally employed.
  • Damascene method is resist masking, and wiring trenches are formed in the interlayer insulation film by dry etching. After copper is deposited on the interlayer insulation film, excess copper deposited outside the trench is removed It is a technique for forming a wiring layer made of copper by removing it by polishing (CMP).
  • the interlayer insulation film is a SiO film formed by CVD using tetraethoxysilane.
  • the strength of this film is so high that it will not be damaged by chemical mechanical polishing. However, if the SiO film is made porous in order to lower the dielectric constant, the strength is greatly reduced.
  • Young's modulus As an index of the strength of the insulating film, Young's modulus is generally used.
  • the SiO film using tetraethoxysilane has a Young's modulus of about 80 GPa.
  • the strength is around 4-6 GPa.
  • organic silicon-based materials have been conventionally proposed as a material for reducing the dielectric constant while maintaining the mechanical strength of the insulating film.
  • organic silicon materials proposed so far the organic chain in the organic silicon-based insulating film has been used only for the purpose of introducing a low dielectric constant substance into the insulating film.
  • these organic silicon materials have been proposed based on the idea that the organic chain is located at the end of the bond and the network structure is formed only by Si-O-Si bonds. The material is provided!
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-252228
  • Patent Document 2 Japanese Patent Laid-Open No. 2002-256434
  • Patent Document 3 Japanese Patent Laid-Open No. 2004-200626
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2004-214161
  • An object of the present invention is to provide an insulating film having a low dielectric constant and a high mechanical strength, which is useful for an interlayer insulating film of a semiconductor device.
  • the present invention provides the following insulating film and film forming method.
  • the first aspect of the present invention is an insulating film material for plasma CVD represented by the following chemical formula (1).
  • a second aspect of the present invention is an insulating film material for plasma CVD represented by the following chemical formula (2).
  • R 1 is H, CH, CH, CH, CH, CH, CH, CH, CH, CH, CH, CH, CH, CH, CH, CH, CH, CH, CH, CH
  • a third aspect of the present invention is an insulating film material for plasma CVD represented by the following chemical formula (3).
  • R 1 and R 2 are H, CH, CH, CH, CH, CH, CH, CH, CH, CH, CH, CH, CH, C
  • H 1 s may be different or the same.
  • a fourth aspect of the present invention is an insulating film material for plasma CVD represented by the following chemical formula (4).
  • a fifth aspect of the present invention is an insulating film material for plasma CVD represented by the following chemical formula (5).
  • a sixth aspect of the present invention is a plasma CVD insulating film material represented by the following chemical formula (6).
  • a seventh aspect of the present invention is an insulating film material for plasma CVD represented by the following chemical formula (7).
  • An eighth aspect of the present invention is a film forming method characterized in that a film is formed by plasma CVD using the insulating film material described in any one of the first to seventh items.
  • Any one of 3 2 2 3 2 5 3 3 3 5 3 7 4 9 5 10 5 11 may be the same or different from each other. )
  • an additive gas be accompanied during film formation.
  • the additive gas is CO, O, H 0, NO, N 0, NO, CO, H, carbon number 2-3.
  • a ninth aspect of the present invention is an insulating film formed by the film forming method of the eighth aspect.
  • a tenth aspect of the present invention is an insulating film formed by a plasma CVD film forming method using the insulating film material according to the first to seventh aspects.
  • an insulating film formed by a plasma CVD method using the insulating film material of the present invention is obtained by a chemical mechanical polishing method having a low dielectric constant and a high mechanical strength.
  • an effect such as that the interlayer insulating film is not damaged can be obtained.
  • an insulating film having a dielectric constant of 2.1 to 2.8 and a Young's modulus of at least 7.0-11. OGPa can be obtained.
  • the insulating film formed using the material represented by the chemical formulas (1) to (8) has a dielectric constant of 2.1 to 2.8 and a Young's modulus of 7.0 to LI. OGPa.
  • FIG. 1 is a schematic configuration diagram showing an example of a plasma film forming apparatus used in the present invention. Explanation of symbols
  • the insulating film material of the present invention can be used when forming an insulating film such as an interlayer insulating film of a semiconductor device.
  • the present inventor conducted a theoretical study on the film structure and included a Si (hydrocarbon) Si bond as well as a Si-OS i bond as a network, thereby obtaining a low dielectric constant material with high mechanical strength. I found.
  • the compound represented by the chemical formula (1) is tetravinylsilane.
  • Specific examples of the compound represented by the chemical formula (2) include trivinylmethoxysilane. , Tribuulethoxysilane, tribuulpropoxysilane, tribuulisopropoxysilane, tribuurbutoxysilane, tribulutary butoxysilane, tribuulcyclopentyloxysilane, and tribuulpentoxysilane.
  • Specific examples of the compound represented by the chemical formula (3) include divinyldimethoxysilane, divinino-resoxyoxysilane, divininoresipropoxysilane, divininoresipropoxysilane, dibininoresibutoxysilane. , Divinino resistabutyoxysilane, ditetradicyclopentoxysilane, divinyldipentoxysilane.
  • Specific examples of the compound represented by the above chemical formula (4) include butyltrimethoxysilane, butyltriethoxysilane, butyltripropoxysilane, butyltriisopropoxysilane, vinyltributoxysilane, butyltritally. Examples include butoxysilane, tetratricyclopentyloxysilane, and vinyltripentyloxysilane.
  • Specific examples of the compound represented by the chemical formula (5) include n-propylsilanol, n-butylsilanol, n-propylmethylsilanol, n-propylmethoxysilane, n-butylmethylsilanol, n- Butylmethoxysilane, n-propyldimethylsilanol, n-propylmethylmethoxysilane, n-butyldimethylsilanol, n-butylmethylmethoxysilane, n-ol, n-pentylmethylsilanol, n-pentylmethoxysilane, n-pentyldimethyl Silanol, n-pentylmethylmethoxysilane, n-pentyldimethylmethoxysilane, n-butylethylsilanol, n-propylmethyle
  • Specific examples of the compound represented by the chemical formula (6) include allylsilanol, allylmethylsilanol, allylmethoxysilane, allyldimethylsilanol, allylmethylmethoxysilane, allyldimethylmethoxysilane, Rylethylsilanol, arylethoxysilane, arylmethylethylsilanol, arylethylmethoxysilane, arylmethylethylmethoxysilane, arylmethylethoxysilane, aryldimethylethoxysilane, aryljetylsilane, aryl Examples include butyl ethoxy silane, allyl ketyl methoxy silane, allyl methyl ethoxy silane, and allyl ketyl ethoxy silane.
  • Specific examples of the compound represented by the chemical formula (7) include vinylmethylsilanol, vinylethylsilanol, vinylmethylmethoxysilane, vinylethylmethoxysilane, vinylmethylethylsilanol, vinyldimethylmethoxysilane.
  • Specific examples of the compound represented by the chemical formula (8) include tetramethoxysilane, tetraethyoxysilane, tetrabiuroxysilane, tetrapropoxysilane, tetrapropaylsilane, and tetraprovirsilane.
  • film formation is basically performed by the plasma CVD method using the above-described insulating film material of the present invention.
  • the insulating film material of the present invention may be used alone or in combination of two or more. That is, it is possible to use one or more insulating film materials in which one group force of any one of the chemical formulas (1) to (7) is selected, It is possible to use one or more insulating film materials selected from two or more groups of any one of the chemical formulas (1) to (7).
  • the mixing ratio in the case of using a mixture of one or more insulating film materials is not particularly limited, and can be determined in consideration of the dielectric constant and Young's modulus of the obtained insulating film.
  • these insulating film materials are gaseous at room temperature, they can be sent to the chamber of the film forming apparatus as they are, and if they are liquid, they are produced by publishing using an inert gas such as helium. It can be sent to the chamber by vaporization, vaporization by a vaporizer or vaporization by heating a material container.
  • the plasma CVD reaction may be performed by simultaneously sending the additive gas into the chamber of the film forming apparatus!
  • the additive gas can be selected as necessary.
  • An additive compound gas such as is used. These may be used alone or in combination as necessary.
  • the hydrocarbon group having 2 to 3 carbon atoms is an ethyl group, a vinyl group, an ethur group, a propyl group, an aryl group, a 1-propyl group, or a 1,2-probeger group.
  • Chain hydrocarbons having a hydrocarbon group of 2 to 3 carbon atoms include ethane, ethylene, acetylene, propane, propene, 1,2-propagen, butane, 1-butene, 2-butene, 1,2-butadiene , Pentane, 1-pentene, 2-pentene, 1,2-pentadiene, hexane, 1-hexane, 2-hexene, 1,2-hexagen, and the like.
  • Alcohols having a hydrocarbon group having 2 to 3 carbon atoms include ethanol, propanol, 2 propenol, 3 propenol, 2, 3 propagenol, butanol, 3 butenol, 4-butenol, 3, 4— Butagenol, pentanol, 4-pentenol, 5-pentenol, 4, 5-pentadienol, hexanol, 5-hexenore, 6- Examples include xenol and 5, 6-hexagenol.
  • Ethers having a hydrocarbon group having 2 to 3 carbon atoms include methyl ether, methenorepropinoreatenore, methenorealinoleteenore, methinore 1 propenoleatere, methinore 1 —Prono Geninoreetenore, Jetinoreetenore, EthinorePropinoreetenore, Etenorealinoleetenore, Etchinore 1—Propeninoreethenore, Etchinore 1, 2, —Prono Geninoreetenore, Dipropino Examples include lee tenole, propino rare linole ethenore, propinole 1-port mouth ether, propyl 1,2-probe jer ether.
  • Examples include til silane, trimethyl silane, tetramethyl silane, ethyl silane, jetyl silane, triethyl silane, tetraethyl silane, propasilane, dipropasilane, and tripropasilane.
  • the dielectric constant and Young's modulus of the resulting insulating film can be controlled.
  • the dielectric constant By adding an acidic gas, the dielectric constant can be lowered during the formation of the insulating film.
  • the force Young's modulus is reduced.
  • H 0, CO is not effective as an oxidizing agent, so it can be mixed with O.
  • 2 2 2 2 can be used to adjust the effect as an oxidizing agent.
  • One is oxidized and the SiO component in the insulating film is prevented from increasing.
  • R 1 of the compound of chemical formula (5) or (7) is H, it may be used when the organic group bonded to R 1 is cleaved by the plasma and desorbed.
  • H represents an additive used when the compounds of the chemical formulas (1), (2), (3), (4), (6), (7) are used.
  • Hydrocarbons having 2 to 3 carbon atoms, alcohols, ethers, etc. The compound is optimal as an additive when the plasma power is strong or an oxidizing agent is used, and can be used for all materials.
  • Silane-based substances and methylsilane-based substances are optimally used when the film strength is weak when normally formed into a film, and can be used for all materials.
  • the Si component in the insulating film is increased and the strength is improved.
  • the dielectric constant of the insulating film increases when used in large quantities, it must be used with care.
  • the compound as the additive gas is liquid at room temperature, it is used by bubbling with helium or the like, or by vaporization by heating the material container and vaporization by a vaporizer.
  • the film can be formed using a parallel plate type plasma film forming apparatus as shown in FIG.
  • the plasma film forming apparatus shown in FIG. 1 includes a chamber 11 that can be depressurized, and the chamber 1 is connected to an exhaust pump 4 via an exhaust pipe 2 and an on-off valve 3. Further, the chamber 1 is provided with a pressure gauge (not shown), and the pressure in the chamber 11 can be measured. In the chamber 1, a pair of flat plate-like upper electrode 5 and lower electrode 6 are provided opposite to each other. The upper electrode 5 is connected to a high frequency power source 7 so that a high frequency current is applied to the upper electrode 5.
  • the lower electrode 6 also serves as a mounting table on which the substrate 8 is mounted.
  • a heater 9 is built in the lower electrode 6 so that the substrate 8 can be heated.
  • a gas supply pipe 10 is connected to the upper electrode 5.
  • a film forming gas supply source (supply device) (not shown) is connected to the gas supply pipe 10, and a film forming gas from the film forming gas supply apparatus is supplied from the pipe 10. The supplied gas flows through the plurality of through holes formed in the upper electrode 5 while diffusing toward the lower electrode 6. I'm getting out.
  • the film forming gas supply source includes a vaporizer for vaporizing the insulating film material and a flow rate adjusting valve for adjusting the flow rate, and further, an inert gas such as helium or argon.
  • An inert gas supply device that supplies gas, a supply device that supplies an oxygen-containing gas such as water vapor or oxygen, a supply device that supplies the above-described additive gas, and the like are provided. These gases can also flow through the gas supply pipe 10 and flow out into the chamber 11 from the upper electrode 5! /.
  • the substrate 8 When forming the insulating film, the substrate 8 is placed on the lower electrode 6 in the chamber 11 of the plasma film forming apparatus, and a gas comprising the insulating film material is supplied from the film forming gas supply source, An inert gas and an oxygen-containing gas are fed into the chamber 11 through the gas supply pipe 10.
  • the high frequency power supply 7 also applies a high frequency current to the upper electrode 5 to generate plasma in the chamber 11. As a result, an insulating film generated by the gas-force gas-phase chemical reaction is formed on the substrate 8.
  • the film forming conditions in this plasma film forming apparatus are preferably in the following ranges, but are not limited to these and can be arbitrarily set as required.
  • Insulating film material flow rate 25 ⁇ : LOOccZmin (In the case of 2 or more types, it is the total amount)
  • Additive gas flow rate 0 ⁇ 50ccZmin
  • Substrate temperature 300-400 ° C
  • the insulating film material used at this time is preferably such that the total of the metal components contained in the material is less than lOOppb and the nitrogen component is less than lOppm.
  • the amount of the metal component in the insulating film material is preferably small because it deteriorates the leakage characteristics of the formed film.
  • Nitrogen has a negative effect, such as the formation of amines when performing ArF resist after film formation.
  • the insulating film of the present invention uses the above-described insulating material for plasma CVD, or this material. Using an additive gas, a film can be formed by a plasma CVD reaction by a plasma film forming apparatus. The obtained insulating film has a dielectric constant of 2.1 to 2.8, and a Young's modulus of at least 7.0: LGPa, resulting in high mechanical strength.
  • the insulating film of the present invention is not damaged by chemical mechanical polishing or peeled off from the substrate.
  • the Young's modulus and dielectric constant in the present invention were measured with the following apparatus.
  • the insulating film includes Si (hydrocarbon) Si bonds as well as Si-O-Si bonds as a network constituting the insulating film.
  • Said (hydrocarbon) is CH,
  • Film formation using tetrabi-lylsilane was performed using a plasma film formation apparatus.
  • the film formation conditions are as follows.
  • Insulating film material flow lOOccZmin
  • the dielectric film thus obtained had a dielectric constant of 2.1 and Young's modulus of 9.5 GPa.
  • a plasma film forming apparatus was used to form a film using tetrabilylsilane.
  • the film formation conditions are as follows.
  • Insulating film material flow rate 25ccZmin Helium flow rate: 50cc / min
  • the dielectric film thus obtained had a dielectric constant of 2.7 and Young's modulus of 10.5 GPa.
  • Film formation using trivinylmethoxysilane was performed using a plasma film formation apparatus.
  • the film formation conditions are as follows.
  • Insulating film material flow lOOccZmin
  • the dielectric film thus obtained had a dielectric constant of 2.2 and Young's modulus of 9.8 GPa.
  • a film was formed using divinyldimethoxysilane using a plasma film forming apparatus.
  • the film formation conditions are as follows.
  • Insulating film material flow rate 50ccZmin
  • the dielectric film thus obtained had a dielectric constant of 2.2 and Young's modulus of 10.5 GPa.
  • Film formation was performed using butyltrimethoxysilane using a plasma film formation apparatus.
  • Film forming strip The cases are as follows.
  • Insulating film material flow lOOccZmin
  • the dielectric film thus obtained had a dielectric constant of 2.3 and Young's modulus of 9.9 GPa.
  • the film forming conditions are as follows.
  • the dielectric film thus obtained had a dielectric constant of 2.4 and Young's modulus of 10. lGPa.
  • Film formation using allyldimethylmethoxysilane was performed using a plasma film formation apparatus.
  • the film formation conditions are as follows.
  • Insulating film material flow lOOccZmin
  • the insulating film thus obtained had a dielectric constant of 2.2 and Young's modulus of 10. lGPa.
  • Film formation using butylethylmethylmethoxysilane was performed using a plasma film formation apparatus.
  • the film forming conditions are as follows.
  • Insulating film material flow lOOccZmin
  • the dielectric film thus obtained had a dielectric constant of 2.3 and Young's modulus of 10.4 GPa.
  • a film was formed using tetravinylsilane and divinyldimethoxysilane, and using H as an additive gas.
  • the film forming conditions are as follows.
  • Insulating film material flow rate 50ccZmin
  • the dielectric film thus obtained had a dielectric constant of 2.4 and Young's modulus of 10.7 GPa.
  • Film formation was performed using tetravinylsilane and tetramethoxysilane using a plasma film forming apparatus.
  • the film forming conditions are as follows.
  • Insulating film material flow rate 50cc / min
  • the dielectric film thus obtained had a dielectric constant of 2.4 and Young's modulus of 10.7 GPa.
  • the insulating films obtained in each of the above examples had a preferable low dielectric constant and a low yang ratio, so that it was confirmed that an appropriate mechanical strength was also achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Formation Of Insulating Films (AREA)
  • Chemical Vapour Deposition (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

Using as a material for insulating film a tetravinylsilane of the formula: (1) film formation is carried out by plasma CVD technique. The film formation may be carried out in the presence of CO2, O2, H2O, NO, N2O, NO2, CO, H2, chain hydrocarbons having a C2-C3 hydrocarbon group, alcohols or ethers.

Description

明 細 書  Specification
絶縁膜材料、この絶縁膜材料を用いた成膜方法および絶縁膜  Insulating film material, film forming method using the insulating film material, and insulating film
技術分野  Technical field
[0001] この発明は、絶縁膜材料およびこれを用いる成膜方法ならびに絶縁膜に関する。  The present invention relates to an insulating film material, a film forming method using the same, and an insulating film.
本願は、 2005年 8月 10曰に、日本に出願された特願 2005— 231874号、及び 2 006年 4月 27日に日本に出願された特願 2006— 123632に基づき優先権を主張し 、その内容をここに援用する。  This application claims priority based on Japanese Patent Application 2005-231874 filed in Japan on August 10, 2005 and Japanese Patent Application 2006-123632 filed in Japan on April 27, 2006, The contents are incorporated here.
背景技術  Background art
[0002] 半導体集積回路装置の高集積化に伴い、配線層の配線が微細化されつつある。し かし、微細な配線を有する配線層では、配線層における信号遅延の影響が大きぐ 高速ィ匕を妨げている。この信号遅延は、配線層の抵抗と配線層間容量に比例するた め、高速化を実現するためには配線層の低抵抗化と配線層間容量の低減が必須で ある。  [0002] With the high integration of semiconductor integrated circuit devices, the wiring of wiring layers is being miniaturized. However, in a wiring layer having fine wiring, a high-speed signal is greatly hindered by the influence of signal delay in the wiring layer. Since this signal delay is proportional to the resistance of the wiring layer and the wiring interlayer capacitance, it is essential to reduce the resistance of the wiring layer and reduce the wiring interlayer capacitance in order to achieve high speed.
[0003] このため最近では、配線層を構成する材料として従来使用されていたアルミニウム から抵抗率の低 ヽ銅を用いるように、また配線層間容量を減らすために層間絶縁膜 を構成する材料として SiO (比誘電率 =4. 1)から誘電率の低い SiOF (比誘電率 =  [0003] For this reason, recently, SiO 2 is used as a material for forming an interlayer insulating film so as to use low resistivity copper from aluminum which has been conventionally used as a material for forming a wiring layer, and to reduce wiring interlayer capacitance. (Relative permittivity = 4.1) to low dielectric constant SiOF (relative permittivity =
2  2
3. 7)を用いるように、なってきている。し力しながら、層間絶縁膜に求められる比誘 電率の値はますます小さくなつてきており、近い将来には 2. 4以下という小さな値の 比誘電率が求められることが予想される。  3. Use 7). However, the specific dielectric constant required for the interlayer dielectric film is becoming smaller and it is expected that a low relative dielectric constant of 2.4 or less will be required in the near future.
[0004] 銅を用いて配線層を形成する場合には、ダマシン法と呼ばれる手法が一般に採用 されている。 [0004] When a wiring layer is formed using copper, a technique called a damascene method is generally employed.
ダマシン法とは、予めレジストマスキングを行い層間絶縁膜にドライエッチングにより 配線溝を形成し、この上に銅を堆積した後、配線溝内以外に堆積している余分な銅 などをィ匕学機械研磨法 (CMP)によって除去して、銅からなる配線層を形成する手法 である。  Damascene method is resist masking, and wiring trenches are formed in the interlayer insulation film by dry etching. After copper is deposited on the interlayer insulation film, excess copper deposited outside the trench is removed It is a technique for forming a wiring layer made of copper by removing it by polishing (CMP).
[0005] この化学機械研磨法による操作は、ウエノ、にスラリとパッドとで荷重をかけながら銅 を研磨除去するため、層間絶縁膜には上方向と横方向とからの力がかかり、よって場 合によっては層間絶縁膜が破損したり剥離したりする不具合が起こることがある。 層間絶縁膜が、テトラエトキシシランを用いて、 CVD法によって形成した SiO膜で [0005] In this chemical mechanical polishing method, copper is polished and removed while applying a load to the wafer with a slurry and a pad. Therefore, an upward and lateral force is applied to the interlayer insulating film, so that In some cases, the interlayer insulating film may be damaged or peeled off. The interlayer insulation film is a SiO film formed by CVD using tetraethoxysilane.
2 ある場合には、この膜の強度が高いため、化学機械研磨によって破損することは無 い。しかし、誘電率を下げるために SiO膜を多孔質膜にすると、強度が大きく低下し  2 In some cases, the strength of this film is so high that it will not be damaged by chemical mechanical polishing. However, if the SiO film is made porous in order to lower the dielectric constant, the strength is greatly reduced.
2  2
て脆くなる。  And become brittle.
[0006] 絶縁膜の強度の指標としては、ヤング率を用いるのが一般的である。テトラエトキシ シランを用いた SiO膜ではヤング率が 80GPa程度あったもの力 例えば SiOF膜に  [0006] As an index of the strength of the insulating film, Young's modulus is generally used. The SiO film using tetraethoxysilane has a Young's modulus of about 80 GPa.
2  2
なると 70GPa、更に SiOC膜になると 12GPaにまで低下する。  Then, it decreases to 70 GPa, and further to 12 GPa for the SiOC film.
また最近の有機物原料を用いた多孔質 SiO膜の場合では、 4〜6GPa程度の強度  In the case of porous SiO films using recent organic materials, the strength is around 4-6 GPa.
2  2
しかないことが判明し、その結果誘電率は下がっても化学機械研磨ができない状況 も現出している。  As a result, it has become clear that chemical mechanical polishing is not possible even if the dielectric constant drops.
[0007] また、絶縁膜の機械的強度を維持しながら誘電率を下げるための材料として、多く の有機シリコン系材料も従来より提案されている。しカゝしながらこれまで提案された有 機シリコン材料では、有機シリコン系絶縁膜中における有機鎖は、低誘電率の物質 を絶縁膜中に導入するという目的のためだけに使用されていた。すなわち、これら有 機シリコン系材料は、有機鎖は結合の終端に位置し、ネットワーク構造は Si— O— Si 結合によってのみ形成される、という考え方に基づいて提案されており、現在まで満 足の 、く材料は提供されて!、な!/、。  [0007] In addition, many organic silicon-based materials have been conventionally proposed as a material for reducing the dielectric constant while maintaining the mechanical strength of the insulating film. However, in organic silicon materials proposed so far, the organic chain in the organic silicon-based insulating film has been used only for the purpose of introducing a low dielectric constant substance into the insulating film. In other words, these organic silicon materials have been proposed based on the idea that the organic chain is located at the end of the bond and the network structure is formed only by Si-O-Si bonds. The material is provided!
このように好まし!/、誘電率と強度とを併せ持つ材料が提供されて 、な 、ことが、半導 体集積回路装置の微細化を阻害する原因の一因となっている。  Thus, a material having both a dielectric constant and strength is provided, which is one of the causes that hinder the miniaturization of semiconductor integrated circuit devices.
半導体集積回路装置の層間絶縁膜として、誘電率を低減させたものを用いるように した提案は多数あり、以下にその一部を示す。  There have been many proposals to use a film having a reduced dielectric constant as an interlayer insulating film of a semiconductor integrated circuit device.
特許文献 1:特開 2002— 252228号公報  Patent Document 1: Japanese Patent Laid-Open No. 2002-252228
特許文献 2:特開 2002— 256434号公報  Patent Document 2: Japanese Patent Laid-Open No. 2002-256434
特許文献 3:特開 2004 - 200626号公報  Patent Document 3: Japanese Patent Laid-Open No. 2004-200626
特許文献 4:特開 2004 - 214161号公報  Patent Document 4: Japanese Patent Application Laid-Open No. 2004-214161
発明の開示  Disclosure of the invention
発明が解決しょうとする課題 [0008] 本発明における課題は、半導体装置の層間絶縁膜などに有用な、誘電率が低ぐ かつ機械的強度が高 、絶縁膜が得られるようにすることにある。 Problems to be solved by the invention An object of the present invention is to provide an insulating film having a low dielectric constant and a high mechanical strength, which is useful for an interlayer insulating film of a semiconductor device.
課題を解決するための手段  Means for solving the problem
[0009] カゝかる課題を解決するため、本発明は以下の絶縁膜及び成膜方法を提供する。 [0009] In order to solve the problem, the present invention provides the following insulating film and film forming method.
本発明の第一の態様は、下記化学式(1)で示されるプラズマ CVD用絶縁膜材料 である。  The first aspect of the present invention is an insulating film material for plasma CVD represented by the following chemical formula (1).
[化 1]  [Chemical 1]
Figure imgf000005_0001
Figure imgf000005_0001
(1)  (1)
[0010] 本発明の第二の態様は、下記化学式 (2)で示されるプラズマ CVD用絶縁膜材料 である。  [0010] A second aspect of the present invention is an insulating film material for plasma CVD represented by the following chemical formula (2).
[化 2]  [Chemical 2]
Figure imgf000005_0002
Figure imgf000005_0002
(2)  (2)
(式中、 R1は、 H, CH,CH, CH, CH,CH, CH,CH,CH, CH , C H のい (Where R 1 is H, CH, CH, CH, CH, CH, CH, CH, CH, CH, CH
3 2 2 3 2 5 3 3 3 5 3 7 4 9 5 10 5 11 ずれかを表す。 )  3 2 2 3 2 5 3 3 3 5 3 7 4 9 5 10 5 11 Indicates deviation. )
[0011] 本発明の第三の態様は、下記化学式 (3)で示されるプラズマ CVD用絶縁膜材料 である。
Figure imgf000006_0001
[0011] A third aspect of the present invention is an insulating film material for plasma CVD represented by the following chemical formula (3).
Figure imgf000006_0001
(3)  (3)
(式中、 R1及び R2は、 H, CH, CH, CH,CH, CH, CH,CH, CH,CH , C (Where R 1 and R 2 are H, CH, CH, CH, CH, CH, CH, CH, CH, CH, C
3 2 2 3 2 5 3 3 3 5 3 7 4 9 5 10 ! 3 2 2 3 2 5 3 3 3 5 3 7 4 9 5 10!
H のいずれかを表し、それぞれは互いに異なっていても同じであっても良い。 )Any one of H 1 s may be different or the same. )
11 11
[0012] 本発明の第四の態様は、下記化学式 (4)で示されるプラズマ CVD用絶縁膜材料 である。  [0012] A fourth aspect of the present invention is an insulating film material for plasma CVD represented by the following chemical formula (4).
[化 4]  [Chemical 4]
R1 R 1
O O
I I
R2_0— Si— O— R3 R2_0— Si— O— R 3
H  H
H H
(4) (Four)
(式中、!^1〜!^3は、 H, CH, CH, CH,CH, CH, CH,CH, CH,CH , C H (In the formula,! ^ 1 to! ^ 3 are H, CH, CH, CH, CH, CH, CH, CH, CH, CH, CH
3 2 2 3 2 5 3 3 3 5 3 7 4 9 5 10 5 のいずれかを表し、それぞれは互いに異なっていても同じであっても良い。 )  It represents any of 3 2 2 3 2 5 3 3 3 5 3 7 4 9 5 10 5, and each may be different or the same. )
[0013] 本発明の第五の態様は、下記化学式 (5)で示されるプラズマ CVD用絶縁膜材料 である。  [0013] A fifth aspect of the present invention is an insulating film material for plasma CVD represented by the following chemical formula (5).
[化 5]  [Chemical 5]
H H H R2 HHHR 2
1 1 1 1  1 1 1 1
R1-C-C-C-S i- o-R R 1 -CCCS i- oR
H H H R3 HHHR 3
(5) (Five)
(式中、 Ri R4は、 H, CH, CH, CH,CH, CH,CH,CH, CH,CH , C H (Where Ri R 4 is H, CH, CH, CH, CH, CH, CH, CH, CH, CH, CH
3 2 2 3 2 5 3 3 3 5 3 7 4 9 5 10 5 1 のいずれかを表し、それぞれは互いに異なっていても同じであっても良い。 ) [0014] 本発明の第六の態様は、下記化学式 (6)で示されるプラズマ CVD用絶縁膜材料 である。 It represents any of 3 2 2 3 2 5 3 3 3 5 3 7 4 9 5 10 5 1, and each may be different or the same. ) [0014] A sixth aspect of the present invention is a plasma CVD insulating film material represented by the following chemical formula (6).
[化 6]  [Chemical 6]
Figure imgf000007_0001
Figure imgf000007_0001
(6)  (6)
(式中、!^1〜!^3は、 H, CH, CH, CH,CH, CH, CH,CH, CH,CH , C H (In the formula,! ^ 1 to! ^ 3 are H, CH, CH, CH, CH, CH, CH, CH, CH, CH, CH
3 2 2 3 2 5 3 3 3 5 3 7 4 9 5 10 5 のいずれかを表し、それぞれが互いに異なっていても同じであっても良い。 )  It represents any of 3 2 2 3 2 5 3 3 3 5 3 7 4 9 5 10 5, and each may be different or the same. )
[0015] 本発明の第七の態様は、下記化学式 (7)で示されるプラズマ CVD用絶縁膜材料 である。 A seventh aspect of the present invention is an insulating film material for plasma CVD represented by the following chemical formula (7).
[化 7]  [Chemical 7]
H R3 HR 3
\  \
レ― I―リ一 一  Ray I
^ 1  ^ 1
H-C H-C - H  H-C H-C-H
H R1 HR 1
(7)  (7)
(式中、!^1〜!^3は、 H, CH, CH, CH,CH, CH, CH,CH, CH,CH , C H (In the formula,! ^ 1 to! ^ 3 are H, CH, CH, CH, CH, CH, CH, CH, CH, CH, CH
3 2 2 3 2 5 3 3 3 5 3 7 4 9 5 10 5 1 のいずれかを表し、それぞれが互いに異なっていても同じであっても良い。 )  It represents any of 3 2 2 3 2 5 3 3 3 5 3 7 4 9 5 10 5 1, and each may be different or the same. )
[0016] 本発明の第八の態様は、上記第一〜七のしのいずれかに記載の絶縁膜材料を用 いプラズマ CVDにより成膜を行うことを特徴とする成膜方法である。  [0016] An eighth aspect of the present invention is a film forming method characterized in that a film is formed by plasma CVD using the insulating film material described in any one of the first to seventh items.
[0017]  [0017]
[化 8] R1 [Chemical 8] R 1
O  O
R2— O— Si— O— R4 R 2 — O— Si— O— R 4
O O
I I
R3 R 3
(8)  (8)
(式中、!^1〜!^4は、 H, CH, CH, CH,CH, CH, CH,CH, CH,CH , C H (In the formula,! ^ 1 ~! ^ 4 is H, CH, CH, CH, CH, CH, CH, CH, CH, CH, CH
3 2 2 3 2 5 3 3 3 5 3 7 4 9 5 10 5 11 のいずれかを表し、それぞれが互いに同じであっても異なっていても良い。 )  Any one of 3 2 2 3 2 5 3 3 3 5 3 7 4 9 5 10 5 11 may be the same or different from each other. )
[0018] 上記第八の態様にぉ 、ては、成膜の際、添加ガスを同伴させることが好ま U、。  [0018] In the eighth aspect, it is preferable that an additive gas be accompanied during film formation.
[0019] また前記添カ卩ガスは、 CO、 O、 H 0、 NO、 N 0、 NO、 CO、 H、炭素数 2〜3 [0019] The additive gas is CO, O, H 0, NO, N 0, NO, CO, H, carbon number 2-3.
2 2 2 2 2 2  2 2 2 2 2 2
の炭化水素基を有する鎖状炭化水素、炭素数 2〜3の炭化水素基を有するアルコー ル類、炭素数 2〜3の炭化水素基を有するエーテル類、 Si (C H ) H (n=0〜 n 2n+l x 4  Chain hydrocarbons having a hydrocarbon group, alcohols having a hydrocarbon group having 2 to 3 carbon atoms, ethers having a hydrocarbon group having 2 to 3 carbon atoms, Si (CH 3) H (n = 0 to n 2n + lx 4
3)、 SiHxCl (x= 1〜4)力 なる群力 選択される 、ずれか 1種以上であることが 好ましい。 3), SiH x Cl (x = 1 to 4) force is selected as a group force.
[0020] また本発明の第九の態様は、第八の態様の成膜方法によって成膜された絶縁膜で ある。  [0020] A ninth aspect of the present invention is an insulating film formed by the film forming method of the eighth aspect.
本発明の第十の態様は、第一〜七の態様の絶縁膜材料を用いて、プラズマ CVD 成膜法によって成膜された絶縁膜である。  A tenth aspect of the present invention is an insulating film formed by a plasma CVD film forming method using the insulating film material according to the first to seventh aspects.
発明の効果  The invention's effect
[0021] 本発明によれば、本発明の絶縁膜材料を利用して、プラズマ CVD法により成膜さ れた絶縁膜は、誘電率が低ぐしかも機械的強度が高ぐ化学機械研磨法によっても 層間絶縁膜が破損することがなくなる等の効果が得られる。特に、誘電率が 2. 1〜2 .8で、かつヤング率が少なくとも 7.0-11. OGPaの絶縁膜を得ることができる。 上記化学式(1)〜(8)に示す材料を用いて成膜された絶縁膜は、その誘電率が 2. 1 〜2.8であり、ヤング率は 7.0〜: LI. OGPaである。  [0021] According to the present invention, an insulating film formed by a plasma CVD method using the insulating film material of the present invention is obtained by a chemical mechanical polishing method having a low dielectric constant and a high mechanical strength. In addition, an effect such as that the interlayer insulating film is not damaged can be obtained. In particular, an insulating film having a dielectric constant of 2.1 to 2.8 and a Young's modulus of at least 7.0-11. OGPa can be obtained. The insulating film formed using the material represented by the chemical formulas (1) to (8) has a dielectric constant of 2.1 to 2.8 and a Young's modulus of 7.0 to LI. OGPa.
図面の簡単な説明  Brief Description of Drawings
[0022] [図 1]本発明で用いられるプラズマ成膜装置の例を示す概略構成図である。 符号の説明 FIG. 1 is a schematic configuration diagram showing an example of a plasma film forming apparatus used in the present invention. Explanation of symbols
1 テヤンバー  1 Taeyang Bar
2 排気管  2 Exhaust pipe
3 開閉弁  3 On-off valve
4 排気ポンプ  4 Exhaust pump
5 上部電極  5 Upper electrode
6 下部電極  6 Bottom electrode
7 高周波電源  7 High frequency power supply
8 基板  8 Board
9 ヒーター  9 Heater
10 ガス供給配管  10 Gas supply piping
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0024] 以下、本発明を詳しく説明する。  [0024] Hereinafter, the present invention will be described in detail.
本発明の絶縁膜材料は半導体装置の層間絶縁膜などの絶縁膜を成膜する際に用 いることがでさる。  The insulating film material of the present invention can be used when forming an insulating film such as an interlayer insulating film of a semiconductor device.
本発明者は、膜構造に対する理論的検討を実施して、ネットワークとして Si— O S i結合だけでなぐ Si (炭化水素) Si結合も含めることにより、高い機械強度の低 誘電率材料が得られることを見出した。  The present inventor conducted a theoretical study on the film structure and included a Si (hydrocarbon) Si bond as well as a Si-OS i bond as a network, thereby obtaining a low dielectric constant material with high mechanical strength. I found.
具体的には、上記 (炭化水素)が CH、 C Hまたは C Hである構造の場合に、誘  Specifically, when the above (hydrocarbon) is CH, C H or C H
2 2 4 3 6  2 2 4 3 6
電率が大きく低下し、かつ強度の低下がほとんどないことを見出した。またこの構造を 実現できるような材料を種々検討し、上述の絶縁膜材料を発見した。  It has been found that the electric power is greatly reduced and the strength is hardly reduced. In addition, various materials that can realize this structure were studied, and the above-mentioned insulating film material was discovered.
[0025] さらに、絶縁膜材料として不飽和結合を持つ有機シリコン系化合物を使用すること により成膜速度の急激な上昇が認められ、スループットの上昇に貢献することを見出 した。 [0025] Further, it has been found that the use of an organic silicon compound having an unsaturated bond as an insulating film material has led to a rapid increase in the deposition rate, which contributes to an increase in throughput.
[0026] 以下に、本発明の絶縁膜材料について説明する。  [0026] The insulating film material of the present invention will be described below.
本発明のプラズマ CVD用絶縁膜材料のうち、上記化学式(1)で表される化合物は、 テトラビニルシランである。  Of the insulating film materials for plasma CVD of the present invention, the compound represented by the chemical formula (1) is tetravinylsilane.
また、上記化学式(2)で表される化合物の具体例としては、トリビニルメトキシシラン 、トリビュルエトキシシラン、トリビュルプロポキシシラン、トリビュルイソプロポキシシラ ン、トリビュルブトキシシラン、トリビュルタシャリーブトキシシラン、トリビュルシクロペン チロキシシラン、トリビュルペンチ口キシシランなどが挙げられる。 Specific examples of the compound represented by the chemical formula (2) include trivinylmethoxysilane. , Tribuulethoxysilane, tribuulpropoxysilane, tribuulisopropoxysilane, tribuurbutoxysilane, tribulutary butoxysilane, tribuulcyclopentyloxysilane, and tribuulpentoxysilane.
[0027] また、上記化学式(3)で表される化合物の具体例としては、ジビニルジメトキシシラ ン、ジビニノレジェトキシシラン、ジビニノレジプロポキシシラン、ジビニノレジイソプロポキ シシラン、ジビニノレジブトキシシラン、ジビニノレジタシャリーブトキシシラン、ジテトラジ シクロペンチ口キシシラン、ジビニルジペンチ口キシシランなどがある。  [0027] Specific examples of the compound represented by the chemical formula (3) include divinyldimethoxysilane, divinino-resoxyoxysilane, divininoresipropoxysilane, divininoresipropoxysilane, dibininoresibutoxysilane. , Divinino resistabutyoxysilane, ditetradicyclopentoxysilane, divinyldipentoxysilane.
[0028] 上記化学式 (4)で表される化合物の具体例としては、ビュルトリメトキシシラン、ビ- ルトリエトキシシラン、ビュルトリプロポキシシラン、ビュルトリイソプロポキシシラン、ビ ニルトリブトキシシラン、ビュルトリタシャリーブトキシシラン、テトラトリシクロペンチロキ シシラン、ビニルトリペンチ口キシシランなどがある。  [0028] Specific examples of the compound represented by the above chemical formula (4) include butyltrimethoxysilane, butyltriethoxysilane, butyltripropoxysilane, butyltriisopropoxysilane, vinyltributoxysilane, butyltritally. Examples include butoxysilane, tetratricyclopentyloxysilane, and vinyltripentyloxysilane.
[0029] 上記化学式(5)で表される化合物の具体例としては、 n-プロピルシラノール、 n-ブ チルシラノール、 n-プロピルメチルシラノール、 n-プロピルメトキシシラン、 n-ブチルメ チルシラノール、 n-ブチルメトキシシラン、 n-プロピルジメチルシラノール、 n-プロピル メチルメトキシシラン、 n-ブチルジメチルシラノール、 n-ブチルメチルメトキシシラン、 n ール、 n-ペンチルメチルシラノール、 n-ペンチルメトキシシラン、 n-ペンチルジメチル シラノール、 n-ペンチルメチルメトキシシラン、 n-ペンチルジメチルメトキシシラン、 n- ブチルェチルシラノール、 n-プロピルメチルェチルシラノール、 n-プロピルェチルメト キシシラン、 n-ブチルメチルェチルシラノール、 n-ブチルェチルメトキシシラン、 n-プ 口ピルメチルェチルメトキシシラン、 n-ブチルメチルェチルメトキシシラン、 n-プロピル エトキシシラン、 n-ブチルエトキシシラン、 n-プロピルメチルエトキシシラン、 n-ブチル メチルエトキシシラン、 n-プロピルジメチルエトキシシラン、 n-ブチルジメチルエトキシ シラン、 n-ペンチノレエチノレシラノーノレ、 n-ペンチノレメチノレエチノレシラノーノレ、 n-ペン チルェチルメトキシシラン、 n-ペンチルメチルェチルメトキシシラン、 n-ペンチルェトキ シシラン、 n-ペンチルメチルエトキシシラン、 n-プロピルジェチルシラノール、 n-プロピ ルェチルエトキシシラン、 n-ブチルェチルエトキシシラン、 n-プロピルメチルェチルェ トキシシラン、 n-ブチルメチルェチルエトキシシラン、 n-ペンチルジェチルシラノール 、 n-ペンチノレジェチノレメトキシシラン、 n-ペンチノレエチノレエトキシシラン、 n-ペンチノレ メチルェチルエトキシシラン、 n-プロピルジェチルエトキシシラン、 n-ブチルジェチル エトキシシラン、 n-ペンチルジェチルエトキシシランなどが挙げられる。 [0029] Specific examples of the compound represented by the chemical formula (5) include n-propylsilanol, n-butylsilanol, n-propylmethylsilanol, n-propylmethoxysilane, n-butylmethylsilanol, n- Butylmethoxysilane, n-propyldimethylsilanol, n-propylmethylmethoxysilane, n-butyldimethylsilanol, n-butylmethylmethoxysilane, n-ol, n-pentylmethylsilanol, n-pentylmethoxysilane, n-pentyldimethyl Silanol, n-pentylmethylmethoxysilane, n-pentyldimethylmethoxysilane, n-butylethylsilanol, n-propylmethylethylsilanol, n-propylethylmethoxysilane, n-butylmethylethylsilanol, n-butyl Ethyl methoxysilane, n-propylmethylmethyl methoxysilane Lan, n-butylmethylethyl silane, n-propyl ethoxy silane, n-butyl ethoxy silane, n-propyl methyl ethoxy silane, n-butyl methyl ethoxy silane, n-propyl dimethyl ethoxy silane, n-butyl dimethyl ethoxy silane , N-pentinoleethinoressilanol, n-pentinolemethinoreethinosilanol, n-pentylethylmethoxysilane, n-pentylmethylethylmethoxysilane, n-pentyloxysilane, n-pentylmethyl Ethoxysilane, n-propylgerthylsilanol, n-propylethylethoxysilane, n-butylethylethoxysilane, n-propylmethylethyloxysilane, n-butylmethylethylethoxysilane, n-pentyljetylsilanol , N- pentyl Bruno Leger Chino les silane, n- pentyl Honoré ethyl Honoré silane, n- Penchinore methyl E chill silane, n - propyl Jefferies chill silane, n- Buchirujechiru silane, n- pentyl Rougier chill silane Etc.
[0030] 上記化学式 (6)で表される化合物の具体例としては、ァリルシラノール、ァリルメチ ルシラノール、ァリルメトキシシラン、ァリルジメチルシラノール、ァリルメチルメトキシシ ラン、ァリルジメチルメトキシシラン、ァリルェチルシラノール、ァリルエトキシシラン、ァ リルメチルェチルシラノール、ァリルェチルメトキシシラン、ァリルメチルェチルメトキシ シラン、ァリルメチルエトキシシラン、ァリルジメチルエトキシシラン、ァリルジェチルシ ラノール、ァリルェチルエトキシシラン、ァリルジェチルメトキシシラン、ァリルメチルェ チルエトキシシラン、ァリルジェチルエトキシシランなどがある。  [0030] Specific examples of the compound represented by the chemical formula (6) include allylsilanol, allylmethylsilanol, allylmethoxysilane, allyldimethylsilanol, allylmethylmethoxysilane, allyldimethylmethoxysilane, Rylethylsilanol, arylethoxysilane, arylmethylethylsilanol, arylethylmethoxysilane, arylmethylethylmethoxysilane, arylmethylethoxysilane, aryldimethylethoxysilane, aryljetylsilane, aryl Examples include butyl ethoxy silane, allyl ketyl methoxy silane, allyl methyl ethoxy silane, and allyl ketyl ethoxy silane.
[0031] 上記化学式(7)で表される化合物の具体例としては、ビニルメチルシラノール、ビニ ルェチルシラノール、ビニルメチルメトキシシラン、ビニルェチルメトキシシラン、ビニ ルメチルェチルシラノール、ビニルジメチルメトキシシラン、ビニルメチルェチルメトキ シシラン、プロピルビニルシラノール、ビニルメチルエトキシシラン、プロピルビニルメト キシシラン、プロピルメチルビ二ルシラノール、プロピルェチルビニルメトキシシラン、 ビニルェチルエトキシシラン、ビニルジメチルエトキシシラン、ビニルメチルェチルエト キシシラン、プロピルジェチルシラノール、ビニルジェチルメトキシシラン、プロピルビ ニノレエトキシシラン、プロピルェチルビ二ルシラノール、プロピルメチルビュルエトキシ シラン、プロピルェチルビニルメトキシシラン、プロピルェチルビニルエトキシシランな どがある。  [0031] Specific examples of the compound represented by the chemical formula (7) include vinylmethylsilanol, vinylethylsilanol, vinylmethylmethoxysilane, vinylethylmethoxysilane, vinylmethylethylsilanol, vinyldimethylmethoxysilane. , Vinylmethylethylmethoxysilane, propylvinylsilanol, vinylmethylethoxysilane, propylvinylmethoxysilane, propylmethylvinylsilanol, propylethylvinylmethoxysilane, vinylethylethoxysilane, vinyldimethylethoxysilane, vinylmethylethyl Ethoxysilane, Propylethylsilanol, Vinyljetylmethoxysilane, Propylvinylolethoxysilane, Propylethylvinylsilanol, Propylmethylbutylethoxysilane, Propyl Chill vinyl silane, has etc. propyl E chill vinyl silane.
[0032] 上記化学式 (8)で表される化合物の具体例としては、テトラメトキシシラン、テトラエ トキシシラン、テトラビユリキシシラン、テトラプロピキシシラン、テトラプロパエルシラン 、テトラプロビルシランなどがある。  [0032] Specific examples of the compound represented by the chemical formula (8) include tetramethoxysilane, tetraethyoxysilane, tetrabiuroxysilane, tetrapropoxysilane, tetrapropaylsilane, and tetraprovirsilane.
[0033] 次に、本発明の成膜の方法について説明する。  Next, the film forming method of the present invention will be described.
本発明の成膜方法では、基本的に、上述の本発明の絶縁膜材料を用いてプラズマ CVD法により成膜を行うものである。この場合、本発明の絶縁膜材料は単独で用い てもよく、あるいは 2種以上を組み合わせて用いても良い。すなわち、各化学式(1)〜 (7)のいずれかの 1群力も選択される 1種以上の絶縁膜材料を用いることもでき、また 各化学式(1)〜(7)のいずれかの 2群以上力 選択される 1種以上の絶縁膜材料を 用!/、ることができる。 In the film forming method of the present invention, film formation is basically performed by the plasma CVD method using the above-described insulating film material of the present invention. In this case, the insulating film material of the present invention may be used alone or in combination of two or more. That is, it is possible to use one or more insulating film materials in which one group force of any one of the chemical formulas (1) to (7) is selected, It is possible to use one or more insulating film materials selected from two or more groups of any one of the chemical formulas (1) to (7).
[0034] また、化学式(1)〜(7)で示される絶縁膜材料の 1種以上と、化学式 (8)で示される 絶縁膜材料の 1種以上とを混合して用いることも好まし ヽ。  [0034] It is also preferable to use a mixture of one or more insulating film materials represented by chemical formulas (1) to (7) and one or more insulating film materials represented by chemical formula (8). .
1種以上の絶縁膜材料を混合して使用する場合の混合比率は特に限定されず、得 られる絶縁膜の誘電率、ヤング率を勘案して決定することができる。  The mixing ratio in the case of using a mixture of one or more insulating film materials is not particularly limited, and can be determined in consideration of the dielectric constant and Young's modulus of the obtained insulating film.
[0035] これら絶縁膜材料が常温において気体状のものであれば、そのまま成膜装置のチ ヤンバーに送ることができ、また液体状のものであればヘリウムなどの不活性ガスを用 いたパブリングによる気化、気化器による気化または材料容器の加熱による気化など によってチャンバ一に送ることができる。 [0035] If these insulating film materials are gaseous at room temperature, they can be sent to the chamber of the film forming apparatus as they are, and if they are liquid, they are produced by publishing using an inert gas such as helium. It can be sent to the chamber by vaporization, vaporization by a vaporizer or vaporization by heating a material container.
[0036] 絶縁膜材料の成膜の際、添加ガスを成膜装置のチャンバ一に同時に送り込んで、 プラズマ CVD反応を行うようにしてもよ!、。 [0036] When the insulating film material is formed, the plasma CVD reaction may be performed by simultaneously sending the additive gas into the chamber of the film forming apparatus!
[0037] この添加ガスとしては必要に応じて選択できる。好ましくは CO 、 O 、 H 0、 NO、 N [0037] The additive gas can be selected as necessary. Preferably CO, O, H 0, NO, N
2 2 2  2 2 2
0、 NOなどの酸ィ匕性ガス、 CO、 H、炭素数 2〜3の炭化水素基を有する鎖状炭 0, NO and other acidic gases, CO, H, chain carbon having 2 to 3 carbon atoms
2 2 2 2 2 2
化水素、炭素数 2〜3の炭化水素基を有するアルコール類、炭素数 2〜3の炭化水 素基を有するエーテル類、 Si (C H ) H (n=0〜3)、 SiH CI (x= l〜4) n 2n+l x 4-χ x 4-x  Hydrocarbons, alcohols having a hydrocarbon group having 2 to 3 carbon atoms, ethers having a hydrocarbon group having 2 to 3 carbon atoms, Si (CH 2) H (n = 0 to 3), SiH CI (x = l ~ 4) n 2n + lx 4-χ x 4-x
などの添加系化合物ガスが用いられる。これらは必要に応じて単独で用いても組み 合わせて用いても良い。  An additive compound gas such as is used. These may be used alone or in combination as necessary.
[0038] 炭素数 2〜3の炭化水素基は、ェチル基、ビニル基、ェチュル基、プロピル基、ァリ ル基、 1 プロぺ-ル基、 1, 2—プロバジェ-ル基である。  [0038] The hydrocarbon group having 2 to 3 carbon atoms is an ethyl group, a vinyl group, an ethur group, a propyl group, an aryl group, a 1-propyl group, or a 1,2-probeger group.
炭素数 2〜3の炭化水素基を有する鎖状炭化水素には、ェタン、エチレン、ァセチ レン、プロパン、プロペン、 1, 2—プロバジェン、ブタン、 1—ブテン、 2—ブテン、 1, 2—ブタジエン、ペンタン、 1 ペンテン、 2—ペンテン、 1, 2—ペンタジェン、へキサ ン、 1一へキサン、 2—へキセン、 1, 2—へキサジェンなどがあげられる。  Chain hydrocarbons having a hydrocarbon group of 2 to 3 carbon atoms include ethane, ethylene, acetylene, propane, propene, 1,2-propagen, butane, 1-butene, 2-butene, 1,2-butadiene , Pentane, 1-pentene, 2-pentene, 1,2-pentadiene, hexane, 1-hexane, 2-hexene, 1,2-hexagen, and the like.
[0039] 炭素数 2〜3の炭化水素基を有するアルコール類には、エタノール、プロパノール、 2 プロペノール、 3 プロペノール、 2, 3 プロバジェノール、ブタノール、 3 ブテ ノール、 4ーブテノール、 3, 4—ブタジェノール、ペンタノール、 4 ペンテノール、 5 ペンテノーノレ、 4, 5—ペンタジエノーノレ、へキサノーノレ、 5—へキセノーノレ、 6—へ キセノール、 5, 6—へキサジェノールなどがあげられる。 [0039] Alcohols having a hydrocarbon group having 2 to 3 carbon atoms include ethanol, propanol, 2 propenol, 3 propenol, 2, 3 propagenol, butanol, 3 butenol, 4-butenol, 3, 4— Butagenol, pentanol, 4-pentenol, 5-pentenol, 4, 5-pentadienol, hexanol, 5-hexenore, 6- Examples include xenol and 5, 6-hexagenol.
[0040] 炭素数 2〜3の炭化水素基を有するエーテル類には、メチルェチルエーテル、メチ ノレプロピノレエーテノレ、メチノレアリノレエーテノレ、メチノレー 1 プロぺニノレエーテノレ、メチ ノレ一 1, 2—プロノ ジェニノレエーテノレ、ジェチノレエーテノレ、ェチノレプロピノレエーテノレ ゝェチノレアリノレエーテノレ、ェチノレ一 1—プロぺニノレエーテノレ、ェチノレ一 1, 2—プロノ ジェニノレエーテノレ、ジプロピノレエーテノレ、プロピノレアリノレエーテノレ、プロピノレー 1ープ 口ぺ-ルエーテル、プロピル 1, 2—プロバジェ-ルエーテルなどがあげられる。  [0040] Ethers having a hydrocarbon group having 2 to 3 carbon atoms include methyl ether, methenorepropinoreatenore, methenorealinoleteenore, methinore 1 propenoleatere, methinore 1 —Prono Geninoreetenore, Jetinoreetenore, EthinorePropinoreetenore, Etenorealinoleetenore, Etchinore 1—Propeninoreethenore, Etchinore 1, 2, —Prono Geninoreetenore, Dipropino Examples include lee tenole, propino rare linole ethenore, propinole 1-port mouth ether, propyl 1,2-probe jer ether.
[0041] Si (C H ) H (n=0〜3)で示される化合物には、シラン、メチルシラン、ジメ n 2n+ l x 4  [0041] The compounds represented by Si (C H) H (n = 0 to 3) include silane, methylsilane, dimethyl n 2n + l x 4
チルシラン、トリメチルシラン、テトラメチルシラン、ェチルシラン、ジェチルシラン、トリ ェチルシラン、テトラエチルシラン、プロパシラン、ジプロパシラン、トリプロパシランな どがあげられる。  Examples include til silane, trimethyl silane, tetramethyl silane, ethyl silane, jetyl silane, triethyl silane, tetraethyl silane, propasilane, dipropasilane, and tripropasilane.
[0042] SiH CI _ (x= l〜4)で示される化合物にはクロロシラン、ジクロロシラン、トリクロ口 シラン、テトラクロロシランがあげられる。  [0042] Examples of the compound represented by SiHCI_ (x = 1 to 4) include chlorosilane, dichlorosilane, trichlorosilane, and tetrachlorosilane.
[0043] この添加ガスの使用により、得られる絶縁膜の誘電率、ヤング率の値を制御するこ とがでさる。 [0043] By using this additive gas, the dielectric constant and Young's modulus of the resulting insulating film can be controlled.
酸ィ匕性ガスを添加することで、絶縁膜の成膜時に誘電率を低下させることができる 力 ヤング率が減少する。 H 0、 COは酸化剤としても効果が弱いため、 Oと混合し  By adding an acidic gas, the dielectric constant can be lowered during the formation of the insulating film. The force Young's modulus is reduced. H 0, CO is not effective as an oxidizing agent, so it can be mixed with O.
2 2 2 て使用することで、酸化剤としての効果を調整することができる。  2 2 2 can be used to adjust the effect as an oxidizing agent.
[0044] COを用いる場合は、これを酸化剤(酸ィ匕性ガス)と同時に添加した場合には、酸ィ匕 剤の強さを弱めることができる。例えば、 COを Oと同時に使用することでプリカーサ [0044] In the case of using CO, if it is added simultaneously with an oxidizing agent (acidic gas), the strength of the acidifying agent can be reduced. For example, by using CO at the same time as O, the precursor
2  2
一が酸化され絶縁膜中の SiO成分が増加することを防ぐ。  One is oxidized and the SiO component in the insulating film is prevented from increasing.
2  2
COを単独で使用することは、化学式(5)や(7)の化合物を使用するときの添加剤と して最適である。化学式 (5)や (7)の化合物の R1が Hの場合、 R1に結合する有機基 がプラズマによって切断されて脱離してしまう場合に利用するとよい。 The use of CO alone is optimal as an additive when using compounds of formula (5) or (7). When R 1 of the compound of chemical formula (5) or (7) is H, it may be used when the organic group bonded to R 1 is cleaved by the plasma and desorbed.
[0045] Hは、化学式(1)、(2)、(3)、(4)、(6)、(7)の化合物を使用するときの添加剤と [0045] H represents an additive used when the compounds of the chemical formulas (1), (2), (3), (4), (6), (7) are used.
2  2
して最適である。化学式(1)、(2)、(3)、(4)、 (6)、 (7)の化合物の C = C結合を切 断し Hを付けた 、場合に使用すると良!、。  And is optimal. Can be used in cases where the C = C bond of the compound of chemical formula (1), (2), (3), (4), (6), (7) is cut and H is attached.
[0046] 炭素数 2〜3の炭化水素基を持つ炭化水素類、アルコール類、エーテル類などの 化合物は、プラズマのパワーが強い場合や酸化剤を使用する場合の添加剤として最 適であり、全ての材料に使用できる。 [0046] Hydrocarbons having 2 to 3 carbon atoms, alcohols, ethers, etc. The compound is optimal as an additive when the plasma power is strong or an oxidizing agent is used, and can be used for all materials.
プラズマで有機側鎖が切断されてしまう恐れがある場合にこれら化合物を添加する ことで、絶縁膜中の SiO成分が増加することを防ぐ。  Addition of these compounds when there is a risk of the organic side chain being cleaved by plasma prevents the SiO component in the insulating film from increasing.
2  2
特に、プラズマのパワーが強すぎる場合には、不飽和結合の多い有機基を持つ化合 物を使用すると少量でも効果が大きい。  In particular, when the plasma power is too strong, the use of a compound having an organic group with many unsaturated bonds is effective even in a small amount.
[0047] シラン系物質、メチルシラン系物質は、通常に成膜すると強度が弱い場合に使用す ると最適であり、すべての材料に使用できる。  [0047] Silane-based substances and methylsilane-based substances are optimally used when the film strength is weak when normally formed into a film, and can be used for all materials.
有機分が多すぎて膜の強度が出ない場合に添加することで、絶縁膜中の Si成分を 増加し強度を向上させる。ただし、多量に使用すると絶縁膜の誘電率が上昇するた め、使用には注意が必要である。  By adding when the organic content is too high and the strength of the film does not come out, the Si component in the insulating film is increased and the strength is improved. However, since the dielectric constant of the insulating film increases when used in large quantities, it must be used with care.
[0048] なお、添加ガスとなる化合物が常温で液体であれば、ヘリウムなどを用いたバブリン グ、または材料容器の加熱による気化、および気化器による気化によって用いること になる。 [0048] If the compound as the additive gas is liquid at room temperature, it is used by bubbling with helium or the like, or by vaporization by heating the material container and vaporization by a vaporizer.
[0049] プラズマ CVD法としては、特に限定なく周知のものが用いられる。例えば、図 1に示 すような平行平板型のプラズマ成膜装置などを使用して成膜することができる。  [0049] As the plasma CVD method, a well-known one is used without particular limitation. For example, the film can be formed using a parallel plate type plasma film forming apparatus as shown in FIG.
[0050] 図 1に示したプラズマ成膜装置は、減圧可能なチャンバ一 1を備え、このチャンバ一 1は、排気管 2及び開閉弁 3を介して、排気ポンプ 4に接続されている。また、チャン バー 1には、図示しない圧力計が備えられ、チャンバ一 1内の圧力が測定できる。チ ヤンバー 1内には、相対向する一対の平板状の上部電極 5と下部電極 6とが設けられ ている。上部電極 5は、高周波電源 7に接続されており、上部電極 5に高周波電流が 印加されるようになって 、る。  The plasma film forming apparatus shown in FIG. 1 includes a chamber 11 that can be depressurized, and the chamber 1 is connected to an exhaust pump 4 via an exhaust pipe 2 and an on-off valve 3. Further, the chamber 1 is provided with a pressure gauge (not shown), and the pressure in the chamber 11 can be measured. In the chamber 1, a pair of flat plate-like upper electrode 5 and lower electrode 6 are provided opposite to each other. The upper electrode 5 is connected to a high frequency power source 7 so that a high frequency current is applied to the upper electrode 5.
[0051] 下部電極 6は、基板 8を載置する載置台を兼ねており、その内部にはヒーター 9が 内蔵され、基板 8を加熱できるようになつている。  [0051] The lower electrode 6 also serves as a mounting table on which the substrate 8 is mounted. A heater 9 is built in the lower electrode 6 so that the substrate 8 can be heated.
また、上部電極 5には、ガス供給配管 10が接続されている。このガス供給配管 10に は、図示しない成膜用ガス供給源 (供給装置)が接続されており、この成膜用ガス供 給装置からの成膜用のガスが前記配管 10から供給され、この供給されたガスは上部 電極 5内に形成された複数の貫通孔を通って、下部電極 6に向けて拡散しつつ流れ 出るようになつている。 A gas supply pipe 10 is connected to the upper electrode 5. A film forming gas supply source (supply device) (not shown) is connected to the gas supply pipe 10, and a film forming gas from the film forming gas supply apparatus is supplied from the pipe 10. The supplied gas flows through the plurality of through holes formed in the upper electrode 5 while diffusing toward the lower electrode 6. I'm getting out.
[0052] また、上記成膜用ガス供給源には、上述の絶縁膜材料を気化する気化装置と、そ の流量を調整する流量調整弁とを備えるとともに、更に、ヘリウムやアルゴンなどの不 活性ガスを供給する不活性ガス供給装置、水蒸気や、酸素などの酸素含有ガスを供 給する供給装置、および前述の添加用ガスを供給する供給装置などが設けられて 、 る。これらのガスもガス供給配管 10を流れて、上部電極 5からチャンバ一 1内に流れ 出る事ができるようになって!/、る。  [0052] The film forming gas supply source includes a vaporizer for vaporizing the insulating film material and a flow rate adjusting valve for adjusting the flow rate, and further, an inert gas such as helium or argon. An inert gas supply device that supplies gas, a supply device that supplies an oxygen-containing gas such as water vapor or oxygen, a supply device that supplies the above-described additive gas, and the like are provided. These gases can also flow through the gas supply pipe 10 and flow out into the chamber 11 from the upper electrode 5! /.
[0053] 絶縁膜を形成する際には、プラズマ成膜装置のチャンバ一 1内の下部電極 6上に 基板 8を置き、成膜用ガス供給源から、上記絶縁膜材料カゝらなるガス、不活性ガス、 酸素含有ガスを、ガス供給配管 10を介してチャンバ一 1内に送り込む。高周波電源 7 力も高周波電流を上部電極 5に印加して、チャンバ一 1内にプラズマを発生させる。 これにより、基板 8上には上記ガス力 気相化学反応により生成した絶縁膜が形成さ れる。  When forming the insulating film, the substrate 8 is placed on the lower electrode 6 in the chamber 11 of the plasma film forming apparatus, and a gas comprising the insulating film material is supplied from the film forming gas supply source, An inert gas and an oxygen-containing gas are fed into the chamber 11 through the gas supply pipe 10. The high frequency power supply 7 also applies a high frequency current to the upper electrode 5 to generate plasma in the chamber 11. As a result, an insulating film generated by the gas-force gas-phase chemical reaction is formed on the substrate 8.
[0054] このプラズマ成膜装置における成膜条件は、以下の範囲が好適であるが、この限り ではなく必要に応じて任意に設定できる。  [0054] The film forming conditions in this plasma film forming apparatus are preferably in the following ranges, but are not limited to these and can be arbitrarily set as required.
絶縁膜材料流量:25〜: LOOccZmin (2種以上の場合は合計量である) 添カ卩ガス流量:0〜50ccZmin  Insulating film material flow rate: 25 ~: LOOccZmin (In the case of 2 or more types, it is the total amount) Additive gas flow rate: 0 ~ 50ccZmin
ヘリウム流量:25〜: LOOccZmin  Helium flow rate: 25 ~: LOOccZmin
圧力:l〜10torr  Pressure: l ~ 10torr
RFパワー:50〜500W  RF power: 50-500W
基板温度:300〜400°C  Substrate temperature: 300-400 ° C
成膜厚さ:200nm  Deposition thickness: 200nm
[0055] このときに使用する絶縁膜材料は、材料中に含まれる金属成分が合計 lOOppb未 満であり、窒素成分が lOppm未満であることが好ま 、。  [0055] The insulating film material used at this time is preferably such that the total of the metal components contained in the material is less than lOOppb and the nitrogen component is less than lOppm.
絶縁膜材料中の金属成分は、成膜された膜のリーク特性を悪化させるため、その量 は少ないほうが好ましい。窒素は、成膜後 ArFレジストを行う際にアミンを生成するな どの悪影響があるためその量は少な 、ほうが好まし 、。  The amount of the metal component in the insulating film material is preferably small because it deteriorates the leakage characteristics of the formed film. Nitrogen has a negative effect, such as the formation of amines when performing ArF resist after film formation.
[0056] 本発明の絶縁膜は、上述のプラズマ CVD用絶縁膜材料を用いて、またはこの材料と 添加ガスとを用いて、プラズマ成膜装置によって、プラズマ CVD反応により成膜でき る。得られた絶縁膜の誘電率は 2. 1〜2. 8、ヤング率は少なくとも 7. 0〜: L lGPaとな り、その結果機械的強度が高いものとなる。 [0056] The insulating film of the present invention uses the above-described insulating material for plasma CVD, or this material. Using an additive gas, a film can be formed by a plasma CVD reaction by a plasma film forming apparatus. The obtained insulating film has a dielectric constant of 2.1 to 2.8, and a Young's modulus of at least 7.0: LGPa, resulting in high mechanical strength.
このため、本発明の絶縁膜は、化学機械研磨によって破損したり、基板から剥離する ようなことがない。  For this reason, the insulating film of the present invention is not damaged by chemical mechanical polishing or peeled off from the substrate.
なお本発明におけるヤング率と誘電率は、以下の装置で測定した。  The Young's modulus and dielectric constant in the present invention were measured with the following apparatus.
ヤング率: MTS社製 Nanoindenter XP  Young's modulus: Nanoindenter XP made by MTS
誘電率: SSM社製 SSM495  Dielectric constant: SSM495 manufactured by SSM
[0057] 前記絶縁膜は、上述したように、絶縁膜を構成するネットワークとして、 Si-O-Si 結合だけではなぐ Si (炭化水素) Si結合をも含む。前記 (炭化水素)は、 CH、 [0057] As described above, the insulating film includes Si (hydrocarbon) Si bonds as well as Si-O-Si bonds as a network constituting the insulating film. Said (hydrocarbon) is CH,
2 2
C H、及び C Hで示される構造となっている。その結果、誘電率が低下し、かつ強It has a structure represented by C H and C H. As a result, the dielectric constant is reduced and strong
2 4 3 6 2 4 3 6
度の低下がほとんどない、優れた絶縁膜が得られた。  An excellent insulating film with almost no decrease in temperature was obtained.
[0058] 実施例以下に、本発明の化合物を用いて成膜を行った具体例を示す。しかしなが ら本発明はこれら具体例に限定されるわけではない。 Examples [0058] Specific examples of film formation using the compounds of the present invention are shown below. However, the present invention is not limited to these specific examples.
実施例 1  Example 1
[0059] プラズマ成膜装置を使用しテトラビ-リルシランを用いた成膜を行った。成膜条件は 以下のとおりである。  [0059] Film formation using tetrabi-lylsilane was performed using a plasma film formation apparatus. The film formation conditions are as follows.
絶縁膜材料流量: lOOccZmin  Insulating film material flow: lOOccZmin
ヘリウム流量:100ccZmin  Helium flow rate: 100ccZmin
圧力: 5torr  Pressure: 5torr
RFパワー:400W  RF power: 400W
基板温度:350°C  Substrate temperature: 350 ° C
厚さ:200nm  Thickness: 200nm
このようにして得られた絶縁膜の誘電率は 2. 1、ヤング率は 9. 5GPaであった。 実施例 2  The dielectric film thus obtained had a dielectric constant of 2.1 and Young's modulus of 9.5 GPa. Example 2
[0060] プラズマ成膜装置を使用しテトラビ-リルシランを用いた成膜を行った。成膜条件は 以下のとおりである。  [0060] A plasma film forming apparatus was used to form a film using tetrabilylsilane. The film formation conditions are as follows.
絶縁膜材料流量:25ccZmin ヘリウム流量: 50cc/ min Insulating film material flow rate: 25ccZmin Helium flow rate: 50cc / min
圧力 :7torr  Pressure: 7torr
RFパワー :100W  RF power: 100W
基板温度:350°C  Substrate temperature: 350 ° C
厚さ :400nm  Thickness: 400nm
このようにして得られた絶縁膜の誘電率は 2. 7、ヤング率は 10. 5GPaであった。 実施例 3  The dielectric film thus obtained had a dielectric constant of 2.7 and Young's modulus of 10.5 GPa. Example 3
[0061] プラズマ成膜装置を使用しトリビニルメトキシシランを用いた成膜を行った。成膜条 件は以下のとおりである。  [0061] Film formation using trivinylmethoxysilane was performed using a plasma film formation apparatus. The film formation conditions are as follows.
絶縁膜材料流量: lOOccZmin  Insulating film material flow: lOOccZmin
ヘリウム流量:100ccZmin  Helium flow rate: 100ccZmin
圧力 :3torr  Pressure: 3torr
RFパワー :500W  RF power: 500W
基板温度:300°C  Substrate temperature: 300 ° C
厚さ:200nm  Thickness: 200nm
このようにして得られた絶縁膜の誘電率は 2. 2、ヤング率は 9. 8GPaであった。 実施例 4  The dielectric film thus obtained had a dielectric constant of 2.2 and Young's modulus of 9.8 GPa. Example 4
[0062] プラズマ成膜装置を使用しジビニルジメトキシシランを用 、た成膜を行った。成膜条 件は以下のとおりである。  [0062] A film was formed using divinyldimethoxysilane using a plasma film forming apparatus. The film formation conditions are as follows.
絶縁膜材料流量:50ccZmin  Insulating film material flow rate: 50ccZmin
ヘリウム流量:100ccZmin  Helium flow rate: 100ccZmin
圧力 : 3torr  Pressure: 3torr
RFパワー :500W  RF power: 500W
基板温度:300°C  Substrate temperature: 300 ° C
厚さ:200nm  Thickness: 200nm
このようにして得られた絶縁膜の誘電率は 2. 2、ヤング率は 10. 5GPaであった。 実施例 5  The dielectric film thus obtained had a dielectric constant of 2.2 and Young's modulus of 10.5 GPa. Example 5
[0063] プラズマ成膜装置を使用しビュルトリメトキシシランを用いた成膜を行った。成膜条 件は以下のとおりである。 [0063] Film formation was performed using butyltrimethoxysilane using a plasma film formation apparatus. Film forming strip The cases are as follows.
絶縁膜材料流量: lOOccZmin  Insulating film material flow: lOOccZmin
ヘリウム流量:100cc/min  Helium flow rate: 100cc / min
圧力 : 5torr  Pressure: 5torr
RFパワー:300W  RF power: 300W
基板温度:300°C  Substrate temperature: 300 ° C
厚さ:200nm  Thickness: 200nm
このようにして得られた絶縁膜の誘電率は 2. 3、ヤング率は 9. 9GPaであった。 実施例 6  The dielectric film thus obtained had a dielectric constant of 2.3 and Young's modulus of 9.9 GPa. Example 6
[0064] プラズマ成膜装置を使用し n-プチルジメチルメトキシシランを用いた成膜を行った。  [0064] Using a plasma film forming apparatus, a film was formed using n-butyldimethylmethoxysilane.
成膜条件は以下のとおりである。  The film forming conditions are as follows.
ヘリウム流量: lOOcc/min  Helium flow rate: lOOcc / min
添加ガス種類: H  Additive gas type: H
2  2
添加ガス量: 20cc/min  Additive gas amount: 20cc / min
圧力 :8torr  Pressure: 8torr
RFパワー:400W  RF power: 400W
基板温度:400°C  Substrate temperature: 400 ° C
厚さ:200nm  Thickness: 200nm
このようにして得られた絶縁膜の誘電率は 2. 4、ヤング率は 10. lGPaであった。 実施例 7  The dielectric film thus obtained had a dielectric constant of 2.4 and Young's modulus of 10. lGPa. Example 7
[0065] プラズマ成膜装置を使用しァリルジメチルメトキシシランを用いた成膜を行った。成 膜条件は以下のとおりである。  [0065] Film formation using allyldimethylmethoxysilane was performed using a plasma film formation apparatus. The film formation conditions are as follows.
絶縁膜材料流量: lOOccZmin  Insulating film material flow: lOOccZmin
ヘリウム流量: lOOccZmin  Helium flow rate: lOOccZmin
添加ガス種類: CO  Additive gas type: CO
2  2
添カ卩ガス量:20ccZmin  Gas content: 20ccZmin
圧力 :8torr  Pressure: 8torr
RFパワー:400W 基板温度:300°C RF power: 400W Substrate temperature: 300 ° C
厚さ: 200nm  Thickness: 200nm
このようにして得られた絶縁膜の誘電率は 2. 2、ヤング率は 10. lGPaであった。 実施例 8  The insulating film thus obtained had a dielectric constant of 2.2 and Young's modulus of 10. lGPa. Example 8
[0066] プラズマ成膜装置を使用しビュルェチルメチルメトキシシランを用 ヽた成膜を行つ た。成膜条件は以下のとおりである。  [0066] Film formation using butylethylmethylmethoxysilane was performed using a plasma film formation apparatus. The film forming conditions are as follows.
絶縁膜材料流量: lOOccZmin  Insulating film material flow: lOOccZmin
ヘリウム流量: lOOcc/min  Helium flow rate: lOOcc / min
添カ卩ガス種類: SiH  Supplement gas type: SiH
4  Four
添加ガス量: 2cc/min  Additive gas amount: 2cc / min
圧力 : 5torr  Pressure: 5torr
RFパワー:300W  RF power: 300W
基板温度:400°C  Substrate temperature: 400 ° C
厚さ: 200nm  Thickness: 200nm
このようにして得られた絶縁膜の誘電率は 2. 3、ヤング率は 10. 4GPaであった。 実施例 9  The dielectric film thus obtained had a dielectric constant of 2.3 and Young's modulus of 10.4 GPa. Example 9
[0067] プラズマ成膜装置を使用しテトラビニルシランとジビニルジメトキシシランを用い、添 加ガスに Hを用いた、成膜を行った。成膜条件は以下のとおりである。  [0067] Using a plasma film forming apparatus, a film was formed using tetravinylsilane and divinyldimethoxysilane, and using H as an additive gas. The film forming conditions are as follows.
2  2
絶縁膜材料流量 (TVS) : 25cc/min  Insulating film material flow rate (TVS): 25cc / min
絶縁膜材料流量(DVDMOS) : 50ccZmin  Insulating film material flow rate (DVDMOS): 50ccZmin
ヘリウム流量:100ccZmin  Helium flow rate: 100ccZmin
添加ガス種類: H  Additive gas type: H
2  2
添カ卩ガス量:20ccZmin  Gas content: 20ccZmin
圧力 :8torr  Pressure: 8torr
RFパワー:400W  RF power: 400W
基板温度:400°C  Substrate temperature: 400 ° C
厚さ:200nm  Thickness: 200nm
このようにして得られた絶縁膜の誘電率は 2. 4、ヤング率は 10. 7GPaであった。 実施例 10 The dielectric film thus obtained had a dielectric constant of 2.4 and Young's modulus of 10.7 GPa. Example 10
[0068] プラズマ成膜装置を使用しテトラビ-ルシランとテトラメトキシシランを用いて成膜を 行った。成膜条件は以下のとおりである。  [0068] Film formation was performed using tetravinylsilane and tetramethoxysilane using a plasma film forming apparatus. The film forming conditions are as follows.
絶縁膜材料流量 (TVS) : 50cc/min  Insulating film material flow rate (TVS): 50cc / min
絶縁膜材料流量 (TMOS) : 50cc/min  Insulating film material flow rate (TMOS): 50cc / min
ヘリウム流量:100ccZmin  Helium flow rate: 100ccZmin
圧力: 3torr  Pressure: 3torr
RFパワー:500W  RF power: 500W
基板温度:500°C  Substrate temperature: 500 ° C
厚さ:200nm  Thickness: 200nm
このようにして得られた絶縁膜の誘電率は 2. 4、ヤング率は 10. 7GPaであった。 上記各実施例で得られた絶縁膜は、好ましい低い誘電率を有し、かつ低くないヤン グ率を有することから、適度な機械的強度も達成されたことが確認された。  The dielectric film thus obtained had a dielectric constant of 2.4 and Young's modulus of 10.7 GPa. The insulating films obtained in each of the above examples had a preferable low dielectric constant and a low yang ratio, so that it was confirmed that an appropriate mechanical strength was also achieved.
産業上の利用可能性  Industrial applicability
[0069] 本発明によれば、半導体装置の層間絶縁膜などに有用な、誘電率が低ぐかつ機 械的強度が高 、絶縁膜を得ることができる。 [0069] According to the present invention, it is possible to obtain an insulating film having a low dielectric constant and a high mechanical strength that is useful for an interlayer insulating film of a semiconductor device.

Claims

請求の範囲 The scope of the claims
下記化学式(1)で示されるプラズマ CVD用絶縁膜材料。  An insulating film material for plasma CVD represented by the following chemical formula (1).
Figure imgf000021_0001
Figure imgf000021_0001
(1)  (1)
下記化学式 (2)で示されるプラズマ CVD用絶縁膜材料。  An insulating film material for plasma CVD represented by the following chemical formula (2).
Figure imgf000021_0002
Figure imgf000021_0002
(2)  (2)
(式中、 R1は、 H, CH,CH, CH, CH,CH,CH, CH,CH,CH , C H のい (In the formula, R 1 is H, CH, CH, CH, CH, CH, CH, CH, CH, CH, CH.
3 2 2 3 2 5 3 3 3 5 3 7 4 9 5 10 5 11 ずれかを表す。 ) 下記化学式 (3)で示されるプラズマ CVD用絶縁膜材料。  3 2 2 3 2 5 3 3 3 5 3 7 4 9 5 10 5 11 Indicates deviation. ) Insulating film material for plasma CVD represented by the following chemical formula (3).
[化 11]  [Chemical 11]
Figure imgf000021_0003
Figure imgf000021_0003
(3)  (3)
(式中、 R1及び R2は、 H, CH, CH, CH,CH, CH, CH,CH, CH,CH , C (Where R 1 and R 2 are H, CH, CH, CH, CH, CH, CH, CH, CH, CH, C
3 2 2 3 2 5 3 3 3 5 3 7 4 9 5 10 ! 3 2 2 3 2 5 3 3 3 5 3 7 4 9 5 10!
H のいずれかを表し、それぞれは互いに異なっていても同じであっても良い。 ) [4] 下記化学式 (4)で示されるプラズマ CVD用絶縁膜材料。 Any one of H 1 s may be different or the same. ) [4] An insulating film material for plasma CVD represented by the following chemical formula (4).
[化 12]  [Chemical 12]
R1 R 1
I  I
0  0
R2— 0— Si— O-R3 R 2 — 0— Si— OR 3
JH  JH
^  ^
H  H
(4)  (Four)
(式中、!^1〜!^3は、 H, CH, CH, CH,CH, CH, CH,CH, CH,CH , C H (In the formula,! ^ 1 to! ^ 3 are H, CH, CH, CH, CH, CH, CH, CH, CH, CH, CH
3 2 2 3 2 5 3 3 3 5 3 7 4 9 5 10 5 11 のいずれかを表し、それぞれは互いに異なっていても同じであっても良い。 )  It represents any of 3 2 2 3 2 5 3 3 3 5 3 7 4 9 5 10 5 11, and each may be different or the same. )
[5] 下記化学式 (5)で示されるプラズマ CVD用絶縁膜材料。  [5] An insulating film material for plasma CVD represented by the following chemical formula (5).
[化 13]  [Chemical 13]
H H H R2 HHHR 2
R'-C-C-C-S i-o~R4 R'-CCCS io ~ R 4
H H H R3 HHHR 3
(5) (Five)
(式中、尺1〜!?4は、 H, CH,CH, CH, CH,CH,CH, CH,CH, CH , C H (In the formula, Shaku 1 ~ !? 4 is H, CH, CH, CH, CH, CH, CH, CH, CH, CH, CH
3 2 2 3 2 5 3 3 3 5 3 7 4 9 5 10 5 11 のいずれかを表し、それぞれは互いに異なっていても同じであっても良い。 )  It represents any of 3 2 2 3 2 5 3 3 3 5 3 7 4 9 5 10 5 11, and each may be different or the same. )
[6] 下記化学式 (6)で示されるプラズマ CVD用絶縁膜材料。  [6] An insulating film material for plasma CVD represented by the following chemical formula (6).
[化 14]  [Chemical 14]
H H R' H H R '
\ I I  \ I I
C-C-S i-O-R3 CCS iOR 3
■ I i n ■ I i n
H— C H R2 H— CHR 2
\  \
H  H
(6)  (6)
(式中、!^1〜!^3は、 H, CH,CH, CH,CH, CH,CH, CH, CH,CH , (In the formula,! ^ 1 ~! ^ 3 is H, CH, CH, CH, CH, CH, CH, CH, CH, CH,
3 2 2 3 2 5 3 3 3 5 3 7 4 9 5 10 3 2 2 3 2 5 3 3 3 5 3 7 4 9 5 10
C H のいずれかを表し、それぞれが互いに異なっていても同じであっても良い。 )Any one of C H, which may be the same or different from each other; )
5 11 [7] 下記化学式 (7)で示されるプラズマ CVD用絶縁膜材料。 5 11 [7] An insulating film material for plasma CVD represented by the following chemical formula (7).
[化 15]  [Chemical 15]
Figure imgf000023_0001
Figure imgf000023_0001
(7)  (7)
(式中、!^1〜!^3は、 H, CH, CH, CH,CH, CH, CH,CH, CH,CH , C H (In the formula,! ^ 1 to! ^ 3 are H, CH, CH, CH, CH, CH, CH, CH, CH, CH, CH
3 2 2 3 2 5 3 3 3 5 3 7 4 9 5 10 5 11 のいずれかを表し、それぞれが互いに異なっていても同じであっても良い。 )  It represents any of 3 2 2 3 2 5 3 3 3 5 3 7 4 9 5 10 5 11, and each may be different or the same. )
[8] 請求項 1な!ヽし 7の 、ずれか 1項に記載の絶縁膜材料を用いプラズマ CVDにより成 膜を行うことを特徴とする成膜方法。  [8] Claim 1! A film forming method characterized in that a film is formed by plasma CVD using the insulating film material described in item 1 of screen 7.
[9] 請求項 1な 、し 7の 、ずれか 1項に記載のプラズマ CVD用絶縁膜材料と下記化学 式 (8)で示されるプラズマ CVD用絶縁膜材料を用いプラズマ CVDにより成膜を行う ことを特徴とする成膜方法。 [9] A film is formed by plasma CVD using the plasma CVD insulating film material according to claim 1 or 7 and the plasma CVD insulating film material represented by the following chemical formula (8): A film forming method characterized by the above.
[化 16]  [Chemical 16]
R1 R 1
I  I
o  o
R2— 0— Si— O— R" R 2 - 0- Si- O- R "
I  I
o  o
R3  R3
(8)  (8)
(式中、!^1〜!^4は、 H, CH, CH, CH,CH, CH, CH,CH, CH,CH , C H (In the formula,! ^ 1 ~! ^ 4 is H, CH, CH, CH, CH, CH, CH, CH, CH, CH, CH
3 2 2 3 2 5 3 3 3 5 3 7 4 9 5 10 5 11 のいずれかを表し、それぞれが互いに同じであっても異なっていても良い。 )  Any one of 3 2 2 3 2 5 3 3 3 5 3 7 4 9 5 10 5 11 may be the same or different from each other. )
[10] 成膜の際、添加ガスを同伴させることを特徴とする請求項 9記載の成膜方法。  10. The film forming method according to claim 9, wherein an additive gas is accompanied during film formation.
[11] 成膜の際、添加ガスを同伴させることを特徴とする請求項 10記載の成膜方法。 11. The film forming method according to claim 10, wherein an additive gas is accompanied during film formation.
[12] 添加ガスが、 CO、 O、 H 0、 NO、 N 0、 NO、 CO、 H、炭素数 2〜3の炭化水 [12] The additive gas is CO, O, H 0, NO, N 0, NO, CO, H, C2-C3 hydrocarbon
2 2 2 2 2 2  2 2 2 2 2 2
素基を有する鎖状炭化水素、炭素数 2〜3の炭化水素基を有するアルコール類、炭 素数 2〜3の炭化水素基を有するエーテル類、 Si (C H ) H (n=0〜3)、SiH n 2n+l x 4 xCl4 x(x= l〜4)力もなる群力も選択されるいずれか 1種以上であることを特徴とす る請求項 10に記載の成膜方法。 Chain hydrocarbons having a basic group, alcohols having a hydrocarbon group having 2 to 3 carbon atoms, ethers having a hydrocarbon group having 2 to 3 carbon atoms, Si (CH 2) H (n = 0 to 3), SiH n 2n + lx 4 x Cl 4 x (x = l~4 ) film forming method according to claim 10 you, wherein the force becomes the group force is also any one or more selected.
[13] 添加ガスが、 CO、 O、 H 0、 NO、 N 0、 NO、 CO、 H、炭素数 2〜3の炭化水 [13] The additive gas is CO, O, H 0, NO, N 0, NO, CO, H, C2-C3 hydrocarbon
2 2 2 2 2 2  2 2 2 2 2 2
素基を有する鎖状炭化水素、炭素数 2〜3の炭化水素基を有するアルコール類、炭 素数 2〜3の炭化水素基を有するエーテル類、 Si (C H ) H (n=0〜3)、 SiH n 2n+ l x 4  A chain hydrocarbon having a basic group, an alcohol having a hydrocarbon group having 2 to 3 carbon atoms, an ether having a hydrocarbon group having 2 to 3 carbon atoms, Si (CH 2) H (n = 0 to 3), SiH n 2n + lx 4
xCl (x= 1〜4)力もなる群力も選択される 、ずれか 1種以上であることを特徴とす る請求項 11に記載の成膜方法。  12. The film forming method according to claim 11, wherein a group force that is also an xCl (x = 1 to 4) force is selected, and one or more of them are selected.
[14] 請求項 8に記載の成膜方法を用いて成膜された絶縁膜。 [14] An insulating film formed by using the film forming method according to claim 8.
[15] 請求項 1な!、し 7の 、ずれ力 1項に記載の絶縁膜材料を用いて、プラズマ CVD成膜 法によって成膜された絶縁膜。  [15] An insulating film formed by a plasma CVD film forming method using the insulating film material according to claim 1, wherein the displacement force is 1.
PCT/JP2006/315858 2005-08-10 2006-08-10 Material for insulating film, method of film formation therefrom and insulating film WO2007018268A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005231874A JP2007048955A (en) 2005-08-10 2005-08-10 Material for insulating film, film deposition method using same, and insulating film
JP2005-231874 2005-08-10
JP2006-123632 2006-04-27
JP2006123632 2006-04-27

Publications (1)

Publication Number Publication Date
WO2007018268A1 true WO2007018268A1 (en) 2007-02-15

Family

ID=37727448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/315858 WO2007018268A1 (en) 2005-08-10 2006-08-10 Material for insulating film, method of film formation therefrom and insulating film

Country Status (2)

Country Link
TW (1) TW200710260A (en)
WO (1) WO2007018268A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8753988B2 (en) 2009-06-03 2014-06-17 Tokyo Electron Limited Starting material for use in forming silicon oxide film and method for forming silicon oxide film using same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10284486A (en) * 1996-08-29 1998-10-23 Matsushita Electric Ind Co Ltd Method of forming layer insulation film
JPH11288931A (en) * 1998-02-05 1999-10-19 Nippon Asm Kk Insulation film and its manufacture
JP2005071741A (en) * 2003-08-22 2005-03-17 Tosoh Corp Insulating film material containing alkenyl group-containing organic silane compound, insulating film using it, and semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10284486A (en) * 1996-08-29 1998-10-23 Matsushita Electric Ind Co Ltd Method of forming layer insulation film
JPH11288931A (en) * 1998-02-05 1999-10-19 Nippon Asm Kk Insulation film and its manufacture
JP2005071741A (en) * 2003-08-22 2005-03-17 Tosoh Corp Insulating film material containing alkenyl group-containing organic silane compound, insulating film using it, and semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8753988B2 (en) 2009-06-03 2014-06-17 Tokyo Electron Limited Starting material for use in forming silicon oxide film and method for forming silicon oxide film using same

Also Published As

Publication number Publication date
TW200710260A (en) 2007-03-16

Similar Documents

Publication Publication Date Title
JP3762304B2 (en) Method for forming low dielectric constant interlayer insulating film
KR101921192B1 (en) Method and precursors for manufacturing 3d devices
KR101640153B1 (en) Non-oxygen containing silicon-based films and methods of forming the same
JP4897505B2 (en) Chemical vapor deposition method for obtaining low dielectric constant porous organosilica glass films
CN110023535B (en) Precursor and flowable CVD process for fabricating low K films to fill surface features
KR20190034356A (en) Precursors for the production of low-K films for filling surface features and liquid CVD methods
JP2007318067A (en) Insulating film material, film forming method using the same, and insulating film
CN1576390A (en) Mechanical enhancer additives for low dielectric films
JP5614589B2 (en) Film forming method using insulating film material and insulating film
JP2007221039A (en) Insulation film and insulation film material
JP2011014925A5 (en)
JP2014150287A (en) Porogen, porogenated precursor and use of the same to obtain porous organosilica glass film with low dielectric constant
KR20050091780A (en) Method and apparatus to improve cracking thresholds and mechanical properties of low-k dielectric material
JP2010067810A (en) Method for forming si-containing film, insulator film, and semiconductor device
JP2006351880A (en) Forming method of interlayer insulating film and structure of interlayer insulating film
JP4997435B2 (en) Insulating film material and method of forming the same
JP5105105B2 (en) Organosilane compound for forming Si-containing film by plasma CVD method and method for forming Si-containing film
WO2007018268A1 (en) Material for insulating film, method of film formation therefrom and insulating film
JP2008263022A (en) Insulating film material, film forming method employing the insulating film material, and insulating film
JP3814797B2 (en) Method for forming a silicon polymer insulating film on a semiconductor substrate
KR102373339B1 (en) Silicon compound and method for depositing film using same
CN110952074B (en) Silicon compound and method for depositing film using silicon compound
JP5607394B2 (en) Method for forming interlayer insulating film and interlayer insulating film
JP2007318070A (en) Insulating film material, film forming method using the same, and insulating film
JP2007048955A (en) Material for insulating film, film deposition method using same, and insulating film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06782644

Country of ref document: EP

Kind code of ref document: A1