WO2007015360A1 - 転がり軸受部品の評価法 - Google Patents

転がり軸受部品の評価法 Download PDF

Info

Publication number
WO2007015360A1
WO2007015360A1 PCT/JP2006/314041 JP2006314041W WO2007015360A1 WO 2007015360 A1 WO2007015360 A1 WO 2007015360A1 JP 2006314041 W JP2006314041 W JP 2006314041W WO 2007015360 A1 WO2007015360 A1 WO 2007015360A1
Authority
WO
WIPO (PCT)
Prior art keywords
rolling bearing
rolling
amplitude
relationship
value
Prior art date
Application number
PCT/JP2006/314041
Other languages
English (en)
French (fr)
Inventor
Yoshinobu Akamatsu
Original Assignee
Ntn Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn Corporation filed Critical Ntn Corporation
Priority to DE112006002009T priority Critical patent/DE112006002009T5/de
Priority to US11/989,755 priority patent/US7877215B2/en
Publication of WO2007015360A1 publication Critical patent/WO2007015360A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/04Bearings
    • G01M13/045Acoustic or vibration analysis

Definitions

  • the present invention relates to a method for evaluating a rolling bearing part for evaluating the shape of a part such as an inner ring, an outer ring, and a rolling element of a rolling bearing.
  • the geometrically related force also determines the number of undulations that cause vibration (Non-Patent Documents 1 and 2), so the value of the number of angles can be managed independently. It is also done.
  • the amplitude of the number of undulations can be quantitatively determined by performing a harmonic analysis using a roundness measuring device.
  • Non-Patent Document 1 Tomoya Sakaro, Yoshinobu Akamatsu, “Vibration Simulation of Ball Bearing”, NTN Tech-Cal Review, 69th, 2001, p69-75
  • Non-Patent Document 2 Yoshinobu Akamatsu, “Effect of Rolling Element Material on Bearing Vibration”, Tribology Conference Tribology Conference Proceedings, November 2001, p291 ⁇ 292
  • An object of the present invention is to provide a method for evaluating a rolling bearing part that can easily and properly detect the shape deformation of the raceway surface of the rolling bearing part.
  • the method for evaluating a rolling bearing part according to the present invention is a method for evaluating a rolling bearing part having a bearing ring or rolling element force in a rolling bearing, wherein each point of the rolling surface of the rolling bearing part is determined from a perfect circle.
  • the process of calculating the difference between the number of undulations of the rolling surface and the amplitude by harmonic analysis of the measured values and the process of logarithmically converting the relationship between the obtained number of undulations and the amplitude of the waviness, and this logarithmic conversion The process of obtaining a regression line of the relationship between the number of undulations and the amplitude on the coordinated coordinates, and the deviation from the regression line of each point indicating the relationship between the swell and the number of angles on the logarithmically transformed coordinates. And a process for evaluating deformation of the rolling surface.
  • the rolling surface of the raceway is a raceway surface.
  • the deviation itself does not necessarily have to be calculated. For example, a reference value obtained by adding a predetermined value to a linear regression value and a value including the deviation It is also possible to evaluate the shape collapse by comparing with the measured value.
  • the number of angles and amplitude are logarithmically converted from the result of harmonic analysis of the roundness of the rolling surface, and the shape collapse is evaluated based on the deviation from the regression line.
  • An abnormal point can be detected by the degree of deviation from the relationship between the number of undulations and the amplitude. For this reason, it is possible to easily and appropriately detect the deformation of the rolling contact surface of the rolling bearing component, and by taking measures against the deformation, it is possible to reduce the vibration of the rolling bearing.
  • the deviation from the linear relationship can be managed by the ratio between the deviation from the regression line on the logarithmically transformed coordinates and the standard deviation.
  • a reference value appropriately determined on the basis of the standard deviation of the relationship between the number of undulations and the amplitude on the logarithmically transformed coordinates is used. You may determine with abnormality as evaluation of the shape collapse.
  • the method for evaluating a rolling bearing part according to the present invention is a method for evaluating a rolling bearing part having a bearing ring or rolling element force in a rolling bearing, wherein each point of the rolling surface of the rolling bearing part is determined from a perfect circle.
  • the process of calculating the difference between the number of undulations of the rolling surface and the amplitude by harmonic analysis of the measured values and the process of logarithmically converting the relationship between the obtained number of undulations and the amplitude of the waviness, and this logarithmic conversion The process of obtaining a regression line of the relationship between the number of undulations and the amplitude on the coordinated coordinates, and the deviation from the regression line of each point indicating the relationship between the swell and the number of angles on the logarithmically transformed coordinates. Since this method includes a process of evaluating the deformation of the rolling contact surface, it is possible to easily and appropriately detect the deformation of the raceway surface of the rolling bearing part.
  • FIG. 1 is a cross-sectional view of a rolling bearing to which an evaluation method for a rolling bearing part that is applied to one embodiment of the present invention is applied.
  • FIG. 3 A graph of the first stage data processing in the evaluation method.
  • FIG. 4 is a graph obtained by data processing at the second stage in the evaluation method.
  • FIG. 5 is a graph of data processing at the third stage in the evaluation method.
  • This evaluation method for rolling bearing components is a method for evaluating rolling bearing components that are race rings or rolling elements in a rolling bearing.
  • a rolling bearing for example, a plurality of rolling elements 3 made of steel balls are interposed between raceway surfaces la and 2a of inner ring 1 and outer ring 2 which are race rings, and these rolling elements 3 are held in cages.
  • the rolling element 3 is a rolling bearing part to be evaluated.
  • this rolling bearing component evaluation method is based on measuring the difference from each circle of the rolling surface of the rolling bearing component from a perfect circle, and swelling the rolling surface by harmonic analysis of the measured values.
  • the process of obtaining the relationship between the number of angles and the amplitude of the wave (S 1), the process of logarithmically transforming the obtained relationship between the number of angles of the wave and the amplitude (S2), and the undulation of the wave on the logarithmically transformed coordinates The process of obtaining the regression line and standard deviation of the relationship between the number of angles and the amplitude (S3) and the deviation of each point indicating the relationship between the waviness and the number of angles on the logarithmically transformed coordinates (S4). Details of each process will be described next with reference to FIGS.
  • FIG. 3 shows a measurement example of the relationship between the number of waviness angles and the amplitude of the rolling surface composed of the outer spherical surface of the rolling element 3.
  • the figure shows the relationship between the number of undulation angles and the amplitude obtained from the harmonic analysis results of the measured values by measuring the difference in the round force at each point on the rolling surface of the rolling element 3. The difference from the perfect circle at each point on the rolling surface was obtained using a roundness measuring instrument (not shown).
  • This figure plots each measurement point on the logarithmic X ⁇ y coordinate, with the horizontal axis (X axis) of the logarithmic display as the number of angles and the vertical axis (y axis) of the logarithmic display as the amplitude.
  • the regression lines of these measurement points are also shown.
  • Variable conversion to Logy.
  • Figure 4 shows the conversion results. The standard deviation ⁇ of Y at this X—Y coordinate is calculated.
  • FIG. 5 is a graph obtained by adding straight lines with ⁇ + ⁇ and ⁇ + 2 ⁇ to the regression line of FIG. Showing rough.
  • the measured value on the right side of the straight line of ⁇ + 2 ⁇ is found to be 15 corner waviness. That is, from the graph of FIG. 5, it can be determined that the 15-angle undulation has a statistically large amplitude.
  • the measured value of the ⁇ angle ( ⁇ is a natural number) waviness ⁇ ⁇ is a value obtained by adding a value m ⁇ based on the standard deviation to the value aX + b obtained by linear regression (aX + b + m ⁇ ) or more, it is judged as abnormal.
  • a and b are constants.
  • m is a constant set arbitrarily.
  • the regression line aX + b and the standard deviation ⁇ are obtained, and if the measured value ⁇ is greater than or equal to the regression line value + m ⁇ , the method is used to evaluate abnormal undulations. From the relationship between the number of angles and the amplitude, it is possible to easily and properly detect the deformation of the rolling surface of the rolling element 3, which is a rolling bearing part. Therefore, it is possible to reduce the vibration of the rolling bearing, that is, the vibration of the mechanical device using the rolling bearing.
  • the vibration caused by the undulation of the rolling bearing becomes a problem of the mechanical device in which the rolling bearing is incorporated, and it is natural that it is a problem.
  • the rotation speed of the machine is ⁇ rotations per minute
  • the frequency band with good hearing sensitivity is around 200 ⁇ .
  • 2000 ( ⁇ 60) ⁇
  • the number of angles is the excitation source. If the rated speed of the motor is 1800 rpm, n is approximately 67 squares. Therefore, using the above evaluation method, the amplitude of a specific angle may be managed according to the conditions used.
  • m of ⁇ ⁇ may be changed according to the number of angles.
  • m may be set to lZn, n 1/2, and the management value may be tightened as the number of corners increases.
  • the target angular frequency range may be extracted and managed. For example, if the mechanical device has a natural frequency of 2000 Hz and the rotation speed of the inner ring 1 is 1800 rpm, the 60-force force around the 67th angle of the inner ring 1 may be managed in the range of about 80 angles.
  • the rolling bearing that is a race ring such as the inner ring 1 or the outer ring 2 is described.
  • the deformation of the raceway surfaces la and 2a which are rolling surfaces, can be easily and appropriately detected by the same evaluation method as described above.
  • the rolling element is a cylindrical roller, a tapered roller, a spherical roller, or a needle roller.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

 転がり軸受部品の軌道面の形状崩れを容易かつ適正に検出できる転がり軸受部品の評価法を提供するために、転がり軸受における軌道輪1,2または転動体3からなる転がり軸受部品を評価する。先ず、転がり軸受部品における転動面の真円度のハーモニック解析結果により角数と振幅を求める。この求めた角数と振幅を対数変換し、この対数変換した角数と振幅の関係の回帰直線を求める。この回帰直線からの偏差を基準にして、前記転動面の形状崩れを評価する。

Description

明 細 書
転がり軸受部品の評価法
技術分野
[0001] この発明は、転がり軸受の内輪,外輪,転動体などの部品の形状を評価する転がり 軸受部品の評価法に関する。
背景技術
[0002] 転がり軸受の部品に形状誤差が存在すると、転がり軸受を組み込んだ機械装置に 振動が発生する。このような振動の原因となる転がり軸受の内輪および外輪の軌道 面である転動面、並びに転動体の転動面を管理する方法として、従来は、これらの転 動面について、目視で傷の検出を行ったり、表面粗さ計を用いて粗さの大きさを測定 したり、真円度測定器を用いて真円度を測定したりして、これらの結果を規格値と比 較していた。
また、予圧を負荷した軸受では、その幾何学的な関係力も振動を発生させるうねり の角数が決まっているので (非特許文献 1, 2)、その角数の値を独立して管理するこ とも行われている。この場合、うねりの角数の振幅は、真円度測定器を用いてハーモ ニック解析を行うことで定量ィ匕できる。
非特許文献 1 :坂ロ智也、赤松良信, 「玉軸受の振動シミュレーション」, NTN テク -カルレビュー,第 69卷, 2001年発行、 p69〜75
非特許文献 2 :赤松良信, 「軸受振動に及ぼす転動体材質の影響」,トライボロジ一学 会トライボロジー会議予稿集, 2001年 11月発行, p291〜292
発明の開示
[0003] しかし、隙間状態で使用する軸受、すなわち負荷域と非負荷域が存在する条件で 使用する軸受では、負荷域を通過する転がり要素 (転動体ならびに軌道輪)が静止 輪を加振するため、特定の角数のうねりが加振することはなぐ全ての角数のうねりが 軸受を加振する。したがって、振動に対する管理をうねりの角数に基づいて行う場合 には、特異な角数のうねりの振幅が大きいことを容易に検出できる手法が必要となる [0004] ところで、上記うねりの角数と振幅の関係を対数軸目盛り上に表現したとき、正常な 加工では線形となる(引用文献 2)。この理由は、加工機の振動が軸受の形状誤差と なり、一般に高次の振動ほど振幅が小さいためである。したがって、軸受部品におけ る加工面の形状誤差の振幅は角数とともに減少する。しかし、加工面に異常なうねり が存在すると、うねり角数の振幅が線形関係から乖離する。
[0005] この発明の目的は、転がり軸受部品の軌道面の形状崩れを、容易にかつ適正に検 出することができる転がり軸受部品の評価法を提供することである。
[0006] この発明の転がり軸受部品の評価法は、転がり軸受における軌道輪または転動体 力もなる転がり軸受部品を評価する方法であって、転がり軸受部品における転動面 の各点の真円からの差を測定して測定値のハーモニック解析により転動面のうねりの 角数と振幅の関係を求める過程と、求められた前記うねりの角数と振幅の関係を対数 変換する過程と、この対数変換された座標上における、うねりの角数と振幅の関係の 回帰直線を求める過程と、前記対数変換された座標上における、うねりと角数の関係 を示す各点の前記回帰直線からの偏差により前記転動面の形状崩れを評価する過 程とを含むことを特徴とする。
なお、軌道輪の転動面は軌道面のことである。また、前記偏差により前記転動面の 形状崩れを評価する過程では、必ずしも偏差そのものを計算しなくてもよぐ例えば、 直線回帰した値に所定の値を加えた基準値と、偏差を含む値である測定値とを比較 して形状崩れを評価しても良い。
[0007] この評価法によると、転動面の真円度のハーモニック解析結果から、角数と振幅を 対数変換し、回帰直線からの偏差を基準に形状崩れを評価するため、線形関係にあ るうねりの角数と振幅の関係からの乖離の程度によって異常点を検出することができ る。そのため、転がり軸受部品における転動面の形状崩れを容易にかつ適正に検出 でき、その形状崩れの対策を施すことで、転がり軸受の振動を低減することができる。
[0008] この場合に、線形関係からの乖離を、対数変換された座標上の回帰直線からの偏 差と標準偏差との比で管理することができる。
例えば、前記対数変換された座標上における、うねりの角数と振幅の関係の標準 偏差を基準として適宜定めた基準値を用い、前記偏差が基準値以上の場合に、前 記形状崩れの評価として異常と判定しても良い。
[0009] より具体的には、対数変換の過程では、角数 n (nは自然数)を X=Log (n)に、 n角 の振幅 rnを Y=Log (rn)に変換し、回帰直線を求める過程では回帰直線として Y= aX+b (a, bは定数)を求め、前記標準偏差を σとし、 η角のうねりの測定値 Υη力 直 線回帰した aX+bの値に標準偏差 σを基準とした値 πι σ (mは任意に設定される定 数)を加えた値以上となった場合に、異常と判定するようにしても良い。
[0010] この発明の転がり軸受部品の評価法は、転がり軸受における軌道輪または転動体 力もなる転がり軸受部品を評価する方法であって、転がり軸受部品における転動面 の各点の真円からの差を測定して測定値のハーモニック解析により転動面のうねりの 角数と振幅の関係を求める過程と、求められた前記うねりの角数と振幅の関係を対数 変換する過程と、この対数変換された座標上における、うねりの角数と振幅の関係の 回帰直線を求める過程と、前記対数変換された座標上における、うねりと角数の関係 を示す各点の前記回帰直線からの偏差により前記転動面の形状崩れを評価する過 程とを含む、方法であるため、転がり軸受部品の軌道面の形状崩れを、容易にかつ 適正に検出することができる。
図面の簡単な説明
[0011] この発明は、添付の図面を参考にした以下の好適な実施例の説明から、より明瞭 に理解されるであろう。し力しながら、実施例および図面は単なる図示および説明の ためのものであり、この発明の範囲を定めるために利用されるべきものではない。この 発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面に おける同一の部品番号は、同一部分を示す。
[図 1]この発明の一実施形態に力かる転がり軸受部品の評価法が適用される転がり 軸受の断面図である。
[図 2]同評価法の流れ図である。
[図 3]同評価法における第 1段階のデータ処理によるグラフである。
[図 4]同評価法における第 2段階のデータ処理によるグラフである。
[図 5]同評価法における第 3段階のデータ処理によるグラフである。
発明を実施するための最良の形態 [0012] この発明の一実施形態を図面と共に説明する。この転がり軸受部品の評価法は、 転がり軸受における軌道輪または転動体である転がり軸受部品を評価する方法であ る。図 1に示すように、転がり軸受は、例えば軌道輪である内輪 1と外輪 2の軌道面 la , 2a間に、鋼球からなる複数の転動体 3を介在させ、これら転動体 3を保持器 4で保 持した深溝玉軸受である。ここでは前記転動体 3が評価対象の転がり軸受部品とされ る。
[0013] 図 2に示すように、この転がり軸受部品の評価法は、転がり軸受部品における転動 面の各点の真円からの差を測定して測定値のハーモニック解析により転動面のうねり の角数と振幅の関係を求める過程 (S 1)と、求められた前記うねりの角数と振幅の関 係を対数変換する過程 (S2)と、この対数変換された座標上における、うねりの角数と 振幅の関係の回帰直線、および標準偏差を求める過程 (S3)と、前記対数変換され た座標上における、うねりと角数の関係を示す各点の偏差により前記転動面の形状 崩れを評価する過程 (S4)とを含む。各過程の詳細は、次に図 3〜図 5と共に説明す る。
[0014] 図 3は、転動体 3の外球面からなる転動面のうねり角数と振幅の関係の測定例を示 す。同図は、転動体 3の転動面の各点の真円力 の差を測定してその測定値のハー モニック解析結果により得られたうねり角数と振幅の関係を示す。転動面の各点の真 円からの差は、真円度測定器 (図示せず)を用いて得た。同図は、対数表示の横軸( X軸)を角数とし、同じく対数表示の縦軸 (y軸)を振幅として、両対数 X— y座標上に 各測定点をプロットしたものである。同図中には、これらの測定点の回帰直線も示し ている。
この両対数の x—y座標のグラフ上で、角数と振幅との関係が線形関係にあることが わかる。また、回帰直線より大きな振幅を示す角数が、 3角、 4角、 6角、 15角であるこ とが確認できる。
[0015] この評価法では、上記線形関係を使用して異常値 (転動体 3の転動面の形状崩れ )を検出するために、図 3の X軸を X=Logxに、 y軸を Y=Logyに変数変換する。そ の変換結果を図 4に示す。この X—Y座標における Yの標準偏差 σを算出する。
[0016] 図 5には、図 4の回帰直線に対して、 Υ+ σ並びに Υ+ 2 σとした直線を付カ卩したグ ラフを示す。同図において、例えば Υ+ 2 σの直線より右側にある計測値は 15角うね りであることが分かる。すなわち、図 5のグラフから、 15角うねりが統計的に大きな振 幅を有すると判断できる。
[0017] そこで、この評価法では、 η角(ηは自然数)うねりの振幅測定値 Υηが、直線回帰し た値 aX+bに標準偏差を基準とした値 m σを加えた値 (aX+b + m σ )以上となった 場合に、異常と判断する。 a, bは定数である。 mは任意に設定される定数である。全 体の振幅の大きさを管理する場合には、直線回帰した値における a, bの値を管理す れば良い。
[0018] この実施形態によると、このように転がり軸受部品のうねりの角数と振幅の測定結果 において、角数 n力も X=Log (n)を、 n角の振幅 rn力も Y=Log (rn)を定義し、回帰 直線 aX+b、並びに標準偏差 σを求め、測定値 Υηが回帰直線の値 +m σ以上であ れば異常とするうねりの評価方法としたため、線形関係にあるうねりの角数と振幅の 関係から、転がり軸受部品である転動体 3における転動面の形状崩れを、容易にか つ適正に検出できる。そのため、転がり軸受の振動の低減、すなわち転がり軸受を使 用する機械装置の振動を低減することができる。
[0019] ところで、転がり軸受のうねりによる振動は、この転がり軸受が組み込まれる機械装 置の振動となり問題であることは当然である力 人間の聴覚に不快であっても困る。 一般に、機械の回転速度を毎分 Ν回転とすると、聴覚で感度がよい周波数帯は 200 ΟΗζ前後であるので、例えば回転輪が内輪 1の場合、 2000= (ΝΖ60) ηとなるうね りの角数が加振源となる。モータの定格速度が毎分 1800rpmの場合、 nは約 67角と なる。したがって、上記の評価法を用いて、使用される条件に合わせて特定の角数 の振幅を管理しても良い。
[0020] 特に、聴覚に対する角数の振幅を管理したい場合には、 πι σの mを角数によって 変化させても良い。例えば、 mを lZn, n1/2とするなどして、角数が大きいほど管理値 を厳しくしても良い。また、機械装置の固有振動数との共振を避ける場合には、対象 とする角数域を抽出して管理しても良い。例えば、機械装置の固有振動数が 2000H zであり、内輪 1の回転速度が 1800rpmの場合、内輪 1の 67角前後の 60角力も 80 角程度の範囲の角数を管理しても良 、。 [0021] なお、この実施形態では、転がり軸受における転動体である鋼球 3の転動面の形状 崩れを評価する場合につき説明したが、内輪 1や外輪 2等の軌道輪である転がり軸 受部品についても、その転動面である軌道面 la, 2aの形状崩れについて、上記と同 様の評価法により、容易かつ適正に検出することができる。カロえて、転動体が円筒こ ろ、円すいころ、球面ころ、ニードルローラの場合も同じである。
[0022] 以上のとおり、図面を参照しながら好適な実施例を説明したが、当業者であれば、 本件明細書を見て、自明な範囲内で種々の変更および修正を容易に想定するであ ろう。
したがって、そのような変更および修正は、請求の範囲力も定まる発明の範囲内の ものと解釈される。

Claims

請求の範囲
[1] 転がり軸受における軌道輪または転動体力 なる転がり軸受部品を評価する方法 であって、
転がり軸受部品における転動面の各点の真円力 の差を測定して測定値のハーモ ニック解析により転動面のうねりの角数と振幅の関係を求める過程と、
求められた前記うねりの角数と振幅の関係を対数変換する過程と、
この対数変換された座標上における、うねりの角数と振幅の関係の回帰直線を求め る過程と、
前記対数変換された座標上における、うねりと角数の関係を示す各点の前記回帰 直線からの偏差により前記転動面の形状崩れを評価する過程とを含む、
転がり軸受部品の評価法。
[2] 請求項 1において、前記対数変換された座標上における、うねりの角数と振幅の関 係の標準偏差を基準として適宜定めた基準値を用い、前記偏差が基準値以上の場 合に、前記形状崩れの評価として異常と判定する転がり軸受部品の評価法。
[3] 請求項 2にお 、て、前記対数変換の過程では、角数 n (nは自然数)を X=Log (n) に、 n角の振幅 rnを Y=Log (rn)に変換し、前記回帰直線を求める過程では回帰直 線として Y=aX+b (a, bは定数)を求め、前記標準偏差を σとし、 η角のうねりの測 定値 Υη力 直線回帰した aX+bの値に標準偏差 σを基準とした値 πι σ (mは任意に 設定される定数)を加えた値以上となった場合に、異常と判定する転がり軸受部品の 評価法。
PCT/JP2006/314041 2005-08-03 2006-07-14 転がり軸受部品の評価法 WO2007015360A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112006002009T DE112006002009T5 (de) 2005-08-03 2006-07-14 Bewertungsverfahren für ein Rollenlagerteil
US11/989,755 US7877215B2 (en) 2005-08-03 2006-07-14 Evaluation method for rolling bearing part

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-224911 2005-08-03
JP2005224911A JP4753654B2 (ja) 2005-08-03 2005-08-03 転がり軸受部品の評価法

Publications (1)

Publication Number Publication Date
WO2007015360A1 true WO2007015360A1 (ja) 2007-02-08

Family

ID=37708639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/314041 WO2007015360A1 (ja) 2005-08-03 2006-07-14 転がり軸受部品の評価法

Country Status (4)

Country Link
US (1) US7877215B2 (ja)
JP (1) JP4753654B2 (ja)
DE (1) DE112006002009T5 (ja)
WO (1) WO2007015360A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2000685A1 (en) * 2006-03-27 2008-12-10 Ntn Corporation Roller bearing

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2998019B1 (fr) * 2012-11-12 2016-07-22 Skf Aerospace France Roulement, boitier comprenant un ensemble de roulement(s), procede et programme d'ordinateur associes
CN103954450A (zh) * 2014-05-19 2014-07-30 重庆交通大学 基于主成分分析的轴承寿命退化性能评估指标构建方法
JP2017093275A (ja) * 2015-11-10 2017-05-25 育雄 久保 太陽光発電装置の実績データーをベースとした劣化や異常検知システム
WO2019086123A1 (en) * 2017-11-03 2019-05-09 Abb Schweiz Ag Arrangement for monitoring antifriction bearing of rotating shaft of rotating electric machine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0658849A (ja) * 1992-08-07 1994-03-04 Nippon Seiko Kk 振動検査装置
JP2000074048A (ja) * 1998-08-31 2000-03-07 Nippon Seiko Kk 軸受スピンドル

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7421349B1 (en) * 2006-05-15 2008-09-02 United States Of America As Represented By The Secretary Of The Navy Bearing fault signature detection

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0658849A (ja) * 1992-08-07 1994-03-04 Nippon Seiko Kk 振動検査装置
JP2000074048A (ja) * 1998-08-31 2000-03-07 Nippon Seiko Kk 軸受スピンドル

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AKAMATSU: "Jikuuke Shindo ni Oyobosu Tendotai Zaishitsu no Eikyo", JAPANESE SOCIETY OF TRIBOLOGISTS, TRIBOLOGY CONGRESS YOKOSHU, November 2001 (2001-11-01), pages 291 - 292, XP003007814 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2000685A1 (en) * 2006-03-27 2008-12-10 Ntn Corporation Roller bearing
EP2000685A4 (en) * 2006-03-27 2012-10-03 Ntn Toyo Bearing Co Ltd ROLLER BEARING

Also Published As

Publication number Publication date
US20100089162A1 (en) 2010-04-15
DE112006002009T5 (de) 2008-07-03
JP4753654B2 (ja) 2011-08-24
US7877215B2 (en) 2011-01-25
JP2007040815A (ja) 2007-02-15

Similar Documents

Publication Publication Date Title
Adamczak et al. Influence of raceway waviness on the level of vibration in rolling-element bearings
Taylor Identification of bearing defects by spectral analysis
CA2668279C (en) A device and a method for monitoring the vibratory state of a rotary machine
Patel et al. Vibration studies of dynamically loaded deep groove ball bearings in presence of local defects on races
US8315826B2 (en) Diagnostic method for a ball bearing, in particular for an angular-contact ball bearing, a corresponding diagnostic system, and use of the diagnostic system
WO2007015360A1 (ja) 転がり軸受部品の評価法
JP2009236571A (ja) 軸受用回転精度測定装置及び測定方法
CN104251764A (zh) 滚动轴承振动检测装置及分析方法
WO2019221251A1 (ja) 軸受の状態監視方法及び状態監視装置
Yhland Paper 29: Waviness measurement-an instrument for quality control in rolling bearing industry
Tong et al. Characteristics of tapered roller bearing with geometric error
EP2000685B1 (en) Method for determining quality of rolling bearing assembly
JP2004270898A (ja) センサ付き転がり軸受ユニット
JPH09257651A (ja) 軸受の傷検出方法
JPH11153425A (ja) ラジアル玉軸受の軸受隙間を測定する方法及び装置
Taha et al. Acoustic Emission Application for Monitoring Bearing Defects
RU2410661C2 (ru) Способ контроля профиля зоны соединения между цилиндрической частью и затылованной поверхностью детали газотурбинного двигателя
JP2004061151A (ja) 軸受装置の接触角測定方法及び装置
JPH112239A (ja) 転がり軸受の各種状態値を測定する装置
RU2432560C1 (ru) Способ диагностики радиального зазора в шарикоподшипниках
JP2021032769A (ja) 転がり軸受の状態監視方法及び状態監視装置
Nagale et al. A mathematical model to determine sensitivity of vibration signals for localized defects and to find effective number of balls in ball bearing
Kastinen Rolling-element bearing stiffness estimation from relative shaft displacement
CN114427820B (zh) 一种转轴机构的偏摆测量方法及装置
Durmuş Vibration analysis of rolling element bearings using parametric modeling

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1120060020099

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 11989755

Country of ref document: US

RET De translation (de og part 6b)

Ref document number: 112006002009

Country of ref document: DE

Date of ref document: 20080703

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 06781115

Country of ref document: EP

Kind code of ref document: A1