WO2007014650A1 - Method for reducing the nitrogen oxide and particle emissions of an internal combustion engine and corresponding exhaust-gas treatment unit - Google Patents

Method for reducing the nitrogen oxide and particle emissions of an internal combustion engine and corresponding exhaust-gas treatment unit Download PDF

Info

Publication number
WO2007014650A1
WO2007014650A1 PCT/EP2006/007197 EP2006007197W WO2007014650A1 WO 2007014650 A1 WO2007014650 A1 WO 2007014650A1 EP 2006007197 W EP2006007197 W EP 2006007197W WO 2007014650 A1 WO2007014650 A1 WO 2007014650A1
Authority
WO
WIPO (PCT)
Prior art keywords
reducing agent
exhaust gas
particle separator
aftertreatment unit
nitrogen
Prior art date
Application number
PCT/EP2006/007197
Other languages
German (de)
French (fr)
Inventor
Rolf BRÜCK
Ulf Klein
Original Assignee
Emitec Gesellschaft Für Emissionstechnologie Mbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Emitec Gesellschaft Für Emissionstechnologie Mbh filed Critical Emitec Gesellschaft Für Emissionstechnologie Mbh
Publication of WO2007014650A1 publication Critical patent/WO2007014650A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9431Processes characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/944Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/01Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust by means of electric or electrostatic separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/103Oxidation catalysts for HC and CO only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2053By-passing catalytic reactors, e.g. to prevent overheating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2882Catalytic reactors combined or associated with other devices, e.g. exhaust silencers or other exhaust purification devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/002Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/80Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
    • B01D2259/818Employing electrical discharges or the generation of a plasma
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/28Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a plasma reactor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention is an exhaust gas aftertreatment unit for the simultaneous reduction of nitrogen oxide and particulate emissions of an internal combustion engine, and a corresponding method.
  • the exhaust aftertreatment unit and the corresponding method can be used in particular in mobile applications such as in motor vehicles.
  • the unwanted substances are nitrogen oxides (NO x ) and particulate emissions. Due to the operation of the internal combustion engines with hydrocarbons, these particles contain carbon. Especially with very small and / or average particle diameters, the effect of the particulate matter particle emissions on organisms is unclear, but a harmful effect, in particular of the respirable particles, appears possible. Due to the design of modern internal combustion engines, however, the proportion of nitrogen oxides and particles is regularly coupled together. This means that a reduction in the proportion of nitrogen oxide often results, as a side effect, in an increase in the corresponding particle fraction of the exhaust gas.
  • the present invention is based on the object to propose a method for reducing both the nitrogen oxide and the particulate fraction in the exhaust gas of internal combustion engines and a corresponding exhaust aftertreatment unit.
  • This object is achieved by a Abgasnach- treatment unit with the features of claim 1 and a method with The features of claim 8.
  • Advantageous developments are the subject of the respective dependent claims.
  • An exhaust gas aftertreatment unit according to the invention can be flowed through in a flow direction and comprises the following components one behind the other in the flow direction:
  • Each of the three components 1.1), 1.2) and 1.3) may comprise a honeycomb body.
  • honeycomb bodies which comprise at least one at least partially structured metallic layer, which are constructed in such a way that cavities can be formed at least for a fluid, are particularly preferred.
  • the honeycomb bodies can also have, at least partially, at least partially walls permeable to a fluid, which walls are formed, for example, of porous ceramic or a corresponding porous metallic material.
  • At least the catalysts 1.1) and 1.2) have a corresponding catalytically active coating or a coating comprising a catalytically active substance.
  • the coating may comprise washcoat.
  • a reducing agent feed is formed between the oxidation catalyst and the SCR catalyst.
  • nitrogen-containing reducing agents are regularly used.
  • Particularly preferred in this case is the use of ammonia (NH 3 ) as a reducing agent.
  • the SCR catalytic converter or the exhaust gas aftertreatment unit can be designed such that the so-called “almost SCR reaction” takes place, which is the case in particular when the temperature of the SCR catalytic converter regularly does not exceed about 200.degree a reaction of nitrogen monoxide (NO) and nitrogen dioxide (NO 2 ) with ammonia (NH 3 ) to form molecular nitrogen (N 2 ) and water (H 2 O):
  • the oxidation catalyst 1.1) is designed so that not a complete conversion of nitrogen monoxide is catalyzed in nitrogen dioxide. Furthermore, it is also possible to direct at least a portion of the exhaust gas flow around the oxidation catalyst in dependence on the applied nitrogen monoxide and nitrogen dioxide concentration, so as to enter the SCR catalyst 1.2) as optimally as possible a mixture of nitrogen monoxide and nitrogen dioxide to carry out the " If, for example, the end temperature of the SCR catalyst 1.2) is above 200 ° C., and thus instead of the "fast SCR reaction", other SCR reactions increasingly take place, for example the conversion of nitrogen monoxide with ammonia to molecular nitrogen and water: 4 NO + 4 NH3 + O2 -> 4N2 + 6 H2O
  • a bypass of the oxidation catalyst can also take place in order to obtain the best possible mixture of nitrogen monoxide and nitrogen dioxide in the SCR catalyst 1.2).
  • a bypass of the oxidation catalyst can be carried out in an advantageous manner. This regulation of the bypass can be independent of the position of the Pismeabscheiders 1.3) relative to the SCR catalyst 1.2) and also without that a Piserabscheider 1.3) is formed.
  • the reducing agent supply comprises reducing agent precursor supply means and means for converting the reducing agent precursor into the reducing agent.
  • the reducing agent comprises in particular a nitrogen-containing compound, more preferably ammonia.
  • the reducing agent precursor is a substance which splits off the reducing agent or which can be converted into the reducing agent.
  • Particularly preferred here is the use of urea as a reducing agent precursor.
  • the urea can be introduced in particular in the form of an aqueous urea solution or as a solid by feed.
  • the means for converting the reducing agent precursor into the reducing agent may comprise means for thermolysis and / or hydrolysis of the reducing agent precursor.
  • urea is used as the reducing agent precursor
  • a thermolysis of urea ((NH 2 ) 2 CO) can be used here. to ammonia (NH 3 ) and isocyanic acid (HCNO) take place.
  • HCNO isocyanic acid
  • Thermolysis and hydrolysis can in particular also take place in a single component, for example a honeycomb body provided with a hydrolysis catalyst coating.
  • means for regeneration of the particle separator are formed.
  • the regeneration of the particle separator is understood in particular to mean the reaction of the carbon-containing particles into carbon monoxide (CO) and / or carbon dioxide (CO 2 ).
  • the means for regenerating the particle separator can comprise, for example, an oxidation catalyst, before which hydrocarbons are introduced into the exhaust gas flow, for example by a superstoichiometric filling of at least one cylinder of the internal combustion engine.
  • the oxidation catalyst which may also be applied in the form of a correspondingly formed coating on a honeycomb body, the exothermic reaction and oxidation of the hydrocarbons takes place. As a result, the exhaust gas heats up, so that the downstream particle separator 1.3) is heated.
  • the particle separator 1.3 may comprise means for regeneration, by means of which a surface sliding discharge for promoting the oxidation of the carbon particles can be formed.
  • the particle separator can have a corresponding coating which lowers the temperature from which oxidation of the carbon takes place.
  • the above-mentioned different means for regeneration of the particle separator can also be advantageously combined with one another.
  • the means for regenerating the particle separator comprise means for generating a plasma.
  • a non-thermal plasma in particular a non-thermal surface sliding discharge.
  • This is understood to mean, in particular, an electrical gas discharge burning in contact with a generally electrically insulating or only weakly conductive surface for the purpose of producing a non-thermal plasma while largely avoiding gas heating.
  • This surface sliding discharge can be operated continuously or discontinuously, in particular depending on the loading state of the particle separator.
  • the electrodes and / or the operation of the plasma reference is made to DE 100 57 862 C1, the disclosure content of which is hereby included in the disclosure content of the present invention.
  • the particle separator comprises a closed particle filter.
  • a closed particulate filter a par- understood in which a plurality of channels are formed and in which the exhaust gas must flow through at least one wall between these channels.
  • the particle separator comprises means for the electrostatic precipitation of particles.
  • electrodes may be formed which have a DC voltage or a low-frequency AC voltage, preferably in the range of frequencies of less than 120 Hz, preferably less than 90 Hz, more preferably even less than 10 Hz.
  • a DC voltage or a low-frequency AC voltage preferably in the range of frequencies of less than 120 Hz, preferably less than 90 Hz, more preferably even less than 10 Hz.
  • a method for reducing the nitrogen oxide and particulate emissions of an internal combustion engine comprising the following steps: 8.1) oxidation of at least nitrogen monoxide (NO), 8.2) selective catalytic reduction of nitrogen oxides (NO x ) and subsequently 8.3 ) Deposition of at least a portion of the particles in the exhaust gas.
  • a nitrogen-containing reducing agent is supplied and / or generated, in particular ammonia.
  • a reducing agent precursor is fed and converted into reducing agent.
  • a reducing agent precursor is understood here to mean a compound which can split off reducing agents and / or which can be converted into reducing agents.
  • a possible reducing agent precursor for the re reducing agent ammonia is, for example, urea.
  • the particle separator comprises a closed particle filter.
  • the deposited particles are at least partially set.
  • An at least partial conversion is understood to mean, in particular, an at least partial oxidation of the carbon contained in the particles.
  • a regenerable particle separator is preferably used. In this case, the particles deposited on the particle separator are reacted, for example as explained above.
  • Particularly preferred in this case is a process control, in which the reaction of the .P sie and thus also the regeneration of the Pelleabscheiders is plasma assisted.
  • the reaction of the particles or the regeneration of the particle separator can take place by way of a non-thermal surface lubricant discharge as explained above.
  • Such an electrostatic deposition or even a deposition based on a low-frequency AC voltage can be combined in a particularly advantageous manner with a so-called open particle filter or particle, which is designed so that the exhaust gas does not have to flow through a wall between two channels, but Rather, if appropriate, without being able to flow through a wall through the particle separator.
  • FIG. 1 shows specific ⁇ matically an exhaust gas treatment unit of the invention 1.
  • This comprises an oxidation catalyst 2, an SCR catalyst 3, and a particle separator 4.
  • the exhaust after-treatment unit 1 can be flowed through by the exhaust gas 5 of an internal combustion engine not shown in a flow direction. 6
  • the oxidation catalytic converter 2, the SCR catalytic converter 3 and the particle separator 4 are formed one behind the other in the flow direction 6.
  • a reducing agent supply 7 is formed between oxidation catalyst 2 and SCR catalyst 3.
  • This comprises feed means 8 for supplying a reducing agent precursor and means 9 for converting the reducing agent precursor into the reducing agent.
  • the means 9 for converting the reducing agent precursor to reducing agent comprise in particular a hydrolysis catalyst on which a reducing agent precursor urea is thermally and / or hydrolyzed to ammonia as a reducing agent.
  • a barrier catalyst 10 is formed downstream of the SCR catalyst 3. In this, possibly by the SCR catalyst 3 penetrating reducing agent is reacted.
  • the barrier catalyst 10 has an oxidation catalyst coating that effects oxidation of the reductant.
  • the oxidation catalyst 2, the SCR catalyst 3, the means for converting the reducing agent precursor to the reducing agent 9, the barrier catalyst 10 and / or the particle separator 4 may advantageously comprise honeycomb bodies which have walls separated by walls for an exhaust gas flow through channels.
  • the honeycomb bodies can in particular be constructed of metallic layers which are at least partially structured so that the layers limit channels.
  • a bypass 11 is formed, by means of which the exhaust gas 5 can at least partially flow around the oxidation catalyst 2.
  • There are flow ⁇ conducting means 12 are formed by means of controlling the amount of exhaust gas which flows through the by pass ⁇ 11, and / or can be regulated.
  • the flow-guiding means 12 may be a movable flap.
  • the proportion of the exhaust gas 5 flowing through the bypass is controlled depending on the temperature of the SCR catalyst 3.
  • the bypass flow is adjusted in each case so that an optimal ratio of the content of nitrogen monoxide (NO) and nitrogen dioxide (NO 2 ) is present before the SCR catalyst, so that the SCR reactions taking place at this SCR catalyst temperature as described above are as optimal as possible - Have ratio, so that as complete as possible implementation of the nitrogen oxides in the exhaust gas 5 takes place at the SCR catalyst 3.
  • the particle separator 4 has means 13 for the electrostatic or low-frequency separation of particles from the exhaust gas 5. In the figure, these are symbolized by corresponding voltage connections.
  • electrostatic precipitation which is initiated by the means 13 for the electrostatic deposition of particles, particles can be deposited and agglomerated.
  • a low-frequency deposition is to be understood here in particular as a deposition, which is based on a low-frequency AC voltage. For example, here channel walls may be formed in the particle separator, which have different electrical potentials on opposite walls.
  • the particle separator has means 14 for generating a plasma, in particular a non-thermal surface lubricant discharge.
  • means for regenerating the particle separator in which regeneration of the particle separator 4, that is to say conversion of the carbon in the separated particles, due to the non-thermal surface sliding discharges, can be realized by means of this plasma.
  • the regeneration of the particle separator 4, that is to say the at least partial reaction of the particles which are deposited on the particle separator 4 can take place continuously or discontinuously.
  • a discontinuous regeneration which operates depending on the loading state or degree of separation of the P
  • the exhaust aftertreatment unit 1 according to the invention as well as the method according to the invention advantageously make it possible to reduce the nitrogen oxide and particle emissions of an internal combustion engine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

The invention relates to an exhaust-gas treatment unit (1), which can be traversed in a flow direction (6). Said unit comprises the following components that are arranged in succession in the flow direction (6): 1.1) an oxidation catalyst (2) which is at least responsible for catalysing nitrogen(II) oxide (NO), 1.2) an SCR catalyst (3) for the selective catalytic reduction of nitrogen oxides (NOX) and 1.3) a particle separator (4). Said exhaust-gas treatment unit (1) and the associated method permit a beneficial reduction of the nitrogen oxide and particle emissions of an internal combustion engine.

Description

Verfahren zur Verminderung der Stickoxid- und Partikelemissionen einer Verbrennungskraftmaschine und entsprechende Abgasnachbehandlungseinheit Method for reducing the nitrogen oxide and particulate emissions of an internal combustion engine and corresponding exhaust aftertreatment unit
Gegenstand der vorliegenden Erfindung ist eine Abgasnachbehandlungseinheit zur gleichzeitigen Verminderung der Stickoxid- und Partikelemissionen einer Verbrennungskraftmaschine, sowie ein entsprechendes Verfahren. Die Abgasnachbehandlungseinheit sowie das entsprechende Verfahren können insbesondere bei mobilen Anwendungen wie beispielsweise in Kraftfahrzeugen zum Einsatz kommen.The present invention is an exhaust gas aftertreatment unit for the simultaneous reduction of nitrogen oxide and particulate emissions of an internal combustion engine, and a corresponding method. The exhaust aftertreatment unit and the corresponding method can be used in particular in mobile applications such as in motor vehicles.
In zahlreichen Ländern existieren gesetzlich einzuhaltende Grenzwerte für die Anteile bestimmter unerwünschter Substanzen im Abgas von Verbrennungskraftmaschinen. Unter anderem handelt es sich bei den nicht erwünschten Stoffen auch um Stickoxide (NOx) und Partikel emissionen. Auf Grund des Betriebs der Verbrennungskraftmaschinen mit Kohlenwasserstoffen enthalten diese Partikel Kohlenstoff. Gerade bei sehr kleinen und/oder mittleren Partikeldurchmessern ist der Effekt der Feinstaub genannten Partikelemissionen auf Lebewesen unklar, eine gesundheitsschädliche Wirkung insbesondere der Lungengängigen Partikel erscheint jedoch möglich. Auf Grund der Konzeption der modernen Verbrennungskraftmaschinen ist jedoch der Anteil an Stickoxiden und Partikeln regelmäßig aneinander gekoppelt. Das heißt, dass eine Verringerung des Stickoxidanteils oft quasi als Nebenwirkung eine Erhöhung des entsprechenden Partikelanteils des Abgases zur Folge hat.In many countries, there are legal limits for the proportions of certain undesirable substances in the exhaust gas of internal combustion engines. Among other things, the unwanted substances are nitrogen oxides (NO x ) and particulate emissions. Due to the operation of the internal combustion engines with hydrocarbons, these particles contain carbon. Especially with very small and / or average particle diameters, the effect of the particulate matter particle emissions on organisms is unclear, but a harmful effect, in particular of the respirable particles, appears possible. Due to the design of modern internal combustion engines, however, the proportion of nitrogen oxides and particles is regularly coupled together. This means that a reduction in the proportion of nitrogen oxide often results, as a side effect, in an increase in the corresponding particle fraction of the exhaust gas.
Von daher liegt der vorliegenden Erfindung die Aufgabe zu Grunde, ein Verfahren zur Reduzierung sowohl des Stickoxid- als auch des Partikelanteils im Abgas von Verbrennungskraftmaschinen sowie eine entsprechende Abgasnachbehandlungseinheit vorzuschlagen. Diese Aufgabe wird gelöst durch eine Abgasnachbe- handlungseinheit mit den Merkmalen des Anspruchs 1 sowie ein Verfahren mit den Merkmalen des Anspruchs 8. Vorteilhafte Weiterbildungen sind Gegenstand der jeweiligen abhängigen Ansprüche.Therefore, the present invention is based on the object to propose a method for reducing both the nitrogen oxide and the particulate fraction in the exhaust gas of internal combustion engines and a corresponding exhaust aftertreatment unit. This object is achieved by a Abgasnach- treatment unit with the features of claim 1 and a method with The features of claim 8. Advantageous developments are the subject of the respective dependent claims.
Eine erfindungsgemäße Abgasnachbehandlungseinheit ist in einer Strömungsrich- tung durchströmbar und umfasst in Strömungsrichtung hintereinander die folgenden Komponenten:An exhaust gas aftertreatment unit according to the invention can be flowed through in a flow direction and comprises the following components one behind the other in the flow direction:
1.1) einen Oxidationskatalysator zumindest zur Oxidation von Stickstoffmonoxid (NO),1.1) an oxidation catalyst at least for the oxidation of nitric oxide (NO),
1.2) einen SCR-Katalysator zur selektiven katalytischen Reduktion von Stick- oxiden (NOx) und1.2) an SCR catalyst for the selective catalytic reduction of nitrogen oxides (NO x ) and
1.3) einen Partikelabscheider.1.3) a particle separator.
Die erfmdungsgemäße Abgasnachbehandlungseinheit erlaubt es in vorteilhafter Weise, gleichzeitig den Gehalt an Stickoxiden und den Gehalt an Partikeln im Abgas zu reduzieren. Jede der drei Komponenten 1.1), 1.2) und 1.3) kann einen Wabenkörper umfassen. Hierbei sind beispielsweise keramische Wabenkörper und/oder metallische Wabenkörper einsetzbar. Besonders bevorzugt sind hierbei Wabenkörper die mindestens eine zumindest teilweise strukturierte metallische Lage umfassen, die so aufgebaut sind, dass sich für ein Fluid zumindest durch- strömbare Hohlräume bilden. Die Wabenkörper können zumindest teilweise auch zumindest teilweise für ein Fluid durchströmbare Wände aufweisen, die beispielsweise aus poröser Keramik oder einem entsprechenden porösem metallischen Material ausgebildet sind.The erfmdungsgemäße exhaust gas aftertreatment unit allows advantageously to reduce the content of nitrogen oxides and the content of particles in the exhaust gas at the same time. Each of the three components 1.1), 1.2) and 1.3) may comprise a honeycomb body. Here, for example, ceramic honeycomb body and / or metallic honeycomb body can be used. In this case, honeycomb bodies which comprise at least one at least partially structured metallic layer, which are constructed in such a way that cavities can be formed at least for a fluid, are particularly preferred. The honeycomb bodies can also have, at least partially, at least partially walls permeable to a fluid, which walls are formed, for example, of porous ceramic or a corresponding porous metallic material.
Zumindest die Katalysatoren 1.1) und 1.2) weisen eine entsprechende katalytisch aktive Beschichtung oder eine eine katalytisch aktive Substanz umfassende Be- schichtung auf. Insbesondere kann die Beschichtung Washcoat umfassen.At least the catalysts 1.1) and 1.2) have a corresponding catalytically active coating or a coating comprising a catalytically active substance. In particular, the coating may comprise washcoat.
Gemäß einer vorteilhaften Weiterbildung der erfindungsgemäßen Abgasnachbe- handlungseinheit ist zwischen Oxidationskatalysator und SCR-Katalysator eine Reduktionsmittelzufuhr ausgebildet. Bei der selektiven katalytischen Reduktion werden regelmäßig stickstoffhaltige Reduktionsmittel eingesetzt. Insbesondere bevorzugt ist hierbei der Einsatz von Ammoniak (NH3) als Reduktionsmittel. Der SCR-Katalysator bzw. die Abgas- nachbehandlungseinheit kann so ausgebildet werden, dass die so genannte „fast- SCR Reaktion" abläuft. Dies ist insbesondere dann der Fall, wenn die Temperatur des SCR-Katalysators regelmäßig etwa 200°C nicht überschreitet. Hierbei erfolgt eine Reaktion von Stickstoffmonoxid (NO) und Stickstoffdioxid (NO2) mit Ammoniak (NH3) zu molekularem Stickstoff (N2) und Wasser (H2O):According to an advantageous development of the exhaust aftertreatment unit according to the invention, a reducing agent feed is formed between the oxidation catalyst and the SCR catalyst. In the selective catalytic reduction nitrogen-containing reducing agents are regularly used. Particularly preferred in this case is the use of ammonia (NH 3 ) as a reducing agent. The SCR catalytic converter or the exhaust gas aftertreatment unit can be designed such that the so-called "almost SCR reaction" takes place, which is the case in particular when the temperature of the SCR catalytic converter regularly does not exceed about 200.degree a reaction of nitrogen monoxide (NO) and nitrogen dioxide (NO 2 ) with ammonia (NH 3 ) to form molecular nitrogen (N 2 ) and water (H 2 O):
NO + NO2 + 2 NH3 -> 2 N2 + 3 H2ONO + NO2 + 2 NH3 -> 2 N 2 + 3 H2O
Weiterhin laufen hierbei Nebenreaktionen ab, bei denen beispielsweise Stickstoffdioxid mit Ammoniak zu molekularem Stickstoff und Wasser und gegebenenfalls noch Ammoniumnitrat (NH4NO3) umgesetzt wird:In addition, side reactions take place in which, for example, nitrogen dioxide is reacted with ammonia to give molecular nitrogen and water and optionally also ammonium nitrate (NH 4 NO 3 ):
6 NO2 + 8 NH3 -> 7 N2 + 12 H2O;6 NO 2 + 8 NH 3 -> 7 N 2 + 12 H 2 O;
2 NO2 + 2 NH3 -> N2 + H2O + NH4NO32 NO 2 + 2 NH 3 -> N 2 + H 2 O + NH 4 NO 3
Von daher ist in besonders vorteilhafter Weise der Oxidationskatalysator 1.1) so ausgebildet, dass nicht eine gänzliche Umwandlung von Stickstoffmonoxid in Stickstoffdioxid katalysiert wird. Weiterhin ist es auch möglich, zumindest einen Teil des Abgasstroms in Abhängigkeit von der anliegenden Stickstoffmonoxid- und Stickstoffdioxidkonzentration um den Oxidationskatalysator herum zu leiten, um so beim Eintritt in den SCR-Katalysator 1.2) ein möglichst optimales Gemisch von Stickstoffmonoxid und Stickstoffdioxid zur Durchführung der „fast-SCR- reaction" vorliegen zu haben. Sollte die Endtemperatur des SCR-Katalysators 1.2) beispielsweise oberhalb von 200°C liegen und somit statt der „fast-SCR-reaction" andere SCR-Reaktionen vermehrt ablaufen, also beispielsweise die Umsetzung von Stickstoffmonoxid mit Ammoniak zu molekularem Stickstoff und Wasser: 4 NO + 4 NH3 + O2 -> 4 N2 + 6 H2OTherefore, in a particularly advantageous manner, the oxidation catalyst 1.1) is designed so that not a complete conversion of nitrogen monoxide is catalyzed in nitrogen dioxide. Furthermore, it is also possible to direct at least a portion of the exhaust gas flow around the oxidation catalyst in dependence on the applied nitrogen monoxide and nitrogen dioxide concentration, so as to enter the SCR catalyst 1.2) as optimally as possible a mixture of nitrogen monoxide and nitrogen dioxide to carry out the " If, for example, the end temperature of the SCR catalyst 1.2) is above 200 ° C., and thus instead of the "fast SCR reaction", other SCR reactions increasingly take place, for example the conversion of nitrogen monoxide with ammonia to molecular nitrogen and water: 4 NO + 4 NH3 + O2 -> 4N2 + 6 H2O
abläuft, kann ebenfalls ein Bypass des Oxidationskatalysators erfolgen, um ein möglichst optimales Gemisch von Stickstoffmonoxid und Stickstoffdioxid im SCR-Katalysator 1.2) zu erhalten. Hierzu kann es beispielsweise vorteilhaft sein, die Temperatur des SCR-Katalysators 1.2), sowie gegebenenfalls den Stickoxidoder Stickstoffmonoxid- oder Stickstoffdioxidgehalt direkt vor dem SCR- Katalysator 1.2) zu bestimmen, also beispielsweise zu berechnen oder zu messen. Ausgehend von diesen Daten kann in vorteilhafter Weise ein Bypass des Oxidationskatalysators erfolgen. Diese Regelung des Bypasses kann unabhängig von der Lage des Partikelabscheiders 1.3) relativ zum SCR-Katalysator 1.2) und auch ohne, dass ein Partikelabscheider 1.3) ausgebildet ist.a bypass of the oxidation catalyst can also take place in order to obtain the best possible mixture of nitrogen monoxide and nitrogen dioxide in the SCR catalyst 1.2). For this purpose, it may be advantageous, for example, to determine the temperature of the SCR catalyst 1.2), and, if appropriate, the nitrogen oxide or nitrogen monoxide or nitrogen dioxide content directly upstream of the SCR catalyst 1.2), ie to calculate or measure, for example. Based on these data, a bypass of the oxidation catalyst can be carried out in an advantageous manner. This regulation of the bypass can be independent of the position of the Partikelabscheiders 1.3) relative to the SCR catalyst 1.2) and also without that a Partikelabscheider 1.3) is formed.
Gemäß einer weiteren vorteilhaften Ausgestaltung der erfmdungs gemäßen Abgasnachbehandlungseinheit umfasst die Reduktionsmittelzufuhr Zufuhrmittel für einen Reduktionsmittelvorläufer und Mittel zur Umwandlung des Reduktionsmittelvorläufers in das Reduktionsmittel.According to a further advantageous embodiment of the exhaust aftertreatment unit according to the invention, the reducing agent supply comprises reducing agent precursor supply means and means for converting the reducing agent precursor into the reducing agent.
Das Reduktionsmittel umfasst insbesondere eine stickstoffhaltige Verbindung, besonders bevorzugt Ammoniak. Der Reduktionsmittelvorläufer stellt einen Stoff dar, der das Reduktionsmittel abspaltet oder der in das Reduktionsmittel umgewandelt werden kann. Besonders bevorzugt ist hierbei der Einsatz von Harnstoff als Reduktionsmittelvorläufer. Der Harnstoff kann insbesondere in Form einer wässrigen Harnstofflösung oder auch als Feststoff durch Zufuhrmittel eingebracht werden.The reducing agent comprises in particular a nitrogen-containing compound, more preferably ammonia. The reducing agent precursor is a substance which splits off the reducing agent or which can be converted into the reducing agent. Particularly preferred here is the use of urea as a reducing agent precursor. The urea can be introduced in particular in the form of an aqueous urea solution or as a solid by feed.
Insbesondere können die Mittel zur Umwandlung des Reduktionsmittelvorläufers in das Reduktionsmittel Mittel zur Thermolyse und/oder Hydrolyse des Redukti- onsmittelvorläufers umfassen. Wird als Reduktionsmittelvorläufer Harnstoff eingesetzt, so können hier insbesondere eine Thermolyse von Harnstoff ((NH2)2CO) zu Ammoniak (NH3) und Isocyansäure (HCNO) erfolgen. Bei diesem Beispiel erfolgt bei der Hydrolyse die Umwandlung von Isocyansäure (HCNO) und Was¬ ser zu Ammoniak und Kohlendioxid.In particular, the means for converting the reducing agent precursor into the reducing agent may comprise means for thermolysis and / or hydrolysis of the reducing agent precursor. If urea is used as the reducing agent precursor, in particular a thermolysis of urea ((NH 2 ) 2 CO) can be used here. to ammonia (NH 3 ) and isocyanic acid (HCNO) take place. In this example, in the hydrolysis of the conversion of isocyanic acid (HCNO) and What ¬ ser to ammonia and carbon dioxide.
(NH2)2CO -> NH3 + HCNO(NH 2 ) 2CO -> NH 3 + HCNO
HCNO + H2O -> NH3 + CO2 HCNO + H 2 O -> NH 3 + CO 2
Thermolyse und Hydrolyse können insbesondere auch in einem einzigen Bauteil, beispielsweise einem mit einer Hydrolysekatalysatorbeschichtung versehenen Wabenkörper ablaufen.Thermolysis and hydrolysis can in particular also take place in a single component, for example a honeycomb body provided with a hydrolysis catalyst coating.
Gemäß einer weiteren vorteilhaften Weiterbildung der erfindungsgemäßen Abgasnachbehandlungseinheit sind Mittel zur Regeneration des Partikelabscheiders ausgebildet.According to a further advantageous embodiment of the exhaust gas after-treatment unit according to the invention, means for regeneration of the particle separator are formed.
Unter der Regeneration des Partikelabscheiders wird im Rahmen dieser Erfindung insbesondere die Umsetzung der kohlenstoffhaltigen Partikel zu Kohlenmonoxid (CO) und/oder Kohlendioxid (CO2) verstanden. Die Mittel zur Regeneration des Partikelabscheiders können beispielsweise einen Oxidationskatalysator umfassen, vor dem Kohlenwasserstoffe, beispielsweise durch eine überstöchiometrische Befüllung zumindest eines Zylinders der Verbrennungskraftmaschine in den Abgasstrom eingebracht werden. In oder an dem Oxidationskatalysator, der ebenfalls in Form einer entsprechend ausgebildeten Beschichtung auf einem Wabenkörper aufgebracht sein kann, erfolgt die exotherme Umsetzung und Oxidation der Kohlenwasserstoffe. Hierdurch heizt sich das Abgas auf, so dass auch der stromabwärts liegende Partikelabscheider 1.3) aufgeheizt wird. Ab einer bestimmten Grenztemperatur erfolgt bei Vorliegen von Sauerstoff eine Oxidation des Kohlenstoffs in den Partikeln und damit einer Regeneration des Partikelfilters. Eine wei- tere Möglichkeit der Regeneration besteht darin, als Mittel zur Regeneration Heizmittel auszubilden, die den Partikelfilter aufheizbar machen. So kann in be- stimmten Regenerationsintervallen der Partikelfilter über die eben genannte Grenztemperatur aufgeheizt werden, um so die Umsetzung des Kohlenstoffs in Gang zu bringen. Weiterhin kann der Partikelabscheider 1.3) Mittel zur Regeneration umfassen, mittels derer eine Oberflächengleitentladung zur Förderung der Oxidation der Kohlenstoffpartikel gebildet werden kann. Zusätzlich zu allen oben genannten Möglichkeiten der Regeneration kann der Partikelabscheider eine entsprechende Beschichtung aufweisen, die die Temperatur senkt ab der eine Oxidation des Kohlenstoffs abläuft. Die oben angegebenen unterschiedlichen Mittel zur Regeneration des Partikelabscheiders können auch in vorteilhafter Weise mitein- ander kombiniert werden.In the context of this invention, the regeneration of the particle separator is understood in particular to mean the reaction of the carbon-containing particles into carbon monoxide (CO) and / or carbon dioxide (CO 2 ). The means for regenerating the particle separator can comprise, for example, an oxidation catalyst, before which hydrocarbons are introduced into the exhaust gas flow, for example by a superstoichiometric filling of at least one cylinder of the internal combustion engine. In or on the oxidation catalyst, which may also be applied in the form of a correspondingly formed coating on a honeycomb body, the exothermic reaction and oxidation of the hydrocarbons takes place. As a result, the exhaust gas heats up, so that the downstream particle separator 1.3) is heated. From a certain limit temperature occurs in the presence of oxygen oxidation of the carbon in the particles and thus a regeneration of the particulate filter. Another possibility of the regeneration is to form as a means of regeneration heating means that make the particulate filter heatable. Thus, in If the regeneration intervals of the particulate filters were to be raised above the aforementioned limit temperature, in order to initiate the conversion of the carbon. Furthermore, the particle separator 1.3) may comprise means for regeneration, by means of which a surface sliding discharge for promoting the oxidation of the carbon particles can be formed. In addition to all of the above-mentioned possibilities of regeneration, the particle separator can have a corresponding coating which lowers the temperature from which oxidation of the carbon takes place. The above-mentioned different means for regeneration of the particle separator can also be advantageously combined with one another.
Gemäß einer weiteren vorteilhaften Ausgestaltung der erfindungsgemäßen Abgasnachbehandlungseinheit umfassen die Mittel zur Regeneration des Partikelabscheiders Mittel zur Erzeugung eines Plasmas.According to a further advantageous embodiment of the exhaust gas aftertreatment unit according to the invention, the means for regenerating the particle separator comprise means for generating a plasma.
Bevorzugt ist hierbei die Ausbildung eines nichtthermischen Plasmas, insbesondere einer nichtthermischen Oberflächengleitentladung. Hierunter wird insbesondere eine im Kontakt mit einer im Allgemeinen elektrisch isolierenden oder nur schwach leitfähigen Oberfläche brennende elektrischen Gasentladung zur Erzeu- gung eines nichtthermischen Plasmas unter weitgehender Vermeidung einer Gas- aufheizüng verstanden. Diese Oberflächengleitentladung kann kontinuierlich oder diskontinuierlich, insbesondere abhängig vom Beladungszustand des Partikelabscheiders betrieben werden. In Bezug auf die Ausbildung des Partikelabscheiders, der Elektroden und/oder dem Betrieb des Plasmas wird auf die DE 100 57 862 Cl verwiesen, deren Offenbarungsgehalt hiermit in den Offenbarungsgehalt der vorliegenden Erfindung aufgenommen wird.Preference is given to the formation of a non-thermal plasma, in particular a non-thermal surface sliding discharge. This is understood to mean, in particular, an electrical gas discharge burning in contact with a generally electrically insulating or only weakly conductive surface for the purpose of producing a non-thermal plasma while largely avoiding gas heating. This surface sliding discharge can be operated continuously or discontinuously, in particular depending on the loading state of the particle separator. With regard to the formation of the particle separator, the electrodes and / or the operation of the plasma, reference is made to DE 100 57 862 C1, the disclosure content of which is hereby included in the disclosure content of the present invention.
Gemäß einer weiteren vorteilhaften Ausgestaltung der erfindungsgemäßen Abgasnachbehandlungseinheit umfasst der Partikelabscheider einen geschlossenen Partikelfilter. Unter einem geschlossenen Partikelfilter wird insbesondere ein Par- tikelfilter verstanden, bei dem mehrere Kanäle ausgebildet sind und bei dem das Abgas mindestens eine Wand zwischen diesen Kanälen durchströmen muss.According to a further advantageous embodiment of the exhaust aftertreatment unit according to the invention, the particle separator comprises a closed particle filter. Under a closed particulate filter, a par- understood in which a plurality of channels are formed and in which the exhaust gas must flow through at least one wall between these channels.
Gemäß einer weiteren vorteilhaften Ausgestaltung einer erfindungsgemäßen Ab- gasnachbehandlungseinheit umfasst der Partikelabscheider Mittel zum elektrostatischen Abscheiden von Partikeln.According to a further advantageous embodiment of an exhaust gas aftertreatment unit according to the invention, the particle separator comprises means for the electrostatic precipitation of particles.
Insbesondere können hierbei Elektroden ausgebildet sein, die mit einer Gleichspannung oder einer niederfrequenten Wechselspannung, bevorzugt im Bereich von Frequenzen von weniger als 120 Hz, bevorzugt weniger als 90 Hz, besonders bevorzugt sogar von weniger als 10Hz aufweisen. Mittels dieser Mittel können die Kohle umfassende Partikel aufgeladen werden und an der positiv geladenen Elektrode abgeschieden werden. Hierdurch kann es gleichzeitig zu einer Agglomeration der Partikel kommen, in dem mehrere Partikel aneinander haften.In particular, in this case electrodes may be formed which have a DC voltage or a low-frequency AC voltage, preferably in the range of frequencies of less than 120 Hz, preferably less than 90 Hz, more preferably even less than 10 Hz. By means of these means, particles comprising the coal can be charged and deposited on the positively charged electrode. This can lead to an agglomeration of the particles at the same time, in which several particles adhere to one another.
Gemäß einem weiteren Aspekt der Erfindung wird ein Verfahren zur Verminderung der Stickoxid- und Partikelemission einer Verbrennungskraftmaschine vorgeschlagen, welches die folgenden Schritte umfasst: 8.1) Oxidation zumindest von Stickstoffmonoxid (NO), 8.2) selektive katalytische Reduktion von Stickoxiden (NOx) und darauffolgend 8.3) Abscheidung zumindest eines Teils der Partikel im Abgas.According to a further aspect of the invention, a method for reducing the nitrogen oxide and particulate emissions of an internal combustion engine is proposed, comprising the following steps: 8.1) oxidation of at least nitrogen monoxide (NO), 8.2) selective catalytic reduction of nitrogen oxides (NO x ) and subsequently 8.3 ) Deposition of at least a portion of the particles in the exhaust gas.
Bevorzugt ist hierbei eine Verfahrensführung, bei der nach der Oxidation 8.1) und vor der selektiven katalytischen Reduktion 8.2) Reduktionsmittel zugeführt und/oder erzeugt wird. Bevorzugt wird hierbei ein stickstoffhaltiges Reduktionsmittel zugeführt und/oder erzeugt, insbesondere Ammoniak. Besonders bevorzugt ist hierbei, dass ein Reduktionsmittelvorläufer zugeführt und zu Reduktionsmittel umgesetzt wird. Unter einem Reduktionsmittelvorläufer wird hier eine Verbindung verstanden, die Reduktionsmittel abspalten und/oder die in Reduktionsmittel umgewandelt werden kann. Ein möglicher Reduktionsmittelvorläufer für das Re- duktionsmittel Ammoniak ist beispielsweise Harnstoff. Besonders bevorzugt ist hierbei, dass der Partikelabscheider einen geschlossenen Partikelfilter umfasst.Preference is given here to a process procedure in which after the oxidation 8.1) and before the selective catalytic reduction 8.2) reducing agent is supplied and / or generated. Preference is given here a nitrogen-containing reducing agent is supplied and / or generated, in particular ammonia. It is particularly preferred in this case that a reducing agent precursor is fed and converted into reducing agent. A reducing agent precursor is understood here to mean a compound which can split off reducing agents and / or which can be converted into reducing agents. A possible reducing agent precursor for the re reducing agent ammonia is, for example, urea. It is particularly preferred here that the particle separator comprises a closed particle filter.
Weiterhin bevorzugt werden die abgeschiedenen Partikel zumindest teilweise vrai- gesetzt. Unter einer zumindest teilweisen Umsetzung wird hier insbesondere eine zumindest teilweise Oxidation des in den Teilchen enthaltenen Kohlenstoffs verstanden. Weiterhin bevorzugt ist ein regenerierbarer Partikelabscheider. Hierbei werden die auf den Partikelabscheider abgeschiedenen Partikel umgesetzt, beispielsweise wie oben dargelegt.Further preferably, the deposited particles are at least partially set. An at least partial conversion is understood to mean, in particular, an at least partial oxidation of the carbon contained in the particles. Further preferred is a regenerable particle separator. In this case, the particles deposited on the particle separator are reacted, for example as explained above.
Besonders bevorzugt ist hierbei eine Verfahrensführung, bei der die Umsetzung der .Partikel und damit auch die Regeneration des Partikelabscheiders plasmaunterstützt erfolgt. Insbesondere kann hier die Umsetzung der Partikel bzw. die Regeneration des Partikelabscheiders auf dem Wege einer nichtthermischen Oberflä- chengleitentladung wie oben dargelegt erfolgen.Particularly preferred in this case is a process control, in which the reaction of the .Partikel and thus also the regeneration of the Partikelabscheiders is plasma assisted. In particular, the reaction of the particles or the regeneration of the particle separator can take place by way of a non-thermal surface lubricant discharge as explained above.
Besonders bevorzugt ist weiterhin ein Verfahren, bei dem die Partikelabscheidung zumindest teilweise durch ein elektrisches Feld zumindest unterstützt wird.Also particularly preferred is a method in which the particle deposition is at least partially supported by an electric field.
Eine solche elektrostatische Abscheidung oder auch eine Abscheidung, die auf einer niederfrequenten Wechselspannung beruht, kann in besonders vorteilhafter Weise auch mit einem so genannten offenen Partikelfilter oder Partikelabscheider kombiniert werden, der so ausgestaltet ist, dass das Abgas keine Wand zwischen zwei Kanälen durchströmen muss, sondern vielmehr gegebenenfalls auch ohne durch eine Wand zu strömen durch den Partikelabscheider hindurchströmen kann.Such an electrostatic deposition or even a deposition based on a low-frequency AC voltage can be combined in a particularly advantageous manner with a so-called open particle filter or particle, which is designed so that the exhaust gas does not have to flow through a wall between two channels, but Rather, if appropriate, without being able to flow through a wall through the particle separator.
Die hier im Zusammenhang mit der erfindungsgemäßen Abgasnachbehandlungseinheit offenbarten Anwendungsmöglichkeiten, Vorteile und Details lassen sich in gleicher Weise auf das erfindungsgemäße Verfahren übertragen und anwenden und umgekehrt. Im Folgenden wird die Erfindung an Hand der beigefügten Figur näher erläutert, ohne dass die Erfindung auf das dort gezeigte Ausführungsbeispiel sowie die dort offenbarten Vorteile und Details beschränkt wäre. Die einzige Figur 1 zeigt sche¬ matisch eine erfindungsgemäße Abgasnachbehandlungseinheit 1. Diese umfasst einen Oxidationskatalysator 2, einen SCR-Katalysator 3 und einen Partikelabscheider 4. Die Abgasnachbehandlungseinheit 1 ist vom Abgas 5 einer nicht gezeigten Verbrennungskraftmaschine in einer Strömungsrichtung 6 durchströmbar. Erfindungsgemäß sind der Oxidationskatalysator 2, der SCR-Katalysator 3 und der Partikelabscheider 4 in Strömungsrichtung 6 hintereinander ausgebildet.The application possibilities, advantages and details disclosed here in connection with the exhaust gas aftertreatment unit according to the invention can be transferred and applied in the same way to the method according to the invention and vice versa. The invention will be explained in more detail below with reference to the appended FIGURE, without the invention being restricted to the exemplary embodiment shown there as well as the advantages and details disclosed therein. The only figure 1 shows specific ¬ matically an exhaust gas treatment unit of the invention 1. This comprises an oxidation catalyst 2, an SCR catalyst 3, and a particle separator 4. The exhaust after-treatment unit 1 can be flowed through by the exhaust gas 5 of an internal combustion engine not shown in a flow direction. 6 According to the invention, the oxidation catalytic converter 2, the SCR catalytic converter 3 and the particle separator 4 are formed one behind the other in the flow direction 6.
Zwischen Oxidationskatalysator 2 und SCR-Katalysator 3 ist eine Reduktionsmittelzufuhr 7 ausgebildet. Diese umfasst Zufuhrmittel 8 zur Zuführung eines Reduktionsmittelvorläufers und Mittel 9 zur Umwandlung des Reduktionsmittelvorläufers in das Reduktionsmittel. Die Mittel 9 zur Umwandlung des Reduktionsmit- telvorläufers zu Reduktionsmittel umfassen insbesondere einen Hydrolysekatalysator, auf welchem ein Reduktionsmittelvorläufer Harnstoff zu Ammoniak als Reduktionsmittel thermo- und/oder hydrolisiert wird. Stromabwärts des SCR- Katalysators 3 ist ein Sperrkatalysator 10 ausgebildet. Bei diesem wird eventuell durch den SCR-Katalysator 3 durchdringendes Reduktionsmittel umgesetzt. Ins- besondere weist der Sperrkatalysator 10 eine Oxidationskatalysatorbeschichtung auf, die eine Oxidation des Reduktionsmittels bewirkt.Between oxidation catalyst 2 and SCR catalyst 3, a reducing agent supply 7 is formed. This comprises feed means 8 for supplying a reducing agent precursor and means 9 for converting the reducing agent precursor into the reducing agent. The means 9 for converting the reducing agent precursor to reducing agent comprise in particular a hydrolysis catalyst on which a reducing agent precursor urea is thermally and / or hydrolyzed to ammonia as a reducing agent. Downstream of the SCR catalyst 3, a barrier catalyst 10 is formed. In this, possibly by the SCR catalyst 3 penetrating reducing agent is reacted. In particular, the barrier catalyst 10 has an oxidation catalyst coating that effects oxidation of the reductant.
Der Oxidationskatalysator 2, der SCR-Katalysator 3, die Mittel zur Umwandlung des Reduktionsmittelvorläufers zur Reduktionsmittel 9, der Sperrkatalysator 10 und/oder der Partikelabscheider 4 können in vorteilhafter Weise Wabenkörper umfassen, die durch Wände voneinander getrennte für ein Abgas durchströmbare Kanäle aufweise. Die Wabenkörper können insbesondere aus metallischen Lagen aufgebaut sein, die zumindest teilweise strukturiert sind, so dass die Lagen Kanäle begrenzen. Weiterhin ist ein Bypass 11 ausgebildet, mittels dem das Abgas 5 zumindest teil¬ weise um den Oxidationskatalysator 2 herumströmen kann. Es sind Strömungs¬ leitmittel 12 ausgebildet, mittels der der Anteil an Abgas, welcher durch den By¬ pass 11 strömt, gesteuert und/oder geregelt werden kann. Beispielsweise kann es sich bei den Strömungsleitmitteln 12 um eine bewegliche Klappe handeln. Hierbei wird der Anteil des Abgases 5, der durch den Bypass strömt, in Abhängigkeit von der Temperatur des SCR-Katalysators 3 gesteuert. Die Bypassströmung wird jeweils so eingestellt, dass vor dem SCR-Katalysator ein optimales Verhältnis des Gehalts an Stickstoffmonoxid (NO) und Stickstoffdioxid (NO2) vorliegt, so dass die bei dieser SCR-Katalysatortemperatur ablaufenden SCR-Reaktionen wie oben beschrieben ein möglichst optimales Edukt- Verhältnis aufweisen, so dass eine möglichst vollständige Umsetzung der Stickoxide im Abgas 5 am SCR- Katalysator 3 erfolgt.The oxidation catalyst 2, the SCR catalyst 3, the means for converting the reducing agent precursor to the reducing agent 9, the barrier catalyst 10 and / or the particle separator 4 may advantageously comprise honeycomb bodies which have walls separated by walls for an exhaust gas flow through channels. The honeycomb bodies can in particular be constructed of metallic layers which are at least partially structured so that the layers limit channels. Furthermore, a bypass 11 is formed, by means of which the exhaust gas 5 can at least partially flow around the oxidation catalyst 2. There are flow ¬ conducting means 12 are formed by means of controlling the amount of exhaust gas which flows through the by pass ¬ 11, and / or can be regulated. For example, the flow-guiding means 12 may be a movable flap. Here, the proportion of the exhaust gas 5 flowing through the bypass is controlled depending on the temperature of the SCR catalyst 3. The bypass flow is adjusted in each case so that an optimal ratio of the content of nitrogen monoxide (NO) and nitrogen dioxide (NO 2 ) is present before the SCR catalyst, so that the SCR reactions taking place at this SCR catalyst temperature as described above are as optimal as possible - Have ratio, so that as complete as possible implementation of the nitrogen oxides in the exhaust gas 5 takes place at the SCR catalyst 3.
Der Partikelabscheider 4 weist Mittel 13 zum elektrostatischen oder niederfrequenten Abscheiden von Partikeln aus dem Abgas 5 auf. In der Figur sind diese durch entsprechende Spannungsanschlüsse symbolisiert. Mittels einer elektrostatischen Abscheidung, welche durch die Mittel 13 zum elektrostatischen Abscheiden von Partikeln initiiert wird, können Partikel abgeschieden und agglomeriert wer- den. Unter einer niederfrequenten Abscheidung ist hier insbesondere auch eine Abscheidung zu verstehen, die auf einer niederfrequenten Wechselspannung beruht. Beispielsweise können hier Kanalwandungen im Partikelabscheider ausgebildet sein, die jeweils an entgegengesetzten Wänden unterschiedliche elektrische Potentiale aufweisen. Weiterhin weist der Partikelabscheider Mittel 14 zum Er- zeugen eines Plasmas, insbesondere einer nichtthermischen Oberflächengleitent- ladung, auf. Durch dieses Plasmas können insbesondere Mittel zur Regeneration des Partikelabscheiders realisiert werden, bei denen eine Regeneration des Partikelabscheiders 4, also eine Umsetzung des Kohlenstoffs in den abgeschiedenen Partikeln, auf Grund der nichtthermischen Oberflächengleitentladungen erfolgt. Grundsätzlich kann die Regeneration des Partikelabscheiders 4, also die zumindest teilweise Umsetzung der Partikel die auf den Partikelabscheider 4 abgeschieden werden, kontinuierlich oder diskontinuierlich erfolgen. Insbesondere vorteilhaft ist eine diskontinuierliche Regeneration, die abhängig vom Beladungszustand oder Abscheidungsgrad des Partikelabscheiders 4 arbeitet.The particle separator 4 has means 13 for the electrostatic or low-frequency separation of particles from the exhaust gas 5. In the figure, these are symbolized by corresponding voltage connections. By means of an electrostatic precipitation, which is initiated by the means 13 for the electrostatic deposition of particles, particles can be deposited and agglomerated. A low-frequency deposition is to be understood here in particular as a deposition, which is based on a low-frequency AC voltage. For example, here channel walls may be formed in the particle separator, which have different electrical potentials on opposite walls. Furthermore, the particle separator has means 14 for generating a plasma, in particular a non-thermal surface lubricant discharge. In particular, means for regenerating the particle separator, in which regeneration of the particle separator 4, that is to say conversion of the carbon in the separated particles, due to the non-thermal surface sliding discharges, can be realized by means of this plasma. In principle, the regeneration of the particle separator 4, that is to say the at least partial reaction of the particles which are deposited on the particle separator 4, can take place continuously or discontinuously. Particularly advantageous is a discontinuous regeneration, which operates depending on the loading state or degree of separation of the Partikelabscheiders 4.
Die erfindungsgemäße Abgasnachbehandlungseinheit 1 ebenso wie das erfindungsgemäße Verfahren ermöglichen in vorteilhafter Weise die Verringerung der Stickoxid- und Partikelemissionen einer Verbrennungskraftmaschine. The exhaust aftertreatment unit 1 according to the invention as well as the method according to the invention advantageously make it possible to reduce the nitrogen oxide and particle emissions of an internal combustion engine.
BezugszeichenlisteLIST OF REFERENCE NUMBERS
I Abgasnachbehandlungseinheit 2 OxidationskatalysatorI exhaust aftertreatment unit 2 oxidation catalyst
3 SCR-Katalysator3 SCR catalyst
4 Partikelabscheider4 particle separators
5 Abgas5 exhaust
6 Strömungsrichtung 7 Reduktionsmittelzuruhr6 flow direction 7 Reduktionsmitteluhr
8 Zufuhrmittel8 feed
9 Mittel zur Umwandlung des Reduktionsmittelvorläufers in Reduktionsmittel9 means for converting the reducing agent precursor into reducing agent
10 Sperrkatalysator10 barrier catalyst
I 1 Bypass 12 StrömungsleitmittelI 1 bypass 12 flow guide
13 Mittel zum elektrostatischen Abscheiden von Partikeln13 means for the electrostatic precipitation of particles
14 Mittel zum Erzeugen eines Plasmas 14 means for generating a plasma

Claims

Patentansprüche claims
1. Abgasnachbehandlungseinheit (1), die in einer Strömungsrichtung (6) durchströmbar ist, umfassend in Strömungsrichtung (6) hintereinander die folgenden Komponenten:1. exhaust gas aftertreatment unit (1), which can be flowed through in a flow direction (6), comprising in flow direction (6) one after the other the following components:
1.1) einen Oxidationskatalysator (2) zumindest zur Oxidation von Stickstoffmonoxid (NO),1.1) an oxidation catalyst (2) at least for the oxidation of nitrogen monoxide (NO),
1.2) einen SCR-Katalysator (3) zur selektiven katalytischen Reduktion von Stickoxiden (NOx) und1.2) an SCR catalyst (3) for the selective catalytic reduction of nitrogen oxides (NO x ) and
1.3) einen Partikelabscheider (4).1.3) a particle separator (4).
2. Abgasnachbehandlungseinheit (1) nach Anspruch 1, bei der zwischen Oxidationskatalysator (2) und SCR-Katalysator (3) eine Reduktionsmittelzufuhr (7) ausgebildet ist.2. exhaust gas aftertreatment unit (1) according to claim 1, wherein between the oxidation catalyst (2) and SCR catalyst (3) a reducing agent supply (7) is formed.
3. Abgasnachbehandlungseinheit (1) nach Anspruch 2, bei der die Reduktionsmittelzufuhr (7) Zufuhrmittel (8) für einen Reduktionsmittelvorläufer und Mittel (9) zur Umwandlung des Reduktionsmittelvorläufers in das Re- duktionsmittel ausgebildet sind.3. exhaust gas aftertreatment unit (1) according to claim 2, wherein the reducing agent supply (7) supply means (8) for a reducing agent precursor and means (9) for converting the reducing agent precursor are formed in the reducing agent.
4. Abgasnachbehandlungseinheit (1) nach einem der vorhergehenden Ansprüche, bei der Mittel (14) zur Regeneration des Partikelabscheiders (4) ausgebildet sind.4. exhaust gas aftertreatment unit (1) according to one of the preceding claims, wherein the means (14) for the regeneration of the Partikelabscheiders (4) are formed.
5. Abgasnachbehandlungseinheit (1) nach Anspruch 4, bei der die Mittel (14) zur Regeneration des Partikelabscheiders (4) Mittel zur Erzeugung eines Plasmas umfassen. 5. exhaust aftertreatment unit (1) according to claim 4, wherein the means (14) for regeneration of the Partikelabscheiders (4) comprise means for generating a plasma.
6. Abgasnachbehandlungseinheit (1) nach einem der vorhergehenden Ansprüche, bei der der Partikelabscheider (4) einen geschlossenen Partikelfilter umfasst.6. exhaust gas aftertreatment unit (1) according to any one of the preceding claims, wherein the particle separator (4) comprises a closed particle filter.
7. Abgasnachbehandlungseinheit (1) nach einem der vorhergehenden Ansprüche, bei der der Partikelabscheider (4) Mittel (13) zum elektrostatischen Abscheiden von Partikeln umfasst.7. exhaust gas aftertreatment unit (1) according to any one of the preceding claims, wherein the particle separator (4) comprises means (13) for the electrostatic deposition of particles.
8. Verfahren zur Verminderung der Stickoxid- und Partikelemissionen einer Verbrennungskraftmaschine, umfassend die folgenden Schritte:8. A method for reducing the nitrogen oxide and particulate emissions of an internal combustion engine, comprising the following steps:
8.1) Oxidation zumindest von Stickstoffmonoxid (NO),8.1) oxidation of at least nitrogen monoxide (NO),
8.2) selektive katalytische Reduktion von Stickoxiden (NOx) und darauf folgend8.2) selective catalytic reduction of nitrogen oxides (NOx) and subsequently
8.3) Abscheidung zumindest eines Teils der Partikel im Abgas.8.3) deposition of at least a portion of the particles in the exhaust gas.
9. Verfahren nach Anspruch 8, bei dem nach der Oxidation und vor der selektiven katalytischen Reduktion Reduktionsmittel zugeführt und/oder erzeugt wird.9. The method of claim 8, wherein after the oxidation and before the selective catalytic reduction reducing agent is supplied and / or generated.
10. Verfahren nach Anspruch 9, bei dem ein Reduktionsmittelvorläufer zugeführt und zu Reduktionsmittel umgesetzt wird.A process according to claim 9, wherein a reducing agent precursor is fed and converted to reducing agent.
11. Verfahren nach einem der Ansprüche 8 bis 10, bei dem Schritt 8.3) in einem Partikelabscheider (4) ausgeführt wird.11. The method according to any one of claims 8 to 10, wherein the step 8.3) in a particle separator (4) is performed.
12. Verfahren nach Anspruch 11, bei dem der Partikelabscheider (4) einen geschlossenen Partikelfilter umfasst.12. The method of claim 11, wherein the particle separator (4) comprises a closed particle filter.
13. Verfahren nach einem der Ansprüche 8 bis 12, bei dem die abgeschiedenen Partikel zumindest zeitweise umgesetzt werden. 13. The method according to any one of claims 8 to 12, wherein the deposited particles are reacted at least temporarily.
14. Verfahren nach einem der Ansprüche 11 bis 13, bei dem der Partikelabscheider (4) regenerierbar ist.14. The method according to any one of claims 11 to 13, wherein the particle separator (4) is regenerable.
15. Verfahren nach einem der Ansprüche 13 oder 14, bei dem die Umsetzung der Partikel plasmaunterstützt erfolgt.15. The method according to any one of claims 13 or 14, wherein the implementation of the particles takes place plasma assisted.
16. Verfahren nach einem der Ansprüche 8 bis 15, bei dem die Partikelabscheidimg zumindest teilweise durch ein elektrisches Feld zumindest unterstützt wird. 16. The method according to any one of claims 8 to 15, wherein the Partikelabscheidimg is at least partially supported by an electric field at least.
PCT/EP2006/007197 2005-07-29 2006-07-21 Method for reducing the nitrogen oxide and particle emissions of an internal combustion engine and corresponding exhaust-gas treatment unit WO2007014650A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005035555A DE102005035555A1 (en) 2005-07-29 2005-07-29 Exhaust gas treatment unit for motor vehicle`s internal combustion engine, has oxidation catalytic converter for oxidization of nitric oxide, and SCR catalyzer for selective catalytic reduction of nitrogen oxide, and particle separator
DE102005035555.2 2005-07-29

Publications (1)

Publication Number Publication Date
WO2007014650A1 true WO2007014650A1 (en) 2007-02-08

Family

ID=36954955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/007197 WO2007014650A1 (en) 2005-07-29 2006-07-21 Method for reducing the nitrogen oxide and particle emissions of an internal combustion engine and corresponding exhaust-gas treatment unit

Country Status (2)

Country Link
DE (1) DE102005035555A1 (en)
WO (1) WO2007014650A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012065800A3 (en) * 2010-11-17 2012-07-12 Emitec Gesellschaft Für Emissionstechnologie Mbh Device for treating exhaust gas containing soot particles

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2386013T3 (en) 2007-02-21 2012-08-07 Volvo Lastvagnar Ab On-board diagnostic method for an exhaust gas after-treatment system and on-board diagnostic system for an exhaust gas after-treatment system
DE102008013405A1 (en) * 2008-03-10 2009-09-17 Robert Bosch Gmbh Exhaust device of an internal combustion engine
DE102008026178A1 (en) * 2008-05-30 2009-12-03 Deutz Ag High efficiency SCR catalyst
DE102008062417A1 (en) * 2008-12-17 2010-07-01 Volkswagen Ag Exhaust gas cleaning system for cleaning exhaust gas flow of internal combustion engine, has exhaust gas turbine driven by exhaust gas flow
GB2567807A (en) * 2017-10-17 2019-05-01 Perkins Engines Co Ltd Engine exhaust aftertreatment system and method
US11473468B2 (en) 2018-11-30 2022-10-18 Volvo Truck Corporation Aftertreatment system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4223277A1 (en) * 1992-07-15 1994-01-20 Linde Ag Method and device for removing particles from exhaust gases from internal combustion engines
DE19618397A1 (en) * 1996-05-08 1997-11-13 Bayerische Motoren Werke Ag Process for exhaust gas purification in diesel engines
DE10101364A1 (en) * 2001-01-13 2002-07-18 Fev Motorentech Gmbh Process for converting a solid nitrogenous reducing agent into a gas phase for the reduction of nitrogen oxides in oxygen-containing exhaust gases according to the principle of selective catalytic reduction
US20040098980A1 (en) * 2002-11-21 2004-05-27 Montreuil Clifford Norman Exhaust gas aftertreatment systems
DE10258185A1 (en) * 2002-12-12 2004-07-08 Siemens Ag Process for the production of nitrogen oxides and associated device
EP1544425A1 (en) * 2002-08-05 2005-06-22 Ngk Insulators, Ltd. Exhaust gas treating apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10231620A1 (en) * 2002-07-12 2004-01-29 Robert Bosch Gmbh Device and method for exhaust gas purification of an internal combustion engine
US6823663B2 (en) * 2002-11-21 2004-11-30 Ford Global Technologies, Llc Exhaust gas aftertreatment systems

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4223277A1 (en) * 1992-07-15 1994-01-20 Linde Ag Method and device for removing particles from exhaust gases from internal combustion engines
DE19618397A1 (en) * 1996-05-08 1997-11-13 Bayerische Motoren Werke Ag Process for exhaust gas purification in diesel engines
DE10101364A1 (en) * 2001-01-13 2002-07-18 Fev Motorentech Gmbh Process for converting a solid nitrogenous reducing agent into a gas phase for the reduction of nitrogen oxides in oxygen-containing exhaust gases according to the principle of selective catalytic reduction
EP1544425A1 (en) * 2002-08-05 2005-06-22 Ngk Insulators, Ltd. Exhaust gas treating apparatus
US20040098980A1 (en) * 2002-11-21 2004-05-27 Montreuil Clifford Norman Exhaust gas aftertreatment systems
DE10258185A1 (en) * 2002-12-12 2004-07-08 Siemens Ag Process for the production of nitrogen oxides and associated device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012065800A3 (en) * 2010-11-17 2012-07-12 Emitec Gesellschaft Für Emissionstechnologie Mbh Device for treating exhaust gas containing soot particles
CN103339350A (en) * 2010-11-17 2013-10-02 依米泰克排放技术有限公司 Device for treating exhaust gas containing soot particles
US9097155B2 (en) 2010-11-17 2015-08-04 Emitec Gesellschaft Fuer Emissionstechnologie Mbh Device for treating exhaust gas containing soot particles and motor vehicle having the device

Also Published As

Publication number Publication date
DE102005035555A1 (en) 2007-02-01

Similar Documents

Publication Publication Date Title
DE102016213322B4 (en) Dual catalyst heating system
EP1892396B1 (en) Exhaust gas treatment system
EP1395351B1 (en) Exhaust gas purification unit with reducing agent supply
EP2598730B1 (en) Apparatus for exhaust gas treatment
EP1985819B1 (en) Exhaust gas treatment system
EP1901833B1 (en) Method for reducing the particulate and nitrogen oxide portion in the flow of exhaust gas of an internal combustion engine and a corresponding exhaust gas treatment unit
EP1931864B1 (en) Method and device for reducing the nitrogen oxide concentration in the exhaust gas of an internal combustion engine
EP1885473A1 (en) Method and device for treating exhaust gases of internal combusting engines
EP2644857B1 (en) Method for use in connection with an exhaust gas after-treatment system
WO2007014650A1 (en) Method for reducing the nitrogen oxide and particle emissions of an internal combustion engine and corresponding exhaust-gas treatment unit
EP1892395A1 (en) Exhaust gas treatment system
DE10308288A1 (en) Process for removing nitrogen oxides from the exhaust gas of a lean-burn internal combustion engine and exhaust gas purification system therefor
DE102006038290A1 (en) Exhaust gas after treatment system with nitrogen oxide and particle reduction during operation of internal combustion engine such as diesel engine, has oxidation catalyst arranged in part of exhaust gas stream and particle separator
EP1886005A1 (en) Method and device for providing ammonia in a flow of exhaust gas of an internal combustion engine
DE102005026032A1 (en) Device for exhaust gas treatment has particle separator, SCR catalyst for selectively reducing nitrogen oxides and ammonia generator for producing ammonia in the form of a selective reduction agent for reducing nitrogen oxides
DE102005027784A1 (en) Apparatus for treating exhaust gas comprises particle separator, SCR catalyst which reduces nitrogen oxides, and ammonia generator which produces ammonia as selective reducing agent and which is mounted in branch off main gas flow pipe
EP2659950B1 (en) Exhaust gas finishing treatment system
WO2001080977A1 (en) Method and device for purifying the exhaust gases of an internal combustion engine
DE102009014236B4 (en) Device for exhaust gas purification for an internal combustion engine
DE102017124541A1 (en) Apparatus for aftertreatment of exhaust gases of an internal combustion engine
DE102008051168A1 (en) Method for operating an evaporation unit for generating gaseous ammonia
WO2021009240A1 (en) Device and method for exhaust gas post treatment and use thereof
DE102011050928A1 (en) Exhaust gas recycling system for connection with commercial water-cooled four-stroke diesel engine in block-type thermal power station, has catalytic converter arranged behind urea injection unit in flow direction of exhaust gas
DE102019129286A1 (en) Exhaust treatment arrangement for an internal combustion engine
DE102010025893A1 (en) Method for post-treating exhaust gas of internal combustion engine i.e. diesel engine, of motor vehicle, involves reducing nitrogen oxide compound present in exhaust gas flow in combined component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06762746

Country of ref document: EP

Kind code of ref document: A1